WO2013187338A1 - 圧電磁器組成物及びその製造方法 - Google Patents

圧電磁器組成物及びその製造方法 Download PDF

Info

Publication number
WO2013187338A1
WO2013187338A1 PCT/JP2013/065896 JP2013065896W WO2013187338A1 WO 2013187338 A1 WO2013187338 A1 WO 2013187338A1 JP 2013065896 W JP2013065896 W JP 2013065896W WO 2013187338 A1 WO2013187338 A1 WO 2013187338A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
pressure
ceramic composition
composition
hysteresis
Prior art date
Application number
PCT/JP2013/065896
Other languages
English (en)
French (fr)
Inventor
究 田上
佳信 久保
福島 利博
加藤 和昭
Original Assignee
株式会社富士セラミックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士セラミックス filed Critical 株式会社富士セラミックス
Publication of WO2013187338A1 publication Critical patent/WO2013187338A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors

Definitions

  • the present invention relates to a piezoelectric ceramic composition and a manufacturing method thereof, and more particularly to a piezoelectric ceramic composition suitable for pressure detection having a low hysteresis of the amount of generated charge with respect to pressure and an equivalent piezoelectric constant within a specific range, and a manufacturing method thereof.
  • quartz or a piezoelectric ceramic composition having ferroelectric characteristics has been used as a pressure detection material.
  • the former crystal has a hysteresis of “0” (hereinafter referred to as “zero”), and has an extremely low equivalent piezoelectric constant (d 33 ) (about 2 pC / N), which is not a suitable material for pressure detection.
  • the latter piezoelectric ceramic composition having ferroelectric characteristics has a large equivalent piezoelectric constant (d 33 ) in a composition such as that of the present invention described later, and Patent Documents 1 to 3 and Non-Patent Document focusing on low hysteresis characteristics. Document 1 is known. However, in these prior arts, a piezoelectric ceramic composition having the effects as in the present invention has not been obtained.
  • Patent Document 1 Patent Document 2 is a corresponding US application
  • the description “No hysteresis” (0011) is recognized for the amount of charge generated with respect to pressure.
  • FIG. 3 the effect of Mn is given for the magnitude of hysteresis (0018). “There is a sharp drop in sensitivity when the amount of Mn is less than 0.02% by weight, and the amount of Mn. It is clear that hysteresis is abruptly caused when the amount exceeds 0.25% by weight.
  • a bismuth layered compound characterized by containing manganese in an amount of 0.02 to 0.25 wt% as MnO is recited in the claims.
  • the reason for this is the effect of Mn on the size of hysteresis.
  • the hysteresis and sensitivity change as the crystal structure changes depending on the amount of other components such as x.
  • it is also a characteristic determined by the state of the constituent composition including the influence of internal diffusion of the applied electrode material constituent substance. Only according to the present invention, low hysteresis and high sensitivity can be achieved by the effects including these, and the problem can be solved.
  • the problem of piezoelectric characteristics is solved by defining a hysteresis and having a composition formula Bi 4 Ti 3 O 12 ⁇ ⁇ [(1- ⁇ ) MTiO 3 + ⁇ BiFeO 3 different from the composition formula of the present invention. It is stated that.
  • Problem solution according to the patent document 3 the amount of "Mn is the amount of Mn is preferably .mno 2 converted more than 0.1 parts by MnO 2 in terms of is more than 0.1 part by weight, the hysteresis is large "0033" is also accepted.
  • the amount of Mn is 0.2 Wt% (100 mass of the main component of the bismuth layered compound [(Na 0.5 , Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 ]). It is defined as 0.2 Wt% with respect to parts.
  • This range is intended to solve the problem within the range denied by the patent document, and the problem can be solved only by the present invention.
  • the difference in the main composition means that the crystal structure is also different. Therefore, it cannot be said that the effect of Mn is the same as that of the present invention.
  • Patent Document 4 with respect to hysteresis, a composition formula different from the composition formula of the present invention.
  • the problem of piezoelectric characteristics has been solved.
  • Table 1 of Patent Document 4 d 33 is 20 or more and hysteresis is 0.11 in sample numbers 26 and 47, and d 33 is 16, 19 and hysteresis is close to 7, 18 in this case. Is described as about 0.12.
  • Patent Document 4 also states that “Sample No. 3-10, 12-14, 16-19, 23-29, containing 0.1 to 1.5 parts by mass in terms of V 2 O 5 , 31 ⁇ 38,40,41,43,44 and 46 to 49, the hysteresis of 0.98% or less and very small and, (equivalent meanings piezoelectric constant) dynamic piezoelectric constant d 33 is 15.1pC / N has more than, is observed according to the change in the 25 ° C. dynamic piezoelectric constant d 33 for -40 and 0.99 ° C. dynamic piezoelectric constant d 33 became within ⁇ 5%. "(0049). That is, the problem of the patent document 4 is solved by adding vanadium oxide (V 2 O 5 ).
  • vanadium oxide is essential, and a composition formula different from the composition formula of the present invention is that vanadium oxide is essential.
  • the problem can be solved only by the present invention.
  • Non-Patent Document 1 a porcelain composition similar to the porcelain composition of the present invention is specified.
  • This document is a document that evaluates the pyro effect.
  • Manganese is added to the piezoelectric characteristics in the section “Conclusion” (Na 0.5 , Bi 0.5 ) 1-x Ca x Bi 4 Ti 4 O 15 system.
  • Consclusion Na 0.5 , Bi 0.5
  • high piezoelectric characteristics were obtained compared to quartz, there is no description regarding hysteresis.
  • the description about the bismuth layered compound modified especially with calcium is recognized.
  • this solution is mainly determined by the material composition and the electrode material.
  • the electrode material and its application method strongly affect the porcelain composition. This is because, for the composition constituting the electrode material, its application condition and diffusion into the material change the properties of the porcelain composition. This composition changes the hysteresis and the insulation resistance.
  • the manufacturing method in consideration of the influence of diffusion is important and is provided by the present invention.
  • a physical fixing method such as plating, sputtering, and vapor deposition has been generally used for the electrode material and the application method thereof. These have a tendency to increase the production cost including the equipment, jigs and tools, and increase the production cost.
  • the present invention has been made in view of such circumstances, and a piezoelectric ceramic composition and a manufacturing method thereof, particularly a piezoelectric ceramic suitable for pressure detection having a low hysteresis of a generated charge amount with respect to pressure and an equivalent piezoelectric constant within a specific range. It is an object of the present invention to provide a composition and a method for producing the composition. Also, “having equivalent piezoelectric constant within a certain range" in the present invention is defined as at least 20 pC / N or more 35pC / N or less as the equivalent piezoelectric constant d 33.
  • the present invention relates to a ceramic composition (Na 0.5 , Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 +0.2 Wt% as a piezoelectric ceramic composition with respect to the applied pressure and the reduced pressure.
  • Mn X is in the range of 0 ⁇ x ⁇ 0.28, and M is at least one alkaline earth metal consisting of Ca, Sr, Ba, Ra, or M is (K 0.5 , An equivalent piezoelectric constant within a specific range in which a conductive resin electrode for polarization is produced after firing a porcelain composition comprising Bi 0.5 ), this resin is removed after polarization and a piezoelectric output detection electrode is provided thereon. Is provided by a piezoelectric ceramic composition having a hysteresis within ⁇ 0.1%.
  • the M is one alkaline earth metal Ba and the range of x is either 0.1 ⁇ x ⁇ 0.17 or 0.26 ⁇ x ⁇ 0.28
  • the M is one
  • the alkaline earth metal Ca and the range of x is 0.16 ⁇ x ⁇ 0.26
  • the M is one alkaline earth metal Sr and the range of x is 0.11 ⁇ x ⁇ 0. Is provided by the above-described piezoelectric ceramic composition.
  • a porcelain composition (Na 0.5 , Bi 0.5 ) 1-x M x Bi 4 Ti 4 having the following composition as a piezoelectric ceramic composition with respect to applied pressure and decompression force: O 15 +0.2 Wt% Mn X is in the range of 0 ⁇ x ⁇ 0.28, and M is at least one alkaline earth metal consisting of Ca, Sr, Ba, Ra, or M is (K 0.5 , Bi 0.5 ), in the method for producing a piezoelectric ceramic composition in which the hysteresis of the generated charge amount with respect to pressure is within ⁇ 0.1%, the porcelain composition is calcined powder, and blended at respective blending ratios, Mixing, sizing and molding, firing this to produce a conductive resin electrode for polarization, removing this resin after polarization, and then applying an equivalent piezoelectric constant within a specific range to which a piezoelectric output detection electrode was applied It is provided by a method for producing a piezo
  • the hysteresis of the generated charge amount with respect to the pressure described above which includes a step of forming an electrode using a conductive resin for preventing diffusion of a constituent of the electrode material in the post-baking polarization, is within ⁇ 0.1%
  • the method for producing a piezoelectric ceramic composition is provided.
  • M is one alkaline earth metal Ba and the range of x is either 0.1 ⁇ x ⁇ 0.17 or 0.26 ⁇ x ⁇ 0.28
  • the M is one
  • the alkaline earth metal Ca and the range of x is 0.16 ⁇ x ⁇ 0.26
  • the M is one alkaline earth metal Sr and the range of x is 0.11 ⁇ x ⁇ 0. 23
  • a conductive resin material is printed and applied, dried, and after the element is subjected to polarization treatment, the resin is removed with water, an organic solvent or the like, and a new electrode is provided to impart heat resistance of the electrode.
  • FIG. 1 is an explanatory diagram of the concept of hysteresis of the present invention.
  • FIG. 2 is an explanatory diagram showing the state of the amount of charge generated by pressure.
  • FIG. 3 is an explanatory diagram showing an enlarged portion of the explanatory diagram of FIG.
  • FIG. 4 is an explanatory diagram showing the state of the amount of charge generated by pressure.
  • FIG. 5 is an explanatory diagram showing an enlarged portion of the explanatory diagram of FIG.
  • FIG. 6 is an explanatory diagram of a hysteresis value measuring apparatus.
  • FIG. 7 is an explanatory diagram showing the state of the amount of charge generated by pressure.
  • FIG. 8 is an explanatory diagram showing an enlarged portion of the explanatory diagram of FIG.
  • FIG. 1 is a diagram for explaining the definition of the hysteresis value of the present invention.
  • FIG. 6 is a relationship diagram of pressure-generated charge amount with pressure (Force) P on the horizontal axis and electric charge output (Q) on the vertical axis. Pressure P (N) and generated charge amount (pC) are the origin a where they are zero, and the maximum point b of both pressure (N) and generated charge amount are shown. And the maximum point b. These two curves represent the state of hysteresis found in so-called piezoelectric ceramic compositions and magnetic materials.
  • the lower curve 1 is drawn in relation to the amount of charge generated by increasing the pressure (N) between the origin a, the intermediate point d and the maximum point b (upward arrow 3 in the figure).
  • the upper curve 2 shows the relationship between the maximum point b, the intermediate point c of pressure, and the generated charge amount when the pressure (N) is reduced (downward arrow 4 in the figure). ).
  • Hysteresis is obtained as the magnitude between the midpoints c and d of these pressures (up and down in the figure). In examples such as quartz, this hysteresis width is represented as zero. However, in general, a piezoelectric ceramic has a unique hysteresis phenomenon and the width is large.
  • the hysteresis value in the present invention is defined as follows.
  • the pressure P (N) at the maximum point b is Fmax, and the generated charge amount (pC) is Qmax.
  • the generated charge amount (pC) at the intermediate point of the pressure P (N) is Qdown at the intermediate point c of the upper curve 2 and Qup at the intermediate point d of the lower curve 1
  • the hysteresis value HyQ (%) is It is represented by the following formula (1).
  • HyQ (%)
  • the inventors have intensively studied and solved the problems by the following composition and production method thereof.
  • HyQ (%) is expressed as a plus and minus range in equation (2), When subtracting Qup from Qdown, if it is positive, it is positive, that is, Qdown> Qup. If it is negative, the opposite is the case (minus Qdown ⁇ Qup). Details will be described below, but the hysteresis value will be described according to this definition.
  • FIG. 3 and FIG. 5 show how the hysteresis value (HyQ) increases or decreases.
  • FIG. 2 is an explanatory view showing the state of the amount of charge generated by the pressure P (N).
  • the hysteresis value is extremely small as in (pC)
  • the upper and lower curves are overlapped and almost linear.
  • the generated charge amount (about 1130 pC) is obtained at a pressure of 50 N.
  • FIG. 3 shows a case where the vicinity of the intermediate point of the pressure is enlarged and displayed (expa.part expansion of figure 2).
  • an upward curve 1 (upward arrow 3 in the figure) is shown from the amount of generated charge (about 572 pC) under pressure (24.2 N). The relationship increases almost linearly.
  • the downward curve 2 (downward arrow 4 in the figure) for gradually decreasing the pressure is shown from the generated charge amount (about 595 pC). Go.
  • the lower curve 1 shows the pressure (N) and the amount of generated charge (pC) when the pressure is gradually increased (arrow 3 in the figure).
  • the generated charge amount decreases as shown by the upper curve 2.
  • This state is shown as a state similar to FIG. In this state, the hysteresis value (HyQ) is calculated as a positive value.
  • the hysteresis value (HyQ) is calculated as a negative value compared to FIG.
  • the hysteresis value is extremely small as in FIG. 2, the upper and lower curves are overlapped and almost linear.
  • the generated charge amount (about 1250 pC) is obtained at a pressure of 50 N.
  • FIG. 5 shows a case where the vicinity of the intermediate point of the pressure shown in FIG. 4 is enlarged (expa.part expansion of figure 2).
  • the upward curve 1 upward arrow 3 in the figure
  • the relationship increases almost linearly.
  • FIG. 6 shows a hysteresis measuring device at pressure P (N) and generated charge amount Q (pC).
  • the porcelain composition 5 is sandwiched and attached by an upper contact jig 6 and a lower contact jig 7.
  • the upper contact jig 6 is attached to a bias pressure application motor 12 via a precision pressure application actuator 8 and a connecting linear guide 11.
  • the lower contact jig 7 is attached to a load cell 10 for bias pressure measurement via a crystal force sensor 9 for precise pressure measurement.
  • the calculation processing waveform display condition input computer 13 is connected to the bias pressure application motor 12 via the power control device 14 and the cable 17. Similarly, the arithmetic processing waveform display condition input computer 13 is connected to the charge amplifier 15 and displays the output from the porcelain composition 5 via the upper contact jig 6 and the lower contact jig 7. On the other hand, the crystal pressure sensor 9 for precision pressure measurement and the load cell 10 for bias pressure measurement are connected to a computer 13 for calculation processing waveform display condition input via an amplifier signal measuring device 16.
  • Signals necessary for the calculation are a signal (pressure: N) of the crystal force sensor 9 for precision pressure measurement and a signal (generated charge amount: pQ) of the charge amplifier 15.
  • the measurement sample 5 pieoelectric ceramic composition
  • the precision pressure application actuator 8 is continuously driven at a constant frequency (standard is 10 Hz).
  • the data 2000 points
  • the generated charge amount signal in one cycle are taken into a PC (not shown). An arithmetic process is performed using this data.
  • the equivalent piezoelectric constant (d 33 ) is obtained from the generated charge amount Qmax (pC) at the maximum pressure (N) (point b in FIG. 1).
  • a pressure value 1 ⁇ 2 of the maximum pressure (Fmax / 2, point d in FIG. 1) is determined.
  • the point d (Fmax / 2) is determined by the proportional distribution ratio between the two points.
  • the generated charge quantity Q at the point d is determined with the same proportional distribution ratio (point d in FIG. 1). This generated charge amount is Qup.
  • the resulting 50 times data by the arithmetic mean determining d 33 and HyQ of the object to be measured. As significant figures, 2 digits after the decimal point of d 33 (pC / N) obtained and 3 digits of HyQ (%) were adopted.
  • the piezoelectric ceramic composition produced by the present invention and the production method thereof will be described in detail.
  • the idea for reducing the influence of the electrode material of the present invention will be described in advance.
  • the hysteresis value of the ferroelectric ceramic composition is ideally zero.
  • the piezoelectric ceramic composition of the present invention and the method for producing the piezoelectric ceramic composition of the present invention are studied by earnestly studying the conditions for achieving a sufficient performance and ensuring the composition that meets the above-described measures and the method for producing the composition.
  • (A) the electrode material and its application method to the piezoelectric ceramic composition will be described.
  • the electrode material adhered to the piezoelectric ceramic composition that is, its component
  • diffusion to the piezoelectric ceramic composition must be suppressed as much as possible.
  • the reason for this is that when the electrode material is baked at a high temperature (700 ° C. to 900 ° C.), the glass frit component diffuses in the composition, although in a small amount. This diffusion may change the composition of the composition and change the properties of the piezoelectric ceramic composition.
  • the Curie temperature and insulation properties of the piezoelectric ceramic composition are problems. This is the temperature at which the ferroelectric (ferromagnetic) loses its ferroelectricity (ferromagnetism), but the bismuth layered compound that is a piezoelectric ceramic composition has a high Curie temperature and also has a coercive electric field. Since it is high, polarization treatment at a high temperature (near 200 ° C.) and a high electric field (50 kV / cm or more) is necessary. For this reason, it must have high insulation as a piezoelectric ceramic composition.
  • the electrode material is a commonly used high-temperature firing (700 ° C. or higher) type, and its composition consists of a noble metal material and glass frit. A noble metal material is fixed by the glass frit. Further, the glass frit may diffuse into the piezoelectric ceramic composition and change the physical properties of the composition. As a result, it has a great influence on the insulation, and this also has a big influence on the hysteresis. For this reason, the subject which must consider the compatibility as an electrode material used for a piezoelectric ceramic composition occurred.
  • the use of the piezoelectric ceramic composition of the present invention has a background that requires heat resistance. Therefore, it is also a fact that heat resistance cannot be obtained with a general conductive resin. Therefore, after removing the conductive resin, a firing type electrode material that can be fired at a temperature equal to or lower than the Curie temperature that does not cause deterioration in performance of the polarization state as an alternative electrode material has been developed to solve this problem. That is, the problem was solved by using a water-soluble conductive resin material containing silver powder as the electrode material for polarization described later.
  • the heat resistance of the electrode on the device could be obtained.
  • the electrode is formed by applying an electrode paste on the element with a screen printing tool or a hand-painting tool (brush, brush, etc.). Dry the coated surface with a hot air dryer or oven. Firing is performed in an oven, baking furnace, or the like that can obtain approximately 500 ° C.
  • a guideline that can provide a piezoelectric ceramic composition that meets the problems of the present invention and does not impair the deterioration of the piezoelectric characteristics (d 33 ) and the hysteresis, and a manufacturing method thereof. Became possible.
  • the composition of the present invention to be described later is particularly expensive even if it is a known piezoelectric ceramic composition. Manufacture is possible without using expensive electrode materials. About this, the following method is used for confirmation by using a composition (Na 0.5 , Bi 0.5 ) 0.95 Ca 0.05 Bi 4 Ti 4 O 15 +0.2 Wt% Mn having a Curie temperature of 670 ° C. Confirmed by
  • a high-temperature firing type silver paste was used as the conventional electrode material.
  • a water-soluble conductive resin is used as the electrode material for polarization, and a silver paste that can be baked at 450 ° C. is used as an electrode material for heat resistance of the electrode that is practically necessary.
  • the equivalent piezoelectric constant (d 33 ) was 19 to 23 pC / N and the hysteresis value (HyQ) plus 0.35 to 0.43%. Even in an example where the equivalent piezoelectric constant (d 33 ) was high at 23 pC / N, the hysteresis value (HyQ) was 0.18%.
  • Porcelain composition having the basic composition of the present invention Na 0.5 , Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 +0.2 Wt% Mn
  • with this composition (1) is fixed, (2) “M” is determined, and (3) “x parameter range”
  • Example 1 (ex. 1) It carried out under the conditions of Example 1. (same as below) (Na 0.5 , Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 +0.2 Wt% In a Mn porcelain composition, x is zero and M is not added. That is, the following piezoelectric ceramic composition. (Na 0.5 , Bi 0.5 ) Bi 4 Ti 4 O 15 +0.2 Wt% Mn The results are as shown in Table 1. Although the equivalent piezoelectric constant within a specific range was 29.4 pC / N, which reached the target value of 20 pC / N or higher of the present invention, HyQ was 0.36%, which is the target value. It was confirmed that the problem in the present invention could not be solved by exceeding 0.1%.
  • Production Example 4 x is 0.5 and M is Sr. That is, the following piezoelectric ceramic composition. (Na 0.5 , Bi 0.5 ) 0.5 Sr 0.5 Bi 4 Ti 4 O 15 +0.2 Wt% Mn
  • Table 1 The results are shown in Table 1.
  • d 33 was 27.8 pC / N, which reached the target value of 20 pC / N or more of the present invention, but HyQ was -0.252%, which was 0.1% of the target value. It was confirmed that the problems in the present invention could not be solved. Similar to Production Example 3, a characteristic having a negative hysteresis value was observed.
  • Production Examples 7 to 11 M changes Sr in Production Examples 2 to 6 to Ca, and x is the same value as in Production Examples 3 to 6 (see Table 1). That is, the following piezoelectric ceramic composition.
  • Production Example 11 That is, the following piezoelectric ceramic composition. CaBi 4 Ti 4 O 15 +0.2 Wt% Mn The results are shown in Table 1, d 33 does not reach the above target value 20 pC / N of 17.2pC / N and the present invention. HyQ was -0.18%, exceeding 0.1% of the target value, and it was confirmed that the problem in the present invention could not be solved. Similar to Production Examples 3 and 4, a characteristic with a negative hysteresis value was observed.
  • Production Examples 12-15 M changes Sr in Production Examples 3 to 6 to Ba, and x is the same value as in Production Examples 3 to 6 (see Table 1). That is, the following piezoelectric ceramic composition.
  • Production Example 12 That is, the following piezoelectric ceramic composition. (Na 0.5 , Bi 0.5 ) 0.75 Ba 0.25 Bi 4 Ti 4 O 15 +0.2 Wt% Mn The results are as shown in Table 1. d 33 was 21.7 pC / N, which reached the target value of 20 pC / N or more of the present invention, but HyQ was -0.30%, which was 0.1% of the target value. It was confirmed that the problems in the present invention could not be solved. Similar to Production Examples 3, 4 and 11, a characteristic in which the hysteresis value is negative was observed.
  • Production Example 15 That is, the following piezoelectric ceramic composition. BaBi 4 Ti 4 O 15 +0.2 Wt% Mn The results are as shown in Table 1. d 33 was 22.4 pC / N, which reached the target value of 20 pC / N or more of the present invention, but HyQ was 0.80%, exceeding 0.1% of the target value. It was confirmed that the problem in the present invention could not be solved.
  • Production Examples 16-19 M changes Sr in Production Examples 3 to 6 to (K 0.5 , Bi 0.5 ), and x is the same as that in Production Examples 3 to 6 (see Table 1). That is, the following piezoelectric ceramic composition.
  • M is shown as an example of using alkaline earth metals such as Ca, Sr and Ba and (K 0.5 , Bi 0.5 ).
  • it can also be used in Ra (manufacturing example not shown) which is one of alkaline earth metals.
  • Ba could be used in Production Example 3 and (K 0.5 , Bi 0.5 ) could be used in Production Example 16.
  • alkaline earth metals such as Sr, Ca, Ba and the like can be used, and it is considered that equivalent use can be expected for Ra which is the same alkaline earth metal. It was also confirmed that a combination of (K 0.5 , Bi 0.5 ) that is not an alkaline earth metal is possible.
  • d 33 is less than 20 pC / N at 17.2pC / N, it has also been found that 0.1% of the target value exceeds a slightly HyQ be -0.18%.
  • FIG. 8 shows a case where the explanatory diagram of FIG. 7 is enlarged (expa.part expansion of figure 2). That is, the relationship between M and the x parameter range is graphed.
  • the porcelain composition Na 0.5 , Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 +0.2 Wt% Mn It was used.
  • M an explanatory view showing the relationship between the alkaline earth metal and (K 0.5, Bi 0.5) and the chosen hysteresis value HyQ (%) and x parameters.
  • the correlation between M and x is as follows.
  • NaCO 3 , K 2 CO 3 , BaCO 3 , SrCO 3 , CaCO 3 , Bi 2 O 3 , TiO 2 and MnO 2 were used as starting materials.
  • a predetermined amount is prepared and mixed according to the mixing ratio, and then pre-baked at 800 ° C. for 2 hours, pulverized to about 1 micrometer, added with PVA, and sized with a spray dryer. It was molded into an outer shape of 4 mm and a thickness of 2.5 mm, and baked at 1100 to 1150 ° C. for 2 hours after degreasing.
  • this electrode was removed with water and dried, and then a baking type silver paste was screen-printed at a baking temperature of 450 ° C. which is lower than the Curie temperature, and kept at 450 ° C. for 10 minutes and baked.
  • the equivalent piezoelectric constant d 33 and hysteresis HyQ were measured with the apparatus shown in FIG. Since the hysteresis changes depending on the surface state of the porcelain composition sample, it is polished or mirror-finished with an abrasive of # 2000 or more in order to keep it constant. Although the thickness is 0.5 mm, there is no limitation as long as the thickness can maintain the fired state.
  • x 0.05, 0.25, 0.5. , 0.75 and 1, and the hysteresis value (HyQ) was measured.
  • the hysteresis value (HyQ ) Becomes large.
  • is in the range is determined in FIG. 8 in which “exp. Portion” in FIG. In FIG. 8, the horizontal axis x, the vertical axis HyQ ⁇
  • the object was able to be achieved by using the electrode forming method of the present invention and the porcelain composition of the present invention. This can be expected to be applied even to known piezoelectric ceramic compositions.
  • the electrode forming method of the present invention described above can be manufactured without being limited to electrode forming equipment and expensive electrode materials.
  • the hysteresis changes depending on the surface state of the porcelain composition sample, it is polished or mirror-finished with an abrasive of # 2000 or more in order to keep it constant.
  • the thickness is 0.5 mm, there is no limitation as long as the thickness can maintain the fired state.
  • the obtained sample was subjected to measurement of equivalent piezoelectric constant and hysteresis value with the apparatus shown in FIG.
  • the bias compression pressure applied to the piezoelectric ceramic composition for measurement is 250 N, the maximum pressure is 300 N, and the applied pressure is an alternating pressure of 50 N with a sine wave waveform.
  • the frequency was 0.5 Hz to 50 Hz. Specifically, it was carried out at 0.5, 1, 5, 10, 15, 25, and 50 Hz.
  • the material of the present invention is a material having a high Curie temperature and a high sensitivity and high accuracy as a detection element of a pressure sensor for detecting the engine combustion pressure of an automobile having a pressure fluctuation frequency corresponding to the engine speed of 10 Hz or more (600 rpm or more). It is expected as an element having high temperature resistance. In a low frequency range (10 Hz or less), it can be expected as a sensing element of a general-purpose high-sensitivity and high-precision differential pressure sensor. Pressure sensing elements used in a wide range of fields are possible, even with known porcelain compositions based on piezoelectric ceramic manufacturing techniques, which are not limited to electrode forming equipment and expensive electrode materials. As expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明は、圧電磁器組成物及びその製造方法、特に圧力に対する発生電荷量の低ヒステリシス、かつ、特定範囲内の等価圧電定数特性を有する圧力検知に好適な圧電磁器組成物及びその製造方法に関するものである。 加圧力と減圧力に対し圧電磁器組成物として下記の配合とした磁器組成物 (Na0.5 ,Bi0.51-xBiTi15+0.2Wt%Mn であって、ここで、M及びx、y及びzを所定範囲とした、特定範囲内の等価圧電定数を有するヒステリシスが±0.1%以内とする圧電磁器組成物。

Description

圧電磁器組成物及びその製造方法
 本発明は、圧電磁器組成物及びその製造方法、特に圧力に対する発生電荷量の低ヒステリシス、かつ、特定範囲内の等価圧電定数を有する圧力検知に好適な圧電磁器組成物及びその製造方法に関する。
 従来、圧力検知素材として水晶や強誘電特性のある圧電磁器組成物が用いられてきた。前者の水晶はヒステリシスが”0”(以下「ゼロ」という)、等価圧電定数(d33)は極めて低く(約2pC/N)、圧力検知に好適な素材とは言えなかった。後者の強誘電特性のある圧電磁器組成物では、後述する本発明のような組成物での等価圧電定数(d33)が大きく、かつ、低ヒステリシス特性に着目した特許文献1ないし3及び非特許文献1が知られている。しかしながら、これら従来技術では、本発明のような作用効果を具備した圧電磁器組成物は得られていなかった。
 特許文献1(特許文献2はその対応米国出願)によれば、圧力に対する発生電荷量について「・・ヒステリシスの発生もない。」(0011)との記載が認められる。また、図3においてヒステリシスの大きさについて、Mnの作用効果を挙げているが(0018)、そこには「Mnの量が0.02重量%より少ないと感度が急激に低下し、Mnの量が0.25重量%を超えると急激にヒステリシスが生じることが明らか」でありとの記載が認められる。さらに、同発明の構成として「マンガンがMnOとして0.02~0.25重量%含有されていることを特徴とするビスマス層状化合物」を請求項に挙げている。これは明らかに、同特許文献1に示された「高感度と低ヒステリシスを両立できること」の作用効果を発揮しているものとは認められない。したがって、「ヒステリシスを生じることなく感度を向上できる。」旨の記載はあるがこれらは、低ヒステリシスについてMnによる作用効果を挙げているだけでヒステリシスに関して課題解決を図ったものではない。
 その理由は、ヒステリシスの大きさについて、Mnの作用効果を挙げている。(0018)しかし、他の成分、例えば、xの量によりその結晶構造が変化することでヒステリシス、感度も変化する。また、付与される電極材料構成物質の内部拡散による影響を含んだ構成組成物の状態で決定される特性でもある。本発明によってのみ、これらを包含した作用効果により低ヒステリシスと高感度を達成でき課題解決が図られるものである。
 また、特許文献3によれば、ヒステリシスを定義して本発明の組成式と異なる組成式 BiTi12・α[(1-β)MTiO+βBiFeOにて圧電特性の課題を解決している旨記載されている。
 同特許文献3による課題解決策は、「Mnの量はMnO2 換算で0.1質量部以下であることが好ましい。MnO換算のMn量が0.1質量部より多いと、ヒステリシスが大きくなるおそれがある。」(0033)との記載も認められる。
 しかしながら、本発明によれば、Mnの量は0.2Wt%(ビスマス層状化合物の主成分[(Na0.5  ,Bi0.51-xBiTi15]の100質量部に対する0.2Wt%と定義する。)である。この範囲は同特許文献には否定された範囲内で課題解決を図ったものであり、本発明によってのみ課題解決が図られるものである。主たる組成が異なることは結晶構造も異なることである。よって、本発明とMnの効果も同じになるとは言えない。
 特許文献4によれば、ヒステリシスについて、本発明の組成式と異なる組成式・・
 BiTi12・α[(1-β)M1TiO・βM2M3O
にて圧電特性の課題が解決されている。
 また、同特許文献4表1によれば、試料番号26,47では、d33は20以上、ヒステリシスは0.11となっており、これに近い7、18ではd33は16、19、ヒステリシスは0.12程との記載が認められる。
 同特許文献4で、また、「VをV換算では0.1~1.5質量部含有する、試料番号、No.3~10、12~14、16~19、23~29、31~38、40、41、43、44及び46~49は、ヒステリシスが0.98%以下と非常に小さく、また、動的圧電定数(等価圧電定数の意味)d33が15.1pC/N以上を有し、25℃の動的圧電定数d33に対する-40及び150℃の動的圧電定数d33の変化も±5%以内になった。」(0049)との記載が認められる。すなわち、酸化バナジウム(V)を加えることで同特許文献4の課題解決を図っている。
 しかしながら、酸化バナジウムを必須とした点、本発明の組成式と異なる組成式 酸化バナジウムを必須とした点で異なっている。本発明によってのみ課題解決が図られるものである。
 非特許文献1によれば、本発明の磁器組成物と同様な磁器組成物が明示されている。この文献は、パイロ効果を評価した文献であり、圧電特性について結論(Conclusion)の項でマンガンを添加した(Na0.5  ,Bi0.51-xCaBiTi15系組成物の特性の記載がある。
 しかしながら、水晶に比べ高い圧電特性が得られたことは明記されているがヒステリシスに関する記載はない。なお、同非特許文献1に付言すれば、特にカルシウムで修飾されたビスマス層状化合物についての記載が認められる。ここでは、マンガンを添加したことで高いキュリー温度(Tc=660~680℃)で低比誘電率(~130)、高い電気機械結合係数(k33=30~40%)、高い異方性(k33/k31=13~17%)を持ち焦電センサ材料として優れて作用効果を挙げている。
 上記各文献にはそれぞれ次の解決課題があった。前述の3事例の製造方法は、ほぼ同じである。また、電極材料種についても磁器組成物への拡散によるヒステリシスに対する影響について言及はない。言い換えると、この電極材料種が磁器組成物への拡散における重要な要素であり、課題解決として重要であることである。本発明はこれらの拡散状態を含めて磁器組成物の材料組成及び製造手段を提供するにある。
 特に圧力に対する発生電荷量の低ヒステリシス化、すなわち、ゼロ近傍とすることが重要である。後述するようにこの解決には、主に材料組成、電極材料によって決定される。とりわけ電極材料とその付与方法が磁器組成物へ強く影響を与える。これは、電極材料を構成している組成物については、その付与条件と材料内への拡散が磁器組成物の性状を変化させるためことである。この組成物はヒステリシスの変化、絶縁抵抗を変化させる。このように拡散の影響に配慮した製造方法が重要であり、本発明により提供される。
 従来、電極構成物の拡散を少なくする手段としては、電極材料及びその付与方法については、メッキ、スパッタリング、蒸着などの物理的固着方法が一般的であった。
 これらは、設備、治工具等を含め製造条件における制約が大きくなり、製造コストも高くなる傾向にあった。
特開平6-48825号公報 米国特許第5369068号公報 特開2009-221066号公報 特開2010-13295号公報
Takenaka et al,  Pyroelectric Properties of Bismuth layer-structured ferroelectric ceramics, Ferroelectrics,118,p123-133 (1991)
 本発明はかかる事情に鑑みなされたものであり、圧電磁器組成物及びその製造方法、特に圧力に対する発生電荷量の低ヒステリシス、かつ、特定範囲内の等価圧電定数を有する圧力検知に好適な圧電磁器組成物及びその製造方法を提供しようとするものである。また、本発明における「特定範囲内の等価圧電定数を有する」とは、等価圧電定数d33として少なくとも20pC/N以上35pC/N以下と定義する。
 本発明は、加圧力と減圧力に対し圧電磁器組成物として下記の配合とした磁器組成物
  (Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn
であって、xが0≦x≦0.28の範囲内、かつ、MがCa、Sr、Ba、Raの群からなる少なくとも1つのアルカリ土類金属、又は、Mが(K0.5  ,Bi0.5)からなる磁器組成物を焼成後分極用導電性樹脂電極を作製し、この樹脂を分極後除去してその上で圧電出力検出用電極を付与させた特定範囲内の等価圧電定数を有するヒステリシスが±0.1%以内とする圧電磁器組成物により提供される。
 また、前記Mが1つのアルカリ土類金属Ba、かつ、xの範囲が0.1≦x≦0.17又は0.26≦x≦0.28のいずれかである場合、前記Mが1つのアルカリ土類金属Ca、かつ、xの範囲が0.16≦x≦0.26である場合、前記Mが1つのアルカリ土類金属Sr、かつ、xの範囲が0.11≦x≦0.23である場合に前記記載の圧電磁器組成物により提供される。
 本発明の製造方法にあっては、加圧力と減圧力に対し圧電磁器組成物として下記の配合とした磁器組成物
  (Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn
であって、xが0≦x≦0.28の範囲内、かつ、MがCa、Sr、Ba、Raの群からなる少なくとも1つのアルカリ土類金属、又は、Mが(K0.5  ,Bi0.5)を用いて圧力に対する発生電荷量のヒステリシスを±0.1%以内とした圧電磁器組成物の製造方法において、磁器組成物を仮焼き粉体とし、それぞれの配合比で調合、混合、整粒及び成型させ、これを焼成後分極用導電性樹脂電極を作製し、この樹脂を分極後除去してその上で圧電出力検出用電極を付与させた特定範囲内の等価圧電定数を有する圧力に対する発生電荷量のヒステリシスが±0.1%以内とする圧電磁器組成物の製造方法により提供されるものである。
 また、前記焼成後分極において電極材料の構成物の拡散防止用導電性樹脂を用いて電極形成を行う工程からなる前記記載の圧力に対する発生電荷量のヒステリシスが±0.1%以内とする前記記載の圧電磁器組成物の製造方法により提供される。
 さらに、前記Mが1つのアルカリ土類金属Ba、かつ、xの範囲が0.1≦x≦0.17又は0.26≦x≦0.28のいずれかである場合、前記Mが1つのアルカリ土類金属Ca、かつ、xの範囲が0.16≦x≦0.26である場合、前記Mが1つのアルカリ土類金属Sr、かつ、xの範囲が0.11≦x≦0.23である場合に前記いずれか記載の圧電磁器組成物の製造方法により提供される。
 本発明によれば、導電性樹脂系材料を印刷塗布、乾燥後、素子の分極処理を行った後、これら樹脂を水、有機溶剤等で除去し、電極の耐熱性を付与させるため新たな電極材料を磁器組成物のキュリー温度以下で付けることで磁器組成物の電極構成物による変性を無くすことができた。これにより特定範囲内の等価圧電定数を有する圧力に対する発生電荷量のヒステリシスが±0.1%以内とする磁器組成物磁器組成物のヒステリシスを最小にすることが可能となった。
図1は本発明のヒステリシスの概念の説明図である。 図2は圧力により発生する電荷量の様子を示した説明図である。 図3は図2の説明図の拡大部分を示した説明図である。 図4は圧力により発生する電荷量の様子を示した説明図である。 図5は図4の説明図の拡大部分を示した説明図である。 図6はヒステリシス値の計測装置の説明図である。 図7は圧力により発生する電荷量の様子を示した説明図である。 図8は図7の説明図の拡大部分を示した説明図である。
 以下、本発明を実施するための形態をもとに図面を参照しながら説明する。各図面に示される構成、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施をするための形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。以下、本発明を図1ないし図8を用いて具体的に説明する。
 図1は本発明のヒステリシス値の定義を説明するための図である。横軸を圧力(Force)P、縦軸を発生電荷量(Electric Charge Output)Qとした圧力-発生電荷量の関係図である。圧力P(N)と発生電荷量(pC)それらのゼロとなる原点a、圧力(N)と発生電荷量の双方の最大点bが示され、図には上側曲線と下側曲線を原点aと最大点bとの間に描いている。この2つの曲線はいわゆる圧電磁器組成物、磁性体らに見られるヒステリシスの様子を表したものである。
 下側曲線1は原点a、圧力の中間点d及び最大点bとの間を圧力(N)を増加させることで発生する発生電荷量との関係で描かれている(図の上向き矢印3)。他方、上側曲線2は最大点b、圧力の中間点c及び原点aとの間で圧力(N)を減少させたとき発生する発生電荷量との関係が描かれている(図の下向き矢印4)。ヒステリシスはこれら圧力の中間点c、dの間(図の上下間)の大きさとして求められる。水晶のような例ではこのヒステリシスの幅はゼロとして表される。しかしながら、一般に圧電磁器は特有のヒステリシス現象が発生しこの幅は大きくなっている。
 具体的には、本発明におけるヒステリシス値を以下のように定義する。前記最大点bにおける圧力P(N)をFmax、発生電荷量(pC)をQmaxとする。圧力P(N)の中間点における発生電荷量(pC)を上側の曲線2の中間点cのときQdown、下側の曲線1の中間点dのときQupとすると、ヒステリシス値HyQ(%)は次式(1)で表される。

  HyQ(%)=(Qdown-Qup)/Qmax×100 (1)

 ここで・・
Qmax:最大の圧力F(N)のときに発生した電荷量(pC)
Qup:圧力を増加させるときに最大の圧力(Fmax)の1/2圧力(=Fmax/2)で発生したd点における電荷量(pC)
Qdown:圧力を減少させるときに最大の圧力(Fmax)の1/2圧力(=Fmax/2)で発生したc点における電荷量(pC)
とする。
 本発明にあっては、実質的にヒステリシス値HyQ=0となる範囲としてヒステリシス値HyQを、
 HyQ(%)≦|0.1%|   (2)
の範囲を得られるべく鋭意研究の上以下の組成及びその製造方法により課題解決を図ったものである。また、(2)式ではHyQ(%)はプラス及びマイナスの範囲として表され、
QdownからQupを引くときそれが正ならプラス、すなわち、Qdown>Qupということになる。負ならこの逆でマイナス(Qdown<Qup)ということになる。詳細は以下に述べるが、ヒステリシス値はこの定義に従い説明する。
 次に、ヒステリシス値(HyQ)のプラスマイナスが発生する様子を図3及び図5として表したものである。ここで、図2は圧力P(N)により発生する電荷量の様子を示した説明図である。(pC)のようにヒステリシス値が極めて微小な場合には上側及び下側曲線は重なり、ほぼ直線状態を呈している。この例では、圧力50Nで発生電荷量(約1130pC)となっている。
 図3は前記圧力の中間点付近を拡大表示(expa.part expansion of figure 2)した場合である。図3によれば、図2の拡大表示(expa部分)の例では、圧力(24.2N)下で、発生電荷量(約572pC)から、上向曲線1(図の上向き矢印3)が示され、その関係はほぼ直線に増加していく。他方、圧力(24.8N)下で、発生電荷量(約595pC)から、圧力を徐々に減少させていく下向曲線2(図の下向き矢印4)が示され、ほぼ直線的に減少していく。
 そして、圧力(24.2N)下で、発生電荷量(約580pC)となっている。
 Qdown>Qupの状態を呈していることが見られる。この直線変化をより詳細に確認すると、図2では認められなかった、圧力(N)の最大値の半分部分では、図3のような拡大図(expa)で見られるヒステリシスの様子を観察することができる。
 図4の約25Nの位置で発生電荷量が上下する2本の右上がり線が見られる。
 下側の曲線1は徐々に圧力を増加していくとき(図の矢印3)の圧力(N)と発生電荷量(pC)の様子を示している。他方、逆に圧電磁器の圧力を徐々に減少させていくと(図の矢印4)、発生電荷量は上側の曲線2のカーブのように減少していく。この様子は図1と同様な様子として示されている。この状態では、ヒステリシス値(HyQ)はプラスの値として計算される。
 また、図5は図3に比べ、ヒステリシス値(HyQ)はマイナスの値として計算される。
ここで、図4は図2のようにヒステリシス値が極めて微小な場合には上側及び下側曲線は重なり、ほぼ直線状態を呈している。この例では、圧力50Nで発生電荷量(約1250pC)となっている。図5は図4の前記圧力の中間点付近を拡大表示(expa.part expansion of figure 2)した場合である。図5によれば、図2の拡大表示(expa部分)の例では、圧力(25.6N)下で、発生電荷量(約636pC)から、上向曲線1(図の上向き矢印3)が示され、その関係はほぼ直線に増加していく。
 他方、圧力P(26.2N)、発生電荷量Q(約646pC)から、圧力を徐々に減少させていく下向曲線2(図の下向き矢印4)が示され、ほぼ直線的に減少していく。そして、圧力(25.6N)下で、発生電荷量(約632pC)となる。結果はQdown<Qupの状態、すなわち、ヒステリシス値(HyQ)はマイナスの値として計算される。この関係は図3のようなQdown>Qup、すなわち、プラスの値とは異なる直線変化を示していることになる。
 図6は圧力P(N)と発生電荷量Q(pC)におけるヒステリシス計測装置を示したものである。磁器組成物5は上部コンタクト治具6と下部コンタクト治具7によりサンドイッチされ取り付けられている。上部コンタクト治具6は、精密圧力印加用アクチュエータ8、接続リニアガイド11を介してバイアス圧力印加用モータ12に取り付けられている。下部コンタクト治具7は、精密圧力計測用水晶フォースセンサ9を介してバイアス圧力計測用ロードセル10に取り付けられている。
 演算処理波形表示条件入力用コンピュータ13は電源制御装置14、ケーブル17を介してバイアス圧力印加用モータ12に接続されている。同様に、演算処理波形表示条件入力用コンピュータ13はチャージアンプ15に接続され上部コンタクト治具6と下部コンタクト治具7を介して磁器組成物5からの出力を表示させる。他方、精密圧力計測用水晶フォースセンサ9及びバイアス圧力計測用ロードセル10はアンプ信号計測器16を介して演算処理波形表示条件入力用コンピュータ13に接続されている。
 つぎに、ヒステリシス計測装置を用いた圧力P(N)と発生電荷量Q(pC)の測定及び計算処理について説明する。
 計算に必要な信号は、精密圧力計測用水晶フォースセンサ9の信号(圧力:N)とチャージアンプ15の信号(発生電荷量:pQ)である。
ヒステリシス計測装置18において測定試料5(圧電磁器組成物)は上部コンタクト治具6と下部コンタクト治具7によりサンドイッチされ取り付ける。測定試料5をセット後、精密圧力印加用アクチュエータ8を連続的に一定の周波数(標準は10Hz)で駆動させる。駆動開始から2秒後に一周期の圧力信号と発生電荷量信号のデータ(2000ポイント)を図示しないPCに取り込む。このデータを用い、演算処理をする。
 以下図1を参照して説明する。最大の圧力(N)のとき(図1のb点)の発生電荷量Qmax(pC)から等価圧電定数(d33)を求める。
 次に最大圧力の1/2の圧力値(Fmax/2、図1のd点)を決める。
 圧力を増す場合の例(図1の矢印3)では、1/2の圧力値(Fmax/2)に最も近い上と下の圧力値の2ポイントを決める。点d(Fmax/2)を2ポイント間の比例配分比で決める。同じ比例配分比で(図1のd点)、すなわち、点dにおける発生電荷量Qを決める。この発生電荷量がQupとなる。
 同様に圧力を減じる場合の例(図1の矢印4)では最大圧力の1/2の圧力値(図1のc点)の発生電荷量Qdownを決める。これらよりヒステリシスHyQが(1)式により計算される。
 以上より1回目(n=1)のd33とHyQが得られる。
 演算終了後、再度、同様に一周期のサンプリングを行い演算処理をする。これを50回(n=50)まで繰り返す。
 得られた50回のデータを算術平均して被測定物のd33とHyQを決定する。
 有効数字としては、得られたd33(pC/N)の小数点以下2桁、HyQ(%)の3桁を採用した。
 本発明により作製される圧電磁器組成物及びその製造方法について詳細に述べる。
 本発明の電極材料の影響を少なくするための工夫につき予め説明しておきたい。
 強誘電体磁器組成物は理想的にはヒステリシス値がゼロが望ましい。しかしながら、組成物、その製法については極めて高度な条件、さらにコスト面対策をクリアしなければならない。そこで、性能的に充分な性能確保を図り、かつ、前記の対策にも合致した組成物及びその製造方法を達成するための条件を鋭意研究することにより本発明の圧電磁器組成物及びその製造方法を得ることができた。
 まず、ヒステリシス値としては、使用可能な範囲として、HyQ≦|0.1%|とするためにこれに影響を与える因子は(A)磁器材料組成物への電極材料及びその付与方法、(B)磁器材料組成物自体の開発とその製造条件の開発に検討を加えてきた。
 そこで、まず、(A)圧電磁器組成物への電極材料及びその付与方法につき述べる。
 圧電磁器組成物に貼着される電極材料、すなわちその構成物については圧電磁器組成物への拡散を出来る限り抑制しなければならない。その理由は、電極材料が高温(700℃~900℃)で焼き付けるとき、特にガラスフリット成分が組成物内に微量ではあるが拡散する。この拡散により組成物の組成が変化し圧電磁器組成物の性状を変化させることがある。
 また、圧電磁器組成物のキュリー温度と絶縁性も課題となる。これは、強誘電体(強磁性体)が強誘電性(強磁性性)を失う(転移)温度を指すが、圧電磁器組成物であるビスマス層状化合物はキュリー温度が高く、なおかつ、抗電界も高いため高温度(200℃近傍)、高電界(50kV/cm以上)での分極処理が必要である。このため圧電磁器組成物として高い絶縁性を有しなければならない。
 また、電極材料は一般的に使用される高温焼成(700℃以上)タイプで、その構成物は貴金属材料とガラスフリットから成る。このガラスフリットで貴金属材料を固着されている。また、ガラスフリットは、圧電磁器組成物内部に拡散して組成物の物性を変化させることがある。その結果、絶縁性に大きな影響を与え、これによりヒステリシスにも大きな影響も生ずる。このため圧電磁器組成物に用いる電極材料としての適合性を考慮しなければならない課題があった。
 本発明では、この解決策として、電極材料の構成物の拡散防止のため導電性樹脂を用いて電極形成を行い分極処理する方法を試みた。また、本発明の圧電磁器組成物の用途としては耐熱性が必要とする背景がある。したがって、一般的な導電性樹脂では耐熱性が得られないことも事実であった。
 そこで、導電性樹脂を除去したのち、これに代わる電極材料として分極状態の性能劣化をさせない耐熱性のあるキュリー温度以下で焼成可能な焼成タイプの電極材料を開発してこの課題を解決した。すなわち、後述する分極用電極材料として銀粉末入りの水溶性導電性樹脂材料を用いることで解決した。
 この電極材料を使うことで素子上の電極の耐熱性を得ることができた。電極の形成は、スクリーン印刷用具、手塗り用具(刷毛、筆等)にて素子上に電極ペーストを塗布する。
熱風ドライヤー、オーブン等で塗布面を乾燥する。500℃程度が得られるオーブン、焼き付け炉等で焼成する。このように、電極材料及びその付与方法の開発で圧電特性(d33)の低下とヒステリシスを損ねることがない本発明の課題に合致した圧電磁器組成物及びその製造方法を提供できる目安を見いだすことが可能となった。
 このように、焼成可能な焼成タイプの電極材料及び電極形成方法を用いることにより、後述する本発明の組成物には特に、さらに、既知の圧電磁器組成物であっても高価な電極形成設備や高価な電極材料を利用しなくても製造が可能となる。
 これについては、確認のためにキュリー温度670℃の組成物
(Na0.5  ,Bi0.50.95Ca0.05BiTi15+0.2Wt%Mnを用いて次の方法により確認した。
 前記従来の電極材料として高温焼成タイプの銀ペーストを使用した。また、前述方法では、分極用電極材料として水溶性導電樹脂を使用し、実用上必要な電極の耐熱性のための電極材料として450℃で焼成可能な銀ペーストを使用した。その結果、従来法であると等価圧電定数(d33)が19~23pC/Nでヒステリシス値(HyQ)プラス0.35~0.43%であった。等価圧電定数(d33)が23pC/Nが高い例でもヒステリシス値(HyQ)プラス0.18%であった。
 さらに、(B)の圧電磁器組成物自体の開発とその製造条件については、次の実施例で詳細に説明する。
 このように、電極材料及びその付与方法の開発で圧電特性(d33)の低下とヒステリシスを損ねることない本発明の課題に合致した磁器組成物及びその製造方法を提供できる目安を見いだすことが可能となった。
 前記した本発明の磁器組成物に対して(A)磁器材料組成物への電極材料及びその付与方法の開発と、(B)磁器材料組成物自体の開発につき以下の基本組成を有する磁器組成物につき検討を加えた。
 本発明の基本組成を有する磁器組成物
 (Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn
 この組成物で、HyQ(%)≦|0.1%|を得るためには、下記の配合で、(1)は固定、(2)「M」を決定及び(3)「xパラメータの範囲」の決定に着目して開発を企図した。
 すなわち、
(1)(Na0.5  ,Bi0.5)は固定とした。
(2)Mについては、Ca、Sr、Ba、Raからなる少なくとも1つのアルカリ土類金属でそれらを決定する。
(3)xパラメータを変化させ本発明の範囲を決定する。以下、製造例番号(Productin example number)で表示し製造例1は「ex.1」、以下同様に表示する。
 各製造例につき表1に示す製造例(ex.1~19)として、等価圧電定数d33の計測及びヒステリシス値(HyQ)を求めた。
Figure JPOXMLDOC01-appb-T000001




 製造例1(ex.1)
 実施例1の条件により実施した。(以下同じ)
 (Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn磁器組成物においてxをゼロ、Mは入れない。すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.5)BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、特定範囲内の等価圧電定数を有するは29.4pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは0.36%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例2
 xを0.05、MはSr(ストロンチウム)。すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.95Sr0.05BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は29.3pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは0.18%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例3
 xを0.25、MはSr。すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.75Sr0.25BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は28.5pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは-0.12%で目標値の0.1%をやや超えていた。また、ヒステリシス値がマイナスとなる特性が認められた。本発明における課題を解決できていないことが確認された。
 製造例4
 xを0.5、MはSr。すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.5Sr0.5BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は27.8pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは-0.252%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。製造例3と同様に、ヒステリシス値がマイナスとなる特性が認められた。
 製造例5
 xを0.75、MはSr。すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.25Sr0.75BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は29.3pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは1.7%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例6
 xを1、MはSr。すなわち、次の圧電磁器組成物である。
SrBiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は25.1pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは0.46%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例7~11
 Mは製造例2~6におけるSrをCaに変更し、xは製造例3~6における値と同じである(表1参照)。すなわち、次の圧電磁器組成物である。
 製造例7
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.95Ca0.05BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は28.5pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは0.23%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例8
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.75Ca0.25BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は23.7pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは0.00%で目標値の0.1%以下で理想的な値を示し本発明における課題を解決できていることが確認された。
 製造例9
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.5Ca0.5BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は21.8pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは3.5%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例10
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.25Ca0.75BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は17.7pC/Nと本発明の目標値20pC/N以上に達していない。HyQは1.8%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例11
 すなわち、次の圧電磁器組成物である。
CaBiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は17.2pC/Nと本発明の目標値20pC/N以上に達していない。HyQは-0.18%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。製造例3、4と同様に、ヒステリシス値がマイナスとなる特性が認められた。
 製造例12~15
 Mは製造例3~6におけるSrをBaに変更し、xは製造例3~6における値と同じである(表1参照)。すなわち、次の圧電磁器組成物である。
 製造例12
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.75Ba0.25BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は21.7pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは-0.30%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。製造例3、4及び11と同様に、ヒステリシス値がマイナスとなる特性が認められた。
 製造例13
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.5Ba0.5BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は18.1pC/Nと本発明の目標値20pC/N以上に達していない。HyQは2.8%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例14
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.25Ba0.75BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は21.7pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは-1.2%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。製造例3、4、11及び12と同様に、ヒステリシス値がマイナスとなる特性が認められた。
 製造例15
 すなわち、次の圧電磁器組成物である。
BaBiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は22.4pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは0.80%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例16~19
 Mは製造例3~6におけるSrを(K0.5  ,Bi0.5)に変更し、xは製造例3~6における値と同じである(表1参照)。すなわち、次の圧電磁器組成物である。
 製造例16
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.75(K0.5  ,Bi0.50.25BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は25.3pC/Nと本発明の目標値20pC/N以上には達し、HyQは0.04%で目標値の目標値の0.1%以下で理想的な値を示し本発明における課題を解決できていることが確認された。
 製造例17
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.5(K0.5  ,Bi0.50.5BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は25.3pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは1.5%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例18
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.50.25(K0.5  ,Bi0.50.75BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は21.0pC/Nと本発明の目標値20pC/N以上には達していたが、HyQは4.2%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 製造例19
 すなわち、次の圧電磁器組成物である。
(Na0.5  ,Bi0.5)BiTi15+0.2Wt%Mn
 結果は表1のとおりであり、d33は16.9pC/Nと本発明の目標値20pC/N以上には達していない。HyQは4.0%で目標値の0.1%を超え本発明における課題を解決できていないことが確認された。
 以上から、Mについては、Ca、Sr、Ba等アルカリ土類金属及び(K0.5  ,Bi0.5)の使用例として示した。このほか、アルカリ土類金属の一つであるRa(製造例記載省略)においても使用可能である。
 Mについては、製造例3でBa、製造例16で(K0.5  ,Bi0.5)が使用可能であった。また、Mについて、Sr、Ca、Ba等のアルカリ土類金属が使用でき、これと同じアルカリ土類金属であるRaについても同等の使用が期待できると考えられる。また、アルカリ土類金属ではない、(K0.5  ,Bi0.5)の組み合わせも可能なことが確認された。d33が17.2pC/Nで20pC/Nより低く、HyQも-0.18%で目標値の0.1%をやや超えたものも見いだされた。
(3)xパラメータを変化させ本発明の範囲を決定する。
 前記表1の結果から、製造例8及び16が理想的な値を示し本発明における課題を解決できていることが確認された。また、製造例3でd33が20pC/Nより高く、HyQは0.12%で目標値の0.1%をやや超え本発明における課題解決に今少しの製造例も確認された。さらに、製造例11でd33が17.2pC/Nで20pC/Nより低く、HyQも-0.18%で目標値の0.1%をやや超えたものも見いだされた。
 しかしながら、製造例8及び16からは、x=0.25でヒステリシス値HyQが0.1%以内であることが認められた。
 そこで、Mについてxの範囲との相関があるか確認した。結果は図7に示した。縦軸はヒステリシス値 Magnitude of Hysteresys(HyQ)、横軸はxパラメータである。
図8は図7の説明図の拡大表示(expa.part expansion of figure 2)した場合である。すなわち、Mについてxパラメータの範囲との関係をグラフ化したものである。
 ここで、磁器組成物
(Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn
を使用した。
 Mとして、アルカリ土類金属及び(K0.5  ,Bi0.5)を選びヒステリシス値HyQ(%)とxパラメータとの関係を示した説明図である。
 xパラメータは0~1の範囲内で、x=0、0.25、0.5、0.75、1の5点につきMをBa、Ca、Sr及び(K0.5  ,Bi0.5)と変化させそれぞれのヒステリシス値HyQ(%)を計算してプロットした。
 図7から次の結果が得られた。x=0では、上記Mのいずれにおいても、HyQ=0~+1(%)程に入っている。x=0.25では、HyQ=0(%)近傍、x=0.5では、MのうちSrのみ、HyQ=0(%)近傍、他のMではHyQ=1~4(%)にばらついていた。x=0.75では、Mのすべてで、HyQ=-1~4(%)ほどにばらついていた。x=1では、MがBa、Ca及びSrのアルカリ土類金属でHyQ=0(%)近傍に収束している様子が認められた。
 したがって、特定のxと特定のMを選択することで、HyQ=±0.1%以内とする圧電磁器組成物が充分に提供されることがわかった。
 本発明では、図7のうちMの多数についてHyQ=0(%)に近似した範囲に着目し、利用可能なMの決定を試みた。図8は図7におけるx=0.1~0.3の範囲でHyQ部分を約40倍ほど拡大した図である。それによれば、いずれのMを選択する場合もxの範囲によりHyQ(%)が変動した様子が示されている。なお、表1にも明らかなように、x=0.1~0.3の範囲で特定範囲内の等価圧電定数d33を有する、すなわち、d33は20pC/N~35pC/Nの特性を有している。
 したがって、Mとxとの相関は以下となる。
a.Mが1つのアルカリ土類金属Baのとき
  xの範囲が0.1≦x≦0.17又は0.26≦x≦0.28のいずれかである場合
b.Mが1つのアルカリ土類金属Caのとき
  xの範囲が0.16≦x≦0.26である場合
c.Mが1つのアルカリ土類金属Srのとき
  xの範囲が0.11≦x≦0.23である場合
d.Mが(K0.5  ,Bi0.5)であるとき
  xの範囲が0.2≦x≦0.27である場合
に加圧力と減圧力にするヒステリシス値がHyQ≦|0.1%|の範囲内の圧電磁器組成物が提供できる。
 次に、本発明の圧電磁器組成物の製造方法につき説明する。
 M:アルカリ土類金属及び(K0.5  ,Bi0.5)の選択とxパラメータを次によった。x=0.05、0.25、0.5、0.75及び1なる磁器組成物を以下の方法で調整した。
 出発原料は、NaCO、KCO、BaCO、SrCO、CaCO、Bi、TiO、MnOを使用した。配合比により所定量を調合、混合後、仮焼成800℃で2時間キープ、1ミクロンメーター程度に粉砕し、PVAを加えスプレードライヤーにて整粒する。外形4mm、厚さ2.5mmに成型し、脱脂後1100~1150℃2時間、焼成した。さらに、焼成後、2.0mmの厚さに研磨し、分極用電極材料として、水溶性導電性樹脂をスクリーン印刷し、100℃で乾燥後、180℃のシリコンオイル中で12kVの電圧で5分間実施した。
 分極後この電極は水にて除去され乾燥後、キュリー温度以下の450℃の焼成温度で焼成タイプの銀ペーストをスクリーン印刷し、450℃10分キープし焼き付けた。
 図6の装置で等価圧電定数d33とヒステリシスHyQを計測し、表1に示した。
 なお、磁器組成物試料の表面状態によりヒステリシスが変化するので一定に保つため#2000以上研磨剤で研磨又は鏡面とする。厚さ0.5mmとしたが、要は焼成状態が維持できる厚さであれば制限はない。
 次に、図7及び図8を用いてxの範囲を特定する方法を説明する。
 図7はM:アルカリ土類金属(Sr、Ca、Ba)及び(K0.5  ,Bi0.5)をパラメータとして横軸に示すxをx=0.05、0.25、0.5、0.75及び1に変化させヒステリシス値(HyQ)を測定した。xの横軸上の値ではいずれのアルカリ土類金属(Sr、Ca、Ba)及び(K0.5  ,Bi0.5)について、xが0.3付近から大きくなるにつれ、ヒステリシス値(HyQ)が大となることが読み取れる。
 ヒステリシス値HyQ≦|0.1%|の範囲かの判定は、図7の「exp.部分」の拡大した図8で実施した。図8で横軸x、縦軸HyQ≦|0.1%|で縦軸は図7におけるよりも拡大表示している。
 それによれば、-0.1≦ヒステリシス値HyQ≦0.1が得られるxの範囲を図8でx組成物範囲を0.1≦x≦0.28として決定できた。
 このように、本発明の電極形成方法を用いること、かつ、本発明の磁器組成物により目的を達成することができた。
 このことは、既知の圧電磁器組成物であっても適用が期待できよう。また、前記した本発明の電極形成方法は電極形成設備や高価な電極材料に制限されない製造が可能となる。
 磁器組成物試料の表面状態によりヒステリシスが変化するので一定に保つため#2000以上研磨剤で研磨又は鏡面とする。厚さ0.5mmとしたが、要は焼成状態が維持できる厚さであれば制限はない。
 得られた試料は、等価圧電定数、ヒステリシス値計測を図6に示す装置で行った。
 計測のため圧電磁器組成物に加えるバイアス圧縮圧力は250N、最大圧力は300Nとし、印加圧力は、サイン波波形で50Nの交番圧力を加える。その周波数は、0.5Hzから50Hzとした。具体的には、0.5、1、5、10、15、25、50Hzで実施した。
 本発明の材料は、キュリー温度が高い材料でエンジンの回転数に対応する圧力変動の周波数が10Hz 以上(600rpm以上)の自動車のエンジン燃焼圧を検知する圧力センサの検知素子として高感度、高精度、高温耐性を持った素子として期待される。低周波数域(10Hz以下)では、汎用の高感度、高精度の微分型圧力センサの検知素子として期待できる。
 圧電セラミックス製造手法による既知の磁器組成物であっても電極形成設備や高価な電極材料に制限されない製造が可能となり、また、多量から少量の製造も可能で幅広い分野で利用される圧力検知の素子として期待できる。
1 圧力(N)を増加させるときの圧力-電荷曲線
2 圧力(N)を減少させるときの圧力-電荷曲線
3 圧力(N)を増加させるときの上向き矢印
4 圧力(N)を減少させるときの下向き矢印
5 圧電磁器組成物
6 上部コンタクト治具
7 下部コンタクト治具
8 精密圧力印加用アクチュエータ
9 精密圧力計測用水晶フォースセンサ
10 バイアス圧力計測用ロードセル
11 接続リニアガイド
12 バイアス圧力印加用モータ
13 演算処理波形表示条件入力用コンピュータ
14 電源制御装置
15 チャージアンプ
16 アンプ信号計測器
17 ケーブル

Claims (9)

  1.  加圧力と減圧力に対し圧電磁器組成物として下記の配合とした磁器組成物
    (Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn
    であって、xが0≦x≦0.28の範囲内、かつ、MがCa、Sr、Ba、Raの群からなる少なくとも1つのアルカリ土類金属、又は、Mが(K0.5  ,Bi0.5)からなる磁器組成物を焼成後分極用導電性樹脂電極を作製し、この樹脂を分極後除去してその上で圧電出力検出用電極を付与させた特定範囲内の等価圧電定数を有するヒステリシスが±0.1%以内とする圧電磁器組成物。
  2.  前記Mが1つのアルカリ土類金属Ba、かつ、xの範囲が0.1≦x≦0.17又は0.26≦x≦0.28のいずれかである請求項1記載の圧電磁器組成物。
  3.  前記Mが1つのアルカリ土類金属Ca、かつ、xの範囲が0.16≦x≦0.26である請求項1記載の圧電磁器組成物。
  4.  前記Mが1つのアルカリ土類金属Sr、かつ、xの範囲が0.11≦x≦0.23である請求項1記載の圧電磁器組成物。
  5.  加圧力と減圧力に対し圧電磁器組成物として下記の配合とした磁器組成物
     (Na0.5  ,Bi0.51-xBiTi15+0.2Wt%Mn
    であって、xが0≦x≦0.28の範囲内、かつ、MがCa、Sr、Ba、Raの群からなる少なくとも1つのアルカリ土類金属、又は、Mが(K0.5  ,Bi0.5)を用いて圧力に対する発生電荷量のヒステリシスを±0.1%以内とした圧電磁器組成物の製造方法において、磁器組成物を仮焼き粉体とし、それぞれの配合比で調合、混合、整粒及び成型させ、これを焼成後分極用導電性樹脂電極を作製し、この樹脂を分極後除去してその上で圧電出力検出用電極を付与させた特定範囲内の等価圧電定数を有する圧力に対する発生電荷量のヒステリシスが±0.1%以内とする圧電磁器組成物の製造方法。
  6.  前記焼成後分極において電極材料の構成物の拡散防止用導電性樹脂を用いて電極形成を行う工程からなる前記記載の圧力に対する発生電荷量のヒステリシスが±0.1%以内とする請求項5記載の磁器組成物の製造方法。
  7.  前記Mが1つのアルカリ土類金属Ba、かつ、xの範囲が0.1≦x≦0.17又は0.26≦x≦0.28のいずれかである請求項5又は請求項6記載の磁器組成物の製造方法。
  8.  前記Mが1つのアルカリ土類金属Ca、かつ、xの範囲が0.16≦x≦0.26である請求項5又は請求項6記載の磁器組成物の製造方法。
  9.  前記Mが1つのアルカリ土類金属Sr、かつ、xの範囲が0.11≦x≦0.23である請求項5又は請求項6記載の磁器組成物の製造方法。

     
PCT/JP2013/065896 2012-06-10 2013-06-09 圧電磁器組成物及びその製造方法 WO2013187338A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131443 2012-06-10
JP2012131443A JP6234663B2 (ja) 2012-06-10 2012-06-10 圧電磁器組成物及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013187338A1 true WO2013187338A1 (ja) 2013-12-19

Family

ID=49758161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065896 WO2013187338A1 (ja) 2012-06-10 2013-06-09 圧電磁器組成物及びその製造方法

Country Status (2)

Country Link
JP (1) JP6234663B2 (ja)
WO (1) WO2013187338A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947519B (zh) * 2018-09-18 2021-08-03 铜仁学院 压电陶瓷及其制备方法、压电装置及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648825A (ja) * 1992-07-31 1994-02-22 Toyota Motor Corp ビスマス層状化合物
JPH1129356A (ja) * 1997-07-09 1999-02-02 Murata Mfg Co Ltd 圧電磁器組成物
JP2001158663A (ja) * 1999-11-30 2001-06-12 Kyocera Corp 圧電磁器組成物
WO2009122916A1 (ja) * 2008-03-18 2009-10-08 京セラ株式会社 圧電磁器およびそれを用いた圧電素子
JP2010013295A (ja) * 2008-07-01 2010-01-21 Kyocera Corp 圧電磁器およびそれを用いた圧電素子
JP2010030832A (ja) * 2008-07-29 2010-02-12 Kyocera Corp 圧電磁器およびそれを用いた圧電素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648825A (ja) * 1992-07-31 1994-02-22 Toyota Motor Corp ビスマス層状化合物
JPH1129356A (ja) * 1997-07-09 1999-02-02 Murata Mfg Co Ltd 圧電磁器組成物
JP2001158663A (ja) * 1999-11-30 2001-06-12 Kyocera Corp 圧電磁器組成物
WO2009122916A1 (ja) * 2008-03-18 2009-10-08 京セラ株式会社 圧電磁器およびそれを用いた圧電素子
JP2010013295A (ja) * 2008-07-01 2010-01-21 Kyocera Corp 圧電磁器およびそれを用いた圧電素子
JP2010030832A (ja) * 2008-07-29 2010-02-12 Kyocera Corp 圧電磁器およびそれを用いた圧電素子

Also Published As

Publication number Publication date
JP6234663B2 (ja) 2017-11-22
JP2013256393A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
Hao et al. Structure evolution and electrostrictive properties in (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3–M2O5 (M= Nb, Ta, Sb) lead-free piezoceramics
Malik et al. Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics
US8258679B2 (en) Piezoelectric ceramic comprising a bismuth layered compound and piezoelectric element
JP2001151566A (ja) 圧電体セラミックス
Akram et al. Temperature stable dielectric properties of lead-free BiFeO3–BaTiO3 modified with LiTaO3 ceramics
Li et al. Enhanced real-time high temperature piezoelectric responses and ferroelectric scaling behaviors of MgO-doped 0.7 BiFeO3-0.3 BaTiO3 ceramics
Qi et al. Critical roles of the rhombohedral-phase inducers in morphotropic NaNbO3-BaTiO3-ABO3 quasi-ternary lead-free piezoelectric ceramics
Fu et al. Large and temperature-insensitive piezoelectric strain in x BiFeO 3–(1− x) Ba (Zr 0.05 Ti 0.95) O 3 lead-free piezoelectric ceramics
Wu et al. BiFeO3-modified (K, Na, Li)(Nb, Sb) O3 lead free ceramics with high Curie temperature
Chen et al. Lithium-modified (K0. 5Na0. 5) NbO3–BiAlO3 lead-free piezoelectric ceramics with high Curie temperature
JP6234664B2 (ja) 圧電磁器組成物及びその製造方法
Yao et al. Large electrostrictive coefficient with optimized Electro-Strain in BNT-based ceramics with ergodic state
JP6234663B2 (ja) 圧電磁器組成物及びその製造方法
Zhao et al. Study on PSN–PZN–PZT quaternary piezoelectric ceramics near the morphotropic phase boundary
CN103011815B (zh) 三元铁电固溶体铌镥酸铅‑铌镁酸铅‑钛酸铅
Patro et al. Improved microstructure, dielectric and ferroelectric properties of microwave-sintered Sr0. 5Ba0. 5Nb2O6
JP6234709B2 (ja) 圧電磁器組成物及びその製造方法
Wang et al. Electric field-induced giant strain and piezoelectricity enhancement effect in (Bi1/2Na1/2) 0.935+ xBa0. 065Ti1− x (Pr1/2Nb1/2) xO3 lead-free ceramics
JP5116584B2 (ja) 圧電磁器およびそれを用いた圧電素子
WO2011118884A1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
JP5207793B2 (ja) 圧電センサ
Zaman et al. Influence of zirconium substitution on dielectric, ferroelectric and field-induced strain behaviors of lead-free 0.99 [Bi 1/2 (Na 0.82 K 0.18) 1/2 (Ti 1− x Zr x) O 3]-0.01 LiSbO 3 ceramics
Niemiec et al. Effect of various sintering methods on the properties of PZT-type ceramics
Zhang et al. Large pyroelectric response in (Pb 0.87 La 0.02 Ba 0.1)(Zr 0.7 Sn 0.3− x Ti x) O 3 antiferroelectric ceramics under DC bias field
Sun et al. Study on Pb (Zr, Ti) O3–Pb (Zn1/3Nb2/3) O3–Pb (Sn1/3Nb2/3) O3–Pb (Mn1/3Sb2/3) O3 quinary system piezoelectric ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804490

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804490

Country of ref document: EP

Kind code of ref document: A1