WO2013185287A1 - 波长选择开关 - Google Patents

波长选择开关 Download PDF

Info

Publication number
WO2013185287A1
WO2013185287A1 PCT/CN2012/076768 CN2012076768W WO2013185287A1 WO 2013185287 A1 WO2013185287 A1 WO 2013185287A1 CN 2012076768 W CN2012076768 W CN 2012076768W WO 2013185287 A1 WO2013185287 A1 WO 2013185287A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarity
optical
signal
input
optical signals
Prior art date
Application number
PCT/CN2012/076768
Other languages
English (en)
French (fr)
Inventor
刘宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/076768 priority Critical patent/WO2013185287A1/zh
Priority to CN201280001313.8A priority patent/CN103069320B/zh
Publication of WO2013185287A1 publication Critical patent/WO2013185287A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • H04Q2011/003Construction using free space propagation (e.g. lenses, mirrors) using switches based on microelectro-mechanical systems [MEMS]

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a wavelength selective switch. Background technique
  • Wavelength Division Multiplexing (WDM) technology has been widely used in optical transmission networks at various levels. Its network topology also ranges from simple ring and tree structures to more complex networks. Evolution of the structure.
  • IP Internet Protocol
  • IPTV Internet Protocol Television
  • NTN Next Generation Network
  • 3G third-generation mobile communication technologies
  • ROADMs Reconfigurable Add/Drop multiplexers
  • ROADM nodes includes three main technologies: Wavelength Blocker (WB) technology, Planar light circuit (PLC) technology, and Wavelength selective switch (WSS) technology.
  • WSS technology has a frequency bandwidth, low dispersion, and supports port-wavelength-independent (colorless, that is, each port can interface optical signals of any wavelength) and higher dimensions (the dimension here refers to the maximum ROADM node can provide)
  • the number of connections is, and is highly regarded by device manufacturers as the mainstream technology for implementing ROADM.
  • Figure 1 shows a lxN WSS structure diagram using Micro Electro Mechanical Systems (MEMS) technology as an example.
  • MEMS Micro Electro Mechanical Systems
  • the grating is equivalent to a light multiplexing and demultiplexer
  • the switching engine is equivalent to a light switching switch that can perform optical path selection.
  • N x M WSS N input fiber ports, M output fiber ports
  • multiple and multiple layers of optical switch structures are usually required, but The reflection of light on such structures is not ideal due to the presence of phenomena such as dispersion, that is, a portion of the light may be reflected to the unwanted exit port.
  • dispersion is most likely to form in-band crosstalk at corresponding positions of adjacent layers, that is, crosstalk formed by erroneously reflecting light of the same wavelength to the same exit port. Since it cannot be separated from the normal signal (because the crosstalk signal has the same wavelength), it will have a serious impact on signal transmission. Summary of the invention
  • Embodiments of the present invention provide a wavelength selective switch that can suppress crosstalk in a wavelength selective switch of N X M (N input fiber ports, M output fiber ports; or M input fiber ports, N output fiber ports).
  • an embodiment of the present invention provides a wavelength selection switch, including:
  • At least two input fiber ports for respectively inputting optical signals from at least two input fibers; a polarity control unit for adjusting polarity of an optical signal input from each input fiber port, so that at least two channels are adjusted
  • the optical signals are all optical signals having only one polarity, and the adjusted at least two optical signals have the same polarity; at least two optical signals respectively obtain at least two sets of optical signals having multiple wavelengths;
  • a reflective element configured to reflect the at least two sets of optical signals having multiple wavelengths to at least two reflective areas on the switch engine
  • a polarizer disposed between the reflective element and the switching engine and covering the at least two reflective regions of the switching engine for performing optical signals passing therethrough according to polarity of the polarity control unit Filter
  • a polarity rotating unit located between the polarizer and the switching engine and covering a first reflective area of the at least two reflective areas of the switching engine without covering adjacent to the first reflective area a reflective area for rotating the polarity of the optical signal passing therethrough by 90 degrees;
  • the switching engine wherein the switching engine includes at least two reflective regions, each reflective region of the switching engine performs reflective control of an optical signal incident on the reflective region to reflect it toward the reflective component, such that The reflected control optical signal is output through the corresponding output fiber port.
  • the embodiment of the present invention further provides another wavelength selection switch, including:
  • At least two input fiber ports for respectively inputting optical signals from at least two input fibers; a polarity control unit for adjusting a polarity of the optical signal input from each input fiber port, so that at least the adjusted The two optical signals respectively become optical signals having a single polarity, and the adjusted adjacent two optical signals have a polarity difference of 90 degrees; at least two optical signals respectively obtain at least two sets of multiple wavelengths.
  • a reflective element configured to reflect the at least two sets of optical signals having multiple wavelengths to at least two reflective areas on the switch engine
  • At least two polarizers disposed between the reflective element and the switching engine and respectively covering the at least two reflective regions of the switching engine for respectively adjusting at least two according to the polarity control unit The polarity of the road light signal, filtering the optical signal passing through it;
  • each reflective region of the switching engine performs reflective control of an optical signal incident on the reflective region to reflect it toward the reflective component, such that The reflected control optical signal is output through the corresponding output fiber port.
  • an embodiment of the present invention further provides a wavelength selection switch, including:
  • N fiber input ports for inputting optical signals from N input fibers
  • N 1 XM/2 beamsplitters whose inputs are respectively connected to the N fiber input ports; each 1 x M/2 beam splitter is used to split the input optical signal into M/2 optical signals, wherein, N and M is an integer greater than or equal to 2;
  • N X 2 wavelength selective switches having crosstalk suppression function, wherein N input ports of each of the N X 2 wavelength selective switches are connected to one output of all of the N optical splitters;
  • the ⁇ 2 wavelength selective switch is any one of the wavelength selection switches described above, and the optical fiber input port of the NX 2 wavelength selective switch corresponds to the optical fiber output port of the wavelength selective switch as described above, the NX 2 The fiber output port of the wavelength selective switch corresponds to the fiber input port of the wavelength selective switch as described above.
  • the polarity of the optical signal input by different input optical fibers is controlled, thereby suppressing Crosstalk.
  • One of the control methods is to add a polarity control unit, a polarizer and a polarity rotation unit to the wavelength selection switch, and the polarity control unit adjusts the input light signal to an optical signal having the same polarity, due to the polarizer
  • the polarity filtering action and the 90 degree polarity rotation of the polarity rotation unit when the optical signal reflected by the switching engine crosstalks, the crosstalk light signal cannot pass through the polarity rotation unit twice, so that the polarity of the crosstalk light signal is
  • the polarity of the polarizer is different by 90 degrees, so the crosstalk optical signal cannot pass through the polarizer, thereby achieving the purpose of suppressing the crosstalk optical signal;
  • the other control method is to add the polarity control unit and the polarizer to the wavelength selective switch.
  • the polarity control unit adjusts the input different light signals to optical signals having a single polarity and different polarities of the light signals of 90 degrees, and is filtered by a plurality of polarizers having corresponding polarities, when the switching engine reflects
  • the polarity of the crosstalk optical signal is 90 degrees different from the polarity of the polarizer on the optical path, so the crosstalk optical signal cannot pass the polarization.
  • the complexity of the system structure is not significantly increased, and crosstalk can be suppressed in the constructed wavelength selective switch of the ⁇ ⁇ .
  • FIG. 1 is a schematic structural view of a conventional 1 X N wavelength selective switch using MEMS technology
  • FIG. 2 is a schematic structural view of a conventional N x M WSS
  • FIG. 3 is a schematic diagram of a specific composition of a wavelength selective switch in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another specific composition of the wavelength selective switch in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a specific composition of the polarity control unit in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another specific composition of a polarity control unit in an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a specific composition of a 2 X N wavelength selective switch having a calibrator according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a specific composition of an MXN wavelength selective switch in an embodiment of the present invention.
  • the NXM wavelength selective switch is constructed by cascading multiple NX 1 wavelength selective switches, the crosstalk effect of the conventional M x N wavelength selective switch structure can be avoided. As shown in FIG.
  • NXM N inputs, M outputs
  • NX 1 wavelength selective switches N inputs, M outputs
  • a scheme for suppressing crosstalk by adjusting the polarity of an optical signal based on the structure of the existing N x l wavelength selective switch is proposed. That is, the input optical signals of different paths have different polarities when incident on the switching engine, and then the crosstalk between different road lights can be suppressed by filtering the polarity of the optical signals reflected by the switching engine (although from The crosstalk signal of the other light is the same as the wavelength of the local optical signal, but the polarity is different, so crosstalk can be suppressed by polarity.
  • the optical signal input or output is not a single-polarity signal, in order to achieve the above-mentioned purpose of suppressing crosstalk by polarity, on the input side, it is necessary to adjust the polarity of the optical signal in advance so that the light incident on the switching engine is made.
  • the signal is a single-polar signal; on the output side, it is necessary to restore a single-polar optical signal to a non-unipolar signal.
  • the wavelength selection switch in the embodiment of the present invention is illustrated by taking an example of two input fiber ports in the example of FIG. 3, which includes:
  • At least two input fiber ports 10, 12 are used to input optical signals from at least two input fibers, respectively. Only two input fiber ports are illustrated in the illustration, and in other embodiments of the invention, a third or even more input fiber ports may be further included.
  • the polarity control unit 20 is configured to adjust the polarity of the optical signal input from the input fiber ports 10, 12 such that the adjusted at least two optical signals become optical signals having only one polarity.
  • the polarity of the adjusted at least two optical signals may be different polarities or the same polarity; preferably, It can be designed to adjust the signals of different optical fibers to signals with the same polarity to simplify the overall structure of the system.
  • the light from the input fiber port 10 is first decomposed into two orthogonal sub-polar lights in the polarity control unit, and then the polarity of one of the lights is rotated to the polarity of the other light, so that two The road light has the same polarity, forming an optical signal having only one polarity.
  • the polarity control unit can One polarity will be rotated to a direction perpendicular to the polarity of the other path, and then the two sub-lights will be combined to form a light of the same polarity as the incident light.
  • the two-way sub-light can be two parallel beams on the optical path, and the two parallel beams have a certain distance between them, and in the subsequent optical path, the two beams are parallelized.
  • the optical signals having the same polarity can be processed; that is, the two mutually identical sub-lights can be distinguished by the relative positions on the optical path space.
  • the two-way sub-light is combined into one optical signal having a polarity consistent with the polarity of the incident light, the information carried by the polarity of the optical signal can still be restored.
  • at least two sets of optical signals having a plurality of wavelengths are respectively obtained.
  • the upper half of the diffractive grating decomposes light from the input fiber port 10
  • the lower half of the diffraction grating decomposes light from the input fiber port 12.
  • the third region may be further included, and the third region is adjacent to the second region and not adjacent to the first region; and the polarity of the optical signal input to the third region may be The optical signals of a region have the same polarity.
  • the reflective element 40 is configured to reflect the at least two sets of optical signals having a plurality of wavelengths to at least two reflective regions on the switch engine.
  • a polarizer 50 located between the reflective element and the switching engine and covering the at least two reflective regions of the switching engine for optical signals passing therethrough according to the polarity of the polarity control unit Filter.
  • a polarity rotating unit 52 located between the polarizer and the switching engine and covering a first reflective area of the at least two reflective areas of the switching engine without covering the first reflective area An adjacent reflective area for rotating the polarity of the optical signal passing therethrough by 90 degrees.
  • the polarity rotating unit can adopt an existing optical device having a polarity rotation function, such as a Faraday rotating mirror, a quarter-slide, or the like. In the example of Figure 3, the polar rotation unit only blocks the reflective area on the underside of the switching engine.
  • the switching engine 60 includes at least two reflective regions. Each reflective area of the switching engine 60 The optical signal incident on the reflective area is reflected and reflected to the reflective element such that the reflected-controlled optical signal is output through the corresponding output fiber port.
  • the at least two reflective areas of the switch engine 60 may be at least two areas that are spatially up and down or left and right adjacent. The figure shows only two areas, the upper and lower rows in the figure.
  • the switching engine when the wavelength selective switch further includes a third optical fiber input port, when the third optical signal is input, the switching engine further includes a third area, configured to reflect the third optical signal. group.
  • the switching engine in the embodiment of the present invention may be a switching engine using MEMS technology, and an array of a small number of mirrors controls the reflection angle of light by controlling the rotation of the micro mirror.
  • MEMS technology MEMS technology
  • other types of switching engines are also possible, and no limitation is imposed here.
  • the optical path in the wavelength selective switch of the embodiment of the present invention is exemplified by a wavelength selective switch having two input fiber ports (10, 12) (where the polarity rotating unit 52 covers only the second reflective area of the switching engine). Briefly describe.
  • the working optical path in the wavelength selection switch is:
  • the optical signal input from the input fiber port 10 (for convenience of description, the optical signal input from the input fiber port 10 is referred to as a first optical signal) is incident on the diffraction grating 30 after being processed by the polarity control unit 20.
  • a first diffraction region, at a first diffraction region of the diffraction grating 30 (such as the upper half of the diffraction grating as shown in FIG.
  • the optical signals of one wavelength are referred to as a first plurality of optical signals of a plurality of wavelengths; the first plurality of optical signals of the plurality of wavelengths are directed toward the reflective element 40 and are reflected by the reflective element 40 toward the first reflective area of the switching engine 60. Since the polarity rotation unit 52 covers only the second reflection area of the light-emitting engine 60, and the polarizer 50 covers the two reflection areas of the switching engine 60, the first set of optical signals of a plurality of wavelengths are reflected by the reflection element 40.
  • the first reflection area of the switching engine 60 can be used for the first plurality of wavelengths of light
  • the optical signal of each wavelength in the number is separately subjected to reflection control (ie, controlling the direction of reflection of the optical signal of each wavelength), and the optical signal of each of the first set of optical signals of the plurality of wavelengths is switched by the switching engine 60 a reflective area is reflected and then passed through the polarizer 50, the reflective element 40, the diffraction grating 30, and the polarity control unit 20, and then output from the corresponding output fiber port of the wavelength selective switch;
  • the optical signal input from the input fiber port 12 (for convenience of description, the optical signal input from the fiber input port 12 is referred to as a second optical signal) is incident on the diffraction grating 30 after being processed by the polarity control unit 20.
  • a second diffraction region at the second diffraction region of the diffraction grating 30 (as shown in FIG.
  • the lower half of the grating is decomposed into a set of optical signals of a plurality of wavelengths (for convenience of description, the optical signals of the plurality of wavelengths are referred to as a second plurality of optical signals of a plurality of wavelengths);
  • the wavelength light signal is directed toward the reflective element 40 and is reflected by the reflective element 40 toward the second reflective area of the switching engine 60; since the polarizer 50 covers the two reflective areas of the switching engine 60, and the polarity rotating unit 52 covers The second reflective area of the light-emitting engine 60, after the second set of optical signals of the plurality of wavelengths are reflected by the reflective element 40, passes through the polarizer 50, passes through the polar rotating unit 52, and then reaches the second reflective area of the switching engine 60.
  • the second reflective area of the switching engine 60 can separately perform reflection control on the optical signals of each of the second plurality of wavelengths of optical signals (ie, control the direction of reflection of the optical signals of each wavelength), the second group
  • the optical signal of each of the wavelengths of the optical signal is reflected by the second reflective area of the switching engine 60 and then sequentially passes through the polar rotating unit 52, the polarizer 50, the reflective element 40, the diffraction grating 30, and the pole.
  • the control unit 20 is then output from the corresponding fiber output port of the wavelength selective switch.
  • the first set of optical signals of a plurality of wavelengths are incident from the reflective element 40 to the first reflective area of the switching engine 60 and from the first reflective area of the switching engine 60.
  • the polarity rotation unit 52 is not passed during the incident to the reflective element 4, and therefore, the polarity of the first plurality of wavelengths of the optical signal emitted from the analyzer 50 to the first reflection region of the switching engine 60 is checked.
  • the polarity of the first plurality of wavelengths of optical signals reflected by the first reflective area of the switching engine 60 received by the polarizer 50 is the same, thereby being the first plurality of wavelengths of the first reflective area of the switching engine 60
  • the light signal can pass through the polarizer 50 again.
  • the second set of optical signals of a plurality of wavelengths are required to be incident from the reflective element 40 to the second reflective region of the switching engine 60 and from the second reflective region of the switching engine 60 to the reflective element 4.
  • the polar rotation unit 52 After passing through the polarity rotation unit 52, that is, the second group of optical signals of a plurality of wavelengths are emitted from the polarizer 50 to be incident on the polarizer 50 again, the polar rotation unit 52 is passed twice;
  • the polarity of the second group of optical signals of the plurality of wavelengths is rotated 90 degrees once every time the polarity rotating unit 52 is passed, that is, it is incident again.
  • the polarity of the second plurality of wavelengths of the optical signal of the polarizer 50 is rotated by 0 or 180 degrees with respect to the polarity of the second plurality of wavelengths of the optical signal emitted from the polarizer 50; If the polarity is rotated by 0 degrees or 180 degrees, the polarity of the optical signal is not changed. Therefore, the polarity of the second plurality of wavelengths of the optical signal incident on the polarizer 50 again is emitted from the polarizer 50.
  • the second group of optical signals with multiple wavelengths Same polarity, the above-described re-enter into the second optical signals from the plurality of wavelengths polarizer 50 can also polarizer 50 again.
  • the first reflective area and/or the second reflective area of the switching engine 60 are in progress.
  • a portion of the optical signals of the first plurality of wavelengths of the optical signals are erroneously reflected toward the polar rotation unit 52 and/or the second plurality of wavelengths due to control errors or other reasons.
  • the partial wavelength optical signal in the optical signal is erroneously reflected and is directly incident on the polarizer 50 without passing through the polar rotation unit 52. Due to such erroneous reflection, the first portion incident to the polarizer 50 (for convenience of description, the portion of the analyzer 50 that covers the first reflective region of the switching engine 60 is referred to as the first portion) is in the optical signal.
  • An optical signal comprising both a first plurality of wavelengths and a partial wavelength of the second plurality of wavelengths, and/or a second portion incident on the polarizer 50 (for convenience of description,
  • the optical signal of the portion of the polarizer 50 that covers the second reflective region of the switching engine 60 is referred to as the second portion.
  • the optical signal includes a second plurality of optical signals and a first plurality of wavelengths. Part of the wavelength of the optical signal in the signal, this phenomenon is called crosstalk.
  • a portion of the wavelength optical signals of the second plurality of wavelengths of light signals incident on the first portion of the polarizer 50 are emitted from the polarizer 50 to be incident on the polarizer 50 again.
  • the polarity of the partial wavelength optical signal in the second group of multiple wavelength optical signals is only rotated by 90 degrees, that is, incident on the polarizer 50
  • the polarity of the portion of the wavelength optical signals of a portion of the second plurality of wavelengths of optical signals is perpendicular (or orthogonal) to the polarity of the output from the polarizer 50 to the switching engine 60.
  • the polarity of the partial wavelength optical signal of the first plurality of wavelengths of the optical signal incident on the second portion of the polarizer 50 is perpendicular to the polarity when it is emitted from the polarizer 50 to the switching engine 60. (or called orthogonal).
  • the polarizer 50 does not allow an optical signal whose polarity is perpendicular to the polarity of the polarizer 50 to pass, allowing the optical signal having the same polarity as that of the polarizer 50 to pass completely, and thus, in the embodiment of the present invention
  • the optical signal emitted from the first portion of the polarizer 50 toward the reflective element includes only the first plurality of optical signals of the plurality of wavelengths, and the optical signal emitted from the second portion of the polarizer 50 toward the reflective element. Only the second set of optical signals of multiple wavelengths is included, that is, crosstalk is suppressed.
  • the polarity control unit controls the polarity of the output optical signal, so that the optical signals of different paths incident on the polarizer are adjusted to signals having different polarities, for example, for two optical fibers, adjusted to have a polarity difference of 90 degrees.
  • the signal because of the different polarities of the polarizers passing through different optical signals, can achieve polarity filtering when crosstalk occurs. That is, the wavelength selection switch includes:
  • the polarity control unit 22 is configured to adjust the polarity of the optical signal input from the input fiber ports 10, 12, so that the adjusted at least two optical signals respectively become optical signals having a single polarity, and the adjusted phase
  • the polarities between the adjacent two paths are 90 degrees apart; at least two subsequent optical signals respectively obtain at least two sets of optical signals having a plurality of wavelengths;
  • a reflective element 40 configured to reflect the at least two sets of optical signals having multiple wavelengths to at least two reflective areas on the switch engine
  • At least two polarizers 500, 502 between the reflective element and the switching engine and respectively covering the at least two reflective regions of the switching engine for respectively adjusting according to the polarity control unit The polarity of at least two optical signals, filtering the optical signals passing therethrough;
  • the switching engine 60 wherein the switching engine includes at least two reflective regions, and each of the reflective regions of the switch arch reflects reflection of an optical signal incident on the reflective region to reflect the reflective component , the optical signal after the reflection control is output through the corresponding output fiber port.
  • the polarity control unit that is, the polarity of the input different light signals is controlled differently, so that the output light is a single-polar light, but at the same time different
  • the polarity of the output light of the road is 90 degrees out of order.
  • the polarizer corresponding to different road light signals has the same polarity as the light outputted by the polarity control unit, and the light signal reflected by the reflection engine still passes through the same polarizer.
  • the optical signal reflected by the reflection engine crosstalks, since the polarity of the crosstalk optical signal is different from the polarity of the polarizer, the polarity cannot be passed and thus filtered.
  • the following is a pole with an optical signal having two input fiber ports (10, 12) and two polarizers (the polarizer 500, the polarizer 502, respectively, and the two polarizers respectively allow complete passage)
  • the wavelength selection switch of the difference of 90 degrees is taken as an example, and the optical path in the wavelength selective switch of the embodiment of the present invention is briefly described.
  • the working optical path in the wavelength selection switch is:
  • the optical signal input from the optical fiber input port 10 (for convenience of description, the optical signal input from the input optical fiber port 10 is referred to as a first optical signal) is processed by the polarity control unit 22 to become the first
  • the polar optical signal is incident on the first diffraction region of the diffraction grating 30, and is split into a plurality of optical signals of a plurality of wavelengths at the first diffraction region of the diffraction grating 30 (for convenience of description, the optical signals of the plurality of wavelengths are set.
  • the first set of optical signals of the plurality of wavelengths are directed toward the reflective element 40 and are reflected by the reflective element 40 toward the first reflective area of the switching engine 60; 500 Covering the first reflective area of the switch engine 60, after the first set of optical signals of the plurality of wavelengths are reflected by the reflective element 40, only the polarizer 500 is passed (only the optical signal having the polarity of the first polarity can completely pass the polarizing And passing through the polarizer 502 and then reaching the first reflective area of the switching engine 60; the first reflective area of the switching engine 60 can separately perform optical signals for each of the first plurality of wavelengths of optical signals Reflection control (ie, controlling the direction of reflection of the optical signal of each wavelength), the optical signal of each of the first set of optical signals of the plurality of wavelengths is reflected by the first reflective area of the switching engine 60 and then sequentially passes through the polarizer 500, the reflective element 40, the diffraction grating 30, and the
  • the optical signal input from the optical fiber input port 12 (for convenience of description, the optical signal input from the optical fiber input port 12 is referred to as a second optical signal) is converted into a second by the processing of the polarity control unit 22.
  • An optical signal having a polarity (90 degrees out of phase with the first polarity) is incident on the second diffraction region of the diffraction grating 30, and is split into a plurality of optical signals of a plurality of wavelengths at the second diffraction region of the diffraction grating 30 (for convenience of description)
  • the set of optical signals of a plurality of wavelengths is referred to as a second set of optical signals of a plurality of wavelengths; and the second set of optical signals of the plurality of wavelengths are directed toward the reflective element 40 and are directed toward the switching engine 60 by the reflective element 40 Directional reflection of the two reflective regions; the polarizer 502 (only the optical signal of the second polarity can pass completely through the polarizer) covers only the second reflective
  • the second reflective area of the switching engine 60 can be used for each of the second plurality of wavelengths of the optical signal.
  • the optical signals are separately subjected to reflection control (ie, controlling the direction of reflection of the optical signals of each wavelength), and the optical signals of each of the second plurality of optical signals of the plurality of wavelengths are reflected by the second reflective area of the switching engine 60.
  • reflection control ie, controlling the direction of reflection of the optical signals of each wavelength
  • the optical signals of each of the second plurality of optical signals of the plurality of wavelengths are reflected by the second reflective area of the switching engine 60.
  • the output After passing through the polarizer 502, the reflective element 40, the diffraction grating 30, and the polarity control unit 20, the output is output from the corresponding fiber output port of the wavelength selective switch.
  • the first set of optical signals of a plurality of wavelengths are incident from the reflective element 40 to the first reflective area of the switching engine 60 and from the first reflective area of the switching engine 60.
  • the polarity of the first plurality of wavelengths of the optical signal emitted from the analyzer 50 to the first reflective region of the switching engine 60, and the switching engine 60 received by the polarizer 500 The polarities of the first plurality of wavelengths of the optical signals reflected by the first reflective area are all the first polarity, so that the first plurality of wavelengths of the optical signals of the first reflective area of the switching engine 60 can pass again.
  • the polarizer 500 is the process of entering the reflective element 4, the polarity of the first plurality of wavelengths of the optical signal emitted from the analyzer 50 to the first reflective region of the switching engine 60, and the switching engine 60 received by the polarizer 500.
  • a second plurality of wavelengths of optical signals are incident from the reflective element 40 to the second reflective region of the switching engine 60 and from the second reflective region of the switching engine 60 to the reflective element 4.
  • the polarity of the second plurality of wavelengths of the optical signal emitted from the analyzer 50 to the second reflection region of the switching engine 60, and the second reflection region of the switching engine 60 received by the polarizer 502
  • the polarities of the reflected second plurality of wavelengths of optical signals are all of a second polarity such that the second plurality of wavelengths of optical signals of the second reflective region of the switching engine 60 can again pass through the polarizer 502.
  • the first reflective area and/or the second reflective area of the switching engine 60 when performing reflection control, causes partial wavelengths of the first plurality of wavelengths of optical signals due to control errors or other reasons.
  • the optical signal which is erroneously reflected to the polarizer 502 and/or a portion of the second set of optical signals of the plurality of wavelengths, is erroneously reflected toward the polarizer 500.
  • the optical signal incident on the polarizer 500 includes both the first group of optical signals of the plurality of wavelengths and the optical signals of the partial wavelengths of the second plurality of optical signals of the plurality of wavelengths, and And the optical signal incident on the polarizer 502 includes both the second plurality of optical signals of the plurality of wavelengths and the optical signals of the partial wavelengths of the optical signals of the first plurality of wavelengths.
  • This phenomenon is called crosstalk. .
  • the polarity of the second plurality of wavelengths of the optical signals incident on the polarizer 500 is the second polarity, and the polarizer 500 only allows the optical signals of the first polarity to pass completely, The optical signal of the second polarity orthogonal to the first polarity just does not pass completely.
  • the polarity of the first plurality of wavelengths of the optical signal incident on the polarizer 502 is the first polarity, and the polarizer 502 only allows the optical signal of the second polarity to pass completely, with the second pole.
  • the optical signal of the first polarity that is orthogonal is just not able to pass completely. That is, crosstalk is suppressed.
  • the switching engine and the diffraction grating respectively include a corresponding number of reflection regions and diffraction intervals; meanwhile, each reflection region is only two front and rear The regions are adjacent, but are not adjacent to other regions, and are in a plurality of rows or columns; the diffraction interval can also be set in the same manner, and the diffraction region of the diffraction grating is also consistent with the arrangement of the reflection region of the switching engine; In an embodiment with a polar rotating unit, the polar rotating unit covers only the singular or even area of the switching engine, ie in the form of a spaced coverage.
  • the reflective area of the switching engine includes a spatially adjacent first reflective area, a second reflective area 2x or (2x+1) reflective area, and X is a natural number greater than or equal to 1.
  • the polarity rotation unit includes a plurality of discontinuous plurality of polarity rotators, the plurality of polarity rotators sequentially covering the first reflection area of the switching engine, the second reflection area 2x+1 reflection area, or The second reflection area is a 2x reflection area.
  • the diffraction region of the diffraction grating and the reflection region of the switching engine are The foregoing embodiment is identically arranged; it differs from FIG. 3 in that it does not have a polarity rotating unit, but is rotated by a polarity control unit, and a polarizer unit having a plurality of polarities sequentially different by 90 degrees corresponds to The diffraction area is arranged.
  • a polarity rotating unit but is rotated by a polarity control unit
  • a polarizer unit having a plurality of polarities sequentially different by 90 degrees corresponds to The diffraction area is arranged.
  • the polarity control unit 20 may include: a polarity decomposition module 200, configured to decompose the input optical signal into a first polarity signal and a second polarity signal, The polarity of the first polarity signal is orthogonal to the polarity of the second polarity signal; the first polarity rotation module 202 is configured to rotate the polarity of the first polarity signal by 90 degrees to make the pole And synthesizing the polarity of the second polarity signal, and synthesizing the rotated signal and the second polarity signal to obtain an optical signal having only the second polarity; wherein the second polarity signal is The polarity is the polarity of the polarity control unit.
  • a polarity decomposition module 200 configured to decompose the input optical signal into a first polarity signal and a second polarity signal, The polarity of the first polarity signal is orthogonal to the polarity of the second polarity signal
  • the polarity control unit 22 may include: a polarity decomposition module 200, configured to decompose the input at least two optical signals into a first polarity signal and a first a polarity of the first polarity signal is orthogonal to a polarity of the second polarity signal; and a second polarity rotation module 203 is configured to correspond to the second two adjacent optical signals
  • the polarity of the first polarity signal of one optical signal is rotated by 90 degrees to have the same polarity as the polarity of the second polarity signal corresponding to the first optical signal, and the rotated signal corresponds to the Combining a second polarity signal of the first optical signal to obtain an optical signal having only the second polarity; and also for using a second polarity corresponding to the second optical signal of the adjacent two optical signals
  • the polarity of the signal is rotated by 90 degrees so that its polarity is the same as the polarity of the first polarity signal
  • optical devices having corresponding functions may be used.
  • the polar decomposition module may be implemented by a polar beam splitter, and at the same time, based on the reversibility of light, the polarity may also be realized.
  • the function of the synthesis module; likewise, the polarity rotation module can also be implemented by an optical device that implements the functions of the aforementioned polarity rotation unit.
  • the polarity control unit 20 or the polarity control unit 22 may further include: a polarity synthesis module (not shown) for converting the optical signals input to the polarity control unit after the switch engine is reflected It is a non-unipolar optical signal and is output through the output fiber port.
  • a polarity synthesis module (not shown) for converting the optical signals input to the polarity control unit after the switch engine is reflected It is a non-unipolar optical signal and is output through the output fiber port.
  • the polarity control unit may not include the polarity decomposition module and the first polarity rotation module (or the second polarity rotation module), and the polarity control unit Just do the role of polarity filtering. If the output optical signal does not need to be a non-unipolar signal, the polarity control unit in this example may not include the polarity synthesis module.
  • the wavelength selective switch in the embodiment of the present invention may further include a calibrator 22; the calibrator 22 is located at the output fiber port and Between the polarity control units, the optical signal reflected by the switch engine is calibrated and output to the output fiber port.
  • the calibrator 22 is further included on the basis of the embodiment shown in FIG.
  • the above-mentioned wavelength selective switch may be a 2-input N output (when having two fiber input ports), and the above-mentioned wavelength selective switch may also be reversely used due to the optical path reversible principle, that is, an input port in forward use.
  • the output port for reverse use As an output port for reverse use, the output port for forward use is used as an input port for reverse use, and the structure of the wavelength selective switch does not change.
  • FIG. 7 is a schematic diagram of a specific structure of a 2 ⁇ N WSS in an embodiment of the present invention.
  • the WSS consists of: two input fiber ports (10 and 12), N fiber output ports (example only in the figure), calibrator, polarity control unit, diffraction grating, mirror, crosstalk suppression unit (including a bias) , a polar rotating unit), a switching engine with two separate zones.
  • the input light first enters the polarity control unit.
  • the polarity control unit the light from different input fibers is decomposed into two polarities of orthogonal polarity, and then one of the polarities is rotated to the other polarity.
  • the output light is only one polarity, and the optical signal of the polarity is an optical signal that can completely pass through the polarizer on the subsequent optical path.
  • the light from the input fiber 1 is first decomposed into two orthogonal light beams of orthogonal polarity in the polarity control unit, and then the polarity of one of the lights is rotated to the polarity of the other light, so that the two paths of light Have the same polarity (this kind of processing is mainly because the existing polar multiplex transmission system makes a signal with two polarities usually on one light, and the processing of this scheme is based on a single polarity), In the subsequent optical path processing, the two sub-beams are treated as a whole, until the light is reflected and then passed through the polarity control unit again. At this time, one of the two paths of light is rotated to be different from the polarity of the other path.
  • the two-way sub-synthesis is combined into one light with two polarities (in order to support the requirements of the polar multiplexing system).
  • the distinction between two sub-lights of the same polarity is achieved by the relative position between them.
  • the upper half of the diffraction grating decomposes light from the input fiber port 10
  • the lower half of the diffraction grating decomposes light from the input fiber port 12.
  • the corresponding diffraction grating can be divided into upper, middle and lower regions; when there are more input light signals, the diffraction grating is further divided into multiple rows ( Or a multi-column area.
  • the decomposed light is reflected by the mirror onto the polarity suppression unit, which consists of a polarizer and a polar rotation unit.
  • the polarity suppression unit which consists of a polarizer and a polar rotation unit.
  • Light from the input fiber port 10 is reflected to the upper half of the polarizer in the polarity suppression unit, and light from the input fiber port 12 is reflected to the lower half of the polarizer in the polarity suppression unit.
  • the function of the polarizer is to allow only light of a particular polarity to pass completely, while completely blocking light of a polarity orthogonal to that particular polarity.
  • the optical signal having a single polarity that the polarity control unit outputs to the diffraction grating can pass completely through the polarizer.
  • the polarizer covers the input light and the output light path of the entire switching engine, and the polar rotating unit placed behind the polarizer covers only the lower half of the polarizer and the lower half of the switching engine.
  • the signal from the input fiber port 10 passes through the upper half of the polarizer and is directly reflected by the upper half of the switching engine and is reflected back to the upper half of the polarizer without passing through only the polarizer and the lower half of the switching engine.
  • the polar rotating unit the reflected light passes through the polarizer again, since the signal originating from the input fiber port 10 is only processed in the upper half of the polarizer and the switching engine, so it does not pass through the polar rotating unit, that is, the pole of light.
  • the sex is not changed, so the reflected light can be emitted through the polarizer.
  • the polarity is first changed by the polarity rotation unit (the polarity is rotated by 90 degrees, perpendicular to the polarity of the polarizer, so that this polarity cannot pass.
  • the polarizer is then reflected by the lower half of the switching engine.
  • the reflected light passes through the polar rotating unit again, and the polarity is rotated again by 90 degrees.
  • the result of the two rotations causes the polarity of the reflected light to return to the polarizer.
  • the reflected light can pass through the lower half of the polarizer.
  • the crosstalk light is the optical path from the input fiber port 10 that is erroneously reflected in the switching engine to the lower half of the area (the light does not pass through the polar rotating unit before entering the switching engine, and undergoes a polarity rotation when reflected).
  • Polarity rotation unit Since such light passes only once through the polarity rotator, the polarity is only rotated by 90 degrees, so that the polarity of the light signal is just output to the diffraction by the polarity control unit
  • the polarity of the optical signal of the grating is 90 degrees apart, so it can not pass through when it is reflected to the polarizer, and is filtered out, that is, the purpose of suppressing crosstalk is achieved.
  • the switching engine is divided into two separate upper and lower areas, and the light from the input fiber port 1 and the input fiber port 2 is separately reflected and controlled.
  • the corresponding switching engine is divided into upper, middle and lower regions; meanwhile, the polarity rotating unit covers only the middle region in the upper, middle and lower regions (or up and down region).
  • the switching engine is further divided into multiple rows (or columns), and the polar rotation unit covers an area interlaced.
  • the polarity change in the embodiment of the present invention is mainly for the 90 degree change of the polarity after the light passes through the polar rotation unit, and the polarity of the backlight after switching the engine does not change by the polarizer.
  • the passing device For light from the input fiber port 10, after passing through the mirror to the polarizer, the passing device includes the upper half of the diffraction grating, the upper half of the polarizer, and the upper half of the switching engine. There is no polarity rotation unit that changes polarity, so the polarity does not change. Since the light originating from the input fiber port 12 passes through the polarity rotation unit twice, its polarity changes by 180 degrees, and it does not change, and it can pass through the polarizer again.
  • another wavelength selective switch in the embodiment of the present invention includes: N optical fiber input ports for correspondingly inputting optical signals from N input fibers; N 1 XM/2 splitting The input ends are respectively connected to the N optical fiber input ports, and are used for respectively dividing N optical signals input through the N optical fiber input ports into M/2 optical signals, where N and M are greater than or equal to 2 Integer; W2 NX 2 wavelength selective switches with crosstalk suppression function, the input of each of the NX 2 wavelength selective switches is connected to one output of all of the N optical splitters.
  • the ⁇ 2 wavelength selective switch is a wavelength selective switch in the foregoing embodiment (as shown in FIG. 3, FIG. 4 or FIG. 7 and the like), and the optical fiber input port of the ⁇ 2 wavelength selective switch
  • the optical fiber output port of the NX 2 wavelength selective switch corresponds to the two optical fiber input ports of the wavelength selective switch in the previous embodiment.
  • the reverse use of the 2 XN wavelength selective switch shown in FIG. 7 becomes the NX 2 wavelength selective switch in this embodiment, that is, two input optical ports of the 2 ⁇ ⁇ wavelength selective switches shown in FIG.
  • N output fiber ports of the 2 ⁇ ⁇ wavelength selective switches shown in Figure ⁇ serve as N input fiber ports in this embodiment.
  • Wavelength selection switch In the example of Fig. 8, N ellipses represent N beamsplitters, the function of which is that one input signal is divided into exactly the same M/2 copies.
  • 2 XN WSS can be used in reverse. You can use 2 as an input port, N as an output port, or N as an input port and 2 as an output port.
  • ⁇ ⁇ M WSS works by outputting any wavelength signal from any input port to any one of the output ports.
  • each channel's signal can reach each N X 2 WSS through a splitter.
  • This WSS can select any one of the N input ports to send to any of the two input ports.
  • the equivalent of N X M WSS can be achieved by a combination of such structures in the M/2 group. Output any wavelength signal of any input port to any one of the output ports.
  • this embodiment Compared with the prior art method for constructing NXM WSS using NX 1 WSS, this embodiment only needs M/2 NX 2 WSS modules to implement NXM WSS, and the number of modules is reduced by 50% compared with the prior art.
  • the number of fibers is ⁇ ( ⁇ /2), which is also reduced by 50%.
  • i can also choose to be a number greater than or equal to 2, and use N xi WSS to construct N x M WSS.
  • M/i WS i WSS modules are needed to implement NXM WSS.
  • the number of modules is only in the prior art.
  • the number of modules is 1/i, and the number of interconnected fibers is Nx (M/i), which is also only l/i in the prior art.
  • the structure of the i N WSS is realized on the basis of the single WSS structure (i is a natural number greater than or equal to 2), and independent control is realized for the multi-path light.
  • the polarity of the light incident on different regions of the switching engine is controlled by the polarity control unit and the polarizer (or also including the polar rotation unit), and the reflected light is limited by the respective reflection paths according to the polarity thereof. , thereby reducing mutual in-band crosstalk between light from different input fibers.
  • the N X M WSS constructing more port numbers by using the embodiment of the present invention is constructed with respect to the use of 1 X N WSS, the number of modules is relatively reduced, and the number of interconnected fibers is N x (M/i), which is also reduced.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明实施例提供了一种波长选择开关,其在现有的1×N波长选择开关的结构基础上,通过调节光信号的极性来抑制串扰的方案。使得不同路的输入光信号在入射到开关引擎上时具有不同的极性,再通过对开关引擎反射的光信号的极性过滤,就可以抑制不同路光之间的串扰。可以实现在Μ×Ν(Ν个输入光纤端口,Μ个输出光纤端口;或Μ个输入光纤端口,Ν个输出光纤端口,其中Μ和Ν均为大于等于2的自然数)的波长选择开关中抑制串扰干扰。

Description

波长选择开关 技术领域
本发明涉及光通信领域, 尤其涉及一种波长选择开关。 背景技术
近年来, 波分复用 ( Wavelength division multiplexing, WDM )技术越来越 广泛的被应用于各级光传输网络, 其网络拓朴结构也从简单的环形、 树形结构, 向更为复杂的网状结构演进。 同时随着因特网协议(Internet Protocol, IP ) 网络 的迅猛发展, 宽带、 因特网电视( Internet Protocol Television , IPTV )、 下一代网 络 ( Next generation network , NGN )、 第三代移动通信技术 ( 3rd-generation, 3G ) 等新业务大量应用, 网络业务类型也由以时分多路复用 (Time division multiplexing, TDM ) 业务为主的电路交换业务过渡到以 IP为主的数据业务。
数据业务的快速增长和更为复杂的网络结构要求对网路提供更多的智能化 功能, 以便在网络拓朴及业务分布发生变化时能够快速响应, 实现业务的灵活 调度和带宽的有效管理。 可重构分插复用器 ( Reconfigurable Add/Drop multiplexer, ROADM )可以配置在不同的网络层面, 并通过波长的可配置和可 管理的功能来实现整个网络的智能化。
目前,构建 ROADM节点包括三种主要技术:波长阻断( Wavelength blocker, WB )技术, 平面光波电路 ( Planar light circuit, PLC )技术, 和波长选择开关 ( Wavelength selective switch, WSS )技术。 其中, WSS技术因为具有频带宽, 色散低, 并支持端口与波长无关(colorless, 即每一个端口都可以接口任意波长 的光信号)和更高的维度(这里的维度指 ROADM节点最多可以提供的连接的 方向数), 而受到器件生产厂商推崇, 成为实现 ROADM的主流技术。
^口图 1 所示, 为一个以 机电*** ( Micro Electro Mechanical systems, MEMS )技术为例的 lxN WSS结构图。 当光从输入端口 (即图中所示的光纤阵 列中的输入光纤端口 )进入 WSS , 经过 WSS中衍射光栅 ( Diffraction Grating ) 的衍射作用被分解成若干个子波长, 被分解的光被反射镜反射到一个开关引擎 ( switching engine )上, 开关引擎通过控制子波长信号的反射路径, 从而使得反 射的子波长信号去往不同的出射端口 (即图中所示的光纤阵列中的输出光纤端 口)。 不同子波长信号在相应的出射端口进行汇聚, 从而实现了在端口上对于不 同波长信号进行的选通功能。 从功能上来讲, 光栅相当于一个光的复用和解复 用器, 而开关引擎相当于一个可以进行光路选择的光交换开关.
而在构造 N x M WSS ( N个输入光纤端口, M个输出光纤端口)的过程中, 为了实现对于单个输入光纤端口的独立控制, 通常需要多个和多层的光交换开 关结构, 但是在这样的结构上光的反射由于色散等现象的存在并不理想, 即有 一部分光可能会被反射到不需要的出射端口。 在 N x M WSS的多层结构中, 在 相邻层的对应位置上这样的色散最容易形成带内串扰, 即将相同波长的光错误 地反射到同一个出射端口而形成的串扰。 由于无法与正常信号分离 (因为串扰 信号的波长相同), 会对信号传输造成严重的影响。 发明内容
本发明实施例提供了一种波长选择开关,可以在 N X M( N个输入光纤端口, M个输出光纤端口; 或 M个输入光纤端口, N个输出光纤端口) 的波长选择开 关中抑制串扰。
为此, 一方面, 本发明实施例提供了一种波长选择开关, 包括:
至少两个输入光纤端口, 用于分别输入来自至少两个输入光纤的光信号; 极性控制单元, 用于调整从每个输入光纤端口输入的光信号的极性, 使得 调整后的至少两路光信号都成为只具有一种极性的光信号, 所述调整后的至少 两路光信号的极性相同; 的至少两路光信号, 分别获得至少两组具有多个波长的光信号;
反射元件, 用于将所述至少两组具有多个波长的光信号分别反射到开关引 擎上的至少两个反射区域;
起偏器, 位于所述反射元件与所述开关引擎之间并覆盖所述开关引擎的所 述至少两个反射区域, 用于按照所述极性控制单元的极性对通过其的光信号进 行过滤;
极性旋转单元, 位于所述起偏器与所述开关引擎之间并覆盖所述开关引擎 的所述至少两个反射区域中的第一反射区域而不覆盖与所述第一反射区域相邻 的反射区域, 用于将通过其的光信号的极性旋转 90度; 所述开关引擎, 其中, 所述开关引擎至少包含两个反射区域, 所述开关引 擎的每个反射区域对入射到该反射区域的光信号进行反射控制将其反射向所述 反射元件 , 使得经过反射控制后的光信号通过对应的输出光纤端口输出。
另一方面, 本发明实施例还提供了另一种波长选择开关, 包括:
至少两个输入光纤端口, 用于分别输入来自至少两个输入光纤的光信号; 极性控制单元, 用于调整从每个输入光纤端口输入的所述光信号的极性, 使得调整后的至少两路光信号分别成为具有单一极性的光信号, 并且调整后的 相邻两路光信号之间的极性相差 90度; 的至少两路光信号, 分别获得至少两组具有多个波长的光信号;
反射元件, 用于将所述至少两组具有多个波长的光信号分别反射到开关引 擎上的至少两个反射区域;
至少两个起偏器, 位于所述反射元件与所述开关引擎之间并分别覆盖所述 开关引擎的所述至少两个反射区域, 用于分别按照所述极性控制单元调整后的 至少两路光信号的极性, 对通过其的光信号进行过滤;
所述开关引擎, 其中, 所述开关引擎至少包含两个反射区域, 所述开关引 擎的每个反射区域对入射到该反射区域的光信号进行反射控制将其反射向所述 反射元件 , 使得经过反射控制后的光信号通过对应的输出光纤端口输出。
另一方面, 本发明实施例还提供了一种波长选择开关, 包括:
N个光纤输入端口, 用于对应输入来自 N条输入光纤的光信号;
N个 1 X M/2分光器, 其输入端分别与所述 N个光纤输入端口连接; 每个 1 x M/2分光器用于将输入的光信号分成 M/2路光信号, 其中, N和 M为大于等 于 2的整数;
M/2个具有串扰抑制功能的 N X 2波长选择开关, 每个所述 N X 2波长选择 开关的 N个输入端口连接所有所述 N个分光器的一路输出;
其中, 所述 Ν χ 2波长选择开关为如上所述的任意一种波长选择开关, 所述 N X 2波长选择开关的光纤输入端口对应如上所述的波长选择开关的光纤输出端 口,所述 N X 2波长选择开关的光纤输出端口对应如上所述的波长选择开关的光 纤输入端口。
在本发明实施例中, 对不同输入光纤输入的光信号的极性进行控制, 来抑 制串扰。 其中一种控制方式是在波长选择开关中加入了极性控制单元、 起偏器 和极性旋转单元, 极性控制单元将输入光信号调整为具有相同极性的光信号, 由于起偏器的极性过滤作用和极性旋转单元的 90度极性旋转作用, 当开关引擎 反射的光信号发生串扰时, 其串扰光信号不能两次通过极性旋转单元, 使得串 扰光信号的极性与起偏器的极性相差 90度, 因而串扰光信号无法通过起偏器, 从而达到抑制串扰光信号的目的; 另一种控制方式则是在波长选择开关中加入 了极性控制单元、 起偏器, 极性控制单元将输入不同路光信号调整为具有单一 极性且不同路光信号的极性相差 90度的光信号, 并用具有相应极性的多个起偏 器进行过滤, 当开关引擎反射的光信号发生串扰时, 串扰光信号的极性与其光 路上的起偏器的极性相差 90度, 因而串扰光信号无法通过起偏器, 从而达到抑 制串扰光信号的目的。 并且, 由于仅需要增加极性控制单元、 起偏器和极性旋 转单元,不会显著的增加***结构的复杂性,同时还可以实现在构造的 Ν χ Μ 的 波长选择开关中抑制串扰。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有的以 MEMS技术为例的 1 X N波长选择开关结构示意图; 图 2是现有的 N x M WSS的一种结构示意图;
图 3是本发明实施例中的波长选择开关的一个具体组成示意图;
图 4是本发明实施例中的波长选择开关的另一个具体组成示意图; 图 5是本发明实施例中的极性控制单元的一个具体组成示意图;
图 6是本发明实施例中的极性控制单元的另一个具体组成示意图; 图 7是本发明实施例中的具有校准器的 2 X N波长选择开关的一个具体组成 示意图;
图 8是本发明实施例中的 M X N波长选择开关的一个具体组成示意图。 具体实施方式 在现有技术中 Ν χ 1 ( N>=2 )的波长选择开关中不存在串扰干扰, 但是为了 应用的需要, 需要实现 N x M ( N>=2 , M>=2 )的波长选择开关。 如果通过采用 多个 N X 1波长选择开关的级联来构造 N X M的波长选择开关,则可以避免普通 M x N的波长选择开关结构带来的串扰影响。如图 2所示, 为一种通过光分路器 和多个 N X 1波长选择开关来构造 N X M ( N个输入, M个输出 )的波长选择开 关的例子, 但是在这种构造中, 其结构复杂, 在光分路器和 N x 1波长选择开关 之间进行了 N X M的完全连接, 需要 N X M条联接光纤, M个 N X 1 波长选择 开关。 由于现在 N x 1波长选择开关虽然已经商用, 但是价格依然昂贵, 所以本 方案不仅结构上复杂, 而且成本很高。 同时由于 1 χ Μ分路器的使用也大大增加 了整个 N x M 波长选择开关的***损耗。
因而, 需要提出了另一种实现抑制串扰的 N x M的波长选择开关的机构, 同时又不会显著增加的***的复杂性。 为此, 本发明实施例中提出了, 在现有 的 N x l 波长选择开关的结构基础上, 通过调节光信号的极性来抑制串扰的方 案。 即, 使得不同路的输入光信号在入射到开关引擎上时具有不同的极性, 再 通过对开关引擎反射的光信号的极性过滤,就可以抑制不同路光之间的串扰(虽 然, 来自另一路光的串扰信号与本路光信号的波长相同, 但是极性不同, 因此 可以通过极性来抑制串扰)。
由于一般输入或输出的光信号并不是单一极性的信号, 为了实现上述通过 极性来抑制串扰的目的, 在输入侧, 需要预先对光信号的极性进行调整, 使得 入射到开关引擎的光信号为单一极性的信号; 而在输出侧, 则需要将单一极性 的光信号还原为非单一极性的信号。 以下通过具体实施例, 进一步说明上述技 术方案。
如图 3所示, 为本发明实施例中的波长选择开关, 如图 3的示例中以具有 两个输入光纤端口为例进行说明, 其包括:
至少两个输入光纤端口 10、 12, 用于分别输入来自至少两个输入光纤的光 信号。 图示中仅示例了两个输入光纤端口的情况, 在本发明的其他实施例中, 还可以进一步包括第三个甚至更多个输入光纤端口。
极性控制单元 20, 用于调整从输入光纤端口 10、 12输入的所述光信号的极 性, 使得调整后的至少两路光信号都成为只具有一种极性的光信号。 当然, 调 整后的至少两路光信号的极性可为不同的极性, 也可以为相同的极性; 优选的, 可设计为将不同路光纤的信号调整为具有相同极性的信号, 以简化***整体结 构。
如, 对于来自输入光纤端口 10的光在极性控制单元中首先会被分解成极性 正交的两路子光, 然后将其中一路光的极性旋转到另一路光的极性上, 使得两 路子光具有同样的极性, 形成仅具有一种极性的光信号。 当然, 根据对输出光 信号的需要(如, 为了支持极性复用***的要求), 当该路光信号被反射后再次 经过极性控制单元时, 极性控制单元可将两路子光中的一路极性会被旋转到与 另一路的极性垂直的方向上, 然后两路子光再合成一路与入射光极性一致的光。 在具体实施例中, 对于分解获得的两路子光, 该两路子光在光路上可为两束平 行光, 且两束平行光之间具有确定的距离, 在后续光路中将其作为两束平行且 具有相同极性的光信号进行处理即可; 即, 两路极性相同子光之间可以依靠其 光路空间上的相对位置来区分。 这样, 在将两路子光合成为一路具有极性与入 射光极性一致的光信号时, 仍然可以还原所述光信号的极性所携带的信息。 后的至少两路光信号, 分别获得至少两组具有多个波长的光信号。 如, 衍射光 栅的上半区域分解来自输入光纤端口 10的光, 而衍射光栅的下半区域分解来自 输入光纤端口 12的光。 当还包括第三输入光纤端口时, 还可包括第三区域, 同 时第三区域与第二区域相邻, 与第一区域不相邻; 而输入第三区域的光信号的 极性可与第一区域的光信号的极性相同。
反射元件 40, 用于将所述至少两组具有多个波长的光信号分别反射到开关 引擎上的至少两个反射区域。
起偏器 50, 位于所述反射元件与所述开关引擎之间并覆盖所述开关引擎的 所述至少两个反射区域, 用于按照所述极性控制单元的极性对通过其的光信号 进行过滤。
极性旋转单元 52, 位于所述起偏器与所述开关引擎之间并覆盖所述开关引 擎的所述至少两个反射区域中的第一反射区域而不覆盖与所述第一反射区域相 邻的反射区域, 用于将通过其的光信号的极性旋转 90度。 其中, 该极性旋转单 元可采用现有的具有极性旋转功能的光器件, 如法拉第旋转镜、 四分之一玻片 等。 在如图 3的示例中, 该极性旋转单元仅遮挡开关引擎下侧的反射区域。
所述开关引擎 60, 至少包含两个反射区域。 开关引擎 60的每个反射区域对 入射到该反射区域的光信号进行反射控制将其反射向所述反射元件, 使得经过 反射控制后的光信号通过对应的输出光纤端口输出。 其中, 所述开关引擎 60的 至少两个反射区域可为空间上上下或左右相邻的至少两个区域。 图中所示仅为 两个区域, 即图中上下两排的区域。 在本发明的其他实施例中当所述波长选择 开关还包括第三光纤输入端口, 用于输入第三光信号时, 所述开关引擎还包括 第三区域, 用于反射所述第三光信号组。
本发明实施例中的开关引擎可以是使用 MEMS技术的开关引擎, 由一系列 微小的反射镜构成的阵列, 通过控制微小反射镜的旋转来控制光的反射角度。 当然也可以是其他类型的开关引擎, 此处不做限制。
下面以一个具有两个输入光纤端口 (10、 12 ) 的波长选择开关 (其中, 极 性旋转单元 52仅覆盖开关引擎的第二反射区域)为例, 对本发明实施例的波长 选择开关中的光路进行简要描述。
正常情况下, 波长选择开关中的工作光路为:
( 1 )、 从输入光纤端口 10输入的光信号(为描述方便, 将从输入光纤端口 10输入的光信号称之为第一光信号)经过极性控制单元 20的处理后入射到衍射 光栅 30的第一衍射区域, 在衍射光栅 30的第一衍射区域处 (如图 3中所示的 衍射光栅的上半区域)被分解成一组多个波长的光信号 (为描述方便, 将该组 多个波长的光信号称之为第一组多个波长的光信号); 第一组多个波长光信号射 向反射元件 40后被反射元件 40朝着开关引擎 60的第一反射区域的方向反射; 由于极性旋转单元 52只覆盖了开光引擎 60的第二反射区域, 而起偏器 50覆盖 开关引擎 60的两个反射区域, 第一组多个波长的光信号被反射元件 40反射后, 只经过起偏器 50, 不经过极性旋转单元 52, 然后到达开关引擎 60的第一反射 区域; 开关引擎 60的第一反射区域可以对第一组多个波长的光信号中的每个波 长的光信号单独进行反射控制 (即控制每个波长的光信号的反射方向), 第一组 多个波长的光信号中的每个波长的光信号被开关引擎 60的第一反射区域反射后 再依次经过起偏器 50、 反射元件 40、 衍射光栅 30、 极性控制单元 20后从波长 选择开关的相应输出光纤端口输出;
( 2 )、 从输入光纤端口 12输入的光信号(为描述方便, 将从光纤输入端口 12输入的光信号称之为第二光信号)经过极性控制单元 20的处理后入射到衍射 光栅 30的第二衍射区域, 在衍射光栅 30的第二衍射区域处 (如图 3所示的衍 射光栅的下半区域)被分解成一组多个波长的光信号 (为描述方便, 将该组多 个波长的光信号称之为第二组多个波长的光信号); 第二组多个波长光信号射向 反射元件 40后被反射元件 40朝着开关引擎 60的第二反射区域的方向反射; 由 于起偏器 50覆盖开关引擎 60的两个反射区域, 而且极性旋转单元 52覆盖了开 光引擎 60的第二反射区域, 第二组多个波长的光信号被反射元件 40反射后, 经过起偏器 50后还会经过极性旋转单元 52, 然后到达开关引擎 60的第二反射 区域; 开关引擎 60的第二反射区域可以对第二组多个波长的光信号中的每个波 长的光信号单独进行反射控制 (即控制每个波长的光信号的反射方向), 第二组 多个波长的光信号中的每个波长的光信号被开关引擎 60的第二反射区域反射后 再依次经过极性旋转单元 52、 起偏器 50、 反射元件 40、 衍射光栅 30、 极性控 制单元 20后从波长选择开关的相应光纤输出端口输出。
从上述描述的光路中可以看出, 正常情况下, 第一组多个波长的光信号从 反射元件 40向开关引擎 60的第一反射区域入射的过程中和从开关引擎 60的第 一反射区域向反射元件 4入射的过程中都不经过极性旋转单元 52, 因此, 从检 偏器 50出射到开关引擎 60的第一反射区域的第一组多个波长的光信号的极性, 与检偏器 50接收到的开关引擎 60的第一反射区域反射的第一组多个波长的光 信号的极性是相同的, 从而被开关引擎的 60的第一反射区域的第一组多个波长 的光信号可以再次通过起偏器 50。 正常情况下, 第二组多个波长的光信号从反 射元件 40向开关引擎 60的第二反射区域入射的过程中和从开关引擎 60的第二 反射区域向反射元件 4入射的过程中均需要经过极性旋转单元 52, 也就是说第 二组多个波长的光信号从起偏器 50出射到再次入射到起偏器 50的过程中, 会 两次经过极性旋转单元 52; 在从起偏器 50出射到再次入射到起偏器 50的过程 中,每经过一次极性旋转单元 52, 第二组多个波长的光信号的极性被旋转 90度 一次, 也就是说再次入射到起偏器 50的第二组多个波长的光信号的极性相对于 从起偏器 50出射的第二组多个波长的光信号的极性而言被旋转了 0度或者 180 度; 而极性被旋转 0度或者 180度, 则说明光信号的极性未发生变化, 因此, 再次入射到起偏器 50的第二组多个波长的光信号的极性与从起偏器 50出射的 第二组多个波长的光信号的极性相同, 上述再次入射到起偏器 50的第二组多个 波长的光信号也就可以再次通过起偏器 50。
在实际的应用过程中,开关引擎 60的第一反射区域和 /或第二反射区域在进 行反射控制时, 由于控制失误或者其它原因, 导致第一组多个波长的光信号中 的部分波长的光信号被错误地反射向了极性旋转单元 52 和 /或者第二组多个波 长的光信号中的部分波长的光信号被错误地反射后没有经过极性旋转单元 52直 接入射到了起偏器 50。 由于这种错误地反射, 导致入射到起偏器 50的第一部分 (为了描述的方便, 将检偏器 50中覆盖开关引擎 60的第一反射区域的部分称 之为第一部分) 的光信号中既包含第一组多个波长的光信号也包含有第二组多 个波长的光信号中的部分波长的光信号, 和 /或入射到起偏器 50的第二部分(为 了描述的方便, 将起偏器 50中覆盖开关引擎 60的第二反射区域的部分称之为 第二部分) 的光信号中既包含第二组多个波长的光信号也包含有第一组多个波 长的光信号中的部分波长的光信号, 这种现象称之为串扰。 在本发明实施例中, 由于入射到起偏器 50第一部分的第二组多个波长的光信号中的部分波长光信号 从起偏器 50出射到再次入射到起偏器 50中的过程中, 只经过了一次极性旋转 单元 52, 因此, 第二组多个波长的光信号中的该部分波长的光信号的极性只被 旋转了 90度, 也就是说入射到起偏器 50第一部分的第二组多个波长的光信号 中的该部分波长光信号的极性与其从起偏器 50出射到开关引擎 60时的极性相 互垂直(或者称之为正交)。 同样的道理, 入射到起偏器 50第二部分的第一组 多个波长的光信号中的部分波长光信号的极性与其从起偏器 50出射到开关引擎 60时的极性也相互垂直 (或者称之为正交)。 而起偏器 50不允许极性与起偏器 50的极性相互垂直的光信号通过,允许极性与起偏器 50的极性相同的光信号完 全通过, 因此, 在本发明实施例中, 从起偏器 50的第一部分向反射元件方向出 射的光信号中也就只包含了第一组多个波长的光信号, 从起偏器 50的第二部分 向反射元件方向出射的光信号中也就只包含了第二组多个波长的光信号, 也即 串扰得到了抑制。 例中通过极性控制单元控制输出光信号的极性 , 使得入射到起偏器的不同路的 光信号调整为具有不同极性的信号, 如对于两路光纤, 调整为极性相差 90度的 信号, 则由于通过不同路光信号的起偏器的极性不同, 当发生串扰时, 可实现 极性过滤。 即该波长选择开关包括:
至少两个输入光纤端口 10、 12, 用于分别输入来自至少两个输入光纤的光 信号; 极性控制单元 22, 用于调整从输入光纤端口 10、 12输入的所述光信号的极 性, 使得调整后的至少两路光信号分别成为具有单一极性的光信号, 并且调整 后的相邻两路路光信号之间的极性相差 90度; 后的至少两路光信号, 分别获得至少两组具有多个波长的光信号;
反射元件 40, 用于将所述至少两组具有多个波长的光信号分别反射到开关 引擎上的至少两个反射区域;
至少两个起偏器 500、 502, 位于所述反射元件与所述开关引擎之间并分别 覆盖所述开关引擎的所述至少两个反射区域, 用于分别按照所述极性控制单元 调整后的至少两路光信号的极性, 对通过其的光信号进行过滤;
所述开关引擎 60, 其中, 所述开关引擎至少包含两个反射区域, 所述开关 弓 1擎的每个反射区域对入射到该反射区域的光信号进行反射控制将其反射向所 述反射元件 , 使得经过反射控制后的光信号通过对应的输出光纤端口输出。
在本例中, 对于输入光纤为两路的情况, 在极性控制单元, 即对输入的不 同路光信号的极性进行不同的控制, 使得输出光均为单一极性的光, 但同时不 同路的输出光的极性依次相差 90度。 同时对应不同路光信号的起偏器则其极性 与极性控制单元输出的该路光的极性相同, 同时该路光经过反射引擎反射后的 光信号仍然通过相同的起偏器。 当反射引擎反射的光信号发生串扰时, 由于串 扰光信号的极性与起偏器极性不同, 则无法通过该极性, 从而被过滤。
下面以一个具有两个输入光纤端口 (10、 12 ), 且具有两个起偏器(分别为 起偏器 500、 起偏器 502, 且两个起偏器各自允许完全通过的光信号的极性相差 90度) 的波长选择开关为例, 对本发明实施例的波长选择开关中的光路进行简 要描述。
正常情况下, 波长选择开关中的工作光路为:
( 1 )、 从光纤输入端口 10输入的光信号(为描述方便, 将从输入光纤端口 10输入的光信号称之为第一光信号)经过极性控制单元 22的处理后变为具有第 一极性的光信号入射到衍射光栅 30的第一衍射区域, 在衍射光栅 30的第一衍 射区域处被分解成一组多个波长的光信号 (为描述方便, 将该组多个波长的光 信号称之为第一组多个波长的光信号); 第一组多个波长的光信号射向反射元件 40后被反射元件 40朝着开关引擎 60的第一反射区域的方向反射;而起偏器 500 覆盖开关引擎 60的第一反射区域, 第一组多个波长的光信号被反射元件 40反 射后, 只经过起偏器 500 (只有极性为第一极性的光信号可以完全通过该起偏 器), 不经过起偏器 502, 然后到达开关引擎 60的第一反射区域; 开关引擎 60 的第一反射区域可以对第一组多个波长的光信号中的每个波长的光信号单独进 行反射控制 (即控制每个波长的光信号的反射方向), 第一组多个波长的光信号 中的每个波长的光信号被开关引擎 60的第一反射区域反射后再依次经过起偏器 500、 反射元件 40、 衍射光栅 30、 极性控制单元 20后从波长选择开关的相应光 纤输出端口输出;
( 2 )、 从光纤输入端口 12输入的光信号(为描述方便, 将从光纤输入端口 12输入的光信号称之为第二光信号)经过极性控制单元 22的处理后转换为具有 第二极性(与第一极性相差 90度) 的光信号入射到衍射光栅 30的第二衍射区 域, 在衍射光栅 30的第二衍射区域处被分解成一组多个波长的光信号(为描述 方便, 将该组多个波长的光信号称之为第二组多个波长的光信号); 第二组多个 波长的光信号射向反射元件 40后被反射元件 40朝着开关引擎 60的第二反射区 域的方向反射; 起偏器 502 (只有极性为第二极性的光信号可以完全通过该起偏 器)仅覆盖开关引擎 60的第二反射区域, 第二组多个波长的光信号被反射元件 40反射后, 经过起偏器 502后到达开关引擎 60的第二反射区域; 开关引擎 60 的第二反射区域可以对第二组多个波长的光信号中的每个波长的光信号单独进 行反射控制 (即控制每个波长的光信号的反射方向), 第二组多个波长的光信号 中的每个波长的光信号被开关引擎 60的第二反射区域反射后再依次经过起偏器 502、 反射元件 40、 衍射光栅 30、 极性控制单元 20后从波长选择开关的相应光 纤输出端口输出。
从上述描述的光路中可以看出, 正常情况下, 第一组多个波长的光信号从 反射元件 40向开关引擎 60的第一反射区域入射的过程中和从开关引擎 60的第 一反射区域向反射元件 4入射的过程中, 从检偏器 50出射到开关引擎 60的第 一反射区域的第一组多个波长的光信号的极性, 与起偏器 500接收到的开关引 擎 60的第一反射区域反射的第一组多个波长的光信号的极性均为第一极性, 从 而被开关引擎的 60的第一反射区域的第一组多个波长的光信号可以再次通过起 偏器 500。 正常情况下, 第二组多个波长的光信号从反射元件 40向开关引擎 60 的第二反射区域入射的过程中和从开关引擎 60的第二反射区域向反射元件 4入 射的过程中, 从检偏器 50出射到开关引擎 60的第二反射区域的第二组多个波 长的光信号的极性, 与起偏器 502接收到的开关引擎 60的第二反射区域反射的 第二组多个波长的光信号的极性均为第二极性, 从而被开关引擎的 60的第二反 射区域的第二组多个波长的光信号可以再次通过起偏器 502。
在实际的应用过程中,开关引擎 60的第一反射区域和 /或第二反射区域在进 行反射控制时, 由于控制失误或者其它原因, 导致第一组多个波长的光信号中 的部分波长的光信号被错误地反射向了起偏器 502和 /或者第二组多个波长的光 信号中的部分波长的光信号被错误地反射向起偏器 500。 由于这种错误地反射, 导致入射到起偏器 500 的光信号中既包含第一组多个波长的光信号也包含有第 二组多个波长的光信号中的部分波长的光信号, 和 /或入射到起偏器 502的光信 号中既包含第二组多个波长的光信号也包含有第一组多个波长的光信号中的部 分波长的光信号, 这种现象称之为串扰。
在本发明实施例中, 由于入射到起偏器 500 的第二组多个波长的光信号的 极性为第二极性, 而起偏器 500仅允许第一极性的光信号完全通过, 与第一极 性正交的第二极性的光信号则正好无法完全通过。 同样的道理, 入射到起偏器 502的第一组多个波长的光信号的极性为第一极性,而起偏器 502仅允许第二极 性的光信号完全通过, 与第二极性正交的第一极性的光信号则正好无法完全通 过。 也即串扰得到了抑制。
对于上述的图 3和图 4的示例中, 当还包括更多输入光纤端口时, 开关引 擎和衍射光栅则相应的包括对应数目的反射区域和衍射区间; 同时, 每个反射 区域只与其前后两个区域相邻, 而与其他区域都不详邻, 呈多行或多列形式; 也可以同样的设置衍射区间, 且衍射光栅的衍射区域也与开关引擎的反射区域 的布置一致; 而相应的, 在具有极性旋转单元的实施例中, 该极性旋转单元仅 覆盖开关引擎的单数区域或双数区域, 即呈间隔覆盖形式。
即, 对于图 3 的实施例中, 所述开关引擎的反射区域包括空间上相邻的第 一反射区域、 第二反射区域 第 2x或 (2x+l)反射区域, X为大于等于 1 的自然数; 所述极性旋转单元包括不连续的多个极性旋转器, 所述多个极性旋 转器依次覆盖所述开关引擎的第一反射区域、 第三反射区域 第 2x+l反 射区域, 或第二反射区域 第 2x反射区域。
而对于如图 4 的示例中, 衍射光栅的衍射区域、 开关引擎的反射区域的与 前述实施例布置相同; 其与图 3 的区别在于, 不具有极性旋转单元, 而是由极 性控制单元进行极性旋转, 且具有多个极性依次相差 90度的起偏器单元也对应 衍射区域布置。 不至于图示中示例, 图中仅为示意性质, 在具体实施例中也可以由其他合适的 形状。 同时, 图示中的各器件的形状, 如起偏器、 极性旋转单元等, 也仅为示 意性质, 并不以此限定本发明实施例中的各器件的具体形状。
如图 5所示, 对于图 3的实施例中, 极性控制单元 20可包括: 极性分解模 块 200, 用于将输入的光信号分解为第一极性信号和第二极性信号, 所述第一极 性信号的极性与所述第二极性信号的极性正交; 第一极性旋转模块 202, 用于将 所述第一极性信号的极性旋转 90度使其极性与所述第二极性信号的极性相同, 并将旋转后的信号与第二极性信号合成获得仅具有第二极性的光信号; 其中, 可称所述第二极性信号的极性为所述极性控制单元的极性。
如图 6所示, 则是对应图 4的实施例中, 极性控制单元 22可包括: 极性分 解模块 200,用于将输入的至少两路光信号分别分解为第一极性信号和第二极性 信号, 所述第一极性信号的极性与所述第二极性信号的极性正交; 第二极性旋 转模块 203 ,用于将对应于相邻两路光信号中第一路光信号的第一极性信号的极 性旋转 90度使其极性与对应于该第一路光信号的第二极性信号的极性相同, 并 将旋转后的信号与对应于该第一路光信号的第二极性信号合成获得仅具有第二 极性的一路光信号; 并还用于将对应于上述相邻两路光信号中的第二路光信号 的第二极性信号的极性旋转 90度使其极性与对应于该第二路光信号的第一极性 信号的极性相同, 并将旋转后的信号与第一极性信号合成获得仅具有第一极性 的另一路光信号。
在本实施例中的各模块, 在具体实现时, 可采用具有相应功能的光学器件, 如极性分解模块可采用极性光束分解器实现, 同时基于光的可逆性, 其也可以 实现极性合成模块的功能; 同样的, 极性旋转模块也可以采取实现前述的极性 旋转单元的功能的光学器件实现。
同时, 极性控制单元 20或极性控制单元 22还可包括: 极性合成模块 (图 中未示), 用于将所述开关引擎反射后输入到所述极性控制单元的光信号分别转 变为非单一极性的光信号, 并通过所述输出光纤端口输出。 当然, 如果输入的光信号即为单一极性信号, 则上述的极性控制单元可不 包括极性分解模块和第一极性旋转模块(或第二极性旋转模块), 而该极性控制 单元只需起到极性过滤的作用即可。 如果输出的光信号不需要为非单一极性信 号, 则本例中的极性控制单元可不包括极性合成模块。
同时, 为了进一步保证信号的准确输出, 本发明实施例 (如, 图 3 和图 4 所示的实施例 )中的波长选择开关还可包括校准器 22; 所述校准器 22位于输出 光纤端口与所述极性控制单元之间, 用于将所述开关引擎反射后的光信号校准 后对应输出到所述输出光纤端口。 如图 Ί所示, 则是如图 3所示的实施例的基 础上还包括校准器 22的一种示例。
应当可以理解的是, 上述的波长选择开关可以是 2输入 N输出 (当具有两 个光纤输入端口时), 由于光路可逆原理, 上述波长选择开关也可以逆向使用, 即正向使用时的输入端口作为逆向使用时的输出端口, 正向使用时的输出端口 作为逆向使用时的输入端口, 波长选择开关的结构不会发生变化。
如图 7所示, 为本发明实施例中的 2 x N WSS的一个具体结构示意图。 该 WSS包括: 两个输入光纤端口 (10和 12 ), N个光纤输出端口 (图中仅示例部 分), 校准器, 极性控制单元, 衍射光栅, 反射镜, 串扰抑制单元 (包含一个起偏 器, 一个极性旋转单元), 具有两个独立区域的开关引擎。
输入光首先进入极性控制单元, 在极性控制单元中来源于不同输入光纤的 光被分解成极性正交的两种极性, 然后其中的一种极性被旋转到另一种极性上, 使输出的光仅具有一种极性, 且使得该极性的光信号为可以完全通过后续光路 上的起偏器的光信号。 例如, 来自输入光纤 1 的光在极性控制单元中首先会被 分解成极性正交的两路子光, 然后将其中一路光的极性旋转到另一路光的极性 上, 使得两路子光具有同样的极性(这样的处理主要是因为现有的极性复用传 输***使得一个光上通常有两种极性的信号, 而本方案的处理是根据单个极性 来进行的), 在以后光路处理中这两路子光被视作一个整体来进行处理, 直到光 被反射后再次经过极性控制单元, 这时两路子光中的一路极性会被旋转到与另 一路极性相差 90度的极性上, 然后两路子光再合成一路具有两种极性的光(为 了支持极性复用***的要求)。 特别的, 两路极性相同的子光的区分是依靠它们 之间的相对位置实现的。
然后来自不同输入光纤端口的光被同一个衍射光栅的不同区域分解。 在本 例中, 衍射光栅的上半区域分解来自输入光纤端口 10的光, 而衍射光栅的下半 区域分解了来自输入光纤端口 12的光。 若还有从输入光纤端口 13输入的光, 则相应的衍射光栅分为上、 中、 下三个区域即可; 当还有更多路输入光信号时, 则衍射光栅进一步分为多行状(或多列状) 的区域。
被分解后的光被反射镜反射到极性抑制单元上, 这个极性抑制单元由一个 起偏器和一个极性旋转单元组成。 来自输入光纤端口 10的光被反射到极性抑制 单元中的起偏器的上半部分, 来自输入光纤端口 12的光反射到极性抑制单元中 的起偏器的下半部分。 而起偏器的功能是仅能够允许具有特定极性的光完全通 过, 而完全阻止与该特定极性相正交的极性的光。
通过选择合适的起偏器, 使得极性控制单元输出到衍射光栅的具有单一极 性的光信号刚好可以完全通过该起偏器。 起偏器覆盖整个开关引擎的输入光和 输出光光路, 而起偏器后放置的极性旋转单元仅覆盖起偏器的下半区域和开关 引擎的下半区域。 来源于两个输入光纤端口的入射光第一次经过起偏器时, 由 于在前端的极性控制单元已经对光的极性进行了调整, 使其正好是起偏器的通 过极性, 光可以毫无困难的通过。 来自输入光纤端口 10的信号通过起偏器上半 部分后直接被开关引擎上半部分反射, 并反射回起偏器的上半部分而不会经过 仅覆盖起偏器和开关引擎下半区域的极性旋转单元, 反射光再一次通过起偏器, 由于源于输入光纤端口 10的信号仅在起偏器和开关引擎的上半部分处理, 所以 并不经过极性旋转单元, 即光的极性不被改变, 所以反射光可以通过起偏器出 射。 而来自输入光纤端口 12的信号通过起偏器下半部分后, 首先被极性旋转单 元改变极性(极性被旋转 90度, 与起偏器的极性垂直, 使得这个极性不能通过 起偏器), 然后入射光被开关引擎的下半部分反射, 反射光再一次经过极性旋转 单元, 极性被再次旋转 90度, 两次旋转的结果使得反射光的极性恢复到起偏器 的通过极性上, 反射光可以通过起偏器的下半部分。
而串扰光则是来自输入光纤端口 10的光在开关引擎中被错误地反射到下半 区域的光路(这时光在入射到开关引擎前没有经过极性旋转单元, 反射的时候 经过一次极性旋转单元), 或者来自输入光纤端口 12 的光在开关引擎中被错误 地被反射到上半区域的光路上 (这时光在入射到开关引擎前经过一次极性旋转 单元, 而在反射后不会经过极性旋转单元); 由于这样的光只经过极性旋转器一 次, 极性仅被旋转 90度, 使得该光信号的极性刚好与极性控制单元输出到衍射 光栅的光信号的极性相差 90度, 所以在反射到起偏器时完全不能通过, 而被过 滤掉, 即达到抑制串扰的目的。
开关引擎分成上下两个独立的区域, 分别对来源于输入光纤端口 1 和输入 光纤端口 2的光进行反射控制。 当然, 若还有输入光纤端口 3输入的光, 则相 应的开关引擎分为上、 中、 下三个区域; 同时, 极性旋转单元仅覆盖上中下三 个区域中的中间区域(或上下区域)。 当还有更多路输入光信号时, 则开关引擎 进一步分为多行状(或多列状) 的区域, 极性旋转单元则隔行覆盖一个区域。
本发明实施例中的极性改变主要是针对光通过极性旋转单元后, 极性发生 的 90度变化而言, 而通过起偏器, 开关引擎后光的极性是不会发生变化的。 对 于来自输入光纤端口 10的光而言, 它在经过反射镜反射到起偏器后, 经过的器 件包括衍射光栅的上半部分, 起偏器的上半部分, 开关引擎的上半部分, 而没 有经过会改变极性的极性旋转单元, 所以极性没有改变。 而源于输入光纤端口 12的光由于会两次经过极性旋转单元, 它的极性改变 180度, 就是没变, 也可 以再次通过起偏器。 但是对于串扰光, (从上半光路串到下半光路或者从下半光 路传到上半光路), 只会经过一次极性旋转单元, 极性改变 90度, 所以不能通 过起偏器, 这就达到了抑制串扰的目的。
当然, 从上述实施例中可以理解, 输入光信号路数越多, 则衍射光栅和开 关引擎等划分的区域也就越多, 相应的串扰抑制性能则相对下降。
如图 8所示, 则为本发明实施例中的另一种波长选择开关, 其包括: N个 光纤输入端口, 用于对应输入来自 N条输入光纤的光信号; N个 1 X M/2分光 器, 其输入端分别与所述 N个光纤输入端口连接, 用于将通过 N个光纤输入端 口输入的 N个光信号分别分为 M/2路光信号, 其中, N和 M为大于等于 2的整 数; W2个具有串扰抑制功能的 N X 2波长选择开关,每个所述 N X 2波长选择 开关的输入连接所有所述 N个分光器的一路输出。
其中, 所述 Ν χ 2波长选择开关为逆向使用的前文实施例中的 (如, 图 3、 图 4或图 7等所示)波长选择开关, 所述 Ν χ 2波长选择开关的光纤输入端口对 应前文实施例中的波长选择开关的光纤输出端口,所述 N X 2波长选择开关的光 纤输出端口对应前文实施例中的波长选择开关的两个光纤输入端口。 例如, 将 图 7所示的 2 X N波长选择开关逆向使用就成了本实施例中的 N X 2波长选择开 关, 即, 图 7所示的 2 χ Ν波长选择开关中的两个输入光纤端口在本实施例中作 为两个输出光纤端口, 图 Ί所示的 2 χ Ν波长选择开关中的 N个输出光纤端口 在本实施例中作为 N个输入光纤端口。 的波长选择开关; 如图 8的示例中, N个椭圓代表 N个分光器, 其功能是一个 输入信号分成完全相同的 M/2份。 2 X N WSS 可以逆向使用, 既可以将 2作为 输入端口, N作为输出端口, 也可以将 N作为输入端口, 2作为输出端口。 Ν χ M WSS的工作原理是可以将任意一个输入端口的任意一个波长信号输出到任意 一个输出端口上。
而由上述实施例中的 i x N (用在本例中 i=2 ) WSS和分光器构造的结构可 以达到和 N x M WSS相同的效果。 首先, 每一路的信号通过分路器可以到达每 一个 N X 2 WSS , 这个 WSS可以选择 N个输入端口中的任意一个输入端口的任 意一个波长送达到 2个输入端口中的任一个输出端口。 通过 M/2组这样结构的 组合就可以实现与 N X M WSS等效的功能。 即将任意一个输入端口的任意一个 波长信号输出到任意一个输出端口上。
相比于现有技术中使用 N X 1 WSS构造 N X M WSS的方法, 本实施例只 需要 M/2个 N X 2的 WSS模块来实现 N X M WSS , 模块数相对于现有技术中 减少 50 % , 互联的光纤数为 Νχ(Μ/2),也减少了 50%。
当然, i还可以选择为大于等于 2的数, 用 N x i WSS来构造 N x M WSS , 则只需要 M/i个 N X i的 WSS模块来实现 N X M WSS , 模块数仅为现有技术中 的模块数的 1/i个, 互联的光纤数为 Nx(M/i) , 也仅为现有技术中的 l/i。
通过上述描述可知, 在本发明实施例中, 在单个 WSS结构的基石出上实现了 i N WSS的结构( i为大于或等于 2的自然数), 并对多路光实现了独立的控制。 通过极性控制单元和起偏器(或还包括极性旋转单元)控制入射到开关引擎不 同区域光的极性, 并使反射的光根据其极性的不同, 受限在各自的反射通路通 过, 从而减少了来源于不同输入光纤的光之间的相互带内串扰。
通过本发明实施例构造更多端口数的 N X M WSS相对于使用 1 X N WSS来 构造, 模块数相对减少, 互联的光纤数为 N x (M/i) , 也减少了。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种波长选择开关, 其特征在于, 所述波长选择开关包括:
至少两个输入光纤端口, 用于分别输入来自至少两个输入光纤的光信号; 极性控制单元, 用于调整从每个输入光纤端口输入的光信号的极性, 使得 调整后的至少两路光信号都成为只具有一种极性的光信号, 且所述调整后的至 少两路光信号的极性相同; 的至少两路光信号, 分别获得至少两组具有多个波长的光信号;
反射元件, 用于将所述至少两组具有多个波长的光信号分别反射到开关引 擎上的至少两个反射区域;
起偏器, 位于所述反射元件与所述开关引擎之间并覆盖所述开关引擎的所 述至少两个反射区域, 用于按照所述极性控制单元的极性对通过其的光信号进 行过滤;
极性旋转单元, 位于所述起偏器与所述开关引擎之间并覆盖所述开关引擎 的所述至少两个反射区域中的第一反射区域而不覆盖与所述第一反射区域相邻 的反射区域, 用于将通过其的光信号的极性旋转 90度;
所述开关引擎, 其中, 所述开关引擎至少包含两个反射区域, 所述开关引 擎的每个反射区域对入射到该反射区域的光信号进行反射控制将其反射向所述 反射元件 , 使得经过反射控制后的光信号通过对应的输出光纤端口输出。
2、 如权利要求 1所述的波长选择开关, 其特征在于, 所述极性控制单元包 括:
极性分解模块, 用于将输入的光信号分解为第一极性信号和第二极性信号, 所述第一极性信号的极性与所述第二极性信号的极性正交;
第一极性旋转模块, 用于将所述第一极性信号的极性旋转 90度使其极性与 所述第二极性信号的极性相同, 并将旋转后的信号与第二极性信号合成获得仅 具有第二极性的光信号;
其中, 称所述第二极性信号的极性为所述极性控制单元的极性。
3、 如权利要求 2所述的波长选择开关, 其特征在于, 所述极性控制单元还 包括:
极性合成模块, 用于将所述开关引擎反射后输入到所述极性控制单元的光 信号分别转变为非单一极性的光信号 , 并通过所述输出光纤端口输出。
4、 如权利要求 1至 3中任一项所述的波长选择开关, 其特征在于, 所述波 长选择开关还包括校准器;
所述校准器位于所述输出光纤端口与所述极性控制单元之间, 用于将所述 开关引擎反射后的光信号校准后对应输入到到相应的输出光纤端口。
5、 如权利要求 1至 4中任一项所述的波长选择开关, 其特征在于, 所述开 关引擎的至少两个反射区域包括为空间上上下或左右相邻的至少两个区域。
6、 如权利要求 5所述的波长选择开关, 其特征在于, 所述开关引擎的反射 区域包括空间上相邻的第一反射区域、 第二反射区域 第 2x或 (2x+l)反 射区域, X为大于等于 1的自然数;
所述极性旋转单元包括不连续的多个极性旋转器, 所述多个极性旋转器依 次覆盖所述开关引擎的第一反射区域、第三反射区域 第 2x+l反射区域, 或第二反射区域 第 2x反射区域。
7、 一种波长选择开关, 其特征在于, 所述波长选择开关包括:
至少两个输入光纤端口, 用于分别输入来自至少两个输入光纤的光信号; 极性控制单元, 用于调整从每个输入光纤端口输入的所述光信号的极性, 使得调整后的至少两路光信号分别成为具有单一极性的光信号, 并且调整后的 相邻两路光信号之间的极性相差 90度; 的至少两路光信号, 分别获得至少两组具有多个波长的光信号;
反射元件, 用于将所述至少两组具有多个波长的光信号分别反射到开关引 擎上的至少两个反射区域;
至少两个起偏器, 位于所述反射元件与所述开关引擎之间并分别覆盖所述 开关引擎的所述至少两个反射区域, 用于分别按照所述极性控制单元调整后的 至少两路光信号的极性, 对通过其的光信号进行过滤;
所述开关引擎, 其中, 所述开关引擎至少包含两个反射区域, 所述开关引 擎的每个反射区域对入射到该反射区域的光信号进行反射控制将其反射向所述 反射元件 , 使得经过反射控制后的光信号通过对应的输出光纤端口输出。
8、 如权利要求 7所述的波长选择开关, 其特征在于, 所述极性控制单元包 括:
极性分解模块, 用于将输入的至少两路光信号分别分解为第一极性信号和 第二极性信号, 所述第一极性信号的极性与所述第二极性信号的极性正交; 第二极性旋转模块, 用于将对应于相邻两路光信号中第一路光信号的第一 极性信号的极性旋转 90度使其极性与对应于所述第一路光信号的第二极性信号 的极性相同, 并将旋转后的信号与对应于所述第一路光信号的第二极性信号合 成获得仅具有第二极性的一路光信号; 并还用于将对应于所述相邻两路光信号 中第二路光信号的第二极性信号的极性旋转 90度使其极性与对应于所述第二路 光信号的第一极性信号的极性相同, 并将旋转后的信号与对应于所述第二路光 信号的第一极性信号合成获得仅具有第一极性的一路光信号。
9、 如权利要求 8所述的波长选择开关, 其特征在于, 所述极性控制单元还 包括:
极性合成模块, 用于将所述开关引擎反射后输入到所述极性控制单元的光 信号分别转变为非单一极性的光信号 , 并通过所述输出光纤端口输出。
10、 如权利要求 7至 9中任一项所述的波长选择开关, 其特征在于, 所述 波长选择开关还包括校准器;
所述校准器位于所述输出光纤端口与所述极性控制单元之间, 用于将所述 开关引擎反射后的光信号校准后对应输入到到相应的所述输出光纤端口。
11、 一种波长选择开关, 其特征在于, 所述波长选择开关包括:
N个光纤输入端口, 用于对应输入来自 N条输入光纤的光信号;
N个 1 X M/2分光器, 其输入端分别与所述 N个光纤输入端口连接; 每个 1 x M/2分光器用于将输入的光信号分成 M/2路光信号, 其中, N和 M为大于等 于 2的整数;
M/2个具有串扰抑制功能的 N X 2波长选择开关, 每个所述 N X 2波长选择 开关的 N个输入端口连接所有所述 N个分光器的一路输出;
其中, 所述 N X 2波长选择开关为如权利要求 1至 10所述的任意一种波长 选择开关, 所述 N x 2波长选择开关的光纤输入端口对应如权利要求 1至 10中 的波长选择开关的光纤输出端口,所述 N X 2波长选择开关的光纤输出端口对应 如权利要求 1至 10中的波长选择开关的光纤输入端口。
PCT/CN2012/076768 2012-06-12 2012-06-12 波长选择开关 WO2013185287A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/076768 WO2013185287A1 (zh) 2012-06-12 2012-06-12 波长选择开关
CN201280001313.8A CN103069320B (zh) 2012-06-12 2012-06-12 波长选择开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076768 WO2013185287A1 (zh) 2012-06-12 2012-06-12 波长选择开关

Publications (1)

Publication Number Publication Date
WO2013185287A1 true WO2013185287A1 (zh) 2013-12-19

Family

ID=48110620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076768 WO2013185287A1 (zh) 2012-06-12 2012-06-12 波长选择开关

Country Status (2)

Country Link
CN (1) CN103069320B (zh)
WO (1) WO2013185287A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343814A1 (en) * 2016-12-27 2018-07-04 Xieon Networks S.à r.l. Wavelength selective switch and reconfigurable optical add/drop multiplexer

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353633B (zh) * 2013-08-05 2016-04-06 武汉邮电科学研究院 波长选择开关和波长选择方法
CN103792622B (zh) * 2014-01-14 2015-09-23 武汉邮电科学研究院 基于mems微镜阵列和可变形镜的可编程wss及实现方法
CN104777557B (zh) * 2015-04-29 2018-01-02 武汉邮电科学研究院 基于lcos的多端口可变带宽波长选择开关
EP3318906B1 (en) * 2015-07-10 2021-11-10 Huawei Technologies Co., Ltd. Wavelength selection switching, reconfigurable optical add-drop multiplexer and wavelength selection method
CN107003480B (zh) * 2016-03-01 2019-11-05 肖峰 波长选择开关装置、通信设备和波长切换方法
CN108702234B (zh) * 2016-05-05 2019-12-06 华为技术有限公司 可重构光分插复用器
WO2018068038A1 (en) * 2016-10-07 2018-04-12 Oplink Communications, Llc Wavelength selective switch
WO2018128621A1 (en) * 2017-01-06 2018-07-12 Nistica, Inc. Optical arrangement for suppressing outerband crosstalk in a wavelength selective switch
CN110412811A (zh) * 2018-04-27 2019-11-05 福州高意通讯有限公司 一种具有nxm端口数的oxc交叉互联光开关
US11079551B2 (en) * 2019-01-02 2021-08-03 Lumentum Operations Llc Liquid crystal on silicon element for dual-functionality beam steering in wavelength selective switches
CN117075266A (zh) * 2022-05-09 2023-11-17 华为技术有限公司 一种wss、roadm、光传输***和光信号的传输方法
CN116009327A (zh) * 2023-01-16 2023-04-25 安徽共芯光子科技有限公司 一种光束偏转器件组及波长选择开关

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316585A1 (en) * 2005-09-08 2008-12-25 Xtellus, Inc. Optical Wavelength Selective Router
CN201387495Y (zh) * 2009-03-12 2010-01-20 福州高意通讯有限公司 一种多波长选择开关
CN101888280A (zh) * 2009-05-13 2010-11-17 华为技术有限公司 波长选择装置及方法、波长复用设备
WO2010146590A1 (en) * 2009-06-18 2010-12-23 Xtellus Ltd. Liquid crystal wavelength selective router

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316585A1 (en) * 2005-09-08 2008-12-25 Xtellus, Inc. Optical Wavelength Selective Router
CN201387495Y (zh) * 2009-03-12 2010-01-20 福州高意通讯有限公司 一种多波长选择开关
CN101888280A (zh) * 2009-05-13 2010-11-17 华为技术有限公司 波长选择装置及方法、波长复用设备
WO2010146590A1 (en) * 2009-06-18 2010-12-23 Xtellus Ltd. Liquid crystal wavelength selective router

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343814A1 (en) * 2016-12-27 2018-07-04 Xieon Networks S.à r.l. Wavelength selective switch and reconfigurable optical add/drop multiplexer
WO2018122146A1 (en) * 2016-12-27 2018-07-05 Xieon Networks S.À R.L. Wavelength selective switch and reconfigurable optical add/drop multiplexer
US10862611B2 (en) 2016-12-27 2020-12-08 Xieon Networks S.A.R.L. Wavelength selective switch and reconfigurable optical add/drop multiplexer

Also Published As

Publication number Publication date
CN103069320B (zh) 2014-06-04
CN103069320A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2013185287A1 (zh) 波长选择开关
US10133005B2 (en) Wavelength selective switch, reconfigurable optical add/drop multiplexer, and wavelength selection method
US6285478B1 (en) Programmable optical add/drop device
JP6697476B2 (ja) 波長選択スイッチにおけるダイバーシティおよびポート間のアイソレーションを管理するための光学配置
JP6342894B2 (ja) 光クロスコネクト装置
JP6021492B2 (ja) 光クロスコネクト装置
WO2012125722A1 (en) Wavelength selective switch
US10620374B2 (en) Wavelength selective switch
JP2018504007A (ja) カラーレス、ディレクションレスおよびコンテンションレスのネットワークノード
JP2020514797A (ja) 波長選択スイッチにおける帯域外クロストークを抑制するための光学配置
JP2018508839A (ja) クロストークを回避するために周波数分離を増大させた波長選択スイッチ
JP2011085688A (ja) 波長選択スイッチおよび光伝送装置
WO2002043431A1 (en) An optical switch and method of switching optical signals
JPWO2015005170A1 (ja) 光クロスコネクト装置
WO2010012100A1 (en) Optical roundabout switch
US20100086301A1 (en) Directionless reconfigurable optical add/drop multiplexer
CN110149165B (zh) 一种光交叉连接装置
US11899244B2 (en) Wavelength selective switch
CN116184573A (zh) 光交叉装置和光交叉设备
US8774631B2 (en) Switch node
WO2016002736A1 (ja) 光クロスコネクト装置
JP5276045B2 (ja) 波長選択スイッチ
JP2008259133A (ja) 光クロスコネクト装置及び光クロスコネクトシステム及び光クロスコネクト装置における信号制御方法
JP6387331B2 (ja) 波長選択切換装置
JP4755126B2 (ja) 波長ルーティング網

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001313.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878741

Country of ref document: EP

Kind code of ref document: A1