WO2013185839A1 - Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht - Google Patents

Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht Download PDF

Info

Publication number
WO2013185839A1
WO2013185839A1 PCT/EP2012/061458 EP2012061458W WO2013185839A1 WO 2013185839 A1 WO2013185839 A1 WO 2013185839A1 EP 2012061458 W EP2012061458 W EP 2012061458W WO 2013185839 A1 WO2013185839 A1 WO 2013185839A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
sintering
sintered material
pressure
optoelectronic semiconductor
Prior art date
Application number
PCT/EP2012/061458
Other languages
English (en)
French (fr)
Inventor
Matthias KNÖRR
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to PCT/EP2012/061458 priority Critical patent/WO2013185839A1/de
Publication of WO2013185839A1 publication Critical patent/WO2013185839A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29295Material of the matrix with a principal constituent of the material being a gas not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73257Bump and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75343Means for applying energy, e.g. heating means by means of pressure by ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83055Composition of the atmosphere being oxidating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • H01L2224/83207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12043Photo diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • light-emitting diode chips are usually glued to leadframes or other substrates, but due to the properties of the available adhesives, this leads to relatively weak connections and high thermal
  • soldering methods are used for the connection between the chip and a substrate. This reduces the thermal resistance and the strength of the
  • Connection layer increases in comparison to a
  • Adhesive layer Adhesive layer.
  • soldering processes are generally more expensive than bonding processes and the finished LED packages may no longer be installed by reflow soldering because the chip solder would melt again.
  • At least one object of certain embodiments is to specify a method for producing an optoelectronic semiconductor component having at least one first component and one second component.
  • a method for producing an optoelectronic semiconductor component having at least one first component and one second component has a method step in which a sintered material is arranged between the first and the second component.
  • Sintered material can be applied.
  • the second component may be placed on the sintered material and then along with the sintered material on the first component.
  • the sintered material is sintered under the action of heat, pressure and ultrasound during a sintering time to form a bonding layer between the first and second component.
  • the sintered material comprises silver, gold, nickel and / or copper. Especially preferred the sintered material has silver.
  • the sintered material may be in the form of powder grains, particles and / or flakes ranging in size from a few micrometers to a few tens of nanometers.
  • Sintering material for better processability existing organic binders, solvents or other additives are decomposed by the sintering process or from the
  • Sintered material removed whereby no organic matrix remains in the connecting layer produced by the sintering.
  • the particles of the sintered material are sintered to form a porous solid.
  • the connection between the individual particles is very strong and at normal operating temperatures for optoelectronic semiconductor devices below 200 ° C is very far from the melting point of the described sintered materials
  • the melting point of silver is 961 ° C. Therefore occur in the case described here
  • the bonding layer described herein can provide thermal conductivities that are about 10 to 100 times greater than adhesives and 2 to 5 times greater than solders.
  • a sintered material for example, a
  • solvent-containing paste are provided, in which the particles to be sintered are contained.
  • the particles have an organic protective cover.
  • the solvent-containing paste can be printed on the first component and then dried by the action of heat, which can be expelled by drying, for example, solvent from the paste.
  • the sintering of the particles of the sintered material can be any suitable material.
  • LED chip is mounted in a plastic housing, since the plastic for typical such light-emitting diode packages often can only be exposed to a maximum temperature of about 175 ° C.
  • the long sintering time of known sintering processes furthermore ensures low throughput, and the high temperatures and the high pressure can also lead to breakage of, for example, a light-emitting diode chip or a substrate.
  • ultrasonic energy is also supplied during sintering. As a result, an additional burden on the protective layers of the particles can be exercised, so that they are destroyed faster.
  • further energy is made available for running off the sintering processes via the ultrasound. It may therefore be possible that the additional process parameters of temperature, pressure and / or
  • Sintering time can be lowered.
  • the sintering of the sintered material is carried out at a temperature of less than or equal to 250 ° C, preferably at a temperature of less than or equal to 200 ° C and more preferably at a temperature of less than or equal to 175 ° C.
  • the sintering temperature may be, for example, greater than or equal to 25 ° C.
  • the pressure can be supplied, for example, by means of a pressing head on the second component.
  • the pressing head can exert a static pressure on the second component and thus on between the second component and the first component arranged sintered material.
  • the pressure supplied during sintering may be less than or equal to 10 MPa.
  • the pressure is also significantly lower and, for example, up to 0 MPa. For example, this can be here
  • the pressing head can furthermore have a heating element, via which heat can be supplied to the sintering material during the sintering process. Furthermore, it is also possible for the first component to be arranged on a heating plate, via which heat can be supplied to the sintered material.
  • the pressing head can furthermore have an ultrasound generator via which ultrasound waves can be supplied to the sintered material. Furthermore, in addition to a
  • the sintering time can be increased by the additional supply of
  • the first component has a first carrier element.
  • the first carrier element may for example be selected from a lead frame, a plastic carrier, a plastic housing, a
  • Ceramic carrier a circuit board or a combination thereof.
  • the first component or the first carrier element may be a
  • prefabricated plastic housing a so-called pre-mold housing act, in which a lead frame is partially formed with a plastic material.
  • Plastic materials are thermoplastic materials such as silicone or polyphthalamide.
  • the first carrier element may have at least one contact surface over which the second component by means of
  • the first component or the first carrier element preferably has an electrical connection
  • the carrier element may comprise a plastic carrier, ceramic carrier, a printed circuit board or a metal core board with conductor tracks or contact points.
  • the second component is an optoelectronic semiconductor chip.
  • the optoelectronic semiconductor chip can be used as a light-emitting diode chip,
  • Laser diode chip or photodiode chip be executed.
  • the semiconductor chip can be produced as semiconductor layer sequences on the basis of different semiconductor material systems.
  • a semiconductor layer sequence based on In x Ga y Alix x y As for red to yellow radiation, for example, a semiconductor layer sequence based on
  • In x Ga y Al x - y P and short wavelength visible, ie in particular in the range of green to blue light and / or UV radiation for example, a semiconductor layer sequence based on In x Ga y Al x _ y N suitable where 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1.
  • the semiconductor chip may have a
  • semiconductor layer sequence particularly preferably one epitaxially grown semiconductor layer sequence, comprise or be.
  • the semiconductor layer sequence by means of an epitaxial process, for example
  • MOVPE metal-organic gas phase epitaxy
  • MBE Molecular Beam Epitaxy
  • grown semiconductor layer sequence can be provided a plurality of optoelectronic semiconductor chips.
  • Such semiconductor chips as a substrate
  • Carrier substrate instead of the growth substrate may also be referred to as so-called thin-film semiconductor chips
  • Epitaxial layer sequence is applied or formed a reflective layer that at least a portion of the generated in the epitaxial layer sequence
  • the epitaxial layer sequence reflects electromagnetic radiation back into them; the epitaxial layer sequence has a thickness in the range of 20 microns or less, in particular in the range between 4 and 10 ym; and
  • the epitaxial layer sequence contains at least one
  • Semiconductor layer having at least one surface which has a mixing structure which, in the ideal case, results in an approximately ergodic distribution of the light in the epitaxial epitaxial layer sequence, ie it has a possible ergodisch stochastic
  • the basic principle of a thin-film LED chip is for example in the
  • the electrical contacts of the semiconductor chip can be arranged on different sides of the semiconductor layer sequence or else on the same side.
  • the semiconductor chip may make electrical contact in the form of a sinterable contact surface on one of the
  • Substrate have. On a substrate opposite
  • a further contact surface for example in the form of a so-called bond pads for contacting by means of a
  • Contact surfaces can be mounted and electrically connected.
  • a semiconductor chip can also have two contact surfaces formed as bond pads on the same side of the
  • the second component is an optical component.
  • the second component for example, a lens or a window, which is connected by means of the sintered material with a housing, such as a plastic housing, or a substrate.
  • the second component has a second carrier element which, for example, a
  • Ceramic carrier or a plastic carrier can be.
  • the second component which may have, for example, at least one optoelectronic semiconductor chip on the second carrier element, for example by means of the one described here
  • Method is mounted on the second carrier element, can itself be applied again on a first component, for example, designed as a metal core board or circuit board first carrier element.
  • the first component may have a first carrier element, which is referred to as
  • Printed circuit board or metal core board is formed on the second component as a second carrier element in the form of a ceramic carrier or a plastic carrier by means of
  • an optoelectronic semiconductor chip to be placed In particular, an optoelectronic semiconductor chip to be placed.
  • the further sintered material can be further affected by the action of heat, pressure and ultrasound
  • Bonding layer between the second component and the other component are sintered.
  • the further sintering step and the further sintered material may have features
  • the tempering can be for a few seconds to a few hours, preferably at a
  • the heat treatment step can furthermore be carried out particularly preferably in an oxygen-containing atmosphere, for example air.
  • an additional annealing step the sintering process can be advanced and an improvement in the connection between the already sintered sintered particles can be achieved, so that the porosity of the sintered layer can continue to decrease.
  • the strength and the thermal conductivity of the connection layer itself as well as the strength of the interfaces between the connection layer and adjacent surfaces, ie surfaces of the first and / or the second component may increase.
  • connection layer Reliability of the connection layer can be further increased.
  • the annealing step is carried out in an oven or on a hot plate. It is also possible that a reflow soldering process in which the optoelectronic semiconductor component to a
  • Supporting device such as a circuit board is soldered, serves as an annealing step.
  • the latter is particularly advantageous if a second component
  • High-performance semiconductor chip which generates a high waste heat during operation, which must be derived via the bonding layer on the first component, such as a lead frame and / or a plastic housing.
  • FIGS 1A to 1D are schematic representations of
  • FIGS. 1A to 2D are schematic representations of
  • FIGS. 3A to 3C are schematic representations of
  • a first component 1 is provided, which is shown in FIG. 1A.
  • Plastic housing is designed with a lead frame.
  • a sintered material 3 in the form of a solvent-containing paste is printed on the first component 1 with the aid of a doctor blade 32 through a mask or template 31.
  • it may be in the area where the
  • Sintered material 3 is applied to act an electrical contact area, ie a conductor or a part of a lead frame.
  • a paste with silver particles is applied as the sintering material 3.
  • a paste with silver particles is applied as the sintering material 3.
  • the sintered material 3 is dried, in which applied paste existing solvent can be removed.
  • the first paste existing solvent can be removed.
  • Component 1 with the sintered material 3 is arranged on a heating plate 7.
  • the first component 1 which essentially consists of
  • Metal particles of the sintered material 3 consists.
  • Metal particles can still have an organic protective shell that individually encapsulates each particle.
  • a second component 2 is placed on the dried sintered material 3.
  • the second component 2 is shown in FIG. 1C
  • Embodiment an optoelectronic semiconductor chip such as described above in the general part.
  • the placement of the second component 2 can by means of a
  • Press head 6 done which also serves as a bonding head
  • the bonding machine can be designed.
  • the pressing head may be part of a machine that
  • Chip assembly of so-called flip chips can be used.
  • Such machines are for example from Panasonic
  • a pressure on the sintered material 3 is exerted on the second component 2 via the pressing head 6.
  • the pressing head 6 is preferably provided with a heating element via which heat can be supplied to the sintered material 3 during a sintering step. Additionally or alternatively, the sintered material 3 can also be supplied with heat by means of the heating plate 7. Furthermore, it is also possible to arrange the first and second components 1, 2 with the interposed layer of the sintered material 3 in an oven. Furthermore, the pressing head 6 is preferably with a
  • Ultrasonic transducer equipped so that the pressing head 6 the sintered material 3 during a sintering step
  • Particles can be easily destroyed and the sintering process can begin earlier. Also, during the sintering process, the additional energy provided by ultrasound accelerates the fusion of the sintered particles into a solid layer. The connection between the particles of the
  • Sintering material 3 is closed by sintering the sintered particles to a solid layer by an elevated temperature and by a pressure exerted by the pressing head. Due to the additional introduction of ultrasound, the other parameters pressure, temperature and sintering time in the
  • the typical sintering temperatures may be greater than or equal to 25 ° C and less than or equal to 250 ° C, preferably less than or equal to 200 ° C. and more preferably less than or equal to 175 ° C.
  • a pressure can be described here
  • Ultrasonic coupling lead to cycle times, ie sintering times, from 10 milliseconds up to 60 seconds.
  • the sintering process produces an optoelectronic semiconductor component 10 with the second component 2 on the first component 1, wherein the second component 2 is mounted on the first component 1 by means of the connection layer 30 of the sintered sintered material 3 this is thermally and electrically connected.
  • the bonding layer 30 is compared to adhesive or solder layers significantly more stable and also has a greater thermal conductivity.
  • an optoelectronic semiconductor chip is applied as a second component 2 to a first component 1 designed as a plastic housing or ceramic carrier
  • a lens or a window ie an optical component, for example as the second component 2 one as
  • FIGS. 2A to 2D A further exemplary embodiment for producing an optoelectronic semiconductor component 12 is shown in conjunction with FIGS. 2A to 2D.
  • first exemplary embodiment for producing an optoelectronic semiconductor component 12 is shown in conjunction with FIGS. 2A to 2D.
  • a layer of a sintered material 3 is applied to a first component 1
  • the first component 1 has a first carrier element which can be used as a printed circuit board or
  • Metal core board is formed.
  • a second component 2 is placed, which has a second carrier element 20 in the form of a ceramic carrier, on which optoelectronic
  • Connecting layer 30 is attached to the first component 1.
  • a further sintered material 5 is formed on the second component 2 and a respective optoelectronic semiconductor chip 21 on the further sintered material 5 arranged in regions
  • the further sintering material 5 is formed in each case to form a further connecting layer 50 between the further components and the second component 2, as shown in FIG. 3C.
  • Annealed ultrasound may be performed for a few seconds to several hours, preferably at a temperature of greater than or equal to 100 ° C and less than or equal to 300 ° C.
  • the tempering step can continue
  • connection can be achieved between the already sintered sintered particles, so that the porosity of the sintered layer can continue to decrease.
  • Connection layer can be further increased.
  • the annealing step may be carried out in an oven or on a hot plate. It is also possible that a reflow soldering process in which the optoelectronic semiconductor component to a
  • Supporting device such as a circuit board is soldered, serves as an annealing step.
  • the invention is not limited by the description based on the embodiments of these. Rather, it includes The invention relates to any novel feature as well as any combination of features, which in particular includes any combination of features i the claims, even if this feature or this combination itself is not explicitly in the

Abstract

Es wird ein Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements (10) mit zumindest einem ersten Bauteil (1) und einem zweiten Bauteil (2) angegeben, bei dem auf dem ersten Bauteil (1) ein Sintermaterial (3) aufgebracht wird, das zweite Bauteil (2) auf dem Sintermaterial (3) platziert wird und das Sintermaterial (3) unter Einwirkung von Wärme, Druck und Ultraschall während einer Sinterzeit zu einer Verbindungsschicht (30) zwischen dem ersten und zweiten Bauteil (1, 2) versintert wird. Das erste Bauteil (1) kann beispielsweise ein Leiterrahmen, ein Kunststoffträger, ein Kunststoffgehäuse, ein Keramikträger, eine Leiterplatte oder eine Kombination daraus sein. Das zweite Bauteil (2) kann ein optoelektronischer Halbleiterchip (Leuchtdiodenchip, Laserdiodenchip oder Photodiodenchip) oder ein optisches Bauteil (Linse, Fenster) sein. Alternativ kann die Verbindungsschicht (30) zwischen dem ersten Bauteil (1), beispielsweise einem ersten Trägerelement (einer Metallkernplatine oder einer Leiterplatte), und einem zweiten Trägerelement (20) ausgebildet werden, wobei das zweite Bauteil (2) auf dem zweiten Trägerelement (20) beispielsweise zumindest einen optoelektronischen Halbleiterchip (21) aufweist, der beispielsweise mittels des oben beschriebenen Sinterverfahrens auf dem zweiten Trägerelement (20) vor oder nach Verbinden des ersten Trägerelements (1) mit dem zweiten Trägerelement (20) befestigt wird.

Description

Beschreibung
VERFAHREN ZUR HERSTELLUNG EINES OPTOELEKTRONISCHEN HALBLEITERBAUELEMENTS MIT EINER UNTER EINWIRKUNG VON WÄRME, DRUCK UND ULTRASCHALL VERSINTERTEN
VERBINDUNGSSCHICHT
Es wird ein Verfahren zur Herstellung eines
optoelektronischen Halbleiterbauelements angegeben.
Für die Montage von aktiven und passiven elektrisehen, optischen oder optoelektronischen Bauteilen, beispielsweise von Leuchtdiodenchips auf Substraten oder von Keramikträgern auf Platinen, sind Technologien und Materialien zur
Herstellung hochstabiler, hochwärmeleitfähiger
Verbindungsschichten nötig.
Typischerweise werden beispielsweise Leuchtdiodenchips auf Leiterrahmen oder andere Träger zumeist geklebt, was aber aufgrund der Eigenschaften der verfügbaren Klebstoffe zu relativ schwachen Verbindungen und hohen thermischen
Widerständen führen kann.
Für Hochleistungsleuchtdiodenchips mit hoher Wärmeentwicklung während des Betriebs werden Lötverfahren für die Verbindung zwischen dem Chip und einem Substrat eingesetzt. Damit sinkt der thermische Widerstand und die Festigkeit der
Verbindungsschicht steigt im Vergleich zu einer
Klebstoffschicht . Allerdings sind Lötprozesse in der Regel teurer als Klebeprozesse und die fertigen Leuchtdioden- Packages können unter Umständen nicht mehr durch Reflow-Löten verbaut werden, weil die Chiplötung wieder aufschmelzen würde . Gelötete Verbindungen zwischen einem Keramikträger und einer Metallkernplatine hingegen, wobei erstere beispielsweise einen oder mehrere Leuchtdiodenchips tragen kann, genügen gegenwärtig nicht den Zuverlässigkeitsanforderungen.
Zumindest eine Aufgabe von bestimmten Ausführungsformen ist es, ein Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements mit zumindest einem ersten Bauteil und einem zweiten Bauteil anzugeben.
Diese Aufgabe wird durch ein Verfahren gemäß dem unabhängigen Patentanspruch gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen des Gegenstands sind in den abhängigen
Ansprüchen gekennzeichnet und gehen weiterhin aus der
nachfolgenden Beschreibung und den Zeichnungen hervor.
Gemäß zumindest einer Ausführungsform weist ein Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements mit zumindest einem ersten Bauteil und einem zweiten Bauteil einen Verfahrensschritt auf, bei dem zwischen dem ersten und dem zweiten Bauteil ein Sintermaterial angeordnet wird.
Beispielsweise können das Sintermaterial auf dem ersten
Bauteil und anschließend das zweite Bauteil auf dem
Sintermaterial aufgebracht werden. Alternativ dazu kann das zweite Bauteil auf dem Sintermaterial und anschließend zusammen mit dem Sintermaterial auf dem ersten Bauteil platziert werden. Das Sintermaterial wird unter Einwirkung von Wärme, Druck und Ultraschall während einer Sinterzeit zu einer Verbindungsschicht zwischen dem ersten und zweiten Bauteil versintert.
Gemäß einer weiteren Ausführungsform weist das Sintermaterial Silber, Gold, Nickel und/oder Kupfer auf. Besonders bevorzugt weist das Sintermaterial Silber auf. Das Sintermaterial kann in Form von Pulverkörnern, Partikeln und/oder Flocken in einem Größenbereich von einigen Mikrometern bis zu einigen zehn Nanometern vorliegen.
Durch das Versintern des Sintermaterials wird eine Verbindung zwischen den einzelnen Partikeln des Sintermaterials rein durch ein Verbacken der Partikel in der festen Phase ohne Aufschmelzen des Sintermaterials geschlossen. Im
Sintermaterial zur besseren Verarbeitbarkeit vorhandene organische Binder, Lösungsmittel oder andere Zusatzstoffe werden durch den Sinterprozess zersetzt oder aus dem
Sintermaterial entfernt, wodurch keine organische Matrix in der durch das Versintern hergestellten Verbindungsschicht zurück bleibt. In der fertigen Verbindungsschicht sind die Partikel des Sintermaterials zu einem porösen Festkörper versintert. Die Verbindung zwischen den einzelnen Partikeln ist sehr fest und wird bei normalen Einsatztemperaturen für optoelektronische Halbleiterbauelemente unter 200°C sehr weit vom Schmelzpunkt der beschriebenen Sintermaterialien
betrieben. Beispielsweise beträgt der Schmelzpunkt von Silber 961°C. Deshalb treten bei der hier beschriebenen
Verbindungsschicht kaum Alterungseffekte auf, was die
Zuverlässigkeit der Verbindungsschicht zwischen dem ersten und dem zweien Bauteil beispielsweise im Vergleich zu
Lotwerkstoffen deutlich verbessert. Außerdem können durch die hier beschriebene Verbindungsschicht Wärmeleitfähigkeiten erreicht werden, die etwa 10 bis 100 Mal größer als die von Klebstoffen und 2 bis 5 Mal größer als die von Loten sind.
Als Sintermaterial kann beispielsweise eine
lösungsmittelhaltige Paste bereitgestellt werden, in der die zu versinternden Partikel enthalten sind. Beispielsweise weisen die Partikel eine organische Schutzhülle auf. Die lösungsmittelhaltige Paste kann auf dem ersten Bauteil aufgedruckt und anschließend durch Wärmeeinwirkung getrocknet werden, wobei durch das Trocknen beispielsweise Lösungsmittel aus der Paste ausgetrieben werden können.
Das Versintern der Partikel des Sintermaterials kann
beginnen, sobald die Partikel miteinander direkt in Kontakt treten können, also sobald die organischen Materialien zwischen den einzelnen Partikeln, beispielsweise organische Schutzhüllen um die einzelnen Partikel, die jeden Partikel individuell kapseln, zerstört beziehungsweise entfernt werden und die Partikeloberflächen in Kontakt zueinander treten können. Bei bisher bekannten Sinterprozessen zur Herstellung von Verbindungsschichten von optoelektronischen Bauelementen erfolgt dies durch eine hohe Sintertemperatur und einen hohen Druck, wobei die bekannten Sinterprozesse bis zu mehrere Stunden lang durchgeführt werden müssen. Die Sinterzeit ist insbesondere auch für so genannte drucklose Sinterprozesse sehr groß, die bei Umgebungsdruck durchgeführt werden, da hier nur über die Zuführung von Wärme ein Sintereffekt erreicht wird. Insbesondere hohe Temperaturen und hoher Druck können kritisch bei der Herstellung von optoelektronischen Halbleiterbauelementen sein, beispielsweise wenn ein
Leuchtdiodenchip in ein Kunststoffgehäuse montiert wird, da der Kunststoff für typische derartige Leuchtdioden-Packages oft nur einer maximalen Temperatur von etwa 175°C ausgesetzt werden kann. Die lange Sinterzeit bekannter Sinterprozesse sorgt weiterhin für einen geringen Durchsatz und die hohen Temperaturen und der hohe Druck können auch zum Brechen beispielsweise eines Leuchtdiodenchips oder eines Substrats führen . Bei dem hier beschriebenen Verfahren wird zusätzlich zur Zuführung von Wärme und Druck auch Ultraschallenergie während des Versinterns zugeführt. Hierdurch kann eine zusätzliche Belastung auf die Schutzschichten der Partikel ausgeübt werden, so dass diese schneller zerstört werden. Außerdem wird über den Ultraschall weitere Energie zum Ablaufen der Sinterprozesse zur Verfügung gestellt. Es kann daher möglich sein, dass durch den zusätzlichen Einsatz von Ultraschall die anderen Prozessparameter Temperatur, Druck und/oder
Sinterzeit abgesenkt werden können. Damit wird beispielsweise auch der Einsatz einer Verbindungsschicht aus einem
Sintermaterial in einem Kunststoffgehäuse wie etwa in einem so genannten Pre-Mold-Gehäuse möglich, die typischerweise Temperaturen von nur maximal 175°C ausgesetzt werden können. Die Bauteile des optoelektronischen Bauelements werden weiterhin aufgrund des geringeren Drucks geschont und
aufgrund der geringeren Sinterzeit kann ein höherer
Produktionsdurchsatz erreicht werden. Gemäß einer weiteren Ausführungsform erfolgt die Versinterung des Sintermaterials bei einer Temperatur von kleiner oder gleich 250°C, bevorzugt bei einer Temperatur von kleiner oder gleich 200°C und besonders bevorzugt bei einer Temperatur von kleiner oder gleich 175°C. Die Sintertemperatur kann dabei beispielsweise auch größer oder gleich 25°C sein.
Während des Versinterns kann der Druck beispielsweise mittels eines Presskopfs auf dem zweiten Bauteil zugeführt werden. Der Presskopf kann dabei einen statischen Druck auf das zweite Bauteil und damit auf zwischen dem zweiten Bauteil und dem ersten Bauteil angeordnete Sintermaterial ausüben. Der Druck, der während des Versinterns zugeführt wird, kann insbesondere kleiner oder gleich 10 MPa sein. Weiterhin kann der Druck auch deutlich niedriger liegen und beispielsweise bis zu 0 MPa betragen. Beispielsweise kann das hier
beschriebene Versintern mit Ultraschall auch als druckloser Sinterprozess bei Umgebungsdruck ohne zusätzlich
Druckeinwirkung durchgeführt werden.
Der Presskopf kann weiterhin ein Heizelement aufweisen, über das während des Sinterprozesses dem Sintermaterial Wärme zugeführt werden kann. Weiterhin ist es auch möglich, dass das erste Bauteil auf einer Heizplatte angeordnet wird, über die dem Sintermaterial Wärme zugeführt werden kann. Der Presskopf kann weiterhin einen Ultraschallgeber aufweisen, über den dem Sintermaterial Ultraschallwellen zugeführt werden können. Weiterhin kann auch zusätzlich zu einem
Presskopf ein Ultraschallgeber vorhanden sein.
Die Sinterzeit kann durch die zusätzliche Zuführung von
Ultraschallenergie im Bereich von größer oder gleich 10 Millisekunden und kleiner oder gleich 60 Sekunden liegen. Gemäß einer weiteren Ausführungsform weist das erste Bauteil ein erstes Trägerelement auf. Das erste Trägerelement kann beispielsweise ausgewählt sein aus einem Leiterrahmen, einem Kunststoffträger, einem Kunststoffgehäuse, einem
Keramikträger, einer Leiterplatte oder einer Kombination daraus. Beispielsweise kann es sich beim ersten Bauteil beziehungsweise beim ersten Trägerelement um ein
vorgefertigtes Kunststoffgehäuse, ein so genanntes Pre-Mold- Gehäuse, handeln, bei dem ein Leiterrahmen teilweise mit einem Kunststoffmaterial umformt ist. Typische
Kunststoffmaterialien sind dabei thermoplastische Kunststoffe wie beispielsweise Silikon oder Polyphthalamid . Das erste Trägerelement kann zumindest eine Kontaktfläche aufweisen, über die das zweite Bauteil mittels des
Sintermaterials beziehungsweise der Verbindungsschicht montiert wird. Im Falle, dass durch die Verbindungsschicht aus dem Sintermaterial auch ein elektrischer Anschluss erfolgen soll, weist das erste Bauteil beziehungsweise das erste Trägerelement bevorzugt einen elektrischen
Kontaktbereich auf, auf dem das Sintermaterial und darüber das zweite Bauteil platziert werden. Beispielsweise kann das Trägerelement einen Kunststoffträger , Keramikträger, eine Leiterplatte oder eine Metallkernplatine mit Leiterbahnen oder Kontaktstellen aufweisen.
Gemäß einer weiteren Ausführungsform ist das zweite Bauteil ein optoelektronischer Halbleiterchip. Insbesondere kann der optoelektronische Halbleiterchip als Leuchtdiodenchip,
Laserdiodenchip oder Photodiodenchip ausgeführt sein.
Der Halbleiterchip kann je nach abgestrahlter oder zu detektierender Wellenlänge als Halbleiterschichtenfolgen auf der Basis von verschiedenen Halbleitermaterialsystemen hergestellt werden. Für eine langwellige, infrarote bis rote Strahlung ist beispielsweise eine Halbleiterschichtenfolge auf Basis von InxGayAli-x-yAs , für rote bis gelbe Strahlung beispielsweise eine Halbleiterschichtenfolge auf Basis von
InxGayAli-x-yP und für kurzwellige sichtbare, also insbesondere im Bereich von grünem bis blauem Licht, und/oder für UV- Strahlung beispielsweise eine Halbleiterschichtenfolge auf Basis von InxGayAli-x_yN geeignet, wobei jeweils 0 < x < 1 und 0 < y < 1 gilt.
Insbesondere kann der Halbleiterchip eine
Halbleiterschichtenfolge, besonders bevorzugt eine epitaktisch gewachsene Halbleiterschichtenfolge, aufweisen oder daraus sein. Dazu kann die Halbleiterschichtenfolge mittels eines Epitaxieverfahrens, beispielsweise
metallorgansicher Gasphasenepitaxie (MOVPE) oder
Molekularstrahlepitaxie (MBE) , auf einem Aufwachssubstrat aufgewachsen und mit elektrischen Kontakten versehen werden. Durch Vereinzelung des Aufwachssubstrats mit der
aufgewachsenen Halbleiterschichtenfolge kann eine Mehrzahl von optoelektronischen Halbleiterchips bereitgestellt werden.
Weiterhin kann die Halbleiterschichtenfolge vor dem
Vereinzeln auf ein Trägersubstrat übertragen werden und das Aufwachssubstrat kann gedünnt oder ganz entfernt werden.
Derartige Halbleiterchips, die als Substrat ein
Trägersubstrat anstelle des Aufwachssubstrats aufweisen, können auch als so genannte Dünnfilm-Halbleiterchips
bezeichnet werden.
Ein Dünnfilm-Halbleiterchip zeichnet sich insbesondere durch folgende charakteristische Merkmale aus:
an einer zu dem Trägersubstrat hin gewandten ersten
Hauptfläche einer Strahlungserzeugenden
Epitaxieschichtenfolge ist eine reflektierende Schicht aufgebracht oder ausgebildet, die zumindest einen Teil der in der Epitaxieschichtenfolge erzeugten
elektromagnetischen Strahlung in diese zurückreflektiert; die Epitaxieschichtenfolge weist eine Dicke im Bereich von 20ym oder weniger, insbesondere im Bereich zwischen 4 ym und 10 ym auf; und
- die Epitaxieschichtenfolge enthält mindestens eine
Halbleiterschicht mit zumindest einer Fläche, die eine Durchmischungsstruktur aufweist, die im Idealfall zu einer annähernd ergodischen Verteilung des Lichtes in der epitaktischen Epitaxieschichtenfolge führt, d.h. sie weist ein möglichst ergodisch stochastisches
Streuverhalten auf. Ein Dünnfilm-Halbleiterchip ist in guter Näherung ein
Lambert ' scher Oberflächenstrahler. Das Grundprinzip eines Dünnschicht-Leuchtdiodenchips ist beispielsweise in der
Druckschrift I. Schnitzer et al . , Appl . Phys . Lett. 63 (16), 18. Oktober 1993, 2174 - 2176 beschrieben.
Die elektrischen Kontakte des Halbleiterchips können auf verschiedenen Seiten der Halbleiterschichtenfolge oder auch auf derselben Seite angeordnet sein. Beispielsweise kann der Halbleiterchip einen elektrischen Kontakt in Form einer sinterbaren Kontaktfläche auf einer der
Halbleiterschichtenfolge gegenüber liegenden Seite des
Substrats aufweisen. Auf einer dem Substrat gegenüber
liegenden Seite der Halbleiterschichtenfolge kann eine weitere Kontaktfläche, beispielsweise in Form eines so genannten Bondpads zur Kontaktierung mittels eines
Bonddrahts, ausgebildet sein. Weiterhin kann der
Halbleiterchip die elektrischen Kontaktflächen auf derselben Seite als sinterbare Kontaktflächen aufweisen und als so genannter Flip-Chip ausgebildet sein, der mit den
Kontaktflächen montierbar und elektrisch anschließbar ist.
Darüber hinaus kann ein Halbleiterchip auch zwei als Bondpads ausgebildete Kontaktflächen auf derselben Seite der
Halbleiterschichtenfolge aufweisen, während die Montageseite ohne elektrische Kontaktflächen ausgebildet ist und über das Sintermaterial nur thermisch angeschlossen wird.
Gemäß einer weiteren Ausführungsform ist das zweite Bauteil ein optisches Bauteil. Insbesondere kann das zweite Bauteil beispielsweise eine Linse oder ein Fenster sein, das mittels des Sintermaterials mit einem Gehäuse, beispielsweise einem Kunststoffgehäuse, oder einem Substrat verbunden wird. Gemäß einer weiteren Ausführungsform weist das zweite Bauteil ein zweites Trägerelement auf, das beispielsweise ein
Keramikträger oder ein Kunststoffträger sein kann. Das zweite Bauteil, das auf dem zweiten Trägerelement beispielsweise zumindest einen optoelektronischen Halbleiterchip aufweisen kann, der beispielsweise mittels des hier beschriebenen
Verfahrens auf dem zweiten Trägerelement befestigt ist, kann selbst wieder auf einem ersten Bauteil, beispielsweise einem als Metallkernplatine oder Leiterplatte ausgeführten ersten Trägerelement aufgebracht werden.
Gemäß einer weiteren Ausführungsform wird nach dem Herstellen der Verbindungsschicht zwischen dem ersten und dem zweiten Bauteil ein weiteres Sintermaterial auf dem zweiten Bauteil aufgebracht. Beispielsweise kann in diesem Fall das erste Bauteil ein erstes Trägerelement aufweisen, das als
Leiterplatte oder Metallkernplatine ausgebildet ist, auf das als zweites Bauteil ein zweites Trägerelement in Form eines Keramikträgers oder eines Kunststoffträgers mittels der
Verbindungsschicht aus dem Sintermaterial befestigt und elektrisch angeschlossen ist. Auf dem weiteren Sintermaterial kann weiterhin ein weiteres Bauteil, beispielsweise
insbesondere ein optoelektronischer Halbleiterchip, platziert werden. Das weitere Sintermaterial kann durch Einwirkung von Wärme, Druck und Ultraschall zu einer weiteren
Verbindungsschicht zwischen dem zweiten Bauteil und dem weiteren Bauteil versintert werden. Der weitere Sinterschritt und das weitere Sintermaterial können dabei Merkmale
aufweisen, die oben in Verbindung mit dem Sintermaterial und dem Herstellen der Verbindungsschicht zwischen dem ersten und zweiten Bauteil beschrieben sind.
Gemäß einer weiteren Ausführungsform wird die unter
Einwirkung von Wärme, Druck und Ultraschall gesinterte
Verbindungsschicht nach dem Sintervorgang ohne Einwirkung von Druck und Ultraschall getempert. Das Tempern kann für einige Sekunden bis zu einigen Stunden vorzugsweise bei einer
Temperatur von größer oder gleich 100°C und kleiner oder gleich 300 °C durchgeführt werden. Der Temperschritt kann weiterhin besonders bevorzugt in einer sauerstoffhaltigen Atmosphäre, beispielsweise Luft, durchgeführt werden. Durch einen zusätzlichen Temperschritt kann der Sintervorgang vorangetrieben und eine Verbesserung der Verbindung zwischen den bereits versinterten Sinterpartikeln erreicht werden, so dass die Porosität der Sinterschicht weiter abnehmen kann. Dadurch können die Festigkeit und die Wärmeleitfähigkeit der Verbindungsschicht selbst sowie auch die Festigkeit der Grenzflächen zwischen der Verbindungsschicht und angrenzenden Oberflächen, also Oberflächen des ersten und/oder des zweiten Bauteils, zunehmen. Somit kann durch den zusätzlichen
Temperschritt die Festigkeit, Wärmeleitfähigkeit und
Zuverlässigkeit der Verbindungsschicht weiter erhöht werden. Gemäß einer weiteren Ausführungsform wird der Temperschritt in einem Ofen oder auf einer Heizplatte durchgeführt. Es ist auch möglich, dass ein Reflow-Lötprozess , bei dem das optoelektronische Halbleiterbauelement auf eine
Trägervorrichtung wie etwa eine Platine gelötet wird, als Temperschritt dient.
Mit dem hier beschriebenen Verfahren lässt sich eine
hochstabile und hochwärmeleitfähige Verbindungsschicht zwischen dem ersten und dem zweiten Bauteil herstellen. Im Vergleich zu Klebstoffschichten, die bei mechanischer
Belastung reißen können, oder Lotschichten, die bei Reflow- Lötprozessen wieder aufschmelzen können, weist die hier beschriebene Verbindungsschicht aus dem Sintermaterial eine deutlich höhere Stabilität und gleichzeitig einen geringeren thermischen Widerstand auf. Letzterer ist insbesondere von Vorteil, wenn als zweites Bauteil ein
Hochleistungshalbleiterchip verwendet wird, der im Betrieb eine hohe Abwärme erzeugt, die über die Verbindungsschicht auf das erste Bauteil, beispielsweise einen Leiterrahmen und/oder ein Kunststoffgehäuse, abgeleitet werden muss.
Weitere Vorteile, vorteilhafte Ausführungsformen und
Weiterbildungen ergeben sich aus den im Folgenden in
Verbindung mit den Figuren beschriebenen
Ausführungsbeispielen .
Es zeigen:
Figuren 1A bis 1D schematische Darstellungen von
Verfahrensschritten eines Verfahrens zur Herstellung eines optoelektronischen Halbleiterbauelements gemäß einem Ausführungsbeispiel,
Figuren 2A bis 2D schematische Darstellungen von
Verfahrensschritten eines Verfahrens zur Herstellung eines optoelektronischen Halbleiterbauelements gemäß einem weiteren Ausführungsbeispiel und
Figuren 3A bis 3C schematische Darstellungen von
Verfahrensschritten eines Verfahrens zur Herstellung eines optoelektronischen Halbleiterbauelements gemäß einem weiteren Ausführungsbeispiel. In den Ausführungsbeispielen und Figuren können gleiche, gleichartige oder gleich wirkende Elemente jeweils mit denselben Bezugszeichen versehen sein. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente, wie zum Beispiel Schichten, Bauteile, Bauelemente und Bereiche, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein. In Verbindung mit den Figuren 1A bis 1D ist ein
Ausführungsbeispiel für ein Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements 10 gezeigt.
Hierzu wird in einem ersten Verfahrensschritt gemäß Figur 1A ein erstes Bauteil 1 bereit gestellt, das im gezeigten
Ausführungsbeispiel als Keramikträger oder als
Kunststoffgehäuse mit einem Leiterrahmen ausgeführt ist. Auf das erste Bauteil 1 wird ein Sintermaterial 3 in Form einer lösungsmittelhaltigen Paste mit Hilfe einer Rakel 32 durch eine Maske beziehungsweise Schablone 31 aufgedruckt.
Insbesondere kann es sich bei dem Bereich, in dem das
Sintermaterial 3 aufgebracht wird, um einen elektrischen Kontaktbereich, also eine Leiterbahn oder einen Teil eines Leiterrahmens handeln.
Im gezeigten Ausführungsbeispiel wird als Sintermaterial 3 eine Paste mit Silberpartikeln aufgebracht. Alternativ dazu ist es auch möglich, ein anderes sinterbares Metall,
beispielsweise Gold, Kupfer, Nickel oder Mischungen aus den genannten Metallen aufzubringen.
In einem weiteren Verfahrensschritt gemäß Figur 1B erfolgt eine Trocknung des Sintermaterials 3, bei dem in der aufgebrachten Paste vorhandene Lösungsmittel entfernt werden. Hierzu wird im gezeigten Ausführungsbeispiel das erste
Bauteil 1 mit dem Sintermaterial 3 auf einer Heizplatte 7 angeordnet. Alternativ dazu ist es auch möglich, das erste Bauteil 1 mit der Schicht aus dem Sintermaterial 3
beispielsweise in einem Ofen anzuordnen. Nach dem Trocknen bleibt eine getrocknete Schicht aus dem Sintermaterial 3 auf dem ersten Bauteil 1 zurück, die im Wesentlichen aus
Metallpartikeln des Sintermaterials 3 besteht. Die
Metallpartikel können dabei noch eine organische Schutzhülle aufweisen, die jeden Partikel individuell kapselt.
In einem weiteren Verfahrensschritt gemäß Figur IC wird auf das getrocknete Sintermaterial 3 ein zweites Bauteil 2 platziert. Das zweite Bauteil 2 ist im gezeigten
Ausführungsbeispiel ein optoelektronischer Halbleiterchip wie beispielsweise oben im allgemeinen Teil beschrieben ist. Das Platzieren des zweiten Bauteils 2 kann mittels eines
Presskopfes 6 erfolgen, der auch als Bondkopf einer
Die-Bonding-Maschine ausgeführt sein kann. Beispielsweise kann der Presskopf Teil einer Maschine sein, die
beispielsweise auch zur Fabrikation von
Ultraschallschweißverbindungen aus Gold-Kontaktpunkten (so genannte „gold bumps" oder Gold-Gold-Verbindungen) zur
Chipmontage von so genannten Flipchips eingesetzt werden. Derartige Maschinen werden beispielsweise von Panasonic
Factory Solutions, Datacon oder TDK hergestellt.
In einem anschließenden Sinterschritt wird über den Presskopf 6 auf dem zweiten Bauteil 2 ein Druck auf das Sintermaterial 3 ausgeübt. Der Presskopf 6 ist vorzugsweise mit einem Heizelement ausgestattet, über das während eines Sinterschrittes dem Sintermaterial 3 Wärme zugeführt werden kann. Zusätzlich oder alternativ dazu kann dem Sintermaterial 3 auch mittels der Heizplatte 7 Wärme zugeführt werden. Weiterhin ist es auch möglich, das erste und zweite Bauteil 1, 2 mit der dazwischen angeordneten Schicht aus dem Sintermaterial 3 in einem Ofen anzuordnen . Weiterhin ist der Presskopf 6 vorzugsweise mit einem
Ultraschallgeber ausgestattet, so dass der Presskopf 6 dem Sintermaterial 3 während eines Sinterschritts
Ultraschallenergie zuführen kann. Durch den Ultraschall können die Sinterpartikel zusätzlich aneinander reiben, wodurch eine passivierende organische Beschichtung auf den
Partikeln leichter zerstört werden kann und der Sintervorgang früher einsetzen kann. Auch während des Sintervorgangs beschleunigt die durch Ultraschall zusätzlich zur Verfügung gestellte Energie das Fusionieren der Sinterpartikel zu einer festen Schicht. Die Verbindung zwischen den Partikeln des
Sintermaterials 3 wird geschlossen, indem die Sinterpartikel durch eine erhöhte Temperatur und durch einen vom Presskopf ausgeübten Druck zu einer massiven Schicht versintern. Durch das zusätzliche Einbringen von Ultraschall können somit die anderen Parameter Druck, Temperatur sowie Sinterzeit im
Vergleich zu Ultraschall-losen Prozessen verringert werden, so dass der Prozess schonender im Hinblick auf die Parameter Druck und Temperatur als auch wirtschaftlicher im Hinblick auf die Parameter Temperatur und Zeit wird.
Während bei Ultraschall-losen druckbehafteten Sinterprozessen typische Sinterzeiten einige 10 Sekunden bis zu einigen
Minuten betragen und die angewandten Temperaturen in der Regel im Bereich von 250°C und der eingebrachte Druck bis zu 50 MPa betragen kann, können durch das zusätzliche Einbringen von Ultraschall die typischen Sintertemperaturen größer oder gleich 25°C und kleiner oder gleich 250°C sein, bevorzugt kleiner oder gleich 200°C und besonders bevorzugt kleiner gleich 175°C. Als Druck kann beim hier beschriebenen
Verfahren ein Druck zwischen 0 MPa bis zu 10 MPa zusammen mit den genannten Sintertemperaturen und der
Ultraschalleinkopplung zu Zykluszeiten, also Sinterzeiten, von 10 Millisekunden bis zu 60 Sekunden führen.
Im Vergleich hierzu werden bei herkömmlichen drucklosen
Sinterprozessen, bei denen beispielsweise eine Sinterpaste durch Stempeln oder Dispensen auf ein Substrat aufgebracht werden kann und ein Halbleiterchip ohne Vortrocknen durch einen nicht beheizbaren Bondkopf direkt auf die nasse Paste gesetzt werden kann, so dass ein Trocken- und Sinterschritt in einem fließenden Übergang auf einer Heizplatte oder in einem Ofen erfolgen, die Sinterzeit bis zu eine Stunde bei einer Sintertemperatur von 200°C bis 250°C betragen. Da im Sintermaterial vorhandene Lösungsmittel in der Trockenphase unter dem Halbleiterchip hervorkommen müssen, ist dieses herkömmliche Verfahren weiterhin auch nur für kleine
Verbindungsflächen anwendbar.
Durch den Sinterprozess wird, wie in Figur 1D gezeigt ist, ein optoelektronisches Halbleiterbauelement 10 mit dem zweiten Bauteil 2 auf dem ersten Bauteil 1 hergestellt, wobei das zweite Bauteil 2 vermittels der Verbindungsschicht 30 aus dem versinterten Sintermaterial 3 auf dem ersten Bauteil 1 montiert und an dieses thermisch und elektrisch angeschlossen ist. Die Verbindungsschicht 30 ist im Vergleich zu Klebstoff- oder Lotschichten deutlich stabiler und weist weiterhin eine größere Wärmeleitfähigkeit auf.
Alternativ zum gezeigten Ausführungsbeispiel, in dem ein optoelektronischer Halbleiterchip als zweites Bauteil 2 auf ein als Kunststoffgehäuse oder Keramikträger ausgebildetes erstes Bauteil 1 aufgebracht wird, ist es auch möglich, als zweites Bauteil 2 beispielsweise eine Linse oder ein Fenster, also ein optisches Bauteil, beispielsweise auf ein als
Gehäuse oder ein anderes Substrat ausgeführtes erstes Bauteil 1 aufzubringen und an diesem zu befestigen.
In Verbindung mit den Figuren 2A bis 2D ist ein weiteres Ausführungsbeispiel zur Herstellung eines optoelektronischen Halbleiterbauelements 12 gezeigt. In ersten
Verfahrensschritten gemäß der Figuren 2A und 2B wird wie in Verbindung mit den Figuren 1A und 1B beschrieben eine Schicht aus einem Sintermaterial 3 auf ein erstes Bauteil 1
aufgedruckt und getrocknet.
Das erste Bauteil 1 weist im gezeigten Ausführungsbeispiel ein erstes Trägerelement auf, das als Leiterplatte oder
Metallkernplatine ausgebildet ist. Auf dieses wird in einem weiteren Verfahrensschritt gemäß Figur 2C ein zweites Bauteil 2 platziert, das ein zweites Trägerelement 20 in Form eines Keramikträgers aufweist, auf dem optoelektronische
Halbleiterchips 21 bereits vormontiert sind. Ein Versintern der Schicht aus dem Sintermaterial 3 und damit die
Befestigung des zweiten Bauteils 2 am erste Bauteil 1 erfolgt wie in Verbindung mit den vorherigen Ausführungsbeispielen beschrieben. Zum Schutz der bereits vormontierten
optoelektronischen Halbleiterchips 21 auf dem zweiten Trägerelement 20 weist der verwendete Presskopf 6 dabei entsprechende Aussparungen auf.
In Figur 2D ist das fertige optoelektronische
Halbleiterbauelement 12 direkt nach dem Versintern gezeigt, bei dem das zweite Bauteil über die versinterte
Verbindungsschicht 30 am ersten Bauteil 1 befestigt ist.
In Verbindung mit den Figuren 3A bis 3C ist ein weiteres Verfahren zur Herstellung eines optoelektronischen
Halbleiterbauelements 13 gemäß einem weiteren
Ausführungsbeispiel gezeigt, bei dem gemäß der in den
vorherigen Ausführungsbeispielen beschriebenen Verfahren ein zweites Bauteil 2, das hier nun nur ein zweites Trägerelement 20 aus einem Keramikträger aufweist, mittels einer
Verbindungsschicht 30 aus einem versinterten Sintermaterial 3 auf einem ersten Trägerelement eines ersten Bauteils 1, das als Metallkernplatine ausgebildet ist, befestigt wird. In einem weiteren Verfahrensschritt gemäß Figur 3B wird auf dem zweiten Bauteil 2 ein weiteres Sintermaterial 5 und auf dem bereichsweise angeordneten weiteren Sintermaterial 5 jeweils ein als optoelektronischer Halbleiterchip 21
ausgebildetes weiteres Bauteil aufgebracht. Mittels eines entsprechenden Presskopfes 6 und den vorab beschriebenen Sinterprozessparametern wird das weitere Sintermaterial 5 jeweils zu einer weiteren Verbindungsschicht 50 zwischen den weiteren Bauteilen und dem zweiten Bauteil 2 ausgebildet, wie in Figur 3C gezeigt ist.
Die in den Ausführungsbeispielen gezeigten Verfahren und deren Merkmale sind zusätzlich auch miteinander und mit Merkmalen und Ausführungsformen aus dem allgemeinen Teil kombinierbar .
Weiterhin kann bei den Verfahren gemäß der beschriebenen Ausführungsbeispiele die jeweilige unter Einwirkung von
Wärme, Druck und Ultraschall gesinterte Verbindungsschicht nach dem Sintervorgang ohne Einwirkung von Druck und
Ultraschall getempert. Das Tempern kann für einige Sekunden bis zu einigen Stunden vorzugsweise bei einer Temperatur von größer oder gleich 100°C und kleiner oder gleich 300°C durchgeführt werden. Der Temperschritt kann weiterhin
besonders bevorzugt in einer sauerstoffhaltigen Atmosphäre, beispielsweise Luft, durchgeführt werden. Durch einen
zusätzlichen Temperschritt kann der Sintervorgang
vorangetrieben werden und damit eine Verbesserung der
Verbindung zwischen den bereits versinterten Sinterpartikeln erreicht werden, so dass die Porosität der Sinterschicht weiter abnehmen kann. Dadurch kann die Festigkeit und die Wärmeleitfähigkeit der Verbindungsschicht selbst sowie auch die Festigkeit der Grenzflächen zwischen der
Verbindungsschicht und angrenzenden Oberflächen, also
Oberflächen des jeweiligen ersten und/oder zweiten Bauteils, zunehmen. Somit kann durch den zusätzlichen Temperschritt die Festigkeit, Wärmeleitfähigkeit und Zuverlässigkeit der
Verbindungsschicht weiter erhöht werden. Der Temperschritt kann in einem Ofen oder auf einer Heizplatte durchgeführt werden. Es ist auch möglich, dass ein Reflow-Lötprozess , bei dem das optoelektronische Halbleiterbauelement auf eine
Trägervorrichtung wie etwa eine Platine gelötet wird, als Temperschritt dient.
Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen i den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den
Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims

Verfahren zur Herstellung eines optoelektronischen
Halbleiterbauelements mit zumindest einem ersten Bauteil (1) und einem zweiten Bauteil (2), bei dem
auf dem ersten Bauteil (1) ein Sintermaterial (3) aufgebracht wird,
das zweite Bauteil (2) auf dem Sintermaterial (3) platziert wird und
das Sintermaterial (3) unter Einwirkung von Wärme, Druck und Ultraschall während einer Sinterzeit zu einer
Verbindungsschicht (30) zwischen dem ersten und zweiten Bauteil (1, 2) versintert wird.
Verfahren nach Anspruch 1, bei dem das Sintermaterial (3) Silber, Gold, Nickel und/oder Kupfer aufweist.
Verfahren nach Anspruch 1 oder 2, bei dem das
Sintermaterial (3) Sinterpartikel umhüllt von einer organischen Hülle aufweist.
Verfahren nach einem der Ansprüche 1 bis 3, bei dem das Sintermaterial (3) als lösungsmittelhaltige Paste auf dem ersten Bauteil (1) aufgedruckt und anschließend durch Wärmeeinwirkung getrocknet wird.
Verfahren nach einem der vorherigen Ansprüche, bei dem die Versinterung bei einer Sintertemperatur von größer oder gleich 25°C und kleiner oder gleich 250°C und bei einem Druck von kleiner oder gleich 10 MPa während einer Sinterzeit von größer oder gleich 10 ms und kleiner oder gleich 60 s durchgeführt wird.
6. Verfahren nach einem der vorherigen Ansprüche, bei dem die Verbindungsschicht (30) nach dem Versintern unter Einwirkung von Wärme, Druck und Ultraschall ohne
Einwirkung von Druck und Ultraschall getempert wird.
7. Verfahren nach Anspruch 6, bei dem in einer
sauerstoffhaltigen Atmosphäre getempert wird.
8. Verfahren nach einem der vorherigen Ansprüche, bei dem das erste Bauteil (1) ein erstes Trägerelement aufweist, das ausgewählt ist aus einem Leiterrahmen, einem
Kunststoffträger, einem Kunststoffgehäuse, einem
Keramikträger, einer Leiterplatte, einer
Metallkernplatine oder eine Kombination daraus.
9. Verfahren nach einem der vorherigen Ansprüche, bei dem das zweite Bauteil (2) ein optoelektronischer
Halbleiterchip oder ein optisches Bauteil ist. 10. Verfahren nach einem der Ansprüche 1 bis 8, bei dem das zweite Bauteil (2) ein zweites Trägerelement (20) aufweist, das ausgewählt ist aus einem Keramikträger und einem Kunststoffträger . 11. Verfahren nach Anspruch 10, bei dem das zweite Bauteil (2) zumindest einen auf dem zweiten Trägerelement (20) angeordneten optoelektronischen Halbleiterchip (21) aufweist . 12. Verfahren nach Anspruch 10, bei dem
- nach dem Herstellen der Verbindungsschicht (3) zwischen dem ersten und dem zweiten Bauteil (1, 2) ein weiteres Sintermaterial (5) auf dem zweiten Bauteil (2)
aufgebracht wird,
- ein optoelektronischer Halbleiterchip (21) auf dem
weiteren Sintermaterial (5) platziert wird und
- das weitere Sintermaterial (5) durch Einwirkung von
Wärme, Druck und Ultraschall zu einer weiteren
Verbindungsschicht (50) zwischen dem zweiten Bauteil (2) und dem optoelektronischen Halbleiterchip (21)
versintert wird.
13. Verfahren nach einem der vorherigen Ansprüche, bei dem der Druck während des Versinterns mittels eines Presskopfes (6) auf dem zweiten Bauteil (2) zugeführt wird.
.Verfahren nach Anspruch 13, bei dem der Presskopf
einen Ultraschallgeber und/oder ein Heizelement
aufweist .
PCT/EP2012/061458 2012-06-15 2012-06-15 Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht WO2013185839A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/061458 WO2013185839A1 (de) 2012-06-15 2012-06-15 Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/061458 WO2013185839A1 (de) 2012-06-15 2012-06-15 Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht

Publications (1)

Publication Number Publication Date
WO2013185839A1 true WO2013185839A1 (de) 2013-12-19

Family

ID=46298421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/061458 WO2013185839A1 (de) 2012-06-15 2012-06-15 Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht

Country Status (1)

Country Link
WO (1) WO2013185839A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176715A1 (de) * 2014-05-23 2015-11-26 Hesse Gmbh Verfahren zum schwingungsunterstützten flächigen metallischen verbinden von bauteilen
WO2016062464A1 (de) * 2014-10-21 2016-04-28 Osram Opto Semiconductors Gmbh Elektronische vorrichtung und verfahren zur herstellung einer elektronischen vorrichtung
DE102014117020A1 (de) * 2014-11-20 2016-05-25 Infineon Technologies Ag Verfahren zum herstellen einer stoffschlüssigen verbindung zwischen einem halbleiterchip und einer metallschicht
WO2017009586A1 (fr) * 2015-07-16 2017-01-19 Valeo Equipements Electriques Moteur Procede de brasage par frittage d'une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede
EP3451503A1 (de) * 2017-08-29 2019-03-06 Siemens Aktiengesellschaft Stator für eine elektrische rotierende maschine
DE102019126505A1 (de) * 2019-10-01 2021-04-01 Infineon Technologies Ag Mehrchipvorrichtung, verfahren zum herstellen einer mehrchipvorrichtung und verfahren zum bilden einer metallzwischenverbindung
FR3121277A1 (fr) * 2021-03-26 2022-09-30 Safran Electronics & Defense Procédé pour assembler un composant électronique à un substrat

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242626A2 (de) * 1986-04-22 1987-10-28 Siemens Aktiengesellschaft Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat
JP2008311371A (ja) * 2007-06-13 2008-12-25 Denso Corp 接合方法及び接合体
JP4247801B2 (ja) * 2006-11-24 2009-04-02 ニホンハンダ株式会社 ペースト状金属粒子組成物および接合方法
JP4362742B2 (ja) * 2005-09-22 2009-11-11 ニホンハンダ株式会社 ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法
DE102009017853A1 (de) * 2008-04-30 2009-11-19 Infineon Technologies Ag Halbleitervorrichtung und Verfahren
EP2306796A1 (de) * 2009-10-05 2011-04-06 ABB Research Ltd. Verfahren zum Verbinden von Komponenten, Verbund von Komponenten einer elektrischen Schaltung und elektrische Schaltung
EP2425920A1 (de) * 2010-09-03 2012-03-07 Heraeus Materials Technology GmbH & Co. KG Verwendung von aliphatischen Kohlenwasserstoffen und Paraffinen als Lösemittel in Silbersinterpasten

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242626A2 (de) * 1986-04-22 1987-10-28 Siemens Aktiengesellschaft Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat
JP4362742B2 (ja) * 2005-09-22 2009-11-11 ニホンハンダ株式会社 ペースト状金属粒子組成物の固化方法、金属製部材の接合方法およびプリント配線板の製造方法
JP4247801B2 (ja) * 2006-11-24 2009-04-02 ニホンハンダ株式会社 ペースト状金属粒子組成物および接合方法
JP2008311371A (ja) * 2007-06-13 2008-12-25 Denso Corp 接合方法及び接合体
DE102009017853A1 (de) * 2008-04-30 2009-11-19 Infineon Technologies Ag Halbleitervorrichtung und Verfahren
EP2306796A1 (de) * 2009-10-05 2011-04-06 ABB Research Ltd. Verfahren zum Verbinden von Komponenten, Verbund von Komponenten einer elektrischen Schaltung und elektrische Schaltung
EP2425920A1 (de) * 2010-09-03 2012-03-07 Heraeus Materials Technology GmbH & Co. KG Verwendung von aliphatischen Kohlenwasserstoffen und Paraffinen als Lösemittel in Silbersinterpasten

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176715A1 (de) * 2014-05-23 2015-11-26 Hesse Gmbh Verfahren zum schwingungsunterstützten flächigen metallischen verbinden von bauteilen
WO2016062464A1 (de) * 2014-10-21 2016-04-28 Osram Opto Semiconductors Gmbh Elektronische vorrichtung und verfahren zur herstellung einer elektronischen vorrichtung
US10147696B2 (en) 2014-10-21 2018-12-04 Osram Opto Semiconductors Gmbh Electronic device and method for producing an electronic device
DE102014117020A1 (de) * 2014-11-20 2016-05-25 Infineon Technologies Ag Verfahren zum herstellen einer stoffschlüssigen verbindung zwischen einem halbleiterchip und einer metallschicht
US9659793B2 (en) 2014-11-20 2017-05-23 Infineon Technologies Ag Method for producing a material-bonding connection between a semiconductor chip and a metal layer
WO2017009586A1 (fr) * 2015-07-16 2017-01-19 Valeo Equipements Electriques Moteur Procede de brasage par frittage d'une poudre conductrice par thermo-compression ultrasonique et module electronique de puissance realise par ce procede
FR3039025A1 (fr) * 2015-07-16 2017-01-20 Valeo Equip Electr Moteur Procede de soudure avec apport de matiere et module electronique de puissance realise par ce procede
WO2019042690A1 (de) 2017-08-29 2019-03-07 Siemens Aktiengesellschaft Stator für eine elektrische rotierende maschine
EP3451503A1 (de) * 2017-08-29 2019-03-06 Siemens Aktiengesellschaft Stator für eine elektrische rotierende maschine
US11031836B2 (en) 2017-08-29 2021-06-08 Siemens Aktiengeselldchaft Stator for an electrical rotating machine
EP3652839B1 (de) * 2017-08-29 2023-03-08 Siemens Aktiengesellschaft Stator für eine elektrische rotierende maschine
DE102019126505A1 (de) * 2019-10-01 2021-04-01 Infineon Technologies Ag Mehrchipvorrichtung, verfahren zum herstellen einer mehrchipvorrichtung und verfahren zum bilden einer metallzwischenverbindung
US11488921B2 (en) 2019-10-01 2022-11-01 Infineon Technologies Ag Multi-chip device, method of manufacturing a multi-chip device, and method of forming a metal interconnect
DE102019126505B4 (de) 2019-10-01 2023-10-19 Infineon Technologies Ag Verfahren zum herstellen einer mehrchipvorrichtung
FR3121277A1 (fr) * 2021-03-26 2022-09-30 Safran Electronics & Defense Procédé pour assembler un composant électronique à un substrat
WO2022200749A3 (fr) * 2021-03-26 2022-12-29 Safran Electronics & Defense Procede pour assembler un composant electronique a un substrat par le biais d'un frittage

Similar Documents

Publication Publication Date Title
DE102009000587B4 (de) Verfahren zur Herstellung eines Moduls mit einer gesinterten Verbindung zwischen einem Halbleiterchip und einer Kupferoberfläche
WO2013185839A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterbauelements mit einer unter einwirkung von wärme, druck und ultraschall versinterten verbindungsschicht
DE102009002191B4 (de) Leistungshalbleitermodul, Leistungshalbleitermodulanordnung und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung
DE102009039227B4 (de) Verfahren zur Herstellung eines Halbleiterbauelements
DE102013101222B4 (de) Halbleitervorrichtung und Verfahren für ihre Herstellung
DE102007017641A1 (de) Aushärtung von Schichten am Halbleitermodul mittels elektromagnetischer Felder
DE10003671A1 (de) Halbleiter-Bauelement
DE112015006112B4 (de) Halbleitervorrichtung
DE102009026480A1 (de) Modul mit einer gesinterten Fügestelle
DE112008004155T5 (de) Verfahren zum Herstellen eines Substrats für eine Baugruppe mit lichtemittierendem Elementsowie Baugruppe mit lichtemittierendem Element unter Verwendung eines derartigen Substrats
DE102010037439B4 (de) Bauelement mit einem Halbleiterchip und einem Träger und Fabrikationsverfahren
DE112008004171T5 (de) Verfahren zum Herstellen von Substraten für eine Baugruppe mit lichtemittierendem Element sowie Baugruppe mit lichtemittierendem Element unter Verwendung eines derartigen Substrats
DE102011079708A1 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
DE102009017853A1 (de) Halbleitervorrichtung und Verfahren
DE102013108354A1 (de) Elektronikbauelement und Verfahren zum Herstellen eines Elektronikbauelements
DE10221857A1 (de) Verfahren zum Befestigen eines Halbleiterchips in einem Kunststoffgehäusekörper, optoelektronisches Halbleiterbauelement und Verfahren zu dessen Herstellung
DE102012216738A1 (de) Optoelektronisches bauelement
DE102016206542A1 (de) Verfahren zum Herstellen einer Halbleitervorrichtung
DE112019005011T5 (de) Halbleiterbauteil und verfahren zur herstellung eines halbleiterbauteils
DE102016125521A1 (de) Gemeinsames Verfahren zum Verbinden eines elektronischen Chips mit einem Verbinderkörper und zum Ausbilden des Verbinderkörpers
DE102019132837B4 (de) Doppelseitiges Kühlleistungsmodul und Verfahren zu dessen Herstellung
DE102016124270A1 (de) Halbleiter-package und verfahren zum fertigen eines halbleiter-package
DE102013104572A1 (de) Verfahren zum Ausbilden einer optoelektronischen Baugruppe und optoelektronische Baugruppe
DE102010061573B4 (de) Verfahren zur Herstellung eines Halbleiterbauelements
DE102018217231B4 (de) Halbleitervorrichtung und Verfahren zur Fertigung derselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12727666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12727666

Country of ref document: EP

Kind code of ref document: A1