WO2013179874A1 - Resin composition for sealing electric/electronic component, method for manufacturing electric/electronic component sealed body, and electric/electronic component sealed body - Google Patents

Resin composition for sealing electric/electronic component, method for manufacturing electric/electronic component sealed body, and electric/electronic component sealed body Download PDF

Info

Publication number
WO2013179874A1
WO2013179874A1 PCT/JP2013/063246 JP2013063246W WO2013179874A1 WO 2013179874 A1 WO2013179874 A1 WO 2013179874A1 JP 2013063246 W JP2013063246 W JP 2013063246W WO 2013179874 A1 WO2013179874 A1 WO 2013179874A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
electronic component
electric
sealing
Prior art date
Application number
PCT/JP2013/063246
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 舩岡
健治 志賀
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2013548667A priority Critical patent/JP6098521B2/en
Publication of WO2013179874A1 publication Critical patent/WO2013179874A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a sealed electric and electronic part sealed with a resin composition, a method for producing the same, and a resin composition suitable for this application.
  • Hot melt resins that can be sealed by lowering viscosity simply by heating and melting solidify and form a sealed body by simply cooling after sealing, so the productivity is high, and the resin is melted and removed by heating. It has excellent characteristics such as easy recycling of the member, and is suitable for sealing electrical and electronic parts.
  • Polyester which has both high electrical insulation and water resistance, is considered to be a very useful material for this application, but generally has a high melt viscosity and injection at a high pressure of several hundred MPa or more to seal parts with complex shapes. Molding is required, and there is a risk of destroying electrical and electronic parts.
  • Patent Document 1 discloses a polyester resin composition for molding containing a polyester resin having a specific composition and physical properties and an antioxidant, and sealing at a low pressure that does not damage electrical and electronic parts. Is disclosed to be possible. With this resin composition, a molded product with good initial adhesion can be obtained, and the polyester resin composition can be applied to general electric and electronic parts.
  • Patent Document 2 discloses a resin composition for sealing electrical and electronic parts in which a crystalline polyester resin, an epoxy resin, and a polyolefin resin are blended. This composition has a high initial adhesion strength to a glass epoxy plate or a polybutylene terephthalate plate containing 30% by weight of a glass filler. A decrease in adhesion strength due to loading at 105 ° C. for 1000 hours is also suppressed.
  • An object of the present invention is to provide an electrical / electronic component capable of forming a sealed electrical / electronic component having excellent initial adhesion to an aluminum material, excellent durability against a cold cycle load, and excellent durability against a high-temperature and long-term load.
  • An object of the present invention is to provide a sealing resin composition, and to provide a method for producing an electric / electronic component encapsulant using the same and an electric / electronic component encapsulant.
  • the present inventors have intensively studied and have proposed the following invention. That is, the present invention (1) Crystalline polyester resin (A), epoxy resin (B) and polyamide resin (C) are contained, dried to a moisture content of 0.1% or less, heated to 220 ° C. and given a pressure of 1 MPa, A resin composition for sealing electrical and electronic parts, having a melt viscosity of 5 dPa ⁇ s to 3000 dPa ⁇ s when extruded from a die having a thickness of 1.0 mm and a thickness of 10 mm.
  • a resin composition for sealing electrical and electronic parts having a melt viscosity of 5 dPa ⁇ s to 3000 dPa ⁇ s when extruded from a die having a thickness of 1.0 mm and a thickness of 10 mm.
  • a resin composition for sealing electrical and electronic parts (7) The resin composition for sealing electrical and electronic parts according to any one of (1) to (6), wherein the initial T-type peel strength with respect to the aluminum plate is 0.5 N / mm or more.
  • the resin composition temperature is 130 ° C. or higher and 260 ° C. or lower in a mold into which an electric / electronic component is inserted.
  • a method for producing an encapsulated electrical and electronic component which is injected at an object pressure of 0.1 MPa to 10 MPa.
  • the resin composition for encapsulating electrical and electronic parts of the present invention has excellent initial adhesion to an aluminum material, and retains adhesive strength even after 1000 cycles of cooling and heating cycle loading at ⁇ 40 ° C. for 30 minutes and 80 ° C. for 30 minutes. In addition, it exhibits high heat cycle aging durability, and also exhibits high heat aging resistance in which the tensile fracture elongation does not decrease even after a high temperature long time load at 150 ° C. for 1000 hours. For this reason, the electrical and electronic component encapsulated body sealed with the resin composition for encapsulating electrical and electronic components of the present invention exhibits durability against severe environmental loads in a thermal cycle and durability against high-temperature and long-term loads.
  • the encapsulated body for electrical and electronic parts of the present invention comprises a resin or a resin composition that is heated and kneaded in a mold in which the electrical and electronic parts are set inside the mold to give fluidity to 0.1 to 10 MPa. It can be manufactured by injecting at low pressure and enclosing and sealing the electrical and electronic parts with a resin or resin composition. In other words, since it is performed at a very low pressure compared to injection molding at a high pressure of 40 MPa or more, which is generally used for molding plastics in the past, it is resistant to heat and pressure while being sealed by an injection molding method. It is possible to seal a limited electric / electronic component without breaking it.
  • the resin composition for sealing electrical and electronic parts of the present invention contains a crystalline polyester resin (A), an epoxy resin (B), and a polyamide resin (C), and is dried to a moisture content of 0.1% or less at 220 ° C.
  • the melt viscosity is 5 dPa ⁇ s or more and 3000 dPa ⁇ s or less when extruded from a die having a hole diameter of 1.0 mm and a thickness of 10 mm.
  • polyether diol is copolymerized, or a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polycarbonate are bonded by an ester bond. It consists of a chemical structure.
  • the polyether diol is copolymerized to exhibit characteristics such as a decrease in melt viscosity, imparting flexibility, and imparting adhesion.
  • the copolymerization ratio of the polyether diol is preferably 1 mol% or more, and more preferably 5 mol% or more when the total glycol component constituting the crystalline polyester resin (A) is 100 mol%.
  • it is 10 mol% or more, and especially preferably 20 mol% or more. Further, it is preferably 90 mol% or less, more preferably 55 mol% or less, still more preferably 50 mol% or less, and particularly preferably 45 mol% or less.
  • the copolymerization ratio of the polyether diol is too low, the melt viscosity becomes high, and molding tends not to be performed at a low pressure, or the crystallization speed is high and a short shot tends to occur. Moreover, when the copolymerization ratio of the polyether diol is too high, problems such as insufficient heat resistance tend to occur.
  • the number average molecular weight of the polyether diol is preferably 400 or more, and more preferably 800 or more. If the number average molecular weight is too low, flexibility cannot be imparted, and the stress load on the electronic substrate after sealing tends to increase.
  • the number average molecular weight of the polyether diol is preferably 5000 or less, and more preferably 3000 or less. If the number average molecular weight is too high, the compatibility with other components is poor, and there is a tendency to cause a problem that copolymerization is impossible.
  • Specific examples of the polyether diol include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, and the like, and polytetramethylene glycol is most preferable in terms of imparting flexibility and reducing melt viscosity.
  • the crystalline polyester resin (A) used in the present invention is widely used as an engineering plastic by adjusting the composition ratio of an aliphatic component and / or an alicyclic component and an aromatic component.
  • Low melt viscosity and two-part curable epoxy that are not available in general-purpose crystalline polyester resins such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polybutylene terephthalate (hereinafter sometimes abbreviated as PBT) Heat resistance, high-temperature and high-humidity resistance, cold-heat cycle resistance, and the like comparable to resins can be exhibited. For example, in order to maintain high heat resistance of 150 ° C.
  • terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, naphthalene dicarboxylic acid and ethylene glycol, naphthalene dicarboxylic acid and 1,4-butanediol are used.
  • a copolymerized polyester based is suitable.
  • mold releasability due to rapid crystallization after molding is a desirable characteristic from the viewpoint of productivity, so terephthalic acid and 1,4-butanediol, naphthalenedicarboxylic acid and 1,4-butanediol, which are rapidly crystallized, are used. It is preferable to use it as a main component.
  • the acid component constituting the crystalline polyester resin (A) it is preferable to contain both or one of terephthalic acid and naphthalenedicarboxylic acid from the viewpoint of heat resistance.
  • the copolymerization ratio is preferably 65 mol% or more, more preferably 70 mol% or more, especially 80 mol% or more when the total amount of terephthalic acid and naphthalenedicarboxylic acid is 100 mol%. It is preferable that If the total of terephthalic acid and naphthalenedicarboxylic acid is too low, the heat resistance required for electrical and electronic parts may be insufficient.
  • the glycol component constituting the crystalline polyester resin (A) contains one or both of ethylene glycol and 1,4-butanediol from the viewpoint of maintaining crystallinity during copolymerization.
  • the copolymerization ratio is preferably 40 mol% or more, more preferably 45 mol% or more, particularly preferably 45 mol% or more when the total amount of ethylene glycol and 1,4-butanediol is 100 mol% of the total amount of glycol components. 50 mol% or more is preferable, and most preferably 55 mol% or more.
  • the basic composition comprising the above-mentioned acid component and glycol component giving high heat resistance has adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, Aliphatic or alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, hydrogenated dimer acid, -Propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol
  • the crystalline polyester resin (A) used in the present invention includes an aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer acid or hydrogenated dimer acid, and / or dimer diol or hydrogenated dimer diol.
  • an aliphatic and / or alicyclic diol having 10 or more carbon atoms such as a copolymer is copolymerized, the glass transition temperature is lowered while maintaining a high melting point, and the heat resistance of the resin composition of the present invention and adhesion to electric and electronic parts are reduced. In some cases, the compatibility with the sex can be further improved.
  • dimer acid, aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer diol and / or aliphatic or alicyclic diol having 10 or more carbon atoms
  • polytetramethylene glycol such as polytetramethylene glycol.
  • the term “cooling cycle durability” as used herein means that even if the temperature is raised and lowered repeatedly between high and low temperatures, peeling of the interface part between the electronic component having a different linear expansion coefficient and the sealing resin, or cracking of the sealing resin It is performance that is hard to occur. If the elastic modulus of the resin is significantly increased during cooling, peeling or cracking is likely to occur.
  • the glass transition temperature is preferably ⁇ 10 ° C. or lower in order to provide a material that can withstand the cooling and heating cycle. More preferably, it is ⁇ 20 ° C. or less, more preferably ⁇ 40 ° C. or less, and most preferably ⁇ 50 ° C. or less.
  • the lower limit is not particularly limited, but a temperature of ⁇ 100 ° C. or more is realistic in consideration of adhesion and blocking resistance.
  • the dimer acid is an aliphatic or alicyclic dicarboxylic acid produced by dimerization of an unsaturated fatty acid by polymerization or Diels-Alder reaction or the like (most dimers, trimers, monomers, etc.)
  • the hydrogenated dimer acid means a hydrogenated dimer acid with hydrogen added to the unsaturated bond portion thereof.
  • the dimer diol and hydrogenated dimer diol are those obtained by reducing the two carboxyl groups of the dimer acid or the hydrogenated dimer acid to hydroxyl groups. Specific examples of the dimer acid or dimer diol include Copolis' Enpol (registered trademark) or Sobamol (registered trademark) and Unikema's Prepol.
  • the crystalline polyester resin (A) used in the present invention may have a chemical structure in which a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polycarbonate segment are bonded by an ester bond.
  • the soft segment mainly composed of a polycarbonate segment constituting the crystalline polyester resin (A) used in the present invention can be formed by copolymerizing a polycarbonate component, typically a polycarbonate diol. Due to the copolymerization of the polycarbonate component, characteristics such as low melt viscosity, high flexibility, and high adhesion are exhibited.
  • the copolymerization ratio of the polycarbonate component is preferably 25% by weight or more, more preferably 30% by weight or more when the entire hard segment component constituting the crystalline polyester resin (A) is 100% by weight. 35% by weight or more is particularly preferable.
  • the polycarbonate component is preferably an aliphatic polycarbonate component mainly composed of a poly (alkylene carbonate) component.
  • the poly (alkylene carbonate) component occupies 50% by weight or more of the aliphatic polycarbonate component, more preferably 75% by weight or more, and more preferably 90% by weight or more.
  • the alkylene group constituting the poly (alkylene carbonate) is more preferably a linear alkylene group having 4 to 16 carbon atoms, and a longer chain alkylene group tends to be excellent in durability against cold cycle load. Considering availability, it is preferably a tetramethylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, or a nonamethylene group.
  • the copolymer type polycarbonate in which the alkylene group which comprises poly (alkylene carbonate) is 2 or more types of mixtures may be sufficient.
  • heat resistance such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.
  • Crystalline polyester segments are preferred. More preferred are PBT and PBN. When other crystalline polyesters are used, heat resistance may be insufficient, durability, and low temperature characteristics may deteriorate.
  • an aromatic copolymer component in the crystalline polyester resin (A) used in the present invention, a small amount of an aromatic copolymer component can be used as long as the low melt viscosity is maintained.
  • Preferred examples of the aromatic copolymer component include aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid, and aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
  • aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid
  • aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
  • an aliphatic component having a relatively high molecular weight such as dimer acid or dimer diol
  • the upper limit of the ester group concentration of the crystalline polyester resin (A) is 8000 equivalents / 10 6 g is desirable.
  • a preferable upper limit is 7500 equivalent / 10 ⁇ 6 > g, More preferably, it is 7000 equivalent / 10 ⁇ 6 > g.
  • the lower limit is desirably 1000 equivalents / 10 6 g.
  • a preferred lower limit is 1500 equivalents / 10 6 g, more preferably 2000 equivalents / 10 6 g.
  • the unit of ester group concentration is represented by the number of equivalents per 10 6 g of resin, and is a value calculated from the composition of the polyester resin and its copolymerization ratio.
  • the block-like segment is introduced into the crystalline polyester resin (A) of the present invention, when the total of all acid components and all glycol components of the crystalline polyester resin (A) is 200 mol%, it is 2 mol% or more. Preferably, it is 5 mol% or more, more preferably 10 mol% or more, and most preferably 20 mol% or more.
  • the upper limit is 70 mol% or less, preferably 60 mol% or less, more preferably 50 mol% or less in consideration of handling properties such as heat resistance and blocking.
  • the number average molecular weight of the crystalline polyester resin (A) used in the present invention is preferably 3000 or more, more preferably 5000 or more, and further preferably 7000 or more.
  • the upper limit of the number average molecular weight is preferably 50000 or less, more preferably 40000 or less, and still more preferably 30000 or less. If the number average molecular weight is less than 3000, the sealing resin composition may be insufficient in hydrolysis resistance and high elongation at high temperature and high humidity. If it exceeds 50,000, the melt viscosity at 220 ° C. May be higher.
  • the crystalline polyester resin (A) used in the present invention is desirably a saturated polyester resin that does not contain an unsaturated group. If it is an unsaturated polyester, there is a possibility that crosslinking occurs at the time of melting, and the melt stability may be inferior.
  • the crystalline polyester resin (A) used in the present invention may be a polyester having a branch by copolymerizing a tri- or higher functional polycarboxylic acid such as trimellitic anhydride or trimethylolpropane or a polyol as necessary. There is no problem.
  • the resin composition melts quickly at 210 to 240 ° C.
  • the upper limit of the melting point of the crystalline polyester resin (A) is preferably 210 ° C. More preferably, it is 200 degreeC.
  • the lower limit is preferably 5 to 10 ° C. higher than the heat-resistant temperature required for the corresponding application.
  • the crystalline polyester resin (A) used in the present invention As a method for producing the crystalline polyester resin (A) used in the present invention, a known method can be used.
  • the dicarboxylic acid and the diol component are esterified at 150 to 250 ° C., and then the pressure is reduced.
  • the target polyester resin can be obtained by polycondensation at 230 to 300 ° C.
  • the target polyester resin is obtained by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of the above dicarboxylic acid and a diol component, and then performing polycondensation at 230 ° C. to 300 ° C. under reduced pressure. be able to.
  • Examples of the method for determining the composition and composition ratio of the polyester resin include 1 H-NMR and 13 C-NMR, which are measured by dissolving the polyester resin in a solvent such as deuterated chloroform, and quantification by gas chromatography which is measured after the methanolysis of the polyester resin. (Hereinafter, it may be abbreviated as methanolysis-GC method).
  • methanolysis-GC method when there is a solvent that can dissolve the crystalline polyester resin (A) and is suitable for 1 H-NMR measurement, the composition and composition ratio are determined by 1 H-NMR.
  • 13 C-NMR or methanolysis-GC method is adopted or used in combination.
  • the epoxy resin (B) used in the present invention is an epoxy resin having an average of at least 0.1 or more glycidyl groups in the molecule, preferably in the number average molecular weight range of 450 to 40,000.
  • glycidyl ether type such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolak glycidyl ether, brominated bisphenol A diglycidyl ether, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl isocyanate Nurate, glycidylhindantoin, tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, triglycidylmetaaminophenol, diglycidylaniline, diglycidyltoluidine, tetraglycidylmetaxylenediamine, diglycidyltribromoaniline, tetraglycidylbisaminomethylcyclohexane, etc.
  • epoxidized polybutadiene such as alicyclic or aliphatic epoxides such as epoxidized soybean oil.
  • a preferred number average molecular weight of the epoxy resin (C) is 450 to 40,000. If the number average molecular weight of the epoxy resin (C) is too low, the resin composition of the present invention is very easily softened, and the mechanical properties may be inferior.
  • the polyamide resin (C) can be easily finely dispersed and mixed with the originally incompatible crystalline polyester resin (A). For this reason, blending the epoxy resin (B) has an effect that a homogeneous resin composition can be easily obtained by a general kneading facility such as a single screw extruder or a twin screw extruder. Demonstrate.
  • the polyamide resin (C) used in the present invention is not particularly limited as long as it is a polyamide resin.
  • Nylon 4, nylon 6, nylon 7, nylon 11, nylon 12, nylon 66, and other nylon resins, aramid resins, and these Polymers and mixtures can be mentioned as preferred examples.
  • an elastomer type polyamide resin obtained by copolymerizing polyether, polycarbonate, aliphatic polyester or the like with these nylon resins is particularly preferable as the polyamide resin (C) used in the present invention.
  • Polyester block amide elastomers of VESTAMID (registered trademark) E series sold by Daicel Evonik Co., Ltd. and PEBAX (registered trademark) series sold by Arkema Co., Ltd. are easily available. It is preferable as the polyamide resin (C) of the present invention.
  • a polyamide resin having a melting point of 220 ° C. or lower is preferably used, and more preferably 210 ° C. or lower. If the melting point of the polyamide resin (C) is too high, the melt viscosity of the resin composition may greatly increase when a sealing body is produced with the resin composition of the present invention, and low-pressure molding may become difficult.
  • Component and (C) component are low in compatibility, and cannot be dispersed well as a composition, and the adhesion between the resin composition and the object to be sealed may not be exhibited.
  • the melting point of the polyamide resin (C) is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher. If the melting point of the polyamide resin (C) is too low, the heat resistance of the composition may be insufficient.
  • the polyamide resin (C) of the present invention preferably has a melt mass flow rate (hereinafter sometimes abbreviated as MFR) measured by ASTM D 3307 at 3 to 200 g / 10 min at 235 ° C. and 1 kg load. If the MFR is low, the adhesion between the resin component having a high melt viscosity and the material to be sealed in the molding conditions of the sealing body of the present invention may be impaired.
  • MFR melt mass flow rate
  • blending the polyamide resin (C) into the sealing resin composition is superior to the electrical and electronic component sealing body of the present invention, such as improved initial adhesion and adhesion durability against a thermal cycle. Demonstrate the characteristics.
  • the component (C) is considered to exhibit an effect of relaxing strain energy due to crystallization and enthalpy relaxation of the component (A).
  • the amount of component (C) in the present invention is preferably 0.5 parts by weight or more, more preferably 3 parts by weight or more, with respect to 100 parts by weight of component (A), and 5 parts by weight or more. More preferably.
  • the blending ratio of the component (C) is too low, strain energy relaxation due to crystallization and enthalpy relaxation of the component (A) is small, and the adhesion strength tends to decrease.
  • the blending ratio of the component (C) is too high, there is a tendency to deteriorate the adhesion and resin physical properties, and the (A) component and the (C) component cause macro phase separation and break. There is a case where the elongation is lowered and the moldability is adversely affected such that a smooth surface cannot be obtained.
  • the sealing resin composition of the present invention does not fall under any of the components (A), (B) and (C) of the present invention, such as polyester, polyamide, polyolefin, polycarbonate, acrylic, ethylene vinyl acetate, etc.
  • Other resins, isocyanate compounds, curing agents such as melamine, fillers such as talc and mica, pigments such as carbon black and titanium oxide, flame retardants such as antimony trioxide and brominated polystyrene may be used at all. .
  • curing agents such as melamine
  • fillers such as talc and mica
  • pigments such as carbon black and titanium oxide
  • flame retardants such as antimony trioxide and brominated polystyrene
  • the component (A) is preferably contained in an amount of 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more based on the entire resin composition of the present invention.
  • the polyester resin (A) itself has excellent adhesion to electrical and electronic parts, adhesion durability, elongation retention, hydrolysis resistance, and water resistance. May decrease.
  • an antioxidant for example, as a hindered phenol, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4-hydroxy-2-methyl- 5-t-butylphenyl) butane, 1,1-bis (3-t-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethylethyl) -4-hydroxy- Benzenepropanoic acid, pentaerythrityltetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy-5-methyl-benzenepropano Icic acid, 3,9-bis [1,1-dimethyl-2-[(3-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4-hydroxy-2-methyl- 5-t-butylphenyl) butane
  • the addition amount is preferably 0.1% by weight or more and 5% by weight or less with respect to the whole sealing resin composition. If it is less than 0.1% by weight, the effect of preventing thermal deterioration may be poor. If it exceeds 5% by weight, the adhesion may be adversely affected.
  • the sealing resin composition of the present invention preferably has a melt viscosity at 220 ° C. of 5 to 3000 dPa ⁇ s, and the types and blending ratios of the components (A), (B), and (C) are appropriate. This can be achieved by adjusting to For example, when the encapsulating resin composition of the present invention comprises the component (A), the component (B), and the component (C), the melt viscosity of the encapsulating resin composition can be estimated by the following equation. The resin composition having an appropriate melt viscosity can be obtained by further fine adjustment as necessary.
  • increasing the copolymerization ratio of the polyether diol copolymerized with the component (A) or decreasing the molecular weight of the component (A) decreases the melt viscosity of the component (A), and the resin of the present invention. It acts in the direction of lowering the melt viscosity of the composition.
  • the melt viscosity of the sealing resin composition of the present invention is a value measured as follows. That is, the sealing resin composition was dried to a moisture content of 0.1% or less, and then heated and stabilized at 220 ° C. with a flow tester (model number CFT-500C) manufactured by Shimadzu Corporation. Is a measured value of viscosity when a 10 mm thick die having a 1.0 mm hole diameter is passed through at a pressure of 1 MPa. When the melt viscosity is higher than 3000 dPa ⁇ s, high resin cohesive strength and durability can be obtained. However, when sealing to a component having a complicated shape, high-pressure injection molding is required, so that it is sealed. May cause destruction of parts.
  • the lower limit is preferably 5 dPa ⁇ s or more, and more preferably Is 10 dPa ⁇ s or more, more preferably 50 dPa ⁇ s or more, and most preferably 100 dPa ⁇ s or more.
  • the adhesion strength between the specific member and the sealing resin composition is obtained by preparing a measurement sample piece obtained by bonding the sealing resin composition by molding on a single plate-like member. Determination is made by measuring T-type peel strength.
  • the method for preparing the test specimen for measurement and the method for measuring the T-type peel strength are performed according to the methods described in the examples described later.
  • the electrical and electronic component sealing body of the present invention can be manufactured by melting and injecting the resin composition of the present invention into a mold into which electrical and electronic components are inserted. More specifically, in the case of using a screw type hot melt molding process applicator, it is heated and melted at around 200 to 280 ° C., injected into a mold through an injection nozzle, and after a certain cooling time, it is molded. An object can be removed from the mold to obtain an electrical / electronic component sealing body.
  • the temperature and pressure at the time of pouring the resin composition are more preferably a temperature of 130 ° C. or higher and 260 ° C. or lower and a pressure of 0.1 MPa or higher and 10 MPa or lower.
  • the type of the applicator for hot melt molding processing is not particularly limited, and examples thereof include Nordson ST2 and Imoto Seisakusho IMC-18F9.
  • a sealing resin composition is injected from a gate provided at the center of a 100 mm ⁇ 100 mm surface, and molding is performed. went.
  • the molding conditions were a molding resin temperature of 220 ° C., a molding pressure of 3 MPa, a holding pressure of 3 MPa, a cooling time of 15 seconds, and a discharge rotation set to 50% (maximum discharge was set to 100%).
  • the molded product was released from the mold and cut into a strip shape with a width of 20 mm each having a cellophane tape-attached portion to obtain an adhesion strength test piece.
  • T-type peel strength retention is a value defined by the following mathematical formula.
  • T-type peel strength retention rate 80% or more B: T-type peel strength retention rate less than 80% 70% or more ⁇ : T-type peel strength retention rate less than 70% 50% or more
  • X T-type peel strength retention rate 50 %Less than
  • Low pressure moldability evaluation method A flat plate (100 mm x 100 mm x 10 mm) made of a resin composition for sealing using a flat mold and a low pressure molding applicator IMC-18F9 manufactured by Imoto Seisakusho as an applicator for hot melt molding. Molded. The gate position was the center of a 100 mm ⁇ 100 mm surface. Molding conditions: molding resin temperature 220 ° C., molding pressure 3 MPa, holding pressure 3 MPa, cooling time 15 seconds, discharge rotation 50%.
  • Evaluation criteria A Completely filled with no burrs or sink marks. ⁇ : Although completely filled, some burrs are generated. ⁇ : Filled without short shot, but there is a sink. X: There is a short shot.
  • Polyester Resin A 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 20,000 as a hard segment component and 67 parts by mass of an aliphatic polycarbonate diol A as a soft segment component are obtained at 230 ° C. to 245 ° C. under 130 Pa. It stirred for 1 hour and it confirmed that resin became transparent. Thereafter, the contents were taken out and cooled. Next, 0.3 part of Lasmit LG and 0.3 part of Irganox 1010 were added and kneaded at 250 ° C. to obtain a polyester resin A.
  • PBT polybutylene terephthalate
  • polyester resin A the types and blending amounts of the hard segment component and the soft segment component were changed to obtain polyester resins B to E and H.
  • the compositions and physical properties of the polyester resins B to E are shown in Table 1.
  • Polyester Resin F In a reaction vessel equipped with a stirrer, a thermometer, and a condenser for distillation, 100 mol parts of 2,6-naphthalenedicarboxylic acid, 75 mol parts of 1,4-butanediol, 2,6-naphthalene 0.25% by weight of tetrabutyl titanate with respect to the total weight of dicarboxylic acid and 1,4-butanediol was charged, and esterification was performed at 170 to 220 ° C. for 2 hours.
  • polyester resin F After completion of the esterification reaction, 25 mol parts of polytetramethylene glycol “PTMG1000” (Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of 1000 and 0.5% of hindered phenol antioxidant “Irganox 1330” (Ciba Geigy Co., Ltd.) were added. The weight was charged and the temperature was raised to 250 ° C., while the pressure in the system was slowly reduced to 665 Pa at 250 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin F. This polyester resin composition F had a melting point of 190 ° C. and a melt viscosity of 500 dPa ⁇ s.
  • polyester resin G Similar to the production example of polyester resin F, except that 2,6-naphthalenedicarboxylic acid was changed to terephthalic acid to obtain polyester resin G.
  • the composition and physical properties of the polyester resin composition G are shown in Table 1.
  • hindered phenol antioxidant “Irganox 1330” (Ciba Geigy Corp.) was added to 0.5 parts by mass, and the temperature was raised to 255 ° C., while the pressure in the system was slowly reduced to 665 Pa at 255 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin I.
  • This polyester resin I had a melting point of 165 ° C. and a melt viscosity of 500 dPa ⁇ s.
  • Polyester resins J to L were obtained in the same manner as in the production examples of polyester resin I except that the raw material composition was changed and polyester resins were produced.
  • the compositions and physical properties of the polyester resins J to L are shown in Table 2.
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • TPA terephthalic acid
  • NDC naphthalenedicarboxylic acid
  • BD 1,4-butanediol
  • PTMG1000 polytetramethylene ether glycol (number average molecular weight 1000)
  • PTMG2000 poly Tetramethylene ether glycol (number average molecular weight 2000)
  • PCL polycaprolactone (number average molecular weight 2000)
  • polyamide resins and epoxy resins used in Tables 3 to 6 are as follows.
  • Polyamide resin A PEBAX (registered trademark) MX1205, manufactured by Arkema Co., Ltd., polyether block amide, melting point 147 ° C., MFR 7 g / 10 min.
  • Polyamide resin B PEBAX (registered trademark) 4033, manufactured by Arkema Co., Ltd., polyether block amide, melting point 160 ° C., MFR 5 g / 10 min.
  • Polyamide resin C Gramide (registered trademark) T-661, manufactured by Toyobo Co., Ltd., nylon 66, melting point 260 ° C.
  • Polyamide resin D nylon MXD6, manufactured by Mitsubishi Gas Chemical Company, nylon 6, melting point 240 ° C.
  • Epoxy resin A JER1007, manufactured by Mitsubishi Chemical Corporation, bisphenol type epoxy resin.
  • Epoxy resin B UG4070, manufactured by Toagosei Co., Ltd., a polyfunctional epoxy resin.
  • Epoxy resin C EX-145, manufactured by Nagase ChemteX Corporation, monoepoxy resin.
  • Example 1 100 parts by weight of polyester resin A, 20 parts by weight of polyamide resin A, and 20 parts by weight of epoxy resin A are uniformly mixed, and then melt-kneaded at a die temperature of 220 to 270 ° C. using a twin screw extruder to obtain a resin composition Product 1 was obtained.
  • Table 3 shows the composition of the resin composition 1 and the evaluation results.
  • ⁇ melting characteristic test> it was 1899 dPa * s and favorable melting characteristics.
  • ⁇ Adhesion Strength Test> the initial adhesion strength is as good as 2.2 MPa.
  • ⁇ Cooling Cycle Load Durability Test> the T-type peel strength after the cold-heat cycle test is 1.9 MPa, and the T-type peel strength retention is 86. % And good.
  • the tensile elongation at break was as good as 65%.
  • Comparative Examples 1 and 2 are examples in which a crystalline polyester resin in which a polytetramethylene glycol component is copolymerized is used instead of the crystalline polyester resin (A) in which a polycarbonate component is copolymerized.
  • the initial adhesion strength was 2.5 MPa in ⁇ Adhesion Strength Test>
  • the T-type peel strength after the thermal cycle test was 1.9 MPa, which was excellent in initial adhesion and thermal cycle durability.
  • the melt viscosity was as good as 1970 dPa ⁇ s, but in the ⁇ high temperature long-term load durability test>, the elongation retention was as poor as 10%.
  • Comparative Example 3 is an example where the polyamide resin (C) was not used.
  • the ⁇ melting property test> had a favorable result of 490 dPa ⁇ s, and the initial adhesion strength was good at 2.1 MPa in the ⁇ adhesion strength test>, but after the cooling and heating cycle test, it became 0.1 MPa. With bad results.
  • Comparative Example 4 is an example where the type of polyamide resin (C) is polyamide resin C and the epoxy resin (B) uses epoxy resin B.
  • the ⁇ melting characteristic test> was 5182 dPa ⁇ s, which was a defective result that was difficult to mold.
  • Comparative Example 5 is an example where the epoxy resin (B) was not used. In Comparative Example 5, ⁇ initial adhesion> was slightly inferior and ⁇ cooling cycle load durability> was significantly inferior.
  • Comparative Example 6 it was 2964 dPa ⁇ s in the ⁇ melting characteristic test>, which was a moldable range, but in the ⁇ adhesion strength test>, the initial adhesion strength to the aluminum plate was 0.2 MPa, and after the cooling / heating cycle test, it was 0. It became defective because it did not meet the required characteristics of 0 MPa.
  • Comparative Example 7 is a moldable range at 202 dPa ⁇ s in ⁇ Melting Characteristic Test>.
  • ⁇ Adhesion Strength Test> the initial adhesion strength of the aluminum plate adhesion test piece is 1.6 MPa, and 0 after the thermal cycle test. The pressure was 0.0 MPa, and the required characteristics were not satisfied, resulting in a failure.
  • the resin composition for encapsulating electrical and electronic parts of the present invention is excellent in initial adhesion strength to an aluminum material when used as a sealant for encapsulating electrical and electronic parts, and has high adhesion durability even after being subjected to a thermal cycle load. Demonstrate and useful.
  • the electrical and electronic component encapsulant of the present invention is useful because it exhibits durability against severe environmental loads in a cooling and heating cycle.
  • the electrical and electronic component sealing body of the present invention is useful as, for example, automobiles, communications, computers, various connectors for household appliances, harnesses or electronic components, switches having a printed circuit board, and molded products of sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is a resin composition for sealing an electric/electronic component that can form an electric/electronic component sealed body with excellent initial adhesion to alumina materials, excellent durability to cold and heat cycle loading, and excellent durability to high temperature long-term loading. Also provided are an electric/electronic component sealed body and a method for manufacturing an electric/electronic component sealed body using the composition. A resin composition for sealing an electric/electronic component, containing a crystalline polyester resin (A), an epoxy resin (B), and a polyamide resin (C), the composition being dried to a water content of 0.1% or less, heated to 220°C, and pressurized to 1 MPa, and, when extruded from a die with a thickness of 10 mm and an orifice diameter of 1.0 mm, having a molten viscosity of from 5 dPa·s to 3000 dPa·s; an electric/electronic component sealed body sealed using this resin composition; and a method for manufacturing the same.

Description

電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
 本発明は樹脂組成物によって封止された電気電子部品封止体およびその製造方法、この用途に適した樹脂組成物に関する。 The present invention relates to a sealed electric and electronic part sealed with a resin composition, a method for producing the same, and a resin composition suitable for this application.
 自動車・電化製品に広汎に使用されている電気電子部品は、その使用目的を達成する為に、外部との電気絶縁性が必須とされ、電気電子部品の形状に確実に追随し未充填部が発生しない封止方法が求められている。加温溶融するだけで粘度が低下し封止できるホットメルト樹脂は、封止後冷却するだけで固化して封止体が形成されるので生産性が高く、加熱して樹脂を溶融除去することで部材のリサイクルが容易に可能となる等の優れた特徴を有し、電気電子部品封止用に適している。 Electrical and electronic parts that are widely used in automobiles and electrical appliances are required to have electrical insulation from the outside in order to achieve their intended purpose. There is a need for a sealing method that does not occur. Hot melt resins that can be sealed by lowering viscosity simply by heating and melting solidify and form a sealed body by simply cooling after sealing, so the productivity is high, and the resin is melted and removed by heating. It has excellent characteristics such as easy recycling of the member, and is suitable for sealing electrical and electronic parts.
 電気絶縁性・耐水性が共に高いポリエステルはこの用途に非常に有用な材料と考えられるが、一般に溶融粘度が高く、複雑な形状の部品を封止するには数百MPa以上の高圧での射出成型が必要となり、電気電子部品を破壊してしまう虞があった。これに対し、特許文献1には、特定の組成および物性を有するポリエステル樹脂と酸化防止剤とを含有するモールディング用ポリエステル樹脂組成物が開示されており、電気電子部品を破損しない低圧での封止が可能であることが開示されている。この樹脂組成物により、初期密着性の良好な成型品が得られるようになり、一般電気電子部品へのポリエステル系樹脂組成物の適用が可能となった。また、特許文献2には、結晶性ポリエステル樹脂とエポキシ樹脂とポリオレフィン樹脂が配合されている電気電子部品封止用樹脂組成物が開示されている。この組成物は、ガラスエポキシ板やガラスフィラー30重量%入りポリブチレンテレフタレート板に対する初期接着強度が高く、また-40℃と80℃の冷熱1000サイクル負荷、85℃・85%RH・1000時間負荷および105℃・1000時間負荷による密着強度の低下も抑制されている。 Polyester, which has both high electrical insulation and water resistance, is considered to be a very useful material for this application, but generally has a high melt viscosity and injection at a high pressure of several hundred MPa or more to seal parts with complex shapes. Molding is required, and there is a risk of destroying electrical and electronic parts. On the other hand, Patent Document 1 discloses a polyester resin composition for molding containing a polyester resin having a specific composition and physical properties and an antioxidant, and sealing at a low pressure that does not damage electrical and electronic parts. Is disclosed to be possible. With this resin composition, a molded product with good initial adhesion can be obtained, and the polyester resin composition can be applied to general electric and electronic parts. Patent Document 2 discloses a resin composition for sealing electrical and electronic parts in which a crystalline polyester resin, an epoxy resin, and a polyolefin resin are blended. This composition has a high initial adhesion strength to a glass epoxy plate or a polybutylene terephthalate plate containing 30% by weight of a glass filler. A decrease in adhesion strength due to loading at 105 ° C. for 1000 hours is also suppressed.
 また、自動車用途として、エンジンルーム内等の設置される電子基板には発熱体が有る場合が多く、熱の蓄積を防ぐためにアルミニウム製の放熱板を置く等の対策がなされている。また、自動車用途のワイヤーハーネスは、軽量化のために、銅線からアルミニウム線への移行が進んできている。そのような状況にて、封止材にはアルミニウム材への密着性が求められることが多くなってきている。また、特許文献2のようなオレフィンの配合系では耐熱用途の温度領域によってはオレフィンが著しく劣化され組成物としての物性へ悪影響を伴う虞もあった。 Also, for automotive applications, electronic boards installed in engine rooms often have heating elements, and measures such as placing an aluminum heat sink to prevent heat accumulation have been taken. In addition, wire harnesses for automobiles have been shifting from copper wires to aluminum wires for weight reduction. Under such circumstances, the sealing material is often required to have adhesion to an aluminum material. Further, in the olefin blending system as in Patent Document 2, the olefin may be significantly deteriorated depending on the temperature range for heat-resistant use, which may have an adverse effect on the physical properties of the composition.
特許第3553559号公報Japanese Patent No. 3553559 特開2010-150471号公報JP 2010-150471 A
 本発明の課題は、アルミニウム材に対する初期密着性に優れ、冷熱サイクル負荷に対する耐久性に優れ、なおかつ高温長時間負荷に対する耐久性にも優れる電気電子部品封止体を形成することができる電気電子部品封止用樹脂組成物を提供すること、またそれを用いた電気電子部品封止体の製造方法および電気電子部品封止体を提供することである。 An object of the present invention is to provide an electrical / electronic component capable of forming a sealed electrical / electronic component having excellent initial adhesion to an aluminum material, excellent durability against a cold cycle load, and excellent durability against a high-temperature and long-term load. An object of the present invention is to provide a sealing resin composition, and to provide a method for producing an electric / electronic component encapsulant using the same and an electric / electronic component encapsulant.
 上記目的を達成する為、本発明者等は鋭意検討し、以下の発明を提案するに至った。即ち本発明は、
 (1) 結晶性ポリエステル樹脂(A)、エポキシ樹脂(B)およびポリアミド樹脂(C)、を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である、電気電子部品封止用樹脂組成物。
 (2) 前記結晶性ポリエステル樹脂(A)が、ポリエーテルジオールおよび/またはポリカーボネート成分が共重合されている結晶性ポリエステル樹脂である(1)に記載の樹脂組成物。
 (3) 前記ポリアミド樹脂(C)の融点が220℃以下である(1)または(2)に記載の樹脂組成物。
 (4) 前記エポキシ樹脂(B)がビスフェノール型エポキシ樹脂である(1)~(3)のいずれかに記載の樹脂組成物。
 (5) 前記結晶性ポリエステル樹脂(A)100重量部に対し、0.1~100重量部のエポキシ樹脂(B)0.1~100重量部のポリアミド樹脂(C)が配合されている(1)~(4)のいずれかに記載の樹脂組成物。
 (6) アルミニウム板に対する、-40℃30分と80℃30分の冷熱サイクルを1000サイクル付加前後のT型剥離強度保持率が50%以上である(1)~(5)のいずれかに記載の電気電子部品封止用樹脂組成物。
 (7) アルミニウム板に対する初期T型剥離強度が0.5N/mm以上である、(1)~(6)のいずれかに記載の電気電子部品封止用樹脂組成物。
 (8) (1)~(7)のいずれかに記載の樹脂組成物を、加熱して混練した後、電気電子部品を挿入した金型に樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下で注入する、電気電子部品封止体の製造方法。
 (9) (1)~(7)のいずれかに記載の樹脂組成物で封止された電気電子部品封止体。
In order to achieve the above object, the present inventors have intensively studied and have proposed the following invention. That is, the present invention
(1) Crystalline polyester resin (A), epoxy resin (B) and polyamide resin (C) are contained, dried to a moisture content of 0.1% or less, heated to 220 ° C. and given a pressure of 1 MPa, A resin composition for sealing electrical and electronic parts, having a melt viscosity of 5 dPa · s to 3000 dPa · s when extruded from a die having a thickness of 1.0 mm and a thickness of 10 mm.
(2) The resin composition according to (1), wherein the crystalline polyester resin (A) is a crystalline polyester resin in which a polyether diol and / or a polycarbonate component is copolymerized.
(3) The resin composition as described in (1) or (2) whose melting point of the said polyamide resin (C) is 220 degrees C or less.
(4) The resin composition according to any one of (1) to (3), wherein the epoxy resin (B) is a bisphenol type epoxy resin.
(5) 0.1 to 100 parts by weight of epoxy resin (B) and 0.1 to 100 parts by weight of polyamide resin (C) are blended with 100 parts by weight of the crystalline polyester resin (A) (1 ) To (4).
(6) The T-type peel strength retention ratio before and after adding 1000 cycles of -40 ° C. 30 minutes and 80 ° C. 30 minutes cooling cycles to an aluminum plate is 50% or more. A resin composition for sealing electrical and electronic parts.
(7) The resin composition for sealing electrical and electronic parts according to any one of (1) to (6), wherein the initial T-type peel strength with respect to the aluminum plate is 0.5 N / mm or more.
(8) After the resin composition according to any one of (1) to (7) is heated and kneaded, the resin composition temperature is 130 ° C. or higher and 260 ° C. or lower in a mold into which an electric / electronic component is inserted. A method for producing an encapsulated electrical and electronic component, which is injected at an object pressure of 0.1 MPa to 10 MPa.
(9) A sealed electric / electronic component sealed with the resin composition according to any one of (1) to (7).
 本発明の電気電子部品封止用樹脂組成物は、アルミニウム材への初期密着性に優れ、なおかつ、-40℃30分と80℃30分の1000サイクル冷熱サイクル負荷を経た後も接着強度が保持されている高度な冷熱サイクル負荷耐久性を発揮し、更に150℃1000時間の高温長時間負荷を経た後も引張破断伸度が低下しない高度な耐熱老化性をも発揮する。このため、本発明の電気電子部品封止用樹脂組成物を用いて封止した電気電子部品封止体は、冷熱サイクルの過酷な環境負荷に対する耐久性および高温長時間負荷に対する耐久性が発揮される。 The resin composition for encapsulating electrical and electronic parts of the present invention has excellent initial adhesion to an aluminum material, and retains adhesive strength even after 1000 cycles of cooling and heating cycle loading at −40 ° C. for 30 minutes and 80 ° C. for 30 minutes. In addition, it exhibits high heat cycle aging durability, and also exhibits high heat aging resistance in which the tensile fracture elongation does not decrease even after a high temperature long time load at 150 ° C. for 1000 hours. For this reason, the electrical and electronic component encapsulated body sealed with the resin composition for encapsulating electrical and electronic components of the present invention exhibits durability against severe environmental loads in a thermal cycle and durability against high-temperature and long-term loads. The
 本発明の電気電子部品封止体は、電気電子部品を金型内部にセットした金型の中に、加熱し混練して流動性を与えた樹脂または樹脂組成物を、0.1~10MPaの低圧で射出して、樹脂または樹脂組成物によって電気電子部品を包み込み封止することによって製造することができる。すなわち、従来一般的にプラスチックの成型に用いられている40MPa以上の高圧での射出成型に比べて、非常に低圧で行われるため、射出成型法による封止でありながら、耐熱性及び耐圧性に制限のある電気電子部品を破壊することなく封止することができるものである。封止樹脂または封止樹脂組成物を適切に選択することにより、アルミニウム材をはじめとする金属製部材に対して、環境負荷に耐える密着耐久性を有する封止体を得ることができるものである。以下に、発明実施の形態の詳細を順次説明していく。 The encapsulated body for electrical and electronic parts of the present invention comprises a resin or a resin composition that is heated and kneaded in a mold in which the electrical and electronic parts are set inside the mold to give fluidity to 0.1 to 10 MPa. It can be manufactured by injecting at low pressure and enclosing and sealing the electrical and electronic parts with a resin or resin composition. In other words, since it is performed at a very low pressure compared to injection molding at a high pressure of 40 MPa or more, which is generally used for molding plastics in the past, it is resistant to heat and pressure while being sealed by an injection molding method. It is possible to seal a limited electric / electronic component without breaking it. By appropriately selecting a sealing resin or a sealing resin composition, it is possible to obtain a sealed body having adhesion durability that can withstand environmental loads with respect to a metal member such as an aluminum material. . The details of the embodiments of the invention will be sequentially described below.
 本発明の電気電子部品封止用樹脂組成物は、結晶性ポリエステル樹脂(A)、エポキシ樹脂(B)およびポリアミド樹脂(C)を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である。 The resin composition for sealing electrical and electronic parts of the present invention contains a crystalline polyester resin (A), an epoxy resin (B), and a polyamide resin (C), and is dried to a moisture content of 0.1% or less at 220 ° C. The melt viscosity is 5 dPa · s or more and 3000 dPa · s or less when extruded from a die having a hole diameter of 1.0 mm and a thickness of 10 mm.
<結晶性ポリエステル樹脂(A)>
 本発明に用いられる結晶性ポリエステル樹脂(A)は、ポリエーテルジオールが共重合されているものであるか、または主としてポリエステルセグメントからなるハードセグメントと主としてポリカーボネートからなるソフトセグメントとがエステル結合により結合された化学構造からなる。ポリエーテルジオールが共重合されていることによって、溶融粘度低下や柔軟性付与、密着性付与といった特徴を発揮する。前記ポリエーテルジオールの共重合比率は前記結晶性ポリエステル樹脂(A)を構成するグリコール成分全体を100モル%としたとき1モル%以上であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることが更に好ましく、20モル%以上であることが特に好ましい。また、90モル%以下であることが好ましく、55モル%以下であることがより好ましく、50モル%以下であることが更に好ましく、45モル%以下であることが特に好ましい。前記ポリエーテルジオールの共重合比率が低すぎると溶融粘度が高くなり、低圧で成形できない、または、結晶化速度が速く、ショートショットが発生する等の問題を生じる傾向にある。また、前記ポリエーテルジオールの共重合比率が高すぎると耐熱性が不足する等の問題を生じる傾向にある。一方、前記ポリエーテルジオールの数平均分子量は400以上であることが好ましく、800以上であることがより好ましい。数平均分子量が低すぎると柔軟性付与が出来ず、封止後の電子基板への応力負荷が大きくなるとの問題を生じる傾向にある。また前記ポリエーテルジオールの数平均分子量は5000以下であることが好ましく、3000以下であることがより好ましい。数平均分子量が高すぎるとその他成分との相溶性が悪く、共重合できないとの問題を生じる傾向にある。前記ポリエーテルジオールの具体例としては、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等を挙げることができるが、柔軟性付与、低溶融粘度化の面でポリテトラメチレングリコールが最も好ましい。
<Crystalline polyester resin (A)>
In the crystalline polyester resin (A) used in the present invention, polyether diol is copolymerized, or a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polycarbonate are bonded by an ester bond. It consists of a chemical structure. The polyether diol is copolymerized to exhibit characteristics such as a decrease in melt viscosity, imparting flexibility, and imparting adhesion. The copolymerization ratio of the polyether diol is preferably 1 mol% or more, and more preferably 5 mol% or more when the total glycol component constituting the crystalline polyester resin (A) is 100 mol%. More preferably, it is 10 mol% or more, and especially preferably 20 mol% or more. Further, it is preferably 90 mol% or less, more preferably 55 mol% or less, still more preferably 50 mol% or less, and particularly preferably 45 mol% or less. When the copolymerization ratio of the polyether diol is too low, the melt viscosity becomes high, and molding tends not to be performed at a low pressure, or the crystallization speed is high and a short shot tends to occur. Moreover, when the copolymerization ratio of the polyether diol is too high, problems such as insufficient heat resistance tend to occur. On the other hand, the number average molecular weight of the polyether diol is preferably 400 or more, and more preferably 800 or more. If the number average molecular weight is too low, flexibility cannot be imparted, and the stress load on the electronic substrate after sealing tends to increase. The number average molecular weight of the polyether diol is preferably 5000 or less, and more preferably 3000 or less. If the number average molecular weight is too high, the compatibility with other components is poor, and there is a tendency to cause a problem that copolymerization is impossible. Specific examples of the polyether diol include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, and the like, and polytetramethylene glycol is most preferable in terms of imparting flexibility and reducing melt viscosity.
 本発明に用いられる結晶性ポリエステル樹脂(A)の構成成分において、脂肪族系成分および/または脂環族系成分と芳香族系成分の組成比率を調整することにより、エンジニアリングプラスチックスとして汎用されているポリエチレンテレフタレート(以下、PETと略記する場合がある)やポリブチレンテレフタレート(以下、PBTと略記する場合がある)等の汎用の結晶性ポリエステル樹脂にはない低溶融粘度と、二液硬化型エポキシ樹脂に匹敵する耐熱性と耐高温高湿性、耐冷熱サイクル性等を発現させることができる。例えば、150℃以上の高い耐熱性を保持する為には、テレフタル酸とエチレングリコール、テレフタル酸と1,4-ブタンジオール、ナフタレンジカルボン酸とエチレングリコール、ナフタレンジカルボン酸と1,4-ブタンジオールをベースとした共重合ポリエステルが適している。特に、モールド後の速い結晶固化による金型離型性は、生産性の観点から望ましい特性なので、結晶化の速いテレフタル酸と1,4-ブタンジオール、ナフタレンジカルボン酸と1,4-ブタンジオールを主成分とすることが好ましい。 In the structural component of the crystalline polyester resin (A) used in the present invention, it is widely used as an engineering plastic by adjusting the composition ratio of an aliphatic component and / or an alicyclic component and an aromatic component. Low melt viscosity and two-part curable epoxy that are not available in general-purpose crystalline polyester resins such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polybutylene terephthalate (hereinafter sometimes abbreviated as PBT) Heat resistance, high-temperature and high-humidity resistance, cold-heat cycle resistance, and the like comparable to resins can be exhibited. For example, in order to maintain high heat resistance of 150 ° C. or higher, terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, naphthalene dicarboxylic acid and ethylene glycol, naphthalene dicarboxylic acid and 1,4-butanediol are used. A copolymerized polyester based is suitable. In particular, mold releasability due to rapid crystallization after molding is a desirable characteristic from the viewpoint of productivity, so terephthalic acid and 1,4-butanediol, naphthalenedicarboxylic acid and 1,4-butanediol, which are rapidly crystallized, are used. It is preferable to use it as a main component.
 結晶性ポリエステル樹脂(A)を構成する酸成分として、テレフタル酸およびナフタレンジカルボン酸の両方または一方を含有することが耐熱性の点で好ましい。またその共重合比率はテレフタル酸およびナフタレンジカルボン酸の合計が酸成分の合計量を100モル%としたとき65モル%以上であることが好ましく、更には70モル%以上、特には80モル%以上であることが好ましい。テレフタル酸およびナフタレンジカルボン酸の合計が低すぎると、電気電子部品に必要な耐熱性が不足することがある。 As the acid component constituting the crystalline polyester resin (A), it is preferable to contain both or one of terephthalic acid and naphthalenedicarboxylic acid from the viewpoint of heat resistance. The copolymerization ratio is preferably 65 mol% or more, more preferably 70 mol% or more, especially 80 mol% or more when the total amount of terephthalic acid and naphthalenedicarboxylic acid is 100 mol%. It is preferable that If the total of terephthalic acid and naphthalenedicarboxylic acid is too low, the heat resistance required for electrical and electronic parts may be insufficient.
 また、結晶性ポリエステル樹脂(A)を構成するグリコール成分として、エチレングリコールおよび1,4-ブタンジオールの両方または一方を含有することが共重合時の結晶性保持の点で好ましい。またその共重合比率はエチレングリコールおよび1,4-ブタンジオールの合計量がグリコール成分の合計量を100モル%としたとき40モル%以上であることが好ましく、更には45モル%以上、特には50モル%以上が好ましく、最も好ましくは55モル%以上である。エチレングリコールおよび1,4-ブタンジオールの合計量が低すぎると、結晶化速度が低くなり、金型離型性の悪化や、成型時間が長くなる等成型性が損なわれる上、結晶性も不足し、耐熱性が不足することがある。 In addition, it is preferable that the glycol component constituting the crystalline polyester resin (A) contains one or both of ethylene glycol and 1,4-butanediol from the viewpoint of maintaining crystallinity during copolymerization. The copolymerization ratio is preferably 40 mol% or more, more preferably 45 mol% or more, particularly preferably 45 mol% or more when the total amount of ethylene glycol and 1,4-butanediol is 100 mol% of the total amount of glycol components. 50 mol% or more is preferable, and most preferably 55 mol% or more. If the total amount of ethylene glycol and 1,4-butanediol is too low, the crystallization rate will be low, the mold releasability will be deteriorated, the moldability will be impaired, such as the molding time will be prolonged, and the crystallinity will be insufficient. However, heat resistance may be insufficient.
 本発明に用いられる結晶性ポリエステル樹脂(A)においては、高い耐熱性を与える上述した酸成分およびグリコール成分からなる基本組成に、アジピン酸、アゼライン酸、セバシン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ダイマー酸、水添ダイマー酸等の脂肪族または脂環族ジカルボン酸や、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール、ネオペンチルグリコールヒドロキシピバリン酸エステル、1,9-ノナンジオール、2-メチルオクタンジオール、1,10-ドデカンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、ポリテトラメチレングリコール、ポリオキシメチレングリコール等の脂肪族または脂環族グリコールを共重合成分として用いることができ、本発明の樹脂組成物の密着性を更に改善できる場合ある。 In the crystalline polyester resin (A) used in the present invention, the basic composition comprising the above-mentioned acid component and glycol component giving high heat resistance has adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, Aliphatic or alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, hydrogenated dimer acid, -Propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, di Lopylene glycol, 2,2,4-trimethyl-1,3-pentanediol, cyclohexanedimethanol, tricyclodecane dimethanol, neopentyl glycol hydroxypivalate, 1,9-nonanediol, 2-methyloctanediol, 1 , 10-dodecanediol, 2-butyl-2-ethyl-1,3-propanediol, polytetramethylene glycol, polyoxymethylene glycol, and other aliphatic or alicyclic glycols can be used as copolymerization components. In some cases, the adhesion of the resin composition of the invention can be further improved.
 また、本発明に用いられる結晶性ポリエステル樹脂(A)に、ダイマー酸、水添ダイマー酸等の炭素数10以上の脂肪族または脂環族ジカルボン酸、および/または、ダイマージオール、水添ダイマージオール等の炭素数10以上の脂肪族および/または脂環族ジオールを共重合すると、高融点を維持したままガラス転移温度を低下させ、本発明の樹脂組成物の耐熱性と電気電子部品への密着性との両立性をさらに改善できる場合がある。 In addition, the crystalline polyester resin (A) used in the present invention includes an aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer acid or hydrogenated dimer acid, and / or dimer diol or hydrogenated dimer diol. When an aliphatic and / or alicyclic diol having 10 or more carbon atoms such as a copolymer is copolymerized, the glass transition temperature is lowered while maintaining a high melting point, and the heat resistance of the resin composition of the present invention and adhesion to electric and electronic parts are reduced. In some cases, the compatibility with the sex can be further improved.
 また、ダイマー酸や、ダイマージオールの様な炭素数10以上の脂肪族または脂環族ジカルボン酸および/または炭素数10以上の脂肪族または脂環族ジオール、および、ポリテトラメチレングリコールの様なポリアルキレンエーテルグリコールに代表される分子量の比較的高い脂肪族系成分からなるブロック的なセグメントを導入すると、ポリエステル樹脂(A)のガラス転移温度が低くなることにより冷熱サイクル耐久性が、エステル基濃度が低下することにより耐加水分解性が、それぞれ向上するので、モールド後の耐久性が重要な場合はより好ましい方策である。ここで言う冷熱サイクル耐久性とは、高温と低温の間を何度も昇降温させても、線膨張係数の異なる電子部品等と封止樹脂との界面部分の剥離や、封止樹脂の亀裂が起こりにくいという性能である。冷却時に樹脂の弾性率が著しく上がると、剥離や亀裂が起こりやすくなる。冷熱サイクルに耐える素材を提供する為に、ガラス転移温度は-10℃以下が好ましい。より好ましくは-20℃以下、さらに好ましくは-40℃以下、最も好ましくは-50℃以下である。下限は特に限定されないが、密着性や耐ブロッキング性を考慮すると-100℃以上が現実的である。 Further, dimer acid, aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer diol and / or aliphatic or alicyclic diol having 10 or more carbon atoms, and polytetramethylene glycol such as polytetramethylene glycol. When a block segment composed of an aliphatic component having a relatively high molecular weight typified by an alkylene ether glycol is introduced, the glass transition temperature of the polyester resin (A) is lowered, whereby the thermal cycle durability is improved and the ester group concentration is reduced. Since the hydrolysis resistance is improved by the decrease, it is a more preferable measure when durability after molding is important. The term “cooling cycle durability” as used herein means that even if the temperature is raised and lowered repeatedly between high and low temperatures, peeling of the interface part between the electronic component having a different linear expansion coefficient and the sealing resin, or cracking of the sealing resin It is performance that is hard to occur. If the elastic modulus of the resin is significantly increased during cooling, peeling or cracking is likely to occur. The glass transition temperature is preferably −10 ° C. or lower in order to provide a material that can withstand the cooling and heating cycle. More preferably, it is −20 ° C. or less, more preferably −40 ° C. or less, and most preferably −50 ° C. or less. The lower limit is not particularly limited, but a temperature of −100 ° C. or more is realistic in consideration of adhesion and blocking resistance.
 なお、ここでダイマー酸とは、不飽和脂肪酸が重合またはDiels-Alder反応等によって二量化して生じる脂肪族または脂環族ジカルボン酸(大部分の2量体の他、3量体、モノマー等を数モル%含有するものが多い)をいい、水添ダイマー酸とは前記ダイマー酸の不飽和結合部に水素を付加させたものをいう。また、ダイマージオール、水添ダイマージオールとは、該ダイマー酸または該水添ダイマー酸の二つのカルボキシル基を水酸基に還元したものをいう。ダイマー酸またはダイマージオールの具体例としてはコグニス社のエンポール(登録商標)若しくはソバモール(登録商標)およびユニケマ社のプリポール等が挙げられる。 Here, the dimer acid is an aliphatic or alicyclic dicarboxylic acid produced by dimerization of an unsaturated fatty acid by polymerization or Diels-Alder reaction or the like (most dimers, trimers, monomers, etc.) The hydrogenated dimer acid means a hydrogenated dimer acid with hydrogen added to the unsaturated bond portion thereof. The dimer diol and hydrogenated dimer diol are those obtained by reducing the two carboxyl groups of the dimer acid or the hydrogenated dimer acid to hydroxyl groups. Specific examples of the dimer acid or dimer diol include Copolis' Enpol (registered trademark) or Sobamol (registered trademark) and Unikema's Prepol.
 本発明に用いられる結晶性ポリエステル樹脂(A)は、主としてポリエステルセグメントからなるハードセグメントと主としてポリカーボネートセグメントからなるソフトセグメントとがエステル結合により結合された化学構造からなるものでも良い。 The crystalline polyester resin (A) used in the present invention may have a chemical structure in which a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polycarbonate segment are bonded by an ester bond.
<ポリカーボネートセグメントからなるソフトセグメント>
 本発明に用いられる結晶性ポリエステル樹脂(A)を構成する主としてポリカーボネートセグメントからなるソフトセグメントは、ポリカーボネート成分、典型的にはポリカーボネートジオールを共重合することにより形成することができる。ポリカーボネート成分が共重合されていることによって、低溶融粘度や高柔軟性、高密着性といった特徴を発揮する。前記ポリカーボネート成分の共重合比率は前記結晶性ポリエステル樹脂(A)を構成するハードセグメント成分全体を100重量%としたとき25重量%以上であることが好ましく、30重量%以上であることが更に好ましく、35重量%以上であることが特に好ましい。また、75重量%以下であることが好ましく、70重量%以下であることが更に好ましく、65重量%以下であることが特に好ましい。前記ポリカーボネート成分の共重合比率が低すぎると溶融粘度が高くなり成形に高圧を要するようになったり、結晶化速度が速くショートショットが発生しやすい等の問題を生じる傾向にある。また、前記ポリカーボネート成分の共重合比率が高すぎると耐熱性が不足する等の問題を生じる傾向にある。また、前記ポリカーボネート成分はポリ(アルキレンカーボネート)成分から主としてなる脂肪族ポリカーボネート成分であることが好ましい。ここで、主としてなるとは、ポリ(アルキレンカーボネート)成分が脂肪族ポリカーボネート成分の50重量%以上を占めることであるが、75重量%以上を占めるものがより好ましく、90重量%以上を占めるものが更に好ましい。また、ポリ(アルキレンカーボネート)を構成するアルキレン基としては炭素数4~16の直鎖アルキレン基がより好ましく、より長鎖のアルキレン基のほうが冷熱サイクル負荷耐久性に優れる傾向にある。入手容易性を考慮すると、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ノナメチレン基であることが好ましい。また、ポリ(アルキレンカーボネート)を構成するアルキレン基が2種以上の混合物である共重合タイプのポリカーボネートであっても良い。
<Soft segment consisting of polycarbonate segment>
The soft segment mainly composed of a polycarbonate segment constituting the crystalline polyester resin (A) used in the present invention can be formed by copolymerizing a polycarbonate component, typically a polycarbonate diol. Due to the copolymerization of the polycarbonate component, characteristics such as low melt viscosity, high flexibility, and high adhesion are exhibited. The copolymerization ratio of the polycarbonate component is preferably 25% by weight or more, more preferably 30% by weight or more when the entire hard segment component constituting the crystalline polyester resin (A) is 100% by weight. 35% by weight or more is particularly preferable. Further, it is preferably 75% by weight or less, more preferably 70% by weight or less, and particularly preferably 65% by weight or less. If the copolymerization ratio of the polycarbonate component is too low, the melt viscosity becomes high and high pressure is required for molding, and there is a tendency that short shots are likely to occur due to high crystallization speed. Moreover, when the copolymerization ratio of the polycarbonate component is too high, problems such as insufficient heat resistance tend to occur. The polycarbonate component is preferably an aliphatic polycarbonate component mainly composed of a poly (alkylene carbonate) component. Here, “mainly” means that the poly (alkylene carbonate) component occupies 50% by weight or more of the aliphatic polycarbonate component, more preferably 75% by weight or more, and more preferably 90% by weight or more. preferable. Further, the alkylene group constituting the poly (alkylene carbonate) is more preferably a linear alkylene group having 4 to 16 carbon atoms, and a longer chain alkylene group tends to be excellent in durability against cold cycle load. Considering availability, it is preferably a tetramethylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, or a nonamethylene group. Moreover, the copolymer type polycarbonate in which the alkylene group which comprises poly (alkylene carbonate) is 2 or more types of mixtures may be sufficient.
<ポリエステルセグメントからなるハードセグメント>
 また、本発明に用いられる結晶性ポリエステル樹脂(A)のハードセグメントとして、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等の耐熱性結晶性ポリエステルセグメントが好ましい。より好ましくは、PBT、PBNである。その他の結晶性ポリエステルを使用すると、耐熱性の不足や、耐久性、低温特性が悪化する場合がある。
<Hard segment consisting of polyester segment>
Further, as a hard segment of the crystalline polyester resin (A) used in the present invention, heat resistance such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc. Crystalline polyester segments are preferred. More preferred are PBT and PBN. When other crystalline polyesters are used, heat resistance may be insufficient, durability, and low temperature characteristics may deteriorate.
 一方、本発明に用いられる結晶性ポリエステル樹脂(A)において、低い溶融粘度を保持する範囲内であれば、少量の芳香族系共重合成分も使用できる。好ましい芳香族系共重合成分としては、例えば、イソフタル酸、オルソフタル酸等の芳香族ジカルボン酸、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等の芳香族系グリコールが挙げられる。特に、ダイマー酸や、ダイマージオールの様な分子量の比較的高い脂肪族系成分を導入することにより、モールド後の素早い結晶固化による良好な金型離型性が得られる場合がある。 On the other hand, in the crystalline polyester resin (A) used in the present invention, a small amount of an aromatic copolymer component can be used as long as the low melt viscosity is maintained. Preferred examples of the aromatic copolymer component include aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid, and aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A. In particular, by introducing an aliphatic component having a relatively high molecular weight such as dimer acid or dimer diol, good mold releasability may be obtained by rapid solidification after molding.
 また、電気電子部品封止体に長期耐久性を付与する上で、高温高湿に耐える耐加水分解性を付与する為に、結晶性ポリエステル樹脂(A)のエステル基濃度の上限は8000当量/10gであることが望ましい。好ましい上限は7500当量/10g、より好ましくは7000当量/10gである。また、耐薬品性(ガソリン、エンジンオイル、アルコール、汎用溶剤等)を確保する為に、下限は1000当量/10gであることが望ましい。好ましい下限は1500当量/10g、より好ましくは2000当量/10gである。ここでエステル基濃度の単位は、樹脂10gあたりの当量数で表し、ポリエステル樹脂の組成及びその共重合比から算出される値である。 In addition, in order to provide long-term durability to the sealed electrical and electronic parts, in order to provide hydrolysis resistance that can withstand high temperature and high humidity, the upper limit of the ester group concentration of the crystalline polyester resin (A) is 8000 equivalents / 10 6 g is desirable. A preferable upper limit is 7500 equivalent / 10 < 6 > g, More preferably, it is 7000 equivalent / 10 < 6 > g. Moreover, in order to ensure chemical resistance (gasoline, engine oil, alcohol, general-purpose solvent, etc.), the lower limit is desirably 1000 equivalents / 10 6 g. A preferred lower limit is 1500 equivalents / 10 6 g, more preferably 2000 equivalents / 10 6 g. Here, the unit of ester group concentration is represented by the number of equivalents per 10 6 g of resin, and is a value calculated from the composition of the polyester resin and its copolymerization ratio.
 ダイマー酸、水添ダイマー酸、ダイマージオール、水添ダイマージオールのような炭素数10以上の脂肪族または脂環族ジカルボン酸および/または炭素数10以上の脂肪族または脂環族ジオールを共重合し、ブロック的なセグメントを本発明の結晶性ポリエステル樹脂(A)に導入する場合、結晶性ポリエステル樹脂(A)の全酸成分と全グリコール成分の合計を200モル%としたとき2モル%以上であることが好ましく、さらに好ましくは5モル%以上、より好ましくは10モル%以上、最も好ましくは20モル%以上である。上限は耐熱性やブロッキング等の取り扱い性を考慮すると70モル%以下、好ましくは60モル%以下、より好ましくは50モル%以下である。 Copolymerizing an aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms and / or an aliphatic or alicyclic diol having 10 or more carbon atoms such as dimer acid, hydrogenated dimer acid, dimer diol, and hydrogenated dimer diol. In the case where the block-like segment is introduced into the crystalline polyester resin (A) of the present invention, when the total of all acid components and all glycol components of the crystalline polyester resin (A) is 200 mol%, it is 2 mol% or more. Preferably, it is 5 mol% or more, more preferably 10 mol% or more, and most preferably 20 mol% or more. The upper limit is 70 mol% or less, preferably 60 mol% or less, more preferably 50 mol% or less in consideration of handling properties such as heat resistance and blocking.
 本発明に用いられる結晶性ポリエステル樹脂(A)の数平均分子量は3000以上であることが好ましく、より好ましくは5000以上、さらに好ましくは7000以上である。また、数平均分子量の上限は好ましくは50000以下、より好ましくは40000以下、さらに好ましくは30000以下である。数平均分子量が3000未満であると、封止用樹脂組成物の耐加水分解性や高温高湿下での強伸度保持が不足することがあり、50000を超えると、220℃での溶融粘度が高くなることがある。 The number average molecular weight of the crystalline polyester resin (A) used in the present invention is preferably 3000 or more, more preferably 5000 or more, and further preferably 7000 or more. The upper limit of the number average molecular weight is preferably 50000 or less, more preferably 40000 or less, and still more preferably 30000 or less. If the number average molecular weight is less than 3000, the sealing resin composition may be insufficient in hydrolysis resistance and high elongation at high temperature and high humidity. If it exceeds 50,000, the melt viscosity at 220 ° C. May be higher.
 本発明に用いられる結晶性ポリエステル樹脂(A)は、不飽和基を含有していない飽和ポリエステル樹脂であることが望ましい。不飽和ポリエステルであれば、溶融時に架橋が起こる等の可能性があり、溶融安定性に劣る場合がある。 The crystalline polyester resin (A) used in the present invention is desirably a saturated polyester resin that does not contain an unsaturated group. If it is an unsaturated polyester, there is a possibility that crosslinking occurs at the time of melting, and the melt stability may be inferior.
 また、本発明に用いられる結晶性ポリエステル樹脂(A)は、必要に応じて無水トリメリット酸、トリメチロールプロパン等の三官能以上のポリカルボン酸やポリオールを共重合し、分岐を有するポリエステルとしても差し支えない。 Further, the crystalline polyester resin (A) used in the present invention may be a polyester having a branch by copolymerizing a tri- or higher functional polycarboxylic acid such as trimellitic anhydride or trimethylolpropane or a polyol as necessary. There is no problem.
 本発明の封止用樹脂組成物の熱劣化を出来るだけ生じさせずに封止体を製造するためには、樹脂組成物が210~240℃での速やかに溶融することが好ましく、そのためには結晶性ポリエステル樹脂(A)の融点の上限は210℃が望ましい。より好ましくは、200℃である。下限は、該当する用途で求められる耐熱温度より5~10℃以上高くすると良い。 In order to produce a sealing body without causing thermal degradation of the sealing resin composition of the present invention as much as possible, it is preferable that the resin composition melts quickly at 210 to 240 ° C. The upper limit of the melting point of the crystalline polyester resin (A) is preferably 210 ° C. More preferably, it is 200 degreeC. The lower limit is preferably 5 to 10 ° C. higher than the heat-resistant temperature required for the corresponding application.
 本発明に用いられる結晶性ポリエステル樹脂(A)の製造方法としては、公知の方法をとることができるが、例えば、上記のジカルボン酸及びジオール成分を150~250℃でエステル化反応後、減圧しながら230~300℃で重縮合することにより、目的のポリエステル樹脂を得ることができる。あるいは、上記のジカルボン酸のジメチルエステル等の誘導体とジオール成分を用いて150℃~250℃でエステル交換反応後、減圧しながら230℃~300℃で重縮合することにより、目的のポリエステル樹脂を得ることができる。 As a method for producing the crystalline polyester resin (A) used in the present invention, a known method can be used. For example, the dicarboxylic acid and the diol component are esterified at 150 to 250 ° C., and then the pressure is reduced. However, the target polyester resin can be obtained by polycondensation at 230 to 300 ° C. Alternatively, the target polyester resin is obtained by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of the above dicarboxylic acid and a diol component, and then performing polycondensation at 230 ° C. to 300 ° C. under reduced pressure. be able to.
 ポリエステル樹脂の組成及び組成比を決定する方法としては例えばポリエステル樹脂を重クロロホルム等の溶媒に溶解して測定するH-NMRや13C-NMR、ポリエステル樹脂のメタノリシス後に測定するガスクロマトグラフィーによる定量(以下、メタノリシス-GC法と略記する場合がある)等が挙げられる。本発明においては、結晶性ポリエステル樹脂(A)を溶解でき、なおかつH-NMR測定に適する溶剤がある場合には、H-NMRで組成及び組成比を決定することとする。適当な溶剤がない場合やH-NMR測定だけでは組成比が特定できない場合には、13C-NMRやメタノリシス-GC法を採用または併用することとする。 Examples of the method for determining the composition and composition ratio of the polyester resin include 1 H-NMR and 13 C-NMR, which are measured by dissolving the polyester resin in a solvent such as deuterated chloroform, and quantification by gas chromatography which is measured after the methanolysis of the polyester resin. (Hereinafter, it may be abbreviated as methanolysis-GC method). In the present invention, when there is a solvent that can dissolve the crystalline polyester resin (A) and is suitable for 1 H-NMR measurement, the composition and composition ratio are determined by 1 H-NMR. When there is no suitable solvent or when the composition ratio cannot be specified only by 1 H-NMR measurement, 13 C-NMR or methanolysis-GC method is adopted or used in combination.
<エポキシ樹脂(B)>
本発明に用いられるエポキシ樹脂(B)とは、好ましくは数平均分子量450~40000の範囲にある、分子中に平均で少なくとも0.1個以上のグリシジル基を有するエポキシ樹脂である。例えばビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ノボラックグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル等のグリシジルエーテルタイプ、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ、トリグリシジルイソシアヌレート、グリシジルヒンダントイン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルメタキシレンジアミン、ジグリシジルトリブロムアニリン、テトラグリシジルビスアミノメチルシクロヘキサン等のグリシジルアミン、あるいは3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族あるいは脂肪族エポキサイドなどが挙げられる。これらのうち、特に、高い密着力を発揮させるためには結晶性ポリエステル樹脂(A)に対して相溶性が良いものが好ましい。エポキシ樹脂(C)の好ましい数平均分子量は450~40000である。エポキシ樹脂(C)の数平均分子量が低すぎると、本発明の樹脂組成物が極めて軟化し易く、機械的物性が劣ることがある。エポキシ樹脂(C)の数平均分子量が高すぎると、エポキシ樹脂(C)と結晶性ポリエステル樹脂(A)との相溶性が低下し、本発明の樹脂組成物と封止される電気電子部品との間の密着性が損なわれる虞がある。
<Epoxy resin (B)>
The epoxy resin (B) used in the present invention is an epoxy resin having an average of at least 0.1 or more glycidyl groups in the molecule, preferably in the number average molecular weight range of 450 to 40,000. For example, glycidyl ether type such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolak glycidyl ether, brominated bisphenol A diglycidyl ether, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl isocyanate Nurate, glycidylhindantoin, tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, triglycidylmetaaminophenol, diglycidylaniline, diglycidyltoluidine, tetraglycidylmetaxylenediamine, diglycidyltribromoaniline, tetraglycidylbisaminomethylcyclohexane, etc. Glycidylamine or 3,4-epoxy B hexyl methyl carboxylate, epoxidized polybutadiene, such as alicyclic or aliphatic epoxides such as epoxidized soybean oil. Of these, those having good compatibility with the crystalline polyester resin (A) are particularly preferable in order to exhibit high adhesion. A preferred number average molecular weight of the epoxy resin (C) is 450 to 40,000. If the number average molecular weight of the epoxy resin (C) is too low, the resin composition of the present invention is very easily softened, and the mechanical properties may be inferior. If the number average molecular weight of the epoxy resin (C) is too high, the compatibility between the epoxy resin (C) and the crystalline polyester resin (A) is lowered, and the electrical and electronic parts sealed with the resin composition of the present invention There is a possibility that the adhesion between the two is impaired.
 エポキシ樹脂(B)を使用することによって、元来非相溶の結晶性ポリエステル樹脂(A)に対して、ポリアミド樹脂(C)を容易に微分散・混合することができようになる。このため、エポキシ樹脂(B)を配合することは、例えば、一軸押出機や二軸押出機などの一般的な混練設備によって容易に均質な樹脂組成物を得ることができる、との効果をも発揮する。 By using the epoxy resin (B), the polyamide resin (C) can be easily finely dispersed and mixed with the originally incompatible crystalline polyester resin (A). For this reason, blending the epoxy resin (B) has an effect that a homogeneous resin composition can be easily obtained by a general kneading facility such as a single screw extruder or a twin screw extruder. Demonstrate.
<ポリアミド樹脂(C)> 
 本発明に用いられるポリアミド樹脂(C)は、ポリアミド樹脂であれば特に限定されず、ナイロン4、ナイロン6、ナイロン7、ナイロン11、ナイロン12、ナイロン66等のナイロン樹脂、アラミド樹脂、これらの共重合体及び混合物を好ましい例として挙げることができる。また、これらのナイロン樹脂にポリエーテルやポリカーボネート、脂肪族ポリエステル等を共重合したエラストマータイプのポリアミド樹脂は、本発明に用いられるポリアミド樹脂(C)として特に好ましい。ダイセル・エボニック(株)から販売されているVESTAMID(登録商標)Eシリーズおよびアルケマ(株)から販売されているPEBAX(登録商標)シリーズのポリエーテルブロックアミド系エラストマーは、入手が容易である点で本発明のポリアミド樹脂(C)として好ましい。
<Polyamide resin (C)>
The polyamide resin (C) used in the present invention is not particularly limited as long as it is a polyamide resin. Nylon 4, nylon 6, nylon 7, nylon 11, nylon 12, nylon 66, and other nylon resins, aramid resins, and these Polymers and mixtures can be mentioned as preferred examples. In addition, an elastomer type polyamide resin obtained by copolymerizing polyether, polycarbonate, aliphatic polyester or the like with these nylon resins is particularly preferable as the polyamide resin (C) used in the present invention. Polyester block amide elastomers of VESTAMID (registered trademark) E series sold by Daicel Evonik Co., Ltd. and PEBAX (registered trademark) series sold by Arkema Co., Ltd. are easily available. It is preferable as the polyamide resin (C) of the present invention.
 本発明に用いられるポリアミド樹脂(C)としては、融点が220℃以下のポリアミド樹脂を用いることが好ましく、さらに好ましくは210℃以下である。ポリアミド樹脂(C)の融点が高すぎると、本発明の樹脂組成物によって封止体を製造する際樹脂組成物の溶融粘度が大幅に増加し低圧成形が困難になるおそれがあり、また(A)成分と(C)成分との相溶性が低く、組成物としてうまく分散できず、樹脂組成物と被封止物との密着性が発現できないおそれがある。また、ポリアミド樹脂(C)の融点は100℃以上が好ましく、より好ましくは130℃以上、更に好ましくは140℃以上である。ポリアミド樹脂(C)の融点が低すぎると、組成物としての耐熱性が不足する虞がある。 As the polyamide resin (C) used in the present invention, a polyamide resin having a melting point of 220 ° C. or lower is preferably used, and more preferably 210 ° C. or lower. If the melting point of the polyamide resin (C) is too high, the melt viscosity of the resin composition may greatly increase when a sealing body is produced with the resin composition of the present invention, and low-pressure molding may become difficult. ) Component and (C) component are low in compatibility, and cannot be dispersed well as a composition, and the adhesion between the resin composition and the object to be sealed may not be exhibited. The melting point of the polyamide resin (C) is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher. If the melting point of the polyamide resin (C) is too low, the heat resistance of the composition may be insufficient.
 さらに本発明のポリアミド樹脂(C)は、ASTM D 3307により測定したメルトマスフローレイト(以下MFRと略記することがある)が、235℃、1kg荷重で3~200g/10分であることが好ましい。MFRが低いと本発明の封止体の成形条件における溶融粘度高樹脂組成部と被封止物との密着性が損なわれるおそれがある。MFRが高いことは溶融粘度が低いことと同義であり、樹脂組成物が極めて軟化し易く、封止体の機械的物性が劣るおそれがある。 Further, the polyamide resin (C) of the present invention preferably has a melt mass flow rate (hereinafter sometimes abbreviated as MFR) measured by ASTM D 3307 at 3 to 200 g / 10 min at 235 ° C. and 1 kg load. If the MFR is low, the adhesion between the resin component having a high melt viscosity and the material to be sealed in the molding conditions of the sealing body of the present invention may be impaired. A high MFR is synonymous with a low melt viscosity, and the resin composition is very soft, and the mechanical properties of the encapsulant may be inferior.
 本発明において、ポリアミド樹脂(C)を封止用樹脂組成物に配合することは、本発明の電気電子部品封止体に対して、初期密着性と冷熱サイクルに対する密着耐久性の向上、といった優れた特性を発揮する。(C)成分は(A)成分の結晶化やエンタルピー緩和によるひずみエネルギーを緩和する効果を発揮するものと考えられる。本発明における(C)成分の配合量は、(A)成分100重量部に対して、0.5重量部以上であることが好ましく、3重量部以上であることがより好ましく、5重量部以上であることが更に好ましい。また、50質量部以下であることが好ましく、40重量部以下であることがより好ましく、30重量部以下であることが更に好ましい。(C)成分の配合比率が低すぎると、(A)成分の結晶化やエンタルピー緩和によるひずみエネルギーの緩和が小さく、密着強度が低下する傾向がある。また、(C)成分の配合比率が高すぎる場合にも逆に密着性や樹脂物性を低下させてしまう傾向があり、また(A)成分と(C)成分がマクロな相分離を起こして破断伸度が低下し、また平滑な表面を得られないなど成型性に悪影響を及ぼす場合がある。 In the present invention, blending the polyamide resin (C) into the sealing resin composition is superior to the electrical and electronic component sealing body of the present invention, such as improved initial adhesion and adhesion durability against a thermal cycle. Demonstrate the characteristics. The component (C) is considered to exhibit an effect of relaxing strain energy due to crystallization and enthalpy relaxation of the component (A). The amount of component (C) in the present invention is preferably 0.5 parts by weight or more, more preferably 3 parts by weight or more, with respect to 100 parts by weight of component (A), and 5 parts by weight or more. More preferably. Moreover, it is preferable that it is 50 mass parts or less, It is more preferable that it is 40 parts weight or less, It is still more preferable that it is 30 parts weight or less. When the blending ratio of the component (C) is too low, strain energy relaxation due to crystallization and enthalpy relaxation of the component (A) is small, and the adhesion strength tends to decrease. In addition, when the blending ratio of the component (C) is too high, there is a tendency to deteriorate the adhesion and resin physical properties, and the (A) component and the (C) component cause macro phase separation and break. There is a case where the elongation is lowered and the moldability is adversely affected such that a smooth surface cannot be obtained.
<その他の成分>
 本発明の封止用樹脂組成物には、本発明の(A)成分、(B)成分および(C)成分のいずれにも該当しない、ポリエステル、ポリアミド、ポリオレフィン、ポリカーボネート、アクリル、エチレンビニルアセテート等の他の樹脂、イソシアネート化合物、メラミン等の硬化剤、タルクや雲母等の充填材、カーボンブラック、酸化チタン等の顔料、三酸化アンチモン、臭素化ポリスチレン等の難燃剤を配合しても全く差し支えない。これらの成分を配合することにより、密着性、柔軟性、耐久性等が改良される場合がある。その際の(A)成分は、本発明の樹脂組成物全体に対して50重量%以上含有することが好ましく、より好ましくは60重量%以上、さらに好ましくは70重量%以上である。(A)成分の含有量が50重量%未満であるとポリエステル樹脂(A)自身が有する、優れた電気電子部品に対する密着性、密着耐久性、伸度保持性、耐加水分解性、耐水性が低下する虞がある。
<Other ingredients>
The sealing resin composition of the present invention does not fall under any of the components (A), (B) and (C) of the present invention, such as polyester, polyamide, polyolefin, polycarbonate, acrylic, ethylene vinyl acetate, etc. Other resins, isocyanate compounds, curing agents such as melamine, fillers such as talc and mica, pigments such as carbon black and titanium oxide, flame retardants such as antimony trioxide and brominated polystyrene may be used at all. . By blending these components, adhesion, flexibility, durability and the like may be improved. In this case, the component (A) is preferably contained in an amount of 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more based on the entire resin composition of the present invention. When the content of the component (A) is less than 50% by weight, the polyester resin (A) itself has excellent adhesion to electrical and electronic parts, adhesion durability, elongation retention, hydrolysis resistance, and water resistance. May decrease.
 さらには本発明の封止体が高温高湿度環境に長期間曝される場合には、酸化防止剤を添加することが好ましい。例えば、ヒンダードフェノール系として、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,1,3-トリ(4-ヒドロキシ-2-メチル-5-t-ブチルフェニル)ブタン、1,1-ビス(3-t-ブチル-6-メチル-4-ヒドロキシフェニル)ブタン、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパノイック酸、ペンタエリトリチルテトラキス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3-(1,1-ジメチルエチル)-4-ヒドロキシ-5-メチル-ベンゼンプロパノイック酸、3,9-ビス[1,1-ジメチル-2-[(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、リン系として、3,9-ビス(p-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(オクタデシロキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、トリ(モノノニルフェニル)フォスファイト、トリフェノキシフォスフィン、イソデシルフォスファイト、イソデシルフェニルフォスファイト、ジフェニル2-エチルヘキシルフォスファイト、ジノニルフェニルビス(ノニルフェニル)エステルフォスフォラス酸、1,1,3-トリス(2-メチル-4-ジトリデシルフォスファイト-5-t-ブチルフェニル)ブタン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ペンタエリスリトールビス(2,4-ジ-t-ブチルフェニルフォスファイト)、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、チオエーテル系として4,4’-チオビス[2-t-ブチル-5-メチルフェノール]ビス[3-(ドデシルチオ)プロピオネート]、チオビス[2-(1,1-ジメチルエチル)-5-メチル-4,1-フェニレン]ビス[3-(テトラデシルチオ)-プロピオネート]、ペンタエリスリトールテトラキス(3-n-ドデシルチオプロピオネート)、ビス(トリデシル)チオジプロピオネートが挙げられ、これらを単独に、または複合して使用できる。添加量は封止用樹脂組成物全体に対して0.1重量%以上5重量%以下が好ましい。0.1重量%未満だと熱劣化防止効果に乏しくなることがある。5重量%を超えると、密着性等に悪影響を与える場合がある。 Furthermore, when the sealing body of the present invention is exposed to a high temperature and high humidity environment for a long period of time, it is preferable to add an antioxidant. For example, as a hindered phenol, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4-hydroxy-2-methyl- 5-t-butylphenyl) butane, 1,1-bis (3-t-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethylethyl) -4-hydroxy- Benzenepropanoic acid, pentaerythrityltetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy-5-methyl-benzenepropano Icic acid, 3,9-bis [1,1-dimethyl-2-[(3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4 , 10-tetraoxaspiro [5.5] undecane, 1,3,5-trimethyl-2,4,6-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) benzene, phosphorus 3,9-bis (p-nonylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, tri (monononylphenyl) phosphite, triphenoxyphosphine, isodecylphosphite, isodecylphenylphosphite Diphenyl 2-ethylhexyl phosphite, dinonylphenylbis (nonylphenyl) ester phosphoric acid, 1,1,3-tris (2- Til-4-ditridecyl phosphite-5-t-butylphenyl) butane, tris (2,4-di-t-butylphenyl) phosphite, pentaerythritol bis (2,4-di-t-butylphenyl phosphite) ), 2,2′-methylenebis (4,6-di-t-butylphenyl) 2-ethylhexyl phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, thioether 4,4′-thiobis [2-tert-butyl-5-methylphenol] bis [3- (dodecylthio) propionate], thiobis [2- (1,1-dimethylethyl) -5-methyl-4,1 -Phenylene] bis [3- (tetradecylthio) -propionate], pentaerythritol tetrakis (3-n-do Decylthiopropionate) and bis (tridecyl) thiodipropionate, and these can be used alone or in combination. The addition amount is preferably 0.1% by weight or more and 5% by weight or less with respect to the whole sealing resin composition. If it is less than 0.1% by weight, the effect of preventing thermal deterioration may be poor. If it exceeds 5% by weight, the adhesion may be adversely affected.
<電気電子部品封止用樹脂組成物>
 本発明の封止用樹脂組成物は220℃での溶融粘度が5~3000dPa・sであることが望ましく、(A)成分、(B)成分、および(C)成分の種類と配合比率を適切に調整することにより、達成することができる。たとえば、本発明の封止用樹脂組成物が(A)成分、(B)成分、(C)成分からなる場合には、封止用樹脂組成物の溶融粘度は以下の式で概算することができ、必要に応じて更に微調整することにより、適切な溶融粘度の樹脂組成物を得ることができる。
 封止用樹脂組成物の溶融粘度(概算値)={(A)成分の溶融粘度}×{(A)成分の重量分率}+{(B)成分の溶融粘度}×{(B)成分の重量分率}+{(C)成分の溶融粘度}×{(C)成分の重量分率}
 例えば、(A)成分に共重合するポリエーテルジオールの共重合比率を高くすることや、(A)成分の分子量を低くすることは、(A)成分の溶融粘度を低下させ、本発明の樹脂組成物の溶融粘度を低くする方向に作用する。また、(A)成分の分子量を高くすることは(A)成分の溶融粘度を増大させ、本発明の樹脂組成物の溶融粘度を高くする方向に作用する。ただし、溶融温度にて溶解しない成分があった場合には、例外もある。
<Resin composition for sealing electric and electronic parts>
The sealing resin composition of the present invention preferably has a melt viscosity at 220 ° C. of 5 to 3000 dPa · s, and the types and blending ratios of the components (A), (B), and (C) are appropriate. This can be achieved by adjusting to For example, when the encapsulating resin composition of the present invention comprises the component (A), the component (B), and the component (C), the melt viscosity of the encapsulating resin composition can be estimated by the following equation. The resin composition having an appropriate melt viscosity can be obtained by further fine adjustment as necessary.
Melting viscosity of resin composition for sealing (approximate value) = {melt viscosity of (A) component} × {weight fraction of (A) component} + {melt viscosity of (B) component} × {(B) component Weight fraction} + {melt viscosity of component (C)} × {weight fraction of component (C)}
For example, increasing the copolymerization ratio of the polyether diol copolymerized with the component (A) or decreasing the molecular weight of the component (A) decreases the melt viscosity of the component (A), and the resin of the present invention. It acts in the direction of lowering the melt viscosity of the composition. Further, increasing the molecular weight of the component (A) increases the melt viscosity of the component (A), and acts to increase the melt viscosity of the resin composition of the present invention. However, there are exceptions when there are components that do not dissolve at the melting temperature.
 本発明の封止用樹脂組成物の溶融粘度は以下のようにして測定した値である。すなわち、封止用樹脂組成物を水分率0.1%以下に乾燥し、次いで島津製作所株式会社製フローテスター(型番CFT-500C)にて、220℃に加温安定した封止用樹脂組成物を、1.0mmの孔径を有する厚み10mmのダイを1MPaの圧力で通過させたときの粘度の測定値である。3000dPa・s以上の高溶融粘度になると、高い樹脂凝集力や耐久性が得られるが、複雑な形状の部品への封止の際には高圧の射出成型が必要となるため、封止される部品の破壊を生じることがある。2000dPa・s以下、好ましくは1000dPa・s以下の溶融粘度を有する封止用樹脂組成物を使用することで、0.1~100MPaの比較的低い射出圧力で、電気絶縁性に優れた電気電子部品封止体が得られると共に、電気電子部品の特性も損ねない。また、封止用樹脂組成物注入操作の観点からは220℃での溶融粘度は低いほうが好ましいが、樹脂組成物の密着性や凝集力を考慮すると下限としては5dPa・s以上が望ましく、さらに好ましくは10dPa・s以上、より好ましくは50dPa・s以上、最も好ましくは100dPa・s以上である。 The melt viscosity of the sealing resin composition of the present invention is a value measured as follows. That is, the sealing resin composition was dried to a moisture content of 0.1% or less, and then heated and stabilized at 220 ° C. with a flow tester (model number CFT-500C) manufactured by Shimadzu Corporation. Is a measured value of viscosity when a 10 mm thick die having a 1.0 mm hole diameter is passed through at a pressure of 1 MPa. When the melt viscosity is higher than 3000 dPa · s, high resin cohesive strength and durability can be obtained. However, when sealing to a component having a complicated shape, high-pressure injection molding is required, so that it is sealed. May cause destruction of parts. Electrical and electronic parts excellent in electrical insulation at a relatively low injection pressure of 0.1 to 100 MPa by using a sealing resin composition having a melt viscosity of 2000 dPa · s or less, preferably 1000 dPa · s or less A sealing body is obtained, and the characteristics of the electric and electronic parts are not impaired. Further, from the viewpoint of the operation of injecting the sealing resin composition, it is preferable that the melt viscosity at 220 ° C. is low, but considering the adhesiveness and cohesive force of the resin composition, the lower limit is preferably 5 dPa · s or more, and more preferably Is 10 dPa · s or more, more preferably 50 dPa · s or more, and most preferably 100 dPa · s or more.
 本発明において、特定の部材と封止用樹脂組成物の密着強度は、1枚の板状部材の上に封止用樹脂組成物を成形にて接着した測定用試料片を作成し、これのT型剥離強度を測定することにより判定する。測定用試験片の作成方法やT型剥離強度の測定方法は、後述する実施例に記載の方法に従って行うものとする。 In the present invention, the adhesion strength between the specific member and the sealing resin composition is obtained by preparing a measurement sample piece obtained by bonding the sealing resin composition by molding on a single plate-like member. Determination is made by measuring T-type peel strength. The method for preparing the test specimen for measurement and the method for measuring the T-type peel strength are performed according to the methods described in the examples described later.
 本発明の電気電子部品封止体は、電気電子部品を挿入した金型に本発明の樹脂組成物を溶融して注入することによって製造することができる。より具体的には、スクリュータイプのホットメルト成型加工用アプリケーターを用いた場合において、200~280℃前後で加熱溶融し、射出ノズルを通じて金型へ注入され、その後一定の冷却時間を経た後、成型物を金型から取り外して電気電子部品封止体を得ることができる。樹脂組成物の注入時の温度および圧力は、温度130℃以上260℃以下かつ圧力0.1MPa以上10MPa以下であることがより好ましい。このような条件で封止されることにより、封止される電気電子部品の破損が生じにくく、またショートショット、バリおよびひけのない形状良好な封止体を得やすい。 The electrical and electronic component sealing body of the present invention can be manufactured by melting and injecting the resin composition of the present invention into a mold into which electrical and electronic components are inserted. More specifically, in the case of using a screw type hot melt molding process applicator, it is heated and melted at around 200 to 280 ° C., injected into a mold through an injection nozzle, and after a certain cooling time, it is molded. An object can be removed from the mold to obtain an electrical / electronic component sealing body. The temperature and pressure at the time of pouring the resin composition are more preferably a temperature of 130 ° C. or higher and 260 ° C. or lower and a pressure of 0.1 MPa or higher and 10 MPa or lower. By sealing under such conditions, the sealed electrical and electronic parts are less likely to be damaged, and it is easy to obtain a sealed body having a good shape free from short shots, burrs, and sink marks.
 ホットメルト成型加工用アプリケーターの型式は特に限定されないが、例えばNordson社製ST2、井元製作所製竪型押し出し成型機IMC-18F9等が挙げられる。 The type of the applicator for hot melt molding processing is not particularly limited, and examples thereof include Nordson ST2 and Imoto Seisakusho IMC-18F9.
 本発明をさらに詳細に説明するために以下に実施例、比較例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例、比較例に記載された各測定値は次の方法によって測定したものである。 In order to describe the present invention in more detail, examples and comparative examples are given below, but the present invention is not limited to the examples. In addition, each measured value described in the Example and the comparative example was measured by the following method.
<融点、ガラス転移温度の測定>
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料5mgをアルミパンに入れ、蓋を押さえて密封し、一度250℃で5分ホールドした後、液体窒素で急冷して、その後-150℃から250℃まで、20℃/minの昇温速度で測定した。得られた曲線の変曲点をガラス転移温度、吸熱ピークを融点とした。
<Measurement of melting point and glass transition temperature>
Using a differential scanning calorimeter “DSC220” manufactured by Seiko Denshi Kogyo Co., Ltd., put 5 mg of a sample into an aluminum pan, seal it with a lid, hold it at 250 ° C. for 5 minutes, and then quench with liquid nitrogen. Thereafter, the temperature was measured from −150 ° C. to 250 ° C. at a temperature increase rate of 20 ° C./min. The inflection point of the obtained curve was defined as the glass transition temperature, and the endothermic peak as the melting point.
<初期密着性の評価>
密着強度試験片の作成方法
 0.5mm厚のアルミ板(TP技研株式会社製A5052)を70mm×70mmの大きさに切断し、表面をアセトンで拭いて油分を取り除いた。次いでこのアルミ板を平板成型用金型(金型内面寸法:幅100mm×長さ100mm×厚み5mm)の内部に固定し、アルミ板の一辺に幅10mmのセロハンテープを貼りつけた。次いでスクリュー型ホットメルト成型加工用アプリケーター(井元製作所製竪型低圧押し出し成型機IMC-18F9)を用いて100mm×100mmの面の中心に設けたゲートから封止用樹脂組成物を注入し、成型を行った。成型条件は、成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転を50%設定(最大吐出を100%として)とした。成型物を離型し、各々がセロハンテープ貼りつけ部を有する幅20mmの短冊状となるように切断し、密着強度試験片を得た。
<Evaluation of initial adhesion>
Method for preparing adhesion strength test piece A 0.5 mm thick aluminum plate (A5052 manufactured by TP Giken Co., Ltd.) was cut into a size of 70 mm × 70 mm, and the surface was wiped with acetone to remove oil. Next, this aluminum plate was fixed inside a mold for flat plate molding (mold inner surface dimensions: width 100 mm × length 100 mm × thickness 5 mm), and a cellophane tape having a width of 10 mm was attached to one side of the aluminum plate. Next, using a screw type hot melt molding applicator (Imoto Seisakusho type low pressure extrusion molding machine IMC-18F9), a sealing resin composition is injected from a gate provided at the center of a 100 mm × 100 mm surface, and molding is performed. went. The molding conditions were a molding resin temperature of 220 ° C., a molding pressure of 3 MPa, a holding pressure of 3 MPa, a cooling time of 15 seconds, and a discharge rotation set to 50% (maximum discharge was set to 100%). The molded product was released from the mold and cut into a strip shape with a width of 20 mm each having a cellophane tape-attached portion to obtain an adhesion strength test piece.
初期密着性の評価
 前記密着試験片を23℃、相対湿度50%の雰囲気下にて3時間以上100時間以内保管した。次いで、セロハンテープ貼りつけ部よりアルミ板と樹脂を剥離させ、T型剥離強度を測定した。引張速度は50mm/分とした。
 評価基準  ◎:T型剥離強度2.0N/mm以上
       ○:T型剥離強度2.0N/mm未満1.0N/mm以上
       △:T型剥離強度1.0N/mm未満0.5N/mm以上
       ×:T型剥離強度0.5N/mm未満
Evaluation of initial adhesion The adhesion test piece was stored in an atmosphere of 23 ° C. and relative humidity of 50% for 3 hours or more and 100 hours or less. Next, the aluminum plate and the resin were peeled off from the cellophane tape attaching part, and the T-type peel strength was measured. The tensile speed was 50 mm / min.
Evaluation criteria A: T-type peel strength 2.0 N / mm or more B: T-type peel strength less than 2.0 N / mm 1.0 N / mm or more Δ: T-type peel strength less than 1.0 N / mm 0.5 N / mm or more X: T-type peel strength less than 0.5 N / mm
<冷熱サイクル負荷耐久性の評価>
 初期密着性を評価したのと同様にして作成した密着強度試験片に対して、-40℃で30分、次いで80℃で30分の環境下におくことを1サイクルとする1000サイクルの環境負荷を与え、次いでT型剥離強度を測定し、T型剥離強度保持率を算出した。なお、T型剥離強度保持率は下記数式で定義される値である。
<Evaluation of cold cycle load durability>
The environmental load of 1000 cycles, where one cycle consists of an adhesion strength test piece prepared in the same way as the initial adhesion was evaluated for 30 minutes at −40 ° C. and then at 80 ° C. for 30 minutes. Then, T-type peel strength was measured, and T-type peel strength retention was calculated. Note that the T-type peel strength retention is a value defined by the following mathematical formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 評価基準  ◎:T型剥離強度保持率80%以上
       ○:T型剥離強度保持率80%未満70%以上
       △:T型剥離強度保持率70%未満50%以上
       ×:T型剥離強度保持率50%未満
Evaluation criteria A: T-type peel strength retention rate 80% or more B: T-type peel strength retention rate less than 80% 70% or more Δ: T-type peel strength retention rate less than 70% 50% or more X: T-type peel strength retention rate 50 %Less than
<溶融特性試験>(溶融特性の評価)
樹脂および封止用樹脂組成物の溶融粘度の評価方法
 島津製作所製、フローテスター(CFT-500C型)にて、220℃に設定した加熱体中央のシリンダー中に水分率0.1%以下に乾燥した樹脂または封止用樹脂組成物を充填し、充填1分経過後、プランジャーを介して試料に荷重を加え、圧力1MPaで、シリンダー底部のダイ(孔径:1.0mm、厚み:10mm)より、溶融した試料を押出し、プランジャーの降下距離と降下時間を記録し、溶融粘度を算出した。
<Melting characteristics test> (Evaluation of melting characteristics)
Evaluation Method of Melt Viscosity of Resin and Sealing Resin Composition Using a flow tester (CFT-500C type), manufactured by Shimadzu Corporation, dried to a moisture content of 0.1% or less in a center cylinder of a heated body set at 220 ° C. The resin or sealing resin composition was filled, and after 1 minute from filling, a load was applied to the sample through a plunger, and the pressure was 1 MPa, from the die at the bottom of the cylinder (hole diameter: 1.0 mm, thickness: 10 mm) The melted sample was extruded, the plunger descending distance and descending time were recorded, and the melt viscosity was calculated.
低圧成型性評価方法
 平板成型用金型を使用し、ホットメルト成型加工用アプリケーターとして井元製作所製低圧成型アプリケーターIMC-18F9を用いて封止用樹脂組成物からなる平板(100mm×100mm×10mm)を成型した。なお、ゲート位置は100mm×100mmの面の中心とした。
成型条件:成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転50%設定。
Low pressure moldability evaluation method A flat plate (100 mm x 100 mm x 10 mm) made of a resin composition for sealing using a flat mold and a low pressure molding applicator IMC-18F9 manufactured by Imoto Seisakusho as an applicator for hot melt molding. Molded. The gate position was the center of a 100 mm × 100 mm surface.
Molding conditions: molding resin temperature 220 ° C., molding pressure 3 MPa, holding pressure 3 MPa, cooling time 15 seconds, discharge rotation 50%.
 評価基準  ◎:完全に充填され、バリもヒケもなし。
       ○:完全に充填されるが、若干のバリが発生する。
       △:ショートショット無く充填されるが、ヒケ有り。
       ×:ショートショット有り。
Evaluation criteria A: Completely filled with no burrs or sink marks.
○: Although completely filled, some burrs are generated.
Δ: Filled without short shot, but there is a sink.
X: There is a short shot.
 評価基準  ○:引張伸度保持率70%以上
       ×:引張伸度保持率70%未満
Evaluation criteria ○: Tensile elongation retention 70% or more ×: Tensile elongation retention 70% or less
<高温長時間負荷耐久性試験>(耐熱老化性の評価)
 スクリュー型ホットメルト成型加工用アプリケーター(井元製作所製竪型低圧押し出し成型機IMC-18F9)を用いて100mm×100mmの面の中心に設けたゲートから封止用樹脂組成物を注入し、成型を行い、2mm厚の平板を作製した。成型条件は、成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転を50%設定(最大吐出を100%として)とした。上記条件により製作した平板をJIS3号型ダンベルに打ち抜き、JISK6251の測定方法に従って引張破断伸度を測定し、その値を「初期引張破断伸度」とした。また、同様に作成したダンベルを150℃雰囲気下で1000時間保管した後に、同様に引張破断伸度測定を実施し、その値を「150℃、1000時間負荷試験後の引張破断伸度」とした。引張破断伸度保持率は下記の式2に従って算出した。
<High temperature long-term load durability test> (Evaluation of heat aging resistance)
Using a screw-type hot melt molding applicator (Imoto Seisakusho type low pressure extrusion molding machine IMC-18F9), the sealing resin composition is injected from the gate provided at the center of the 100mm x 100mm surface, and then molded. A 2 mm thick flat plate was produced. The molding conditions were a molding resin temperature of 220 ° C., a molding pressure of 3 MPa, a holding pressure of 3 MPa, a cooling time of 15 seconds, and a discharge rotation set to 50% (maximum discharge was set to 100%). The flat plate produced under the above conditions was punched into a JIS No. 3 type dumbbell, and the tensile breaking elongation was measured according to the measuring method of JIS K6251, and the value was defined as “initial tensile breaking elongation”. Moreover, after storing the dumbbell similarly produced for 1000 hours in 150 degreeC atmosphere, the tensile break elongation measurement was similarly implemented, and the value was set as "the tensile break elongation after a 150-degree-C, 1000-hour load test." . The tensile rupture elongation retention was calculated according to the following formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 評価基準  ◎:引張破断伸度保持率65%以上
       ○:引張破断伸度保持率65%未満50%以上
       △:引張破断伸度保持率50%未満30%以上
       ×:引張破断伸度保持率30%未満
Evaluation criteria ◎: Tensile rupture elongation retention ratio 65% or more ○: Tensile rupture elongation retention ratio less than 65% 50% or more △: Tensile rupture elongation retention ratio less than 50% 30% or more X: Tensile rupture elongation retention ratio 30 %Less than
脂肪族ポリカーボネートジオールAの製造例
 ポリ(ヘキサメチレンカーボネート)ジオール(数平均分子量2000)100質量部とジフェニルカーボネート9.6質量部とを反応容器に仕込み、温度205℃、130Paで反応させた。2時間後、内容物を冷却し、生成したポリマーを取り出し、脂肪族ポリカーボネートジオールAを得た。脂肪族ポリカーボネートジオールAの数平均分子量は13000であった。
Production Example of Aliphatic Polycarbonate Diol A 100 parts by mass of poly (hexamethylene carbonate) diol (number average molecular weight 2000) and 9.6 parts by mass of diphenyl carbonate were charged in a reaction vessel and reacted at a temperature of 205 ° C. and 130 Pa. After 2 hours, the contents were cooled, and the produced polymer was taken out to obtain an aliphatic polycarbonate diol A. The number average molecular weight of the aliphatic polycarbonate diol A was 13,000.
脂肪族ポリカーボネートジオールBの製造例
 脂肪族ポリカーボネートジオールAの製造例において、ポリ(ヘキサメチレンカーボネート)ジオールをポリ(テトラメチレンカーボネート)ジオール(数平均分子量2000)に変更し、その他は同様にして、脂肪族ポリカーボネートジオールBを得た。脂肪族ポリカーボネートジオールBの数平均分子量は13000であった。
Production Example of Aliphatic Polycarbonate Diol B In the production example of aliphatic polycarbonate diol A, poly (hexamethylene carbonate) diol was changed to poly (tetramethylene carbonate) diol (number average molecular weight 2000), and the rest Group polycarbonate diol B was obtained. The number average molecular weight of the aliphatic polycarbonate diol B was 13,000.
ポリエステル樹脂Aの製造例
 ハードセグメント成分である数平均分子量20000のポリブチレンテレフタレート(PBT)100質量部とソフトセグメント成分である脂肪族ポリカーボネートジオールA67質量部とを、230℃~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認した。その後、内容物を取り出し冷却した。次いで、ラスミットLGを0.3部、Irganox1010を0.3部加え、250℃で混練して、ポリエステル樹脂Aを得た。
Production Example of Polyester Resin A 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 20,000 as a hard segment component and 67 parts by mass of an aliphatic polycarbonate diol A as a soft segment component are obtained at 230 ° C. to 245 ° C. under 130 Pa. It stirred for 1 hour and it confirmed that resin became transparent. Thereafter, the contents were taken out and cooled. Next, 0.3 part of Lasmit LG and 0.3 part of Irganox 1010 were added and kneaded at 250 ° C. to obtain a polyester resin A.
ポリエステル樹脂B~E、Hの製造例
 ポリエステル樹脂Aの製造例において、ハードセグメント成分とソフトセグメント成分の種類と配合量を変更し、ポリエステル樹脂B~E、Hを得た。ポリエステル樹脂B~Eの組成と物性を表1に示した。
Production Examples of Polyester Resins B to E and H In the production examples of polyester resin A, the types and blending amounts of the hard segment component and the soft segment component were changed to obtain polyester resins B to E and H. The compositions and physical properties of the polyester resins B to E are shown in Table 1.
ポリエステル樹脂Fの製造例
 撹拌機、温度計、溜出用冷却器を装備した反応缶内に2,6-ナフタレンジカルボン酸100モル部、1,4-ブタンジオール75モル部、2,6-ナフタレンジカルボン酸と1,4-ブタンジオールの合計重量に対して0.25重量%のテトラブチルチタネートを仕込み、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、数平均分子量1000のポリテトラメチレングリコール「PTMG1000」(三菱化学社製)を25モル部、ヒンダードフェノール系酸化防止剤「イルガノックス1330」(チバガイギー社製)を0.5重量%投入し、250℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて250℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、ポリエステル樹脂Fを得た。このポリエステル樹脂組成物Fの融点は190℃で、溶融粘度は500dPa・sであった。
Production Example of Polyester Resin F In a reaction vessel equipped with a stirrer, a thermometer, and a condenser for distillation, 100 mol parts of 2,6-naphthalenedicarboxylic acid, 75 mol parts of 1,4-butanediol, 2,6-naphthalene 0.25% by weight of tetrabutyl titanate with respect to the total weight of dicarboxylic acid and 1,4-butanediol was charged, and esterification was performed at 170 to 220 ° C. for 2 hours. After completion of the esterification reaction, 25 mol parts of polytetramethylene glycol “PTMG1000” (Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of 1000 and 0.5% of hindered phenol antioxidant “Irganox 1330” (Ciba Geigy Co., Ltd.) were added. The weight was charged and the temperature was raised to 250 ° C., while the pressure in the system was slowly reduced to 665 Pa at 250 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin F. This polyester resin composition F had a melting point of 190 ° C. and a melt viscosity of 500 dPa · s.
ポリエステル樹脂Gの製造例
 ポリエステル樹脂Fの製造例と同様にして、但し、2,6-ナフタレンジカルボン酸をテレフタル酸に変更して、ポリエステル樹脂Gを得た。ポリエステル樹脂組成物Gの組成と物性を表1に示した。
Production Example of Polyester Resin G Similar to the production example of polyester resin F, except that 2,6-naphthalenedicarboxylic acid was changed to terephthalic acid to obtain polyester resin G. The composition and physical properties of the polyester resin composition G are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
ポリエステル樹脂Iの製造例
 撹拌機、温度計、溜出用冷却器を装備した反応缶内にテレフタル酸100mol%に対し、グリコール成分のトータルを100mol%としたとき、1,4-ブタンジオール60mol%量仕込む。その後、テトラブチルチタネートトータル仕込み量を100質量部としたとき、0.25質量部を加え、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、数平均分子量1000のポリテトラメチレングリコール「PTMG1000」(三菱化学社製)を残り40mol%分仕込み、さらに、ヒンダードフェノール系酸化防止剤「イルガノックス1330」(チバガイギー社製)を0.5質量部投入し、255℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて255℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、ポリエステル樹脂Iを得た。このポリエステル樹脂Iの融点は165℃で、溶融粘度は500dPa・sであった。
Production Example of Polyester Resin I When the total content of glycol components is 100 mol% with respect to 100 mol% of terephthalic acid in a reaction vessel equipped with a stirrer, thermometer, and condenser for distillation, 60 mol% of 1,4-butanediol Prepare a quantity. Thereafter, when the total amount of tetrabutyl titanate was 100 parts by mass, 0.25 part by mass was added, and the esterification reaction was performed at 170 to 220 ° C. for 2 hours. After completion of the esterification reaction, the remaining 40 mol% of polytetramethylene glycol “PTMG1000” (Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of 1000 was charged. Further, hindered phenol antioxidant “Irganox 1330” (Ciba Geigy Corp.) Was added to 0.5 parts by mass, and the temperature was raised to 255 ° C., while the pressure in the system was slowly reduced to 665 Pa at 255 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin I. This polyester resin I had a melting point of 165 ° C. and a melt viscosity of 500 dPa · s.
ポリエステル樹脂J~Lの製造例
 ポリエステル樹脂Iの製造例と同様にして、但し、原料の仕込み組成を変更してポリエステル樹脂を製造し、ポリエステル樹脂J~Lを得た。ポリエステル樹脂J~Lの組成と物性を表2に示した。
Production Examples of Polyester Resins J to L Polyester resins J to L were obtained in the same manner as in the production examples of polyester resin I except that the raw material composition was changed and polyester resins were produced. The compositions and physical properties of the polyester resins J to L are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
表中の略号は以下の通りである。
 PBT:ポリブチレンテレフタレート、PBN:ポリブチレンナフタレート、TPA:テレフタル酸、NDC:ナフタレンジカルボン酸、BD:1,4-ブタンジオール、PTMG1000:ポリテトラメチレンエーテルグリコール(数平均分子量1000)、PTMG2000:ポリテトラメチレンエーテルグリコール(数平均分子量2000)、PCL:ポリカプロラクトン(数平均分子量2000)
Abbreviations in the table are as follows.
PBT: polybutylene terephthalate, PBN: polybutylene naphthalate, TPA: terephthalic acid, NDC: naphthalenedicarboxylic acid, BD: 1,4-butanediol, PTMG1000: polytetramethylene ether glycol (number average molecular weight 1000), PTMG2000: poly Tetramethylene ether glycol (number average molecular weight 2000), PCL: polycaprolactone (number average molecular weight 2000)
電気電子部品封止用樹脂組成物の製造例
 100質量部のポリエステル樹脂Aと20質量部のポリアミド樹脂Aと10質量部のエポキシ樹脂Aとを均一に混合した後、二軸押し出し機を用いてダイ温度220℃において溶融混練し、電気電子部品封止用樹脂組成物1を得た。ポリエステル樹脂組成物2~29は、ポリエステル樹脂組成物1と同様な方法によって、但し原料組成を表3~6のように変更して調製した。
Production Example of Resin Composition for Sealing Electrical and Electronic Parts After 100 parts by mass of polyester resin A, 20 parts by mass of polyamide resin A and 10 parts by mass of epoxy resin A are uniformly mixed, a biaxial extruder is used. Melting and kneading was performed at a die temperature of 220 ° C. to obtain a resin composition 1 for sealing electric and electronic parts. Polyester resin compositions 2 to 29 were prepared in the same manner as polyester resin composition 1 except that the raw material compositions were changed as shown in Tables 3 to 6.
 表3~6で用いたポリアミド樹脂、エポキシ樹脂は以下のものである。
 ポリアミド樹脂A:PEBAX(登録商標) MX1205、アルケマ(株)製、ポリエーテルブロックアミド、融点147℃、MFR7g/10分。
 ポリアミド樹脂B:PEBAX(登録商標) 4033、アルケマ(株)製、ポリエーテルブロックアミド、融点160℃、MFR5g/10分。
 ポリアミド樹脂C:グラマイド(登録商標) T-661、東洋紡(株)製、ナイロン66、融点260℃、(235℃では未溶融)
 ポリアミド樹脂D:ナイロンMXD6、三菱ガス化学株式会社製、ナイロン6、融点240℃
 エポキシ樹脂A:JER1007、三菱化学(株)製、ビスフェノール型エポキシ樹脂。
 エポキシ樹脂B:UG4070、東亞合成(株)製、多官能エポキシ樹脂。
 エポキシ樹脂C:EX-145、ナガセケムテックス(株)製、モノエポキシ樹脂。
The polyamide resins and epoxy resins used in Tables 3 to 6 are as follows.
Polyamide resin A: PEBAX (registered trademark) MX1205, manufactured by Arkema Co., Ltd., polyether block amide, melting point 147 ° C., MFR 7 g / 10 min.
Polyamide resin B: PEBAX (registered trademark) 4033, manufactured by Arkema Co., Ltd., polyether block amide, melting point 160 ° C., MFR 5 g / 10 min.
Polyamide resin C: Gramide (registered trademark) T-661, manufactured by Toyobo Co., Ltd., nylon 66, melting point 260 ° C. (unmelted at 235 ° C.)
Polyamide resin D: nylon MXD6, manufactured by Mitsubishi Gas Chemical Company, nylon 6, melting point 240 ° C.
Epoxy resin A: JER1007, manufactured by Mitsubishi Chemical Corporation, bisphenol type epoxy resin.
Epoxy resin B: UG4070, manufactured by Toagosei Co., Ltd., a polyfunctional epoxy resin.
Epoxy resin C: EX-145, manufactured by Nagase ChemteX Corporation, monoepoxy resin.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例1
 ポリエステル樹脂Aを100質量部、ポリアミド樹脂Aを20質量部、エポキシ樹脂Aを20質量部で均一に混合した後、二軸押し出し機を用いてダイ温度220~270℃において溶融混練し、樹脂組成物1を得た。樹脂組成物1の配合組成及び評価結果を表3に示した。<溶融特性試験>において、1899dPa・sと良好な溶融特性であった。<密着強度試験>において、初期密着強度は2.2MPaと良好であり、<冷熱サイクル負荷耐久性試験>において冷熱サイクル試験後のT型剥離強度は1.9MPa、T型剥離強度保持率は86%と良好であった。また、<高温長時間負荷耐久性試験>において、引張破断伸度保持率は65%と良好であった。
Example 1
100 parts by weight of polyester resin A, 20 parts by weight of polyamide resin A, and 20 parts by weight of epoxy resin A are uniformly mixed, and then melt-kneaded at a die temperature of 220 to 270 ° C. using a twin screw extruder to obtain a resin composition Product 1 was obtained. Table 3 shows the composition of the resin composition 1 and the evaluation results. In <melting characteristic test>, it was 1899 dPa * s and favorable melting characteristics. In <Adhesion Strength Test>, the initial adhesion strength is as good as 2.2 MPa. In <Cooling Cycle Load Durability Test>, the T-type peel strength after the cold-heat cycle test is 1.9 MPa, and the T-type peel strength retention is 86. % And good. Moreover, in <High temperature long-term load durability test>, the tensile elongation at break was as good as 65%.
実施例2~18、比較例1~11
 実施例1と同様にして、但し配合を表3~6に記載のように変更して、電気電子部品封止用樹脂組成物2~29を調製し、ついで評価を行なった。評価結果を表3~6に示した。
Examples 2 to 18 and Comparative Examples 1 to 11
Resin compositions 2 to 29 for sealing electrical and electronic parts were prepared in the same manner as in Example 1 except that the formulation was changed as shown in Tables 3 to 6, and then evaluated. The evaluation results are shown in Tables 3-6.
 比較例1、2は、ポリカーボネート成分が共重合されている結晶性ポリエステル樹脂(A)に換えてポリテトラメチレングリコール成分が共重合されている結晶性ポリエステル樹脂を用いた例である。比較例1では、<密着強度試験>において初期密着強度は2.5MPa、冷熱サイクル試験後のT型剥離強度は1.9MPaと初期密着性および冷熱サイクル耐久性に優れ、<溶融特性試験>において溶融粘度は1970dPa・sと良好な結果を示したが、<高温長時間負荷耐久性試験>では伸度保持率は10%と不良であった。 Comparative Examples 1 and 2 are examples in which a crystalline polyester resin in which a polytetramethylene glycol component is copolymerized is used instead of the crystalline polyester resin (A) in which a polycarbonate component is copolymerized. In Comparative Example 1, the initial adhesion strength was 2.5 MPa in <Adhesion Strength Test>, and the T-type peel strength after the thermal cycle test was 1.9 MPa, which was excellent in initial adhesion and thermal cycle durability. The melt viscosity was as good as 1970 dPa · s, but in the <high temperature long-term load durability test>, the elongation retention was as poor as 10%.
 比較例3は、ポリアミド樹脂(C)を用いなかった場合の例である。比較例3では、<溶融特性試験>では490dPa・sと良好な結果となり、また<密着強度試験>において初期密着強度は2.1MPaと良好であったが、冷熱サイクル試験後は0.1MPaとなり、不良な結果となった。 Comparative Example 3 is an example where the polyamide resin (C) was not used. In Comparative Example 3, the <melting property test> had a favorable result of 490 dPa · s, and the initial adhesion strength was good at 2.1 MPa in the <adhesion strength test>, but after the cooling and heating cycle test, it became 0.1 MPa. With bad results.
 比較例4は、ポリアミド樹脂(C)の種類がポリアミド樹脂Cであった場合、エポキシ樹脂(B)がエポキシ樹脂Bを用いた場合の例である。比較例4では、<溶融特性試験>では5182dPa・sと成型が困難な不良結果となった。 Comparative Example 4 is an example where the type of polyamide resin (C) is polyamide resin C and the epoxy resin (B) uses epoxy resin B. In Comparative Example 4, the <melting characteristic test> was 5182 dPa · s, which was a defective result that was difficult to mold.
 比較例5は、エポキシ樹脂(B)を用いなかった場合の例である。比較例5では、<初期密着性>がやや劣り、また<冷熱サイクル負荷耐久性>が大幅に劣る結果となった。 Comparative Example 5 is an example where the epoxy resin (B) was not used. In Comparative Example 5, <initial adhesion> was slightly inferior and <cooling cycle load durability> was significantly inferior.
 比較例6は、<溶融特性試験>において、2964dPa・sであり成型可能範囲であったが、<密着強度試験>において、アルミ板に対する初期密着強度は0.2MPa、冷熱サイクル試験後は0.0MPaと必要特性を満たさず不良となった。 In Comparative Example 6, it was 2964 dPa · s in the <melting characteristic test>, which was a moldable range, but in the <adhesion strength test>, the initial adhesion strength to the aluminum plate was 0.2 MPa, and after the cooling / heating cycle test, it was 0. It became defective because it did not meet the required characteristics of 0 MPa.
比較例7は、<溶融特性試験>において、202dPa・sで成型可能範囲であり、<密着強度試験>において、アルミ板密着試験片について、初期密着強度は1.6MPa、冷熱サイクル試験後は0.0MPaとなり必要特性を満たさず不良となった。 Comparative Example 7 is a moldable range at 202 dPa · s in <Melting Characteristic Test>. In <Adhesion Strength Test>, the initial adhesion strength of the aluminum plate adhesion test piece is 1.6 MPa, and 0 after the thermal cycle test. The pressure was 0.0 MPa, and the required characteristics were not satisfied, resulting in a failure.
比較例8~11
 封止用樹脂組成物として封止用樹脂組成物26~29を用い、実施例1と同様にして<溶融特性試験>、<密着強度試験>を実施した。
Comparative Examples 8-11
Using the sealing resin compositions 26 to 29 as the sealing resin composition, the <melting characteristic test> and the <adhesion strength test> were performed in the same manner as in Example 1.
 本発明の電気電子部品封止用樹脂組成物は、電気電子部品封止体用封止剤として用いると、アルミニウム材への初期密着強度に優れ、なおかつ冷熱サイクル負荷を経た後も高度な密着耐久性を発揮し、有用である。また、本発明の電気電子部品封止体は、冷熱サイクルの過酷な環境負荷に対する耐久性が発揮され、有用である。本発明の電気電子部品封止体は、例えば自動車、通信、コンピュータ、家電用途各種のコネクター、ハーネスやあるいは電子部品、プリント基板を有するスイッチ、センサーのモールド成型品として有用である。 The resin composition for encapsulating electrical and electronic parts of the present invention is excellent in initial adhesion strength to an aluminum material when used as a sealant for encapsulating electrical and electronic parts, and has high adhesion durability even after being subjected to a thermal cycle load. Demonstrate and useful. Moreover, the electrical and electronic component encapsulant of the present invention is useful because it exhibits durability against severe environmental loads in a cooling and heating cycle. The electrical and electronic component sealing body of the present invention is useful as, for example, automobiles, communications, computers, various connectors for household appliances, harnesses or electronic components, switches having a printed circuit board, and molded products of sensors.

Claims (9)

  1.  結晶性ポリエステル樹脂(A)、エポキシ樹脂(B)およびポリアミド樹脂(C)、を含有し、水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である、電気電子部品封止用樹脂組成物。 Crystalline polyester resin (A), epoxy resin (B) and polyamide resin (C) are contained, dried to a moisture content of 0.1% or less, heated to 220 ° C., applied with a pressure of 1 MPa, and a pore diameter of 1.0 mm. A resin composition for sealing electrical and electronic parts, having a melt viscosity of 5 dPa · s or more and 3000 dPa · s or less when extruded from a die having a thickness of 10 mm.
  2.  前記結晶性ポリエステル樹脂(A)が、ポリエーテルジオールおよび/またはポリカーボネート成分が共重合されている結晶性ポリエステル樹脂である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the crystalline polyester resin (A) is a crystalline polyester resin in which a polyether diol and / or a polycarbonate component is copolymerized.
  3.  前記ポリアミド樹脂(C)の融点が220℃以下である請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the polyamide resin (C) has a melting point of 220 ° C or lower.
  4.  前記エポキシ樹脂(B)がビスフェノール型エポキシ樹脂である請求項1~3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the epoxy resin (B) is a bisphenol type epoxy resin.
  5.  前記結晶性ポリエステル樹脂(A)100重量部に対し、0.1~100重量部のエポキシ樹脂(B)0.1~100重量部のポリアミド樹脂(C)が配合されている請求項1~4のいずれかに記載の樹脂組成物。 The 0.1 to 100 parts by weight of the epoxy resin (B) and 0.1 to 100 parts by weight of the polyamide resin (C) are blended with 100 parts by weight of the crystalline polyester resin (A). The resin composition in any one of.
  6.  アルミニウム板に対する、-40℃30分と80℃30分の冷熱サイクルを1000サイクル付加前後のT型剥離強度保持率が50%以上である請求項1~5のいずれかに記載の電気電子部品封止用樹脂組成物。 The electric and electronic component seal according to any one of claims 1 to 5, wherein the T-type peel strength retention ratio before and after adding 1000 cycles of a cooling cycle of -40 ° C for 30 minutes and 80 ° C for 30 minutes to an aluminum plate is 50% or more. Resin composition for stopping.
  7.  アルミニウム板に対する初期T型剥離強度が0.5N/mm以上である、請求項1~6のいずれかに記載の電気電子部品封止用樹脂組成物。 The resin composition for sealing electrical and electronic parts according to any one of claims 1 to 6, wherein the initial T-type peel strength with respect to the aluminum plate is 0.5 N / mm or more.
  8.  請求項1~7のいずれかに記載の樹脂組成物を、加熱して混練した後、電気電子部品を挿入した金型に樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下で注入する、電気電子部品封止体の製造方法。 The resin composition according to any one of claims 1 to 7 is heated and kneaded, and then the resin composition temperature is 130 ° C. or higher and 260 ° C. or lower and the resin composition pressure is 0.1 MPa in a mold in which an electric / electronic component is inserted. The manufacturing method of the electrical and electronic component sealing body inject | poured above 10 Mpa or less.
  9.  請求項1~7のいずれかに記載の樹脂組成物で封止された電気電子部品封止体。
     
    An encapsulated electrical and electronic part sealed with the resin composition according to any one of claims 1 to 7.
PCT/JP2013/063246 2012-05-28 2013-05-13 Resin composition for sealing electric/electronic component, method for manufacturing electric/electronic component sealed body, and electric/electronic component sealed body WO2013179874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548667A JP6098521B2 (en) 2012-05-28 2013-05-13 Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-120661 2012-05-28
JP2012120660 2012-05-28
JP2012-120660 2012-05-28
JP2012120661 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013179874A1 true WO2013179874A1 (en) 2013-12-05

Family

ID=49673078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063246 WO2013179874A1 (en) 2012-05-28 2013-05-13 Resin composition for sealing electric/electronic component, method for manufacturing electric/electronic component sealed body, and electric/electronic component sealed body

Country Status (3)

Country Link
JP (1) JP6098521B2 (en)
TW (1) TWI558763B (en)
WO (1) WO2013179874A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106089A1 (en) * 2016-12-09 2018-06-14 주식회사 엘지화학 Sealant composition
CN115926450A (en) * 2022-11-28 2023-04-07 天津金发新材料有限公司 Polyamide composite material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122435A1 (en) * 2015-12-21 2017-06-22 Endress + Hauser Flowtec Ag Field device of automation technology and method for its production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137958A (en) * 1983-09-27 1985-07-22 Dainippon Ink & Chem Inc Thermoplastic polyester resin composition
DE3833286A1 (en) * 1987-10-08 1989-04-20 Mitsubishi Chem Ind RESIN DIMENSION
JPH02218738A (en) * 1987-10-08 1990-08-31 Mitsubishi Kasei Corp Resin composition
JPH09286906A (en) * 1996-04-23 1997-11-04 Unitika Ltd Resin composition
JPH107880A (en) * 1996-06-28 1998-01-13 Polyplastics Co Polyacetal resin composition and its production
JPH10235819A (en) * 1997-02-26 1998-09-08 Polyplastics Co Polyester resin composite molded product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359263B2 (en) * 2008-12-26 2013-12-04 東洋紡株式会社 Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
JP5801149B2 (en) * 2010-09-22 2015-10-28 ダイセル・エボニック株式会社 Film sealant and sealing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137958A (en) * 1983-09-27 1985-07-22 Dainippon Ink & Chem Inc Thermoplastic polyester resin composition
DE3833286A1 (en) * 1987-10-08 1989-04-20 Mitsubishi Chem Ind RESIN DIMENSION
GB2210623A (en) * 1987-10-08 1989-06-14 Mitsubishi Chem Ind Resin moulding composition
JPH02218738A (en) * 1987-10-08 1990-08-31 Mitsubishi Kasei Corp Resin composition
JPH09286906A (en) * 1996-04-23 1997-11-04 Unitika Ltd Resin composition
JPH107880A (en) * 1996-06-28 1998-01-13 Polyplastics Co Polyacetal resin composition and its production
JPH10235819A (en) * 1997-02-26 1998-09-08 Polyplastics Co Polyester resin composite molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106089A1 (en) * 2016-12-09 2018-06-14 주식회사 엘지화학 Sealant composition
US11041089B2 (en) 2016-12-09 2021-06-22 Lg Chem, Ltd. Encapsulating composition
CN115926450A (en) * 2022-11-28 2023-04-07 天津金发新材料有限公司 Polyamide composite material and preparation method and application thereof

Also Published As

Publication number Publication date
TW201400545A (en) 2014-01-01
TWI558763B (en) 2016-11-21
JP6098521B2 (en) 2017-03-22
JPWO2013179874A1 (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP5077502B2 (en) Resin composition for sealing electrical and electronic parts, method for producing electrical and electronic parts, and sealed body for electrical and electronic parts
JP5359263B2 (en) Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
JP6269783B2 (en) Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
JP3553559B2 (en)   Polyester resin composition for molding and molded article using the same
US7381358B2 (en) Polyester resin and resin composition for molding, and formed product thereof
JP6098521B2 (en) Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
WO2013031593A1 (en) Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
JP2004083918A (en) Polyester resin for molding, resin composition and molding using the composition
JP4423533B2 (en) POLYESTER RESIN COMPOSITION FOR MOLDING OF ELECTRICAL AND ELECTRONIC COMPONENT HAVING OPTICAL CHARACTERISTICS, ELECTRONIC ELECTRONIC COMPONENT AND METHOD FOR PRODUCING ELECTRIC ELECTRONIC COMPONENT
JP2013112772A (en) Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
WO2022158384A1 (en) Resin composition and electrical/electronic part encapsulation body
WO2022158385A1 (en) Resin composition and encapsulated electrical/electronic component
JP2013112771A (en) Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
TWI772426B (en) Resin composition for sealing
JP4534115B2 (en) Polyester resin for molding, resin composition and molded product using the same
JP5293754B2 (en) Polyester resin for molding, resin composition and molded product using the same
TWI627228B (en) Resin composition for packaging electric and electronic parts, manufacturing method of electric and electronic part package, and electric and electronic part package
WO2012165206A1 (en) Resin composition for sealing electric/electronic component, method for manufacturing electric/electronic component, and electric/electronic component sealed body
JP2010043286A (en) Polyester resin for molding, resin composition and molded article using the same
JP2004277640A (en) Polyester resin for molding, resin composition and molded article obtained using the same
JP2004025893A (en) Method for manufacturing molding product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548667

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798088

Country of ref document: EP

Kind code of ref document: A1