WO2013187358A1 - Polishing material composition and production method therefor - Google Patents

Polishing material composition and production method therefor Download PDF

Info

Publication number
WO2013187358A1
WO2013187358A1 PCT/JP2013/065944 JP2013065944W WO2013187358A1 WO 2013187358 A1 WO2013187358 A1 WO 2013187358A1 JP 2013065944 W JP2013065944 W JP 2013065944W WO 2013187358 A1 WO2013187358 A1 WO 2013187358A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
inorganic
abrasive particles
polishing
intermediate layer
Prior art date
Application number
PCT/JP2013/065944
Other languages
French (fr)
Japanese (ja)
Inventor
奈津紀 伊藤
高橋 篤
前澤 明弘
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014521316A priority Critical patent/JPWO2013187358A1/en
Priority to US14/406,743 priority patent/US20150174734A1/en
Publication of WO2013187358A1 publication Critical patent/WO2013187358A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0072Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using adhesives for bonding abrasive particles or grinding elements to a support, e.g. by gluing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to an abrasive composition and a method for producing the same.
  • a rare earth element oxide with cerium oxide as the main component and lanthanum oxide, neodymium oxide, praseodymium oxide, etc. added to it has been used.
  • Other abrasives include diamond, iron oxide, aluminum oxide, zirconium oxide, colloidal silica, etc., but when compared in terms of polishing rate and surface roughness of the polished object, cerium oxide Is known to be effective and is used extensively. However, since cerium oxide has a large specific gravity, its dispersibility in the polishing slurry is not preferable and its hardness is high.
  • cerium oxide is agglomerated, scratches and scratches may occur on the object to be polished.
  • cerium oxide is unevenly distributed worldwide, and it cannot be said that supply is stable. Accordingly, there is a demand for the development of an abrasive that can reduce the amount of cerium oxide used and has excellent dispersibility in the polishing slurry and can perform highly accurate polishing.
  • a method for recovering and regenerating abrasives using cerium oxide worn by use is being developed, it is more resistant to wear and has higher durability in terms of recovery and reproduction costs. There is a need for the development of abrasives.
  • Patent Document 1 using a polishing material having improved dispersibility using composite particles in which a polysaccharide is a base material and abrasive grains containing cerium oxide are supported on the surface of the base material, It describes how to prevent scratches and scratches on objects.
  • Non-Patent Document 1 describes particles in which the surface of a polymer particle serving as a core is covered with spherical colloidal silica.
  • Patent Document 1 the particle size of the cerium oxide contained in the abrasive grains used is large, and the particle shape is plate-like or causes aggregation. There is a problem that it is impossible to uniformly cover the surface with cerium oxide, and the object to be polished is damaged or sufficient durability cannot be obtained.
  • colloidal silica when the particles described in Non-Patent Document 1 are used as an abrasive, colloidal silica has a low polishing rate, so that a sufficient polishing rate cannot be obtained.
  • the present invention has been made in view of such circumstances, and while suppressing the amount of cerium oxide used, it can have a higher polishing rate and durability, and the polishing surface is less likely to be scratched. It is an object of the present invention to provide an abrasive composition and a method for producing the same, which can also reduce the surface roughness.
  • the inorganic abrasive particles further include a core layer formed inside the intermediate layer and including the center of the inorganic abrasive particles,
  • the core layer includes the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er
  • the main component is an oxide of at least one element selected from Tm, Yb, Lu, W, Bi, Th, and an alkaline earth metal.
  • Invention of Claim 3 is an abrasive
  • the manufacturing process of the inorganic abrasive particles is as follows: Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, A core layer forming step of forming a salt of at least one element selected from W, Bi, Th and an alkaline earth metal, and forming the core layer mainly composed of the salt of the element; In the first dispersion solution in which the salt of the element formed in the core layer forming step is dispersed, the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, An aqueous solution containing at least one element selected from Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Y
  • An intermediate layer for forming the intermediate layer containing a salt of at least one element selected from Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and an alkaline earth metal and a salt of Ce Forming process;
  • An aqueous solution containing Ce salt is added to the second dispersion solution in which the salt formed with the intermediate layer is dispersed in the intermediate layer forming step, and Ce salt is a main component outside the intermediate layer.
  • a shell layer forming step of forming the shell layer A solid-liquid separation step for solid-liquid separation of the solid that is the abrasive precursor from the third dispersion obtained by the shell layer formation step; A firing step of firing the abrasive precursor obtained in the separation step in air or in an oxidizing atmosphere; It is characterized by providing.
  • the abrasive composition according to the present invention it is possible to combine higher polishing rate and durability while suppressing the amount of cerium oxide used, and the surface to be polished is less likely to be scratched. Can be small.
  • ⁇ Abrasive> General abrasives include slurry made by dispersing abrasive compositions such as bengara ( ⁇ Fe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide, colloidal silica in water or oil, etc. There is.
  • the present invention is a chemical mechanical polishing method for polishing semiconductor devices and glass, in which polishing is performed by both physical action and chemical action in order to obtain a sufficient polishing rate while maintaining flatness with high accuracy.
  • the abrasive composition 100 has an organic base material 20 mainly composed of an organic compound and inorganic abrasive particles 10 mainly composed of an inorganic compound. That is, the inorganic abrasive particle 10 covers the outer side (outer surface) of the organic base material 20 to form an abrasive composition 100 having an organic / inorganic core-shell structure as a whole. Specifically, as shown in FIG. 1A, the inorganic abrasive particles 10 form a structure that covers the outside of the organic substrate 20.
  • a monomer, oligomer, polymer, or a mixture thereof can be used as the polymerizable compound forming the organic base material 20 of the present invention.
  • a monomer, oligomer, polymer, or a mixture thereof can be used.
  • the above polymers are divinylbenzene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol diacrylate, 1,3-butylene glycol diacrylate, 1, 3-butylene glycol dimethacrylate, trimethylolethane trimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetramethacrylate, tetramethylolmethane tetraacrylate, alkyl-modified dipentaerythritol acrylate, ethylene oxide-modified bisphenol A diester Acrylate, ethyl 3-Dimethylamino acrylate, ethoxydiethylene glycol acrylate, caprolactone-modified dipentaerythrito
  • the polymerizable compound may be a natural polymer such as a polysaccharide.
  • Synthetic polymers include ethylene, styrene, polyurethane, polyvinyl alcohol, polyallylamine, and the like, and natural polymers include cellulose-based, chitosan-based, starch-based, and cellulose-based isomers. These may be used alone or in combination of two or more.
  • the particle shape of the organic base material 20 produced from these polymerizable compounds may be a columnar shape, a polygonal shape or the like, but it is desirable to form it in a spherical shape in consideration of polishing performance and the like.
  • the abrasive composition 100 having the organic substrate 20 also has flexibility compared to conventional cerium oxide abrasives. Yes.
  • the abrasive composition 100 having the organic base material 20 has not only flexibility, but also elasticity so that it does not break even when pressure is applied between the object to be polished and the polishing pad in the polishing process. It is preferable to have.
  • the organic substrate 20 is larger than the average particle size of the inorganic abrasive particles 10 to be coated, and is preferably in the range of 0.1 to 300 ⁇ m, more preferably in the range of 0.5 to 200 ⁇ m.
  • the inside of the organic base material 20 may contain the compound which adjusts specific gravity so that the abrasive
  • a compound containing Fe or the like may be included in the organic base material 20, and when it is desired to reduce the specific gravity, the organic base material 20 may be composed of a porous material having pores.
  • the inorganic abrasive particle 10 according to the present invention is most preferably an inorganic abrasive particle having a three-layer structure having a core layer 1, an intermediate layer 2, and a shell layer 3.
  • the inorganic abrasive particle 10 having a three-layer structure includes a core layer 1 mainly composed of yttrium oxide, and yttrium oxide and cerium oxide formed outside the core layer 1. And a shell layer 3 mainly composed of cerium oxide formed outside the intermediate layer 2.
  • the cerium oxide content has a composition with a constant concentration gradient from the outer side of the intermediate layer region 2a (shell layer region 3a side) to the inner side of the intermediate layer region 2a (core layer region 1a side). Change (decrease).
  • region 2a should just be more than the ratio of the cerium oxide contained in the core layer area
  • the shell layer region 3a formed outside the intermediate layer region 2a contains cerium oxide at a ratio of approximately 100 mol%.
  • the ratio of cerium oxide contained in the shell layer region 3a is preferably 50 to 100 mol%, and particularly preferably 75 mol% or more. This is because the excellent polishing rate of cerium oxide can be exhibited by bringing the concentration of cerium oxide contained in the shell layer region 3a that becomes the surface of the inorganic abrasive particles 10 close to 100 mol%.
  • the inorganic abrasive particles 10 having a three-layer structure may have a three-layer structure as shown in FIG. 2B.
  • the ratio of yttrium oxide and cerium oxide contained in the intermediate layer region 2a may be constant regardless of the distance from the center of the inorganic abrasive particles 10 and may be approximately half of each.
  • the abrasive particles 10 may be formed of the core layer region 1a and the intermediate layer region 2a, and the shell layer region 3a has two layers whose main component is cerium oxide.
  • the intermediate layer region 2a and the core layer region 1a may have no distinction.
  • the inorganic abrasive particles 10 have no boundary with the core layer region 1a, the intermediate layer region 2a in which the content ratios of yttrium oxide and cerium oxide are approximately half each, and cerium oxide as a main component outside the intermediate layer region 2a.
  • the shell layer region 3a may be used.
  • the intermediate layer region 2a which is substantially one layer formed by the intermediate layer 2 and the core layer 1 may contain cerium oxide with a predetermined concentration gradient.
  • a structure in which the composition changes (decreases) with a certain concentration gradient from the shell layer region 3a side to the center side of the inorganic abrasive particles 10 may be employed.
  • the oxide contained in the inorganic abrasive particle 10 has been described as an example of an oxide containing yttrium oxide which is not easily broken against stress applied when used, it is not limited to this, and Al , Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W
  • An oxide of at least one element selected from Bi, Th and alkaline earth metals is preferred.
  • the elements contained as the main component in the core layer 1 of the inorganic abrasive particles 10 are Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In An oxide of at least one element selected from Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and an alkaline earth metal is preferable. It is preferable to be the same as the oxide of the element contained in the layer in order to maintain the bonding strength between the layers, but it is not limited thereto.
  • the oxide of at least one element selected from Lu, W, Bi, Th and alkaline earth metal may be an oxide of different elements in the core layer 1 and the intermediate layer 2.
  • the method for producing the abrasive composition 100 generally comprises the following eight steps (see FIG. 3).
  • Core layer forming step includes Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, A urea compound is added to an aqueous solution containing a salt of at least one element selected from Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and an alkaline earth metal, and the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, A first dispersion solution in which a basic carbonate of at least one element selected from Th and alkaline earth metal is dispersed is prepared.
  • the salt of at least one element selected from Lu, W, Bi, Th and alkaline earth metals, nitrates, hydrochlorides, sulfates and the like can be used, but nitrates are preferably used.
  • urea compounds include urea, urea salts (eg, nitrates, hydrochlorides, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethyl.
  • Urea, tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like can be mentioned, and urea is preferred.
  • the core layer forming step is shown for the case of forming a basic carbonate using urea, but is an example, and the present invention is not limited to this.
  • the ion concentration in the aqueous solution of at least one element selected from W, Bi, Th and alkaline earth metal is 0.001 mol / L to 0.1 mol / L, and urea is 5 to 50 times the ion concentration. Is preferred.
  • a first dispersion solution a basic carbonate that becomes the core layer 1 dispersed in the aqueous solution (hereinafter referred to as a first dispersion solution).
  • the shape of the stirrer is not particularly specified if sufficient stirring efficiency can be obtained, but in order to obtain higher stirring efficiency, a rotor / stator type stirrer should be used. Is preferred.
  • Intermediate layer forming step Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and the like are added to the first dispersion solution containing the basic carbonate formed in the core layer forming step. Included in the core layer forming step selected from Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and alkaline earth metals An aqueous solution containing an elemental salt, for example, yttrium nitrate, and an aqueous solution containing a Ce salt are added.
  • an elemental salt for example, yttrium nitrate, and an aqueous solution containing a Ce salt are added.
  • the core layer 1 is made to grow particles, and the basic carbonate having a larger particle diameter is formed.
  • the addition rate of the aqueous solution added to the first dispersion solution is preferably 0.003 mmol / L to 3.0 mmol / L per minute, and in particular, the ratio of Ce in the addition amount is less than 90 mol%. It is preferable.
  • the first dispersion solution is preferably heated and stirred at 80 ° C. or higher while the aqueous solution is added at the above rate. This is because when heated and stirred at 80 ° C. or lower, decomposition of urea added in the core layer forming step does not proceed and particle formation is inhibited.
  • a dispersion solution in which particles having the intermediate layer 2 formed on the outside of the core layer 1 are dispersed is referred to as a second dispersion solution.
  • Shell layer forming step In the shell layer forming step, an aqueous solution containing a salt of Ce is added to the second dispersion solution in which the particles in which the intermediate layer 2 is formed outside the core layer 1 in the intermediate layer forming step are dispersed.
  • a shell layer 3 mainly composed of Ce basic carbonate on the outer side of the intermediate layer 2, further grain growth is performed.
  • the aqueous solution containing the Ce salt is preferably added at a rate of 0.003 mmol / L to 3.0 mmol / L per minute with heating and stirring at 80 ° C. or higher.
  • the heating temperature as in the case of the intermediate layer forming step, when heated and stirred at 80 ° C. or lower, the decomposition of urea added in the core layer forming step does not proceed and particle formation is inhibited.
  • the dispersion solution in which the particles having the shell layer 3 formed on the outer side of the intermediate layer 2 are dispersed is referred to as a third dispersion solution.
  • Solid-liquid separation step recovers the solid, in which the shell layer 3 is formed outside the intermediate layer 2, from the third dispersion obtained in the shell layer formation step by solid-liquid separation operation. Get the body.
  • the abrasive precursor obtained as necessary may be dried and then transferred to the firing step.
  • Firing step In the firing step, the basic carbonate abrasive precursor obtained by solid-liquid separation is fired at 400 ° C. or higher in air or in an oxidizing atmosphere.
  • the baked abrasive precursor becomes an oxide, and becomes the inorganic abrasive particle 10 whose outer side is covered with cerium oxide.
  • the surface of the inorganic abrasive particle 10 becomes hydrophobic by a silane coupling agent, a titanium coupling agent, or the like. Although surface treatment is not essential, it is desirable to perform it. Therefore, in the surface treatment process for treating the surface of the inorganic abrasive particles 10, the surface treatment of the inorganic abrasive particles 10 is performed with a hydrophobic silane coupling agent or the like. Thereby, the surface of the inorganic abrasive particle 10 becomes hydrophobic, the affinity with the polymerizable compound contained in the organic base material 20 is high, and the dispersibility is further improved.
  • the surface treatment method is not particularly limited, but, for example, since an oxide film is formed on the outside of the inorganic abrasive particles 10, a hydroxy group can be easily introduced by subjecting the outside to an alkali treatment or the like. Can do.
  • Surface treatment of the inorganic abrasive particle 10 can be carried out by reacting the inorganic abrasive particle 10 introduced with such a hydroxy group with a silane coupling agent having a hydrophobic functional group that reacts with the hydroxy group. .
  • silane coupling agent having a hydrophobic functional group that reacts with a hydroxy group examples include vinyl silane, methacrylate silane, sulfur silane, mercapto silane, epoxy silane, and phenyl silane, and more specifically, ⁇ -methacryloxypropyltrimethoxy.
  • Silane vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, vinyltrisisopropoxysilane, vinyltris (tert-butylperoxy) silane, vinyldimethylethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxy Silane, allyltriethoxysilane, vinyltriacetoxysilane, vinyltrichlorosilane, vinyldimethylchlorosilane, vinylmethyldichlorosilane, vinyltris (methyl Sobutylketoxime) silane, methylvinyldi (cyclohexanoneoxime) silane, methylvinyldi (methylethylketoxime) silane, vinyltris (methylethylketoxime) silane, 3-methacryloxypropyltrimethoxysilane, methacryloxypropyltris (trimethylsiloxy) silane, 3-methacryl Examples include
  • the inorganic abrasive particles 10 and the organic base material 20 containing the polymerizable compound are mixed to form a mixture, and the mixture is dispersed in a dispersion solution to disperse the mixture droplets.
  • the organic base material 20 containing a polymerizable compound is a base material that is the core of the abrasive composition 100.
  • the amount of the inorganic abrasive particles 10 to be mixed is an amount that can uniformly coat the organic substrate 20, and is determined by the particle size of the organic substrate 20.
  • the dispersion solution in which the mixture obtained by mixing the inorganic abrasive particles 10 and the organic base material 20 is dispersed is not particularly limited as long as it is incompatible with the organic base material 20.
  • examples include water, methanol, ethanol, dioxane, toluene and mixtures thereof.
  • a stabilizer In order to stably disperse the droplets of the organic base material 20 in the dispersion solution, it is desirable to add a stabilizer.
  • the stabilizer used herein include starch, gelatin, alginic acid, alkyl cellulose, hydroxyalkyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polymethacrylamide, polyacrylic acid, and other water-soluble polymer compounds, bentonite, talc, and water.
  • Aluminum oxide or water-insoluble inorganic substances such as barium, calcium or magnesium sulfates, carbonates or phosphates, nonionic surfactants such as polyoxyethylene alkyl ethers, anionic surfactants such as alkyl sulfonates Agents, and cationic surfactants such as alkylammonium hydrochloride.
  • nonionic surfactants such as polyoxyethylene alkyl ethers
  • anionic surfactants such as alkyl sulfonates Agents
  • cationic surfactants such as alkylammonium hydrochloride.
  • an auxiliary stabilizer, a pH adjuster, and the like may be further added, and additives generally used in the suspension polymerization method and the emulsion polymerization method may be added.
  • a method for dispersing the droplets of the organic base material 20 in the dispersion solution is not particularly limited, and examples thereof include a method in which the organic base material 20 is added to a dispersion solvent and dispersed by stirring. Furthermore, when stirring, in addition to a normal stirring blade, a homomixer, a homogenizer, or the like may be used for dispersion.
  • the inorganic abrasive particles 10 are unevenly distributed on the surface of the droplets of the organic base material 20.
  • the particle surface becomes hydrophobic, but the inorganic abrasive particle 10 is oxidized by being synthesized in the aqueous phase, The surface has hydrophilicity. Therefore, the inorganic abrasive particles 10 having hydrophilicity move gradually toward the surface of the droplets of the organic substrate 20.
  • a specific method for unevenly distributing the inorganic abrasive particles 10 on the surface of the droplets of the organic base material 20 is to disperse the droplets of the mixture in the dispersion solution by dispersing the mixture in the dispersion solution by a dispersion step. Later, the stirring is continued for a certain time.
  • the stirring time here is set in consideration of the speed at which the inorganic abrasive particles 10 move in the droplets of the mixture, the shape of the intended abrasive composition 100, the particle size, and the like.
  • the stirring time is 10 minutes to 15 hours and the stirring time is less than 10 minutes
  • the inorganic abrasive particles 10 are not uniformly dispersed on the surface of the droplets of the organic base material 20, and polishing is performed.
  • the shell structure of the inorganic abrasive particles 10 may not be formed in the outermost shell portion of the material composition 100.
  • the abrasive composition 100 is obtained by polymerizing the organic substrate 20 and the inorganic abrasive particles 10 uniformly coated on the surface of the organic substrate 20.
  • the polymerization method used here may be any method as long as it is a normal polymerization method.
  • the polymerization includes a reaction for forming one bond in addition to a reaction for synthesizing a polymer.
  • abrasive composition 100 comprising an organic base material 20 containing a polymerizable compound and inorganic abrasive particles 10 that coat the outside of the organic base material 20 by a polymerization method. it can.
  • Adjustment of Abrasive Slurry Abrasive powder using the abrasive composition 100 is added to a solvent such as water to prepare an abrasive slurry. By adding a dispersant or the like to the abrasive slurry, aggregation is prevented, and the slurry is constantly stirred using a stirrer or the like to maintain a dispersed state. The abrasive slurry is circulated and supplied to the polishing machine using a supply pump. 2.
  • polishing process The glass substrate is brought into contact with the upper and lower surface plates of the polishing machine to which the polishing pad (polishing cloth) is applied, and the pad and the glass are moved relative to each other under pressure while supplying the abrasive slurry to the contact surface. It is polished by that. 3. Abrasive Material Degradation
  • the abrasive material is used under pressure as in the polishing step. For this reason, the abrasive composition contained in the abrasive gradually collapses and becomes finer as the polishing time elapses. Since miniaturization of the abrasive composition causes a reduction in the polishing rate, an abrasive composition 100 having a small change in particle size distribution before and after polishing is desired.
  • Example 1 1 10 L of 0.01 mol / L yttrium nitric acid aqueous solution was prepared, and urea was added to this aqueous solution so that the concentration of urea was 0.20 mol / L. After sufficiently stirring, the mixture was heated and stirred at 90 ° C. for 1 hour.
  • a mixture of 300 mL of 0.08 mol / L yttrium nitric acid aqueous solution and 300 mL of 0.32 mol / L cerium nitric acid aqueous solution mixed in advance with the dispersion obtained in 1 was added at a rate of 90 mL at an addition rate of 10 mL / min.
  • the mixture was added with stirring at 0 ° C.
  • 50 mL of a 0.4 mol / L cerium nitric acid aqueous solution was added at 90 ° C. with heating and stirring at an addition rate of 10 mL / min. 43.
  • the abrasive precursor precipitated from the dispersion solution obtained in 43 was separated with a membrane filter and fired at 600 ° C. to obtain inorganic abrasive particles.
  • 5 36 g of inorganic abrasive particles prepared in 4 and 40 ml of 3-methacryloxypropyltrimethoxysilane were added to 600 ml of toluene and stirred at 25 ° C. for 1 hour.
  • the solution obtained in 65 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
  • ⁇ Abrasive Material 2 Example 2> 1 10 L of 0.01 mol / L yttrium nitric acid aqueous solution was prepared, and urea was added to this aqueous solution so that the concentration of urea was 0.20 mol / L. After sufficiently stirring, the mixture was heated and stirred at 90 ° C. for 1 hour. 21 A mixture of 300 mL of 0.08 mol / L yttrium nitric acid aqueous solution and 300 mL of 0.32 mol / L cerium nitric acid aqueous solution mixed in advance with the dispersion obtained in 1 was added at a rate of 90 mL at an addition rate of 10 mL / min.
  • ⁇ Abrasive Material 3 Comparative Example 1> 1 36 g of commercially available plate-like cerium oxide and 40 ml of 3-methacryloxypropyltrimethoxysilane were added to 600 ml of toluene, and the mixture was stirred at 25 ° C. for 1 hour. The solution obtained in 21 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
  • ⁇ Abrasive Material 4 Comparative Example 2> 1 10 L of water was prepared, urea was added so as to be 0.20 mol / L, and the mixture was sufficiently stirred and then heated and stirred until it reached 90 ° C. 21 A mixture of 600 mL of a 0.08 mol / L yttrium nitric acid aqueous solution and 600 mL of a 0.32 mol / L cerium nitric acid aqueous solution previously mixed with the dispersion obtained in 21 was added at a rate of 90 mL at an addition rate of 10 mL / min. The mixture was added with stirring at 0 ° C. 32.
  • the abrasive precursor precipitated from the dispersion obtained in 32 was separated with a membrane filter and fired at 600 ° C. to obtain inorganic abrasive particles.
  • the solution obtained in 54 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
  • ⁇ Abrasive Material 5 Comparative Example 3> 1 36 g of commercially available colloidal silica and 40 ml of 3-methacryloxypropyltrimethoxysilane were added to 600 ml of toluene, and the mixture was stirred at 25 ° C. for 1 hour. The solution obtained in 21 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
  • the polishing performance of the abrasives 1 to 4 was evaluated according to the following method.
  • the inorganic abrasive particles 10 synthesized in Examples 1 and 2 have a three-layer structure having a core layer 1, an intermediate layer 2, and a shell layer 3, exhibit monodispersity, and have an average particle diameter of 0.40 ⁇ m. It is known that the coefficient of variation shows 11%.
  • polishing speed The polishing machine used for polishing processing polished the polishing target surface while supplying the polishing target slurry with the abrasive slurry in which the abrasive powder using the polishing composition was dispersed in a solvent such as water. It is to be polished with a cloth.
  • the abrasive slurry had a dispersion medium of only water and a concentration of 100 g / L.
  • polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min. A 65 mm ⁇ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth.
  • the polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min ⁇ 1 (rpm), and polishing was performed for 30 minutes.
  • the thickness before and after polishing was measured with a Nikon Digimicro (MF501), and the polishing amount ( ⁇ m) per minute was calculated from the thickness displacement, and used as the polishing rate.
  • polishing rate was repeated continuously 5 times, and changes in the polishing rate at the first time and the fifth time were examined.
  • Table 1 shows the polishing rates obtained by setting the first polishing rate as the polishing rate 1 and the fifth polishing rate as the polishing rate 2.
  • the abrasive composition 100 obtained in the examples of the present invention has no difference in scratches and surface roughness compared to the comparative examples, but has a high polishing rate and excellent performance. It is clear that this is an abrasive composition 100 having durability.
  • the inorganic abrasive particles 10 having a three-layer structure are used in the shell portion of the abrasive composition 100 formed by the core-shell structure.
  • the organic base material 20 is coated with the inorganic abrasive particles 10 having a uniform shape, high monodispersity, and high Ce concentration on the particle surface, the outside of the abrasive composition 100 is in a high Ce concentration state.
  • a polishing material for polishing processing it is possible to obtain an abrasive composition 100 exhibiting high durability that exhibits a high polishing rate and is unlikely to cause a decrease in the polishing rate.
  • Comparative Example 1 uses plate-like cerium oxide, the scratches and surface roughness are not within the practical range.
  • Comparative Example 2 the number of layers of the inorganic abrasive particles bonded to the organic base material is one layer, and since it is a layer in which cerium and yttrium are mixed, the polishing rate and durability are inferior to those of the examples. Yes. Since Comparative Example 3 uses colloidal silica as inorganic abrasive particles, the polishing rate and durability are clearly inferior to those of the Examples.
  • the outermost shell layer 3 formed with cerium oxide as a main component, Al, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and alkaline earth metals
  • An organic base material containing an inorganic abrasive particle 10 containing an oxide of at least one element selected and cerium oxide and having an intermediate layer 2 formed inside the shell layer 3 and a polymerizable compound 20 and the outer surface of the organic base material 20 is covered with the inorganic abrasive particles 10, so that cerium oxide is used not only on the outer side of the abrasive composition 100 but also on the portion serving as the base material.
  • the organic base material 20 is used as a base material including the center of the abrasive composition 100, the specific gravity is lighter than when an inorganic compound is used, and the abrasive is dispersed in water when used as an abrasive. When used as a slurry, it can be dispersed with excellent stability. That is, aggregation in the dispersion medium is unlikely to occur, the possibility of scratches and scratches occurring during the polishing process is reduced, and the surface roughness of the polishing surface can be reduced.
  • the inorganic abrasive particle 10 further includes a core layer 1 formed on the inner side of the intermediate layer 2 and including the center of the inorganic abrasive particle 10.
  • the core layer 1 includes Al, Sc, Ti, V, Cr , Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and alkaline earth Since the main component is an oxide of at least one element selected from metals, the amount of cerium oxide used can be suppressed by using a three-layer structure, and the durability against pressure applied during polishing is high. Elements can be used in the core layer 1.
  • the inorganic abrasive particles 10 are polymerized on the outer surface of the organic base material 20, the inorganic abrasive particles 10 are compared with the case where the inorganic abrasive particles 10 are physically attached to the organic base material 20. Is unlikely to occur. For this reason, when it uses for grinding
  • the present invention may be used in the field of polishing with an abrasive containing cerium oxide in the manufacturing process of glass products, crystal oscillators, semiconductor devices and the like.

Abstract

The purpose of the present invention is to provide a polishing material composition which is capable of combining excellent polishing speed and endurance, and which reduces polish-surface surface roughness so as to inhibit scratches on the object to be polished, while suppressing the amount of cerium oxide used. A polishing material composition (100) used for a polishing material is provided with: inorganic polishing material particles (10) each having a shell layer (3) which is the outermost shell layer, and which is formed using cerium oxide as a main component thereof, and an intermediate layer (2) which includes cerium oxide and an oxide of at least one element selected from Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and the alkali earth metals, and which is formed further inside than the shell layer (3); and an organic base material (20) which includes a polymerizable compound. The outer surface of the organic base material (20) is coated with the inorganic polishing material particles (10).

Description

研磨材組成物及びその製造方法Abrasive composition and method for producing the same
 本発明は、研磨材組成物及びその製造方法に関する。 The present invention relates to an abrasive composition and a method for producing the same.
 ガラス光学素子やガラス基板、半導体デバイスを製造工程で精密研磨する研磨材としては、従来、酸化セリウムを主成分とし、これに酸化ランタン、酸化ネオジム、酸化プラセオジムなどが加わった希土類元素酸化物が使用されている。この他の研磨材としては、ダイヤモンド、酸化鉄、酸化アルミニウム、酸化ジルコニウム、コロイダルシリカ等が挙げられるが、研磨速度、研磨後の被研磨物の表面粗さの観点から比較したときに、酸化セリウムが有効であることは公知であり、広範囲で用いられている。
 しかしながら、酸化セリウムは、比重が大きいため、研磨スラリー中における分散性が好ましくなく、硬度も高いので、凝集すると被研磨物にスクラッチや傷が発生してしまうことがあった。また、最近、精密電子デバイス等の小型・薄型化の急速な進行に伴い、研磨性能として、傷が発生しにくいことのみならず、研磨面の表面粗さが小さく、平滑性に対する要求も厳しい。また、酸化セリウムは、世界的にも偏在しており、供給が安定するとはいえない。そこで、酸化セリウムの使用量を削減しつつ、研磨スラリー中における分散性に優れ、高精度な研磨を行える研磨材の開発が求められている。また、使用により磨耗した酸化セリウムを用いた研磨材の回収及び再生産の方法についても開発が進められているが、回収及び再生産のコストの面からも、磨耗に強い、より耐久性の高い研磨材の開発が求められている。
As a polishing material for precision polishing of glass optical elements, glass substrates, and semiconductor devices in the manufacturing process, a rare earth element oxide with cerium oxide as the main component and lanthanum oxide, neodymium oxide, praseodymium oxide, etc. added to it has been used. Has been. Other abrasives include diamond, iron oxide, aluminum oxide, zirconium oxide, colloidal silica, etc., but when compared in terms of polishing rate and surface roughness of the polished object, cerium oxide Is known to be effective and is used extensively.
However, since cerium oxide has a large specific gravity, its dispersibility in the polishing slurry is not preferable and its hardness is high. Therefore, if the cerium oxide is agglomerated, scratches and scratches may occur on the object to be polished. Recently, with the rapid progress of miniaturization and thinning of precision electronic devices and the like, not only scratches are hardly generated as polishing performance, but also the surface roughness of the polished surface is small, and the demand for smoothness is severe. Moreover, cerium oxide is unevenly distributed worldwide, and it cannot be said that supply is stable. Accordingly, there is a demand for the development of an abrasive that can reduce the amount of cerium oxide used and has excellent dispersibility in the polishing slurry and can perform highly accurate polishing. In addition, although a method for recovering and regenerating abrasives using cerium oxide worn by use is being developed, it is more resistant to wear and has higher durability in terms of recovery and reproduction costs. There is a need for the development of abrasives.
 例えば、特許文献1では、多糖類を基材とし、基材の表面に酸化セリウムを含む砥粒が担持された複合粒子を使って、分散性を向上させた研磨材を用いることで、被研磨物のスクラッチや傷を防ぐ方法が記載されている。
 また、非特許文献1では、コアとなるポリマー粒子の表面を、球状のコロイダルシリカで覆っている粒子が記載されている。
For example, in Patent Document 1, using a polishing material having improved dispersibility using composite particles in which a polysaccharide is a base material and abrasive grains containing cerium oxide are supported on the surface of the base material, It describes how to prevent scratches and scratches on objects.
Non-Patent Document 1 describes particles in which the surface of a polymer particle serving as a core is covered with spherical colloidal silica.
特開2008-13716号公報JP 2008-13716 A
 しかしながら、特許文献1に記載の方法では、使用されている砥粒に含まれる酸化セリウムの粒子サイズが大きく、粒子形状が板状であったり、凝集を起こしてしまったりするため、基材粒子の表面を均一に酸化セリウムで覆うことが不可能であり、被研磨物に傷ができてしまったり、充分な耐久性が得られないという問題がある。
 また、非特許文献1に記載の粒子を研磨材として用いた場合、コロイダルシリカは研磨速度が小さいため、充分な研磨速度は得られない。
However, in the method described in Patent Document 1, the particle size of the cerium oxide contained in the abrasive grains used is large, and the particle shape is plate-like or causes aggregation. There is a problem that it is impossible to uniformly cover the surface with cerium oxide, and the object to be polished is damaged or sufficient durability cannot be obtained.
In addition, when the particles described in Non-Patent Document 1 are used as an abrasive, colloidal silica has a low polishing rate, so that a sufficient polishing rate cannot be obtained.
 本発明はこのような事情に鑑みてなされたものであり、酸化セリウムの使用量を抑制しつつ、より高い研磨速度及び耐久性を兼ね備えることができるとともに、被研磨物に傷ができにくく研磨面の表面粗さも小さくすることができる研磨材組成物及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and while suppressing the amount of cerium oxide used, it can have a higher polishing rate and durability, and the polishing surface is less likely to be scratched. It is an object of the present invention to provide an abrasive composition and a method for producing the same, which can also reduce the surface roughness.
 上記課題を解決するため、請求項1に記載の発明は、
 研磨材に用いられる研磨材組成物において、
 最外殻層である、酸化セリウムを主成分として形成されるシェル層と、
 Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物及び酸化セリウムを含有し、前記シェル層よりも内側に形成される中間層と、を有する無機研磨材粒子と、
 重合性化合物を含有する有機基材と、を有し、
 前記有機基材の外表面は、前記無機研磨材粒子により被覆されていることを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1
In the abrasive composition used for the abrasive,
A shell layer formed mainly of cerium oxide, which is the outermost shell layer;
Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, An inorganic abrasive particle containing an oxide of at least one element selected from W, Bi, Th, and alkaline earth metal and cerium oxide, and an intermediate layer formed inside the shell layer;
An organic base material containing a polymerizable compound,
The outer surface of the organic base material is covered with the inorganic abrasive particles.
 請求項2に記載の発明は、請求項1に記載の研磨材組成物であって、
 前記無機研磨材粒子は、中間層よりも内側に形成される、前記無機研磨材粒子の中心を含むコア層を更に備え、
 前記コア層は、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物を主成分とすることを特徴とする。
Invention of Claim 2 is an abrasive | polishing material composition of Claim 1, Comprising:
The inorganic abrasive particles further include a core layer formed inside the intermediate layer and including the center of the inorganic abrasive particles,
The core layer includes the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, The main component is an oxide of at least one element selected from Tm, Yb, Lu, W, Bi, Th, and an alkaline earth metal.
 請求項3に記載の発明は、請求項1又は2に記載の研磨材組成物であって、
 前記無機研磨材粒子は、前記有機基材の外表面に重合されることを特徴とする。
Invention of Claim 3 is an abrasive | polishing material composition of Claim 1 or 2, Comprising:
The inorganic abrasive particles are polymerized on the outer surface of the organic base material.
 請求項4に記載の研磨材組成物の製造方法は、
 最外殻層である、酸化セリウムを主成分として形成されるシェル層と、
 Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物及び酸化セリウムを含有し、前記シェル層よりも内側に形成される中間層と、
 前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物を主成分とする、前記中間層よりも内側に形成されるコア層と、を有する無機研磨材粒子を製造する製造工程と、
 前記製造工程により製造された前記無機研磨材粒子と、重合性化合物を含有する有機基材を混合し、分散溶液中に分散させる分散工程と、
 前記分散工程により前記無機研磨材粒子及び前記有機基材が分散された前記分散溶液に重合開始剤を加え、重合法により前記有機基材の外表面に前記無機研磨材粒子を被覆させる重合工程と、
 を備えることを特徴とする。
The method for producing an abrasive composition according to claim 4,
A shell layer formed mainly of cerium oxide, which is the outermost shell layer;
Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, An intermediate layer containing an oxide of at least one element selected from W, Bi, Th and an alkaline earth metal and cerium oxide, and formed inside the shell layer;
Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Inorganic abrasive particles having a core layer formed on the inner side of the intermediate layer, the main component of which is an oxide of at least one element selected from W, Bi, Th, and alkaline earth metal Manufacturing process to
A dispersion step of mixing the inorganic abrasive particles produced by the production step and an organic substrate containing a polymerizable compound and dispersing the mixture in a dispersion solution;
A polymerization step of adding a polymerization initiator to the dispersion solution in which the inorganic abrasive particles and the organic substrate are dispersed by the dispersion step, and coating the inorganic abrasive particles on the outer surface of the organic substrate by a polymerization method; ,
It is characterized by providing.
 請求項5に記載の発明は、請求項4に記載の研磨材組成物の製造方法であって、
 前記無機研磨材粒子の前記製造工程は、
 Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩を形成させ、当該元素の塩を主成分とする前記コア層を形成させるコア層形成工程と、
 前記コア層形成工程により形成される、前記元素の塩を分散させる第1分散溶液に、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素を含有する水溶液及びCeの塩を含有する水溶液を添加して、前記コア層の外側に前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩及びCeの塩を含む前記中間層を形成させる中間層形成工程と、
 前記中間層形成工程により、前記中間層が形成された前記塩を分散させる第2分散溶液に、Ceの塩を含む水溶液を添加して、前記中間層の外側にCeの塩を主成分とする前記シェル層を形成させるシェル層形成工程と、
 前記シェル層形成工程により得られる第3分散溶液から研磨材前駆体である固体を固液分離する固液分離工程と、
 前記分離工程で得られた前記研磨材前駆体を空気中又は酸化性雰囲気中で焼成する焼成工程と、
 を備えることを特徴とする。
Invention of Claim 5 is a manufacturing method of the abrasive | polishing material composition of Claim 4, Comprising:
The manufacturing process of the inorganic abrasive particles is as follows:
Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, A core layer forming step of forming a salt of at least one element selected from W, Bi, Th and an alkaline earth metal, and forming the core layer mainly composed of the salt of the element;
In the first dispersion solution in which the salt of the element formed in the core layer forming step is dispersed, the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, An aqueous solution containing at least one element selected from Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and an alkaline earth metal, and a salt of Ce An aqueous solution containing N, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, outside the core layer is added. An intermediate layer for forming the intermediate layer containing a salt of at least one element selected from Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and an alkaline earth metal and a salt of Ce Forming process;
An aqueous solution containing Ce salt is added to the second dispersion solution in which the salt formed with the intermediate layer is dispersed in the intermediate layer forming step, and Ce salt is a main component outside the intermediate layer. A shell layer forming step of forming the shell layer;
A solid-liquid separation step for solid-liquid separation of the solid that is the abrasive precursor from the third dispersion obtained by the shell layer formation step;
A firing step of firing the abrasive precursor obtained in the separation step in air or in an oxidizing atmosphere;
It is characterized by providing.
 本発明に係る研磨材組成物によれば、酸化セリウムの使用量を抑制しつつ、より高い研磨速度及び耐久性を兼ね備えることができるとともに、被研磨物に傷ができにくく研磨面の表面粗さも小さくすることができる。 According to the abrasive composition according to the present invention, it is possible to combine higher polishing rate and durability while suppressing the amount of cerium oxide used, and the surface to be polished is less likely to be scratched. Can be small.
本発明に係る一実施形態である研磨材組成物の構造を示す模式図である。It is a schematic diagram which shows the structure of the abrasive | polishing material composition which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である無機研磨材粒子の3層構造を示す模式図である。It is a schematic diagram which shows the three-layer structure of the inorganic abrasive particle which is one Embodiment which concerns on this invention. 本発明に係る一実施形態である無機研磨材粒子の3層構造の組成を模式的に示すグラフである。It is a graph which shows typically the composition of the three-layer structure of the inorganic abrasive particle which is one embodiment concerning the present invention. 本発明に係る一実施形態である無機研磨材粒子の3層構造の組成を模式的に示すグラフである。It is a graph which shows typically the composition of the three-layer structure of the inorganic abrasive particle which is one embodiment concerning the present invention. 本発明に係る一実施形態である無機研磨材粒子の2層構造の組成を模式的に示すグラフである。It is a graph which shows typically the composition of the 2 layer structure of the inorganic abrasives particle which is one embodiment concerning the present invention. 本発明に係る一実施形態である無機研磨材粒子の2層構造の組成を模式的に示すグラフである。It is a graph which shows typically the composition of the 2 layer structure of the inorganic abrasives particle which is one embodiment concerning the present invention. 本発明に係る一実施形態である研磨材組成物の製造工程の流れを示す模式図である。It is a schematic diagram which shows the flow of the manufacturing process of the abrasive | polishing material composition which is one Embodiment which concerns on this invention.
 以下、既存の研磨材及び本発明に係る研磨材組成物100及びその製造方法について詳細に説明する。
<研磨材>
 一般的な研磨材には、ベンガラ(αFe)、酸化セリウム、酸化アルミニウム、酸化マンガン、酸化ジルコニウム、コロイダルシリカ等の研磨材組成物を水や油に分散させてスラリー状にしたものなどがある。本発明は、半導体デバイスやガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な研磨速度を得るために物理的な作用と化学的な作用の両方で研磨を行う、化学機械研磨(CMP;Chemical Mechanical Polishing)が可能な酸化セリウムを主成分とする無機研磨材粒子10に被覆された有機基材20を用いる新規な研磨材組成物100及びその製造方法であり、以下にその詳細を説明する。
Hereinafter, the existing abrasive and the abrasive composition 100 according to the present invention and the method for producing the same will be described in detail.
<Abrasive>
General abrasives include slurry made by dispersing abrasive compositions such as bengara (αFe 2 O 3 ), cerium oxide, aluminum oxide, manganese oxide, zirconium oxide, colloidal silica in water or oil, etc. There is. The present invention is a chemical mechanical polishing method for polishing semiconductor devices and glass, in which polishing is performed by both physical action and chemical action in order to obtain a sufficient polishing rate while maintaining flatness with high accuracy. A novel abrasive composition 100 using an organic substrate 20 coated with inorganic abrasive particles 10 mainly composed of cerium oxide capable of (CMP; Chemical Mechanical Polishing) and a method for producing the same, and the details thereof are described below. Will be explained.
<研磨材組成物の有機/無機コアシェル構造>
 本発明に係る研磨材組成物100は、有機化合物を主成分とする有機基材20と、無機化合物を主成分とする無機研磨材粒子10と、を有している。即ち、無機研磨材粒子10は、有機基材20の外側(外表面)を被覆し、全体として有機/無機コアシェル構造を有する研磨材組成物100形成されている。具体的には、図1Aに示すように、無機研磨材粒子10が、有機基材20の外側を被覆する構造を形成している。
<Organic / inorganic core-shell structure of abrasive composition>
The abrasive composition 100 according to the present invention has an organic base material 20 mainly composed of an organic compound and inorganic abrasive particles 10 mainly composed of an inorganic compound. That is, the inorganic abrasive particle 10 covers the outer side (outer surface) of the organic base material 20 to form an abrasive composition 100 having an organic / inorganic core-shell structure as a whole. Specifically, as shown in FIG. 1A, the inorganic abrasive particles 10 form a structure that covers the outside of the organic substrate 20.
<有機基材>
 本発明の有機基材20を形成する重合性化合物としては、単量体、オリゴマー、ポリマー、若しくはこれらの混合物を使用することができ、例えば、ポリメタクリル酸メチル、ポリスチレン、メタクリル酸メチル、スチレン、C~C18のアクリル酸エステル、C~C18のメタクリル酸エステル、メトキシ(ポリオキシエチレン)モノメタクリレート、アクリルアミド、ジメチルアクリルアミド、アクロレイン、アクリロニトリル、アリルアミン、ビニルアミン、ビニルホルマール、ビニルブチラール、ブタジエン、パラビニルフェノール、塩化ビニル、塩化ビニリデン、2-アクリルアミド-2-メチルプロパンスルホン酸、ビニルアルコール、アクリロニトリル、ビニルピロリドン、ビニルピリジン、酢酸ビニル、ビニルイミダゾール等から選ばれる少なくとも1種類のラジカル重合可能なモノマーを重合した重合体等を用いることができる。
 また上記重合体は、ジビニルベンゼン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,3-ブチレングリコールジメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラメタクリレート、テトラメチロールメタンテトラアクリレート、アルキル変性ジペンタエリスリトールアクリレート、エチレンオキサイド変性ビスフェノールAジアクリレート、エチル-3-ジメチルアミノアクリレート、エトキシジエチレングリコールアクリレート、カプロラクトン変性ジペンタエリスリトールアクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールエステルジアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(ペンタ)アクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパンエチレンオキサイド変性トリアクリレート、トリメチロールプロパンアクリレート、ネオペンチルアルコールジアクリレート、1,9-ノナンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、ペンタエリスリトールトリアクリレート等を用いて架橋してもよい。
 また、上記重合性化合物は、多糖類等の天然高分子であってもよい。合成高分子であれば、エチレン、スチレン、ポリウレタン、ポリビニルアルコール、ポリアリルアミン、等があり、天然高分子であれば、セルロース系、キトサン系、デンプン系、セルロース系の異性体、等がある。これらは単独又は2種以上を組み合わせて用いられる。
 これらの重合性化合物から作製した有機基材20の粒子形状は、円柱状、多角形などであってもよいが、研磨性能等を考えて、球状に形成することが望ましい。有機化合物は、一般的に無機化合物よりも高い柔軟性を有しているので、当該有機基材20を有する研磨材組成物100についても、従来の酸化セリウム研磨材と比べて柔軟性を備えている。また、当該有機基材20を有する研磨材組成物100は、柔軟性だけでなく、研磨工程において被研磨物と研磨パッドとの間に挟まれて圧力が加わっても砕けない程度の弾力性を有していることが好ましい。また、有機基材20は、被覆する無機研磨材粒子10の平均粒径より大きく、かつ、0.1~300μmの範囲が好ましく、さらに好ましくは、0.5~200μmの範囲である。
 また、研磨材組成物100がスラリー中で分散しやすくなるよう、有機基材20の内部には、比重を調整するような化合物を含有させてもよい。例えば、比重を重くしたいときにはFeなどを含む化合物を有機基材20内に含有させ、比重を軽くしたいときには、細孔を有する多孔質の材料などで有機基材20を構成してもよい。
<Organic substrate>
As the polymerizable compound forming the organic base material 20 of the present invention, a monomer, oligomer, polymer, or a mixture thereof can be used. For example, polymethyl methacrylate, polystyrene, methyl methacrylate, styrene, C 1 -C 18 acrylic acid ester, C 1 -C 18 methacrylic acid ester, methoxy (polyoxyethylene) monomethacrylate, acrylamide, dimethylacrylamide, acrolein, acrylonitrile, allylamine, vinylamine, vinyl formal, vinyl butyral, butadiene, Paravinylphenol, vinyl chloride, vinylidene chloride, 2-acrylamido-2-methylpropanesulfonic acid, vinyl alcohol, acrylonitrile, vinylpyrrolidone, vinylpyridine, vinyl acetate, vinylimi Polymers obtained by polymerizing at least one radically polymerizable monomer selected from tetrazole or the like, or the like can be used.
Further, the above polymers are divinylbenzene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol diacrylate, 1,3-butylene glycol diacrylate, 1, 3-butylene glycol dimethacrylate, trimethylolethane trimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetramethacrylate, tetramethylolmethane tetraacrylate, alkyl-modified dipentaerythritol acrylate, ethylene oxide-modified bisphenol A diester Acrylate, ethyl 3-Dimethylamino acrylate, ethoxydiethylene glycol acrylate, caprolactone-modified dipentaerythritol acrylate, caprolactone-modified tetrahydrofurfuryl acrylate, caprolactone-modified hydroxypivalic acid neopentyl glycol ester diacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (penta) acrylate , Tetraethylene glycol diacrylate, tripropylene glycol diacrylate, trimethylolpropane ethylene oxide modified triacrylate, trimethylolpropane acrylate, neopentyl alcohol diacrylate, 1,9-nonanediol diacrylate, 1,6-hexanediol diacrylate 1,4-pig Cross-linking may be performed using diol diacrylate, pentaerythritol triacrylate, or the like.
The polymerizable compound may be a natural polymer such as a polysaccharide. Synthetic polymers include ethylene, styrene, polyurethane, polyvinyl alcohol, polyallylamine, and the like, and natural polymers include cellulose-based, chitosan-based, starch-based, and cellulose-based isomers. These may be used alone or in combination of two or more.
The particle shape of the organic base material 20 produced from these polymerizable compounds may be a columnar shape, a polygonal shape or the like, but it is desirable to form it in a spherical shape in consideration of polishing performance and the like. Since organic compounds generally have higher flexibility than inorganic compounds, the abrasive composition 100 having the organic substrate 20 also has flexibility compared to conventional cerium oxide abrasives. Yes. In addition, the abrasive composition 100 having the organic base material 20 has not only flexibility, but also elasticity so that it does not break even when pressure is applied between the object to be polished and the polishing pad in the polishing process. It is preferable to have. The organic substrate 20 is larger than the average particle size of the inorganic abrasive particles 10 to be coated, and is preferably in the range of 0.1 to 300 μm, more preferably in the range of 0.5 to 200 μm.
Moreover, you may make the inside of the organic base material 20 contain the compound which adjusts specific gravity so that the abrasive | polishing agent composition 100 may disperse | distribute easily in a slurry. For example, when it is desired to increase the specific gravity, a compound containing Fe or the like may be included in the organic base material 20, and when it is desired to reduce the specific gravity, the organic base material 20 may be composed of a porous material having pores.
<無機研磨材粒子の3層構造>
 本発明に係る無機研磨材粒子10として、コア層1と、中間層2と、シェル層3と、を有する3層構造の無機研磨材粒子が最も好ましい。具体的には、図1Bに示すように、3層構造の無機研磨材粒子10は、酸化イットリウムを主成分とするコア層1と、コア層1の外側に形成される酸化イットリウムと酸化セリウムを含む中間層2と、中間層2の外側に形成される酸化セリウムを主成分とするシェル層3を備えている。例えば、図2Aに示す3層構造を備える無機研磨材粒子10のコア層領域1aには、酸化セリウムはほとんど含まれておらず、酸化イットリウムが主成分となっている。具体的には、コア層領域1aの外側に形成される中間層領域2aに含まれる酸化セリウムの割合以下であればよい。そして、中間層領域2aにおいて、酸化セリウムの含有率は、中間層領域2aの外側(シェル層領域3a側)から中間層領域2aの内側(コア層領域1a側)へ一定の濃度勾配で組成が変化(減少)する。なお、中間層領域2aに含まれる酸化セリウムの割合は、コア層領域1aに含まれる酸化セリウムの割合以上であって、シェル層領域3aに含まれる酸化セリウムの割合以下であればよい。中間層領域2aの外側において形成されるシェル層領域3aは、酸化セリウムをほぼ100mol%の割合で含有している。具体的には、シェル層領域3aに含まれる酸化セリウムの割合は、50~100mol%が好ましく、特に、75mol%以上であることが好ましい。無機研磨材粒子10の表面となるシェル層領域3aに含まれる酸化セリウムの濃度を100mol%に近づけることで、酸化セリウムの持つ優れた研磨速度を発揮することができるためである。また、3層構造を備える無機研磨材粒子10として、図2Bに示すような3層構造であってもよい。即ち、中間層領域2aにおいて含有される酸化イットリウムと酸化セリウムの割合が、無機研磨材粒子10の中心からの距離にかかわらず一定で、ほぼ半分ずつとなるように構成されていてもよい。
 また、コア層領域1a及び中間層領域2aにより実質的に一つの層を形成し、シェル層領域3aの主成分が酸化セリウムである2層を有する無機研磨材粒子10であってもよい。例えば、図2Cに示すように、中間層領域2aとコア層領域1aに区別がない構造であってもよい。つまり、無機研磨材粒子10は、コア層領域1aと境界がなく、酸化イットリウムと酸化セリウムの含有率がほぼ半分ずつである中間層領域2aと、中間層領域2aの外側に酸化セリウムを主成分とするシェル層領域3aとから構成される構造であってもよい。また、この中間層2とコア層1により形成される実質的に一つの層となる中間層領域2aは、所定の濃度勾配により酸化セリウムが含有されていてもよい。具体的には、図2Dに示すように、シェル層領域3a側から無機研磨材粒子10の中心側へ一定の濃度勾配で組成が変化(減少)する構造であってもよい。なお、無機研磨材粒子10に含まれる酸化物は、使用される際にかかる応力に対して壊れにくい酸化イットリウムが含まれる酸化物を一例として説明したが、これに限定されるものではなく、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物が好ましい。また、無機研磨材粒子10のコア層1に主成分として含まれる元素は、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物が好ましく、かつ、中間層2に含まれる元素の酸化物と同一であることが層間の結合力を保つために好ましいが、これに限定するものではない。例えば、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物がコア層1と中間層2で異なる元素の酸化物であってもよい。
<Three-layer structure of inorganic abrasive particles>
The inorganic abrasive particle 10 according to the present invention is most preferably an inorganic abrasive particle having a three-layer structure having a core layer 1, an intermediate layer 2, and a shell layer 3. Specifically, as shown in FIG. 1B, the inorganic abrasive particle 10 having a three-layer structure includes a core layer 1 mainly composed of yttrium oxide, and yttrium oxide and cerium oxide formed outside the core layer 1. And a shell layer 3 mainly composed of cerium oxide formed outside the intermediate layer 2. For example, the core layer region 1a of the inorganic abrasive particle 10 having the three-layer structure shown in FIG. 2A contains almost no cerium oxide and is mainly composed of yttrium oxide. Specifically, it may be equal to or less than the ratio of cerium oxide contained in the intermediate layer region 2a formed outside the core layer region 1a. In the intermediate layer region 2a, the cerium oxide content has a composition with a constant concentration gradient from the outer side of the intermediate layer region 2a (shell layer region 3a side) to the inner side of the intermediate layer region 2a (core layer region 1a side). Change (decrease). In addition, the ratio of the cerium oxide contained in the intermediate | middle layer area | region 2a should just be more than the ratio of the cerium oxide contained in the core layer area | region 1a, and below the ratio of the cerium oxide contained in the shell layer area | region 3a. The shell layer region 3a formed outside the intermediate layer region 2a contains cerium oxide at a ratio of approximately 100 mol%. Specifically, the ratio of cerium oxide contained in the shell layer region 3a is preferably 50 to 100 mol%, and particularly preferably 75 mol% or more. This is because the excellent polishing rate of cerium oxide can be exhibited by bringing the concentration of cerium oxide contained in the shell layer region 3a that becomes the surface of the inorganic abrasive particles 10 close to 100 mol%. Further, the inorganic abrasive particles 10 having a three-layer structure may have a three-layer structure as shown in FIG. 2B. That is, the ratio of yttrium oxide and cerium oxide contained in the intermediate layer region 2a may be constant regardless of the distance from the center of the inorganic abrasive particles 10 and may be approximately half of each.
Alternatively, the abrasive particles 10 may be formed of the core layer region 1a and the intermediate layer region 2a, and the shell layer region 3a has two layers whose main component is cerium oxide. For example, as shown in FIG. 2C, the intermediate layer region 2a and the core layer region 1a may have no distinction. That is, the inorganic abrasive particles 10 have no boundary with the core layer region 1a, the intermediate layer region 2a in which the content ratios of yttrium oxide and cerium oxide are approximately half each, and cerium oxide as a main component outside the intermediate layer region 2a. The shell layer region 3a may be used. Further, the intermediate layer region 2a which is substantially one layer formed by the intermediate layer 2 and the core layer 1 may contain cerium oxide with a predetermined concentration gradient. Specifically, as shown in FIG. 2D, a structure in which the composition changes (decreases) with a certain concentration gradient from the shell layer region 3a side to the center side of the inorganic abrasive particles 10 may be employed. In addition, although the oxide contained in the inorganic abrasive particle 10 has been described as an example of an oxide containing yttrium oxide which is not easily broken against stress applied when used, it is not limited to this, and Al , Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W An oxide of at least one element selected from Bi, Th and alkaline earth metals is preferred. Further, the elements contained as the main component in the core layer 1 of the inorganic abrasive particles 10 are Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In An oxide of at least one element selected from Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and an alkaline earth metal is preferable. It is preferable to be the same as the oxide of the element contained in the layer in order to maintain the bonding strength between the layers, but it is not limited thereto. For example, said Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb The oxide of at least one element selected from Lu, W, Bi, Th and alkaline earth metal may be an oxide of different elements in the core layer 1 and the intermediate layer 2.
<研磨材組成物の製造方法>
 以下に有機基材20と、有機基材20の周りを被覆する無機研磨材粒子10を有する研磨材組成物100の製造方法を示すが、一例であって、これに限定されるものではない。具体的には、無機研磨材粒子10として、3層構造を有する無機研磨材粒子10の製造方法を示すが、一例であって、コア層1と中間層2に区別のない2層構造であってもよい。
 本発明に係る研磨材組成物100の製造方法はおおむね以下の八つの工程からなる(図3参照)。
<Method for producing abrasive composition>
Although the manufacturing method of the abrasive | polishing material composition 100 which has the inorganic base material particle | grains 10 which coat | cover the organic base material 20 and the circumference | surroundings of the organic base material 20 below is shown, it is an example and is not limited to this. Specifically, the method for producing the inorganic abrasive particles 10 having a three-layer structure as the inorganic abrasive particles 10 will be described, but this is an example, and the core layer 1 and the intermediate layer 2 have a two-layer structure that is not distinguished from each other. May be.
The method for producing the abrasive composition 100 according to the present invention generally comprises the following eight steps (see FIG. 3).
1.コア層形成工程
 コア層形成工程は、まず、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩を含有する水溶液に尿素系化合物を添加して、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩基性炭酸塩を分散させる第1分散溶液を調整する。なお、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩としては、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、硝酸塩を使用することが好ましい。また、尿素系化合物として、尿素、尿素の塩(例えば、硝酸塩、塩酸塩等)、N,N′-ジメチルアセチル尿素、N,N′-ジベンゾイル尿素、ベンゼンスルホニル尿素、p-トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N-ベンゾイル尿素、メチルイソ尿素、エチルイソ尿素等が挙げられるが、好ましくは、尿素である。なお、以下の実施例において、コア層形成工程は、尿素を用いて塩基性炭酸塩を形成させる場合について示すが、一例であって、これに限定されるものではない。
 Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の水溶液中でのイオン濃度は、0.001mol/Lから0.1mol/Lで、尿素は前記イオン濃度の5から50倍の濃度が好ましい。これは、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の水溶液中でのイオン濃度及び尿素のイオン濃度を、当該範囲内とすることで、単分散性を示す球状の無機研磨材粒子10を合成することができるためである。
 そして、混合された水溶液は、80℃以上で加熱撹拌され、水溶液中(以下、第1分散溶液とする。)に分散するコア層1となる塩基性炭酸塩を成長させる。
 なお、加熱撹拌の際には、十分な撹拌効率を得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの撹拌機を使用することが好ましい。
1. Core layer forming step The core layer forming step includes Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, A urea compound is added to an aqueous solution containing a salt of at least one element selected from Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and an alkaline earth metal, and the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, A first dispersion solution in which a basic carbonate of at least one element selected from Th and alkaline earth metal is dispersed is prepared. The Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb As the salt of at least one element selected from Lu, W, Bi, Th and alkaline earth metals, nitrates, hydrochlorides, sulfates and the like can be used, but nitrates are preferably used. Examples of urea compounds include urea, urea salts (eg, nitrates, hydrochlorides, etc.), N, N′-dimethylacetylurea, N, N′-dibenzoylurea, benzenesulfonylurea, p-toluenesulfonylurea, trimethyl. Urea, tetraethylurea, tetramethylurea, triphenylurea, tetraphenylurea, N-benzoylurea, methylisourea, ethylisourea and the like can be mentioned, and urea is preferred. In the following examples, the core layer forming step is shown for the case of forming a basic carbonate using urea, but is an example, and the present invention is not limited to this.
Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, The ion concentration in the aqueous solution of at least one element selected from W, Bi, Th and alkaline earth metal is 0.001 mol / L to 0.1 mol / L, and urea is 5 to 50 times the ion concentration. Is preferred. This is because the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, A spherical shape that exhibits monodispersity by setting the ion concentration in an aqueous solution and the ion concentration of urea in an aqueous solution of at least one element selected from Yb, Lu, W, Bi, Th, and an alkaline earth metal within the range. This is because the inorganic abrasive particles 10 can be synthesized.
The mixed aqueous solution is heated and stirred at 80 ° C. or higher to grow a basic carbonate that becomes the core layer 1 dispersed in the aqueous solution (hereinafter referred to as a first dispersion solution).
In the case of heating and stirring, the shape of the stirrer is not particularly specified if sufficient stirring efficiency can be obtained, but in order to obtain higher stirring efficiency, a rotor / stator type stirrer should be used. Is preferred.
2.中間層形成工程
 中間層形成工程は、コア層形成工程により形成された塩基性炭酸塩を含む第1分散溶液に、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる、コア層形成工程において含まれていた元素の塩、例えば、イットリウム硝酸塩を含有する水溶液とCeの塩を含有する水溶液を添加する。そして、例えば、コア層1であるイットリウムの塩基性炭酸塩の外側にイットリウムとセリウムが混合された中間層2を形成させることによりコア層1を粒子成長させ、より粒子径の大きな塩基性炭酸塩を得る。具体的には、第1分散溶液に添加する水溶液の添加速度は、1分当たり0.003mmol/Lから3.0mmol/Lが好ましく、特に、添加量に占めるCeの割合が90mol%未満であることが好ましい。これは、添加速度及び添加量に占めるCeの割合が、当該範囲を外れると、形成される無機研磨材粒子10が単分散性を示す球状粒子とすることが難しくなるためである。また、第1分散溶液は、前記速度で水溶液を添加されながら、80℃以上で加熱撹拌されることが好ましい。これは、80℃以下で加熱撹拌されると、コア層形成工程において添加された尿素の分解が進まなくなり、粒子形成が阻害されるためである。ここで、コア層1の外側に中間層2が形成された粒子を分散させる分散溶液を第2分散溶液とする。
2. Intermediate layer forming step In the intermediate layer forming step, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and the like are added to the first dispersion solution containing the basic carbonate formed in the core layer forming step. Included in the core layer forming step selected from Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and alkaline earth metals An aqueous solution containing an elemental salt, for example, yttrium nitrate, and an aqueous solution containing a Ce salt are added. Then, for example, by forming an intermediate layer 2 in which yttrium and cerium are mixed on the outside of the basic carbonate of yttrium that is the core layer 1, the core layer 1 is made to grow particles, and the basic carbonate having a larger particle diameter is formed. Get. Specifically, the addition rate of the aqueous solution added to the first dispersion solution is preferably 0.003 mmol / L to 3.0 mmol / L per minute, and in particular, the ratio of Ce in the addition amount is less than 90 mol%. It is preferable. This is because if the ratio of Ce in the addition rate and the addition amount is out of the range, it is difficult for the formed inorganic abrasive particles 10 to be spherical particles exhibiting monodispersity. The first dispersion solution is preferably heated and stirred at 80 ° C. or higher while the aqueous solution is added at the above rate. This is because when heated and stirred at 80 ° C. or lower, decomposition of urea added in the core layer forming step does not proceed and particle formation is inhibited. Here, a dispersion solution in which particles having the intermediate layer 2 formed on the outside of the core layer 1 are dispersed is referred to as a second dispersion solution.
3.シェル層形成工程
 シェル層形成工程は、中間層形成工程によりコア層1の外側に中間層2が形成された粒子を分散させる第2分散溶液に、Ceの塩を含有する水溶液を添加して、中間層2の外側にCeの塩基性炭酸塩が主成分であるシェル層3を形成させることで、さらに粒子成長させる。Ceの塩を含む水溶液は、1分当たり0.003mmol/Lから3.0mmol/Lの添加速度で、80℃以上で加熱撹拌しながら添加されることが好ましい。これは、添加速度が、当該範囲を外れると、形成される無機研磨材粒子10が単分散性を示す球状粒子とすることが難しくなるためである。加熱温度については、中間層形成工程の場合と同様、80℃以下で加熱撹拌されると、コア層形成工程において添加された尿素の分解が進まなくなり、粒子形成が阻害されるためである。ここで、中間層2の外側にシェル層3が形成された粒子を分散させる分散溶液を第3分散溶液とする。
3. Shell layer forming step In the shell layer forming step, an aqueous solution containing a salt of Ce is added to the second dispersion solution in which the particles in which the intermediate layer 2 is formed outside the core layer 1 in the intermediate layer forming step are dispersed. By forming a shell layer 3 mainly composed of Ce basic carbonate on the outer side of the intermediate layer 2, further grain growth is performed. The aqueous solution containing the Ce salt is preferably added at a rate of 0.003 mmol / L to 3.0 mmol / L per minute with heating and stirring at 80 ° C. or higher. This is because if the addition rate is out of the range, it is difficult for the formed inorganic abrasive particles 10 to be spherical particles exhibiting monodispersity. As for the heating temperature, as in the case of the intermediate layer forming step, when heated and stirred at 80 ° C. or lower, the decomposition of urea added in the core layer forming step does not proceed and particle formation is inhibited. Here, the dispersion solution in which the particles having the shell layer 3 formed on the outer side of the intermediate layer 2 are dispersed is referred to as a third dispersion solution.
4.固液分離工程
 固液分離工程は、シェル層形成工程により得られた第3分散溶液からシェル層3が中間層2の外側に形成された固体を固液分離の操作により回収し、研磨材前駆体を得る。なお、固液分離工程において、必要に応じて得られた研磨材前駆体を乾燥した後に、焼成工程へ移行してもよい。
4). Solid-liquid separation step The solid-liquid separation step recovers the solid, in which the shell layer 3 is formed outside the intermediate layer 2, from the third dispersion obtained in the shell layer formation step by solid-liquid separation operation. Get the body. In the solid-liquid separation step, the abrasive precursor obtained as necessary may be dried and then transferred to the firing step.
5.焼成工程
 焼成工程は、固液分離により得られた塩基性炭酸塩の研磨材前駆体を空気中若しくは酸化性雰囲気中で、400℃以上で焼成する。焼成された研磨材前駆体は、酸化物となり、外側が酸化セリウムで覆われた無機研磨材粒子10となる。
5. Firing step In the firing step, the basic carbonate abrasive precursor obtained by solid-liquid separation is fired at 400 ° C. or higher in air or in an oxidizing atmosphere. The baked abrasive precursor becomes an oxide, and becomes the inorganic abrasive particle 10 whose outer side is covered with cerium oxide.
6.表面処理工程
 無機研磨材粒子10は、重合化合物を含有する有機基材20を被覆しやすくするために、シランカップリング剤やチタンカップリング剤などによって無機研磨材粒子10の表面が疎水性となる表面処理を必須ではないが行うことが望ましい。従って、無機研磨材粒子10の表面処理をする表面処理工程は、疎水性のシランカップリング剤などで無機研磨材粒子10の表面処理をする。これにより、無機研磨材粒子10は、当該表面が疎水性となり、有機基材20に含まれる重合性化合物との親和性が高く、分散性が更に向上する。
 当該表面処理方法としては、特に限定はないが、例えば、無機研磨材粒子10の外側は酸化被膜が形成されているため、当該外側をアルカリ処理等することにより、容易にヒドロキシ基を導入することができる。このようなヒドロキシ基が導入された無機研磨材粒子10と、ヒドロキシ基と反応する疎水性官能基を有するシランカップリング剤を反応させることにより、無機研磨材粒子10の表面処理を行うことができる。ヒドロキシ基と反応する疎水性官能基を有するシランカップリング剤としては、ビニルシラン、メタクリレートシラン、イオウシラン、メルカプトシラン、エポキシシラン、フェニルシラン等が挙げられ、具体的には、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリスイソプロポキシシラン、ビニルトリス(Tert-ブチルペルオキシ)シラン、ビニルジメチルエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、ビニルジメチルクロロシラン、ビニルメチルジクロロシラン、ビニルトリス(メチルイソブチルケトオキシム)シラン、メチルビニルジ(シクロヘキサノンオキシム)シラン、メチルビニルジ(メチルエチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、3-メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリス(トリメチルシロキシ)シラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等がある。
 シランカップリング剤の添加量は特に限定しないが、有機基材20の外側の一部若しくは全部に付着又は被覆できる量を添加する。
6). Surface treatment process In order to make the inorganic abrasive particle 10 easily coat the organic base material 20 containing the polymerization compound, the surface of the inorganic abrasive particle 10 becomes hydrophobic by a silane coupling agent, a titanium coupling agent, or the like. Although surface treatment is not essential, it is desirable to perform it. Therefore, in the surface treatment process for treating the surface of the inorganic abrasive particles 10, the surface treatment of the inorganic abrasive particles 10 is performed with a hydrophobic silane coupling agent or the like. Thereby, the surface of the inorganic abrasive particle 10 becomes hydrophobic, the affinity with the polymerizable compound contained in the organic base material 20 is high, and the dispersibility is further improved.
The surface treatment method is not particularly limited, but, for example, since an oxide film is formed on the outside of the inorganic abrasive particles 10, a hydroxy group can be easily introduced by subjecting the outside to an alkali treatment or the like. Can do. Surface treatment of the inorganic abrasive particle 10 can be carried out by reacting the inorganic abrasive particle 10 introduced with such a hydroxy group with a silane coupling agent having a hydrophobic functional group that reacts with the hydroxy group. . Examples of the silane coupling agent having a hydrophobic functional group that reacts with a hydroxy group include vinyl silane, methacrylate silane, sulfur silane, mercapto silane, epoxy silane, and phenyl silane, and more specifically, γ-methacryloxypropyltrimethoxy. Silane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, vinyltrisisopropoxysilane, vinyltris (tert-butylperoxy) silane, vinyldimethylethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxy Silane, allyltriethoxysilane, vinyltriacetoxysilane, vinyltrichlorosilane, vinyldimethylchlorosilane, vinylmethyldichlorosilane, vinyltris (methyl Sobutylketoxime) silane, methylvinyldi (cyclohexanoneoxime) silane, methylvinyldi (methylethylketoxime) silane, vinyltris (methylethylketoxime) silane, 3-methacryloxypropyltrimethoxysilane, methacryloxypropyltris (trimethylsiloxy) silane, 3-methacryl Examples include loxypropyltriethoxysilane and 3-methacryloxypropylmethyldimethoxysilane.
Although the addition amount of a silane coupling agent is not specifically limited, The amount which can adhere or coat to a part or all of the outer side of the organic base material 20 is added.
7.分散工程
 次に、分散工程は、無機研磨材粒子10と重合性化合物を含有する有機基材20を混合して混合物とし、当該混合物を分散溶液中に分散させて混合物液滴を分散させる。重合性化合物を含有する有機基材20は、研磨材組成物100の中核となる基材となる。混合する無機研磨材粒子10の量は、有機基材20を均一に被覆できる量であり、当該有機基材20の粒径によって決まる。
 無機研磨材粒子10及び有機基材20を混合した混合物を分散させる分散溶液は、当該有機基材20と非相溶であれば特に限定されない。一例として、水、メタノール、エタノール、ジオキサン、トルエン及びこれらの混合物があげられる。
 分散溶液中に有機基材20の液滴を安定して分散させるために、安定剤を添加することが望ましい。ここで用いられる安定剤としては、例えば、デンプン、ゼラチン、アルギン酸、アルキルセルロース、ヒドロキシアルキルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリメタクリルアミド、ポリアクリル酸などの水溶性高分子化合物、ベントナイト、タルク、水酸化アルミニウム、あるいはバリウム、カルシウム又はマグネシウムの硫酸塩、炭酸塩又はリン酸塩等の水不溶性の無機物や、ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤、アルキルスルホン酸塩等のアニオン性界面活性剤、アルキルアンモニウム塩酸塩等のカチオン性界面活性剤等が挙げられる。
 また、分散溶液中には、更に補助安定剤、pH調整剤等を加えてもよく、懸濁重合法や乳化重合法において一般的に用いられる添加剤を加えてもよい。
 有機基材20の液滴を分散溶液中に分散させる方法は、特に限定されないが、有機基材20を分散溶媒中に添加し、撹拌して分散させる方法などがあげられる。更に、撹拌の際には、通常の撹拌羽の他に、ホモミキサー、ホモジナイザー等を用いて分散させても良い。
7). Dispersing Step Next, in the dispersing step, the inorganic abrasive particles 10 and the organic base material 20 containing the polymerizable compound are mixed to form a mixture, and the mixture is dispersed in a dispersion solution to disperse the mixture droplets. The organic base material 20 containing a polymerizable compound is a base material that is the core of the abrasive composition 100. The amount of the inorganic abrasive particles 10 to be mixed is an amount that can uniformly coat the organic substrate 20, and is determined by the particle size of the organic substrate 20.
The dispersion solution in which the mixture obtained by mixing the inorganic abrasive particles 10 and the organic base material 20 is dispersed is not particularly limited as long as it is incompatible with the organic base material 20. Examples include water, methanol, ethanol, dioxane, toluene and mixtures thereof.
In order to stably disperse the droplets of the organic base material 20 in the dispersion solution, it is desirable to add a stabilizer. Examples of the stabilizer used herein include starch, gelatin, alginic acid, alkyl cellulose, hydroxyalkyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polymethacrylamide, polyacrylic acid, and other water-soluble polymer compounds, bentonite, talc, and water. Aluminum oxide or water-insoluble inorganic substances such as barium, calcium or magnesium sulfates, carbonates or phosphates, nonionic surfactants such as polyoxyethylene alkyl ethers, anionic surfactants such as alkyl sulfonates Agents, and cationic surfactants such as alkylammonium hydrochloride.
Further, in the dispersion solution, an auxiliary stabilizer, a pH adjuster, and the like may be further added, and additives generally used in the suspension polymerization method and the emulsion polymerization method may be added.
A method for dispersing the droplets of the organic base material 20 in the dispersion solution is not particularly limited, and examples thereof include a method in which the organic base material 20 is added to a dispersion solvent and dispersed by stirring. Furthermore, when stirring, in addition to a normal stirring blade, a homomixer, a homogenizer, or the like may be used for dispersion.
8.重合工程
 有機基材20に無機研磨材粒子10を被覆させる重合工程では、まず、有機基材20の液滴の表面に無機研磨材粒子10を偏在させる。当該無機研磨材粒子10は表面処理工程により表面処理を行った際に、粒子表面が疎水性となっているが、無機研磨材粒子10は水相中で合成されることによって酸化されて、粒子表面が親水性を有している。よって、親水性を有する無機研磨材粒子10は、少しずつ有機基材20の液滴の表面に向かって移動する。
 有機基材20の液滴において、無機研磨材粒子10を表面に偏在させる具体的な方法は、分散工程により混合物を分散溶液中に分散させることで混合物の液滴を分散溶液中に分散させた後に、一定時間撹拌を継続することにより行う。ここでの撹拌時間は、無機研磨材粒子10が混合物の液滴中を移動する速度や、目的とする研磨材組成物100の形状、粒径等を考えて設定する。具体的には、撹拌時間は、10分~15時間で、この撹拌時間が10分未満であると、無機研磨材粒子10が有機基材20の液滴の表面に均一に分散せず、研磨材組成物100の最外殻部分に無機研磨材粒子10によるシェル構造が形成されないことがある。
 次に、重合工程は、有機基材20と当該有機基材20の表面に均一に被覆した無機研磨材粒子10とを重合させて研磨材組成物100を得る。ここで用いる重合法は、通常の重合法であればいかなる方法でも良く、例えば、乳化重合法、ソープフリー乳化重合法、分散重合法、懸濁重合法等でもよく、重合開始剤を用いて加熱又は光を照射することにより開始させる。加熱する際の加熱温度は、有機基材20に用いる重合性化合物の組成や分子量、重合開始剤の種類や量等によって決まるが、通常は、室温~100℃で行われる。なお、本発明において重合とは、重合体を合成する反応に加え、一つの結合を作る反応も含まれている。また、重合開始剤としては、特に限定されず、重合性化合物が可溶な開始剤、例えば、過酸化水素、過酸化ベンゾイル等の過酸化物、アゾビスイソブチロニトリル等があげられる。
 この重合工程を経て、重合性化合物を含有する有機基材20と、当該有機基材20の外側を重合法により被覆する無機研磨材粒子10からなる研磨材組成物100を容易に製造することができる。
8). Polymerization Step In the polymerization step of coating the organic base material 20 with the inorganic abrasive particles 10, first, the inorganic abrasive particles 10 are unevenly distributed on the surface of the droplets of the organic base material 20. When the inorganic abrasive particle 10 is subjected to a surface treatment in the surface treatment step, the particle surface becomes hydrophobic, but the inorganic abrasive particle 10 is oxidized by being synthesized in the aqueous phase, The surface has hydrophilicity. Therefore, the inorganic abrasive particles 10 having hydrophilicity move gradually toward the surface of the droplets of the organic substrate 20.
A specific method for unevenly distributing the inorganic abrasive particles 10 on the surface of the droplets of the organic base material 20 is to disperse the droplets of the mixture in the dispersion solution by dispersing the mixture in the dispersion solution by a dispersion step. Later, the stirring is continued for a certain time. The stirring time here is set in consideration of the speed at which the inorganic abrasive particles 10 move in the droplets of the mixture, the shape of the intended abrasive composition 100, the particle size, and the like. Specifically, when the stirring time is 10 minutes to 15 hours and the stirring time is less than 10 minutes, the inorganic abrasive particles 10 are not uniformly dispersed on the surface of the droplets of the organic base material 20, and polishing is performed. The shell structure of the inorganic abrasive particles 10 may not be formed in the outermost shell portion of the material composition 100.
Next, in the polymerization step, the abrasive composition 100 is obtained by polymerizing the organic substrate 20 and the inorganic abrasive particles 10 uniformly coated on the surface of the organic substrate 20. The polymerization method used here may be any method as long as it is a normal polymerization method. For example, it may be an emulsion polymerization method, a soap-free emulsion polymerization method, a dispersion polymerization method, a suspension polymerization method, or the like, and is heated using a polymerization initiator. Or it starts by irradiating light. The heating temperature at the time of heating is determined depending on the composition and molecular weight of the polymerizable compound used for the organic substrate 20, the type and amount of the polymerization initiator, and is usually room temperature to 100 ° C. In the present invention, the polymerization includes a reaction for forming one bond in addition to a reaction for synthesizing a polymer. Moreover, it does not specifically limit as a polymerization initiator, For example, peroxides, such as hydrogen peroxide and a benzoyl peroxide, an azobisisobutyronitrile, etc. are mention | raise | lifted in which a polymeric compound is soluble.
Through this polymerization step, it is possible to easily produce an abrasive composition 100 comprising an organic base material 20 containing a polymerizable compound and inorganic abrasive particles 10 that coat the outside of the organic base material 20 by a polymerization method. it can.
<研磨材の使用方法と研磨材の劣化>
 情報記録ディスク用ガラス基板の研磨加工を例にとり、研磨材の使用法を記載する。
1.研磨材スラリーの調整
 研磨材組成物100を用いた研磨材の粉体を水等の溶媒に添加し、研磨材スラリーを作製する。研磨材スラリーには、分散剤等を添加することで、凝集を防止するとともに、撹拌機等を用いて常時撹拌し、分散状態を維持する。研磨材スラリーは供給用ポンプを利用して、研磨機に循環供給される。
2.研磨工程
 研磨パット(研磨布)が貼られた研磨機の上下定盤にガラス基板を接触させ、接触面に対して研磨材スラリーを供給しながら、加圧条件下でパットとガラスを相対運動させることで研磨される。
3.研磨材の劣化
 研磨材は、前記研磨工程にあるように、加圧条件下で使用される。このため、研磨材に含まれる研磨材組成物は、研磨時間が経過するにつれて、徐々に崩壊し微小化してしまう。研磨材組成物の微小化は研磨速度の減少を引き起こすので、研磨前後で粒子径分布の変化が小さい研磨材組成物100が望まれる。
<Using abrasives and deterioration of abrasives>
Taking the polishing process of the glass substrate for information recording disks as an example, the usage of the abrasive will be described.
1. Adjustment of Abrasive Slurry Abrasive powder using the abrasive composition 100 is added to a solvent such as water to prepare an abrasive slurry. By adding a dispersant or the like to the abrasive slurry, aggregation is prevented, and the slurry is constantly stirred using a stirrer or the like to maintain a dispersed state. The abrasive slurry is circulated and supplied to the polishing machine using a supply pump.
2. Polishing process The glass substrate is brought into contact with the upper and lower surface plates of the polishing machine to which the polishing pad (polishing cloth) is applied, and the pad and the glass are moved relative to each other under pressure while supplying the abrasive slurry to the contact surface. It is polished by that.
3. Abrasive Material Degradation The abrasive material is used under pressure as in the polishing step. For this reason, the abrasive composition contained in the abrasive gradually collapses and becomes finer as the polishing time elapses. Since miniaturization of the abrasive composition causes a reduction in the polishing rate, an abrasive composition 100 having a small change in particle size distribution before and after polishing is desired.
 以下実施例及び比較例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。
<研磨材1:実施例1>
1 0.01mol/Lのイットリウム硝酸水溶液10Lを用意し、この水溶液に、尿素が0.20mol/Lになるように添加し、十分に撹拌した後に90℃で1時間加熱撹拌した。
2 1で得られた分散溶液に、あらかじめ混合しておいた0.08mol/Lのイットリウム硝酸水溶液300mLと0.32mol/Lのセリウム硝酸水溶液300mLの混合液を10mL/minの添加速度で、90℃で加熱撹拌しながら添加した。
3 2で得られた分散溶液に、0.4mol/Lのセリウム硝酸水溶液50mLを10mL/minの添加速度で、90℃で加熱撹拌しながら添加した。
4 3で得られた分散溶液から析出した研磨材前駆体をメンブランフィルターにて分離し、600℃で焼成して無機研磨材粒子を得た。
5 トルエン600mlに、4で作製した無機研磨材粒子36gと3-メタクリロキシプロピルトリメトキシシラン40mlを添加し、25℃で1時間撹拌した。
6 5で得られた溶液を110℃まで昇温させ、そのまま72時間撹拌を行い、その後トルエン/メタノールで充分に洗浄し、乾燥させた。
7 スチレン50mlとエチレングリコールジメタクリレート50mlの混合液を撹拌させながら、6の工程において表面処理された無機研磨材粒子20gとアゾビスイソブチロニトリル1gを添加し、混合液を得た。
8 7で得られた混合液を4.0質量%のポリビニルアルコール水溶液に加え、25℃で11時間撹拌させた後、60℃まで昇温してそのまま24時間撹拌を行い、その後60℃の温水で洗浄、メタノールで洗浄させて、研磨材組成物を得た。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
<Abrasive Material 1: Example 1>
1 10 L of 0.01 mol / L yttrium nitric acid aqueous solution was prepared, and urea was added to this aqueous solution so that the concentration of urea was 0.20 mol / L. After sufficiently stirring, the mixture was heated and stirred at 90 ° C. for 1 hour.
21 A mixture of 300 mL of 0.08 mol / L yttrium nitric acid aqueous solution and 300 mL of 0.32 mol / L cerium nitric acid aqueous solution mixed in advance with the dispersion obtained in 1 was added at a rate of 90 mL at an addition rate of 10 mL / min. The mixture was added with stirring at 0 ° C.
32 To the dispersion obtained in 32, 50 mL of a 0.4 mol / L cerium nitric acid aqueous solution was added at 90 ° C. with heating and stirring at an addition rate of 10 mL / min.
43. The abrasive precursor precipitated from the dispersion solution obtained in 43 was separated with a membrane filter and fired at 600 ° C. to obtain inorganic abrasive particles.
5 36 g of inorganic abrasive particles prepared in 4 and 40 ml of 3-methacryloxypropyltrimethoxysilane were added to 600 ml of toluene and stirred at 25 ° C. for 1 hour.
The solution obtained in 65 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
7 While stirring a mixed solution of 50 ml of styrene and 50 ml of ethylene glycol dimethacrylate, 20 g of inorganic abrasive particles surface-treated in the step 6 and 1 g of azobisisobutyronitrile were added to obtain a mixed solution.
The mixture obtained in 87 was added to a 4.0% by weight aqueous polyvinyl alcohol solution and stirred at 25 ° C. for 11 hours, then heated to 60 ° C. and stirred as it was for 24 hours, and then warm water at 60 ° C. And washed with methanol to obtain an abrasive composition.
<研磨材2:実施例2>
1 0.01mol/Lのイットリウム硝酸水溶液10Lを用意し、この水溶液に、尿素が0.20mol/Lになるように添加し、十分に撹拌した後に90℃で1時間加熱撹拌した。
2 1で得られた分散溶液に、あらかじめ混合しておいた0.08mol/Lのイットリウム硝酸水溶液300mLと0.32mol/Lのセリウム硝酸水溶液300mLの混合液を10mL/minの添加速度で、90℃で加熱撹拌しながら添加した。
3 2で得られた分散溶液に、0.4mol/Lのセリウム硝酸水溶液50mLを10mL/minの添加速度で、90℃で加熱撹拌しながら添加した。
4 3で得られた分散溶液から析出した研磨材前駆体をメンブランフィルターにて分離し、600℃で焼成して無機研磨材粒子を得た。
5 スチレン50mlとエチレングリコールジメタクリレート50mlの混合液を撹拌させながら、アゾビスイソブチロニトリル1gを添加し、混合液を得た。
6 5で得られた混合液を4.0質量%のポリビニルアルコール水溶液に加え、25℃で1時間撹拌させた後、60℃まで昇温してそのまま24時間撹拌を行った。
7 6で得られた混合液に、4で得られた無機研磨材粒子を40g添加し、25℃で5時間撹拌させた後、60℃の温水で洗浄、メタノールで洗浄させて、研磨材組成物を得た。
<Abrasive Material 2: Example 2>
1 10 L of 0.01 mol / L yttrium nitric acid aqueous solution was prepared, and urea was added to this aqueous solution so that the concentration of urea was 0.20 mol / L. After sufficiently stirring, the mixture was heated and stirred at 90 ° C. for 1 hour.
21 A mixture of 300 mL of 0.08 mol / L yttrium nitric acid aqueous solution and 300 mL of 0.32 mol / L cerium nitric acid aqueous solution mixed in advance with the dispersion obtained in 1 was added at a rate of 90 mL at an addition rate of 10 mL / min. The mixture was added with stirring at 0 ° C.
32 To the dispersion obtained in 32, 50 mL of a 0.4 mol / L cerium nitric acid aqueous solution was added at 90 ° C. with heating and stirring at an addition rate of 10 mL / min.
43. The abrasive precursor precipitated from the dispersion solution obtained in 43 was separated with a membrane filter and fired at 600 ° C. to obtain inorganic abrasive particles.
5 While stirring a mixed solution of 50 ml of styrene and 50 ml of ethylene glycol dimethacrylate, 1 g of azobisisobutyronitrile was added to obtain a mixed solution.
65 The mixture obtained in 5 was added to a 4.0% by mass aqueous polyvinyl alcohol solution and stirred at 25 ° C. for 1 hour, and then heated to 60 ° C. and stirred as it was for 24 hours.
76 Add 40 g of the inorganic abrasive particles obtained in 4 to the mixed solution obtained in 6 and stir at 25 ° C. for 5 hours, then wash in hot water at 60 ° C. and wash in methanol to obtain an abrasive composition I got a thing.
<研磨材3:比較例1>
1 トルエン600mlに、市販の板状酸化セリウム36gと3-メタクリロキシプロピルトリメトキシシラン40mlを添加し、25℃で1時間撹拌した。
2 1で得られた溶液を110℃まで昇温させ、そのまま72時間撹拌を行い、その後トルエン/メタノールで充分に洗浄し、乾燥させた。
3 スチレン50mlとエチレングリコールジメタクリレート50mlの混合液を撹拌させながら、2の工程において表面処理された板状酸化セリウム20gとアゾビスイソブチロニトリル1gを添加し、混合液を得た。
4 3で得られた混合液を4.0質量%のポリビニルアルコール水溶液に加え、25℃で1時間撹拌させた後、60℃まで昇温してそのまま24時間撹拌を行い、その後60℃の温水で洗浄、メタノールで洗浄させて、研磨材組成物を得た。
<Abrasive Material 3: Comparative Example 1>
1 36 g of commercially available plate-like cerium oxide and 40 ml of 3-methacryloxypropyltrimethoxysilane were added to 600 ml of toluene, and the mixture was stirred at 25 ° C. for 1 hour.
The solution obtained in 21 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
3 While stirring a mixed solution of 50 ml of styrene and 50 ml of ethylene glycol dimethacrylate, 20 g of plate-like cerium oxide surface-treated in 2 steps and 1 g of azobisisobutyronitrile were added to obtain a mixed solution.
43 The mixture obtained in 3 was added to a 4.0% by mass aqueous polyvinyl alcohol solution, and the mixture was stirred at 25 ° C. for 1 hour, then heated to 60 ° C. and stirred as it was for 24 hours, and then warm water at 60 ° C. And washed with methanol to obtain an abrasive composition.
<研磨材4:比較例2>
1 水10Lを用意し、尿素が0.20mol/Lになるように添加し、十分に撹拌した後に90℃になるまで加熱撹拌した。
2 1で得られた分散溶液に、あらかじめ混合しておいた0.08mol/Lのイットリウム硝酸水溶液600mLと0.32mol/Lのセリウム硝酸水溶液600mLの混合液を10mL/minの添加速度で、90℃で加熱撹拌しながら添加した。
3 2で得られた分散溶液から析出した研磨材前駆体をメンブランフィルターにて分離し、600℃で焼成して無機研磨材粒子を得た。
4 トルエン600mlに、3で作製した無機研磨材粒子36gと3-メタクリロキシプロピルトリメトキシシラン40mlを添加し、25℃で1時間撹拌した。
5 4で得られた溶液を110℃まで昇温させ、そのまま72時間撹拌を行い、その後トルエン/メタノールで充分に洗浄し、乾燥させた。
6 スチレン50mlとエチレングリコールジメタクリレート50mlの混合液を撹拌させながら、5の工程において表面処理された無機研磨材粒子20gとアゾビスイソブチロニトリル1gを添加し、混合液を得た。
7 6で得られた混合液を4.0質量%のポリビニルアルコール水溶液に加え、25℃で1時間撹拌させた後、60℃まで昇温してそのまま24時間撹拌を行い、その後60℃の温水で洗浄、メタノールで洗浄させて、研磨材組成物を得た。
<Abrasive Material 4: Comparative Example 2>
1 10 L of water was prepared, urea was added so as to be 0.20 mol / L, and the mixture was sufficiently stirred and then heated and stirred until it reached 90 ° C.
21 A mixture of 600 mL of a 0.08 mol / L yttrium nitric acid aqueous solution and 600 mL of a 0.32 mol / L cerium nitric acid aqueous solution previously mixed with the dispersion obtained in 21 was added at a rate of 90 mL at an addition rate of 10 mL / min. The mixture was added with stirring at 0 ° C.
32. The abrasive precursor precipitated from the dispersion obtained in 32 was separated with a membrane filter and fired at 600 ° C. to obtain inorganic abrasive particles.
4 To 600 ml of toluene, 36 g of inorganic abrasive particles prepared in 3 and 40 ml of 3-methacryloxypropyltrimethoxysilane were added and stirred at 25 ° C. for 1 hour.
The solution obtained in 54 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
6 While stirring a mixed solution of 50 ml of styrene and 50 ml of ethylene glycol dimethacrylate, 20 g of inorganic abrasive particles surface-treated in 5 steps and 1 g of azobisisobutyronitrile were added to obtain a mixed solution.
76 The mixture obtained in 6 was added to a 4.0% by weight aqueous polyvinyl alcohol solution and stirred at 25 ° C. for 1 hour, then heated to 60 ° C. and stirred as it was for 24 hours, and then warm water at 60 ° C. And washed with methanol to obtain an abrasive composition.
<研磨材5:比較例3>
1 トルエン600mlに、市販のコロイダルシリカ36gと3-メタクリロキシプロピルトリメトキシシラン40mlを添加し、25℃で1時間撹拌した。
2 1で得られた溶液を110℃まで昇温させ、そのまま72時間撹拌を行い、その後トルエン/メタノールで充分に洗浄し、乾燥させた。
3 スチレン50mlとエチレングリコールジメタクリレート50mlの混合液を撹拌させながら、1の工程において表面処理されたコロイダルシリカ粒子20gとアゾビスイソブチロニトリル1gを添加し、混合液を得た。
4 3で得られた混合液を4.0質量%のポリビニルアルコール水溶液に加え、25℃で1時間撹拌させた後、60℃まで昇温してそのまま24時間撹拌を行い、その後60℃の温水で洗浄、メタノールで洗浄させて、研磨材組成物を得た。
<Abrasive Material 5: Comparative Example 3>
1 36 g of commercially available colloidal silica and 40 ml of 3-methacryloxypropyltrimethoxysilane were added to 600 ml of toluene, and the mixture was stirred at 25 ° C. for 1 hour.
The solution obtained in 21 was heated to 110 ° C., stirred as it was for 72 hours, and then thoroughly washed with toluene / methanol and dried.
3 While stirring a mixed liquid of 50 ml of styrene and 50 ml of ethylene glycol dimethacrylate, 20 g of colloidal silica particles surface-treated in one step and 1 g of azobisisobutyronitrile were added to obtain a mixed liquid.
43 The mixture obtained in 3 was added to a 4.0% by mass aqueous polyvinyl alcohol solution, and the mixture was stirred at 25 ° C. for 1 hour, then heated to 60 ° C. and stirred as it was for 24 hours, and then warm water at 60 ° C. And washed with methanol to obtain an abrasive composition.
<研磨材の評価>
 研磨材1から4について、下記の方法に従って、研磨性能の評価を行った。なお、実施例1、2で合成された無機研磨材粒子10は、コア層1、中間層2、シェル層3を有する3層構造であり、単分散性を示し、平均粒子径が0.40μm、変動係数が11%を示すことがわかっている。
<Evaluation of abrasive>
The polishing performance of the abrasives 1 to 4 was evaluated according to the following method. The inorganic abrasive particles 10 synthesized in Examples 1 and 2 have a three-layer structure having a core layer 1, an intermediate layer 2, and a shell layer 3, exhibit monodispersity, and have an average particle diameter of 0.40 μm. It is known that the coefficient of variation shows 11%.
1.研磨速度
 研磨加工に使用した研磨機は、研磨材組成物を用いた研磨材の粉体を水等の溶媒に分散させた研磨材スラリーを、研磨対象面に供給しながら、研磨対象面を研磨布で研磨するものである。研磨材スラリーは分散媒を水のみとして、濃度は100g/Lとした。研磨試験においては、研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmΦのガラス基板を使用し、研磨布は、ポリウレタン製の物を使用した。研磨面に対する研磨時の圧力は、9.8kPa(100g/cm)とし、研磨試験機の回転速度は100min-1(rpm)に設定し、30分間研磨加工を行った。研磨前後の厚さをNikon Digimicro(MF501)にて測定し、厚さ変位から1分間当たりの研磨量(μm)を算出し、研磨速度とした。
1. Polishing speed The polishing machine used for polishing processing polished the polishing target surface while supplying the polishing target slurry with the abrasive slurry in which the abrasive powder using the polishing composition was dispersed in a solvent such as water. It is to be polished with a cloth. The abrasive slurry had a dispersion medium of only water and a concentration of 100 g / L. In the polishing test, polishing was performed by circulatingly supplying an abrasive slurry at a flow rate of 5 L / min. A 65 mmφ glass substrate was used as the object to be polished, and a polyurethane cloth was used as the polishing cloth. The polishing pressure on the polished surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set to 100 min −1 (rpm), and polishing was performed for 30 minutes. The thickness before and after polishing was measured with a Nikon Digimicro (MF501), and the polishing amount (μm) per minute was calculated from the thickness displacement, and used as the polishing rate.
2.研磨速度の変動調査
 上記「1.研磨速度」で示した方法による研磨を連続5回繰り返し、初回と5回目での研磨速度の変化を調べた。ここで、初回の研磨速度を研磨速度1とし、5回目の研磨速度を研磨速度2として得られた研磨速度を表1に示す。
2. Investigation of fluctuation of polishing rate Polishing by the method shown in “1. Polishing rate” was repeated continuously 5 times, and changes in the polishing rate at the first time and the fifth time were examined. Here, Table 1 shows the polishing rates obtained by setting the first polishing rate as the polishing rate 1 and the fifth polishing rate as the polishing rate 2.
3.傷の有無
 ガラス基板100枚について、50~100μmレベルの傷の有無を目視で調べた。
3. Presence / absence of scratches On 100 glass substrates, the presence or absence of scratches at a level of 50 to 100 μm was examined visually.
4.表面粗さ
 ガラス基板表面の表面粗さについては、Zygo社製Dual channel ZeMapperにて、原子レベルの表面粗さ評価を行った。
4). Surface Roughness Regarding the surface roughness of the glass substrate surface, surface roughness evaluation at an atomic level was performed with Dual channel ZeMapper manufactured by Zygo.
<研磨材の形状・研磨性能の評価>
 以上の評価により得られた結果を表1にまとめた。研磨性能の傷及び表面粗さの○×の評価については、○は、実技上問題がないことを表す。×は、実技上問題があることを表す。
<Evaluation of abrasive shape and polishing performance>
The results obtained from the above evaluation are summarized in Table 1. Regarding the evaluation of scratches on the polishing performance and Ox on the surface roughness, o indicates that there is no practical problem. X indicates that there is a problem in practice.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<研磨材の研磨性能の評価>
 上記評価により得られた結果を表1にまとめた。
 表1から分かるように、本発明の実施例で得られた研磨材組成物100は、比較例と比べると、傷と表面粗さについては差がないものもあるが、高い研磨速度と優れた耐久性を兼ね備えた研磨材組成物100であることが明らかである。
 具体的には、実施例1、2では、コアシェル構造により形成されている研磨材組成物100のシェル部分に3層構造の無機研磨材粒子10を用いている。したがって、有機基材20は、形状が均一で単分散性が高く、粒子表面のCe濃度も高い無機研磨材粒子10により被覆されているため、研磨材組成物100の外側をCe濃度が高い状態とすることができ、研磨材として研磨加工に用いた際に、高い研磨速度を示すとともに研磨速度の低下が起こりにくい、高い耐久性を示す研磨材組成物100を得ることができる。また、比較例1は、板状の酸化セリウムを用いているため、傷及び表面粗さが実技上使用できる範囲内ではない。比較例2は、有機基材に結合している無機研磨材粒子の層数が1層であり、セリウムとイットリウムが混合した層であることから、研磨速度及び耐久性が実施例よりも劣っている。比較例3は、コロイダルシリカを無機研磨材粒子として使用しているため、研磨速度及び耐久性が実施例よりも明らかに劣っている。
<Evaluation of polishing performance of abrasives>
The results obtained by the above evaluation are summarized in Table 1.
As can be seen from Table 1, the abrasive composition 100 obtained in the examples of the present invention has no difference in scratches and surface roughness compared to the comparative examples, but has a high polishing rate and excellent performance. It is clear that this is an abrasive composition 100 having durability.
Specifically, in Examples 1 and 2, the inorganic abrasive particles 10 having a three-layer structure are used in the shell portion of the abrasive composition 100 formed by the core-shell structure. Therefore, since the organic base material 20 is coated with the inorganic abrasive particles 10 having a uniform shape, high monodispersity, and high Ce concentration on the particle surface, the outside of the abrasive composition 100 is in a high Ce concentration state. When used as a polishing material for polishing processing, it is possible to obtain an abrasive composition 100 exhibiting high durability that exhibits a high polishing rate and is unlikely to cause a decrease in the polishing rate. Further, since Comparative Example 1 uses plate-like cerium oxide, the scratches and surface roughness are not within the practical range. In Comparative Example 2, the number of layers of the inorganic abrasive particles bonded to the organic base material is one layer, and since it is a layer in which cerium and yttrium are mixed, the polishing rate and durability are inferior to those of the examples. Yes. Since Comparative Example 3 uses colloidal silica as inorganic abrasive particles, the polishing rate and durability are clearly inferior to those of the Examples.
 以上のように、本実施形態の研磨材組成物100によれば、最外殻層である、酸化セリウムを主成分として形成されるシェル層3と、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物及び酸化セリウムを含有し、シェル層3よりも内側に形成される中間層2と、を有する無機研磨材粒子10と、重合性化合物を含有する有機基材20と、を有し、有機基材20の外表面は、無機研磨材粒子10により被覆されているので、研磨材組成物100の外側だけでなく基材となる部分についても酸化セリウムを用いる場合と比較して、酸化セリウムの使用量を抑制しつつ、高い耐久性を示すとともに、高い研磨速度を実現することができる。また、有機基材20を研磨材組成物100の中心を含む基材として用いるため、無機化合物を用いる場合と比較して、比重が軽くなり、研磨材として用いる際に水に分散させ、研磨材スラリーとして用いる場合についても優れた安定性により分散させることができる。即ち、分散媒中での凝集が起こりにくく、研磨加工中に傷やスクラッチが発生する可能性を低下させ、研磨面の表面粗さを小さくすることができる。 As described above, according to the abrasive composition 100 of the present embodiment, the outermost shell layer 3 formed with cerium oxide as a main component, Al, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and alkaline earth metals An organic base material containing an inorganic abrasive particle 10 containing an oxide of at least one element selected and cerium oxide and having an intermediate layer 2 formed inside the shell layer 3 and a polymerizable compound 20 and the outer surface of the organic base material 20 is covered with the inorganic abrasive particles 10, so that cerium oxide is used not only on the outer side of the abrasive composition 100 but also on the portion serving as the base material. Compared with the use of cerium oxide While suppressing the amount, together they show a high durability, it is possible to realize a high polishing rate. Moreover, since the organic base material 20 is used as a base material including the center of the abrasive composition 100, the specific gravity is lighter than when an inorganic compound is used, and the abrasive is dispersed in water when used as an abrasive. When used as a slurry, it can be dispersed with excellent stability. That is, aggregation in the dispersion medium is unlikely to occur, the possibility of scratches and scratches occurring during the polishing process is reduced, and the surface roughness of the polishing surface can be reduced.
 また、無機研磨材粒子10は、中間層2よりも内側に形成される、無機研磨材粒子10の中心を含むコア層1を更に備え、コア層1は、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物を主成分とするので、3層構造とすることで、酸化セリウムの使用量を抑えることができるとともに、研磨の際にかかる圧力に対する耐久性の高い元素をコア層1に用いることができる。 The inorganic abrasive particle 10 further includes a core layer 1 formed on the inner side of the intermediate layer 2 and including the center of the inorganic abrasive particle 10. The core layer 1 includes Al, Sc, Ti, V, Cr , Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and alkaline earth Since the main component is an oxide of at least one element selected from metals, the amount of cerium oxide used can be suppressed by using a three-layer structure, and the durability against pressure applied during polishing is high. Elements can be used in the core layer 1.
 また、無機研磨材粒子10は、有機基材20の外表面に重合されるので、無機研磨材粒子10を有機基材20に物理的に付着させた場合と比較して、無機研磨材粒子10の脱離が起こりにくい。このため、研磨加工に使用した際に、無機粒子の脱離による研磨速度の低下が起こりにくい。 Further, since the inorganic abrasive particles 10 are polymerized on the outer surface of the organic base material 20, the inorganic abrasive particles 10 are compared with the case where the inorganic abrasive particles 10 are physically attached to the organic base material 20. Is unlikely to occur. For this reason, when it uses for grinding | polishing process, the fall of the grinding | polishing speed by the removal | desorption of an inorganic particle does not occur easily.
 本発明は、ガラス製品や水晶発振子、半導体デバイス等の製造工程において、酸化セリウムを含有する研磨材により研磨する分野において利用可能性がある。 The present invention may be used in the field of polishing with an abrasive containing cerium oxide in the manufacturing process of glass products, crystal oscillators, semiconductor devices and the like.
100  研磨材組成物
10   無機研磨材粒子
20   有機基材
1    コア層
1a   コア層領域
2    中間層
2a   中間層領域
3    シェル層
3a   シェル層領域
100 Abrasive Composition 10 Inorganic Abrasive Particle 20 Organic Base Material 1 Core Layer 1a Core Layer Region 2 Intermediate Layer 2a Intermediate Layer Region 3 Shell Layer 3a Shell Layer Region

Claims (5)

  1.  研磨材に用いられる研磨材組成物において、
     最外殻層である、酸化セリウムを主成分として形成されるシェル層と、
     Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物及び酸化セリウムを含有し、前記シェル層よりも内側に形成される中間層と、を有する無機研磨材粒子と、
     重合性化合物を含有する有機基材と、を有し、
     前記有機基材の外表面は、前記無機研磨材粒子により被覆されていることを特徴とする研磨材組成物。
    In the abrasive composition used for the abrasive,
    A shell layer formed mainly of cerium oxide, which is the outermost shell layer;
    Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, An inorganic abrasive particle containing an oxide of at least one element selected from W, Bi, Th, and alkaline earth metal and cerium oxide, and an intermediate layer formed inside the shell layer;
    An organic base material containing a polymerizable compound,
    An abrasive composition, wherein an outer surface of the organic substrate is coated with the inorganic abrasive particles.
  2.  前記無機研磨材粒子は、中間層よりも内側に形成される、前記無機研磨材粒子の中心を含むコア層を更に備え、
     前記コア層は、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物を主成分とすることを特徴とする請求項1に記載の研磨材組成物。
    The inorganic abrasive particles further include a core layer formed inside the intermediate layer and including the center of the inorganic abrasive particles,
    The core layer includes the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, 2. The abrasive composition according to claim 1, comprising an oxide of at least one element selected from Tm, Yb, Lu, W, Bi, Th and an alkaline earth metal as a main component.
  3.  前記無機研磨材粒子は、前記有機基材の外表面に重合されることを特徴とする請求項1又は2に記載の研磨材組成物。 The abrasive composition according to claim 1 or 2, wherein the inorganic abrasive particles are polymerized on an outer surface of the organic base material.
  4.  最外殻層である、酸化セリウムを主成分として形成されるシェル層と、
     Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物及び酸化セリウムを含有し、前記シェル層よりも内側に形成される中間層と、
     前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の酸化物を主成分とする、前記中間層よりも内側に形成されるコア層と、を有する無機研磨材粒子を製造する製造工程と、
     前記製造工程により製造された前記無機研磨材粒子と、重合性化合物を含有する有機基材を混合し、分散溶液中に分散させる分散工程と、
     前記分散工程により前記無機研磨材粒子及び前記有機基材が分散された前記分散溶液に重合開始剤を加え、重合法により前記有機基材の外表面に前記無機研磨材粒子を被覆させる重合工程と、
     を備えることを特徴とする研磨材組成物の製造方法。
    A shell layer formed mainly of cerium oxide, which is the outermost shell layer;
    Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, An intermediate layer containing an oxide of at least one element selected from W, Bi, Th and an alkaline earth metal and cerium oxide, and formed inside the shell layer;
    Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Inorganic abrasive particles having a core layer formed on the inner side of the intermediate layer, the main component of which is an oxide of at least one element selected from W, Bi, Th, and alkaline earth metal Manufacturing process to
    A dispersion step of mixing the inorganic abrasive particles produced by the production step and an organic substrate containing a polymerizable compound and dispersing the mixture in a dispersion solution;
    A polymerization step of adding a polymerization initiator to the dispersion solution in which the inorganic abrasive particles and the organic substrate are dispersed by the dispersion step, and coating the inorganic abrasive particles on the outer surface of the organic substrate by a polymerization method; ,
    The manufacturing method of the abrasive | polishing material composition characterized by the above-mentioned.
  5.  前記無機研磨材粒子の前記製造工程は、
     Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩を形成させ、当該元素の塩を主成分とする前記コア層を形成させるコア層形成工程と、
     前記コア層形成工程により形成される、前記元素の塩を分散させる第1分散溶液に、前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素を含有する水溶液及びCeの塩を含有する水溶液を添加して、前記コア層の外側に前記Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Y、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属から選ばれる少なくとも1種の元素の塩及びCeの塩を含む前記中間層を形成させる中間層形成工程と、
     前記中間層形成工程により、前記中間層が形成された前記塩を分散させる第2分散溶液に、Ceの塩を含む水溶液を添加して、前記中間層の外側にCeの塩を主成分とする前記シェル層を形成させるシェル層形成工程と、
     前記シェル層形成工程により得られる第3分散溶液から研磨材前駆体である固体を固液分離する固液分離工程と、
     前記分離工程で得られた前記研磨材前駆体を空気中又は酸化性雰囲気中で焼成する焼成工程と、
     を備えることを特徴とする請求項4に記載の研磨材組成物の製造方法。
    The manufacturing process of the inorganic abrasive particles is as follows:
    Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, A core layer forming step of forming a salt of at least one element selected from W, Bi, Th and an alkaline earth metal, and forming the core layer mainly composed of the salt of the element;
    In the first dispersion solution in which the salt of the element formed in the core layer forming step is dispersed, the Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, An aqueous solution containing at least one element selected from Zr, In, Sn, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th, and an alkaline earth metal, and a salt of Ce An aqueous solution containing N, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, In, Sn, Y, outside the core layer is added. An intermediate layer for forming the intermediate layer containing a salt of at least one element selected from Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, W, Bi, Th and an alkaline earth metal and a salt of Ce Forming process;
    An aqueous solution containing Ce salt is added to the second dispersion solution in which the salt formed with the intermediate layer is dispersed in the intermediate layer forming step, and Ce salt is a main component outside the intermediate layer. A shell layer forming step of forming the shell layer;
    A solid-liquid separation step for solid-liquid separation of the solid that is the abrasive precursor from the third dispersion obtained by the shell layer formation step;
    A firing step of firing the abrasive precursor obtained in the separation step in air or in an oxidizing atmosphere;
    The manufacturing method of the abrasive | polishing material composition of Claim 4 characterized by the above-mentioned.
PCT/JP2013/065944 2012-06-13 2013-06-10 Polishing material composition and production method therefor WO2013187358A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014521316A JPWO2013187358A1 (en) 2012-06-13 2013-06-10 Abrasive composition and method for producing the same
US14/406,743 US20150174734A1 (en) 2012-06-13 2013-06-10 Polishing Material Composition And Production Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012133812 2012-06-13
JP2012-133812 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187358A1 true WO2013187358A1 (en) 2013-12-19

Family

ID=49758180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065944 WO2013187358A1 (en) 2012-06-13 2013-06-10 Polishing material composition and production method therefor

Country Status (3)

Country Link
US (1) US20150174734A1 (en)
JP (1) JPWO2013187358A1 (en)
WO (1) WO2013187358A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046542A1 (en) * 2013-09-28 2015-04-02 Hoya株式会社 Method for producing glass substrate and method for producing magnetic disk
CN109104866A (en) * 2016-04-20 2018-12-28 信越化学工业株式会社 The grinding method of synthetic quartz glass substrate grinding agent and synthetic quartz glass substrate
JPWO2021053731A1 (en) * 2019-09-17 2021-03-25
KR20210059915A (en) * 2019-11-18 2021-05-26 성균관대학교산학협력단 Polymer core-inorganic shell particle, method of preparation thereof and polishing composition comprising thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356312A (en) * 2001-03-24 2002-12-13 Degussa Ag Oxide particles having core, doping component and shell, and their producing method and their use
JP2003277732A (en) * 2002-03-27 2003-10-02 Catalysts & Chem Ind Co Ltd Abrasive particle and abrasive material
JP2004002723A (en) * 2002-03-27 2004-01-08 Catalysts & Chem Ind Co Ltd Polishing particle, method for preparing the same and abrasive
JP2008013716A (en) * 2006-07-07 2008-01-24 Kumamoto Univ Composite particle, method for producing the same and polishing liquid
JP2012011525A (en) * 2010-07-02 2012-01-19 Admatechs Co Ltd Abrasive and manufacturing method thereof
JP2012011526A (en) * 2010-07-02 2012-01-19 Admatechs Co Ltd Abrasive and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640352B2 (en) * 1988-02-09 1997-08-13 東京磁気印刷株式会社 Abrasive, polishing tool and polishing method
BR9307095A (en) * 1992-09-25 1999-03-30 Minnesota Mining & Mfg Process for preparing abrasive grains
US6228134B1 (en) * 1998-04-22 2001-05-08 3M Innovative Properties Company Extruded alumina-based abrasive grit, abrasive products, and methods
US20020016139A1 (en) * 2000-07-25 2002-02-07 Kazuto Hirokawa Polishing tool and manufacturing method therefor
CN102268236B (en) * 2011-08-12 2013-09-04 河南工业大学 Alumina-cerium oxide core shell composite grain and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356312A (en) * 2001-03-24 2002-12-13 Degussa Ag Oxide particles having core, doping component and shell, and their producing method and their use
JP2003277732A (en) * 2002-03-27 2003-10-02 Catalysts & Chem Ind Co Ltd Abrasive particle and abrasive material
JP2004002723A (en) * 2002-03-27 2004-01-08 Catalysts & Chem Ind Co Ltd Polishing particle, method for preparing the same and abrasive
JP2008013716A (en) * 2006-07-07 2008-01-24 Kumamoto Univ Composite particle, method for producing the same and polishing liquid
JP2012011525A (en) * 2010-07-02 2012-01-19 Admatechs Co Ltd Abrasive and manufacturing method thereof
JP2012011526A (en) * 2010-07-02 2012-01-19 Admatechs Co Ltd Abrasive and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046542A1 (en) * 2013-09-28 2015-04-02 Hoya株式会社 Method for producing glass substrate and method for producing magnetic disk
JPWO2015046542A1 (en) * 2013-09-28 2017-03-09 Hoya株式会社 Glass substrate manufacturing method and magnetic disk manufacturing method
US10403321B2 (en) 2013-09-28 2019-09-03 Hoya Corporation Method for manufacturing glass substrate and method for manufacturing magnetic disk
CN109104866A (en) * 2016-04-20 2018-12-28 信越化学工业株式会社 The grinding method of synthetic quartz glass substrate grinding agent and synthetic quartz glass substrate
CN109104866B (en) * 2016-04-20 2021-04-27 信越化学工业株式会社 Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JPWO2021053731A1 (en) * 2019-09-17 2021-03-25
WO2021053731A1 (en) * 2019-09-17 2021-03-25 Agc株式会社 Polishing agent, glass polishing method, and glass production method
JP7322957B2 (en) 2019-09-17 2023-08-08 Agc株式会社 Abrasive, method for polishing glass, and method for manufacturing glass
KR20210059915A (en) * 2019-11-18 2021-05-26 성균관대학교산학협력단 Polymer core-inorganic shell particle, method of preparation thereof and polishing composition comprising thereof
KR102323419B1 (en) * 2019-11-18 2021-11-05 비드오리진(주) Polymer core-inorganic shell particle, method of preparation thereof and polishing composition comprising thereof

Also Published As

Publication number Publication date
JPWO2013187358A1 (en) 2016-02-04
US20150174734A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
WO2013187358A1 (en) Polishing material composition and production method therefor
EP3186825B1 (en) Polishing of hard substrates with soft-core composite particles
JP6191608B2 (en) Method for producing abrasive particles
TWI290574B (en) Polishing slurry
US20060118760A1 (en) Slurry composition and methods for chemical mechanical polishing
KR101570732B1 (en) Chemical-mechanical planarization pad
US20120070991A1 (en) Chemical mechanical polishing of silicon carbide comprising surfaces
WO2004009726A1 (en) Cerium salt coated abrasive particles for glass polishing
TWI570227B (en) A process for the manufacture of semiconductor devices comprising the chemical mechanical polishing of borophosphosilicate glass (bpsg) material in the presence of a cmp composition comprising anionic phosphate or phosphonate
KR101057602B1 (en) Polishing liquid composition
JP6771484B2 (en) Abrasive liquid composition for magnetic disk substrate
JP2003529663A (en) Polishing method of memory or hard disk surface with amino acid-containing composition
WO2016158328A1 (en) Abrasive, and abrasive slurry
WO2013187354A1 (en) Abrasive particles and production method thereof
JP6820723B2 (en) Abrasive liquid composition for magnetic disk substrate
US8808568B2 (en) Magnetorheological materials, method for making, and applications thereof
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
JP2000301459A (en) Grinding tool and polishing method using it
JP6225909B2 (en) Method for producing abrasive particles
JP2016055352A (en) Abrasive slurry
KR102396281B1 (en) Polishing composition and method of producing the same
US20150353795A1 (en) Core/Shell-Type Inorganic Particles
JP4167441B2 (en) Abrasive and carrier particles
US10640680B2 (en) Chemical-mechanical processing slurry and methods
JPH1143791A (en) Cleaning agent composition for abrasive liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521316

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804520

Country of ref document: EP

Kind code of ref document: A1