WO2013181936A1 - 全双工通信中有用信号的获取方法、装置及*** - Google Patents

全双工通信中有用信号的获取方法、装置及*** Download PDF

Info

Publication number
WO2013181936A1
WO2013181936A1 PCT/CN2013/070156 CN2013070156W WO2013181936A1 WO 2013181936 A1 WO2013181936 A1 WO 2013181936A1 CN 2013070156 W CN2013070156 W CN 2013070156W WO 2013181936 A1 WO2013181936 A1 WO 2013181936A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
channel matrix
interference channel
space
local
Prior art date
Application number
PCT/CN2013/070156
Other languages
English (en)
French (fr)
Inventor
程宏
刘晟
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013181936A1 publication Critical patent/WO2013181936A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention belongs to the field of communication technologies, and in particular, to a method, device and system for acquiring useful signals in full-duplex communication. Background technique
  • the base station communicates with multiple user terminals within the coverage area.
  • the communication between the base station and the terminal is bidirectional.
  • the process in which the base station sends a signal to the terminal is called downlink communication
  • the process in which the terminal sends a signal to the base station is called uplink communication.
  • Full-duplex technology enables simultaneous uplink and downlink transmission on the same time-frequency resource, and its spectral efficiency is twice that of simplex and half-duplex.
  • the transmission and reception of existing full-duplex technology transceivers also uses different antennas and RF channels, as there are currently no experimental prototypes demonstrating that the same antenna or RF channel can be used to achieve the desired results.
  • the problem that the full-duplex technology needs to solve is that if the transmission signal of the same transceiver is interfered with the received signal, the interference of the transmitted signal of the local machine to the received signal is called self-interference, that is, the research focuses on how to perform self-interference. delete.
  • the existing self-interference cancellation technologies mainly include reference antenna interference removal techniques and vector space interference avoidance techniques.
  • the full-duplex communication terminal in the reference antenna interference cancellation technology includes a local transmit antenna, a local receive antenna, and a local reference antenna, and the local reference antenna receives the local transmit antenna through the amplitude and phase correction network.
  • the phase and amplitude of the strong interfering signal are as close as possible to the amplitude and phase of the strong interfering signal received from the local transmitting antenna from the local receiving antenna, so that the interference received by the local receiving antenna can be cancelled by the interference cancellation processing.
  • a strong interfering signal from the local transmit antenna retains the useful signal from the transmit end of the communication.
  • the reference antenna interference cancellation technique requires a dedicated reference antenna to reconstruct the self-interference signal received by the receiving antenna, and the number of reference antennas is limited by the number of data streams or the number of transmitted data streams transmitted by the local machine.
  • a full-duplex signal machine can be used when the number of transmitted streams is the largest, that is, the number of transmitted data streams is equal to the number of transmitting antennas.
  • the same number of reference antennas are required to ensure that the self-interference signals at all receiving antennas are reconstructed.
  • the full-duplex communication machine based on the vector space interference avoidance technology transmits signals in the zero space of the self-interference channel, and the interference signal space and the received signal space are zero space with each other, thereby reducing the self-interference intensity at the receiving antenna as much as possible.
  • the technique requires that the number of transmitting antennas is not less than the sum of the number of receiving antennas of the local machine and the number of receiving antennas of another mobile station. For example, if the number of transmitting antennas is 2M, the number of receiving antennas of the local and the opposite transmitting stations is M.
  • the vector space interference avoidance technique The number of data streams transmitted by the machine in different channel spatial directions cannot be greater than the rank of the self-interference channel zero space, otherwise the receiving end will receive a strong self-interference signal.
  • the number of reference antennas is limited by the number of data streams transmitted by the local device, or the local device is on a different channel.
  • the number of data streams transmitted in the spatial direction cannot be greater than the rank of the zero-space of the self-interference channel, so that the method for deleting the self-interference signal is not flexible and effective, that is, the method for acquiring the useful signal is not flexible and effective.
  • the purpose of the embodiments of the present invention is to provide a method, a device, and a full-duplex communication system for acquiring useful signals in full-duplex communication, which are intended to solve the problem that the existing self-interference signal deletion technology has flexibility and insufficient effectiveness, resulting in usefulness.
  • the method of acquiring signals is not flexible enough and effective.
  • the embodiment of the present invention is implemented as a method for acquiring a useful signal in full-duplex communication, and the method includes:
  • the self-interference channel matrix between the local transmit antenna and the local receive antenna in full-duplex communication Obtaining a base vector and a dimension of a null space of the self-interfering channel matrix
  • Another object of the present invention is to provide a device for acquiring a useful signal in full-duplex communication, the device comprising:
  • a zero-space information acquiring unit configured to obtain a base space and a dimension of a zero space of the self-interference channel matrix according to a self-interference channel matrix between a local transmit antenna and a local receive antenna in full-duplex communication; And acquiring, according to the base vector and the dimension of the zero space, and the channel condition and the service information, the transmit data stream transmitted in the zero space of the self-interference channel matrix and the row vector space in the interference channel matrix The number of transmitted data streams transmitted in ;
  • a useful signal acquisition unit configured to: according to the transmit data stream transmitted in the zero space of the self-interference channel matrix, when the number of transmit data streams transmitted in a row vector space of the interference channel matrix is not zero, Transmitting a precoding matrix function and the self-interfering channel matrix to obtain the locally received useful signal.
  • Another object of embodiments of the present invention is to provide a full duplex communication system including the above-described acquisition means for useful signals in full duplex communication.
  • a self-interference channel matrix between a local transmit antenna and a local receive antenna in full-duplex communication is obtained, and a base vector and a dimension of a zero space of the self-interference channel matrix are obtained, according to a base vector and a dimension of the zero space.
  • the self-interfering channel matrix effectively acquires the useful signal received locally, and solves the problem that the existing self-interference signal deletion technology has flexibility and insufficient effectiveness, resulting in an inflexible and effective acquisition method of the useful signal, and improving the acquisition of the useful signal. Flexibility, effectiveness, etc. DRAWINGS
  • FIG. 1 is a schematic block diagram of a prior art reference antenna interference removal technique
  • FIG. 2 is a flowchart showing an implementation of a method for acquiring a useful signal in full-duplex communication according to the first embodiment of the present invention
  • Fig. 3 is a structural diagram of an apparatus for acquiring a useful signal in full-duplex communication according to a second embodiment of the present invention.
  • the embodiment of the present invention determines the base vector and the dimension of the zero space of the self-interference channel matrix, and further determines the zero space in the self-interference channel matrix according to the base vector and the dimension of the zero space, and the channel condition and the service information.
  • FIG. 2 is a flowchart showing an implementation process of a method for acquiring a useful signal in full-duplex communication according to the first embodiment of the present invention, which is described in detail as follows:
  • step S201 the base vector and the dimension of the zero space of the self-interfering channel matrix are obtained according to the self-interference channel matrix between the local transmitting antenna and the local receiving antenna in the full-duplex communication.
  • the dimension of the self-interfering channel matrix Jr(t) from the local transmitting antenna to the local receiving antenna R*n, Jr(t) also represents the channel response matrix function of the transmitting antenna to the receiving antenna, and the element of the i-th row and the j-th column in the Jr(t) represents the jth fundamentally transmitting antenna to the ith fundamentally Receive channel response between antennas.
  • the spatial dimension of the transmitted signal vector is n.
  • the rank of Jr(t) is r, that is, the dimension of the row vector space is r
  • the zero-space dimension of the self-interfering channel matrix is (nr)
  • the emission can also be known.
  • the number of transmitted data streams of the signal is s, s is not greater than n, and the base vector of zero space is (nr) n-dimensional orthogonal vectors.
  • step S202 according to the base vector and the dimension of the zero space, and the channel condition and the service information, acquire the transmitted data stream transmitted in the zero space of the self-interference channel matrix and in the row vector space of the interference channel matrix. The number of transmitted data streams transmitted.
  • the channel condition comprises a transmission channel matrix between two communication signals, and/or a spatial direction of other neighboring interference signals, etc., and determining, according to a channel matrix between the communication parties, local transmission under the channel matrix condition a transmit precoding matrix function corresponding to the transmit data stream of the antenna;
  • the service information includes a transmit data stream and a delay requirement of the data service, and according to the service information, the transmitted data stream may be selected and a corresponding precoding matrix function is obtained, thereby
  • the number of transmitted data streams transmitted in the row vector space of the self-interfering channel matrix is obtained, and the transmitted data stream transmitted in the null space of the self-interfering channel matrix can also be obtained.
  • the number of data streams transmitted in different spatial directions of the channel transmitted in the null space of the interference channel matrix is not greater than the dimension of the zero space of the self-interference channel matrix.
  • step S203 when the number of transmitted data streams transmitted in the row vector space of the interference channel matrix is not zero, according to the transmitted data stream transmitted in the zero space of the self-interference channel matrix, the pre-coding is transmitted.
  • the code matrix function and the self-interfering channel matrix obtain the locally received useful signal.
  • the number of local reference antennas is not less than the number of data streams transmitted in the self-interference channel matrix row vector space, and Obtaining components falling in the vector space of the transmit precoding matrix function in the self-interfering channel matrix, and acquiring components of the transmit precoding matrix function in the zero vector space of the self-interfering channel matrix.
  • all self-interference signals can be projected onto the null space of the self-interference channel matrix to avoid localization thereof.
  • the effect of the receiving antenna may be based on a preset vector space interference avoidance technique, and the receiving antenna can hardly receive the self-interference signal falling in the zero space of the self-interference channel matrix, so that the locally received useful signal is the local receiving antenna. Receive signal.
  • the self-interference signal falling outside the zero space is called leakage interference
  • the leakage interference is If the data stream included in the leaked data stream is at least S, the root reference antenna is used to reconstruct the leakage interference, where S is the number of transmitted data streams falling in the vector space of the self-interference channel matrix, that is, the reference antenna The number is not less than the number s of leaking data streams.
  • the step S203 specifically includes the following steps:
  • the self-interference in the null space of the self-interference channel matrix is small, only the self-interference signal falling in the row vector space of the self-interference channel matrix needs to be considered, and the self-interference signal corresponding to the self-interference signal falling in the zero space of the self-interference channel matrix is obtained.
  • Precoding matrix function If the self-interference in the null space needs to be deleted, the interference can be processed based on the interference avoidance technique of the vector space.
  • the embodiment of the present invention ignores the self-interference in the zero space to perform the self-interference deletion operation in the row vector space more effectively.
  • the component Y'ref of the received signal of the local reference antenna in the row vector space of the self-interference channel matrix is obtained according to a component acquisition relationship of the received signal of the reference antenna in the self-interference channel matrix row vector space.
  • Y, ref(t) Yref(t)-Jref(t) ® P ⁇ x (t) ® X ⁇ (t) , ( 1 )
  • Yref(t) represents the received signal of the local reference antenna
  • Jref( t) represents a channel response matrix function of the local transmit antenna to the local reference antenna.
  • the locally received useful signal Y(t) is obtained according to a preset signal acquisition relationship of the receiving antenna as follows:
  • Y(t) Yr(t)-Jr(t) ( ⁇ ) Jref -1 (t) ® Y'ref(t) , ( 2 )
  • Yr(t) represents the received signal of the local receiving antenna
  • Jref ⁇ t) represents the value of the inverse of the Jref(t)
  • Jr(t) represents the channel response matrix function of the self-interfering channel matrix or the local transmitting antenna to the local receiving antenna.
  • the receiving signal Yr(t) of the receiving antenna in the communication locality receives the signal transmitted from the communication opposite end, in addition to the additive noise received by the receiving antenna, due to the near field space.
  • the coupled signal can be obtained by Jr(t) (8) Px(t) ( ⁇ ) X(t), and Px(t) represents the channel response matrix function.
  • the precoding matrix function is transmitted, and X(t) represents the transmitted data stream of the transmitting antenna, and the dimension is n* l.
  • the self-interference signal in the zero space of the self-interference channel matrix is not considered, and the component of the local reference antenna in the row vector space of the self-interference channel matrix needs to be obtained, according to the transmit precoding matrix.
  • a component pi X (t) of the function in the null space of the self-interfering channel matrix, in the null space of the self-interfering channel matrix Transmitted transmit data stream
  • a channel response matrix function Jref(t) of the local transmit antenna to the local reference antenna so that the component Y of the received signal of the local reference antenna in the row vector space of the self-interference channel matrix can be obtained by using the above formula (1), Ref(t).
  • a component Y, ref(t) of the received signal of the local reference antenna in the vector space of the self-interference channel matrix, a channel response matrix function Jref(t) of the local transmit antenna to the local reference antenna, the local The channel response matrix function Jr(t) of the transmitting antenna to the local receiving antenna and the received signal of the local antenna are combined with the above formula (2) to obtain the locally received useful signal Y(t).
  • the full duplex signal is pre-arranged n to fundamentally transmit the antenna, r fundamentally receives the antenna, then the dimension of the self-interfering channel matrix Jr(t) of the local transmitting antenna to the local receiving antenna is r*n, due to The number of transmitted data streams falling in the vector space of the self-interfering channel matrix is s, and then the number of reference antennas required for reconstructing the self-interference at the receiving antenna is also s, and is assumed to fall in the zero space of the self-interfering channel matrix.
  • the number of data streams in s the dimension of Y'ref(t) is s'*l, the dimension of Yref(t) is s'*l, and the dimension of Jref(t) is s'*n, P
  • the dimension of ⁇ x(t) is n*s
  • the dimension of X ⁇ (t) is s"* l
  • the dimension of Yr(t) is r*l.
  • the Jref(t) can be updated by appropriately adjusting the position of the reference antenna until the full rank condition is satisfied.
  • the method for acquiring a useful signal in the full-duplex communication realizes flexible selection of a related self-interference deletion technology according to the number of data streams transmitted in a row vector space of the self-interference channel matrix, specifically, the self-interference
  • the self-interference problem at the local receiving antenna can be solved according to the existing reference antenna-based interference erasing technique.
  • the function according to the transmitting precoding matrix function falls.
  • the components in the row vector space of the self-interfering channel matrix, the transmitted data stream transmitted in the null space of the self-interfering channel matrix, etc. obtain useful signals in the received signal, and also make the number of local reference antennas not less than Under the condition of the number of transmitted data streams in the vector space of the interference channel matrix, the number of transmission streams can be flexibly adjusted according to the actual situation, and the number of transmitted data streams can be greater than the dimension of the zero space of the self-interference channel matrix, and finally the self-interference is improved. Remove the flexibility and effectiveness of technology, useful signal acquisition techniques.
  • Fig. 3 is a view showing the configuration of an apparatus for acquiring a useful signal in full-duplex communication according to a second embodiment of the present invention, and for convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the apparatus for acquiring the useful signal in the full-duplex communication may be in a full-duplex communication system, and the apparatus for acquiring the useful signal in the full-duplex communication includes a zero-space information acquiring unit 31, a data stream acquiring unit 32, and a useful signal acquiring unit 33. among them:
  • the zero-space dimension obtaining unit 31 is configured to obtain a base space and a dimension of a zero space of the self-interference channel matrix according to a self-interference channel matrix between the local transmitting antenna and the local receiving antenna in the full-duplex communication.
  • the full duplex duplexer has n transmit antennas and r receive antennas locally, then the spatial dimension of the transmitted signal vector is n, and the zero-space dimension of the self-interfering channel matrix is ( Nr), the number of transmitted data streams of the acquired transmitted signal is s, and s is not greater than n.
  • the dimension of the null space obtained from the interference channel matrix is 1, and the dimension of the self-interference channel matrix Jr(t) from the transmit antenna to the receive antenna 3*4, Jr(t) also represents the channel response matrix function of the transmitting antenna to the receiving antenna, assuming that the Jr(t) is an impact function in the time domain and a constant function in the communication channel. Expressed in Jr.
  • a data stream obtaining unit 32 configured to acquire, according to a base vector and a dimension of the null space, and channel conditions and service information, a transmit data stream transmitted in a null space of the self-interference channel matrix and a row in the interference channel matrix The number of transmitted data streams transmitted in the vector space.
  • a useful signal obtaining unit 33 configured to transmit, according to a transmit data stream transmitted in a null space of the self-interfering channel matrix, a transmit precoding when a number of transmit data streams transmitted in a row vector space of the interference channel matrix is not zero
  • the matrix function and the self-interfering channel matrix obtain the locally received useful signal.
  • the useful signal acquiring unit 33 specifically includes:
  • a matrix component acquiring unit 331, configured to acquire a transmit precoding matrix function at the self-interference channel moment The component P X (t) in the matrix zero vector space;
  • a reference component acquisition unit 332 configured to transmit a data stream X t) transmitted in a null space of the self-interference channel matrix, a component P ⁇ xCt) of a precoding matrix function in a null space of the self-interference channel matrix, and the Obtaining a channel response matrix function Jref(t) of the local transmit antenna to the local reference antenna, and obtaining a component Y, ref(t) of the received signal of the local reference antenna in the vector space of the self-interference channel matrix;
  • a useful signal acquisition subunit 333 configured to, according to a received signal of the local reference antenna, a component Y, ref(t) in the self-interference channel matrix row vector space, the self-interference channel matrix Jr(t), and the local transmit antenna
  • the locally received useful signal is obtained by the channel response matrix function Jref(t) of the local reference antenna.
  • the reference component acquiring unit 332 is specifically configured to obtain, according to the above formula (1), a component Y, ref(t) of the received signal of the local reference antenna in the row space of the self-interfering channel matrix: the useful signal acquiring subunit 333 is specifically configured to obtain the locally received useful signal Y(t) according to the above formula (2).
  • the interference avoidance unit is configured according to a preset vector space interference avoidance technique, and the self-interference signal falls in the zero space of the self-interference channel matrix, and the locally received useful signal is the received signal of the receive antenna.
  • the locally received useful signal is the received signal of the local receiving antenna.
  • a full duplex signal includes four transmit antennas, and three receive antennas are taken as an example.
  • the dimension of the zero space of the self-interference channel matrix is 1, when the row vector in the interference channel matrix
  • the reference antenna number setting unit sets the number of local reference antennas not less than the number of reference antennas not less than the transmit data falling in the vector space of the self-interference channel matrix row.
  • the number of streams s that is, the number of reference antennas is not less than the number s of leaking data streams, and the transmitted precoding matrix corresponding to the Jr obtained at this time is Px.
  • the number of transmitted data streams s' is 2, since the dimension of the null space of the self-interfering channel matrix is 1, The one data stream is placed in the zero space for transmission, and the other data stream is transmitted in the self-interference channel spatial matrix row vector space, and only the signal received by the local reference antenna can reconstruct the leakage interference data. For interference removal.
  • Px is a matrix of 4*2
  • a column vector P of Px is a vector falling in the null space of the self-interference channel matrix or a component called a transmit precoding matrix function Px in the null space of the self-interference channel matrix, dimension For 4*1, the data stream transmitted in the vector direction hardly interferes with the local receiving antenna;
  • the other column vector pu x of ⁇ is a vector falling in the line space of the self-interference channel matrix or called a transmit precoding matrix function
  • the component of Px in the vector space of the self-interfering channel matrix, the data stream transmitted on the vector will interfere with the local receiving antenna.
  • the embodiment of the present invention provides a device for acquiring a useful signal in full-duplex communication including a zero-space information acquiring unit 31, a data stream acquiring unit 32, and a useful signal acquiring unit 33, which solves the problem that the existing self-interference signal deleting technology exists.
  • the lack of flexibility and effectiveness leads to the problem that the acquisition method of the useful signal is not flexible and effective.
  • the reference antenna is used to reconstruct a self-interference signal that falls outside the zero space, and the self-interference signal is deleted to obtain a useful signal, which improves the flexibility of the self-interference cancellation technique and determines the transmitted data stream of the transmitted signal.
  • the prior art vector space-based interference avoidance technique is flexibly selected to minimize the self-interference intensity at the receiving antenna.
  • the base vector and the dimension of the zero space of the self-interference channel matrix are obtained according to the number of local transmitting antennas in the full-duplex communication and the self-interference channel matrix between the local receiving antennas, and according to the zero space a base vector and a dimension, and channel conditions and traffic information, obtaining a transmit data stream transmitted in a null space of the self-interference channel matrix and a number of transmit data streams transmitted in a row vector space of the interference channel matrix, when When the number of transmitted data streams transmitted in the row vector space of the interference channel matrix is not zero, according to the self-interference channel matrix, the transmit precoding matrix function, and the transmit data stream transmitted in the null space of the self-interference channel matrix, Receiving the received signal of the local receiving antenna and the receiving signal of the local reference antenna to obtain the locally received useful signal, so that the number of transmitted data streams transmitted in the row vector space of the self-interfering channel matrix is zero, and the reference antenna is combined Interference deletion
  • the vector space interference avoidance technology solve

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明适用于通信技术领域,提供了一种全双工通信中有用信号的获取方法、装置及全双工通信***,所述方法包括:根据全双工通信中本地发射天线与本地接收天线之间的自干扰信道矩阵,获取自干扰信道矩阵的零空间的基向量和维数;根据该零空间的基向量和维数,以及信道条件和业务信息,获取在该自干扰信道矩阵的零空间中传输的发射数据流以及在该干扰信道矩阵的行向量空间中传输的发射数据流数;当在该干扰信道矩阵的行向量空间中传输的发射数据流数不为零时,根据在该自干扰信道矩阵的零空间中传输的发射数据流、发射预编码矩阵函数及该自干扰信道矩阵,获取该本地接收的有用信号,达到了更加灵活的获取有用信号的目的。

Description

全双工通信中有用信号的获取方法、 装置及*** 技术领域
本发明属于通信技术领域, 尤其涉及一种全双工通信中有用信号的获取方 法、 装置及***。 背景技术
在运营商的移动网络, 基站与覆盖范围内的多个用户终端进行通信。 基站 与终端之间的通信是双向的, 基站向终端发送信号的过程叫做下行通信, 终端 向基站发送信号的过程叫做上行通信。 全双工技术在相同时频资源上实现上 下行的同时传输, 它的频谱效率是单工和半双工的两倍。 现有全双工技术收发 信机的发射和接收还是使用不同的天线和射频通道, 因为目前还没有实验样机 证明使用相同天线或射频通道可以到达要求的结果。 全双工技术需要解决的问 题是如果处理同一收发信机的发射信号对接收信号的干扰, 我们把本机的发射 信号对接收信号的干扰称为自干扰, 也即研究集中在如何进行自干扰删除。 现 有的自干扰删除技术主要有基于参考天线干扰删除技术以及基于向量空间干扰 避免技术。
如图 1所示, 基于参考天线干扰删除技术中的全双工通信终端包括本地发 射天线、 本地接收天线以及本地参考天线, 通过幅度与相位校正网络, 调整本 地参考天线所接收的来自本地发射天线的强干扰信号的相位和幅度, 使之与本 地接收天线所接收的来自本地发射天线的强干扰信号幅度和相位尽可能相同, 这样, 通过干扰对消处理, 就能抵消掉本地接收天线所接收的来自本地发射天 线的强干扰信号, 而保留来自通信对端发射天线的有用信号。 然而, 该基于参 考天线干扰删除技术需要专门的参考天线来重构接收天线接收到的自干扰信 号, 且参考天线的数量受到本机发射的数据流数或称发射数据流数的限制。 比 如全双工信机要在发射流数最多, 也即发射数据流数等于发射天线数量时也能 使用, 需要同等数量的参考天线才能保证重构全部接收天线处的自干扰信号。
基于向量空间干扰避免技术的全双工通信机在在自干扰信道的零空间上发 射信号, 干扰信号空间与接收信号空间互为零空间, 从而尽可能减少接收天线 处的自干扰强度。 该技术要求发射天线的数目不小于本机接收天线的数目与另 一个信机接收天线数目之和, 例如假设发射天线数目为 2M, 本地和对端信机 的接收天线数目都是 M。 本地发射天线到本地接收天线的信道矩阵为 那 么根据零空间映射的性质, 本地发射的预编码矩阵为 Pu需要满足条件: HuPu=0„ 然而, 该基于向量空间干扰避免技术中本机在不同信道空间方向上 发射的数据流数不能大于自干扰信道零空间的秩, 否则接收端就会收到很强的 自干扰信号。
因而, 从上述说明可以看出, 现有应用在全双工通信中的自干扰删除技术 均存在限制条件, 比如参考天线的数量受到本机发射的数据流数的限制, 或者 本机在不同信道空间方向上发射的数据流数不能大于自干扰信道零空间的秩 等, 使得自干扰信号的删除方法不够灵活、 有效, 也即有用信号的获取方法不 够灵活、 有效等。 技术问题
本发明实施例的目的在于提供一种全双工通信中有用信号的获取方法、 装 置及全双工通信***, 旨在解决由于现有自干扰信号删除技术存在灵活性、 有 效性不足, 导致有用信号的获取方法不够灵活、 有效的问题。 技术解决方案
本发明实施例是这样实现的, 一种全双工通信中有用信号的获取方法, 所 述方法包括:
根据全双工通信中本地发射天线与本地接收天线之间的自干扰信道矩阵, 获取自干扰信道矩阵的零空间的基向量和维数;
根据所述零空间的基向量和维数, 以及信道条件和业务信息, 获取在所述 自干扰信道矩阵的零空间中传输的发射数据流以及在所述干扰信道矩阵的行向 量空间中传输的发射数据流数;
当在所述干扰信道矩阵的行向量空间中传输的发射数据流数不为零时, 根 据所述在所述自干扰信道矩阵的零空间中传输的发射数据流、 发射预编码矩阵 函数及所述自干扰信道矩阵, 获取所述本地接收的有用信号。
本发明实施例的另一目的在于提供一种全双工通信中有用信号的获取装 置, 所述装置包括:
零空间信息获取单元, 用于根据全双工通信中本地发射天线与本地接收天 线之间的自干扰信道矩阵,获取所述自干扰信道矩阵的零空间的基向量和维数; 数据流获取单元, 用于根据所述零空间的基向量和维数, 以及信道条件和 业务信息, 获取在所述自干扰信道矩阵的零空间中传输的发射数据流以及在所 述干扰信道矩阵的行向量空间中传输的发射数据流数; 以及
有用信号获取单元, 用于当在所述干扰信道矩阵的行向量空间中传输的发 射数据流数不为零时, 根据所述在所述自干扰信道矩阵的零空间中传输的发射 数据流、 发射预编码矩阵函数及所述自干扰信道矩阵, 获取所述本地接收的有 用信号。
本发明实施例的另一目的在于提供一种包括上述全双工通信中有用信号的 获取装置的全双工通信***。 有益效果
本发明实施例通过全双工通信中本地发射天线与本地接收天线之间的自干 扰信道矩阵, 获取自干扰信道矩阵的零空间的基向量和维数, 根据该零空间的 基向量和维数, 以及信道条件和业务信息, 获取在该自干扰信道矩阵的零空间 中传输的发射数据流以及在该干扰信道矩阵的行向量空间中传输的发射数据流 数, 实现了在该干扰信道矩阵的行向量空间中传输的发射数据流数不为零时, 能够根据在该自干扰信道矩阵的零空间中传输的发射数据流、 发射预编码矩阵 函数及该自干扰信道矩阵, 有效地获取本地接收的有用信号, 解决了由于现有 自干扰信号删除技术存在灵活性、 有效性不足, 导致有用信号的获取方法不够 灵活、 有效的问题, 提高了获取有用信号的灵活性、 有效性等。 附图说明
图 1是现有技术中基于参考天线干扰删除技术的原理框图;
图 2是本发明第一实施例提供的全双工通信中有用信号的获取方法的实现 流程图;
图 3是本发明第二实施例提供的全双工通信中有用信号的获取装置的结构 图。 本发明的实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
本发明实施例通过获取自干扰信道矩阵的零空间的基向量和维数, 进而根 据该零空间的基向量和维数, 以及信道条件和业务信息, 确定在该自干扰信道 矩阵的零空间中传输的发射数据流以及在该干扰信道矩阵的行向量空间中传输 的发射数据流数, 判断当该自干扰信道矩阵的行向量空间中传输的数据流数不 为零时, 设置参考天线个数, 确定本地参考天线的接收信号在自干扰信道矩阵 行向量空间中的分量, 并最终结合该接收天线的接收信号, 获取本地接收到的 有用信号, 从而可以根据发射数据流数及该自干扰信道矩阵的零空间的维数之 间的大小关系, 结合参考天线干扰删除和向量空间干扰避免技术共同解决了全 双工通信中自干扰问题。 实施例一:
图 2示出了本发明第一实施例提供的全双工通信中有用信号的获取方法的 实现流程, 详述如下:
在步骤 S201中,根据全双工通信中本地发射天线与本地接收天线之间的自 干扰信道矩阵, 获取自干扰信道矩阵的零空间的基向量和维数。
在全双工通信过程中, 假设全双工信机的预先设有 n根本地发射天线, r 根本地接收天线, 那么本地发射天线到本地接收天线的自干扰信道矩阵 Jr(t)的 维数为 r*n, Jr(t)也表示该发射天线到该接收天线的信道响应矩阵函数, 该 Jr(t) 中第 i行第 j列的元素代表第 j根本地发射天线到第 i根本地接收天线之间的信 道响应。 此时, 发射信号向量空间维数是 n, 若 Jr(t)的秩为 r, 即行向量空间的 维度是 r, 那么自干扰信道矩阵的零空间维数是 (n-r), 也可以获知该发射信号的 发射数据流数为 s , s不大于 n, 零空间的基向量为 (n-r)个 n维的正交向量。
在步骤 S202中,根据该零空间的基向量和维数,以及信道条件和业务信息, 获取在该自干扰信道矩阵的零空间中传输的发射数据流以及在该干扰信道矩阵 的行向量空间中传输的发射数据流数。
其中, 该信道条件包括两个通信信机之间的传输信道矩阵, 和 /或周边其他 信机干扰信号的空间方向等, 根据通信双方之间的信道矩阵确定在该信道矩阵 条件下, 本地发射天线的发射数据流对应的发射预编码矩阵函数; 该业务信息 包括数据业务的发射数据流和时延要求, 则根据该业务信息可以选择传输的数 据流和获取对应的预编码矩阵函数, 由此得到在自干扰信道矩阵的行向量空间 中传输的发射数据流数, 也能够获取在该自干扰信道矩阵的零空间中传输的发 射数据流。 且在该干扰信道矩阵的零空间中传输的不同信道空间方向发射的数 据流数不大于该自干扰信道矩阵的零空间的维数。
在步骤 S203中,当在该干扰信道矩阵的行向量空间中传输的发射数据流数 不为零时, 根据在该自干扰信道矩阵的零空间中传输的发射数据流、 发射预编 码矩阵函数及该自干扰信道矩阵, 获取该本地接收的有用信号。
具体地, 当在该干扰信道矩阵的行向量空间中传输的发射数据流数不为零 时, 设置本地参考天线个数不小于在自干扰信道矩阵行向量空间中传输的数据 流数, 并可以获取落在发射预编码矩阵函数在该自干扰信道矩阵行向量空间中 的分量, 以及获取发射预编码矩阵函数在该自干扰信道矩阵零向量空间中的分 量。
在具体实施过程中, 当在该干扰信道矩阵的行向量空间中传输的发射数据 流数为零, 则所有的自干扰信号都可以投影到自干扰信道矩阵的零空间上, 以 避免其对本地接收天线的影响, 具体可以根据预设的基于向量空间干扰避免技 术, 接收天线几乎接收不到落在该自干扰信道矩阵零空间中的自干扰信号, 从 而本地接收的有用信号即为本地接收天线的接收信号。
当发射信号落在自干扰信道的行向量空间中时, 或者说在自干扰信道矩阵 行向量空间中产生自干扰信号,将落在零空间之外的自干扰信号称为泄漏干扰, 该泄漏干扰中包含的数据流为泄露数据流, 则至少需要 S,根参考天线来重构泄 露干扰, 其中 S,为落在该自干扰信道矩阵行向量空间中的发射数据流数, 也即 参考天线的数量不少于泄漏数据流的数量 s,。
其中, 步骤 S203具体包括以下步骤:
获取发射预编码矩阵函数 Px(t)在该自干扰信道矩阵零向量空间中的分量 P丄 x(t);
根据在该自干扰信道矩阵的零空间中传输的发射数据流 X^t) 发射预编码 矩阵函数在该自干扰信道矩阵零空间中的分量 P^x t)及该本地发射天线到该本 地参考天线的信道响应矩阵函数 Jref(t), 获取本地参考天线的接收信号在该自 干扰信道矩阵行向量空间中的分量 Y,ref(t);
根据该本地参考天线的接收信号在该自干扰信道矩阵行向量空间中的分量 Y,ref(t)、 该自干扰信道矩阵 Jr(t)及该本地发射天线到该本地参考天线的信道响 应矩阵函数 Jref(t), 获取该本地接收的有用信号。 在本发明实施例中, 假设落在该自干扰信道矩阵行向量空间中的发射数据 流数不为零, 设为 S,。 由于自干扰信道矩阵零空间中的自干扰很小, 只需要考 虑落在自干扰信道矩阵行向量空间中的自干扰信号, 则获取与该落在自干扰信 道矩阵零空间中的自干扰信号对应的预编码矩阵函数
Figure imgf000009_0001
如果需要删除零 空间中的自干扰, 则可以基于向量空间的干扰避免技术进行处理, 本发明实施 例忽略零空间中的自干扰, 以更有效地进行行向量空间中的自干扰删除操作。
具体地, 根据如下预设的参考天线的接收信号在自干扰信道矩阵行向量空 间中的分量获取关系, 获取本地参考天线的接收信号在该自干扰信道矩阵行向 量空间中的分量 Y'ref(t):
Y,ref(t) = Yref(t)-Jref(t) ® P丄 x(t) ® X丄 (t) , ( 1 ) 其中, Yref(t)表示该本地参考天线的接收信号, Jref(t)表示该本地发射天线 到该本地参考天线的信道响应矩阵函数。
进一步, 根据如下预设的接收天线的有用信号获取关系, 获取该本地接收 的有用信号 Y(t):
Y(t)=Yr(t)-Jr(t) (χ) Jref -1(t) ® Y'ref(t) , ( 2 ) 其中, Yr(t)表示该本地接收天线的接收信号, Jref ^t)表示对该 Jref(t)进行 逆运算后的值, Jr(t)表示该自干扰信道矩阵或称该本地发射天线到该接本地收 天线的信道响应矩阵函数。
在具体实施过程中, 在不考虑接收天线收到的加性噪声的情况下, 通信本 地的该接收天线的接收信号 Yr(t)除了接收来自通信对端发送的信号之外, 由于 近场空间耦合, 还会收到本地发射天线发送的耦合信号, 该耦合信号可以通过 Jr(t) (8) Px(t) (χ) X(t)计算获取, Px(t)表示信道响应矩阵函数的发射预编码矩阵函 数, X(t)表示该发射天线的发射数据流, 维数为 n* l。 而在本发明实施例中, 不 考虑自干扰信道矩阵零空间中的自干扰信号, 需要获取本地参考天线的接收信 号在所述自干扰信道矩阵行向量空间中的分量, 则根据发射预编码矩阵函数在 所述自干扰信道矩阵零空间中的分量 piX(t)、 在该自干扰信道矩阵的零空间中 传输的发射数据流
Figure imgf000010_0001
及该本地发射天线到该本地参考天线的信道响应矩阵 函数 Jref(t), 从而可以利用上述公式(1 )获取该本地参考天线的接收信号在该 自干扰信道矩阵行向量空间中的分量 Y,ref(t)。
进一步地, 通过本地参考天线的接收信号在该自干扰信道矩阵行向量空间 中的分量 Y,ref(t) , 该本地发射天线到该本地参考天线的信道响应矩阵函数 Jref(t), 该本地发射天线到该接本地收天线的信道响应矩阵函数 Jr(t), 以及该本 地天线的接收信号, 结合上述公式(2 )获取本地接收到的有用信号 Y(t)。
其中, 假设全双工信机的预先设有 n根本地发射天线, r根本地接收天线, 那么本地发射天线到本地接收天线的自干扰信道矩阵 Jr(t)的维数为 r*n,由于落 在该自干扰信道矩阵行向量空间中的发射数据流数为 s,, 那么重构接收天线处 自干扰所需要的参考天线数目也为 s,, 并假设落在该自干扰信道矩阵零空间中 的数据流数为 s" , Y'ref(t)的维数 s'*l , Yref(t)的维数为 s'*l , Jref(t)的维数为 s'*n, P丄 x(t)的维数为 n*s" , X丄 (t)的维数为 s"* l , Yr(t) 的维数为 r*l。 另外若该矩 阵函数 Jref(t)不满足行满秩条件, 则可以通过适当调整参考天线的位置, 以更 新该 Jref(t), 直至满足行满秩条件为止。
在本发明实施例中, 该全双工通信中有用信号的获取方法实现了根据自干 扰信道矩阵的行向量空间中传输的数据流数灵活选择相关自干扰删除技术, 具 体地, 在该自干扰信道矩阵的行向量空间中传输的数据流数不为 0时, 能够根 据现有的基于参考天线的干扰删除技术解决本地接收天线处的自干扰问题, 此 时, 根据发射预编码矩阵函数落在该自干扰信道矩阵行向量空间中的分量、 在 该自干扰信道矩阵的零空间中传输的发射数据流等, 获取该接收信号中的有用 信号, 也使得在本地参考天线的个数不小于落在自干扰信道矩阵行向量空间中 的发射数据流数的条件下, 可根据实际情况灵活调整个数, 且发射数据流数可 以大于自干扰信道矩阵零空间的维数等, 最终提高了自干扰删除技术、 有用信 号的获取技术的灵活性及有效性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是 可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算机可读 取存储介质中, 所述的存储介质, 如 ROM/RAM、 磁盘、 光盘等。 实施例二:
图 3示出了本发明第二实施例提供的全双工通信中有用信号的获取装置的 结构, 为了便于说明, 仅示出了与本发明实施例相关的部分。
该全双工通信中有用信号的获取装置可以全双工通信***中, 该全双工通 信中有用信号的获取装置包括零空间信息获取单元 31、 数据流获取单元 32以 及有用信号获取单元 33 , 其中:
零空间维数获取单元 31 , 用于根据全双工通信中本地发射天线与本地接收 天线之间的自干扰信道矩阵,获取该自干扰信道矩阵的零空间的基向量和维数。
在全双工通信***中, 若全双工信机的本地预先设有 n根发射天线, r根 接收天线, 那么发射信号向量空间维数是 n, 自干扰信道矩阵的零空间维数是 (n-r), 获取的发射信号的发射数据流数为 s, s不大于 n。 假设一个全双工信机 包括 4根发射天线, 3根接收天线,则获取自干扰信道矩阵的零空间的维数为 1 , 发射天线到接收天线的自干扰信道矩阵 Jr(t)的维数为 3*4, Jr(t)也表示该发射天 线到该接收天线的信道响应矩阵函数, 假设该 Jr(t)在时域上是沖击函数, 而在 通信频道上为常值函数, 可以用 Jr表示。
数据流获取单元 32 , 用于根据该零空间的基向量和维数, 以及信道条件和 业务信息, 获取在该自干扰信道矩阵的零空间中传输的发射数据流以及在该干 扰信道矩阵的行向量空间中传输的发射数据流数。
有用信号获取单元 33 , 用于当在该干扰信道矩阵的行向量空间中传输的发 射数据流数不为零时,根据在该自干扰信道矩阵的零空间中传输的发射数据流、 发射预编码矩阵函数及该自干扰信道矩阵, 获取该本地接收的有用信号。
在本发明实施例中, 该有用信号获取单元 33具体包括:
矩阵分量获取单元 331 , 用于获取发射预编码矩阵函数在该自干扰信道矩 阵零向量空间中的分量 P X(t);
参考分量获取单元 332, 用于根据在该自干扰信道矩阵的零空间中传输的 发射数据流 X t)、 发射预编码矩阵函数在该自干扰信道矩阵零空间中的分量 P^xCt) 及该本地发射天线到该本地参考天线的信道响应矩阵函数 Jref(t), 获取 本地参考天线的接收信号在该自干扰信道矩阵行向量空间中的分量 Y,ref(t); 以 及
有用信号获取子单元 333 , 用于根据该本地参考天线的接收信号在该自干 扰信道矩阵行向量空间中的分量 Y,ref(t)、该自干扰信道矩阵 Jr(t)及该本地发射 天线到该本地参考天线的信道响应矩阵函数 Jref(t), 获取该本地接收的有用信 号。
其中, 该参考分量获取单元 332具体用于根据上述公式( 1 ), 获取本地参 考天线的接收信号在该自干扰信道矩阵行向量空间中的分量 Y,ref(t):该有用信 号获取子单元 333具体用于根据上述公式( 2 )获取该本地接收的有用信号 Y(t)。
当自干扰信道矩阵行向量空间中的发射数据流为零时, 所有的自干扰信号 都可以通过在自干扰信道矩阵的零空间上投影, 以避免其对本地接收天线的影 响, 具体地, 可以利用干扰避免单元根据预设的基于向量空间干扰避免技术, 自干扰信号落在该自干扰信道矩阵零空间中, 该本地接收的有用信号为该接收 天线的接收信号。 或者, 当在该干扰信道矩阵的行向量空间中传输的发射数据 流数为零时, 该本地接收的有用信号为该本地接收天线的接收信号。
在本发明实施例中, 以一个全双工信机包括 4根发射天线, 3根接收天线 为例, 该自干扰信道矩阵的零空间的维数为 1 , 当在该干扰信道矩阵的行向量 空间中传输的发射数据流数不为零时, 利用参考天线个数设置单元设置本地参 考天线个数不小于该参考天线个数不小于该落在该自干扰信道矩阵行向量空间 中的发射数据流数 s,, 也即参考天线的数量不少于泄漏数据流的数量 s,, 此时 获取的与该 Jr对应的发射预编码矩阵为 Px。
假设发射数据流数 s'为 2, 由于自干扰信道矩阵的零空间的维度为 1 , 则可 以将该 1个数据流放在该零空间中传输, 将另一个数据流放在自干扰信道空间 矩阵行向量空间中传输, 则只需要一根本地参考天线接收的信号就可以重构泄 露干扰数据, 以进行干扰删除。 此时 Px为 4*2的矩阵, Px的一个列向量 Ρ 是落在自干扰信道矩阵零空间的向量或称为发射预编码矩阵函数 Px在该自干 扰信道矩阵零空间中的分量, 维数为 4*1 , 在该向量方向上传输的数据流几乎 不对本机接收天线产生干扰; ρχ的另一个列向量 pux是落在自干扰信道矩阵行 空间的向量或称为发射预编码矩阵函数 Px在该自干扰信道矩阵行向量空间中 的分量, 在该向量上传输的数据流会对本机接收天线产生干扰。
本发明实施例提供了一种包括零空间信息获取单元 31、数据流获取单元 32 以及有用信号获取单元 33的全双工通信中有用信号的获取装置,解决了由于现 有自干扰信号删除技术存在灵活性、 有效性不足, 导致有用信号的获取方法不 够灵活、 有效的问题, 达到了当在该干扰信道矩阵的行向量空间中传输的发射 数据流数不为零时, 仍旧可以设置一定数量的参考天线来重构落在零空间之外 的自干扰信号, 对该自干扰信号进行删除, 以获取有用信号的目的, 提高了自 干扰删除技术的灵活性, 且在判断发射信号的发射数据流数不大于自干扰信道 零空间的维数时, 灵活地选择使用现有技术的基于向量空间的干扰避免技术, 从而尽可能减少接收天线处的自干扰强度。
本发明实施例通过根据全双工通信中本地发射天线个数及本地接收天线之 间的自干扰信道矩阵, 获取该自干扰信道矩阵的零空间的基向量和维数, 并根 据该零空间的基向量和维数, 以及信道条件和业务信息, 获取在该自干扰信道 矩阵的零空间中传输的发射数据流以及在该干扰信道矩阵的行向量空间中传输 的发射数据流数, 当在该干扰信道矩阵的行向量空间中传输的发射数据流数不 为零时, 根据该自干扰信道矩阵、 发射预编码矩阵函数以及在该自干扰信道矩 阵的零空间中传输的发射数据流, 结合该本地接收天线的接收信号及该本地参 考天线的接收信号, 获取该本地接收的有用信号, 从而可以根据在该自干扰信 道矩阵的行向量空间中传输的发射数据流数是否为零, 结合参考天线干扰删除 和向量空间干扰避免技术共同解决全双工通信中自干扰问题, 也提高了解决问 题的灵活性。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种全双工通信中有用信号的获取方法, 其特征在于, 所述方法包括: 根据全双工通信中本地发射天线与本地接收天线之间的自干扰信道矩阵, 获取自干扰信道矩阵的零空间的基向量和维数;
根据所述零空间的基向量和维数, 以及信道条件和业务信息, 获取在所述 自干扰信道矩阵的零空间中传输的发射数据流以及在所述干扰信道矩阵的行向 量空间中传输的发射数据流数;
当在所述干扰信道矩阵的行向量空间中传输的发射数据流数不为零时, 根 据所述在所述自干扰信道矩阵的零空间中传输的发射数据流、 发射预编码矩阵 函数及所述自干扰信道矩阵, 获取所述本地接收的有用信号。
2、 如权利要求 1所述的方法, 其特征在于, 所述根据所述在所述自干扰信 道矩阵的零空间中传输的发射数据流及发射预编码矩阵函数, 获取所述本地接 收的有用信号具体为:
获取发射预编码矩阵函数在所述自干扰信道矩阵零向量空间中的分量 P丄 X(t);
根据在所述自干扰信道矩阵的零空间中传输的发射数据流 X t)、发射预编 码矩阵函数在所述自干扰信道矩阵零空间中的分量 p^x t)及所述本地发射天线 到所述本地参考天线的信道响应矩阵函数 Jref(t), 获取本地参考天线的接收信 号在所述自干扰信道矩阵行向量空间中的分量 Y,ref(t);
根据所述本地参考天线的接收信号在所述自干扰信道矩阵行向量空间中的 分量 Y,ref(t)、所述自干扰信道矩阵 Jr(t)及所述本地发射天线到所述本地参考天 线的信道响应矩阵函数 Jref(t), 获取所述本地接收的有用信号。
3、 如权利要求 2所述的方法, 其特征在于, 所述根据在所述自干扰信道矩 阵的零空间中传输的发射数据流 X t)、发射预编码矩阵函数在所述自干扰信道 矩阵零空间中的分量 P^x t)及所述本地发射天线到所述本地参考天线的信道响 应矩阵函数 Jref(t), 获取本地参考天线的接收信号在所述自干扰信道矩阵行向 量空间中的分量 Y,ref(t)具体为:
根据如下预设的参考天线的接收信号在自干扰信道矩阵行向量空间中的分 量获取关系, 获取本地参考天线的接收信号在所述自干扰信道矩阵行向量空间 中的分量 Y'ref(t):
Y'ref(t) = Yref(t)-Jref(t) ® P丄 x(t) ® X丄 (t) ,
其中, Yref(t)表示所述本地参考天线的接收信号。
4、 如权利要求 3所述的方法, 其特征在于, 所述根据所述本地参考天线的 接收信号在所述自干扰信道矩阵行向量空间中的分量 Y,ref(t)、所述自干扰信道 矩阵 Jr(t)及所述本地发射天线到所述本地参考天线的信道响应矩阵函数 Jref(t), 获取所述本地接收的有用信号具体为:
根据如下预设的接收天线的有用信号获取关系, 获取所述本地接收的有用 信号 Y(t):
Y(t)=Yr(t)-Jr(t) (χ) Jref -1(t) ® Y'ref(t) ,
其中, Yr(t)表示所述本地接收天线的接收信号, Jref^t)表示对所述 Jref(t) 进行逆运算后的值。
5、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括:
当在所述干扰信道矩阵的行向量空间中传输的发射数据流数不为零时, 设 置本地参考天线个数不小于所述在所述自干扰信道矩阵的行向量空间中传输的 发射数据流数。
6、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括:
当在所述干扰信道矩阵的行向量空间中传输的发射数据流数为零时, 所述 本地接收的有用信号为所述本地接收天线的接收信号。
7、 一种全双工通信中有用信号的获取装置, 其特征在于, 所述装置包括: 零空间信息获取单元, 用于根据全双工通信中本地发射天线与本地接收天 线之间的自干扰信道矩阵,获取所述自干扰信道矩阵的零空间的基向量和维数; 数据流获取单元, 用于根据所述零空间的基向量和维数, 以及信道条件和 业务信息, 获取在所述自干扰信道矩阵的零空间中传输的发射数据流以及在所 述干扰信道矩阵的行向量空间中传输的发射数据流数; 以及
有用信号获取单元, 用于当在所述干扰信道矩阵的行向量空间中传输的发 射数据流数不为零时, 根据所述在所述自干扰信道矩阵的零空间中传输的发射 数据流、 发射预编码矩阵函数及所述自干扰信道矩阵, 获取所述本地接收的有 用信号。
8、 如权利要求 7所述的装置, 其特征在于, 所述有用信号获取单元具体包 括:
矩阵分量获取单元, 用于获取发射预编码矩阵函数在所述自干扰信道矩阵 零向量空间中的分量 Ρ (ί);
参考分量获取单元, 用于根据在所述自干扰信道矩阵的零空间中传输的发 射数据流 X^t) 发射预编码矩阵函数在所述自干扰信道矩阵零空间中的分量 P^xCt) 及所述本地发射天线到所述本地参考天线的信道响应矩阵函数 Jref(t), 获取本地参考天线的接收信号在所述自干扰信道矩阵行向量空间中的分量 Y'ref(t); 以及
有用信号获取子单元, 用于根据所述本地参考天线的接收信号在所述自干 扰信道矩阵行向量空间中的分量 Y,ref(t)、所述自干扰信道矩阵 Jr(t)及所述本地 发射天线到所述本地参考天线的信道响应矩阵函数 Jref(t), 获取所述本地接收 的有用信号。
9、 如权利要求 8所述的装置, 其特征在于, 所述参考分量获取单元具体用 于根据如下预设的参考天线的接收信号在自干扰信道矩阵行向量空间中的分量 获取关系 , 获取本地参考天线的接收信号在所述自干扰信道矩阵行向量空间中 的分量 Y'ref(t):
Y'ref(t) = Yref(t)-Jref(t) ® P丄 x(t) ® X丄 (t) ,
其中, Yref(t)表示所述本地参考天线的接收信号。
10、 如权利要求 9所述的装置, 其特征在于, 所述有用信号获取子单元具 体用于根据如下预设的接收天线的有用信号获取关系, 获取所述本地接收的有 用信号 Y(t):
Y(t)=Yr(t)-Jr(t) (χ) Jref -1(t) ® Y'ref(t) ,
其中, Yr(t)表示所述本地接收天线的接收信号, Jref^t)表示对所述 Jref(t) 进行逆运算后的值。
11、 如权利要求 7所述的装置, 其特征在于, 所述装置还包括:
参考天线个数设置单元, 用于当在所述干扰信道矩阵的行向量空间中传输 的发射数据流数不为零时, 设置本地参考天线个数不小于所述在所述自干扰信 道矩阵的行向量空间中传输的发射数据流数。
12、一种全双工通信***, 其特征在于, 所述***包括权利要求 7至 11任一项 所述的全双工通信中有用信号的获取装置。
PCT/CN2013/070156 2012-06-07 2013-01-07 全双工通信中有用信号的获取方法、装置及*** WO2013181936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210185832.6A CN103475396B (zh) 2012-06-07 2012-06-07 全双工通信中有用信号的获取方法、装置及***
CN201210185832.6 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013181936A1 true WO2013181936A1 (zh) 2013-12-12

Family

ID=49711328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070156 WO2013181936A1 (zh) 2012-06-07 2013-01-07 全双工通信中有用信号的获取方法、装置及***

Country Status (2)

Country Link
CN (1) CN103475396B (zh)
WO (1) WO2013181936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669206A (zh) * 2020-05-21 2020-09-15 中国联合网络通信集团有限公司 一种信号检测方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728893B (zh) * 2017-10-31 2021-06-08 华为技术有限公司 一种全双工fd传输方法及相关设备
WO2022061513A1 (zh) * 2020-09-22 2022-03-31 华为技术有限公司 无线通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515917A (zh) * 2009-03-25 2009-08-26 东南大学 基于双向中继的多用户无线通信***及方法
CN101958770A (zh) * 2010-08-30 2011-01-26 北京邮电大学 多输入多输出***上行多用户多址干扰消除方法及装置
WO2011131242A1 (en) * 2010-04-22 2011-10-27 Telefonaktiebolaget L M Ericsson (Publ) Multi-antenna device
CN102457319A (zh) * 2010-10-28 2012-05-16 中兴通讯股份有限公司 业务数据下发方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825898A (en) * 1996-06-27 1998-10-20 Lamar Signal Processing Ltd. System and method for adaptive interference cancelling
EP2636165B1 (en) * 2010-11-03 2015-04-01 Telefonaktiebolaget L M Ericsson (publ) Self-interference suppression in full-duplex mimo relays
CN102421194B (zh) * 2011-12-29 2014-07-16 上海交通大学 基于双向中继协议的上下行传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515917A (zh) * 2009-03-25 2009-08-26 东南大学 基于双向中继的多用户无线通信***及方法
WO2011131242A1 (en) * 2010-04-22 2011-10-27 Telefonaktiebolaget L M Ericsson (Publ) Multi-antenna device
CN101958770A (zh) * 2010-08-30 2011-01-26 北京邮电大学 多输入多输出***上行多用户多址干扰消除方法及装置
CN102457319A (zh) * 2010-10-28 2012-05-16 中兴通讯股份有限公司 业务数据下发方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669206A (zh) * 2020-05-21 2020-09-15 中国联合网络通信集团有限公司 一种信号检测方法及装置
CN111669206B (zh) * 2020-05-21 2021-04-06 中国联合网络通信集团有限公司 一种信号检测方法及装置

Also Published As

Publication number Publication date
CN103475396A (zh) 2013-12-25
CN103475396B (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
CN108462552B (zh) 一种多码字传输方法及装置
US10103788B2 (en) Method for reducing self-interference signal in communications system, and apparatus
EP3427389B1 (en) Resource and power allocation in non-orthogonal uplink transmissions
US9722759B2 (en) Radio transceiver for virtual full duplex communication using unused resources
US12010703B2 (en) Smart repeater systems
CA3087852C (en) Bwp frequency hopping configuration method, network device and terminal
CN105230079B (zh) 使用多个网络信令值的方法和装置
MX2016006701A (es) Sistema de comunicaciones, dispositivo y metodo.
CN115777183A (zh) 用于确定上行链路/下行链路传输块大小以及调制编码方案的方法和装置
JPWO2020144818A5 (ja) 端末、通信方法、基地局及びシステム
JP2022546266A (ja) アップリンクビームマネージメント
WO2013181936A1 (zh) 全双工通信中有用信号的获取方法、装置及***
US11139946B2 (en) Device and method for cancelling interference caused by non-linear device
KR101803035B1 (ko) 상쇄 기반의 무선 정보 및 전력 동시 전송 시스템 및 방법
Un et al. Joint transmit beamforming optimization and uplink/downlink user selection in a full-duplex multi-user MIMO system
US10383108B2 (en) Data interference cancellation method, transmit end, receive end, and system
CN113965223B (zh) 信号发送方法、装置、接入网设备及可读存储介质
CN205377847U (zh) 一种无人机通信***的信号发送装置
US9838073B2 (en) Processing method based on OFDM-TDMA two-way service and communications device
CN112671425B (zh) 频带之间的削波噪声的分布
KR20150100095A (ko) 가용주파수 확보 장치 및 그 방법
CN109150430A (zh) 一种数据传输方法及装置
JP6325465B2 (ja) 無線通信システム、無線通信方法、及び無線通信装置
KR20220067888A (ko) O-RAN 프론트홀의 5G mmWave 광대역 빔포밍 MIMO 서비스 방법과 그 장치
US20170012690A1 (en) Channel state information obtaining method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800101

Country of ref document: EP

Kind code of ref document: A1