WO2013183750A1 - 面光源装置、表示装置および照明装置 - Google Patents

面光源装置、表示装置および照明装置 Download PDF

Info

Publication number
WO2013183750A1
WO2013183750A1 PCT/JP2013/065788 JP2013065788W WO2013183750A1 WO 2013183750 A1 WO2013183750 A1 WO 2013183750A1 JP 2013065788 W JP2013065788 W JP 2013065788W WO 2013183750 A1 WO2013183750 A1 WO 2013183750A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
lens
box
Prior art date
Application number
PCT/JP2013/065788
Other languages
English (en)
French (fr)
Inventor
昇平 勝田
豪 鎌田
大祐 篠崎
昌洋 辻本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/405,221 priority Critical patent/US20150146132A1/en
Publication of WO2013183750A1 publication Critical patent/WO2013183750A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a surface light source device, a display device, and a lighting device.
  • a transmissive liquid crystal display device that performs display using light emitted from a surface light source device.
  • This type of liquid crystal display device has a liquid crystal panel and a surface light source device disposed on the back side of the liquid crystal panel.
  • a conventional surface light source device generally includes a light source such as a light emitting diode (hereinafter abbreviated as LED) and a light guide plate.
  • LED light emitting diode
  • the light emitted from the light source propagates inside the light guide plate and is emitted from the front surface of the light guide plate.
  • the surface light source device provided on the back side of the display panel may be referred to as a backlight.
  • Patent Document 1 discloses a backlight device including a light generation device, a slab waveguide, a substrate, a microprism, and a microlens.
  • this backlight device light emitted from the substrate is collimated by a microprism and further collimated by a microlens.
  • Patent Document 2 discloses a backlight including a front reflector and a back reflector that form a hollow light recycling cavity. In this backlight, the light from the light source is reflected from the front reflector and the back reflector a plurality of times and propagates through the cavity, and then output from the output surface.
  • Patent Document 2 In the backlight device of Patent Document 1, only the light incident on the microprism out of the light emitted from the substrate is extracted outside. Therefore, there is a problem that the light extraction efficiency is low. The light extraction amount needs to be adjusted by the installation area and the arrangement interval of the microprisms, and the adjustment of the light extraction amount is complicated.
  • the backlight disclosed in Patent Document 2 reflects light from a light source a plurality of times in the cavity and takes it out while propagating through the cavity. However, since light having various angle components is output, it is difficult to obtain light having directivity.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a surface light source device that can obtain light having directivity. It is another object of the present invention to provide a display device and an illumination device provided with this type of surface light source device.
  • a surface light source device of the present invention has a light source and a light emission surface provided with at least one light transmission part, and reflects light from the light source multiple times in an internal space.
  • a box body that is guided while being emitted from the light transmitting portion, and a lens member that includes at least one unit lens disposed to face the light exit surface of the box body, and the focal point of the unit lens Is substantially coincident with the position of the light transmitting portion.
  • a plurality of the light transmission portions are provided on the light emission surface of the box, and the lens member includes the plurality of unit lenses corresponding to the plurality of light transmission portions. It is characterized by.
  • the surface light source device of the present invention is characterized in that the light transmission part is an opening provided in the box.
  • the surface light source device of the present invention is characterized in that at least a part of the inner surface of the box is a scattering reflection surface that scatters and reflects light from the light source.
  • the surface light source device of the present invention is characterized in that at least a part of the inner surface of the box is a regular reflection surface that regularly reflects light from the light source.
  • the surface light source device of the present invention is characterized in that the unit lens is a biconvex lens.
  • the surface light source device of the present invention is characterized in that the unit lens is a plano-convex lens.
  • the surface light source device of the present invention is characterized in that the unit lens is a parabolic lens.
  • the surface light source device of the present invention is characterized in that the lens member includes an alignment section for aligning the focal position of the unit lens with the position of the light transmission section.
  • the surface light source device of the present invention is characterized in that the alignment part is a protrusion of the unit lens inserted into an opening constituting the light transmission part.
  • the surface light source device of the present invention is characterized in that the planar shape of the light transmission part viewed from the normal direction of the light exit surface of the box is a circle.
  • the surface light source device of the present invention is characterized in that the planar shape of the light transmission part viewed from the normal direction of the light emitting surface of the box is a shape other than a circle.
  • the surface light source device of the present invention is characterized in that the planar shape of the unit lens viewed from the normal direction of the light exit surface of the box is a polygonal shape.
  • the surface light source device of the present invention is characterized in that a condensing member is provided in the internal space of the box to collect the light guided through the internal space in the light transmitting portion.
  • the surface light source device of the present invention is characterized in that the light collecting member is a telecentric lens.
  • the surface light source device of the present invention transmits the first polarized light out of the light emitted from the lens member to the light emission side of the lens member, and the second polarized light having a polarization state different from that of the first polarized light.
  • a polarization selection element that reflects the light is provided.
  • the surface light source device is characterized in that, of the outer surface of the box, the surface facing the lens member is a light absorbing surface.
  • the display device includes the surface light source device and a display element that performs display using light emitted from the surface light source device.
  • the display device of the present invention is characterized in that the display element is a liquid crystal panel that modulates the transmittance of light emitted from the surface light source device.
  • the display device of the present invention is characterized in that a light diffusing member for expanding a diffusion angle of light emitted from the liquid crystal panel is provided on the light emitting side of the liquid crystal panel.
  • the display device of the present invention is characterized in that the display element is a fluorescence excitation type display that emits fluorescence using light from the surface light source device as excitation light.
  • the illumination device of the present invention includes the surface light source device.
  • a surface light source device capable of obtaining directional light and a display device including the surface light source device.
  • a display device and an illumination device including the surface light source device it is possible to provide a display device and an illumination device including the surface light source device.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 1. It is a figure which shows the path
  • FIG. 2 is a sectional view taken along line B-B ′ of FIG. 1.
  • FIG. 14A is a diagram showing a light path in the section A-A ′ in FIG. 13
  • FIG. 14B is a diagram showing a light path in the section B-B ′ in FIG. 13.
  • (A) to (C) is a plan view showing a modification of the planar shape of the opening. It is sectional drawing of the surface light source device of 6th Embodiment.
  • FIG. 1 is a perspective view of the surface light source device of the present embodiment.
  • FIG. 2 is a plan view of the surface light source device.
  • 3 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 4 is a diagram illustrating a light path in the surface light source device.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG.
  • the scale of the size may be changed depending on the component.
  • the surface light source device 1 of the present embodiment includes a plurality of light emitting diodes 2 (Light Emitting Diode, hereinafter abbreviated as LED), a box 3, and a lens sheet 4 (lens). Member).
  • the lens sheet 4 is disposed to face a top plate 3a of the box 3 described later.
  • the lens sheet 4 and the box 3 are drawn separately to make the drawing easy to see. Actually, the lens sheet 4 and the box 3 are disposed at closer positions. The lens sheet 4 and the box 3 may be in close contact with each other.
  • the box 3 has a substantially rectangular parallelepiped shape. As shown in FIGS. 3 and 5, the inside of the box 3 is hollow and air is present. As shown in FIG. 2, the top plate 3a and the bottom plate 3b of the box 3 have a rectangular shape when viewed from the normal direction. As shown in FIG. 3, the top plate 3a and the bottom plate 3b are made of plate materials that are parallel to the xy plane and parallel to each other. Among the four side plates 3c and 3d surrounding the top plate 3a and the bottom plate 3b, a plurality of LEDs 2 are provided on one side plate 3d corresponding to the short side of the top plate 3a and the bottom plate 3b.
  • the plurality of LEDs 2 are provided at equal intervals along the y-axis direction in the center of the side plate 3d in the height direction. In the present embodiment, three LEDs 2 are used, but the number of LEDs 2 is not limited to three, and may be at least one, and may be any number.
  • the side plate 3d provided with the LED 2 is inclined from the side in contact with the top plate 3a and the bottom plate 3b to the center side provided with the LED 2, and is larger than 90 ° with respect to the top plate 3a or the bottom plate 3b from 180 °.
  • the taper surface has a small angle ⁇ .
  • the LED 2 does not need to have a specific function or performance, and a general commercially available LED 2 can be used.
  • the entire surface light source device 1 is required to emit light having directivity, but the LED 2 does not need to emit light having directivity.
  • An LED 2 that emits general diffused light can be used.
  • the LED 2 is fixed to the box 3 so that the light emission surface 2 a of the LED 2 faces the inside of the box 3. Thereby, the LED 2 emits light toward the internal space of the box 3.
  • the internal space of the box 3 is referred to as a cavity 5.
  • the box 3 is made of various materials such as metal and plastic, but the material is not particularly limited.
  • the inner surface 3i of the box 3 facing the cavity 5 needs to be a reflecting surface that reflects light. This is because the light emitted from the LED 2 needs to be guided through the cavity 5 while being reflected by the inner surface 3 i of the box 3 a plurality of times. Therefore, in order to minimize light loss during reflection, it is desirable that the light reflectance of the inner surface 3i of the box 3 is as high as possible. Therefore, for example, when the box 3 is made of plastic, a reflective film made of a material having high light reflectivity may be provided on the inner surface 3i of the box 3.
  • At least a part of the inner surface 3 i of the box 3 may be a scattering reflection surface that scatters and reflects the light emitted from the LED 2.
  • at least a part of the inner surface 3 i of the box 3 may be a regular reflection surface that regularly reflects light emitted from the LED 2.
  • all of the inner surface 3i of the box 3 may be a scattering reflection surface, or all of the inner surface 3i of the box 3 may be a regular reflection surface.
  • the regular reflection surface and the scattering reflection surface may be mixed, such that the inner surface 3i of the top plate 3a is a regular reflection surface and the inner surface 3i of the bottom plate 3b is a scattering reflection surface.
  • the box 3 may be integrally molded, or may be a combination of a plurality of members.
  • the top plate 3a of the box 3 is provided with a plurality of openings 6 that allow the external space of the box 3 and the cavity 5 to communicate with each other.
  • the planar shape of the opening 6 is a circle, and 13 openings 6 are provided in the top plate 3 a of the box 3.
  • the plurality of openings 6 are regularly arranged.
  • the two openings in the even-numbered rows are arranged with respect to the arrangement of the three openings 6 in the odd-numbered rows.
  • the arrangement of 6 is shifted by 1/2 pitch in the y-axis direction.
  • three openings 6 are arranged in the odd-numbered rows from the top, and two openings 6 are arranged in the even-numbered rows. If the interval Px between the openings 6 adjacent to each other in the x-axis direction in the same row is 1 pitch, the two openings in the even-numbered rows are arranged with respect to the arrangement of the three openings 6 in the odd-numbered rows. The arrangement of 6 is shifted by 1/2 pitch in the x-axis direction.
  • the ratio of the total area of the plurality of openings 6 to the total area of the top plate 3a is, for example, about 10%.
  • the light L emitted from the LED 2 is repeatedly reflected by the inner surface 3 i of the box 3 to guide the inside of the cavity 5. That is, the light L emitted from the LED 2 is repeatedly reflected on the inner surface 3i of the top plate 3a and the inner surface 3i of the bottom plate 3b when viewed in the xz cross section as shown in FIG. 3, and as shown in FIG. When viewed in cross section, reflection is repeated by the four side plates 3c and 3d.
  • the top plate 3a of the box 3 provided with the opening 6 is a light emitting surface for taking out the light L from the LED 2.
  • At least the outer surface 3 h facing the lens sheet 4 is preferably a light absorption surface provided with a black coating film, for example.
  • the reason for this is that the light returned to the box 3 so that the light reflected on the light incident surface of the lens sheet 4 and returned to the box 3 is not reflected on the outer surface 3h of the box 3 to disturb the directivity. Is to be absorbed by the outer surface 3h.
  • the lens sheet 4 is a sheet-like member having a plurality of lenses 7 (unit lenses) as shown in FIG.
  • the lens sheet 4 of the present embodiment has 13 lenses 7 having the same dimensions and the same shape.
  • the 13 lenses 7 are regularly arranged.
  • the lens 7 is a biconvex lens having a circular planar shape when viewed from the optical axis direction and two convex surfaces being spherical surfaces. When the lens sheet 4 is viewed from the normal direction, as shown in FIG. 2, the lens 7 is disposed so that the center of the circle that is the outline of the lens 7 coincides with the opening 6.
  • three lenses 7 are arranged in the odd-numbered rows from the top, and two lenses 7 are arranged in the even-numbered rows. If the interval Px between the lenses 7 adjacent to each other in the x-axis direction in the same row is 1 pitch, the arrangement of the two lenses 7 in the even-numbered row is different from the arrangement of the three lenses 7 in the odd-numbered row. Is shifted by 1 ⁇ 2 pitch in the x-axis direction.
  • the lens 7 is arranged so that the focal point F of the lens 7 coincides with the position of the opening 6 corresponding to the lens 7. Yes. That is, the focal point F of the lens 7 is located inside the opening 6 corresponding to the lens 7.
  • the light L guided in the cavity 5 reaches the opening 6 after being reflected by the various inner surfaces 3 i of the box 3 a plurality of times. Therefore, the light L is emitted from the opening 6 at various angles. Regardless of the angle at which the light L is emitted from the opening 6, if the diameter D of the opening 6 is small to some extent, only the light L emitted from the focal point F of the lens 7 or its vicinity enters the lens 7. Thereby, the light L incident on the lens 7 at various angles is converted into light substantially parallel to the optical axis AX of the lens 7 and emitted from the lens 7.
  • the light L is extracted only from the opening 6 of the box 3. Therefore, light L that is substantially parallel to the optical axis AX of the lens 7, that is, light L with high directivity, can be obtained by the action of the spherical lens having the focal point F at the position of the opening 6. Further, since the light L emitted from the opening 6 of the box 3 is repeatedly reflected inside the cavity 5, the light distribution and the luminance distribution are made uniform when emitted from the box 3. Has been. As a result, light having a uniform light distribution and luminance distribution can be obtained as a whole of the surface light source device 1 through the lens sheet 4.
  • the opening 6 can be regarded as a secondary light source. It can. That is, light L with a uniform light distribution and luminance distribution is emitted from the opening 6 which is a secondary light source. Therefore, it is not necessary to use the LED 2 excellent in light distribution and luminance distribution as the primary light source, and the degree of freedom in selecting the LED 2 to be used can be increased.
  • the LED 2 is installed on the side plate 3d of the box 2.
  • the light L from the LED 2 only needs to enter the cavity 5, so the installation position of the LED 2 is not necessarily limited to the side plate 3d of the box 3. .
  • the LED 2 can be installed on the top plate 3a or the bottom plate 3b of the box 3.
  • the freedom degree of the installation position of LED2 is also high.
  • the example in which the plurality of lenses 7 and the openings 6 are regularly arranged at a uniform pitch is shown.
  • the focal point F of the lens 7 is arranged so as to coincide with the position of the opening 6 corresponding to the lens 7, the plurality of lenses 7 and the opening 6 may not necessarily be arranged regularly. .
  • the plurality of lenses 7 and the openings 6 may be arranged randomly.
  • the top plate 3a and the bottom plate 3b of the box 3 do not necessarily have to be parallel.
  • FIG. 6 is a perspective view of the surface light source device of this embodiment.
  • FIG. 7 is a plan view of the surface light source device. 6 and 7, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the surface light source device 11 of the present embodiment includes a plurality of LEDs 2 that constitute a light source, a box body 14, and a lens sheet 12 (lens member).
  • the lens sheet 12 is a sheet-like member having a plurality of lenses 13 (unit lenses).
  • the planar shape of the lens 13 when viewed from the normal direction of the lens sheet 12 is a circle in the present embodiment, whereas it is a circle in the first embodiment.
  • the lens sheet 12 of this embodiment has 12 lenses 13 having the same dimensions and the same shape as shown in FIG.
  • the twelve lenses 13 are arranged in a grid in 3 rows and 4 columns.
  • the lens 13 is arranged so that the center of the square that is the outline of the lens 13 coincides with the opening 6. Therefore, the box body 14 has twelve openings 6, and the twelve openings 6 are arranged in a lattice pattern in three rows and four columns at the same pitch.
  • Reference numeral 14a denotes a top plate
  • 14b denotes a bottom plate
  • 14c and 14d denote side plates.
  • Other configurations are the same as those of the first embodiment.
  • the surface light source device 11 of the present embodiment light with high directivity and uniform light distribution and luminance distribution can be obtained.
  • the lens 7 of the first embodiment is circular, it is impossible to dispose the lenses 7 with no gap. Therefore, the lens sheet 4 has a flat portion other than the lens 7.
  • the lens 13 of this embodiment is square, as shown in FIG. 7, the lenses 13 can be arranged without a gap. With this configuration, the surface light source device 11 of this embodiment can obtain a more uniform luminance distribution than the surface light source device 1 of the first embodiment.
  • the lens sheet 12 has a square lens 13.
  • the lens sheet 17 has a regular hexagonal lens 18.
  • Reference numeral 19 denotes a box.
  • FIG. 9 is a cross-sectional view of a main part of the surface light source device of this embodiment.
  • FIG. 10 is a diagram illustrating a light path in the surface light source device of the present embodiment. 9 and 10, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the lens 23 is a plano-convex lens in which one surface of the lens 23 is a flat surface 23a and the other surface is a spherical surface 23b.
  • the lens sheet 22 and the top plate 3a of the box 3 are in close contact with each other on the flat surface 23a side on which light is incident.
  • a projection 23t is provided on the flat surface 23a side of the lens 23, and the projection 23t is inserted into the opening 6 of the top plate 3a with almost no gap.
  • the lens sheet 22 and the box 3 are aligned by fitting the projection 23 t of the lens 23 into the opening 6. That is, as shown in FIG. 10, the protrusion 23 t functions as an alignment unit for aligning the focal point F of the lens 23 with the position of the opening 6.
  • Other configurations are the same as those of the first embodiment.
  • Alignment between the aperture and the focal point of the lens is important for obtaining highly directional light.
  • fixing means for accurately fixing the relative position of the lens sheet with respect to the box is necessary.
  • the opening 6 and the focal point F of the lens 23 are reliably aligned by the configuration in which the protrusion 23t of the lens 23 is fitted into the opening 6 of the top plate 3a. be able to. As a result, light with higher directivity can be obtained.
  • the projections 23t on the lens 23 for example, after forming the lens 23, a photosensitive resin may be applied to the flat surface side, and the photosensitive resin may be exposed by irradiating parallel light from the convex surface side. In that case, the light is focused on the focal point by the action of the lens 23, and only the photosensitive resin in the vicinity of the focal point and its vicinity is selectively exposed. Thereafter, when the photosensitive resin is developed, the protrusions 23t are formed.
  • the method of forming the protrusions 23t is not limited to the exposure / development method using a photosensitive resin.
  • the protrusion 23t may be formed by an injection molding method or the like.
  • FIG. 11 is a cross-sectional view of a main part of the surface light source device of the present embodiment.
  • FIG. 12 is a diagram illustrating a light path in the surface light source device of the present embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a telecentric lens 32 (non-focal system lens) is provided at a position corresponding to the opening 6 of the top plate 3a of the box 3 as shown in FIG.
  • the telecentric lens 32 is a plano-convex lens, and is fixed with the flat surface 32a facing the inside of the cavity 5 and the convex surface 32b facing the top plate 3a.
  • the vertex of the convex surface 32 b corresponds to the position of the opening 6.
  • the configuration of the lens sheet 22 is the same as that of the third embodiment. Other configurations are the same as those of the first embodiment.
  • the diameter D of the opening 6 is preferably smaller.
  • the diameter of the opening 6 is small, the light extraction efficiency may be reduced.
  • the surface light source device 31 of this embodiment includes a telecentric lens 32 as shown in FIG.
  • the light L incident on the flat surface 32 a of the telecentric lens 32 is reflected by the convex surface 32 b to guide the inside of the telecentric lens 32 and is collected in the opening 6.
  • the telecentric lens 32 functions as a light collecting member that collects the light L guided in the cavity 5 at the opening 6. Therefore, according to the surface light source device 31 of the present embodiment, the amount of light incident on the opening 6 can be increased without changing the diameter of the opening 6. As a result, according to the surface light source device 31 of the present embodiment, it is possible to improve the light extraction efficiency while maintaining high directivity.
  • FIG. 13 is a plan view of the surface light source device of this embodiment.
  • 14A and 14B are views showing light paths in the surface light source device of this embodiment.
  • FIG. 14A is a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 14B is a sectional view taken along line BB ′ in FIG.
  • FIG. 14 (A), (B) the same code
  • the planar shape of the opening 6 was a circle.
  • the planar shape of the opening 43 of the top plate 42a of the box 42 is an ellipse.
  • all the openings 43 are formed in a direction in which the minor axis direction of the ellipse is aligned in the y-axis direction and the major axis direction is aligned in the x-axis direction.
  • the orientations of all the openings 43 do not necessarily have to be aligned in the above-described direction, and may differ depending on the openings 43.
  • Other configurations are the same as those of the first embodiment.
  • the point that the position of the focal point F of the lens 7 coincides with the position of the opening 43 is the same as in the first embodiment.
  • the light behavior is slightly different from that of the first embodiment.
  • the opening part 43 is an ellipse
  • an opening diameter changes with directions. That is, when viewed in a cross section along the direction along the line AA ′ in FIG. 13 (the minor axis direction of the ellipse), the opening diameter Da of the opening 43 is relatively small as shown in FIG. . Therefore, the ratio of the light L passing through the position out of the focal point F of the lens 7 to the lens 7 is small, and the directivity in the yz plane is high.
  • the opening diameter Db of the opening 43 is relatively large. Accordingly, the ratio of the light L that passes through the position deviating from the focal point F of the lens 7 is increased, and the directivity in the xz plane is reduced.
  • the directivity of the emitted light is isotropic without changing depending on the direction.
  • the directivity of the emitted light has anisotropy.
  • the directivity in the minor axis direction of the ellipse forming the shape of the opening 43 is relatively high, and the directivity in the major axis direction of the ellipse is relatively low.
  • the surface light source device 41 of the present embodiment is optimal for an application in which, for example, high directivity is required in a specific direction and so high directivity is not required in other directions.
  • the surface light source device 1 of the first embodiment has a circular opening 6, and the surface light source device 41 of the fifth embodiment has an elliptical opening 43.
  • a surface light source device having the following opening may be used.
  • an opening 45 having a square planar shape may be provided.
  • an opening 46 having a regular hexagonal planar shape may be provided.
  • an opening 47 having a cross shape in plan view may be provided. Even in these configurations, the same effects as in the above embodiment can be obtained.
  • the opening may be indefinite.
  • FIG. 16 is a cross-sectional view of the surface light source device of this embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the surface light source device 51 of the present embodiment includes a reflective polarizing film 52 (polarization selection element) on the light exit side of the lens sheet 4.
  • the reflective polarizing film 52 transmits the first polarized light P1 having a specific polarization state out of the light emitted from the lens sheet 4, and reflects the second polarized light P2 having a polarization state different from the first polarized light. It has a function.
  • DBEF registered trademark, manufactured by Sumitomo 3M
  • Other configurations are the same as those of the first embodiment.
  • the second polarized light P2 reflected by the reflective polarizing film 52 is collected by the lens 7 and returns from the opening 6 into the cavity 5. If the polarization state of the second polarized light P2 changes after being repeatedly reflected in the cavity 5 and becomes the first polarized light P1 when entering the reflective polarizing film 52 through the lens sheet 4, the reflective polarized light The film 52 can be transmitted.
  • the surface light source device 51 of the present embodiment in addition to obtaining light with high directivity, only specific polarized light can be efficiently extracted as described above. Therefore, the surface light source device 51 of the present embodiment can be suitably used for a liquid crystal display device that performs display using polarized light.
  • FIG. 17 is a cross-sectional view of the surface light source device of this embodiment.
  • FIG. 18 is a diagram illustrating a light path in the surface light source device of the present embodiment. 17 and 18, the same reference numerals are given to the same components as those used in the first embodiment, and the description thereof will be omitted.
  • the surface light source device 61 of the present embodiment includes a lens sheet 63 having a plurality of parabolic lenses 62 as shown in FIG.
  • the parabolic lens 62 is a plano-convex lens, and is fixed with the flat surface 62a facing the light emitting side and the parabolic surface 62b facing the top plate 3a.
  • the position of the focal point F of the paraboloid lens 62 coincides with the position of the opening 6.
  • Other configurations are the same as those of the first embodiment.
  • the light L1 incident on the paraboloid lens 62 at a large incident angle is reflected by the paraboloid 62 b and parallel to the optical axis AX of the paraboloid lens 62.
  • the light is emitted.
  • the light L2 incident on the parabolic lens 62 at a small incident angle is refracted by the flat surface 62a and is emitted without being reflected by the parabolic surface 62b.
  • a part of the light incident on the paraboloid lens 62 is emitted without being reflected by the paraboloid 62, and thus perfect parallel light cannot be obtained. Nevertheless, according to the surface light source device 61 of the present embodiment, light having sufficient directivity can be obtained.
  • FIG. 19 is a cross-sectional view showing the liquid crystal display device of the present embodiment. 19, the same code
  • the liquid crystal display device 68 of the present embodiment includes a backlight 69 including the surface light source device 1 of the first embodiment, a first polarizing plate 70, a liquid crystal panel 71, and a second polarizing plate 72. And a viewing angle widening film 73 (light diffusion member).
  • the liquid crystal panel 71 is schematically illustrated as a single plate. The observer sees the display from the upper side of the liquid crystal display device 68 of FIG. 19 in which the viewing angle widening film 73 is arranged. Therefore, in the following description, the side on which the viewing angle widening film 73 is disposed is referred to as a viewing side, and the side on which the backlight 69 is disposed is referred to as a back side.
  • the light emitted from the backlight 69 is modulated by the liquid crystal panel 71, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 71 passes through the viewing angle widening film 73, the angle distribution of the emitted light becomes wider than before entering the viewing angle widening film 73 and the light is widened. Is injected from. Thereby, the observer can visually recognize the display with a wide viewing angle.
  • the liquid crystal panel 71 for example, an active matrix transmissive liquid crystal panel can be used.
  • the liquid crystal panel is not limited to the active matrix transmissive liquid crystal panel.
  • each pixel does not include a switching thin film transistor (Thin Film Transistor, hereinafter abbreviated as TFT).
  • TFT Thin Film Transistor
  • a simple matrix type liquid crystal panel may be used. Since a well-known general liquid crystal panel can be used as the liquid crystal panel 71, a detailed description of the configuration is omitted.
  • a viewing angle widening film 73 is disposed on the viewing side of the liquid crystal display device 68.
  • the viewing angle widening film 73 includes a base material 74, a plurality of light diffusion portions 75 formed on one surface of the base material 74 (a surface opposite to the viewing side), and a light absorption layer formed on one surface of the base material 74. 76.
  • the viewing angle widening film 73 is disposed on the second polarizing plate 72 in such a posture that the side where the light diffusing portion 75 is provided faces the second polarizing plate 72 and the base 74 side faces the viewing side.
  • the base material 74 a base material made of a transparent resin such as a triacetyl cellulose (TAC) film is preferably used.
  • the light diffusing portion 75 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin.
  • the light diffusion portion 75 has a circular horizontal cross section (xy cross section), has a small surface area on the base material 74 side serving as the light emission end face, and an area of the face opposite to the base material 74 serving as the light incident end face.
  • the area of the horizontal cross section gradually increases from the base material 74 side to the side opposite to the base material 74. That is, the light diffusing unit 75 has a so-called reverse tapered frustoconical shape when viewed from the base material 74 side.
  • the light diffusion part 75 is a part that contributes to the transmission of light in the viewing angle widening film 73. That is, the light incident on the light diffusing portion 75 is totally reflected by the tapered side surface of the light diffusing portion 75, guided in a state of being substantially confined inside the light diffusing portion 75, and diffused in all directions. It is injected at.
  • the light absorption layer 76 is formed in a region other than the formation region of the plurality of light diffusion portions 75 in the surface of the base 74 on the side where the light diffusion portions 75 are formed.
  • the light absorption layer 76 is made of an organic material having light absorption and photosensitivity such as a black resist.
  • the screen is not displayed in a liquid crystal display device using a conventional backlight having no directivity. Color misregistration occurs when viewed from the front direction and when viewed from the oblique direction.
  • the backlight 69 including the surface light source device 1 of the first embodiment having high directivity in both the x-axis direction and the y-axis direction is used. As a result, light is transmitted through only the angle range where the color change is small in the liquid crystal panel 71. Thereafter, since the light is diffused in all directions by the viewing angle widening film 73, the observer can see a high-quality image with little color shift when viewed from any direction.
  • the ninth embodiment of the present invention will be described below with reference to FIG.
  • the present embodiment is an example of a fluorescence excitation type liquid crystal display device including the surface light source device of the fifth embodiment as a backlight.
  • the liquid crystal display device 78 of the present embodiment includes a backlight 69 (surface light source device) including the surface light source device 41 of the fifth embodiment, a liquid crystal element 79, and a light emitting element 80. ing.
  • a red subpixel 81R for displaying with red light a green subpixel 81G for displaying with green light, and a blue subpixel 81B for displaying with blue light are arranged adjacent to each other.
  • These three subpixels 81R, 81G, 81B constitute one pixel which is the minimum unit that constitutes a display.
  • the backlight 69 emits excitation light L1 that excites the phosphor layers 82R, 82G, and 82B of the light emitting element 80.
  • the backlight 69 of the present embodiment emits ultraviolet light or blue light as the excitation light L1.
  • the liquid crystal element 79 modulates the transmittance of the excitation light L1 emitted from the backlight 69 for each of the subpixels 81R, 81G, and 81B. Excitation light L1 modulated by the liquid crystal element 79 is incident on the light emitting element 80, and the phosphor layers 82R, 82G, and 82B are excited and emitted light is emitted to the outside. Therefore, in the present embodiment, the upper side of the liquid crystal display device 78 shown in FIG.
  • the surface light source device 41 of the fifth embodiment having an elliptical opening 43 is used as the backlight 69.
  • the minor axis direction of the ellipse that is the planar shape of the opening 43 coincides with the arrangement direction of the three subpixels 81R, 81G, and 81B (x-axis direction in FIG. 20).
  • the major axis direction of the ellipse which is the planar shape of the opening 43 coincides with the direction (y-axis direction in FIG. 20) orthogonal to the arrangement direction of the three subpixels 81R, 81G, 81B.
  • the backlight 69 emits light having relatively high directivity in the arrangement direction of the subpixels 81R, 81G, and 81B and relatively low directivity in the direction orthogonal to the arrangement direction of the subpixels 81R, 81G, and 81B. It is injected.
  • the liquid crystal element 79 has a configuration in which a liquid crystal layer 85 is sandwiched between a first transparent substrate 83 and a second transparent substrate 84.
  • the second transparent substrate 84 positioned on the front side as viewed from the observer also serves as the substrate of the light emitting element 80.
  • a first transparent electrode 86 is formed for each subpixel on the inner surface (the surface on the liquid crystal layer 85 side) of the first transparent substrate 83, and an alignment film (not shown) is formed so as to cover the first transparent electrode 86. Yes.
  • a first polarizing plate 87 is provided on the outer surface of the first transparent substrate 83 (the surface opposite to the liquid crystal layer 85 side).
  • the first transparent substrate 83 for example, a substrate that can transmit excitation light made of glass, quartz, plastic, or the like can be used.
  • a transparent conductive material such as indium tin oxide (Indium Tin Oxide, hereinafter abbreviated as ITO) is used.
  • ITO Indium Tin Oxide
  • the first polarizing plate 87 a conventional general external polarizing plate can be used.
  • the phosphor layer 82 and the first light absorption layer 88 are laminated in this order from the substrate side on the inner surface (surface on the liquid crystal layer 85 side) of the second transparent substrate 84.
  • the phosphor material constituting the phosphor layer 82 has a different emission wavelength band for each subpixel.
  • the red subpixel 81R is provided with a phosphor layer 82R made of a phosphor material that absorbs ultraviolet light and emits red light.
  • the green subpixel 81G is provided with a phosphor layer 82G made of a phosphor material that absorbs ultraviolet light and emits green light.
  • the blue subpixel 81B is provided with a phosphor layer 82B made of a phosphor material that absorbs ultraviolet light and emits blue light.
  • the red subpixel 81R and the green subpixel 81G are made of phosphor materials that absorb blue light and emit red light and green light, respectively.
  • the phosphor layers 82R and 82G are provided.
  • the blue subpixel 81B is provided with a light diffusion layer that diffuses the blue light that is the excitation light without converting the wavelength and emits the light to the outside.
  • a second polarizing plate 89 is formed on the inner surface of the second transparent substrate 84 so as to cover the first light absorption layer 88, and the second transparent electrode 90 and an alignment film (not shown) are formed on the surface of the second polarizing plate 89. ) Are stacked.
  • the second polarizing plate 89 is a polarizing plate made by using a coating technique or the like in the manufacturing process of the liquid crystal element 79, and is a so-called in-cell polarizing plate.
  • a transparent conductive material such as ITO is used for the second transparent electrode 90.
  • a second light absorption layer 91 is formed on the outer surface side of the second transparent substrate 84.
  • the first light absorption layer 88 provided on the inner surface of the second transparent substrate 84 is for suppressing a decrease in contrast due to leakage of the excitation light L ⁇ b> 1 from the backlight 69.
  • the 2nd light absorption layer 91 provided in the outer surface of the 2nd transparent substrate 84 is for suppressing the contrast fall by external light.
  • an ordinary liquid crystal display device has a color shift when viewed from an oblique direction.
  • the fluorescence excitation type liquid crystal display device 78 of the present embodiment backs a surface light source device that emits ultraviolet light or blue light having relatively high directivity in the arrangement direction of the sub-pixels 81R, 81G, 81B. Used as the light 69, ultraviolet light or blue light is color-converted by the phosphor layer 82. At this time, since the light of each color is emitted isotropically from the phosphor layer 82, the observer can see a high-quality image with little color shift when viewed from any direction.
  • FIG. 21 is a front view illustrating a schematic configuration of a liquid crystal display device which is a configuration example of the display device.
  • the liquid crystal television 93 of this configuration example includes the liquid crystal display device 68 of the eighth embodiment or the liquid crystal display device 78 of the ninth embodiment as a display screen.
  • a liquid crystal panel is disposed on the viewer side (front side in FIG. 21), and a backlight (surface light source device) is disposed on the side opposite to the viewer (back side in FIG. 21). Since the liquid crystal television 93 of this configuration example includes the liquid crystal display devices 68 and 78 of the above embodiment, the liquid crystal television 93 is capable of high-quality display.
  • FIG. 22 is a cross-sectional view showing the lighting device of the present embodiment. 22, the same code
  • the illumination device 97 of this embodiment includes the surface light source device 1 of the first embodiment as shown in FIG. Therefore, the illuminating device 97 of this embodiment has high directivity, and the illuminance distribution is made uniform. As a result, according to the illuminating device 97 of the present embodiment, the illumination light can be condensed in a narrow area and the area can be illuminated uniformly. If the illuminating device 97 of this embodiment is installed near the ceiling of a hall, for example, light with high directivity is emitted downward from the illuminating device 97, so that it can be suitably used as, for example, a spotlight.
  • the light transmission part for extracting light from the box is configured by the opening provided in the top plate, but the light transmission part does not necessarily have to be opened.
  • the light transmission part may be a light transmissive portion having a configuration in which the opening is closed with a transparent member, and only needs to be able to extract light.
  • the surface light source device is configured with only one box, but for example, when it is desired to realize a large area surface light source device, a configuration in which a plurality of boxes are arranged so that the light exit surfaces are on the same plane, It is good also as a structure which tiled what is called a some box.
  • the LED is used as the light source.
  • the light source is not limited to the LED, and other light sources such as a cold cathode tube can be used.
  • the light sources are not necessarily arranged at equal intervals, and the arrangement of the light sources may be sparse / dense.
  • the arrangement of the light transmissive portions and the lenses is not necessarily equal, and may be densely / sparsely arranged as necessary.
  • the number of light transmitting portions and lenses may be at least one.
  • specific configurations such as the number, arrangement, and material of each component of the surface light source device exemplified in the above embodiment can be changed as appropriate.
  • the present invention is applicable to various display devices such as liquid crystal display devices, organic electroluminescence display devices, and plasma displays.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

指向性を持つ光が得られる面光源装置を提供する。 本発明の面光源装置1は、LED2(光源)と、少なくとも一つの開口部6(光透過部)が設けられた光射出面を有し、LED2からの光を内部空間で複数回反射させつつ導光させ、開口部6から射出させる箱体3と、箱体3の光射出面に対向して配置された少なくとも一つのレンズ7を含むレンズシート4(レンズ部材)と、を備え、レンズ7の焦点の位置が開口部6の位置に略一致している。

Description

面光源装置、表示装置および照明装置
 本発明は、面光源装置、表示装置および照明装置に関する。
 表示装置の一例として、面光源装置から射出される光を利用して表示を行う透過型液晶表示装置が知られている。この種の液晶表示装置は、液晶パネルと、液晶パネルの背面側に配置された面光源装置と、を有している。従来の面光源装置は、発光ダイオード(Light Emitting Diode, 以下、LEDと略記する)等の光源と、導光板と、を備えたものが一般的であった。この種の面光源装置では、光源から射出された光を導光板内部で伝播させ、導光板の前面から射出させる。以下、本明細書では、表示パネルの背面側に設けられる面光源装置のことをバックライトと記す場合もある。
 従来、下記の特許文献1,2に記載のバックライトが提案されている。
 特許文献1には、光発生装置、スラブウェーブガイド、基板、マイクロプリズム、およびマイクロレンズを備えたバックライト装置が開示されている。このバックライト装置において、基板から射出された光は、マイクロプリズムにより平行化され、さらにマイクロレンズにより平行化される。
 特許文献2には、中空の光リサイクリング・キャビティを形成する前面反射体と背面反射体とを含むバックライトが開示されている。このバックライトにおいて、光源からの光は、前面反射体と背面反射体との間で複数回反射してキャビティ内を伝播した後、出力面から出力される。
日本国特許公報「特許第2706574号公報」 日本国公表特許公報「特表2011-514624号公報」
 特許文献1のバックライト装置においては、基板から射出される光のうち、マイクロプリズムに入射した光だけが外部に取り出される。そのため、光取り出し効率が低いという問題がある。光の取り出し量はマイクロプリズムの設置面積と配置間隔で調整する必要があり、光の取り出し量の調整が煩雑である。
 特許文献2のバックライトは、光源からの光をキャビティ内で複数回反射させ、キャビティ内を伝播させる間に取り出すものである。しかしながら、種々の角度成分を持つ光が出力されるため、指向性を持つ光を得ることが難しい。
 本発明は、上記の課題を解決するためになされたものであって、指向性を持つ光が得られる面光源装置の提供を目的とする。また、この種の面光源装置を備えた表示装置および照明装置の提供を目的とする。
 上記の目的を達成するために、本発明の面光源装置は、光源と、少なくとも一つの光透過部が設けられた光射出面を有し、前記光源からの光を内部空間で複数回反射させつつ導光させ、前記光透過部から射出させる箱体と、前記箱体の前記光射出面に対向して配置された少なくとも一つの単位レンズを含むレンズ部材と、を備え、前記単位レンズの焦点の位置が前記光透過部の位置に略一致していることを特徴とする。
 本発明の面光源装置は、前記箱体の前記光射出面に複数の前記光透過部が設けられ、前記レンズ部材が、前記複数の光透過部に対応した複数の前記単位レンズを備えたことを特徴とする。
 本発明の面光源装置は、前記光透過部が、前記箱体に設けられた開口部であることを特徴とする。
 本発明の面光源装置は、前記箱体の内面の少なくとも一部が、前記光源からの光を散乱反射させる散乱反射面であることを特徴とする。
 本発明の面光源装置は、前記箱体の内面の少なくとも一部が、前記光源からの光を正反射させる正反射面であることを特徴とする。
 本発明の面光源装置は、前記単位レンズが、両凸レンズであることを特徴とする。
 本発明の面光源装置は、前記単位レンズが、平凸レンズであることを特徴とする。
 本発明の面光源装置は、前記単位レンズが、放物面レンズであることを特徴とする。
 本発明の面光源装置は、前記レンズ部材が、前記単位レンズの焦点位置を前記光透過部の位置にアライメントさせるためのアライメント部を備えたことを特徴とする。
 本発明の面光源装置は、前記アライメント部が、前記光透過部を構成する開口部に挿入される前記単位レンズの突起であることを特徴とする。
 本発明の面光源装置は、前記箱体の前記光射出面の法線方向から見た前記光透過部の平面形状が、円であることを特徴とする。
 本発明の面光源装置は、前記箱体の前記光射出面の法線方向から見た前記光透過部の平面形状が、円以外の形状であることを特徴とする。
 本発明の面光源装置は、前記箱体の前記光射出面の法線方向から見た前記単位レンズの平面形状が、多角形状であることを特徴とする。
 本発明の面光源装置は、前記箱体の内部空間に、前記内部空間を導光する光を前記光透過部に集める集光部材を備えたことを特徴とする。
 本発明の面光源装置は、前記集光部材が、テレセントリックレンズであることを特徴とする。
 本発明の面光源装置は、前記レンズ部材の光射出側に、前記レンズ部材から射出された光のうち、第1の偏光を透過し、前記第1の偏光と偏光状態が異なる第2の偏光を反射させる偏光選択素子を備えたことを特徴とする。
 本発明の面光源装置は、前記箱体の外面のうち、前記レンズ部材に対向する面が光吸収面とされたことを特徴とする。
 本発明の表示装置は、前記面光源装置と、前記面光源装置から射出される光により表示を行う表示素子と、を備えたことを特徴とする。
 本発明の表示装置は、前記表示素子が、前記面光源装置から射出された光の透過率を変調する液晶パネルであることを特徴とする。
 本発明の表示装置は、前記液晶パネルの光射出側に、前記液晶パネルから射出された光の拡散角度を拡げるための光拡散部材を備えたことを特徴とする。
 本発明の表示装置は、前記表示素子が、前記面光源装置からの光を励起光として蛍光を発する蛍光励起型ディスプレイであることを特徴とする。
 本発明の照明装置は、前記面光源装置を備えたことを特徴とする。
 本発明によれば、指向性を持つ光を得ることが可能な面光源装置、および面光源装置を備えた表示装置を提供することができる。本発明によれば、前記面光源装置を備えた表示装置および照明装置を提供することができる。
第1実施形態の面光源装置の斜視図である。 面光源装置の平面図である。 図1のA-A’線に沿う断面図である。 面光源装置における光の経路を示す図である。 図1のB-B’線に沿う断面図である。 第2実施形態の面光源装置の斜視図である。 面光源装置の平面図である。 第1変形例の面光源装置の平面図である。 第3実施形態の面光源装置の要部の断面図である。 面光源装置における光の経路を示す図である。 第4実施形態の面光源装置の要部の断面図である。 面光源装置における光の経路を示す図である。 第5実施形態の面光源装置の平面図である。 (A)図13のA-A’断面における光の経路、(B)図13のB-B’断面における光の経路、をそれぞれ示す図である。 (A)~(C)開口部の平面形状の変形例を示す平面図である。 第6実施形態の面光源装置の断面図である。 第7実施形態の面光源装置の断面図である。 面光源装置における光の経路を示す図である。 第8実施形態の表示装置の断面図である。 第9実施形態の表示装置の断面図である。 表示装置の正面図である。 第10実施形態の照明装置の断面図である。
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図5を用いて説明する。
 図1は、本実施形態の面光源装置の斜視図である。図2は、面光源装置の平面図である。図3は、図1のA-A’線に沿う断面図である。図4は、面光源装置における光の経路を示す図である。図5は、図1のB-B’線に沿う断面図である。
 以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 本実施形態の面光源装置1は、図1に示すように、光源を構成する複数の発光ダイオード2(Light Emitting Diode, 以下、LEDと略記する)と、箱体3と、レンズシート4(レンズ部材)と、を備えている。レンズシート4は、後述する箱体3の天板3aに対向して配置されている。図1では、図面を見易くするためにレンズシート4と箱体3とを離して描いている。実際には、レンズシート4と箱体3とはより近い位置に配置されている。レンズシート4と箱体3とは密着していてもよい。
 箱体3は略直方体状の形状を有している。図3、図5に示すように、箱体3の内部は中空であり、空気が存在している。図2に示すように、箱体3の天板3aおよび底板3bは、法線方向から見た平面形状が長方形である。図3に示すように、天板3aおよび底板3bは、xy平面に平行であり、かつ、互いに平行な板材で構成されている。天板3aおよび底板3bの周囲を囲む4つの側板3c,3dのうち、天板3aおよび底板3bの短辺側にあたる一つの側板3dに、複数のLED2が設けられている。
 複数のLED2は、側板3dの高さ方向の中央にy軸方向に沿って等間隔に設けられている。本実施形態では3個のLED2が用いられているが、LED2の個数は3個に限ることはなく、少なくとも1個あればよく、何個であってもよい。LED2が設けられた側板3dは、天板3aおよび底板3bに接する辺側からLED2が設けられた中央側にかけて傾斜しており、天板3aもしくは底板3bに対して90°より大きく、180°より小さい角度θをなすテーパ面を有している。
 LED2は、特定の機能や性能を有する必要はなく、一般的な市販のLED2を用いることができる。面光源装置1の全体としては、指向性を有する光を射出することが要求されるが、LED2は、指向性を有する光を射出する必要はない。一般的な拡散光を射出するLED2を用いることができる。LED2は、LED2の光射出面2aが箱体3の内部を向く姿勢で箱体3に固定されている。これにより、LED2は、箱体3の内部空間に向けて光を射出する。以下、箱体3の内部空間をキャビティ5と称する。
 箱体3は、例えば金属、プラスチック等の種々の材料で構成されるが、材料は特に限定されない。ただし、キャビティ5に面する箱体3の内面3iは、光を反射させる反射面である必要がある。その理由は、LED2から射出された光を、箱体3の内面3iで複数回反射させつつキャビティ5内を導光させる必要があるからである。したがって、反射時の光の損失を最小限に抑えるために、箱体3の内面3iの光反射率はできるだけ高い方が望ましい。したがって、例えば箱体3がプラスチックで形成されている場合等には、箱体3の内面3iに光反射率の高い材料からなる反射膜を設けてもよい。
 箱体3の内面3iの少なくとも一部は、LED2から射出された光を散乱反射させる散乱反射面であってもよい。もしくは、箱体3の内面3iの少なくとも一部は、LED2から射出された光を正反射させる正反射面であってもよい。例えば箱体3の内面3iの全てが散乱反射面であってもよいし、箱体3の内面3iの全てが正反射面であってもよい。もしくは、天板3aの内面3iが正反射面、底板3bの内面3iが散乱反射面というように、正反射面と散乱反射面とが混在していてもよい。箱体3は、一体成型されたものであってもよいし、複数の部材を組み合わせたものであってもよい。
 図1、図2に示すように、箱体3の天板3aには、箱体3の外部空間とキャビティ5とを連通させる複数の開口部6が設けられている。本実施形態では、開口部6の平面形状は円であり、箱体3の天板3aに13個の開口部6が設けられている。複数の開口部6は規則的に配列されている。図2のx軸方向を行、y軸方向を列としたとき、列方向に見ると、右から数えて奇数番目の列には3個の開口部6が配置され、偶数番目の列には2個の開口部6が配置されている。同じ列の中でy軸方向に隣り合う開口部6の間隔Pyを1ピッチとすると、奇数番目の列の3個の開口部6の配置に対して、偶数番目の列の2個の開口部6の配置はy軸方向に1/2ピッチずれている。
 行方向に見ると、上から数えて奇数番目の行には3個の開口部6が配置され、偶数番目の行には2個の開口部6が配置されている。同じ行の中でx軸方向に隣り合う開口部6の間隔Pxを1ピッチとすると、奇数番目の行の3個の開口部6の配置に対して、偶数番目の行の2個の開口部6の配置はx軸方向に1/2ピッチずれている。天板3aの全面積に占める複数の開口部6の合計面積の割合は、例えば10%程度である。
 LED2から射出された光Lは、箱体3の内面3iで反射を繰り返し、キャビティ5の内部を導光する。すなわち、LED2から射出された光Lは、図3に示すように、xz断面で見ると、天板3aの内面3iと底板3bの内面3iとで反射を繰り返し、図5に示すように、xy断面で見ると、4つの側板3c,3dで反射を繰り返す。
 例えば箱体3の内面3iの光反射率が95%であったとすると、反射時に5%の光の損失が生じるものの、その他の大部分の光Lはキャビティ5の内部を導光する。光Lは、天板3aの開口部6に到達しない限り、キャビティ5内を導光する。光Lは、天板3aの開口部6に到達すると箱体3の外部に取り出される。したがって、開口部6が設けられた箱体3の天板3aは、LED2からの光Lを取り出すための光射出面と言える。
 箱体3の外面のうち、少なくともレンズシート4に対向する外面3hは、例えば黒色の塗膜が設けられた光吸収面となっていることが望ましい。その理由は、レンズシート4の光入射面で反射して箱体3に戻った光が箱体3の外面3hで反射して指向性を乱す光とならないように、箱体3に戻った光を外面3hで吸収させるためである。
 レンズシート4は、図1に示すように、複数のレンズ7(単位レンズ)を有するシート状の部材である。本実施形態のレンズシート4は、同じ寸法、同じ形状の13個のレンズ7を有している。13個のレンズ7は規則的に配列されている。レンズ7は、光軸方向から見た平面形状が円形であり、2つの凸面が球面からなる両凸レンズである。レンズシート4を法線方向から見ると、図2に示すように、レンズ7は、レンズ7の輪郭となる円の中心が開口部6に一致するように、配置されている。
 開口部6の配置と同様、レンズ7の配置を列方向で見ると、右端から数えて奇数番目の列には3個のレンズ7が配置され、偶数番目の列には2個のレンズ7が配置されている。同じ列の中でy軸方向に隣り合うレンズ7の中心間の間隔Pyを1ピッチとすると、奇数番目の列の3個のレンズ7の配置に対して、偶数番目の列の2個のレンズ7の配置はy軸方向に1/2ピッチずれている。
 行方向で見ると、上から数えて奇数番目の行には3個のレンズ7が配置され、偶数番目の行には2個のレンズ7が配置されている。同じ行の中でx軸方向に隣り合うレンズ7の間隔Pxを1ピッチとすると、奇数番目の行の3個のレンズ7の配置に対して、偶数番目の行の2個のレンズ7の配置はx軸方向に1/2ピッチずれている。
 レンズシート4および箱体3の断面を見ると、図4に示すように、レンズ7は、当該レンズ7の焦点Fが当該レンズ7に対応する開口部6の位置に一致するように配置されている。すなわち、レンズ7の焦点Fは、当該レンズ7に対応する開口部6の内部に位置している。キャビティ5内を導光する光Lは、箱体3の様々な内面3iで複数回反射した後、開口部6に達する。そのため、開口部6から様々な角度で光Lが射出される。光Lがいかなる角度で開口部6から射出されたとしても、開口部6の径Dがある程度小さければ、レンズ7の焦点Fもしくはその近傍から射出された光Lのみがレンズ7に入射する。これにより、レンズ7に対して様々な角度で入射した光Lは、レンズ7の光軸AXに対して略平行な光に変換されてレンズ7から射出される。
 本実施形態の面光源装置1においては、箱体3の開口部6からのみ光Lが取り出される。そのため、開口部6の位置に焦点Fを有する球面レンズの作用によりレンズ7の光軸AXに対して略平行な光L、いわゆる指向性が高い光Lを得ることができる。また、箱体3の開口部6から射出される光Lは、キャビティ5の内部で何回も反射を繰り返しているため、箱体3から射出される時点で配光分布および輝度分布が均一化されている。その結果、レンズシート4を通した面光源装置1の全体として、配光分布および輝度分布が均一な光を得ることができる。
 本実施形態の面光源装置1において、LED2から射出された光Lが箱体3の開口部6からのみ取り出されるため、LED2を1次光源とすると、開口部6を2次光源とみなすことができる。すなわち、2次光源である開口部6から配光分布および輝度分布が均一化された光Lが射出される。したがって、1次光源として配光分布や輝度分布に優れたLED2を用いる必要はなく、用いるLED2の選択の自由度を高められる。
 本実施形態では箱体2の側板3dにLED2を設置したが、LED2からの光Lがキャビティ5に入りさえすればよいため、LED2の設置位置は必ずしも箱体3の側板3dに限ることはない。例えば箱体3の天板3aや底板3bにLED2を設置することも可能である。このように、LED2の設置位置の自由度も高い。
 本実施形態では、複数のレンズ7および開口部6が均一のピッチで規則的に配列されている例を示した。ただし、レンズ7の焦点Fが当該レンズ7に対応する開口部6の位置に一致するように配置されていれば、複数のレンズ7および開口部6が必ずしも規則的に配置されていなくてもよい。例えば、複数のレンズ7および開口部6がランダムに配置されていてもよい。
 また、箱体3の天板3aと底板3bとは、必ずしも平行でなくてもよい。
[第2実施形態]
 以下、本発明の第2実施形態について、図6~図7を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、レンズシートの構成が第1実施形態と異なる。
 図6は、本実施形態の面光源装置の斜視図である。図7は、面光源装置の平面図である。
 図6、図7において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 本実施形態の面光源装置11は、図6に示すように、光源を構成する複数のLED2と、箱体14と、レンズシート12(レンズ部材)と、を備えている。レンズシート12は、複数のレンズ13(単位レンズ)を有するシート状の部材である。レンズシート12の法線方向から見たときのレンズ13の平面形状は、第1実施形態では円であったのに対し、本実施形態では正方形である。
 本実施形態のレンズシート12は、図7に示すように、同じ寸法、同じ形状の12個のレンズ13を有している。12個のレンズ13は、3行4列に格子状に配列されている。レンズ13は、レンズ13の輪郭となる正方形の中心が開口部6に一致するように、配置されている。したがって、箱体14は12個の開口部6を有し、12個の開口部6が同じピッチで3行4列に格子状に配列されている。符号14aは天板、14bは底板、14c,14dは側板をそれぞれ示す。その他の構成は第1実施形態と同様である。
 本実施形態の面光源装置11においても、指向性が高く、配光分布および輝度分布が均一な光を得ることができる。
 また、第1実施形態のレンズ7は円形であるため、レンズ7同士を隙間無く配置するのは不可能である。そのため、レンズシート4は、レンズ7以外の平坦部分を有している。これに対して、本実施形態のレンズ13は正方形であるため、図7に示すように、レンズ13同士を隙間無く配置することができる。この構成により、本実施形態の面光源装置11は、第1実施形態の面光源装置1に比べてより均一な輝度分布を得ることができる。
[面光源装置の変形例]
 上記実施形態の面光源装置11においては、レンズシート12が正方形状のレンズ13を有していた。この構成に代えて、図8に示すように、本変形例の面光源装置16は、レンズシート17が正六角形状のレンズ18を有している。符号19は箱体を示す。この面光源装置16においても、上記実施形態と同様の効果を得ることができる。
[第3実施形態]
 以下、本発明の第3実施形態について、図9~図10を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、レンズシートの構成が第1実施形態と異なる。
 図9は、本実施形態の面光源装置の要部の断面図である。図10は、本実施形態の面光源装置における光の経路を示す図である。
 図9、図10において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 図9に示すように、本実施形態の面光源装置21において、レンズ23は、レンズ23の一方の面が平面23a、他方の面が球面23bで構成される平凸レンズである。光が入射する平面23a側でレンズシート22と箱体3の天板3aとが密着している。レンズ23の平面23a側には突起23tが設けられており、突起23tが天板3aの開口部6に略隙間なく挿入されている。このように、開口部6にレンズ23の突起23tが嵌め込まれることでレンズシート22と箱体3とのアライメントがなされる。すなわち、図10に示すように、突起23tは、レンズ23の焦点Fを開口部6の位置にアライメントさせるためのアライメント部として機能する。その他の構成は第1実施形態と同様である。
 指向性が高い光を得るためには、開口部とレンズの焦点とのアライメントが重要である。第1実施形態では特に触れなかったが、レンズシートが箱体から離れた位置にある場合、箱体に対するレンズシートの相対位置を精度良く固定するための固定手段が必要である。その点、本実施形態の面光源装置21によれば、天板3aの開口部6にレンズ23の突起23tを嵌め込む構成によって、開口部6とレンズ23の焦点Fとのアライメントを確実に行うことができる。その結果、指向性がより高い光を得ることができる。
 レンズ23に突起23tを形成する際には、例えばレンズ23を形成した後、平面側に感光性樹脂を塗布し、凸面側から平行光を照射して感光性樹脂を露光すればよい。その場合、レンズ23の作用により光が焦点に集光し、焦点とその近傍の感光性樹脂のみが選択的に露光される。その後、感光性樹脂の現像を行えば、突起23tが形成される。
 ただし、突起23tの形成方法は、感光性樹脂を用いた露光・現像法に限ることはない。例えば、突起23tを射出成型法などで形成してもかまわない。
[第4実施形態]
 以下、本発明の第4実施形態について、図11~図12を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、キャビティ内に集光部材を備えた点が第1実施形態と異なる。
 図11は、本実施形態の面光源装置の要部の断面図である。図12は、本実施形態の面光源装置における光の経路を示す図である。
 図11、図12において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 本実施形態の面光源装置31においては、図11に示すように、箱体3の天板3aの開口部6に対応する位置にテレセントリックレンズ32(非焦点系レンズ)が備えられている。テレセントリックレンズ32は、平凸レンズであり、平面32a側をキャビティ5の内側に向け、凸面32b側を天板3a側に向けて固定されている。凸面32bの頂点が開口部6の位置に対応している。レンズシート22の構成は第3実施形態と同様である。その他の構成は第1実施形態と同様である。
 指向性が高い光を得るためには、開口部6の径Dが小さい方が好ましい。その理由は、開口部6の径が小さい程、焦点Fから外れた位置を通る光がレンズ23に入射する割合が少なくなる。その結果、指向性の低下が抑えられるからである。その反面、開口部6の径が小さいと、光の取り出し効率が低下するおそれがある。
 その点、本実施形態の面光源装置31は、図12に示すように、テレセントリックレンズ32を備えている。テレセントリックレンズ32の平面32aに入射した光Lは、凸面32bで反射してテレセントリックレンズ32の内部を導光し、開口部6に集められる。すなわち、テレセントリックレンズ32は、キャビティ5内を導光する光Lを開口部6に集める集光部材として機能する。そのため、本実施形態の面光源装置31によれば、開口部6の径を変えることなく、開口部6に入射する光の量を増やすことができる。その結果、本実施形態の面光源装置31によれば、高い指向性を維持しつつ、光の取り出し効率を向上させることができる。
[第5実施形態]
 以下、本発明の第5実施形態について、図13~図14を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、開口部の形状が第1実施形態と異なる。
 図13は、本実施形態の面光源装置の平面図である。図14(A)、(B)は、本実施形態の面光源装置における光の経路を示す図であり、図14(A)は図13のA-A’線に沿う断面図、図14(B)は図13のB-B’線に沿う断面図である。
 図13、図14(A)、(B)において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 第1実施形態の面光源装置1において、開口部6の平面形状は円であった。これに対して、本実施形態の面光源装置41においては、図13に示すように、箱体42の天板42aの開口部43の平面形状が楕円である。本実施形態では、一例として、楕円の短軸方向をy軸方向に揃え、長軸方向をx軸方向に揃えた向きに、全ての開口部43が形成されている。ただし、全ての開口部43の向きを必ずしも上記の方向に揃えなくてもよく、開口部43によって異なっていてもよい。その他の構成は第1実施形態と同様である。
 レンズ7の焦点Fの位置が開口部43の位置と一致している点は、第1実施形態と同様である。しかしながら、本実施形態の面光源装置41の場合、光の振る舞いが第1実施形態と若干異なる。本実施形態の場合、開口部43が楕円であるため、方向によって開口径が異なる。すなわち、図13のA-A’線に沿う方向(楕円の短軸方向)に沿った断面で見ると、図14(A)に示すように、開口部43の開口径Daは相対的に小さい。したがって、レンズ7の焦点Fから外れた位置を通る光Lがレンズ7に入射する割合が少なく、yz平面内での指向性は高い。一方、図13のB-B’線に沿う方向(楕円の長軸方向)に沿った断面で見ると、図14(B)に示すように、開口部43の開口径Dbは相対的に大きい。したがって、レンズ7の焦点Fから外れた位置を通る光Lがレンズ7に入射する割合が多くなり、xz平面内での指向性は低くなる。
 円形の開口部6を有する第1実施形態の面光源装置1では、射出される光の指向性は、方向によって変わることなく、等方的である。これに対し、楕円形の開口部43を有する本実施形態の面光源装置41では、射出される光の指向性は異方性を有する。開口部43の形状をなす楕円の短軸方向での指向性は相対的に高く、楕円の長軸方向での指向性は相対的に低くなる。このことから、本実施形態の面光源装置41は、例えば特定の方向に高い指向性が要求され、その他の方向にはそれ程高い指向性が要求されないような用途に最適なものとなる。
[面光源装置の変形例]
 第1実施形態の面光源装置1は円形の開口部6を有し、第5実施形態の面光源装置41は楕円形の開口部43を有している。これらの構成に代えて、以下のような開口部を有する面光源装置を用いてもよい。例えば、図15(A)に示すように、平面形状が正方形の開口部45を設けてもよい。もしくは、図15(B)に示すように、平面形状が正六角形の開口部46を設けてもよい。もしくは、図15(C)に示すように、平面形状が十字形の開口部47を設けてもよい。これらの構成においても、上記実施形態と同様の効果を得ることができる。その他、開口部は不定形であってもよい。
[第6実施形態]
 以下、本発明の第6実施形態について、図16を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、反射型偏光フィルムを備えた点が第1実施形態と異なる。
 図16は、本実施形態の面光源装置の断面図である。
 図16において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 本実施形態の面光源装置51は、図16に示すように、レンズシート4の光射出側に反射型偏光フィルム52(偏光選択素子)が備えられている。反射型偏光フィルム52は、レンズシート4から射出された光のうち、特定の偏光状態を有する第1の偏光P1を透過させ、第1の偏光と偏光状態が異なる第2の偏光P2を反射させる機能を有している。反射型偏光フィルム52としては、例えばDBEF(登録商標、住友スリーエム社製)を用いることができる。その他の構成は第1実施形態と同様である。
 本実施形態の場合、反射型偏光フィルム52で反射した第2の偏光P2は、レンズ7により集光され、開口部6からキャビティ5内に戻る。第2の偏光P2は、キャビティ5内で反射を繰り返した後に偏光状態が変わり、レンズシート4を経て反射型偏光フィルム52に入射する時点で第1の偏光P1になっていれば、反射型偏光フィルム52を透過することができる。本実施形態の面光源装置51によれば、指向性が高い光が得られることに加え、上記のようにして特定の偏光のみを効率良く取り出すことができる。したがって、本実施形態の面光源装置51は、偏光を用いて表示を行う液晶表示装置に好適に用いることができる。
[第7実施形態]
 以下、本発明の第7実施形態について、図17~図18を用いて説明する。
 本実施形態の面光源装置の基本構成は第1実施形態と同様であり、レンズシートの構成が第1実施形態と異なる。
 図17は、本実施形態の面光源装置の断面図である。図18は、本実施形態の面光源装置における光の経路を示す図である。
 図17、図18において第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 上記第1~第6実施形態のレンズは球面レンズを想定している。これに対し、本実施形態の面光源装置61は、図17に示すように、複数の放物面レンズ62を有するレンズシート63を備えている。放物面レンズ62は平凸レンズであり、平面62a側を光射出側に向け、放物面62b側を天板3a側に向けて固定されている。放物面レンズ62の焦点Fの位置は開口部6の位置と一致している。その他の構成は第1実施形態と同様である。
 本実施形態の場合、図18に示すように、放物面レンズ62に対して大きい入射角で入射した光L1は、放物面62bで反射し、放物面レンズ62の光軸AXに平行な光となって射出される。一方、放物面レンズ62に対して小さい入射角で入射した光L2は、放物面62bで反射することなく、平面62aで屈折して射出される。このように、本実施形態の面光源装置61では、放物面レンズ62に入射した光の一部は放物面62で反射せずに射出されるため、完全な平行光は得られない。それでも、本実施形態の面光源装置61によれば、指向性を十分に有する光を得ることができる。
[第8実施形態]
 以下、本発明の第8実施形態について、図19を用いて説明する。
 以下の第8、第9実施形態では、上記実施形態の面光源装置を備えた表示装置の一例を示す。本実施形態は、第1実施形態の面光源装置をバックライトとして備えた液晶表示装置の一例である。
 図19は、本実施形態の液晶表示装置を示す断面図である。
 図19において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 本実施形態の液晶表示装置68は、図19に示すように、第1実施形態の面光源装置1からなるバックライト69と、第1偏光板70と、液晶パネル71と、第2偏光板72と、視野角拡大フィルム73(光拡散部材)と、を備えている。なお、図19では、液晶パネル71を模式的に1枚の板状に図示している。観察者は、視野角拡大フィルム73が配置された図19の液晶表示装置68の上側から表示を見ることになる。よって、以下の説明では、視野角拡大フィルム73が配置された側を視認側と称し、バックライト69が配置された側を背面側と称する。
 本実施形態の液晶表示装置68においては、バックライト69から射出された光を液晶パネル71で変調し、変調した光によって所定の画像や文字等を表示する。また、液晶パネル71から射出された光が視野角拡大フィルム73を透過すると、射出光の角度分布が視野角拡大フィルム73に入射する前よりも広がった状態となって光が視野角拡大フィルム73から射出される。これにより、観察者は広い視野角を持って表示を視認できる。
 液晶パネル71としては、例えばアクティブマトリクス方式の透過型液晶パネルを用いることができる。ただし、アクティブマトリクス方式の透過型液晶パネルに限らず、例えば半透過型(透過・反射兼用型)液晶パネル、各画素がスイッチング用薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を備えていない単純マトリクス方式の液晶パネルであっても良い。液晶パネル71には周知の一般的な液晶パネルを用いることができるため、詳細な構成の説明は省略する。
 液晶表示装置68の視認側には、視野角拡大フィルム73が配置されている。視野角拡大フィルム73は、基材74と、基材74の一面(視認側と反対側の面)に形成された複数の光拡散部75と、基材74の一面に形成された光吸収層76と、から構成されている。視野角拡大フィルム73は、光拡散部75が設けられた側を第2偏光板72に向け、基材74の側を視認側に向けた姿勢で第2偏光板72上に配置されている。
 基材74には、例えばトリアセチルセルロース(TAC)フィルム等の透明樹脂製の基材が好ましく用いられる。光拡散部75は、例えばアクリル樹脂やエポキシ樹脂等の光透過性および感光性を有する有機材料で構成されている。光拡散部75は、水平断面(xy断面)の形状が円形であり、光射出端面となる基材74側の面の面積が小さく、光入射端面となる基材74と反対側の面の面積が大きく、基材74側から基材74と反対側に向けて水平断面の面積が徐々に大きくなっている。すなわち、光拡散部75は、基材74側から見たとき、いわゆる逆テーパ状の円錐台状の形状を有している。光拡散部75は、視野角拡大フィルム73において光の透過に寄与する部分である。すなわち、光拡散部75に入射した光は、光拡散部75のテーパ状の側面で全反射しつつ、光拡散部75の内部に略閉じこめられた状態で導光し、全方位に拡散した状態で射出される。
 光吸収層76は、基材74の光拡散部75が形成された側の面のうち、複数の光拡散部75の形成領域以外の領域に形成されている。光吸収層76は、一例として、ブラックレジスト等の光吸収性および感光性を有する有機材料で構成されている。
 例えば画面の正面方向、すなわち液晶パネルを垂直に透過する光を基準として、液晶表示装置の画質の調整を行った場合、指向性を持たない従来のバックライトを用いた液晶表示装置では、画面を正面方向から見たときと斜め方向から見たときとで色ずれが生じてしまう。これに対して、本実施形態の液晶表示装置68では、x軸方向とy軸方向との双方に高い指向性を有する第1実施形態の面光源装置1からなるバックライト69を用いている。これにより、液晶パネル71において色変化が少ない角度範囲のみを光が透過する。その後、視野角拡大フィルム73で光が全ての方位に拡散するため、観察者は、どの方向から見ても色ずれの少ない高画質の映像を見ることができる。
[第9実施形態]
 以下、本発明の第9実施形態について、図20を用いて説明する。
 本実施形態は、第5実施形態の面光源装置をバックライトとして備えた蛍光励起型の液晶表示装置の一例である。
 本実施形態の液晶表示装置78は、図20に示すように、第5実施形態の面光源装置41からなるバックライト69(面光源装置)と、液晶素子79と、発光素子80と、を備えている。本実施形態の液晶表示装置78は、赤色光による表示を行う赤色用サブピクセル81R、緑色光による表示を行う緑色用サブピクセル81G、青色光による表示を行う青色用サブピクセル81Bが隣接して配置されている。これら3つのサブピクセル81R,81G,81Bにより表示を構成する最小単位である1つのピクセルが構成される。
 バックライト69は、発光素子80の蛍光体層82R,82G,82Bを励起させる励起光L1を射出する。本実施形態のバックライト69は、励起光L1として紫外光や青色光を射出する。液晶素子79は、バックライト69から射出された励起光L1の透過率を上記のサブピクセル81R,81G,81B毎に変調する。発光素子80には、液晶素子79により変調された励起光L1が入射され、蛍光体層82R,82G,82Bが励起されて発光した光が外部に射出される。したがって、本実施形態では、図20に示す液晶表示装置78の上方側が、観察者が表示を見る視認側となる。
 本実施形態では、楕円形の開口部43を有する第5実施形態の面光源装置41がバックライト69として用いられている。開口部43の平面形状である楕円の短軸方向は3つのサブピクセル81R,81G,81Bの配列方向(図20のx軸方向)に一致している。開口部43の平面形状である楕円の長軸方向が3つのサブピクセル81R,81G,81Bの配列方向と直交する方向(図20のy軸方向)に一致している。そのため、サブピクセル81R,81G,81Bの配列方向の指向性が相対的に高く、サブピクセル81R,81G,81Bの配列方向と直交する方向の指向性が相対的に低い光が、バックライト69から射出される。
 液晶素子79は、第1透明基板83と第2透明基板84との間に液晶層85が挟持された構成となっている。本実施形態の場合、観察者から見て前面側に位置する第2透明基板84は、発光素子80の基板を兼ねている。第1透明基板83の内面(液晶層85側の面)には、サブピクセル毎に第1透明電極86が形成され、第1透明電極86を覆うように配向膜(図示略)が形成されている。第1透明基板83の外面(液晶層85側と反対側の面)には第1偏光板87が設けられている。第1透明基板83には、例えばガラス、石英、プラスチック等からなる励起光を透過し得る基板を用いることができる。第1透明電極86には、例えばインジウム錫酸化物(Indium Tin Oxide, 以下、ITOと略記する)等の透明導電性材料が用いられる。第1偏光板87には、従来一般の外付けの偏光板を用いることができる。
 一方、第2透明基板84の内面(液晶層85側の面)には、蛍光体層82、第1光吸収層88が基板側からこの順に積層されている。蛍光体層82を構成する蛍光体材料は、サブピクセル毎に発光波長帯域が異なっている。バックライト69からの励起光が紫外光である場合、赤色用サブピクセル81Rには紫外光を吸収して赤色光を発光する蛍光体材料からなる蛍光体層82Rが設けられる。同様に、緑色用サブピクセル81Gには紫外光を吸収して緑色光を発光する蛍光体材料からなる蛍光体層82Gが設けられる。青色用サブピクセル81Bには紫外光を吸収して青色光を発光する蛍光体材料からなる蛍光体層82Bが設けられる。
 もしくは、バックライト69からの励起光が青色光である場合には、赤色用サブピクセル81R、緑色用サブピクセル81Gには青色光を吸収して赤色光、緑色光をそれぞれ発光する蛍光体材料からなる蛍光体層82R,82Gが設けられる。青色用サブピクセル81Bには、蛍光体層に代えて、励起光である青色光を波長変換することなく拡散させて外部に射出させる光拡散層が設けられる。さらに、第2透明基板84の内面には、第1光吸収層88を覆うように第2偏光板89が形成され、第2偏光板89の表面に第2透明電極90、配向膜(図示略)が積層されている。第2偏光板89は、液晶素子79の製造過程で塗布技術等を用いて作り込まれる偏光板であり、いわゆるイン・セル偏光板である。第2透明電極90には、第1透明電極86と同様、ITO等の透明導電性材料が用いられる。
 第2透明基板84の外面側には第2光吸収層91が形成されている。第2透明基板84の内面に設けられた第1光吸収層88は、バックライト69からの励起光L1の漏れによるコントラスト低下を抑制するためのものである。第2透明基板84の外面に設けられた第2光吸収層91は、外光によるコントラスト低下を抑制するためのものである。
 第8実施形態で述べた通り、通常の液晶表示装置は、斜め方向から見たときに色ずれが生じる。これに対して、本実施形態の蛍光励起型の液晶表示装置78は、サブピクセル81R,81G,81Bの配列方向の指向性が相対的に高い紫外光もしくは青色光を射出する面光源装置をバックライト69として用い、紫外光もしくは青色光を蛍光体層82で色変換する。このとき、各色の光が蛍光体層82から等方的に射出されるため、観察者は、どの方向から見ても色ずれの少ない高画質の映像を見ることができる。
[表示装置の構成例]
 以下、表示装置の一構成例について、図21を用いて説明する。
 図21は、表示装置の一構成例である液晶表示装置の概略構成を示す正面図である。
 本構成例の液晶テレビジョン93は、図21に示すように、表示画面として上記第8実施形態の液晶表示装置68、もしくは第9実施形態の液晶表示装置78を備えている。観察者側(図21の手前側)には液晶パネルが配置され、観察者と反対側(図21の奥側)にはバックライト(面光源装置)が配置されている。
 本構成例の液晶テレビジョン93は、上記実施形態の液晶表示装置68,78を備えているため、高画質の表示が可能な液晶テレビジョンとなる。
[第10実施形態]
 以下、本発明の第10実施形態について、図22を用いて説明する。
 第10実施形態では、第1実施形態の面光源装置を備えた照明装置の一例を示す。
 図22は、本実施形態の照明装置を示す断面図である。
 図22において、第6実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
 本実施形態の照明装置97は、図22に示すように、第1実施形態の面光源装置1を備えている。よって、本実施形態の照明装置97は、高い指向性を有し、かつ、照度分布が均一化される。その結果、本実施形態の照明装置97によれば、照明光を狭い領域に集光させ、その領域を均一に照明することができる。本実施形態の照明装置97を例えばホールの天井付近に設置すれば、照明装置97から下方に向けて指向性の高い光が照射されるため、例えばスポットライトとして好適に用いることができる。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば上記実施形態では、箱体から光を取り出すための光透過部が天板に設けられた開口部で構成されていたが、光透過部は必ずしも開口していなくてもよい。例えば、開口部を透明な部材で塞いだ構成の光透過部であってもよく、光を取り出すことができさえすればよい。上記実施形態では、一つの箱体のみで面光源装置を構成したが、例えば大面積の面光源装置を実現したい場合、光射出面が同一平面となるように複数の箱体を配列した構成、いわゆる複数の箱体をタイリングした構成としてもよい。
 上記実施形態では、光源としてLEDを用いたが、特にLEDに限ることなく、冷陰極管等の他の光源を用いることも可能である。上記実施形態のように複数個の光源を用いる場合、必ずしも光源を等間隔に配置する必要はなく、光源の配置に疎密を付けてもよい。同様に、光透過部およびレンズの配置についても、必ずしも等間隔である必要はなく、必要に応じて疎密を付けてもよい。また、光透過部およびレンズの個数は少なくとも1個あればよい。その他、上記実施形態で例示した面光源装置の各構成部材の数、配置、材料等の具体的な構成については、適宜変更が可能である。
 本発明は、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマディスプレイ等の各種表示装置に利用可能である。
 1,11,16,21,31,41,51,61…面光源装置、2…発光ダイオード(LED、光源)、3,14,19,42…箱体、4,12,17,22,63…レンズシート(レンズ部材)、5…キャビティ、6,43,45,46,47…開口部(光透過部)、7,13,18,23,62…レンズ(単位レンズ)、23t…突起(アライメント部)、32…テレセントリックレンズ(集光部材)、52…反射型偏光フィルム(偏光選択素子)、68,78…液晶表示装置(表示装置)、69…バックライト(面光源装置)、71…液晶パネル、97…照明装置、F…レンズの焦点。

Claims (22)

  1.  光源と、少なくとも一つの光透過部が設けられた光射出面を有し、前記光源からの光を内部空間で複数回反射させつつ導光させ、前記光透過部から射出させる箱体と、
     前記箱体の前記光射出面に対向して配置された少なくとも一つの単位レンズを含むレンズ部材と、を備え、
     前記単位レンズの焦点の位置が前記光透過部の位置に略一致していることを特徴とする面光源装置。
  2.  前記箱体の前記光射出面に複数の前記光透過部が設けられ、
     前記レンズ部材が、前記複数の光透過部に対応した複数の前記単位レンズを備えたことを特徴とする請求項1に記載の面光源装置。
  3.  前記光透過部が、前記箱体に設けられた開口部であることを特徴とする請求項1または2に記載の面光源装置。
  4.  前記箱体の内面の少なくとも一部が、前記光源からの光を散乱反射させる散乱反射面であることを特徴とする請求項1ないし3のいずれか一項に記載の面光源装置。
  5.  前記箱体の内面の少なくとも一部が、前記光源からの光を正反射させる正反射面であることを特徴とする請求項1ないし4のいずれか一項に記載の面光源装置。
  6.  前記単位レンズが、両凸レンズであることを特徴とする請求項1ないし5のいずれか一項に記載の面光源装置。
  7.  前記単位レンズが、平凸レンズであることを特徴とする請求項1ないし5のいずれか一項に記載の面光源装置。
  8.  前記単位レンズが、放物面レンズであることを特徴とする請求項6または7に記載の面光源装置。
  9.  前記レンズ部材が、前記単位レンズの焦点位置を前記光透過部の位置にアライメントさせるためのアライメント部を備えたことを特徴とする請求項1ないし8のいずれか一項に記載の面光源装置。
  10.  前記アライメント部が、前記光透過部を構成する開口部に挿入される前記単位レンズの突起であることを特徴とする請求項9に記載の面光源装置。
  11.  前記箱体の前記光射出面の法線方向から見た前記光透過部の平面形状が、円であることを特徴とする請求項1ないし10のいずれか一項に記載の面光源装置。
  12.  前記箱体の前記光射出面の法線方向から見た前記光透過部の平面形状が、円以外の形状であることを特徴とする請求項1ないし10のいずれか一項に記載の面光源装置。
  13.  前記箱体の前記光射出面の法線方向から見た前記単位レンズの平面形状が、多角形状であることを特徴とする請求項1ないし12のいずれか一項に記載の面光源装置。
  14.  前記箱体の内部空間に、前記内部空間を導光する光を前記光透過部に集める集光部材を備えたことを特徴とする請求項1ないし13のいずれか一項に記載の面光源装置。
  15.  前記集光部材が、テレセントリックレンズであることを特徴とする請求項14に記載の面光源装置。
  16.  前記レンズ部材の光射出側に、前記レンズ部材から射出された光のうち、第1の偏光を透過し、前記第1の偏光と偏光状態が異なる第2の偏光を反射させる偏光選択素子を備えたことを特徴とする請求項1ないし15のいずれか一項に記載の面光源装置。
  17.  前記箱体の外面のうち、前記レンズ部材に対向する面が光吸収面とされたことを特徴とする請求項1ないし16のいずれか一項に記載の面光源装置。
  18.  請求項1ないし17のいずれか一項に記載の面光源装置と、前記面光源装置から射出される光により表示を行う表示素子と、を備えたことを特徴とする表示装置。
  19.  前記表示素子が、前記面光源装置から射出された光の透過率を変調する液晶パネルであることを特徴とする請求項18に記載の表示装置。
  20.  前記液晶パネルの光射出側に、前記液晶パネルから射出された光の拡散角度を拡げるための光拡散部材を備えたことを特徴とする請求項19に記載の表示装置。
  21.  前記表示素子が、前記面光源装置からの光を励起光として蛍光を発する蛍光励起型ディスプレイであることを特徴とする請求項18に記載の表示装置。
  22.  請求項1ないし17のいずれか一項に記載の面光源装置を備えたことを特徴とする照明装置。
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
PCT/JP2013/065788 2012-06-07 2013-06-07 面光源装置、表示装置および照明装置 WO2013183750A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/405,221 US20150146132A1 (en) 2012-06-07 2013-06-07 Surface light source device, display device, and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012129739A JP2013254649A (ja) 2012-06-07 2012-06-07 面光源装置、表示装置および照明装置
JP2012-129739 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013183750A1 true WO2013183750A1 (ja) 2013-12-12

Family

ID=49712136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065788 WO2013183750A1 (ja) 2012-06-07 2013-06-07 面光源装置、表示装置および照明装置

Country Status (3)

Country Link
US (1) US20150146132A1 (ja)
JP (1) JP2013254649A (ja)
WO (1) WO2013183750A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014113275A1 (de) * 2014-09-15 2016-03-17 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
CN107209393B (zh) * 2015-01-28 2022-02-08 镭亚股份有限公司 三维(3d)电子显示器
AT16410U1 (de) * 2015-10-09 2019-08-15 Zumtobel Lighting Gmbh Anordnung zur flächigen Lichtabgabe
JP7298809B2 (ja) 2016-07-15 2023-06-27 ライト フィールド ラボ、インコーポレイテッド 2次元、ライトフィールドおよびホログラフィックリレーによるエネルギー伝搬および横方向アンダーソン局在
EP3737980A4 (en) 2018-01-14 2021-11-10 Light Field Lab, Inc. SYSTEMS AND METHODS FOR LOCATING TRANSVERSE ENERGY IN ENERGY RELAYS USING ORDERED STRUCTURES
WO2020244979A1 (en) * 2019-06-03 2020-12-10 Signify Holding B.V. A light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527228A (ja) * 1991-07-22 1993-02-05 Hitachi Ltd 液晶表示装置
JP2000284268A (ja) * 1999-03-30 2000-10-13 Toppan Printing Co Ltd 液晶表示装置
JP2004038009A (ja) * 2002-07-05 2004-02-05 Fuji Photo Film Co Ltd 液晶表示装置
JP2011040313A (ja) * 2009-08-14 2011-02-24 Keiji Iimura 中空導光ユニット、面光源および液晶ディスプレイ
JP2011129465A (ja) * 2009-12-21 2011-06-30 Sony Corp バックライト、および液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527228A (ja) * 1991-07-22 1993-02-05 Hitachi Ltd 液晶表示装置
JP2000284268A (ja) * 1999-03-30 2000-10-13 Toppan Printing Co Ltd 液晶表示装置
JP2004038009A (ja) * 2002-07-05 2004-02-05 Fuji Photo Film Co Ltd 液晶表示装置
JP2011040313A (ja) * 2009-08-14 2011-02-24 Keiji Iimura 中空導光ユニット、面光源および液晶ディスプレイ
JP2011129465A (ja) * 2009-12-21 2011-06-30 Sony Corp バックライト、および液晶表示装置

Also Published As

Publication number Publication date
JP2013254649A (ja) 2013-12-19
US20150146132A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6715829B2 (ja) 直視型ディスプレイ装置、および直視型ディスプレイ装置用の照明ユニット
CN101809359B (zh) 背光源装置和显示装置
WO2013183750A1 (ja) 面光源装置、表示装置および照明装置
KR20150026044A (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 표시장치
JP2007264393A (ja) 液晶表示装置
WO2012011304A1 (ja) 導光体、光源ユニット、照明装置、および表示装置
JP2005062741A (ja) 表示装置
JP2014235896A (ja) 面光源装置、表示装置および照明装置
TWI390158B (zh) 光源裝置及顯示裝置
JP4844443B2 (ja) 照明装置及び表示装置
JP2008198376A (ja) 導光板及び画像表示装置
JP2014135120A (ja) 面光源装置、表示装置および照明装置
JP2014154332A (ja) 面光源装置
WO2013081038A1 (ja) 光源装置、面光源装置、表示装置および照明装置
JP5434403B2 (ja) 照明ユニット及び表示装置
WO2022118752A1 (ja) 空間浮遊映像表示装置及び光源装置
WO2012043361A1 (ja) 照明装置、及び表示装置
US20110037923A1 (en) Light condensing film, backlight module and liquid crystal display
JP2009271379A (ja) 透過型表示装置
WO2012147646A1 (ja) 光源装置、面光源装置、表示装置および照明装置
WO2012086511A1 (ja) 照明装置、表示装置及びテレビ受信装置
EP3876004B1 (en) Optical device and display panel
TWI323818B (en) Liquid crystal display lighting apparatus
JP2011069896A (ja) 偏光解消シート、バックライトユニット及びディスプレイ装置
KR100831374B1 (ko) 광학필름 및 광학필름을 구비한 디스플레이모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800825

Country of ref document: EP

Kind code of ref document: A1