WO2013180296A1 - Air blower - Google Patents

Air blower Download PDF

Info

Publication number
WO2013180296A1
WO2013180296A1 PCT/JP2013/065282 JP2013065282W WO2013180296A1 WO 2013180296 A1 WO2013180296 A1 WO 2013180296A1 JP 2013065282 W JP2013065282 W JP 2013065282W WO 2013180296 A1 WO2013180296 A1 WO 2013180296A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
serration
blower
flow
airflow
Prior art date
Application number
PCT/JP2013/065282
Other languages
French (fr)
Japanese (ja)
Inventor
勝 神谷
英樹 大矢
吉田 憲司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE201311002698 priority Critical patent/DE112013002698T5/en
Priority to US14/404,259 priority patent/US20150152875A1/en
Priority to CN201380027931.4A priority patent/CN104364532B/en
Publication of WO2013180296A1 publication Critical patent/WO2013180296A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade

Definitions

  • the present invention relates to an axial blower, a centrifugal blower, a mixed flow blower (Diagonal® Flow® Fan), and the like, and more particularly, to a fan blade structure that can suppress air flow disturbance and reduce noise.
  • Patent Document 1 Axial blowers and the like have been required to have air blowing performance and low noise.
  • a plurality of triangular protrusions hereinafter referred to as serrations
  • serrations are provided in a saw-like shape in the chord direction of the entire leading edge of the wing, thereby reducing rotational noise by the blower fan. What has been done is disclosed.
  • the flow of airflow near the blade surface of the blower varies greatly depending on the part, and the flow velocity is higher toward the outer peripheral side in the radial direction of the blower fan.
  • the direction of airflow varies greatly depending on the wing (Forward Swept Wing) and swept wing (Sweptback Wing). That is, the forward wing has an axial flow that gathers at the blade center, and the backward wing has a diagonal flow toward the outer periphery of the blade. Furthermore, a backflow that wraps from the pressure surface to the suction surface side also occurs at the blade tip.
  • Patent Document 1 With respect to such a change in the flow of airflow due to the blade portion, the conventional technology of Patent Document 1 does not adequately correspond to the flow of airflow, and a sufficient noise reduction effect is obtained. I could't. In addition, a reduction in air volume may occur, resulting in an increase in driving torque and a decrease in efficiency.
  • the present invention provides a blower that effectively reduces fan noise while preventing a reduction in air volume.
  • the invention of claim 1 is directed to a drive motor (300), a hub (4) attached to the drive motor (300), and a plurality of hubs (4).
  • a blower (10) comprising a blower fan (1) having a blade (3), wherein a plurality of blades along the blade leading edge (6) are provided on the blade leading edge (6) of the blade (3).
  • the air blower is provided with serrations composed of triangular protrusions, and the pitch, height, or direction of the serrations is changed in accordance with the flow of airflow at the radial position of the blower fan (1).
  • the invention of claim 10 is directed to a blower fan (4) having a hub (4) attached to a drive machine (300) and a plurality of blades (3) provided on the hub (4). 1), wherein the blade (3) includes a first portion of a blade leading edge portion of the blade having a first distance in a radial direction from a rotation center (Q) of the blade (3), and the blade A second portion of the blade leading edge portion of the blade having a second distance in the radial direction from the rotation center of (3), and the blade leading edge portion (6) of the blade (3) A first hypotenuse (3a) that is inclined with respect to the flow direction, and a second hypotenuse (3b) that is inclined in a different direction from the first hypotenuse (3a) with respect to the flow direction of the airflow.
  • the blade (3) includes a first portion of a blade leading edge portion of the blade having a first distance in a radial direction from a rotation center (Q) of the blade (3), and the blade A second portion of the blade leading edge portion of the blade
  • It is a blower fan.
  • subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.
  • FIG. 4 is a cross-sectional view of the blade of the simulation of FIG. 3. It is explanatory drawing for description of a general axial-flow fan.
  • FIG. 6B is a cross-sectional view developed along line AA in FIG. 6A. It is explanatory drawing explaining the positive pressure surface, negative pressure surface, etc. of the braid
  • the blower 10 is a so-called electric blower in which the blower fan 1 is disposed in a shroud 200 and is rotationally driven by a drive motor (electric motor) 300.
  • the blower 10 is fixed to the engine side of the automotive radiator by attachment portions 250 provided in the vicinity of the four corners of the shroud 200, and blows cooling air to the core portion of the radiator.
  • the outer shape of the shroud 200 has a rectangular shape corresponding to the core portion of the radiator, and an annular shroud ring portion 210 that encloses the blower fan 1 at the outer periphery is formed at the approximate center thereof.
  • the shroud ring portion 210 is provided on the shroud 200 so as to be located on the radially outer side of the ring 2 of the blower fan 1. In this embodiment, the case where there is no ring 2 of the ventilation fan 1 may be sufficient.
  • the blower 10 and the blade 3 to be described later are not limited to automobile radiators, and may be applied to general industrial use. Although mainly the axial flow fan is described, the same effect can be obtained with a centrifugal blower, a mixed flow blower, and a reflux blower.
  • the drive motor 300 is not necessarily limited to an electric motor.
  • an air guide part 220 that extends toward the windward side of the blower fan 1 is formed.
  • a circular motor holding portion 230 is formed at the center of the shroud ring portion 210, and the motor holding portion 230 is radially extended radially outward by a plurality of motor stay portions 240 connected to the shroud ring portion 210. It is supported.
  • the electric motor 300 is fixed to the motor holding unit 230, and the shaft of the electric motor 300 and the hub 4 (see FIG. 2) of the blower fan 1 are fixed.
  • the blower 10 includes the blower fan 1 and the electric motor 300.
  • the hub 4 of the blower fan 1 has a cylindrical shape, and a plurality of blades 3 are provided radially.
  • chord (Cord Line) C, the pressure surface, the suction surface, the angle of attack (Angle of Attack) ⁇ , the lift force (Lift), etc. of the blade 3 are the same as the general definitions as shown in FIGS. .
  • An airfoil whose outer peripheral blade tip warps backward with respect to the rotational direction of the blower fan 1 is called a retreating blade, and the outer peripheral blade tip warps forward with respect to the rotational direction.
  • the wing type is called the forward wing.
  • a plurality of serrations are formed on the leading edge of the blade 3.
  • the serration has a first hypotenuse 3a inclined with respect to the airflow direction and a second hypotenuse 3b inclined with a direction different from the first hypotenuse 3a with respect to the airflow direction. (See FIG. 7).
  • the base of the triangular protrusion is called the pitch p of the serration (triangular protrusion)
  • the bisector of the apex angle ⁇ of the triangular protrusion is It is called the direction of (triangular protrusion)
  • the distance from the bisector of the apex angle to the base is called the height h of the serration (triangular protrusion).
  • the size of the serration means that either the pitch or height of the serration is large.
  • the apex angle ⁇ of the triangular protrusion is called the serration apex angle ⁇ . In the case where the sides of the triangle are curved, they are generally similar to these.
  • FIG. 3 is a view of the blade leading edge as viewed from above, and the arrow displayed in FIG. 3 indicates the velocity of the flow around the serration on the XZ plane projection plane (S plane in FIG. 4).
  • S plane in FIG. 4 This is a projection of a vector (Tangential Velocity). It can be seen that a flow is generated from the valleys on both sides toward the upper surface of the mountain. In serration, at the beginning of the peak, a small engulfment occurs and grows into a larger engulfment as it goes to the valley.
  • Embodiment of this invention changes the pitch, height, or direction of a serration according to the flow of the airflow in the radial direction position of the ventilation fan 1 based on the fundamental effect of the said serration. is there. That is, in the first embodiment, the serration pitch, height, and direction in the first part and the second part in which the radial distance of the blower fan is different from the rotation center Q of the blade 3 are different. At least one is different. Examples of the first part and the second part of the blade 3 include a flow velocity of the airflow (the magnitude of the flow velocity in FIGS. 7 and 8) and a portion having a different flow direction, but are not necessarily limited thereto. 3 indicates any two sites along the line 3.
  • the flow of airflow in the vicinity of the blade surface of the blower varies greatly depending on the part, and the air flow rate is higher toward the outer peripheral side with respect to the radial direction of the blower fan. It becomes a diagonal flow toward. Furthermore, a backflow that wraps from the pressure surface to the suction surface side also occurs at the blade tip.
  • Changing the pitch, height, or direction of the serration according to the flow of the airflow in the radial position (at least two places) of the blower fan 1 is extremely effective in reducing flow separation. is important. As a result, the fundamental effect of the original serration is exhibited, and it is possible to reduce the noise near the blade surface and suppress the pressure fluctuation on the blade surface, thereby producing an effect that leads to a reduction in noise.
  • the first embodiment is a fan characterized in that an airflow control shape that minimizes noise generated by airflow turbulence is provided at each position of the blade. Noise reduction, airflow reduction, and driving are achieved by the airflow control shape. The effect can be obtained while preventing the increase in torque.
  • the blade has a serrated shape (sawtooth shape), and the serrated shape is changed according to the flow of the airflow. According to this, since the serration shape can be appropriately set in each part having different airflow directions and flow velocities, it is possible to achieve both noise reduction and the effect of preventing airflow reduction and driving torque increase.
  • the second and third embodiments are embodiments corresponding to the case where the airflow near the blade surface of the blower is in the circumferential direction of the blower fan.
  • the second embodiment is characterized in that the size of the serration is increased toward the blade outer diameter side. The direction of the serration is when it faces the circumferential direction of the blower fan. According to this, since the size of the serration is increased at the portion where the flow velocity on the blade outer peripheral side is large, the entrained air flow generated by the serration is weaker on the blade inner peripheral side and stronger on the blade outer peripheral side. As a result, in a flow having a high flow velocity at which separation is likely to occur, a strong downward flow on the blade surface can be generated to reduce separation, and noise reduction and an effect of reducing the air volume and driving torque can be obtained on the entire blade.
  • the third embodiment is characterized in that the apex angle ⁇ of the serration becomes sharper toward the blade outer diameter side.
  • the serration angle is set to an acute angle at a portion where the flow velocity on the blade outer peripheral side is large, the entrained air flow generated by the serration is weaker on the blade inner peripheral side and stronger on the blade outer peripheral side.
  • the flow below the blade surface generated in the serration trough is strengthened, and it is possible to achieve both noise reduction and air flow reduction / drive torque increase prevention for the entire blade.
  • the serration angle may be an acute angle.
  • the fourth embodiment is characterized in that serrations are also provided on a trailing edge 7 and the serration shape is changed between the leading edge 6 and the trailing edge 7.
  • the blade trailing edge 7 is provided with serrations, the flow on both sides of the blade gradually merges due to serration when the flow of the high pressure blade pressure surface and the low pressure blade suction surface flow mix near the blade trailing edge. The turbulence of the airflow behind the blade can be suppressed.
  • the serration shape may be appropriately set for each of the blade leading edge 6 and the blade trailing edge 7.
  • the blade trailing edge 7 has a smaller serration than the blade leading edge 6, the blade leading edge side serration provided to suppress separation is enlarged so that a radial flow can be generated, thereby suppressing airflow turbulence. Since the serration on the trailing edge side of the blade can be reduced so that the flow on both sides of the positive and negative pressures is gradually mixed, an effect can be obtained by reducing both noise and preventing an increase in air volume and an increase in driving torque.
  • the serration installation range at the blade trailing edge and the blade leading edge may be changed, and serrations may be provided only at appropriate positions at the blade leading edge 6 and the blade trailing edge 7 having different flows.
  • the fifth and sixth embodiments will describe embodiments corresponding to the case where the flow of the airflow near the blade surface of the blower is oblique flow with respect to the circumferential direction of the blower fan.
  • the fifth embodiment is an embodiment corresponding to the case where the flow of airflow near the blade surface of the blower is a diagonal flow.
  • the direction of serration of the blade leading edge is matched to the direction of diagonal flow.
  • the sixth embodiment is characterized in that the serration installation range is changed between the blade trailing edge 7 and the blade leading edge 6.
  • the airflow when the airflow is a diagonal flow like a swept wing, the airflow flows on the blade surface from the blade leading edge 6 toward the blade trailing edge 7 in the outer circumferential direction.
  • serrations are installed in a wide range on the leading edge side of the blade that interferes with the airflow at any blade position, and serrations are provided only on the part where the diagonal flow is prominent on the trailing edge side of the blade. Torque increase prevention can be achieved at the same time.
  • the seventh embodiment is characterized in that the serrated shape of the blade tip is reduced. According to this, since the serration shape is reduced at the blade tip portion where the turbulence of the airflow due to the backflow is large, the vortex of the entrained airflow generated by the serration is subdivided. As a result, the turbulence of the airflow at the blade tip can be reduced, so that an effect of reducing noise and preventing an increase in air volume and an increase in driving torque can be obtained. As shown in FIG. 13, the eighth embodiment is characterized in that the serration shape of the blade tip portion of the blade trailing edge 7 is reduced, and the same effect as the seventh embodiment can be obtained.
  • the direction of serration of the blade leading edge 6 is adjusted to the direction of the diagonal flow in order to correspond to the flow of airflow in the vicinity of the blade surface of the blower, and It is embodiment which matched the serration shape with the airflow by a backflow.
  • the ninth embodiment is included in the first embodiment. According to this, since the direction of the serration can be set in accordance with the flow direction, it is possible to obtain noise reduction and an effect of preventing a reduction in air volume and an increase in driving torque. Of course, combinations of the fifth and sixth embodiments for mixed flow and the seventh and eighth embodiments for reverse flow are also included in the ninth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An air blower (10) is provided with a drive motor (300) and an air blowing fan (1) which has a hub (4) mounted to the drive motor (300) and blades (3) which are provided to the hub (4). The air blower (10) is characterized in that serrations comprising triangle-shaped protrusions are provided to the front edge (6) of each of the blades (3) so as to be arranged along the front edge (6) and in that the pitch, the height, or the direction of the serrations is changed according to the flow of air at a radial position on the air blowing fan (1).

Description

送風機Blower
 本発明は、軸流送風機、遠心送風機、斜流送風機(Diagonal Flow Fan)などに関し、詳しくは、気流の乱れを抑制し騒音を低減できるファンブレードの構造に関する。 The present invention relates to an axial blower, a centrifugal blower, a mixed flow blower (Diagonal® Flow® Fan), and the like, and more particularly, to a fan blade structure that can suppress air flow disturbance and reduce noise.
 軸流送風機などには送風性能と低騒音性が求められてきている。特許文献1には、翼の前縁(Leading Edge)部分全体の翼弦方向に、鋸状に複数の三角形状の突起(以下、セレーションという)を設け、送風ファンによる回転騒音の低騒音化を行うようにしたものが開示されている。 Axial blowers and the like have been required to have air blowing performance and low noise. In Patent Document 1, a plurality of triangular protrusions (hereinafter referred to as serrations) are provided in a saw-like shape in the chord direction of the entire leading edge of the wing, thereby reducing rotational noise by the blower fan. What has been done is disclosed.
 一般に、送風機の翼面近傍の気流の流れはその部位によって大きく異なり、送風ファンの半径方向に対しては外周側ほど流速が高く、また、送風ファンの外周側の回転方向に対する翼の設計(前進翼(Forward Swept Wing)、後退翼(Sweptback Wing))によって、気流の向きが大きく異なる。すなわち、前進翼では翼中心に集まる軸流、後退翼では翼外周方向に向かう斜流となる。さらには、翼端部では正圧面から負圧面側に巻き込む逆流も生じる。このような、翼の部位による気流の流れの変化に対して特許文献1の従来技術では、せっかく設けたセレーションが充分に気流の流れに適切に対応しておらず、充分な騒音低減効果を得られないことがあった。また、風量の低下を生じさせたりして、駆動トルクが増加して効率の低下を引起すことがあった。 In general, the flow of airflow near the blade surface of the blower varies greatly depending on the part, and the flow velocity is higher toward the outer peripheral side in the radial direction of the blower fan. The direction of airflow varies greatly depending on the wing (Forward Swept Wing) and swept wing (Sweptback Wing). That is, the forward wing has an axial flow that gathers at the blade center, and the backward wing has a diagonal flow toward the outer periphery of the blade. Furthermore, a backflow that wraps from the pressure surface to the suction surface side also occurs at the blade tip. With respect to such a change in the flow of airflow due to the blade portion, the conventional technology of Patent Document 1 does not adequately correspond to the flow of airflow, and a sufficient noise reduction effect is obtained. I couldn't. In addition, a reduction in air volume may occur, resulting in an increase in driving torque and a decrease in efficiency.
特開2000-087898号公報JP 2000-087898 A
 本発明は、上記問題に鑑み、風量の低下を防止しつつ、ファン騒音を効果的に低減する送風機を提供するものである。 In view of the above problems, the present invention provides a blower that effectively reduces fan noise while preventing a reduction in air volume.
 上記課題を解決するために、請求項1の発明は、駆動モータ(300)、並びに、該駆動モータ(300)に取り付けられるハブ(4)、及び、該ハブ(4)に設けられた複数のブレード(3)を有する送風ファン(1)、を具備する送風機(10)であって、前記ブレード(3)の翼前縁部(6)には、翼前縁部(6)に沿って複数の三角形状突部からなるセレーションを設けるとともに、前記送風ファン(1)の半径方向位置における気流の流れに応じて、前記セレーションのピッチ、高さ、又は、方向を変化させた送風機である。 In order to solve the above problems, the invention of claim 1 is directed to a drive motor (300), a hub (4) attached to the drive motor (300), and a plurality of hubs (4). A blower (10) comprising a blower fan (1) having a blade (3), wherein a plurality of blades along the blade leading edge (6) are provided on the blade leading edge (6) of the blade (3). The air blower is provided with serrations composed of triangular protrusions, and the pitch, height, or direction of the serrations is changed in accordance with the flow of airflow at the radial position of the blower fan (1).
 上記課題を解決するために、請求項10の発明は、駆動機(300)に取り付けられるハブ(4)と、該ハブ(4)に設けられた複数のブレード(3)とを有する送風ファン(1)であって、前記ブレード(3)は、前記ブレード(3)の回転中心(Q)から径方向において第1の距離を有する前記ブレードの翼前縁部の第1の部位と、前記ブレード(3)の回転中心から径方向において第2の距離を有する前記ブレードの翼前縁部の第2の部位とを有し、前記ブレード(3)の翼前縁部(6)には、気流の流れ方向に対して傾いた第1の斜辺(3a)および、気流の流れ方向に対して前記第1の斜辺(3a)と異なる向きに傾斜した第2の斜辺(3b)とを有して、気流の流れ上流側に突出する複数のセレーションが設けられ、前記第1の部位における前記突起部のピッチ、高さ、方向のうち少なくともいずれか1つが、前記第2の部位における前記突起部のピッチ、高さ、方向のうち少なくともいずれか1つとは異なることを特徴とする送風ファンである。
 なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。
In order to solve the above-described problem, the invention of claim 10 is directed to a blower fan (4) having a hub (4) attached to a drive machine (300) and a plurality of blades (3) provided on the hub (4). 1), wherein the blade (3) includes a first portion of a blade leading edge portion of the blade having a first distance in a radial direction from a rotation center (Q) of the blade (3), and the blade A second portion of the blade leading edge portion of the blade having a second distance in the radial direction from the rotation center of (3), and the blade leading edge portion (6) of the blade (3) A first hypotenuse (3a) that is inclined with respect to the flow direction, and a second hypotenuse (3b) that is inclined in a different direction from the first hypotenuse (3a) with respect to the flow direction of the airflow. A plurality of serrations projecting upstream of the airflow, wherein the first part At least one of the pitch, height, and direction of the protrusions at the position is different from at least one of the pitch, height, and direction of the protrusions at the second portion. It is a blower fan.
In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.
本発明の第1実施形態の正面概略図である。It is a front schematic diagram of a 1st embodiment of the present invention. 本発明の第1実施形態のブレードの概略図である。It is the schematic of the braid | blade of 1st Embodiment of this invention. 前縁セレーションまわりの流れの構造をCFD(Computational Fluid Dynamics)で解析したシミュレーション結果の一例である。It is an example of the simulation result which analyzed the structure of the flow around the leading edge serration by CFD (Computational Fluid Dynamics). 図3のシミュレーション結果の説明図である。It is explanatory drawing of the simulation result of FIG. 図3のシミュレーションの翼断面図である。FIG. 4 is a cross-sectional view of the blade of the simulation of FIG. 3. 一般的な軸流送風機の説明のための説明図である。It is explanatory drawing for description of a general axial-flow fan. 図6AのA-A線に沿って展開した断面図である。FIG. 6B is a cross-sectional view developed along line AA in FIG. 6A. 図6Bのブレードの正圧面と負圧面などを説明する説明図である。It is explanatory drawing explaining the positive pressure surface, negative pressure surface, etc. of the braid | blade of FIG. 6B. 本発明の第2実施形態のブレードの概略図である。It is the schematic of the braid | blade of 2nd Embodiment of this invention. 本発明の第3実施形態のブレードの概略図である。It is the schematic of the braid | blade of 3rd Embodiment of this invention. 本発明の第4実施形態のブレードの概略図である。It is the schematic of the braid | blade of 4th Embodiment of this invention. 本発明の第5実施形態のブレードの概略図である。It is the schematic of the braid | blade of 5th Embodiment of this invention. 本発明の第6実施形態のブレードの概略図である。It is the schematic of the braid | blade of 6th Embodiment of this invention. 本発明の第7実施形態のブレードの概略図である。It is the schematic of the braid | blade of 7th Embodiment of this invention. 本発明の第8実施形態のブレードの概略図である。It is the schematic of the braid | blade of 8th Embodiment of this invention. 本発明の第9実施形態のブレードの概略図である。It is the schematic of the braid | blade of 9th Embodiment of this invention.
 以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。
 (第1実施形態)
 図1を参照すると、送風機10は、送風ファン1がシュラウド200内に配設されたものであり、駆動モータ(電動モータ)300によって回転駆動されるいわゆる電動送風機である。送風機10は、シュラウド200の四隅近傍に設けられた取付部250によって、自動車用ラジエータのエンジン側に固定され、ラジエータのコア部に冷却用の空気を送風するものである。シュラウド200の外形形状は、ラジエータのコア部に対応する矩形状をなしており、その略中央には送風ファン1を外周で内包する環状のシュラウドリング部210が形成されている。このシュラウドリング部210は、送風ファン1のリング2の径方向外側に位置するように、シュラウド200に設けられている。本実施形態において、送風ファン1のリング2がない場合であっても良い。本発明の送風機10及び後述するブレード3は、自動車用ラジエータ用に限定されるものではなく、一般的な産業用に適用しても良い。主に、軸流送風機を対象として説明しているが、遠心送風機、斜流送風機、還流送風機でも同様の効果が得られる。駆動モータ300は必ずしも電動モータに限定されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted.
(First embodiment)
Referring to FIG. 1, the blower 10 is a so-called electric blower in which the blower fan 1 is disposed in a shroud 200 and is rotationally driven by a drive motor (electric motor) 300. The blower 10 is fixed to the engine side of the automotive radiator by attachment portions 250 provided in the vicinity of the four corners of the shroud 200, and blows cooling air to the core portion of the radiator. The outer shape of the shroud 200 has a rectangular shape corresponding to the core portion of the radiator, and an annular shroud ring portion 210 that encloses the blower fan 1 at the outer periphery is formed at the approximate center thereof. The shroud ring portion 210 is provided on the shroud 200 so as to be located on the radially outer side of the ring 2 of the blower fan 1. In this embodiment, the case where there is no ring 2 of the ventilation fan 1 may be sufficient. The blower 10 and the blade 3 to be described later are not limited to automobile radiators, and may be applied to general industrial use. Although mainly the axial flow fan is described, the same effect can be obtained with a centrifugal blower, a mixed flow blower, and a reflux blower. The drive motor 300 is not necessarily limited to an electric motor.
 シュラウドリング部210とシュラウド200の矩形状外周部との間には、送風ファン1の風上側に向けて拡がる導風部220が形成されている。シュラウドリング部210の中心には円形のモータ保持部230が形成されており、このモータ保持部230は、放射状に径方向外側へ延びてシュラウドリング部210に接続される複数のモータステー部240によって支持されている。モータ保持部230には、電動モータ300が固定され、電動モータ300のシャフトと送風ファン1のハブ4(図2参照)とが固定されている。送風機10は、これらの送風ファン1や電動モータ300などから構成される。送風ファン1のハブ4は、円筒形状であり放射状に複数のブレード3が設けられている。 Between the shroud ring part 210 and the rectangular outer peripheral part of the shroud 200, an air guide part 220 that extends toward the windward side of the blower fan 1 is formed. A circular motor holding portion 230 is formed at the center of the shroud ring portion 210, and the motor holding portion 230 is radially extended radially outward by a plurality of motor stay portions 240 connected to the shroud ring portion 210. It is supported. The electric motor 300 is fixed to the motor holding unit 230, and the shaft of the electric motor 300 and the hub 4 (see FIG. 2) of the blower fan 1 are fixed. The blower 10 includes the blower fan 1 and the electric motor 300. The hub 4 of the blower fan 1 has a cylindrical shape, and a plurality of blades 3 are provided radially.
 ブレード3の翼弦(Cord Line)C、正圧面、負圧面、迎え角(Angle of Attack)α、揚力(Lift)などは、図6A~Cに示されるように一般的な定義と同じである。また、送風ファン1の回転方向に対して、外周側の翼端部が後方に反っている翼型を、後退翼と呼び、回転方向に対して、外周側の翼端部が前方に反っている翼型を、前進翼と呼ぶ。ブレード3の翼前縁部には複数のセレーション(三角状突起)が形成されている。セレーションは、気流の流れ方向に対して傾斜した第1の斜辺3aと、気流の流れ方向に対して、第1の斜辺3aとは異なる向きに傾斜した第2の斜辺3bとを有している(図7参照)。セレーションを構成する三角形状突部について、ここでは、三角形状突部の底辺を、セレーション(三角形状突部)のピッチpと呼び、三角形状突部の頂角αの二等分線を、セレーション(三角形状突部)の方向と呼び、頂角の二等分線が底辺にいたる距離を、セレーション(三角形状突部)の高さhと呼ぶ。セレーション(三角形状突部)の大きさとは、セレーションのピッチ又は高さのいずれかが大きいことを指すものとする。三角形状突部の頂角αをセレーションの頂角αという。三角形の辺が曲線の場合も、概ねこれらに準ずるものとする。 The chord (Cord Line) C, the pressure surface, the suction surface, the angle of attack (Angle of Attack) α, the lift force (Lift), etc. of the blade 3 are the same as the general definitions as shown in FIGS. . An airfoil whose outer peripheral blade tip warps backward with respect to the rotational direction of the blower fan 1 is called a retreating blade, and the outer peripheral blade tip warps forward with respect to the rotational direction. The wing type is called the forward wing. A plurality of serrations (triangular protrusions) are formed on the leading edge of the blade 3. The serration has a first hypotenuse 3a inclined with respect to the airflow direction and a second hypotenuse 3b inclined with a direction different from the first hypotenuse 3a with respect to the airflow direction. (See FIG. 7). For the triangular protrusions constituting the serration, here, the base of the triangular protrusion is called the pitch p of the serration (triangular protrusion), and the bisector of the apex angle α of the triangular protrusion is It is called the direction of (triangular protrusion), and the distance from the bisector of the apex angle to the base is called the height h of the serration (triangular protrusion). The size of the serration (triangular protrusion) means that either the pitch or height of the serration is large. The apex angle α of the triangular protrusion is called the serration apex angle α. In the case where the sides of the triangle are curved, they are generally similar to these.
 まず、最初に本発明の基礎になるセレーションの効果について述べる。図3のシミュレーションは、セレーションの各三角形状突部が翼前縁方向に同形の場合である。図3は、ブレード前縁を上方位置から眺めている図であって、図3に表示された矢印は、X-Z平面の投影面(図4のS面)に、セレーション回りの流れの速度ベクトルを投影したもの(Tangential Velocity)である。両側の谷部から山部上面に向って回り込む流れが、発生していることが見て取れる。セレーションにおいて、最初は、山の先端部において、小さな巻き込みが発生して、それが谷に向うにつれ大きな巻き込みに成長する。そして、山の後方には、下向きの流れが発生することにより、流速の大きい負圧面に特に発生しやすい剥離(Flow Separation)を下方に押さえつけて、流れの剥離を低減させているものと考えられる。これにより、翼面近傍の乱れを緩和し、翼面の圧力変動を抑える事で、低騒音化につながる効果を生み出すことが可能となっている。 First, the effect of serration which is the basis of the present invention will be described first. The simulation in FIG. 3 is a case where each triangular protrusion of the serration has the same shape in the blade leading edge direction. FIG. 3 is a view of the blade leading edge as viewed from above, and the arrow displayed in FIG. 3 indicates the velocity of the flow around the serration on the XZ plane projection plane (S plane in FIG. 4). This is a projection of a vector (Tangential Velocity). It can be seen that a flow is generated from the valleys on both sides toward the upper surface of the mountain. In serration, at the beginning of the peak, a small engulfment occurs and grows into a larger engulfment as it goes to the valley. And, it is considered that the downward flow is generated behind the mountain, and the separation (Flow Separation) that is particularly likely to occur on the suction surface with a large flow velocity is pressed downward to reduce the separation of the flow. . As a result, it is possible to reduce the noise in the vicinity of the blade surface and reduce the pressure fluctuation on the blade surface, thereby producing an effect that leads to noise reduction.
 本発明の第1実施形態は、上記セレーションの基礎的効果に基づいて、送風ファン1の半径方向位置における気流の流れに応じて、セレーションのピッチ、高さ、又は、方向を変化させたものである。すなわち、上記第1の実施形態は、ブレード3の回転中心Qに対して、送風ファンの半径方向における距離が異なる第1の部位および第2の部位における、セレーションのピッチ、高さ、方向のうち少なくとも1つが異なっている。ブレード3の第1の部位や第2の部位の一例としては、気流の流速(図7、8の流速の大小)や流れ方向の異なる部分などが挙げられるが、必ずしもこれに限定されず、ブレード3に沿った任意の2か所の部位を指すものである。送風機の翼面近傍の気流の流れはその部位によって大きく異なり、送風ファンの半径方向に対しては外周側ほど流速が高く、また、前進翼では翼中心に集まる軸流、後退翼では翼外周方向に向かう斜流となる。さらには、翼端部では正圧面から負圧面側に巻き込む逆流も生じる。このような送風ファン1の半径方向位置(少なくとも2か所)における気流の流れに応じて、セレーションのピッチ、高さ、又は、方向を変化させることは、流れの剥離を低減させる上で、極めて重要である。これにより、本来のセレーションの基礎的効果が発揮され、翼面近傍の乱れを緩和し、翼面の圧力変動を抑える事で、低騒音化につながる効果を生み出すことが可能となる。 1st Embodiment of this invention changes the pitch, height, or direction of a serration according to the flow of the airflow in the radial direction position of the ventilation fan 1 based on the fundamental effect of the said serration. is there. That is, in the first embodiment, the serration pitch, height, and direction in the first part and the second part in which the radial distance of the blower fan is different from the rotation center Q of the blade 3 are different. At least one is different. Examples of the first part and the second part of the blade 3 include a flow velocity of the airflow (the magnitude of the flow velocity in FIGS. 7 and 8) and a portion having a different flow direction, but are not necessarily limited thereto. 3 indicates any two sites along the line 3. The flow of airflow in the vicinity of the blade surface of the blower varies greatly depending on the part, and the air flow rate is higher toward the outer peripheral side with respect to the radial direction of the blower fan. It becomes a diagonal flow toward. Furthermore, a backflow that wraps from the pressure surface to the suction surface side also occurs at the blade tip. Changing the pitch, height, or direction of the serration according to the flow of the airflow in the radial position (at least two places) of the blower fan 1 is extremely effective in reducing flow separation. is important. As a result, the fundamental effect of the original serration is exhibited, and it is possible to reduce the noise near the blade surface and suppress the pressure fluctuation on the blade surface, thereby producing an effect that leads to a reduction in noise.
 第1実施形態は、ブレードの各位置において、気流の乱れによって発生する騒音を最小にする気流制御形状を設けたことを特徴とするファンであり、気流制御形状によって騒音低減と、風量低下・駆動トルク増加防止を両立して効果を得られる。ブレードにセレーション形状(のこぎり歯形状)の部位を有し、気流の流れに応じてセレーション形状を変更する。これによると気流の方向や流速が異なる個々の部位においてセレーション形状を適切に設定できるので、騒音低減と、風量低下・駆動トルク増加防止効果を両立させることができる。 The first embodiment is a fan characterized in that an airflow control shape that minimizes noise generated by airflow turbulence is provided at each position of the blade. Noise reduction, airflow reduction, and driving are achieved by the airflow control shape. The effect can be obtained while preventing the increase in torque. The blade has a serrated shape (sawtooth shape), and the serrated shape is changed according to the flow of the airflow. According to this, since the serration shape can be appropriately set in each part having different airflow directions and flow velocities, it is possible to achieve both noise reduction and the effect of preventing airflow reduction and driving torque increase.
 (第2、3実施形態)
 第2、3実施形態は、送風機の翼面近傍の気流の流れが、送風ファンの円周方向の場合に対応した実施形態である。第2実施形態は、図7に見られるように、翼外径側ほどセレーションの大きさを大きくすることを特徴としている。セレーションの方向は、送風ファンの円周方向を向いている場合である。これによると、翼外周側の流速が大きい部位においてセレーションの大きさを大きくしているので、セレーションで生成する巻込む気流が翼内周側ほど弱く、翼外周側ほど強くなる。これによって、剥離が起きやすい流速の高い流れでは強い翼面下方流れを発生させて剥離を低減させることができ、翼全体で騒音低減と、風量低下・駆動トルク増加防止効果が得られる。
(Second and third embodiments)
The second and third embodiments are embodiments corresponding to the case where the airflow near the blade surface of the blower is in the circumferential direction of the blower fan. As shown in FIG. 7, the second embodiment is characterized in that the size of the serration is increased toward the blade outer diameter side. The direction of the serration is when it faces the circumferential direction of the blower fan. According to this, since the size of the serration is increased at the portion where the flow velocity on the blade outer peripheral side is large, the entrained air flow generated by the serration is weaker on the blade inner peripheral side and stronger on the blade outer peripheral side. As a result, in a flow having a high flow velocity at which separation is likely to occur, a strong downward flow on the blade surface can be generated to reduce separation, and noise reduction and an effect of reducing the air volume and driving torque can be obtained on the entire blade.
 第3実施形態は、図8に見られるように、翼外径側ほどセレーションの頂角αを鋭角にすることを特徴としている。これによると、翼外周側の流速が大きい部位においてセレーション角度を鋭角にしているので、セレーションで生成する巻込む気流が翼内周側ほど弱く、翼外周側ほど強くなる。これによって、剥離が起きやすい流速の高い流れではセレーション谷部に生成する翼面下方流れを強くして、翼全体で騒音低減と、風量低下・駆動トルク増加防止を両立させることができる。セレーションのピッチpを一定にして、セレーションの高さhを大きくして角度を鋭角にした場合に限定されず、翼外周側の流速が大きい部位において、三角形突部の底辺長さに無関係に、セレーション角度を鋭角にしても良い。 As shown in FIG. 8, the third embodiment is characterized in that the apex angle α of the serration becomes sharper toward the blade outer diameter side. According to this, since the serration angle is set to an acute angle at a portion where the flow velocity on the blade outer peripheral side is large, the entrained air flow generated by the serration is weaker on the blade inner peripheral side and stronger on the blade outer peripheral side. As a result, in the flow having a high flow velocity at which separation is likely to occur, the flow below the blade surface generated in the serration trough is strengthened, and it is possible to achieve both noise reduction and air flow reduction / drive torque increase prevention for the entire blade. It is not limited to the case where the serration pitch p is constant, the serration height h is increased, and the angle is made acute. Regardless of the base length of the triangular protrusion, in the portion where the flow velocity on the blade outer peripheral side is large, The serration angle may be an acute angle.
 (第4実施形態)
 第4実施形態は、図9に見られるように、翼後縁(Trailing Edge)7にもセレーションを設けるとともに、翼前縁6と翼後縁7でセレーション形状を変更することを特徴としている。翼後縁7にセレーションを設けた場合、圧力の高い翼正圧面の流れと、圧力の低い翼負圧面の流れが翼後縁付近で混じる際に、両面の流れがセレーションによって徐々に交じり合うため、翼後流の気流の乱れを抑制することができる。翼前縁6と翼後縁7のそれぞれに対して、セレーション形状を適切に設定すると良い。翼後縁7は翼前縁6よりセレーションの大きさを小さくすると、剥離を抑制するために設ける翼前縁側のセレーションは、放射状の流れを生成できるように大きくし、気流の乱れを抑制するために設ける翼後縁側のセレーションは、正負圧両面の流れを徐々に交じり合うように小さくできるので、騒音低減と、風量低下・駆動トルク増加防止を両立して効果を得られる。翼後縁と翼前縁でのセレーション設置範囲を変え、流れの異なる翼前縁6と翼後縁7とで適切な位置にのみセレーションを設けても良い。
(Fourth embodiment)
As shown in FIG. 9, the fourth embodiment is characterized in that serrations are also provided on a trailing edge 7 and the serration shape is changed between the leading edge 6 and the trailing edge 7. When the blade trailing edge 7 is provided with serrations, the flow on both sides of the blade gradually merges due to serration when the flow of the high pressure blade pressure surface and the low pressure blade suction surface flow mix near the blade trailing edge. The turbulence of the airflow behind the blade can be suppressed. The serration shape may be appropriately set for each of the blade leading edge 6 and the blade trailing edge 7. If the blade trailing edge 7 has a smaller serration than the blade leading edge 6, the blade leading edge side serration provided to suppress separation is enlarged so that a radial flow can be generated, thereby suppressing airflow turbulence. Since the serration on the trailing edge side of the blade can be reduced so that the flow on both sides of the positive and negative pressures is gradually mixed, an effect can be obtained by reducing both noise and preventing an increase in air volume and an increase in driving torque. The serration installation range at the blade trailing edge and the blade leading edge may be changed, and serrations may be provided only at appropriate positions at the blade leading edge 6 and the blade trailing edge 7 having different flows.
 以下の第5、6実施形態は、送風機の翼面近傍の気流の流れが、送風ファンの円周方向に対して斜めである斜流の場合に対応した実施形態を説明する。
 (第5、6実施形態)
 第5実施形態は、図10に見られるように、送風機の翼面近傍の気流の流れが斜流の場合に対応した実施形態である。第5実施形態は、翼前縁のセレーションの方向を斜流の方向に合わせたものである。第6実施形態は、図11に見られるように、翼後縁7と翼前縁6でセレーション設置範囲を変えることを特徴とする。例えば、後退翼のように気流が斜流となる場合、翼前縁6から翼後縁7に向けて気流が翼面上を外周方向に流れる。このとき、あらゆる翼位置において気流と干渉する翼前縁側では、広い範囲にセレーションを設置するとともに、翼後縁側は斜流が顕著な部分にのみセレーションを設けるので、騒音低減と、風量低下・駆動トルク増加防止を両立させることができる。
The following fifth and sixth embodiments will describe embodiments corresponding to the case where the flow of the airflow near the blade surface of the blower is oblique flow with respect to the circumferential direction of the blower fan.
(Fifth and sixth embodiments)
As shown in FIG. 10, the fifth embodiment is an embodiment corresponding to the case where the flow of airflow near the blade surface of the blower is a diagonal flow. In the fifth embodiment, the direction of serration of the blade leading edge is matched to the direction of diagonal flow. As shown in FIG. 11, the sixth embodiment is characterized in that the serration installation range is changed between the blade trailing edge 7 and the blade leading edge 6. For example, when the airflow is a diagonal flow like a swept wing, the airflow flows on the blade surface from the blade leading edge 6 toward the blade trailing edge 7 in the outer circumferential direction. At this time, serrations are installed in a wide range on the leading edge side of the blade that interferes with the airflow at any blade position, and serrations are provided only on the part where the diagonal flow is prominent on the trailing edge side of the blade. Torque increase prevention can be achieved at the same time.
 以下の第7、8実施形態は、送風機の翼面近傍の気流の流れが、翼端部での正圧面から負圧面側に巻き込む逆流の場合に対応した実施形態を説明する。
 (第7、8実施形態)
 第7実施形態は、図12に見られるように、翼端部のセレーション形状を小さくすることを特徴としている。これによると、逆流による気流の乱れが大きい翼端部でセレーション形状を小さくしているので、セレーションで生成する巻込む気流の渦が細分化される。これによって、翼端部における気流の乱れを低減できるので、騒音低減と、風量低下・駆動トルク増加防止効果が得られる。第8実施形態は、図13に見られるように、翼後縁7の翼端部のセレーション形状を小さくすることを特徴としており、第7実施形態と同様の作用効果が得られる。
The following seventh and eighth embodiments will describe embodiments corresponding to the case where the airflow near the blade surface of the blower is a reverse flow that is wound from the pressure surface to the suction surface side at the blade tip.
(Seventh and eighth embodiments)
As shown in FIG. 12, the seventh embodiment is characterized in that the serrated shape of the blade tip is reduced. According to this, since the serration shape is reduced at the blade tip portion where the turbulence of the airflow due to the backflow is large, the vortex of the entrained airflow generated by the serration is subdivided. As a result, the turbulence of the airflow at the blade tip can be reduced, so that an effect of reducing noise and preventing an increase in air volume and an increase in driving torque can be obtained. As shown in FIG. 13, the eighth embodiment is characterized in that the serration shape of the blade tip portion of the blade trailing edge 7 is reduced, and the same effect as the seventh embodiment can be obtained.
 (第9実施形態)
 第9実施形態は、図14に見られるように、送風機の翼面近傍の気流の流れに対応すべく、翼前縁6のセレーションの方向を斜流の方向に合わせ、かつ、翼端部のセレーション形状を逆流による気流に合わせた実施形態である。第9実施形態は、第1実施形態に含まれるものである。これによると、流れの方向に合わせてセレーションの向きを設定できるので、騒音低減と、風量低下・駆動トルク増加防止効果が得られる。もちろん、斜流に対する第5、6実施形態と、逆流に対する第7、8実施形態をそれぞれ組み合わせたものも、第9実施形態に含まれる。
 本発明は、例示を目的として選択された特定の実施態様を参照して記述されているが、当業者にとっては本発明の基礎概念とその開示範囲から逸脱せずに、数多くのモディフィケーションが為しうることが明らかであろう。
(Ninth embodiment)
In the ninth embodiment, as shown in FIG. 14, the direction of serration of the blade leading edge 6 is adjusted to the direction of the diagonal flow in order to correspond to the flow of airflow in the vicinity of the blade surface of the blower, and It is embodiment which matched the serration shape with the airflow by a backflow. The ninth embodiment is included in the first embodiment. According to this, since the direction of the serration can be set in accordance with the flow direction, it is possible to obtain noise reduction and an effect of preventing a reduction in air volume and an increase in driving torque. Of course, combinations of the fifth and sixth embodiments for mixed flow and the seventh and eighth embodiments for reverse flow are also included in the ninth embodiment.
Although the present invention has been described with reference to particular embodiments selected for purposes of illustration, many modifications will occur to those skilled in the art without departing from the basic concept of the invention and its scope of disclosure. It will be clear that it can be done.
 1  送風ファン
 3  ブレード
 4  ハブ
 300  駆動モータ
1 Blower 3 Blade 4 Hub 300 Drive motor

Claims (10)

  1.  駆動モータ(300)、並びに、
     該駆動モータ(300)に取り付けられるハブ(4)、及び、該ハブ(4)に設けられた複数のブレード(3)を有する送風ファン(1)、
     を具備する送風機(10)であって、
     前記ブレード(3)の翼前縁部(6)には、翼前縁部(6)に沿って複数の三角形状突部からなるセレーションを設けるとともに、前記送風ファン(1)の半径方向位置における気流の流れに応じて、前記セレーションのピッチ、高さ、又は、方向を変化させた送風機。
    A drive motor (300), and
    A fan (1) having a hub (4) attached to the drive motor (300) and a plurality of blades (3) provided on the hub (4);
    A blower (10) comprising:
    The blade leading edge (6) of the blade (3) is provided with serrations composed of a plurality of triangular protrusions along the blade leading edge (6), and at the radial position of the blower fan (1). A blower in which the pitch, height, or direction of the serration is changed according to the flow of the airflow.
  2.  前記セレーションのピッチ(p)、又は、高さ(h)が、翼外径側ほど大きくしたことを特徴とする請求項1に記載の送風機。 The blower according to claim 1, wherein the pitch (p) or height (h) of the serration is increased toward the blade outer diameter side.
  3.  前記セレーションの頂点の角度(α)が、翼外径側ほど小さくしたことを特徴とする請求項1又は2に記載の送風機。 The blower according to claim 1 or 2, wherein the angle (α) of the apex of the serration is made smaller toward the blade outer diameter side.
  4.  前記セレーションの方向が、送風ファンの円周方向を向いていることを特徴とする請求項1から3のいずれか1項に記載の送風機。 The blower according to any one of claims 1 to 3, wherein the direction of the serration is directed in a circumferential direction of the blower fan.
  5.  前記セレーションの方向が、送風ファンの円周方向以外の気流の流れ方向を向いていることを特徴とする請求項1から3のいずれか1項に記載の送風機。 The blower according to any one of claims 1 to 3, wherein the direction of the serration is directed to a flow direction of the airflow other than a circumferential direction of the blower fan.
  6.  前記セレーションのピッチ(p)、高さ(h)、又は、方向が、翼端部においては、逆流に対応させた大きさ、又は、方向としたことを特徴とする請求項1から5のいずれか1項に記載の送風機。 The pitch (p), height (h), or direction of the serration is set to a size or direction corresponding to the backflow at the blade tip, according to any one of claims 1 to 5. The blower of Claim 1.
  7.  前記ブレード(3)の翼後縁部(7)には、翼後縁部(7)に沿って複数の三角形状突部からなるセレーションを設けたことを特徴とする請求項1から6のいずれか1項に記載の送風機。 The blade trailing edge (7) of the blade (3) is provided with serrations comprising a plurality of triangular protrusions along the blade trailing edge (7). The blower of Claim 1.
  8.  前記翼後縁部(7)のセレーションは、前記翼前縁部(6)のセレーションに比べ、ピッチ(p)、又は、高さ(h)を小さくしたことを特徴とする請求項7に記載の送風機。 The serration of the blade trailing edge (7) has a smaller pitch (p) or height (h) than the serration of the blade leading edge (6). Blower.
  9.  前記翼前縁部(6)のセレーションと、前記翼後縁部(7)のセレーションとでは、送風ファン(1)の半径方向位置における設置位置が異なることを特徴とする請求項7又は8に記載の送風機。 The installation position in the radial position of the blower fan (1) is different between the serration of the blade leading edge (6) and the serration of the blade trailing edge (7). The blower described.
  10.  駆動機(300)に取り付けられるハブ(4)と、該ハブ(4)に設けられた複数のブレード(3)とを有する送風ファン(1)であって、
     前記ブレード(3)は、前記ブレード(3)の回転中心(Q)から径方向において第1の距離を有する前記ブレードの翼前縁部の第1の部位と、前記ブレード(3)の回転中心から径方向において第2の距離を有する前記ブレードの翼前縁部の第2の部位とを有し、
     前記ブレード(3)の翼前縁部(6)には、気流の流れ方向に対して傾いた第1の斜辺(3a)および、気流の流れ方向に対して前記第1の斜辺(3a)と異なる向きに傾斜した第2の斜辺(3b)とを有して、気流の流れ上流側に突出する複数のセレーションが設けられ、
     前記第1の部位における前記突起部のピッチ、高さ、方向のうち少なくともいずれか1つが、前記第2の部位における前記突起部のピッチ、高さ、方向のうち少なくともいずれか1つとは異なることを特徴とする送風ファン。
    A blower fan (1) having a hub (4) attached to a drive machine (300) and a plurality of blades (3) provided on the hub (4),
    The blade (3) includes a first portion of a blade leading edge portion of the blade having a first distance in a radial direction from a rotation center (Q) of the blade (3), and a rotation center of the blade (3). A second portion of the blade leading edge of the blade having a second distance in a radial direction from the blade,
    The blade front edge (6) of the blade (3) has a first hypotenuse (3a) inclined with respect to the airflow direction and the first hypotenuse (3a) with respect to the airflow direction. A plurality of serrations having a second hypotenuse (3b) inclined in different directions and projecting upstream of the airflow;
    At least one of the pitch, height, and direction of the protrusions in the first part is different from at least one of the pitch, height, and direction of the protrusions in the second part. Blower fan characterized by.
PCT/JP2013/065282 2012-05-31 2013-05-31 Air blower WO2013180296A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE201311002698 DE112013002698T5 (en) 2012-05-31 2013-05-31 air blower
US14/404,259 US20150152875A1 (en) 2012-05-31 2013-05-31 Air blower
CN201380027931.4A CN104364532B (en) 2012-05-31 2013-05-31 Aerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-124250 2012-05-31
JP2012124250A JP5880288B2 (en) 2012-05-31 2012-05-31 Blower

Publications (1)

Publication Number Publication Date
WO2013180296A1 true WO2013180296A1 (en) 2013-12-05

Family

ID=49673479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065282 WO2013180296A1 (en) 2012-05-31 2013-05-31 Air blower

Country Status (5)

Country Link
US (1) US20150152875A1 (en)
JP (1) JP5880288B2 (en)
CN (1) CN104364532B (en)
DE (1) DE112013002698T5 (en)
WO (1) WO2013180296A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106687693A (en) * 2014-09-18 2017-05-17 株式会社电装 Blower
CN112012960A (en) * 2020-08-03 2020-12-01 珠海格力电器股份有限公司 Fan blade assembly, fan assembly and air conditioner
JP2020536193A (en) * 2017-09-29 2020-12-10 キャリア コーポレイションCarrier Corporation Axial fan blades with wavy wings and trailing edge serrations
WO2021180559A1 (en) 2020-03-10 2021-09-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171955B2 (en) * 2014-01-29 2017-08-02 株式会社デンソー Axial fan
WO2016042698A1 (en) * 2014-09-18 2016-03-24 株式会社デンソー Blower
WO2016201516A1 (en) * 2015-06-16 2016-12-22 Resmed Limited Impeller with inclined and reverse inclined blades
DE102015216579A1 (en) * 2015-08-31 2017-03-02 Ziehl-Abegg Se Fan, fan and system with at least one fan
WO2017041009A1 (en) * 2015-09-02 2017-03-09 Mckinney Krista Single thickness blade with leading edge serrations on an axial fan
JP6704232B2 (en) * 2015-10-05 2020-06-03 マクセルホールディングス株式会社 Blower
US10473113B2 (en) 2015-12-16 2019-11-12 Denso Corporation Centrifugal blower
JP6643480B2 (en) * 2015-12-18 2020-02-12 アマゾン テクノロジーズ インコーポレイテッド Propeller blade machining for acoustic control
JP2019052539A (en) * 2016-02-02 2019-04-04 株式会社デンソー Axial blower
CN109312759B (en) 2016-07-01 2020-07-17 三菱电机株式会社 Propeller fan
US20190226492A1 (en) * 2016-07-05 2019-07-25 Nidec Corporation Serrated fan blade, axial fan, and centrifugal fan
WO2018008126A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Blower device, outdoor unit for air-conditioner, and refrigeration cycle device
AU2017206193B2 (en) * 2016-09-02 2023-07-27 Fujitsu General Limited Axial fan and outdoor unit
CN106762816A (en) * 2016-12-16 2017-05-31 珠海格力电器股份有限公司 Centrifugation blade and centrifugal blower
KR102548590B1 (en) * 2016-12-28 2023-06-29 한온시스템 주식회사 Axial flow Fan
JP6723434B2 (en) * 2017-03-28 2020-07-15 三菱電機株式会社 Propeller fan
DE102017212231A1 (en) * 2017-07-18 2019-01-24 Ziehl-Abegg Se Wings for the impeller of a fan, impeller and axial fan, diagonal fan or centrifugal fan
USD901669S1 (en) 2017-09-29 2020-11-10 Carrier Corporation Contoured fan blade
JP6440888B2 (en) * 2018-06-04 2018-12-19 三菱電機株式会社 Propeller fan, air conditioner and ventilator
FR3087483B1 (en) * 2018-10-18 2022-01-28 Safran Aircraft Engines PROFILE STRUCTURE FOR AIRCRAFT OR TURBOMACHINE FOR AIRCRAFT
US11680580B2 (en) * 2018-11-22 2023-06-20 Gd Midea Air-Conditioning Equipment Co., Ltd. Axial-flow impeller and air-conditioner having the same
US11187083B2 (en) 2019-05-07 2021-11-30 Carrier Corporation HVAC fan
USD980965S1 (en) 2019-05-07 2023-03-14 Carrier Corporation Leading edge of a fan blade
CN113738700B (en) * 2020-05-27 2023-06-02 广东美的白色家电技术创新中心有限公司 Fan, air conditioner outdoor unit and air conditioning system
CN115126708A (en) * 2021-03-26 2022-09-30 全亿大科技(佛山)有限公司 Impeller and cooling fan
DE102021206929A1 (en) * 2021-07-01 2023-01-05 Mahle International Gmbh fan wheel
JP2023007842A (en) * 2021-07-02 2023-01-19 株式会社デンソー blower fan
TWI801140B (en) * 2022-02-18 2023-05-01 宏碁股份有限公司 Axial fan
CN114738319B (en) * 2022-04-20 2023-11-14 浙江尚扬通风设备有限公司 Low-noise axial flow fan and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171299A (en) * 1990-11-02 1992-06-18 Daikin Ind Ltd Air blower
JPH08189497A (en) * 1994-11-08 1996-07-23 Mitsubishi Heavy Ind Ltd Propeller fan
JP2000087898A (en) * 1998-09-08 2000-03-28 Matsushita Refrig Co Ltd Axial flow blower
JP2000161296A (en) * 1998-11-20 2000-06-13 Fujitsu I-Network Systems Ltd Cooling axial fan

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609212A1 (en) * 1986-03-19 1987-09-24 Standard Elektrik Lorenz Ag AXIAL FAN
KR100820857B1 (en) * 2003-03-05 2008-04-10 한라공조주식회사 Axial Flow Fan
EP1801422B1 (en) * 2005-12-22 2013-06-12 Ziehl-Abegg AG Fan and fan blade
JP5562566B2 (en) * 2009-03-05 2014-07-30 三菱重工業株式会社 Wing body for fluid machinery
CN103140684B (en) * 2010-09-21 2015-09-30 三菱电机株式会社 Axial-flow blower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171299A (en) * 1990-11-02 1992-06-18 Daikin Ind Ltd Air blower
JPH08189497A (en) * 1994-11-08 1996-07-23 Mitsubishi Heavy Ind Ltd Propeller fan
JP2000087898A (en) * 1998-09-08 2000-03-28 Matsushita Refrig Co Ltd Axial flow blower
JP2000161296A (en) * 1998-11-20 2000-06-13 Fujitsu I-Network Systems Ltd Cooling axial fan

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170261000A1 (en) * 2014-09-18 2017-09-14 Denso Corporation Blower
CN106687693A (en) * 2014-09-18 2017-05-17 株式会社电装 Blower
JP2020536193A (en) * 2017-09-29 2020-12-10 キャリア コーポレイションCarrier Corporation Axial fan blades with wavy wings and trailing edge serrations
DE102021105225A1 (en) 2020-03-10 2021-09-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades
WO2021180559A1 (en) 2020-03-10 2021-09-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades
DE102021105226A1 (en) 2020-03-10 2021-09-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades
WO2021180560A1 (en) 2020-03-10 2021-09-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades
EP4083433A1 (en) 2020-03-10 2022-11-02 ebm-papst Mulfingen GmbH & Co. KG Fan and fan blade
EP4083432A1 (en) 2020-03-10 2022-11-02 ebm-papst Mulfingen GmbH & Co. KG Fan and fan blade
US11965521B2 (en) 2020-03-10 2024-04-23 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades
US11988224B2 (en) 2020-03-10 2024-05-21 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan and fan blades
CN112012960B (en) * 2020-08-03 2021-06-22 珠海格力电器股份有限公司 Fan blade assembly, fan assembly and air conditioner
CN112012960A (en) * 2020-08-03 2020-12-01 珠海格力电器股份有限公司 Fan blade assembly, fan assembly and air conditioner

Also Published As

Publication number Publication date
CN104364532B (en) 2017-03-29
US20150152875A1 (en) 2015-06-04
DE112013002698T5 (en) 2015-02-26
CN104364532A (en) 2015-02-18
JP5880288B2 (en) 2016-03-08
JP2013249762A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
WO2013180296A1 (en) Air blower
JP5929522B2 (en) Axial blower
JP5422336B2 (en) Vehicle heat exchange module
JP6022941B2 (en) Propellers for fans such as automobiles
US20150240645A1 (en) Propeller fan and air conditioner equipped with same
CN101910645A (en) Propeller fan
WO2015092924A1 (en) Axial flow fan
AU2006276567B2 (en) Axial flow fan
JP2013119816A (en) Propeller fan and outdoor unit of air conditioning apparatus
US20140246180A1 (en) Outdoor cooling unit in vehicle air-conditioning apparatus
JP5145188B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP3204521U (en) fan
JP4529613B2 (en) Blower impeller
JP5978886B2 (en) Blower
JP2002106494A (en) Axial flow type fan
JP5862541B2 (en) Low noise blower
JP6060370B2 (en) Blower
JP2007247494A (en) Diagonal flow blower impeller
JP6064487B2 (en) Blower
JP2016166558A (en) Air blower
JP4802694B2 (en) Blower impeller and air conditioner
JP4797776B2 (en) Mixed flow blower impeller and air conditioner
JP5120299B2 (en) Blower impeller
JP2009275696A (en) Propeller fan, and air conditioner using it
CN116249838B (en) propeller fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14404259

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013002698

Country of ref document: DE

Ref document number: 1120130026988

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796567

Country of ref document: EP

Kind code of ref document: A1