WO2013180361A1 - 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자 - Google Patents

아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자 Download PDF

Info

Publication number
WO2013180361A1
WO2013180361A1 PCT/KR2012/010336 KR2012010336W WO2013180361A1 WO 2013180361 A1 WO2013180361 A1 WO 2013180361A1 KR 2012010336 W KR2012010336 W KR 2012010336W WO 2013180361 A1 WO2013180361 A1 WO 2013180361A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
functional layer
electrode
light emitting
solar cell
Prior art date
Application number
PCT/KR2012/010336
Other languages
English (en)
French (fr)
Inventor
이광희
강홍규
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to JP2015514885A priority Critical patent/JP5980418B2/ja
Priority to US14/404,599 priority patent/US10553807B2/en
Publication of WO2013180361A1 publication Critical patent/WO2013180361A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/02Homopolymers or copolymers of vinylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/157Hole transporting layers between the light-emitting layer and the cathode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a functional layer for an organic electronic device and an organic electronic device including the same, and more particularly, to a functional layer for an organic electronic device including a nonconjugated polymer having an amine group and an organic electronic device including the same.
  • a functional layer for an organic electronic device refers to a layer disposed between both electrodes in order to improve characteristics of the device in an organic electronic device such as an organic light emitting device, an organic solar cell, or an organic transistor.
  • inorganic materials are further classified into metal oxides and metal carbonates, and organic materials are self-assembled monolayers, SAM), conjugated polyelectrolytes, and polyethylene oxides.
  • Metal oxides have high electron mobility, low unoccupied molecular orbital (LUMO) level and high occupied molecular orbital (HOMO level), so they are widely used as functional layers for organic electronic devices.
  • LUMO low unoccupied molecular orbital
  • HOMO level high occupied molecular orbital
  • a high temperature process of 200 or more is required. Since the high temperature process is mostly performed at a temperature higher than the glass transition temperature of the flexible substrate, there is a problem in that it is difficult to implement an organic electronic device in the flexible substrate.
  • the metal oxide functional layer in the organic solar cell of the inverted structure since the efficiency increases to approach the efficiency of the normal organic solar cell only when UV (ultraviolet) is irradiated for a certain time, photoactivity is active. There is a problem of deteriorating the material.
  • the metal carbonate material and the self-assembled monolayer are not only difficult to form a uniform ultra thin film, but also difficult to be applied to a continuous printing process.
  • the conjugated polymer electrolyte is widely used because it induces a surface dipole on the surface of the electrode to control the work function of the electrode.
  • the synthesis process of the conjugated polymer electrolyte is complicated, the cost of the organic electronic device is increased. There is a problem that acts as the main cause of the problem.
  • the polyethylene oxide material since the expression degree of the surface dipole induction effect is low, there is a limit to use as a functional layer for organic electronic devices.
  • Embodiments of the present invention to provide a functional layer for an organic electronic device containing a polymer material that can solve the problems of conventional functional layer material for an organic electronic device, and an organic electronic device comprising the same.
  • the first electrode In an organic electronic device comprising a second electrode and at least one organic material layer disposed between the first electrode and the second electrode, the organic material layer comprises an electron transport layer, the electron transport layer containing polyallylamine or polylysine It may be an organic electronic device.
  • the organic material layer may include a hole transport layer, and the hole transport layer may be an organic electronic device containing polyallylamine or polylysine.
  • the organic electronic device may be selected from the group consisting of an organic light emitting device, an organic phosphorescent device, an organic solar cell, and an organic transistor.
  • the organic solar cell is an organic solar cell having a normal structure, a series stacked organic solar cell having a normal structure, a parallel stacked organic solar cell having a normal structure, an organic solar cell having an inverted structure, inverted It may be a series stacked organic solar cell having a structure or a parallel stacked organic solar cell having an inverted structure.
  • the organic light emitting device is an organic light emitting device having a normal structure, a series stacked organic light emitting device having a normal structure, a parallel stacked organic light emitting device having a normal structure, a series stacked organic light emitting device having an inverted structure or It may be a parallel stacked organic light emitting device having an inverted structure.
  • the functional layer may be manufactured through a low temperature process by a relatively simple synthesis process.
  • the functional layer for an organic electronic device containing a non-conjugated polymer having an amine group is easy to manufacture a thin film, and can greatly control the work function of the electrode by inducing a strong surface dipole on the electrode surface.
  • 1 is a view schematically showing an organic solar cell having an inverted structure.
  • FIG. 2 is a view schematically illustrating a stacked organic solar cell having an inverted structure.
  • FIG. 3A is a schematic view of an organic light emitting diode having a normal structure
  • FIG. 3B is a schematic view of an organic light emitting diode having an inverted structure.
  • FIG. 5 is an I-V graph of a comparative example and an example in the organic solar cell of FIG. 1.
  • FIG. 6 is an I-V graph of an embodiment in the stacked organic solar cell of FIG. 2.
  • FIG. 7 is a graph showing luminous efficiency of Comparative Examples and Examples in the organic light emitting diode of FIG. 3a.
  • FIG. 8 is a graph showing luminous efficiency of Comparative Examples and Examples in the organic light emitting diode of FIG. 3b.
  • first functional layer 230 first photoactive layer
  • recombination layer 241 second functional layer
  • 300a normal organic light emitting diode 310a: substrate and first electrode
  • 300b inverted organic light emitting diode 310b: substrate and first electrode
  • Functional layer for an organic electronic device is characterized in that it contains a non-conjugated polymer having an amine group in the chemical structure.
  • the description that the nonconjugated polymer having an amine group is contained in the chemical structure means that the nonconjugated polymer having an amine group is contained in the backbone or side chain of the polymer.
  • the nonconjugated polymer having an amine group may be polyethyleneimine, polyallylamine, or polylysine, but is not limited thereto. That is, the functional layer for an organic electronic device according to an embodiment of the present invention may include all nonconjugated polymers having amine groups.
  • the non-conjugated polymer having an amine group has the structural formulas of polyethyleneimine, polyallylamine, and polylysine exemplified above.
  • the nonconjugated polymer having an amine group is an organic material, a high temperature process is not required as in a conventional metal oxide material, and UV (ultraviolet) dependent phenomenon does not appear. Therefore, the deformation of the flexible substrate does not occur during the process, so that the organic electronic device may be applied to the flexible substrate, and even when used in an organic solar cell having an inverted structure, the phenomenon of degrading the photoactive material does not occur. have.
  • the non-conjugated polymer having an amine group unlike the metal carbonate material or self-assembled monolayer, which is conventionally used as a functional layer due to the excellent thin film formation of the polymer, can not only form an ultra thin film but also be applied to a continuous printing process. There is an advantage.
  • the non-conjugated polymer having an amine group can be easily protonated when dissolved in water, the work function of the electrode can be largely controlled by inducing a strong interfacial dipole at the electrode surface. Therefore, by reducing the energy barrier between the electrode and the photoactive materials it can contribute to the improvement of the efficiency of the organic electronic device.
  • the non-conjugated polymer having an amine group has the same or more electrode work function control effect in a relatively simple process than the conventional conjugated polymer electrolyte, and can greatly control the work function of the electrode than the polyethylene oxide material which is not ionic.
  • the effect of the organic electronic device using the non-conjugated polymer having such an amine group will be described by supplementing it through the following test examples.
  • the protonation reaction of the polyethyleneimine, polyallylamine and polylysine as illustrated above are shown below.
  • the present invention provides an organic electronic device comprising a functional layer for an organic electronic device according to an embodiment of the present invention.
  • the organic electronic device refers to a device including a first electrode, a second electrode and one or more organic material layers disposed between the first electrode and the second electrode.
  • Such organic electronic devices include, but are not limited to, organic light emitting diodes, organic phosphorescent diodes, polymer light emitting diodes, organic solar cells, or organic transistors.
  • the organic solar cell is an organic solar cell having a normal structure, a series stacked organic solar cell having a normal structure, a parallel stacked organic solar cell having a normal structure, an organic solar cell having an inverted structure, an inverted structure It may include a series stacked organic solar cell or a parallel stacked organic solar cell having a but is not limited thereto.
  • the organic light emitting diode may include an organic light emitting diode having a normal structure, a series stacked organic light emitting diode having a normal structure, a parallel stacked organic light emitting diode having a normal structure, and an inverted structure. It may include a series stacked organic light emitting device or a parallel stacked organic light emitting device having an inverted structure, but is not limited thereto.
  • the functional layer for an organic electronic device according to an embodiment of the present invention is not limited to being applied only to the following applications. That is, in the following applications, an organic solar cell having an inverted structure (Application Example 1), a stacked organic solar cell having an inverted structure (Application Example 2), and an organic light emitting diode having a normal / inverted structure ( Although application example 3) is illustrated, the functional layer for an organic electronic device according to an embodiment of the present invention may be applied to an organic solar cell or a stacked organic solar cell having a normal structure.
  • FIG. 1 is a view schematically showing an organic solar cell 100 (hereinafter, referred to as an inverted organic solar cell) having an inverted structure.
  • the inverted organic solar cell 100 includes a substrate 110, a first electrode 120, a first functional layer 130, a photoelectric conversion layer 140, a second functional layer 150, and the like.
  • the second electrode 160 may be sequentially stacked.
  • Substrate 110 is glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyimide (PP), polycarbornate (PC), polystylene (PS), polyoxyethylene (POM), acrylonitrile styrene copolymer (AS) It may be a flexible and transparent material such as a plastic, including a resin, an acrylonitrile butadiene styrene copolymer (ABS) resin, triacetyl cellulose (TAC), and the like, but is not limited thereto.
  • the substrate 110 may be made of a translucent or opaque material, or a substrate in which a translucent or opaque metal electrode is coated on the substrate 110.
  • the first electrode 120 may function as a cathode, and a material having a larger work function than the second electrode 160 may be used.
  • the first electrode 120 may be formed of indium tin oxide (ITO), gold, silver, or fluorine doped tin oxide (FTO), or aluminum doped zink oxide (AZO).
  • PSS Poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)
  • PANI CSA (polyaniline: camphorsulfonic acid )
  • Graphene carbon nanotube (CNT), nanowire or nano tin oxide (ATO), but is not limited thereto, and all kinds of known materials serving as cathodes Can be used.
  • the first functional layer 130 may function as an electron transport layer (or electron capture layer).
  • the first functional layer 130 may be a functional layer for an organic electronic device according to an embodiment of the present invention, and specifically, may be a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group.
  • the nonconjugated polymer having an amine group include polyethyleneimine, polyallylamine, polylysine, and the like.
  • the first functional layer 130 is a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group
  • a strong surface dipole may be induced to lower the work function of the first electrode 120. Therefore, it is possible to use materials such as ITO, PEDOT: PSS, PANI: CSA, graphene, carbon nanotubes, and nanowires that are generally used for the anode.
  • the photoelectric conversion layer 140 has a bulk hetero-junction (BHJ) structure in which an electron donor and an electron acceptor are mixed, and the electron donor may be a polymer semiconductor, a low molecular semiconductor, or the like.
  • BHJ bulk hetero-junction
  • the electron donor may be selected from the group consisting of poly (para-phenylene vinylene) -based materials, polythiophene derivatives, and phthalocyanine-based materials.
  • the electron acceptor is a fullerene having a high electron affinity (C 60 , C 70 , C 76 , C 78 , C 82 , C 90 , C 94 , C 96 , C 720 , C 860, etc.); 1- (3-methoxy-carbonyl) propyl-1-phenyl (6,6) C 61 (1- ( 3-methoxy-carbonyl) propyl-1-phenyl (6,6) C 61: PCBM), C Fullerene derivatives such as 71 -PCBM, C 84 -PCBM, bis-PCBM, and thienyl-C 61 -butyricacidmethylester (ThCBM) may be used, but not limited thereto, and all kinds of known materials may be used.
  • C Fullerene derivatives such as 71 -PCBM, C 84 -PCBM, bis-PCBM, and thienyl-C 61 -butyricacidmethylester (ThCBM) may be
  • the second functional layer 150 may function as a hole transport layer (or a hole trapping layer), and may include PEDOT: PSS (poly (3,4-ethylenedioxythiophene): polystyrenesulfonate); Metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide; Conjugated or nonconjugated polymer electrolytes; Materials such as self-assembled monolayers (SAM) may be used, but are not limited thereto, and all kinds of known materials may be used.
  • PEDOT PSS (poly (3,4-ethylenedioxythiophene): polystyrenesulfonate)
  • Metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide
  • Conjugated or nonconjugated polymer electrolytes Conjugated or nonconjugated polymer electrolytes
  • Materials such as self-assembled monolayers (SAM) may be used, but are not limited thereto, and all kinds of known materials may
  • the second electrode 160 may function as an anode, and a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or an alloy thereof may be used.
  • a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or an alloy thereof may be used.
  • a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or an alloy thereof may be used.
  • the present invention is not limited thereto, and all kinds of known materials serving as anodes may be used.
  • FIG. 2 schematically illustrates a stacked organic solar cell 200 having an inverted structure (hereinafter, referred to as an inverted stacked organic solar cell).
  • the inverted stacked organic solar cell 200 includes a first electrode 210, a first functional layer 220, a first photoactive layer 230, a second functional layer 241, and a third function.
  • Recombination layer 240, second photoactive layer 250, fourth functional layer 260, and second electrode 270 formed by stacking layers 242 are sequentially stacked on a substrate (not shown). It can have At this time, the substrate can be used a substrate that is commonly used, the detailed description thereof will be omitted.
  • first electrode 210 the first photoactive layer 230, the second photoactive layer 250 and the second electrode 270 may be made of the same and / or similar materials to those described in Application Example 1 described above. Here, redundant descriptions are omitted.
  • the first functional layer 220 may function as an electron transport layer, and serves to transport electrons generated in the first photoactive layer 230 to the first electrode 210.
  • the first functional layer 220 may be a functional layer for an organic electronic device according to an embodiment of the present invention, and specifically, may be a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group.
  • the nonconjugated polymer having an amine group include polyethyleneimine, polyallylamine, polylysine, and the like.
  • the first functional layer 220 is a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group
  • a strong surface dipole may be induced to lower the work function of the first electrode 210. Therefore, it is possible to use materials such as ITO, PEDOT: PSS, PANI: CSA, graphene, carbon nanotubes, nanowires, and the like, which are generally used for the anode.
  • the recombination layer 240 is a layer in which holes generated in the first photoactive layer 230 and electrons generated in the second photoactive layer 250 are recombined, and the second functional layer 241 and the third functional layer are recombined. 242 may have a bonded structure.
  • the second functional layer 241 serves to transport holes by facilitating the inflow of holes from the first photoactive layer 230 and not the inflow of electrons, and includes a p-type semiconductor, a metal oxide, and a PEDOT: Materials such as PSS may be used, but are not limited to these, and all kinds of known materials may be used.
  • the third functional layer 242 serves to transport electrons so that the inflow of electrons from the second photoactive layer 250 is easy and the hole inflow is not easy, and the third functional layer 242 is the present invention. It may be a functional layer for an organic electronic device according to an embodiment of the. That is, the third functional layer 242 may be a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group. Examples of the nonconjugated polymer having an amine group include polyethyleneimine, polyallylamine, polylysine, and the like.
  • the fourth functional layer 260 may function as a hole transport layer, and serves to transport holes generated in the second photoactive layer 250 to the second electrode 270.
  • the fourth functional layer 260 may use a material such as metal oxide or PEDOT: PSS, but is not limited thereto, and all kinds of known materials may be used.
  • the manufacturing method and process of the above-described inverted multilayer organic solar cell is the same or similar to the known manufacturing method and process, a detailed description thereof will be omitted.
  • FIG. 3A is a view schematically showing an organic light emitting diode 300a having a normal structure (hereinafter, referred to as a normal organic light emitting diode), and FIG. 3B is an organic light emitting diode 300b having an inverted structure (hereinafter referred to as an inverted organic light emitting diode). ) Is a diagram schematically showing.
  • the normal organic light emitting diode 300a includes a substrate and a first electrode 310a, a first functional layer 320a, a light emitting layer 330a, a second functional layer 340a, and a second electrode 350a sequentially stacked. It may have a structure.
  • the substrate, the first electrode 310a, the light emitting layer 330a, and the second electrode 350a may be configured using materials conventional in a normal organic light emitting diode, and thus a detailed description thereof will be omitted.
  • the substrate and the first electrode 310a means a form in which the first electrode is formed on the substrate.
  • FIG. 3A illustrates a case where glass / ITO is used as the substrate and the first electrode 310a and Al is used as the second electrode 350a.
  • the first functional layer 320a may be selected from a hole injection layer, a hole transport layer, or a hole injection layer / hole transport layer laminated, but is not limited thereto.
  • PEDOT: PSS may be used as the first functional layer 320a, but is not limited thereto, and all kinds of known materials may be used.
  • the second functional layer 340a may be selected from a form in which an electron injection layer, an electron transport layer, or an electron injection layer / electron transport layer is stacked, but is not limited thereto.
  • the second functional layer 340a may be a functional layer for an organic electronic device according to an embodiment of the present invention, and specifically, may be a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group.
  • the nonconjugated polymer having an amine group include polyethyleneimine, polyallylamine, polylysine, and the like.
  • the inverted organic light emitting diode 300b is formed by stacking a substrate, a first electrode 310b, a first functional layer 320b, a light emitting layer 330b, a second functional layer 340b, and a second electrode 350b. It can have a structure.
  • the substrate, the first electrode 310b, the light emitting layer 330b, and the second electrode 350b may be configured by using materials common to the inverted organic light emitting diode, and thus a detailed description thereof will be omitted.
  • the substrate and the first electrode 310b means a form in which the first electrode is formed on the substrate.
  • FIG. 3B illustrates a case where glass / ITO is used as the substrate and the first electrode 310b and Ag is used as the second electrode 350b.
  • the first functional layer 320b may be selected from a form in which an electron injection layer, an electron transport layer, or an electron injection layer / electron transport layer is stacked, but is not limited thereto.
  • the first functional layer 320b may be a functional layer for an organic electronic device according to an embodiment of the present invention, and specifically, may be a functional layer for an organic electronic device containing a nonconjugated polymer having an amine group.
  • the nonconjugated polymer having an amine group include polyethyleneimine, polyallylamine, polylysine, and the like.
  • the second functional layer 340b may be selected from a hole injection layer, a hole transport layer, or a hole injection layer / hole transport layer laminated, but is not limited thereto.
  • PEDOT: PSS may be used as the second functional layer 340b, but is not limited thereto, and all kinds of known materials may be used.
  • the functional layer for an organic electronic device according to an embodiment of the present invention may be applied to various organic electronic devices, and characteristics of the organic electronic device to which the functional layer for organic electronic devices according to an embodiment of the present invention are applied may be applied. You can strengthen it.
  • test example of the present invention will be described. However, it is obvious that the following test examples do not limit the present invention.
  • a comparative example and an example were prepared as shown in Table 1 below, and a functional layer was formed by coating materials corresponding to the comparative example and the example on the ITO thin film.
  • the work function was measured for each of the ITO / functional layer laminates. Materials corresponding to the examples were obtained from Sigma-Aldrich, and work function measurements were performed using Kelvin Probe Measurement.
  • FIG. 4 is a graph of work function measurement results of Comparative Examples and Examples.
  • the work function of the ITO without the functional layer was about 4.8 eV.
  • the work function decreased slightly to about 4.4 eV, but in the case of ITO applied with a non-conjugated polymer having an amine group such as PAA, PLS and PEI (Example 1 to 3) It was confirmed that the degree of decrease in the work function to about 4.2eV, 4.1eV and 4.0eV, respectively.
  • the manufacturing process of the inverted organic solar cell is as follows. First, the ITO-coated glass substrate was washed with the first electrode, sonicated with DI-water, acetone, and IPA (isopropyl alcohol), and then dried at 100. Next, residual contaminants on the surface of the ITO were removed and UV / ozone treatment was performed for hydrophilic modification of the surface. Next, a functional layer thin film was formed by spin coating a material corresponding to Comparative Example and Example on the surface of the ITO, and the solvent was volatilized on a hot plate.
  • a P3HT PC 70 BM solution prepared by blending P3HT (poly (3-hexylthiophene)) as an electron donor material and PC 70 BM as an electron acceptor material in chlorobenzene was spin-coated on top of the functional layer thin film. It was formed into a photoactive layer and the solvent was volatilized on a hot plate.
  • a PEDOT: PSS solution was spin coated on the photoactive layer to form a thin film and the solvent was volatilized.
  • Ag was deposited on the PEDOT: PSS layer on the PEDOT: PSS layer in the vacuum chamber to prepare an organic solar cell sample.
  • the organic solar cell sample prepared as described above has a structure of Glass / ITO / PEO, PAA, PLS or PEI / P3HT: PC 70 BM / PEDOT: PSS / Ag from below.
  • FIG. 5 is an I-V graph of a comparative example and an example in the organic solar cell of FIG. 1.
  • a multilayer organic solar cell having an inverted structure shown in FIG. 2 is manufactured, and a third functional layer 242 of the first functional layer 220 and the recombination layer 240 is made of polyethyleneimine (PEI) according to Example 3 It was prepared using.
  • PEI polyethyleneimine
  • the manufacturing process of the inverted stacked organic solar cell is as follows. First, the ITO-coated glass substrate was washed with the first electrode, sonicated with DI-water, acetone, and IPA (isopropyl alcohol), and then dried at 100. Next, residual contaminants on the surface of the ITO were removed and UV / ozone treatment was performed for hydrophilic modification of the surface. Next, PEI was coated on the surface of the ITO to form a functional layer thin film (Example 3), and the solvent was volatilized on a hot plate. Next, a P3HT: PC 70 BM solution was spin-coated to form a photoactive layer on top of the functional layer thin film, and the solvent was volatilized on a hot plate.
  • IPA isopropyl alcohol
  • a PEDOT: PSS solution was spin-coated on the photoactive layer to form a thin film and the solvent was volatilized.
  • a PEDOT: PSS solution was spin-coated on the photoactive layer to form a thin film and the solvent was volatilized.
  • Ag depositing Ag on the PEDOT: PSS layer on the PEDOT: PSS layer in the vacuum chamber as a second electrode to prepare a stacked organic solar cell sample.
  • the inverted stacked organic solar cell sample prepared as described above has a structure of Glass / ITO / PEI / P3HT: PC 70 BM / PEDOT: PSS / PEI / P3HT: PC 70 BM / PEDOT: PSS / Ag from below.
  • FIG. 6 is an I-V graph of an embodiment in the stacked organic solar cell of FIG. 2.
  • the inverted stacked organic solar cell using PEI has an open voltage (V oc , V) of 1.2 V, a short circuit current (J sc , mA / cm 2 ) of 5.4 mA / cm 2 , a fill factor of 0.54, and an efficiency of %) It was confirmed that the efficiency is improved to 1 to 2%, which is the efficiency of the general stacked organic solar cell as 3.5.
  • FIGS. 3a and 3b An organic light emitting diode shown in FIGS. 3a and 3b was prepared.
  • the second functional layer 340a was manufactured using PEI (polyethyleneimine) corresponding to Example 3, and the second functional layer 340a was produced without the second functional layer 340a (Comparative Example 2) and luminous efficiency. Comparison was made (see FIG. 3A).
  • the manufacturing process of the normal organic light emitting diode is as follows. First, the ITO-coated glass substrate was washed with the first electrode, sonicated with DI-water, acetone, and IPA (isopropyl alcohol), and then dried at 100. Next, residual contaminants on the surface of the ITO were removed and UV / ozone treatment was performed for hydrophilic modification of the surface. Next, the PEDOT: PSS solution was spin-coated on the surface of the ITO, and the solvent was volatilized on a hot plate.
  • a poly (9,9-dioctylfluorene) PFO blue material (hereinafter, PFO) was spin-coated on the upper surface of the PEDOT: PSS layer as a light emitting layer solution, and the solvent was volatilized on a hot plate.
  • PFO poly (9,9-dioctylfluorene) PFO blue material
  • a PEI material was spin-coated on the upper surface of the light emitting layer to form a functional layer, and the solvent was volatilized.
  • Al was deposited to a second electrode in a vacuum chamber to fabricate an organic light emitting diode sample. At this time, Al was directly deposited on the emission layer to prepare a sample of Comparative Example 2 separately.
  • the normal organic light emitting diodes prepared as described above were formed from the structure of Glass / ITO / PEDOT: PSS / PFO / PEI / Al (Example 3), and the structure of Glass / ITO / PEDOT: PSS / PFO / Al (from below). It has a comparative example 2).
  • FIG. 7 is a graph showing luminous efficiency of Comparative Examples and Examples in the organic light emitting diode of FIG. 3A.
  • the maximum luminance was measured to be 7753 cd / m 2 (10V), otherwise (Comparative Example 2), the maximum luminance was 36.7 cd. measured in / m 2 (13V). Therefore, when the non-conjugated polymer having an amine group is used as the functional layer in the normal organic light emitting diode, it was confirmed that the efficiency of the organic light emitting diode is greatly improved.
  • the first functional layer 320b was manufactured using PEI (polyethyleneimine) corresponding to Example 3, and the first functional layer 320b was made of TiO x (Comparative Example). 3) and the luminous efficiency was compared (see Fig. 3b).
  • the manufacturing process of the inverted organic light emitting diode is as follows. First, the ITO-coated glass substrate was washed with the first electrode, sonicated with DI-water, acetone, and IPA (isopropyl alcohol), and then dried at 100. Next, residual contaminants on the surface of the ITO were removed and UV / ozone treatment was performed for hydrophilic modification of the surface. Next, a PEI material was spin-coated on the ITO to form a functional layer, and the solvent was volatilized.
  • F8BT Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl as a light emitting layer solution on the upper surface of the functional layer. )]
  • the green material hereinafter referred to as F8BT
  • F8BT was spin coated and the solvent was volatilized on a hot plate.
  • the light emitting layer was formed directly on the ITO, and the sample of Comparative Example 3 was also prepared separately.
  • the PEDOT: PSS solution was spin-coated on the surface of the light emitting layer, and the solvent was volatilized on a hot plate.
  • Example 3 Glass / ITO / PEI / F8BT / PEDOT: PSS / Ag.
  • FIG. 8 is a graph showing luminous efficiency of Comparative Examples and Examples in the organic light emitting diode of FIG. 3b.
  • the maximum luminance was measured to be 1759 cd / m 2 (13V). Otherwise, the maximum luminance was 19.3 cd. measured at / m 2 (32V). Therefore, when the non-conjugated polymer having an amine group was used as the functional layer in the inverted organic light emitting diode, it was confirmed that the efficiency of the organic light emitting diode was greatly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자가 개시된다. 본 발명의 일 실시예에 따른 유기전자소자는 제1 전극; 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치되는 1층 이상의 유기물층을 포함하는 유기전자소자에 있어서, 상기 유기물층은 전자수송층을 포함하고, 상기 전자수송층은 폴리알릴아민 또는 폴리리신을 함유한다.

Description

아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자
본 발명은 유기전자소자용 기능층 및 이를 포함하는 유기전자소자에 관한 것으로, 보다 상세하게는 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자에 관한 것이다.
일반적으로, 유기전자소자용 기능층은 유기발광소자, 유기태양전지 또는 유기트랜지스터와 같은 유기전자소자에서 소자의 특성을 향상시키기 위해 양 전극 사이에 배치되는 레이어(layer)를 의미한다.
현재 이러한 유기전자소자용 기능층으로 이용되는 재료는 크게 무기재료 및 유기재료로 구분될 수 있으며, 무기재료는 다시 금속 옥사이드, 금속 카보네이트로 구분되고, 유기재료는 자기조립단분자막(self-assembled monolayers, SAM), 공액 고분자 전해질(conjugated polyelectrolytes), 폴리에틸렌 옥사이드로 구분될 수 있다.
금속 옥사이드 재료(metal oxides)는 높은 전자 이동도를 가지고 있고 낮은 LUMO level(lowest unoccupied molecular orbital) 및 높은 HOMO level(highest occupied molecular orbital)을 가지므로 유기전자소자용 기능층으로 널리 이용되고 있으나, 금속 옥사이드 재료의 특성 발현을 위해서는 200 이상의 고온 공정이 요구되는 문제가 있다. 이러한 고온 공정은 대부분 플렉서블 기판의 유리전이온도보다 높은 온도에서 수행되므로, 플렉서블 기판에서의 유기전자소자 구현을 어렵게 한다는 문제가 있다. 또한, 인버티드 구조의 유기태양전지에 금속 옥사이드 기능층을 사용하는 경우에는, UV(ultraviolet)를 일정시간 조사하는 경우에만 노말형 유기 태양전지의 효율에 근접하도록 효율이 증가하는 현상을 보이므로 광활성 물질을 열화시키는 문제가 있다.
한편, 금속 카보네이트 재료 및 자기조립단분자막은 균일한 초박막을 형성하는데에 어려움이 있을 뿐만 아니라, 연속 프린팅 공정에 적용되기 어렵다는 문제가 있다. 또한, 공액 고분자 전해질은 전극 표면에서 표면 쌍극자(interfacial dipole)를 유도하여 상기 전극의 일함수를 조절하는 역할을 수행하므로 널리 이용되고 있으나, 공액 고분자 전해질의 합성과정이 복잡하므로 유기전자소자의 비용 증가의 주된 원인으로 작용한다는 문제가 있다. 또한, 폴리에틸렌 옥사이드 재료의 경우에는 표면 쌍극자의 유도 효과의 발현 정도가 낮으므로 유기전자소자용 기능층으로 사용되기에는 한계가 존재한다.
따라서, 상술한 종래 유기전자소자용 기능층으로 이용되는 재료들 이외에 신규한 재료의 개발이 요구되고 있다.
본 발명의 실시예들에서는 종래 유기전자소자용 기능층 재료의 문제점을 해결할 수 있는 고분자 재료를 함유하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자를 제공하고자 한다.
본 발명의 일 측면에 따르면, 제1 전극; 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치되는 1층 이상의 유기물층을 포함하는 유기전자소자에 있어서, 상기 유기물층은 전자수송층을 포함하고, 상기 전자수송층은 폴리알릴아민 또는 폴리리신을 함유하는 유기전자소자일 수 있다.
또한, 상기 유기물층은 정공수송층을 포함하고, 상기 정공수송층은 폴리알릴아민 또는 폴리리신을 함유하는 유기전자소자일 수 있다.
또한, 상기 유기전자소자는 유기발광소자, 유기인광소자, 유기태양전지 및 유기트랜지스터로 이루어진 군으로부터 선택되는 것일 수 있다.
이 때, 상기 유기태양전지는 노말형 구조를 갖는 유기태양전지, 노말형 구조를 갖는 직렬 적층형 유기태양전지, 노말형 구조를 갖는 병렬 적층형 유기태양전지, 인버티드 구조를 갖는 유기태양전지, 인버티드 구조를 갖는 직렬 적층형 유기태양전지 또는 인버티드 구조를 갖는 병렬 적층형 유기태양전지 일 수 있다.
또한, 상기 유기발광소자는 노말형 구조를 갖는 유기발광소자, 노말형 구조를 갖는 직렬 적층형 유기발광소자, 노말형 구조를 갖는 병렬 적층형 유기발광소자, 인버티드형 구조를 갖는 직렬 적층형 유기발광소자 또는 인버티드 구조를 갖는 병렬 적층형 유기발광소자 일 수 있다.
본 발명의 실시예들에서는 유기전자소자용 기능층 재료로 아민기를 갖는 비공액 고분자를 사용함으로써, 상대적으로 간단한 합성과정으로 저온 공정을 통하여 기능층을 제조할 수 있다.
또한, 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층은 박막 제작이 용이하고, 전극 표면에서 강한 표면 쌍극자를 유도하여 전극의 일함수를 크게 조절할 수 있다.
도 1은 인버티드 구조를 갖는 유기태양전지를 개략적으로 도시한 도면이다.
도 2는 인버티드 구조를 갖는 적층형 유기태양전지를 개략적으로 도시한 도면이다.
도 3a는 노말형 구조를 갖는 유기발광다이오드를 개략적으로 도시한 도면이고, 도 3b는 인버티드 구조를 갖는 유기발광다이오드를 개략적으로 도시한 도면이다.
도 4는 비교예 및 실시예의 일함수 측정 결과 그래프이다.
도 5는 도 1의 유기태양전지에서 비교예 및 실시예의 I-V 그래프이다.
도 6은 도 2의 적층형 유기태양전지에서 실시예의 I-V 그래프이다.
도 7은 도 3a의 유기발광다이오드에서 비교예 및 실시예의 발광효율 그래프이다.
도 8은 도 3b의 유기발광다이오드에서 비교예 및 실시예의 발광효율 그래프이다.
[부호의 설명]
100: 인버티드 유기태양전지 110: 기판
120: 제1 전극 130: 제1 기능층
140: 광전변환층 150: 제2 기능층
160: 제2 전극
200: 인버티드 적층형 유기태양전지 210: 제1 전극
220: 제1 기능층 230: 제1 광활성층
240: 재결합층 241: 제2 기능층
242: 제3 기능층 250: 제2 광활성층
260: 제4 기능층 270: 제2 전극
300a: 노말형 유기발광다이오드 310a: 기판 및 제1 전극
320a: 제1 기능층 330a: 발광층
340a: 제2 기능층 350a: 제2 전극
300b: 인버티드형 유기발광다이오드 310b: 기판 및 제1 전극
320b: 제1 기능층 330b: 발광층
340b: 제2 기능층 350b: 제2 전극
이하, 본 발명의 실시예들에 대하여 구체적으로 설명하도록 한다.
본 발명의 일 실시예에 따른 유기전자소자용 기능층은 화학구조 내에 아민기를 갖는 비공액 고분자(non-conjugated polymer)를 함유하는 것을 일 특징으로 한다. 본 명세서에서 상기 화학구조 내에 아민기를 갖는 비공액 고분자가 함유된다는 기재는, 고분자의 백본(backbone) 또는 측쇄(side chain)에 아민기를 갖는 비공액 고분자가 함유됨을 의미한다.
이 때, 상기 아민기를 갖는 비공액 고분자는 폴리에틸렌이민(polyethyleneimine), 폴리알릴아민(polyallylamine) 또는 폴리리신(polylysine)일 수 있으나, 이에 한정되지는 않는다. 즉, 본 발명의 일 실시예에 따른 유기전자소자용 기능층은 아민기를 갖는 비공액 고분자를 모두 포함할 수 있다.
아민기를 갖는 비공액 고분자로 상기에서 예시한 폴리에틸렌이민(polyethyleneimine), 폴리알릴아민(polyallylamine) 및 폴리리신(polylysine)의 구조식은 하기와 같다.
[구조식 1]
Figure PCTKR2012010336-appb-I000001
폴리에틸렌이민(polyethyleneimine)
[구조식 2]
Figure PCTKR2012010336-appb-I000002
폴리알릴아민(polyallylamine)
[구조식 3]
Figure PCTKR2012010336-appb-I000003
폴리리신(polylysine)
아민기를 갖는 비공액 고분자는 유기 물질이므로 종래 금속 옥사이드 재료와 같이 고온 공정이 요구되지 않으며, UV(ultraviolet) 의존 현상이 나타나지 않는다. 따라서, 공정 과정에서의 플렉서블 기판의 변형이 일어나지 않아 플렉서블 기판에대해 유기전자소자를 적용시킬 수 있으며, 인버티드 구조의 유기태양전지에 사용되는 경우에도 광활성 물질을 열화시키는 현상이 발생하지 않는다는 장점이 있다.
또한, 아민기를 갖는 비공액 고분자는 고분자의 박막 형성의 우수성으로 인하여 종래에 기능층으로 사용되던 금속 카보네이트 재료 또는 자기조립단분자막과는 달리 초박막을 형성할 수 있을 뿐만 아니라, 연속 프린팅 공정에도 적용될 수 있다는 장점이 있다.
또한, 아민기를 갖는 비공액 고분자는 물에 녹일 경우에 쉽게 양성자첨가반응(protonation)이 일어날 수 있으므로, 전극 표면에서 강한 표면 쌍극자(interfacial dipole)을 유도함으로써 상기 전극의 일함수를 크게 조절할 수 있다. 따라서, 전극 및 광활성 물질들 사이의 에너지 장벽을 줄임으로써 유기 전자소자의 효율 향상에 기여할 수 있다.
즉, 아민기를 갖는 비공액 고분자는 종래 공액 고분자 전해질보다 상대적으로 간단한 공정으로도 동일 또는 그 이상의 전극 일함수 조절 효과가 있으며, 이온성을 띠지 않는 폴리에틸렌 옥사이드 재료보다 전극의 일함수를 크게 조절할 수 있다는 장점을 갖는다. 이와 같은 아민기를 갖는 비공액 고분자를 이용한 유기전자소자의 효과에 대해서는 후술할 시험예들을 통하여 보충하여 설명하도록 한다. 한편, 상기에서 예시한 폴리에틸렌이민(polyethyleneimine), 폴리알릴아민(polyallylamine) 및 폴리리신(polylysine)의 양성자첨가반응을 하기에 도시하였다.
[양성자첨가반응]
Figure PCTKR2012010336-appb-I000004
본 발명에서는 본 발명의 일 실시예에 따른 유기전자소자용 기능층을 포함하는 유기전자소자를 제공한다.
이 때, 상기 유기전자소자는 제1 전극, 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치되는 1층 이상의 유기물층을 포함하는 소자를 의미한다. 이와 같은 유기전자소자의 종류로는 유기발광소자, 유기인광소자, 고분자 발광다이오드, 유기태양전지 또는 유기트랜지스터 등이 있으나, 이에 한정되는 것은 아니다. 또한, 상기 유기태양전지는 노말형 구조를 갖는 유기태양전지, 노말형 구조를 갖는 직렬 적층형 유기태양전지, 노말형 구조를 갖는 병렬 적층형 유기태양전지, 인버티드 구조를 갖는 유기태양전지, 인버티드 구조를 갖는 직렬 적층형 유기태양전지 또는 병렬 적층형 유기태양전지 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 유기발광소자(또는 고분자 발광 다이오드)는 노말형 구조를 갖는 유기발광소자, 노말형 구조를 갖는 직렬 적층형 유기발광소자, 노말형 구조를 갖는 병렬 적층형 유기발광소자, 인버티드형 구조를 갖는 직렬 적층형 유기발광소자 또는 인버티드 구조를 갖는 병렬 적층형 유기발광소자 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 일 실시예에 따른 유기전자소자용 기능층이 적용된 유기전자소자의 응용예들에 대하여 설명하도록 한다. 그러나, 본 발명의 일 실시예에 따른 유기전자소자용 기능층은 하기 응용예들에만 적용되는 것으로 한정되지는 않는다. 즉, 하기 응용예들에서는 각각 인버티드 구조를 갖는 유기태양전지(응용예 1), 인버티드 구조를 갖는 적층형 유기태양전지(응용예 2), 노말형/인버티드형 구조를 갖는 유기발광다이오드(응용예 3)를 예시하고 있으나, 본 발명의 일 실시예에 따른 유기전자소자용 기능층은 노말형 구조를 갖는 유기태양전지 또는 적층형 유기태양전지에도 적용될 수 있다.
한편, 본 명세서의 응용예들에서 기재된 유기전자소자의 구성요소 또는 층(layer)은 첨부된 도면을 기준으로 제시된 것일 뿐임을 밝혀둔다. 즉, 하기에서 기재되는 응용예들에 있어서, 언급되는 구성요소 또는 층(layer)만으로 구성되는 경우뿐만 아니라, 상기 구성요소 또는 층 사이에 다른 구성요소 또는 층이 개재되거나 존재하는 경우도 본 발명의 응용예에 포함될 수 있다. 다만, 설명의 편의를 위해서, 하기에서 기재되는 응용예들은 첨부된 도면에 도시된 구성요소 또는 층으로 구성된 경우를 중심으로 설명하도록 한다.
응용예 1: 인버티드 구조를 갖는 유기태양전지
도 1은 인버티드 구조를 갖는 유기태양전지(100, 이하 인버티드 유기태양전지)를 개략적으로 도시한 도면이다.
도 1을 참조하면, 인버티드 유기태양전지(100)는 기판(110), 제1 전극(120), 제1 기능층(130), 광전변환층(140), 제2 기능층(150) 및 제2 전극(160)이 순차적으로 적층된 구조를 가질 수 있다.
기판(110)은 유리, PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PP(polypropylene), PI(polyimide), PC(polycarbornate), PS(polystylene), POM(polyoxyethylene), AS(acrylonitrile styrene copolymer) 수지, ABS(acrylonitrile butadiene styrene copolymer) 수지 및 TAC(Triacetyl cellulose) 등을 포함하는 플라스틱과 같은 유연하고 투명한 물질일 수 있으며, 이에 한정되지는 않는다. 예를 들면, 기판(110)은 반투명 또는 불투명 물질로 제조되거나, 기판(110)에 반투명 또는 불투명 금속 전극이 코팅된 형태를 사용하는 것도 가능하다.
제1 전극(120)은 캐소드의 기능을 하는 부분으로 제2 전극(160)보다 일함수가 큰 물질이 사용될 수 있다. 예를 들어, 제1 전극(120)은 ITO(indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드(fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드(aluminum doped zink oxide, AZO), IZO(indium zink oxide), ZnO-Ga2O3, ZnO-Al2O3, PEDOT:PSS (Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), PANI:CSA(polyaniline:camphorsulfonic acid), 그래핀(Graphene), 카본나노튜브(CNT,Carbon Nano Tube), 나노와이어(Nanowire) 또는 ATO(antimony tin oxide)일 수 있으나, 이에 한정되지 않고, 캐소드로 기능하는 모든 종류의 공지된 물질들이 사용될 수 있다.
제1 기능층(130)은 전자수송층(내지 전자포획층)으로 기능할 수 있다. 이 때, 제1 기능층(130)은 본 발명의 일 실시예에 따른 유기전자소자용 기능층일 수 있으며, 구체적으로는 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층일 수 있다. 여기에서 아민기를 갖는 비공액 고분자의 예로는 폴리에틸렌이민, 폴리알릴아민 또는 폴리리신 등이 있다.
제1 기능층(130)이 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층인 경우에, 강한 표면 쌍극자를 유도하여 제1 전극(120)의 일함수를 낮출 수 있다. 따라서, 일반적으로 애노드에 사용되는 ITO, PEDOT:PSS, PANI:CSA, 그래핀, 카본나노튜브, 나노와이어 등의 물질을 캐소드에 사용 하는 것이 가능하다.
광전변환층(140)은 전자공여체 및 전자수용체가 혼합되어 존재하는 BHJ(bulk hetero-junction)구조로, 상기 전자공여체는 고분자 반도체, 저분자 반도체 등이 사용될 수 있다.
예를 들면, 상기 전자공여체는 PPV(poly(para-phenylene vinylene)계열의 물질, 폴리티오펜(polythiophene)유도체 및 프탈로시아닌(pthalocyanine)계 물질로 이루어진 군에서 선택될 수 있다. 이와 같은 물질들의 예로는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리(p-페닐렌비닐렌), 펜타센, 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리(3-알킬티오펜), 폴리(3-헥실티오펜)(P3HT) 등이 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다.
또한, 상기 전자수용체는 전자 친화도가 큰 플러렌(C60, C70, C76, C78, C82, C90, C94, C96, C720, C860 등); 1-(3-메톡시-카르보닐)프로필-1-페닐(6,6)C61(1-(3-methoxy-carbonyl)propyl-1-phenyl(6,6)C61: PCBM), C71-PCBM, C84-PCBM, bis-PCBM, ThCBM(thienyl-C61-butyricacidmethylester) 등과 같은 플러렌 유도체들을 사용할 수 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다
제2 기능층(150)은 정공수송층(내지 정공포획층)으로 기능할 수 있으며, PEDOT:PSS(폴리(3,4-에틸렌디옥시티오펜):폴리스티렌설포네이트); 몰리브데늄 옥사이드, 바나디움 옥사이드, 텅스텐 옥사이드와 같은 금속 옥사이드; 공액 또는 비공액 고분자 전해질; 자기조립단분자막(self-assembled monolayers, SAM)과 같은 물질을 사용할 수 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다.
제 2 전극(160)은 애노드의 기능을 하는 부분으로 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금 등이 사용될 수 있으나, 이에 한정되지는 않고, 애노드로 기능하는 모든 종류의 공지된 물질들이 사용될 수 있다
한편, 상술한 인버티드 유기태양전지의 제조방법 및 공정은 공지된 제조방법 및 공정과 동일 또는 유사하므로, 구체적인 설명은 생략하도록 한다.
응용예 2: 인버티드 구조를 갖는 적층형 유기태양전지
도 2는 인버티드 구조를 갖는 적층형 유기태양전지(200, 이하 인버티드 적층형 유기태양전지)를 개략적으로 도시한 도면이다.
도 2를 참조하면, 인버티드 적층형 유기태양전지(200)는 제1 전극(210), 제1 기능층(220), 제1 광활성층(230), 제2 기능층(241) 및 제3 기능층(242)이 적층되어 형성되는 재결합층(240), 제2 광활성층(250), 제4 기능층(260) 및 제2 전극(270)이 기판(미도시) 상에 순차적으로 적층된 구조를 가질 수 있다. 이 때, 상기 기판은 통상적으로 사용되는 기판을 이용할 수 있는 바, 구체적인 설명은 생략하도록 한다.
제1 전극(210), 제1 광활성층(230), 제2 광활성층(250) 및 제2 전극(270)은 상술한 응용예 1에서 기재한 것들과 동일/또는 유사한 물질로 제조될 수 있으므로, 여기에서는 중복되는 설명을 생략하도록 한다.
제1 기능층(220)은 전자수송층으로 기능할 수 있으며, 제1 광활성층(230)에서 발생한 전자를 제1 전극(210)으로 수송하는 역할을 수행한다. 이 때, 제1 기능층(220)은 본 발명의 일 실시예에 따른 유기전자소자용 기능층일 수 있으며, 구체적으로는 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층일 수 있다. 여기에서 아민기를 갖는 비공액 고분자의 예로는 폴리에틸렌이민, 폴리알릴아민 또는 폴리리신 등이 있다.
제1 기능층(220)이 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층인 경우에, 강한 표면 쌍극자를 유도하여 제1 전극(210)의 일함수를 낮출 수 있다. 따라서, 일반적으로 애노드에 사용되는 ITO, PEDOT:PSS, PANI:CSA, 그래핀, 카본나노튜브, 나노와이어 등의 물질을 캐소드에 사용하는 것이 가능하다.
재결합층(240)은 제1 광활성층(230)에서 발생된 정공과 제2 광활성층(250)에서 발생된 전자가 재결합(Recombination)하는 층으로서, 제2 기능층(241) 및 제3 기능층(242)이 접합된 구조를 가질 수 있다.
이 때, 제2 기능층(241)은 제1 광활성층(230)으로부터 정공 유입이 용이하고 전자 유입은 용이하지 않도록 하여 정공을 수송하는 역할을 수행하는 것으로, p형 반도체, 금속 산화물, PEDOT:PSS와 같은 물질이 사용될 수 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다
한편, 제3 기능층(242)은 제2 광활성층(250)으로부터 전자 유입이 용이하고 정공 유입은 용이하지 않도록 하여 전자를 수송하는 역할을 수행하는 것으로, 제3 기능층(242)은 본 발명의 일 실시예에 따른 유기전자소자용 기능층일 수 있다. 즉, 제3 기능층(242)은 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층일 수 있다. 여기에서 아민기를 갖는 비공액 고분자의 예로는 폴리에틸렌이민, 폴리알릴아민 또는 폴리리신 등이 있다.
제4 기능층(260)은 정공수송층으로 기능할 수 있으며, 제2 광활성층(250)에서 발생한 정공을 제2 전극(270)으로 수송하는 역할을 수행한다. 제4 기능층(260)은 금속 산화물 또는 PEDOT:PSS와 같은 물질을 사용할 수 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다
한편, 상술한 인버티드 적층형 유기태양전지의 제조방법 및 공정은 공지된 제조방법 및 공정과 동일 또는 유사하므로, 구체적인 설명은 생략하도록 한다.
응용예 3: 유기발광다이오드
도 3a는 노말형 구조를 갖는 유기발광다이오드(300a, 이하 노말형 유기발광다이오드)를 개략적으로 도시한 도면이고, 도 3b는 인버티드 구조를 갖는 유기발광다이오드(300b, 이하 인버티드형 유기발광다이오드)를 개략적으로 도시한 도면이다.
노말형 유기발광다이오드(300a)는 기판 및 제1 전극(310a), 제1 기능층(320a), 발광층(330a), 제2 기능층(340a) 및 제2 전극(350a)이 순차적으로 적층된 구조를 가질 수 있다. 기판 및 제1 전극(310a), 발광층(330a), 제2 전극(350a)은 노말형 유기발광다이오드에서 통상되는 물질들을 사용하여 구성될 수 있는 바, 구체적인 설명은 생략하도록 한다. 이 때, 기판 및 제1 전극(310a)은 기판 상부에 제1 전극이 형성된 형태를 의미한다. 이와 관련하여, 도 3a에서는 기판 및 제1 전극(310a)으로 유리/ITO, 제2 전극(350a)으로 Al이 사용된 경우를 도시하였음을 밝혀둔다.
제1 기능층(320a)은 정공주입층 또는 정공수송층 또는 정공주입층/정공수송층이 적층된 형태 중에서 선택될 수 있으나, 이에 한정되지는 않는다. 또한, 제1 기능층(320a)으로 PEDOT:PSS가 사용될 수 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다.
제2 기능층(340a)은 전자주입층 또는 전자수송층 또는 전자주입층/전자수송층이 적층된 형태 중에서 선택될 수 있으나, 이에 한정되지는 않는다. 이 때, 제2 기능층(340a)은 본 발명의 일 실시예에 따른 유기전자소자용 기능층일 수 있으며, 구체적으로는 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층일 수 있다. 여기에서 아민기를 갖는 비공액 고분자의 예로는 폴리에틸렌이민, 폴리알릴아민 또는 폴리리신 등이 있다.
한편, 인버티드형 유기발광다이오드(300b)는 기판 및 제1 전극(310b), 제1 기능층(320b), 발광층(330b), 제2 기능층(340b) 및 제2 전극(350b)이 적층된 구조를 가질 수 있다. 기판 및 제1 전극(310b), 발광층(330b), 제2 전극(350b)은 인버티드형 유기발광다이오드에서 통상되는 물질들을 사용하여 구성될 수 있는 바, 구체적인 설명은 생략하도록 한다. 이 때, 기판 및 제1 전극(310b)은 기판 상부에 제1 전극이 형성된 형태를 의미한다. 이와 관련하여, 도 3b에서는 기판 및 제1 전극(310b)으로 유리/ITO, 제2 전극(350b)으로 Ag가 사용된 경우를 도시하였음을 밝혀둔다.
제1 기능층(320b)은 전자주입층 또는 전자수송층 또는 전자주입층/전자수송층이 적층된 형태 중에서 선택될 수 있으나, 이에 한정되지는 않는다. 이 때, 제1 기능층(320b)은 본 발명의 일 실시예에 따른 유기전자소자용 기능층일 수 있으며, 구체적으로는 아민기를 갖는 비공액 고분자를 함유하는 유기전자소자용 기능층일 수 있다. 여기에서 아민기를 갖는 비공액 고분자의 예로는 폴리에틸렌이민, 폴리알릴아민 또는 폴리리신 등이 있다.
제2 기능층(340b)은 정공주입층 또는 정공수송층 또는 정공주입층/정공수송층이 적층된 형태 중에서 선택될 수 있으나, 이에 한정되지는 않는다. 또한, 제2 기능층(340b)으로 PEDOT:PSS가 사용될 수 있으나, 이에 한정되지 않고, 모든 종류의 공지된 물질들이 사용될 수 있다
상술한 노말형/인버티드형 유기발광다이오드의 제조방법 및 공정은 공지된 제조방법 및 공정과 동일 또는 유사하므로, 구체적인 설명은 생략하도록 한다.
상술한 것처럼 본 발명의 일 실시예에 따른 유기전자소자용 기능층은 다양한 유기전자소자에 적용될 수 있으며, 본 발명의 일 실시예에 따른 유기전자소자용 기능층이 적용되는 유기전자소자의 특성을 강화시킬 수 있다.
이하에서는 본 발명의 시험예에 대하여 설명하도록 한다. 다만, 하기의 시험예가 본 발명을 한정하지 않음은 자명하다.
시험예
일 함수 측정 결과
하기 [표 1]과 같이 비교예 및 실시예를 준비하고, ITO 박막 위에 비교예 및 실시예들에 해당하는 물질들을 각각 코팅하여 기능층을 형성하였다. 다음으로, ITO/기능층 적층체 각각에 대하여 일 함수(work function)를 측정하였다. 실시예들에 해당하는 물질은 Sigma-Aldrich社에서 입수하였으며, 일 함수 측정은 Kelvin Probe Measurement를 이용하여 수행되었다.
표 1
구분 설명
비교예 Polyethylene oxide (이하, PEO)
실시예 1 Polyallylamine (이하, PAA)
실시예 2 Polylysine (이하, PLS)
실시예 3 Polyethyleneimine (이하, PEI)
도 4는 비교예 및 실시예의 일함수 측정 결과 그래프이다. 도 4를 참조하면, 기능층이 없는 ITO의 일함수는 약 4.8eV이었다. PEO가 기능층으로 적용된 ITO의 경우에는(비교예) 일함수가 약 4.4eV로 일함수가 다소 감소하였으나, PAA, PLS, PEI와 같이 아민기를 갖는 비공액 고분자가 적용된 ITO의 경우에는(실시예 1 내지 3) 일함수가 각각 약 4.2eV, 4.1eV 및 4.0eV로 감소되는 정도가 증가함을 확인하였다.
유기태양전지에의 적용결과
도 1에 도시된 인버티드 구조를 갖는 유기태양전지를 제조하되, 제1 기능층(130)을 상기 [표 1]에 나타낸 비교예 및 실시예에 따라 각각 제조하였다.
상기 인버티드 유기태양전지의 제조과정은 다음과 같다. 우선, 제1 전극으로 ITO가 코팅된 유리기판을 세척하고, DI-water, acetone 및 IPA(isopropyl alcohol)로 초음파 처리하여 세정한 후에 100에서 건조하였다. 다음으로, ITO 표면의 잔여 오염물을 제거하고 표면의 친수성 개질을 위하여 UV/오존 처리를 하였다. 다음으로, 상기 ITO 표면에 비교예 및 실시예에 해당하는 물질을 스핀코팅하여 기능층 박막을 각각 형성하였고 핫플레이트에서 용매를 휘발시켰다. 다음으로, 전자 도너 물질로서 P3HT(poly(3-hexylthiophene))와 전자 억셉터 물질로서 PC70BM을 클로로벤젠에 넣어 블렌딩하여 제조된 P3HT:PC70BM 용액을 스핀코팅하여 상기 기능층 박막 상부에 광활성층으로 형성하였고, 핫플레이트에서 용매를 휘발시켰다. 다음으로, PEDOT:PSS 용액을 상기 광활성층 상부에 스핀코팅하여 박막을 형성하고 용매를 휘발시켰다. 마지막으로, 진공 챔버에서 PEDOT:PSS층 상부에 제2 전극으로 Ag를 증착하여 유기태양전지 샘플을 제조하였다. 상기와 같이 제조된 유기태양전지 샘플은 아래에서부터 Glass/ITO/PEO, PAA, PLS 또는 PEI/P3HT:PC70BM/PEDOT:PSS/Ag의 구조를 갖는다.
다음으로, 상기와 같이 제작된 유기태양전지의 효율을 측정하였으며, 그 결과를 하기 [표 2]에 나타내었다. 이와 관련하여, 도 5는 도 1의 유기태양전지에서 비교예 및 실시예의 I-V 그래프이다.
표 2
개방전압(VOC,V) 단락전류(Jsc, mA/cm2) Fill Factor(%) 효율(%)
ITO 0.12 2.71 23 0.7
비교예(ITO/PEO) 0.52 9.09 47 2.21
실시예 1(ITO/PAA) 0.66 9.19 69 4.18
실시예 2(ITO/PLS) 0.66 9.23 66 4.04
실시예 3(ITO/PEI) 0.66 9.30 69 4.21
[표 2] 및 도 5를 참조하면, 비교예에 비하여 실시예들의 경우가 에너지 변환 효율이 크게 향상됨을 확인할 수 있다. 이는 상술하였듯이 실시예들에 해당하는 아민기를 갖는 비공액 고분자가 강한 표면 쌍극자를 유도하여 ITO 전극의 일함수를 낮춤으로써, 전자수집이 용이해 지기 때문이다.
적층형 유기태양전지에의 적용결과
도 2에 도시된 인버티드 구조를 갖는 적층형 유기태양전지를 제조하되, 제1 기능층(220) 및 재결합층(240)의 제3 기능층(242)을 실시예 3에 해당하는 PEI(polyethyleneimine)를 이용하여 제조하였다.
상기 인버티드 적층형 유기태양전지의 제조과정은 다음과 같다. 우선, 제1 전극으로 ITO가 코팅된 유리기판을 세척하고, DI-water, acetone 및 IPA(isopropyl alcohol)로 초음파 처리하여 세정한 후에 100에서 건조하였다. 다음으로, ITO 표면의 잔여 오염물을 제거하고 표면의 친수성 개질을 위하여 UV/오존 처리를 하였다. 다음으로, 상기 ITO 표면에 PEI를 스핀코팅하여 기능층 박막을 형성하였고(실시예 3) 핫플레이트에서 용매를 휘발시켰다. 다음으로, P3HT:PC70BM 용액을 스핀코팅하여 상기 기능층 박막 상부에 광활성층으로 형성하였고, 핫플레이트에서 용매를 휘발시켰다. 다음으로, PEDOT:PSS 용액을 상기 광활성층 상부에 스핀코팅하여 박막 형성하고 용매를 휘발시켰다. 상술한 과정들을 1회 더 반복한 후에, 마지막으로 진공 챔버에서 PEDOT:PSS층 상부에 제2 전극으로 Ag를 증착하여 적층형 유기태양전지 샘플을 제조하였다. 상기와 같이 제조된 인버티드 적층형 유기태양전지 샘플은 아래에서부터 Glass/ITO/PEI/P3HT:PC70BM/PEDOT:PSS/PEI/P3HT:PC70BM/PEDOT:PSS/Ag의 구조를 갖는다.
도 6은 도 2의 적층형 유기태양전지에서 실시예의 I-V 그래프이다.
도 6을 참조하면, PEI를 적용한 인버티드 적층형 유기태양전지는 개방전압(Voc, V) 1.2V, 단락전류(Jsc, mA/cm2) 5.4 mA/cm2, Fill Factor 0.54, 효율(%) 3.5로 일반적인 적층형 유기태양전지의 효율인 1~2%보다 효율이 향상됨을 확인하였다.
유기발광다이오드에의 적용결과
도 3a 및 도 3b에 도시된 유기발광다이오드를 제조하였다. 노말형 유기발광다이오드에서는 제2 기능층(340a)을 실시예 3에 해당하는 PEI(polyethyleneimine)를 이용하여 제조하였으며, 이를 제2 기능층(340a)이 없는 경우(비교예 2)와 발광효율을 비교하였다(도 3a 참조).
상기 노말형 유기발광다이오드의 제조과정은 다음과 같다. 우선, 제1 전극으로 ITO가 코팅된 유리기판을 세척하고, DI-water, acetone 및 IPA(isopropyl alcohol)로 초음파 처리하여 세정한 후에 100에서 건조하였다. 다음으로, ITO 표면의 잔여 오염물을 제거하고 표면의 친수성 개질을 위하여 UV/오존 처리를 하였다. 다음으로, 상기 ITO 표면에 PEDOT:PSS 용액을 스핀코팅하고, 핫플레이트에서 용매를 휘발시켰다. 다음으로, 발광층 용액으로 poly(9,9-dioctylfluorene) PFO 블루 물질(이하, PFO)을 PEDOT:PSS층 상부면에 스핀코팅하고, 핫플레이트에서 용매를 휘발시켰다. 다음으로, 상기 발광층 상부면에 PEI 물질을 스핀코팅하여 기능층을 형성하고 용매를 휘발시켰다. 마지막으로 진공 챔버에서 제2 전극으로 Al을 증착하여 유기발광다이오드 샘플을 제작하였다. 이 때, 상기 발광층 상부에 바로 Al을 증착하여 비교예 2의 샘플도 별도로 제작하였다. 상기와 같이 제조된 노말형 유기발광다이오드는 각각 아래에서부터 Glass/ITO/PEDOT:PSS/PFO/PEI/Al의 구조(실시예 3), 그리고 Glass/ITO/PEDOT:PSS/PFO/Al의 구조(비교예 2)를 갖는다.
도 7은 도 3a의 유기발광다이오드에서 비교예 및 실시예의 발광효율 그래프이다.
도 7을 참조하면, PEI 물질을 기능층으로 형성한 경우(실시예 3)에는 최대휘도가 7753 cd/m2 (10V)으로 측정되었으며, 그렇지 않은 경우(비교예 2)에는 최대휘도가 36.7 cd/m2 (13V)로 측정되었다. 따라서, 노말형 유기발광다이오드에서 아민기를 갖는 비공액 고분자를 기능층으로 사용하였을 경우, 유기발광다이오드의 효율이 크게 향상됨을 확인하였다.
한편, 인버티드형 유기발광다이오드에서는 제1 기능층(320b)을 실시예 3에 해당하는 PEI(polyethyleneimine)를 이용하여 제조하였으며, 제1 기능층(320b)을 TiOx로 제조한 경우(비교예 3)와 발광효율을 비교하였다(도 3b 참조).
상기 인버티드형 유기발광다이오드의 제조과정은 다음과 같다. 우선, 제1 전극으로 ITO가 코팅된 유리기판을 세척하고, DI-water, acetone 및 IPA(isopropyl alcohol)로 초음파 처리하여 세정한 후에 100에서 건조하였다. 다음으로, ITO 표면의 잔여 오염물을 제거하고 표면의 친수성 개질을 위하여 UV/오존 처리를 하였다. 다음으로, ITO 상부에 PEI 물질을 스핀코팅하여 기능층을 형성하고 용매를 휘발시켰다. 다음으로, 상기 기능층 상부면에 발광층 용액으로 Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) 그린 물질(이하, F8BT)을 스핀코팅하고, 핫플레이트에서 용매를 휘발시켰다. 이 때, 상기 ITO 상부에 바로 발광층을 형성하여 비교예 3의 샘플도 별도로 제작하였다. 다음으로, 상기 발광층 표면에 PEDOT:PSS 용액을 스핀코팅하고, 핫플레이트에서 용매를 휘발시켰다. 마지막으로 진공 챔버에서 제2 전극으로 Ag를 증착하여 유기발광다이오드 샘플을 제작하였다. 상기와 같이 제조된 인버티드형 유기발광다이오드는 각각 아래에서부터 Glass/ITO/PEI/F8BT/PEDOT:PSS/Ag의 구조(실시예 3), 그리고 Glass/ITO/F8BT/PEDOT:PSS/Ag의 구조(비교예 3)를 갖는다.
도 8은 도 3b의 유기발광다이오드에서 비교예 및 실시예의 발광효율 그래프이다.
도 8을 참조하면, PEI 물질을 기능층으로 형성한 경우(실시예 3)에는 최대휘도가 1759 cd/m2 (13V)으로 측정되었으며, 그렇지 않은 경우(비교예 3)에는 최대휘도가 19.3 cd/m2 (32V)로 측정되었다. 따라서, 인버티드형 유기발광다이오드에서도 마찬가지로 아민기를 갖는 비공액 고분자를 기능층으로 사용하였을 때에, 유기발광다이오드의 효율이 크게 향상됨을 확인하였다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (5)

  1. 제1 전극; 제2 전극 및 상기 제1 전극과 제2 전극 사이에 배치되는 1층 이상의 유기물층을 포함하는 유기전자소자에 있어서,
    상기 유기물층은 전자수송층을 포함하고, 상기 전자수송층은 폴리알릴아민 또는 폴리리신을 함유하는 유기전자소자.
  2. 청구항 1에 있어서,
    상기 유기물층은 정공수송층을 포함하고,
    상기 정공수송층은 폴리알릴아민 또는 폴리리신을 함유하는 유기전자소자.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 유기전자소자는 유기발광소자, 유기인광소자, 유기태양전지 및 유기트랜지스터로 이루어진 군으로부터 선택되는 것인 유기전자소자.
  4. 청구항 3에 있어서,
    상기 유기태양전지는 노말형 구조를 갖는 유기태양전지, 노말형 구조를 갖는 직렬 적층형 유기태양전지, 노말형 구조를 갖는 병렬 적층형 유기태양전지, 인버티드 구조를 갖는 유기태양전지, 인버티드 구조를 갖는 직렬 적층형 유기태양전지 또는 인버티드 구조를 갖는 병렬 적층형 유기태양전지인 유기전자소자.
  5. 청구항 3에 있어서,
    상기 유기발광소자는 노말형 구조를 갖는 유기발광소자, 노말형 구조를 갖는 직렬 적층형 유기발광소자, 노말형 구조를 갖는 병렬 적층형 유기발광소자, 인버티드형 구조를 갖는 직렬 적층형 유기발광소자 또는 인버티드 구조를 갖는 병렬 적층형 유기발광소자인 유기전자소자.
PCT/KR2012/010336 2012-05-29 2012-11-30 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자 WO2013180361A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015514885A JP5980418B2 (ja) 2012-05-29 2012-11-30 アミン基を有する非共役高分子を含む有機電子素子用機能層及びこれを含む有機電子素子
US14/404,599 US10553807B2 (en) 2012-05-29 2012-11-30 Functional layer for organic electron device containing non-conjugated polymer having amine group, and organic electron device containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0056933 2012-05-29
KR1020120056933A KR101787539B1 (ko) 2012-05-29 2012-05-29 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자

Publications (1)

Publication Number Publication Date
WO2013180361A1 true WO2013180361A1 (ko) 2013-12-05

Family

ID=49673524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010336 WO2013180361A1 (ko) 2012-05-29 2012-11-30 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자

Country Status (4)

Country Link
US (1) US10553807B2 (ko)
JP (1) JP5980418B2 (ko)
KR (1) KR101787539B1 (ko)
WO (1) WO2013180361A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140122655A (ko) * 2013-04-10 2014-10-20 포항공과대학교 산학협력단 역구조 유기 발광 다이오드 및 이의 제조방법
CN103525406B (zh) 2013-10-21 2015-08-26 京东方科技集团股份有限公司 一种复合薄膜及其制作方法、光电元件和光电设备
CN103500803B (zh) * 2013-10-21 2016-06-08 京东方科技集团股份有限公司 一种复合发光层及其制作方法、白光有机电致发光器件
KR101587895B1 (ko) * 2013-12-24 2016-01-22 광주과학기술원 역구조 유기 전자소자 및 그의 제조방법
KR101674297B1 (ko) * 2014-04-30 2016-11-08 주식회사 엘지화학 유기 태양 전지 및 이의 제조방법
CN106663739B (zh) * 2014-04-30 2019-08-30 株式会社Lg化学 太阳能电池及其制造方法
EP3139420B1 (en) * 2014-04-30 2020-12-30 LG Chem, Ltd. Organic solar cell and manufacturing method therefor
WO2016181962A1 (ja) * 2015-05-12 2016-11-17 住友化学株式会社 有機光電変換素子
US10529954B2 (en) * 2015-07-15 2020-01-07 Konica Minolta, Inc. Organic thin-film laminate and organic electroluminescence element
CN109196677B (zh) * 2016-06-03 2022-04-15 株式会社Lg化学 有机电子元件及用于制造其的方法
KR102107882B1 (ko) * 2017-08-24 2020-05-07 주식회사 엘지화학 유기전자소자 및 이의 제조 방법
CN109935700A (zh) * 2017-12-19 2019-06-25 国家纳米科学中心 包含聚氨基酸电子收集层的有机太阳能电池及其制备方法
JP2019153632A (ja) * 2018-03-01 2019-09-12 株式会社日本触媒 有機電界発光素子
KR102080006B1 (ko) * 2018-09-06 2020-04-07 주식회사 아이에스시 검사용 커넥터 및 검사용 커넥터의 제조방법
KR102162863B1 (ko) * 2018-12-05 2020-10-07 경북대학교 산학협력단 단분자 유기 반도체 화합물, 및 이를 포함하는 유기 광트랜지스터
EP4000111A4 (en) * 2019-07-17 2023-08-09 North Carolina State University PROCESS FOR MAKING A WHOLE SOLUTION PROCESSED CONNECTING LAYER FOR AN ORGANIC TANDEM MULTIJUNCTION SOLAR CELL
KR102610331B1 (ko) 2021-09-28 2023-12-05 고려대학교 산학협력단 별모양 고분자 표면처리를 통한 저 일함수를 갖는 투명 전극소자 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633115B1 (ko) * 2003-07-11 2006-10-12 오리엔트 가가쿠 고교 가부시키가이샤 발광성 유기 화합물 및 이의 제조 방법
KR20070099474A (ko) * 2006-04-03 2007-10-09 세이코 엡슨 가부시키가이샤 유기무기 복합 반도체 재료, 액상 재료, 유기 발광 소자,유기 발광 소자의 제조 방법, 발광 장치 및 전자 기기
KR20100082556A (ko) * 2009-01-09 2010-07-19 서울대학교산학협력단 양자점 다층 박막을 포함한 전기발광소자
KR20110085821A (ko) * 2010-01-21 2011-07-27 삼성전자주식회사 발광소자 및 그 제조방법
KR20120046386A (ko) * 2010-11-02 2012-05-10 한국과학기술원 유기 태양 전지의 제조 방법 및 이에 의하여 제조된 유기 태양 전지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313565A (ja) * 2001-04-17 2002-10-25 Sharp Corp 発光表示素子の製造方法
JP5658504B2 (ja) * 2009-07-31 2015-01-28 パナソニック株式会社 光電気素子
JP5699323B2 (ja) * 2010-09-30 2015-04-08 大日本印刷株式会社 モリブデン化合物ナノ粒子およびその製造方法、モリブデン化合物ナノ粒子分散インク、デバイスおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633115B1 (ko) * 2003-07-11 2006-10-12 오리엔트 가가쿠 고교 가부시키가이샤 발광성 유기 화합물 및 이의 제조 방법
KR20070099474A (ko) * 2006-04-03 2007-10-09 세이코 엡슨 가부시키가이샤 유기무기 복합 반도체 재료, 액상 재료, 유기 발광 소자,유기 발광 소자의 제조 방법, 발광 장치 및 전자 기기
KR20100082556A (ko) * 2009-01-09 2010-07-19 서울대학교산학협력단 양자점 다층 박막을 포함한 전기발광소자
KR20110085821A (ko) * 2010-01-21 2011-07-27 삼성전자주식회사 발광소자 및 그 제조방법
KR20120046386A (ko) * 2010-11-02 2012-05-10 한국과학기술원 유기 태양 전지의 제조 방법 및 이에 의하여 제조된 유기 태양 전지

Also Published As

Publication number Publication date
US10553807B2 (en) 2020-02-04
JP5980418B2 (ja) 2016-08-31
KR101787539B1 (ko) 2017-10-18
JP2015525470A (ja) 2015-09-03
KR20130133571A (ko) 2013-12-09
US20150107674A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2013180361A1 (ko) 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자
EP2210291B1 (en) Processing additives for fabricating organic photovoltaic cells
JP5265076B2 (ja) 光起電性構成部材とその製造方法
KR101012203B1 (ko) 적층형 병렬 유기태양전지
KR101082910B1 (ko) 접합고리계 화합물을 포함하는 유기태양전지
WO2010120082A2 (ko) 고분자 전해질층을 이용한 적층형 유기태양전지 및 그 제조방법
WO2012002694A4 (ko) 유기 태양 전지 및 이의 제조 방법
US20130240840A1 (en) Metal oxide charge transport material doped with organic molecules
WO2012036337A1 (ko) 전하선택적 계면전송층 및 이를 이용한 유기전자 소자
WO2014171615A1 (ko) 태양전지 모듈 및 이의 제조방법
WO2011062457A2 (ko) 유기-무기 하이브리드 태양전지 및 그 제조방법
US8071414B2 (en) Organic photovoltaic device with improved power conversion efficiency and method of manufacturing same
KR101181227B1 (ko) 유기 태양 전지 및 이의 제조 방법
Cai et al. Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability
KR101033304B1 (ko) 발광특성을 가지는 유기 태양전지 및 그 제조방법
WO2010110590A2 (ko) 태양 전지 및 그 제조 방법
WO2019039907A2 (ko) 유기전자소자 및 이의 제조 방법
JP5932928B2 (ja) 光電変換装置
US20160268532A1 (en) Solar cell module and method for manufacturing the same
WO2017155362A1 (ko) 유기 태양전지 및 이의 제조방법
KR101364460B1 (ko) 유기산이 도핑된 금속산화물 기능층을 포함하는 유기전자소자 및 이의 제조방법
WO2018174467A1 (ko) 반투명 유기 태양전지 모듈
KR101784069B1 (ko) 유기 태양 전지의 제조방법 및 이로부터 제조된 유기 태양 전지
WO2023058979A1 (ko) Ptaa 및 pif8를 포함하는 정공 수송물질 및 이를 이용한 광소자
WO2022019618A1 (ko) 보호층을 가지는 광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514885

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404599

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877751

Country of ref document: EP

Kind code of ref document: A1