WO2013171888A1 - Alkali-development-type thermoset resin composition and printed circuit board - Google Patents

Alkali-development-type thermoset resin composition and printed circuit board Download PDF

Info

Publication number
WO2013171888A1
WO2013171888A1 PCT/JP2012/062716 JP2012062716W WO2013171888A1 WO 2013171888 A1 WO2013171888 A1 WO 2013171888A1 JP 2012062716 W JP2012062716 W JP 2012062716W WO 2013171888 A1 WO2013171888 A1 WO 2013171888A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
alkali
thermosetting resin
resin
compound
Prior art date
Application number
PCT/JP2012/062716
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 新
峰岸 昌司
有馬 聖夫
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to PCT/JP2012/062716 priority Critical patent/WO2013171888A1/en
Priority to KR1020147034929A priority patent/KR20150013767A/en
Priority to PCT/JP2013/063728 priority patent/WO2013172435A1/en
Priority to JP2014515680A priority patent/JPWO2013172435A1/en
Priority to TW102117519A priority patent/TWI620018B/en
Publication of WO2013171888A1 publication Critical patent/WO2013171888A1/en
Priority to JP2017175858A priority patent/JP2018036651A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to an alkali development type thermosetting resin composition and a printed wiring board.
  • Patent Documents 1 and 2 use a photocurable resin composition containing an epoxy acrylate-modified resin (hereinafter sometimes abbreviated as epoxy acrylate) derived by modification of an epoxy resin.
  • epoxy acrylate an epoxy acrylate-modified resin
  • a photocurable resin composition is applied to a substrate and dried to form a resin layer, and the resin layer is patterned.
  • Patent Document 3 discloses a composition having improved desmear resistance by not including a thermosetting resin having a secondary hydroxyl group.
  • a solder resist is formed by, for example, screen printing.
  • thermosetting resin composition as in Patent Document 3, the light irradiation part cannot be selectively cured by light irradiation as in the photocurable resin composition, so that the pattern layer can be formed by development. Can not. Accordingly, there is a problem that the formation of the pattern layer of the thermosetting resin composition is limited to a printing method such as screen printing or formation by laser processing.
  • an object of the present invention is to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern by development.
  • the alkali-developable thermosetting resin composition of the present invention contains an alkali-developable resin, a heat-reactive compound, and a photobase generator, and is selectively irradiated with the alkali-developable resin and the heat-curable resin composition.
  • the reactive compound undergoes an addition reaction, a negative pattern can be formed by alkali development.
  • the alkali-developable thermosetting resin composition of the present invention preferably further contains a colorant.
  • the alkali development type thermosetting resin composition of the present invention generates an exothermic peak in DSC measurement by light irradiation, or starts heat generation in DSC measurement of the alkali development type thermosetting resin composition irradiated with light.
  • the temperature is lower than the heat generation start temperature in the DSC measurement of the unirradiated alkali development type thermosetting resin composition, or the heat generation peak temperature in the DSC measurement of the light irradiated alkali development type thermosetting resin composition is It is preferable that the temperature is lower than the exothermic peak temperature in DSC measurement of the unirradiated alkali development type thermosetting resin composition.
  • an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer by development can be provided.
  • the pattern layer of this invention consists of thermosetting resins, it can be anticipated that it is excellent in curability and suppresses curing shrinkage.
  • FIG. 1 is a diagram showing a DSC chart of a light irradiated part or an unirradiated part of a layer made of the thermosetting resin composition of Example 1 of the present invention.
  • FIG. 2 is a diagram showing a DSC chart of the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 9 of the present invention.
  • FIG. 3 is a diagram showing a DSC chart of the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 32 of the present invention.
  • FIG. 1 is a diagram showing a DSC chart of a light irradiated part or an unirradiated part of a layer made of the thermosetting resin composition of Example 1 of the present invention.
  • FIG. 2 is a diagram showing a DSC chart of the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 9 of the present invention
  • FIG. 4 is a diagram showing a DSC chart for the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 36 of the present invention.
  • FIG. 5 is a diagram showing a DSC chart of a light irradiated part or an unirradiated part of a layer made of the thermosetting resin composition of Example 50 of the present invention.
  • FIG. 6 is a schematic view showing a method for forming a pattern layer of the present invention.
  • thermosetting resin composition includes an alkali developing resin, a thermoreactive compound, and a photobase generator.
  • a negative pattern can be formed by alkali development by an addition reaction between the alkali-developable resin and the heat-reactive compound by selective light irradiation.
  • a base is generated on the surface by light irradiation. The generated base destabilizes the photobase generator and further generates a base. The generation of the base in this way is considered to cause chemical multiplication up to the deep part of the resin layer.
  • thermosetting resin composition since an addition reaction advances to a deep part, a base acts as a catalyst at the time of addition reaction of an alkali developable resin and a heat-reactive compound, a resin layer hardens
  • the thermosetting resin composition may be a composition that does not cure even when heated in an unirradiated state and that can be cured by heat only after irradiation with light.
  • thermosetting resin composition of the present invention generates a heat generation peak in DSC measurement by light irradiation, or the heat generation start temperature in DSC measurement of the light-cured thermosetting resin composition is an unirradiated thermosetting resin.
  • the exothermic peak temperature in the DSC measurement of the uncured thermosetting resin composition is lower than the exothermic peak temperature in the DSC measurement of the thermosetting resin composition that is lower than the exothermic start temperature in the DSC measurement of the composition or is irradiated with light. Is also preferably low.
  • thermosetting resin composition of the present invention is also referred to as a temperature difference ( ⁇ T start) of the heat generation starting temperature in DSC measurement between the light-irradiated thermosetting resin composition and the non-irradiated thermosetting resin composition.
  • ⁇ T start the exothermic peak temperature difference
  • ⁇ T peak is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 30 ° C. or higher.
  • ⁇ T start is a thermosetting resin composition having the same composition, one is irradiated with light, and the other is not irradiated with light, and the DSC (Differential Scanning Calorimetry) is left as it is.
  • Each measurement refers to the temperature difference between the heat generation start temperature indicating the start of the curing reaction of the resin composition irradiated with light and the heat generation start temperature of the unirradiated resin composition.
  • ⁇ T peak refers to the temperature difference between the exothermic peak temperatures of the resin composition irradiated and unirradiated when DSC measurement is similarly performed.
  • the light irradiation amount in DSC measurement of the thermosetting resin composition irradiated with light increases the light irradiation amount, and the shift of the exothermic peak temperature due to the light irradiation of the thermosetting resin composition does not occur (saturation). Irradiation amount.
  • ⁇ T start or ⁇ T peak is 10 ° C.
  • ⁇ T start or ⁇ T peak is 10 ° C. or more, it is possible to widen the range of heating temperatures that can be taken in the heating step (B1) described later.
  • thermosetting resin composition Asinafter, each component of the thermosetting resin composition will be described in detail.
  • the alkali-developable resin is a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution, preferably a compound having two or more phenolic hydroxyl groups, carboxyl Examples thereof include a group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
  • Examples of the compound having two or more phenolic hydroxyl groups include phenol novolac resin, alkylphenol volac resin, bisphenol A novolac resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene modified phenol resin, polyvinylphenols, bisphenol F, Examples thereof include known and commonly used phenol resins such as bisphenol S-type phenol resin, poly-p-hydroxystyrene, a condensate of naphthol and aldehydes, and a condensate of dihydroxynaphthalene and aldehydes.
  • a phenol resin a compound having a biphenyl skeleton or a phenylene skeleton, or both, and as a phenolic hydroxyl group-containing compound, phenol, orthocresol, paracresol, metacresol, 2,3-xylenol, 2,4- Xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, resorcinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, trimethylhydroquinone, pyrogallol, phloroglucinol You may use the phenol resin which synthesize
  • the carboxyl group-containing resin a known resin containing a carboxyl group can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable.
  • a compound having an ethylenically unsaturated bond in the molecule may be used, but in the present invention, as the carboxyl group-containing resin, for example, ethylenically unsaturated as shown in (1) below. It is preferable to use only a carboxyl group-containing resin having no double bond.
  • the lower alkyl refers to an alkyl group having 1 to 5 carbon atoms.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, polyethers
  • a carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A type Terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the terminal of urethane resin by polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are present in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • the carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
  • An unsaturated monocarboxylic acid such as (meth) acrylic acid is reacted with the polyfunctional (solid) epoxy resin as described above, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride is added to the hydroxyl group present in the side chain.
  • a carboxyl group-containing resin to which a dibasic acid anhydride such as an acid is added.
  • a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is reacted with a saturated monocarboxylic acid on the polyfunctional (solid) epoxy resin as described above, and the hydroxyl group present in the side chain.
  • a carboxyl group-containing resin to which is added is added.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin as described later with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • Non-photosensitive carboxyl group-containing resin that does not contain.
  • a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide is reacted with a saturated monocarboxylic acid.
  • Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a product.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and a saturated monocarboxylic acid React with acid and react with polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc. to the alcoholic hydroxyl group of the resulting reaction product Carboxyl group-containing resin obtained by making it.
  • polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reacting with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and then reacting with the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as an acid.
  • Such an alkali-developable resin has a large number of carboxyl groups, hydroxyl groups, and the like in the side chain of the backbone polymer, so that development with an alkaline aqueous solution becomes possible.
  • the hydroxyl group equivalent or carboxyl group equivalent of the carboxyl group-containing resin is 80 to 900 g / eq. And more preferably 100 to 700 g / eq. It is. Hydroxyl group equivalent or carboxyl group equivalent is 900 g / eq. If it exceeds 1, the adhesion of the pattern layer may not be obtained, or alkali development may be difficult.
  • the hydroxyl group equivalent or the carboxyl group equivalent is 80 g / eq.
  • the line becomes thinner than necessary, or in some cases, the light irradiation part and the unirradiated part are dissolved and peeled off with the developer, This is not preferable because it may be difficult to draw a normal resist pattern. Further, it is preferable that the carboxyl group equivalent or the phenol group equivalent is large because development is possible even when the content of the alkali-developable resin is small.
  • the weight average molecular weight of the alkali-developable resin used in the present invention varies depending on the resin skeleton, but is preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. If the weight average molecular weight is less than 2,000, tack-free performance may be inferior, the moisture resistance of the resin layer after light irradiation may be poor, film thickness may be reduced during development, and resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
  • Examples of the compound having a thiol group include trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, ethylene glycol bithioglycolate, 1,4-butanediol bisthioglycolate, trimethylolpropane.
  • Tristhioglycolate pentaerythritol tetrakisthiog lycolate, di (2-mercaptoethyl) ether, 1,4-butanedithiol, 1,3,5-trimercaptomethylbenzene, 1,3,5-trimercaptomethyl -2,4,6-trimethylbenzene, terminal thiol group-containing polyether, terminal thiol group-containing polythioether, thiol compound obtained by reaction of epoxy compound and hydrogen sulfide, reaction of polythiol compound and epoxy compound Thiol compounds having thus obtained terminal thiol group.
  • the alkali developable resin is preferably a carboxyl group-containing resin or a compound having a phenolic hydroxyl group.
  • the alkali-developable resin is preferably non-photosensitive without a photocurable structure such as epoxy acrylate. Such a non-photosensitive alkali-developable resin does not have an ester bond derived from epoxy acrylate, and therefore has high resistance to desmear liquid. Therefore, a pattern layer having excellent curing characteristics can be formed. Moreover, since it does not have a photocurable structure, curing shrinkage can be suppressed.
  • the alkali-developable resin is a carboxyl group-containing resin, it can be developed with a weak alkali as compared with the case of a phenolic resin.
  • Examples of the weak alkali include sodium carbonate. By developing with weak alkali, it can suppress that a light irradiation part will be developed. Moreover, the light irradiation time in the following process (B) and the heating time in the process (B1) can be shortened.
  • thermoreactive compound is a resin having a functional group that can be cured by heat.
  • An epoxy resin, a polyfunctional oxetane compound, etc. are mentioned.
  • the epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. In addition, a hydrogenated bifunctional epoxy compound may be used.
  • Polyfunctional epoxy compounds include bisphenol A type epoxy resin, brominated epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic ring Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or mixtures thereof, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy resins, diglycidyl phthalate resins, tetraglycidyl xylenoyl yl ethane resins, naphthalene group-containing epoxy resin, an epoxy resin having a dicyclopentadiene skeleton, Gurishijirume Acrylate copolymer epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate
  • liquid bifunctional epoxy resins include vinylcyclohexene diepoxide, (3 ′, 4′-epoxycyclohexylmethyl) -3,4-epoxycyclohexanecarboxylate, (3 ′, 4′-epoxy-6′-methyl) And alicyclic epoxy resins such as (cyclohexylmethyl) -3,4-epoxy-6-methylcyclohexanecarboxylate.
  • the above epoxy resins may be used alone or in combination of two or more.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl)
  • polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene
  • thermosetting resin composition contains a white pigment, it is preferable that a thermoreactive compound is an alicyclic skeleton. Thereby, photoreactivity can be improved.
  • the amount of the heat-reactive compound, the equivalent ratio of alkali developable resin (alkali-developable resin: thermally reactive compound) is 1: 0.5 to 1: is preferably 10. If it is out of such a mixing ratio, development may be difficult.
  • the equivalent ratio is more preferably 1: 0.5 to 1: 5.
  • One or more photobase generators can function as a catalyst for the polymerization reaction of the above-described thermoreactive compound by changing the molecular structure upon irradiation with light such as ultraviolet rays or visible light, or by cleaving the molecules. It is a compound that produces a basic substance. Examples of basic substances include secondary amines and tertiary amines. Examples of photobase generators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group.
  • the ⁇ -aminoacetophenone compound has a benzoin ether bond in the molecule, and when irradiated with light, cleavage occurs in the molecule to produce a basic substance (amine) that exhibits a curing catalytic action.
  • ⁇ -aminoacetophenone compounds include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (Irgacure 369, trade name, manufactured by BASF Japan Ltd.) and 4- (methylthiobenzoyl) -1-methyl.
  • -1-morpholinoethane (Irgacure 907, trade name, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl]-
  • a commercially available compound such as 1-butanone (Irgacure 379, trade name, manufactured by BASF Japan Ltd.) or a solution thereof can be used.
  • any compound that generates a basic substance by light irradiation can be used.
  • the oxime ester compound include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan, N-1919, NCI-831 manufactured by Adeka, and the like as commercially available products.
  • numerator can also be used suitably, Specifically, the oxime ester compound which has a carbazole structure represented with the following general formula is mentioned.
  • X is a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, a phenyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms).
  • Y and Z are each a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, or a carbon atom having 1 carbon atom), substituted with an alkyl group having a C 1-8 alkyl group or a dialkylamino group.
  • X and Y are each a methyl group or an ethyl group
  • Z is methyl or phenyl
  • n is 0, and Ar is a bond, phenylene, naphthylene, thiophene or thienylene. It is preferable.
  • the compound which can be represented by the following general formula can also be mentioned as a preferable carbazole oxime ester compound.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms, or a phenyl group optionally substituted with a nitro group, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • R 2 represents Represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group
  • R 3 represents , Optionally substituted with an oxygen atom or a sulfur atom, optionally substituted with a phenyl group, optionally substituted with an alkyl group having 1 to 20 carbon atoms, or optionally substituted with an alkoxy group having 1 to 4 carbon atoms
  • R 4 represents a nitro group or an acyl group represented by X—C ( ⁇ O) —, where X is an aryl optionally substituted with an alkyl group having 1 to 4 carbon atoms Group, thienyl group, morpholino A group, a thiophenyl group, or a structure represented by the following formula:
  • the compound having an acyloxyimino group examples include O, O'-diacetphenone oxime succinate, O, O'-dinaphthophenone oxime succinate, benzophenone oxime acrylate-styrene copolymer, and the like.
  • the compound having an N-formylated aromatic amino group and an N-acylated aromatic amino group include, for example, di-N- (p-formylamino) diphenylmethane, di-N (p-aceethylamino) Diphenyl melan, di-N- (p-benzamido) diphenyl methane, 4-formylaminotoluylene, 4-acetylaminotoluylene, 2,4-diformylaminotoluylene, 1-formylaminonaphthalene, 1-acetylaminonaphthalene, 1,5-diformylaminonaphthalene, 1-formylaminoanthracene, 1,4-diformylaminoanthracene, 1-acetylaminoanthracene, 1,4-diformylaminoanthracene, 1,4-diformylaminoanthracene, 1,4-diformylaminoanthr
  • the compound having a nitrobenzyl carbamate group or an alkoxybenzyl carbamate group include, for example, bis ⁇ (2-nitrobenzyl) oxy ⁇ carbonyl ⁇ diaminodiphenylmethane, 2,4-di ⁇ (2-nitrobenzyl) Oxy ⁇ toluylene, bis ⁇ (2-nitrobenzyloxy) carbonyl ⁇ hexane-1,6-diamine, m-xylidine ⁇ (2-nitro-4-chlorobenzyl) oxy ⁇ amide ⁇ and the like.
  • oxime ester compounds and ⁇ -aminoacetophenone compounds are preferable.
  • ⁇ -aminoacetophenone compound those having two or more nitrogen atoms are particularly preferable.
  • WPBG-018 Product name: 9-anthrylmethyl N, N'-diethylcarbamate
  • WPBG-027 Product name: (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine
  • WPBG-082 A photobase generator such as (trade name: guanidinium 2- (3-benzoylphenyl) propionate), WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethyl imidazolecarboxylate) can also be used.
  • the above photobase generators may be used alone or in combination of two or more.
  • the amount of the photobase generator of the thermosetting resin composition is preferably 1 to 50 parts by weight with respect to the heat-reactive compound 100 parts by weight, more preferably from 1 to 40 parts by weight. When the amount is less than 1 part by mass, development may be difficult, which is not preferable.
  • the thermosetting resin composition of the present invention may contain a maleimide compound.
  • maleimide compounds include polyfunctional aliphatic / alicyclic maleimides and polyfunctional aromatic maleimides. Bifunctional or higher maleimide compounds (polyfunctional maleimide compounds) are preferred.
  • polyfunctional aliphatic / alicyclic maleimide include N, N′-methylene bismaleimide, N, N′-ethylene bismaleimide, tris (hydroxyethyl) isocyanurate, and aliphatic / alicyclic maleimide carboxylic acid.
  • aromatic polymaleimide ester compounds obtained by dehydrating esterification of maleimide carboxylic acid and various aromatic polyols, or transesterification reaction of maleimide carboxylic acid ester and various aromatic polyols; Aromatic polymaleimide ester compounds obtained by ether ring-opening reaction of carboxylic acid and various aromatic polyepoxides; Aromatic polymaleimide urethane compounds obtained by urethanization reaction of maleimide alcohol and various aromatic polyisocyanates, etc. And aromatic polyfunctional maleimides.
  • polyfunctional aromatic maleimide examples include, for example, N, N ′-(4,4′-diphenylmethane) bismaleimide, N, N′-2,4-tolylene bismaleimide, N, N′-2, 6-tolylene bismaleimide, 1-methyl-2,4-bismaleimide benzene, N, N′-m-phenylene bismaleimide, N, N′-p-phenylene bismaleimide, N, N′-m-toluylene Bismaleimide, N, N′-4,4′-biphenylenebismaleimide, N, N′-4,4 ′-[3,3′-dimethyl-biphenylene] bismaleimide, N, N′-4,4′- [3,3′-dimethyldiphenylmethane] bismaleimide, N, N′-4,4 ′-[3,3′-diethyldiphenylmethane] bismaleimide, N, N′-4,4′-diphenylme
  • the amount of the maleimide compound, the equivalent ratio of alkali developable resin (alkali-developable resin: maleimide compound) is 1: 0.5 to 1: is preferably 10. If it is out of such a mixing ratio, development may be difficult.
  • the equivalent ratio is more preferably 1: 0.5 to 1: 5.
  • a coloring agent can be mix
  • the coloring power of the pattern layer is insufficient, the copper color changes in the heat history after the pattern layer is formed, and only the thin part appears discolored in appearance. It was.
  • Typical thermal history includes marking thermosetting, warping, preheating before mounting, mounting, and the like. For this reason, conventionally, a problem has been solved that only the edge portion of the copper circuit looks discolored by adding a large amount of colorant to the pattern layer to enhance the coloring power.
  • the colorant has light absorptivity, it prevents light from penetrating to the deep part.
  • thermosetting resin composition of the present invention As a result, in the composition containing a colorant, undercut is likely to occur, and there is a problem that sufficient adhesion cannot be obtained.
  • the base in the thermosetting resin composition of the present invention, as described above, the base can be sufficiently cured to the deep part of the resin layer by chemically growing the base to the deep part. Therefore, in the thermosetting resin composition of the present invention, even when a colorant is contained, a pattern layer having excellent copper circuit concealing property and excellent adhesion can be formed.
  • coloring agent red, blue, green, yellow, white
  • a conventional known coloring agent such as black, pigments, dyes
  • CI The Society of Dyers and Colorists.
  • Red colorant examples include monoazo, diazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone. It is done.
  • Monoazo PigmentRed 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114,146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, 269.
  • Disazo PigmentRed 37, 38, 41.
  • Monoazo lakes Pigment Red 48: 1, 48: 2, 48: 3, 48: 4, 49: 1, 49: 2, 50: 1, 52: 1, 52: 2,53: 1, 53: 2, 57 : 1, 58: 4, 63: 1, 63: 2, 64: 1,68.
  • Benzimidazolone series Pigment Red 171, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208.
  • Perylene series SolventRed 135, Solvent Red 179, PigmentRed 123, Pigment Red 149, Pigment Red 166, Pigment Red 178, Pigment Red 179, Pigment Red 190, Pigment Red 194, Pigment Red 224.
  • Diketopyrrolopyrrole series Pigment Red 254, Pigment Red 255, Pigment Red 264, Pigment Red 270, Pigment Red 272.
  • Condensed azo systems PigmentRed 220, Pigment Red 144, PigmentRed 166, Pigment Red 214, PigmentRed 220, Pigment Red 221, and PigmentRed 242.
  • Anthraquinone series Pigment Red 168, Pigment Red 177, Pigment Red 216, Solvent Red 149, Solvent Red 150, Solvent Red 52, Solvent Red 207.
  • Kinacridone series PigmentRed 122, Pigment Red 202, PigmentRed 206, Pigment Red 207, PigmentRed 209.
  • Blue colorant examples include phthalocyanine and anthraquinone, and pigments include compounds classified as Pigments, specifically, PigmentBlue 15 and Pigment Blue 15: 1, PigmentBlue 15: 2, Pigment Blue 15: 3, PigmentBlue 15: 4, Pigment Blue 15: 6, PigmentBlue 16, Pigment Blue 60.
  • SolventBlue 35, Solvent Blue 63, SolventBlue 68, Solvent Blue 70, SolventBlue 83, Solvent Blue 87, SolventBlue 94, Solvent Blue 97, SolventBlue 122, Solvent Blue 136, SolventBlue 67, Solvent Blue 70, etc. are used. be able to.
  • a metal-substituted or unsubstituted phthalocyanine compound can also be used.
  • Green colorant examples include phthalocyanine, anthraquinone, and perylene. Specifically, Pigment Green 7, Pigment Green 36, Solvent Green 3, Solvent Green 5, Solvent Green 20, Solvent Green 28, etc. are used. be able to. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
  • Yellow colorant examples include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, and the like.
  • Anthraquinone series Solvent Yellow 163, Pigment Yellow 24, Pigment Yellow 108, Pigment Yellow 193, Pigment Yellow 147, Pigment Yellow 199, Pigment Yellow 202.
  • Isoindolinone type Pigment Yellow 110, Pigment Yellow 109, Pigment Yellow 139, Pigment Yellow 179, Pigment Yellow 185.
  • Condensed azo type PigmentYellow 93, Pigment Yellow 94, PigmentYellow 95, Pigment Yellow 128, PigmentYellow 155, Pigment Yellow 166, PigmentYellow 180.
  • Benzimidazolone series Pigment Yellow 120, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 156, Pigment Yellow 175, Pigment Yellow 181.
  • Monoazo PigmentYellow 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62: 1, 65, 73, 74, 75, 97, 100, 104,105, 111, 116, 167, 168, 169, 182, 183.
  • Disazo series PigmentYellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174,176, 188, 198.
  • a white colorant can also be used as the (B) colorant.
  • the white colorant include titanium oxide. Titanium oxide may be rutile titanium oxide or anatase titanium oxide, but rutile titanium is preferably used. Anatase-type titanium oxide, which is the same titanium oxide, has higher whiteness compared to rutile-type titanium oxide and is often used as a white pigment. The emitted light may cause discoloration of the resin in the insulating resin composition. In contrast, rutile-type titanium oxide is slightly inferior to anatase-type in whiteness, but has almost no photoactivity, so that the resin is deteriorated by light due to the photoactivity of titanium oxide (yellowing). Is remarkably suppressed and is stable against heat. For this reason, when it is used as a white pigment in the insulating layer of the printed wiring board on which the LED is mounted, a high reflectance can be maintained over a long period of time.
  • a well-known thing can be used as rutile type titanium oxide.
  • the rutile type titanium oxide production process there are two kinds of sulfuric acid method and chlorine method, the present invention can also be suitably used those produced by any production method.
  • the sulfuric acid method uses ilmenite ore or titanium slag as a raw material, dissolves this in concentrated sulfuric acid, separates iron as iron sulfate, and hydrolyzes the solution to obtain a hydroxide precipitate.
  • the chlorine method uses synthetic rutile or natural rutile as a raw material, reacts with chlorine gas and carbon at a high temperature of about 1000 ° C to synthesize titanium tetrachloride, and oxidizes this to extract rutile titanium oxide.
  • the rutile type titanium oxide produced by a chlorine method is particularly remarkable effect of suppressing deterioration of the resin due to heat (yellowing), more preferably used in the present invention.
  • titanium oxides it is particularly preferable to use titanium oxide whose surface is treated with hydrous alumina or aluminum hydroxide from the viewpoints of dispersibility in the composition, storage stability, and flame retardancy.
  • Black colorant As the black colorant used in the present invention, a known and commonly used black colorant can be used. Examples of black colorants include carbon black pigments such as CIPigmentblack 6, 7, 9 and 18; graphite pigments such as CIPigment black 8, 10 and the like; CIPigmentblack 11, 12 and 27; Pigment Brown 35 and the like.
  • Iron oxide pigments shown iron oxide of KN-370 manufactured by Toda Kogyo Co., Ltd., 13M titanium black manufactured by Mitsubishi Materials Co., Ltd., anthraquinone pigment expressed by CIPigmentblack 20, etc., CIPigment black 13, 25 And cobalt oxide pigments such as CIPigmentblack 15 and 28, manganese oxide pigments such as CIPigment black 14 and 26, antimony oxide pigments such as CIPigmentblack 23 Pigments, nickel oxide pigments such as CIPigment black 30 etc., perylene pigments such as CIPigment black 31 and 32, pigment Examples of suitable pigments include aniline pigments represented by Black 1, molybdenum sulfide, and bismuth sulfide.
  • pigments are used alone or in appropriate combination.
  • Particularly preferred is carbon black, for example, carbon black manufactured by Mitsubishi Chemical Corporation, M-40, M-45, M-50, MA-8, MA-100, and perylene pigments are organic pigments. Among these, it is effective for reducing halogen.
  • a colorant such as purple, orange or brown may be added for the purpose of adjusting the color tone.
  • the compounding quantity of the coloring agent in the thermosetting resin composition of this invention shall be 10 mass parts or less with respect to 100 mass parts of said thermoreactive compounds. More preferably, it is 0.1 to 5 parts by mass.
  • the compounding quantity of a white colorant shall be 70 mass parts or less with respect to 100 mass parts of said heat-reactive compounds, More preferably, it is 60 mass parts or less.
  • thermosetting resin composition of the present invention a conventionally known polymer resin can be blended for the purpose of improving the flexibility and dryness of the touch of the resulting cured product.
  • the polymer resin include cellulose, polyester, phenoxy resin, polyvinyl acetal, polyvinyl butyral, polyamide, polyamideimide binder polymer, block copolymer, elastomer and the like.
  • a binder polymer may be used individually by 1 type, and may use 2 or more types together.
  • the addition amount of the polymer resin, with respect to the heat-reactive compound 100 parts by weight, preferably not more than 50 parts by weight, more preferably 1 to 30 parts by weight, particularly preferably 5 to 30 parts by weight.
  • the amount of the polymer resin exceeds 50 parts by mass, there is a concern about deterioration of desmear resistance of the thermosetting resin composition, which is not preferable.
  • the block copolymer is a copolymer having a molecular structure in which two or more kinds of polymers having different properties are connected by a covalent bond to form a long chain.
  • the block copolymer used in the present invention is preferably an ABA or ABA ′ type block copolymer.
  • A-B-A or A-B-A 'of the block copolymer, the center of B is the soft block low glass transition point Tg, preferably less than 0 ° C., the both outer A or A' Is a hard block and has a high Tg, and is preferably composed of polymer units of 0 ° C. or higher.
  • the glass transition point Tg is measured by differential scanning calorimetry (DSC).
  • A-B-A or 'out of block copolymer, A or A' A-B-A is Tg consists of more than 50 ° C.
  • the polymer units B is Tg of -20 ° C. or less More preferred is a block copolymer of
  • the ABA and ABA ′ type block copolymers those in which A or A ′ is highly compatible with the heat-reactive compound are preferable, and B is the same as the heat-reactive compound. Those having low compatibility are preferred.
  • a specific structure in the matrix can be easily shown by using a block copolymer in which the blocks at both ends are compatible with the matrix and the central block is incompatible with the matrix.
  • a or A ′ preferably includes polymethyl (meth) acrylate (PMMA), polystyrene (PS) or the like, and B preferably includes poly n-butyl acrylate (PBA), polybutadiene (PB) or the like.
  • PMMA polymethyl (meth) acrylate
  • PS polystyrene
  • PBA poly n-butyl acrylate
  • PB polybutadiene
  • a hydrophilic unit excellent in compatibility with the matrix described above represented by a styrene unit, a hydroxyl group-containing unit, a carboxyl group-containing unit, an epoxy-containing unit, an N-substituted acrylamide unit, etc. as part of the A or A ′ component It becomes possible to introduce and further improve the compatibility.
  • the block copolymer used in the present invention is preferably a ternary or more block copolymer, and a block copolymer having a precisely controlled molecular structure synthesized by a living polymerization method is effective for obtaining the effects of the present invention. More preferred.
  • This block copolymer synthesized by a living polymerization method has a narrow molecular weight distribution, features of each unit is considered to be because became clear.
  • the molecular weight distribution (Mw / Mn) of the block copolymer used is preferably 3 or less, more preferably 2.5 or less, and still more preferably 2.0 or less.
  • the block copolymers containing the (meth) acrylate polymer block as described above are, for example, the methods described in JP-A-2007-516326 and JP-A-2005-515281, particularly the following formulas (1) to (4).
  • the Y unit is polymerized using the alkoxyamine compound represented by any of the above as an initiator, it can be suitably obtained by polymerizing the X unit.
  • n 2 and Z represents a divalent organic group, preferably 1,2-ethanedioxy, 1,3-propanedioxy, 1,4-butanedioxy, 1,6-hexanedioxy Selected from among oxy, 1,3,5-tris (2-ethoxy) cyanuric acid, polyaminoamines such as polyethyleneamine, 1,3,5-tris (2-ethylamino) cyanuric acid, polythioxy, phosphonate or polyphosphonate Ar represents a divalent aryl group.
  • the weight average molecular weight of the block copolymer is preferably in the range of 20,000 to 400,000, more preferably 50,000 to 300,000.
  • the weight average molecular weight is less than 20,000, the desired toughness and flexibility effects cannot be obtained, and when the thermosetting resin composition is formed into a dry film or applied to a substrate and temporarily dried. Inferior to tackiness.
  • the weight average molecular weight exceeds 400,000, the viscosity of the thermosetting resin composition becomes high, and the printability and processability may be remarkably deteriorated.
  • the weight average molecular weight is 50000 or more, an excellent effect is obtained in terms of relaxation against external impact.
  • An elastomer having a functional group can be added to the thermosetting resin composition of the present invention. By adding an elastomer having a functional group, it is expected that the coating property is improved and the strength of the coating film is also improved. Further, polyester elastomers, polyurethane elastomers, polyester urethane elastomers, polyamide elastomers, polyester amide elastomers, acrylic elastomers, olefin elastomers, and the like can be used. In addition, resins in which a part or all of epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can be used.
  • epoxy-containing polybutadiene elastomers acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, and the like can also be used.
  • these elastomers may be used individually by 1 type, and may use 2 or more types together.
  • the thermosetting resin composition preferably contains an inorganic filler.
  • the inorganic filler is used for suppressing the curing shrinkage of the cured product of the thermosetting resin composition and improving the properties such as adhesion and hardness.
  • Examples of the inorganic filler include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg Examples include rich earth.
  • the average particle size (D50) of the inorganic filler is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and even more preferably 0.5 ⁇ m. When the average particle diameter exceeds 1 ⁇ m, the pattern layer may become cloudy, which is not preferable.
  • the average particle diameter (D50) can be measured by a laser diffraction / scattering method. When the average particle diameter is in the above range, the refractive index is close to that of the resin component, the permeability is improved, and the generation efficiency of the base from the photobase generator by light irradiation is increased.
  • the difference in refractive index between the inorganic filler and the alkali developable resin is preferably 0.3 or less.
  • the refractive index of the inorganic filler is preferably 1.4 or more and 1.8 or less.
  • the refractive index of an inorganic filler can be measured based on JISK7105.
  • the blending ratio of the inorganic filler is preferably 75% by mass or less, more preferably 0.1 to 60% by mass based on the total solid content of the thermosetting resin composition. When the blending ratio of the inorganic filler exceeds 75% by mass, the viscosity of the composition is increased, the applicability may be lowered, and the cured product of the thermosetting resin composition may be brittle.
  • thermosetting resin composition of the present invention an organic solvent can be used for preparing the resin composition or adjusting the viscosity for application to a substrate or a carrier film.
  • organic solvents examples include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • thermosetting resin composition of the present invention may contain a photopolymerizable monomer as long as the effects of the present invention are not impaired.
  • Photopolymerizable monomers include alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate; hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate (Meth) acrylates; mono- or di (meth) acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, Polyhydric alcohols such as trishydroxyethyl isocyanurate or polyvalent (meth)
  • the blending amount of the photopolymerizable monomer is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably based on the solid content excluding the solvent of the thermosetting resin composition. 15 mass% or less.
  • the blending amount of the photopolymerizable monomer exceeds 50% by mass, the curing shrinkage increases, so that the warpage may increase.
  • the photopolymerizable monomer is derived from (meth) acrylate, it contains an ester bond. In this case, since the ester bond is hydrolyzed by the desmear treatment, the electrical characteristics may be deteriorated.
  • thermosetting resin composition of the present invention may further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary.
  • a mercapto compound such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite
  • an antifoaming agent such as silicone, fluorine, and polymer
  • Known and commonly used additives such as a leveling agent, a silane coupling agent, and a rust preventive agent can be blended.
  • thermosetting resins such as a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, etc.
  • a thermosetting component such as a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, etc.
  • a thermosetting component such as a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, etc.
  • a thermosetting component such as a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, etc.
  • a thermosetting component such as a block isocyanate compound
  • a photopolymerizable monomer (a low molecular compound compounded to promote photocuring in a photocurable resin composition containing an ethylenically unsaturated group in the molecule and containing a carboxyl group-containing resin as a main component)
  • a photocurable resin composition containing an ethylenically unsaturated group in the molecule and containing a carboxyl group-containing resin as a main component
  • blend When it is set as the composition which does not mix
  • the conventional photocurable resin composition since the photocuring reaction occurs at room temperature, the Tg of the resin composition rises at the time of curing. As a result, the curing reaction may stop, and the Tg of the resin composition may be lowered. There was a need to design.
  • the alkali development type thermosetting resin composition of the present invention is not limited to Tg before the curing reaction, and can be expected to have a high Tg. Further, the alkali development type thermosetting resin composition of the present invention can be expected to be cured without being inhibited by oxygen.
  • thermosetting resin composition of the present invention is useful for formation of a printed wiring board pattern layer, it is useful as a material for inter alia solder resist or an interlayer insulating layer.
  • the pattern forming method in which the thermosetting resin composition of the present invention can be suitably used includes the step (A) of forming a resin layer made of a thermosetting resin composition on a substrate, and a negative pattern-shaped light irradiation. Activating the photobase generator contained in the thermosetting resin composition in step (B) to cure the light-irradiated part, and forming a negative pattern layer by removing the unirradiated part by development ( C). A light irradiation part is hardened by generating a base in the light irradiation part of a thermosetting resin composition by pattern-shaped light irradiation.
  • the unirradiated part is removed, and a negative pattern layer is formed.
  • a process (A) is a process of forming the resin layer which consists of a thermosetting resin composition in a base material.
  • the resin layer is formed by a method in which a liquid thermosetting resin composition is applied and dried on a substrate, or a method in which a thermosetting resin composition is formed into a dry film and laminated on the substrate. be able to.
  • thermosetting resin composition As a method for applying the thermosetting resin composition to the substrate, a known method such as a blade coater, a lip coater, a comma coater, or a film coater can be appropriately employed. Also, the drying method is a method using a hot-air circulation type drying furnace, IR furnace, hot plate, convection oven, etc., equipped with a heat source of the heating method by steam, and the hot air in the dryer is counter-contacted and supported by the nozzle Known methods such as a method of spraying on the body can be applied.
  • Step (B) is a step of irradiating light in a negative pattern and activating the photobase generator contained in the thermosetting resin composition to cure the light irradiated portion.
  • the photobase generator is destabilized by the base generated in the light irradiation part, and further the base is generated. In this way, the base can be sufficiently cured to the deep part of the light irradiation part by chemically growing.
  • a direct drawing device for example, a laser direct imaging device that directly draws an image with a laser using CAD data from a computer
  • a light irradiator equipped with a metal halide lamp for example, a laser direct imaging device that directly draws an image with a laser using CAD data from a computer
  • a light irradiator equipped with a metal halide lamp for example, a laser direct imaging device that directly draws an image with a laser using CAD data from a computer
  • a light irradiator equipped with a metal halide lamp for example, a light irradiator equipped with a metal halide lamp, and an (ultra) high pressure mercury lamp
  • an ultraviolet lamp such as a (super) high pressure mercury lamp.
  • a negative mask can be used as the patterned light irradiation mask.
  • the active energy ray it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 410 nm. By setting the maximum wavelength within this range, the thermal reactivity of the thermosetting resin composition can be improved efficiently. If a laser beam in this range is used, either a gas laser or a solid laser may be used. The amount of light irradiation varies depending on the film thickness and the like, but can be generally in the range of 100 to 1500 mJ / cm 2 , preferably 300 to 1500 mJ / cm 2 .
  • the direct drawing apparatus for example, those manufactured by Nippon Orbotech, Pentax, etc. can be used, and any apparatus that oscillates laser light having a maximum wavelength of 350 to 410 nm may be used. .
  • Step (B1) the light irradiation part is cured by heating.
  • Step (B1) can be cured to a deep portion by the base generated in step (B).
  • the heating temperature is preferably a temperature at which the light-irradiated portion of the thermosetting resin composition is thermally cured, but the non-irradiated portion is not thermally cured.
  • the heat generation start temperature or the heat generation peak temperature of the unirradiated thermosetting resin composition is lower than the heat generation start temperature or the heat generation peak temperature of the light irradiated thermosetting resin composition. Heating at a high temperature is preferred. By heating in this way, only the light irradiation part can be selectively cured.
  • the heating temperature is, for example, 80 to 140 ° C.
  • the heating temperature is 80 ° C. or higher.
  • the heating temperature is set to 140 ° C. or lower, only the light irradiation part can be selectively cured.
  • the heating time is, for example, 10 to 100 minutes.
  • the heating method is the same as the drying method. In the unirradiated portion, no base is generated from the photobase generator, so that thermosetting is suppressed.
  • Step (C) is a step of forming a negative pattern layer by removing unirradiated portions by development.
  • a developing method a known method such as a dipping method, a shower method, a spray method, or a brush method can be used.
  • Developers include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines such as ethanolamine, and alkalis such as tetramethylammonium hydroxide aqueous solution (TMAH).
  • TMAH tetramethylammonium hydroxide aqueous solution
  • An aqueous solution or a mixed solution thereof can be used.
  • the pattern forming method preferably further includes an ultraviolet irradiation step (D) after the step (C).
  • an ultraviolet irradiation step (D) after the step (C) By further irradiating with ultraviolet rays after the step (C), the photobase generator remaining without being activated at the time of light irradiation can be activated.
  • the wavelength of ultraviolet rays and the light irradiation amount (exposure amount) in the ultraviolet irradiation step (D) after the step (C) may be the same as or different from those in the step (B).
  • a suitable light irradiation amount (exposure amount) is 150 to 2000 mJ / cm 2 .
  • the pattern formation method preferably further includes a thermosetting (post-cure) step (E) after the step (C).
  • a thermosetting (post-cure) step (E) after the step (C).
  • the pattern layer is sufficiently heat-cured by the base generated from the photobase generator in the step (B) or the steps (B) and (D). Since the unirradiated portion has already been removed at the time of the step (E), the step (E) can be performed at a temperature equal to or higher than the curing reaction start temperature of the unirradiated thermosetting resin composition. Thereby, a pattern layer can fully be thermosetted.
  • the heating temperature is, for example, 160 ° C. or higher.
  • the pattern forming method may further include a laser processing step (F). Fine openings can be formed by laser processing.
  • a known laser such as a YAG laser, a CO2 laser, or an excimer laser can be used.
  • the step (F) is preferably performed after the step (C) or after the steps (D) and (E) when the step (F) includes the steps (D) and (E).
  • Step (G) The pattern forming method of the present invention preferably further includes a desmear process (G) after the process (F).
  • Step (G) includes a smear swelling step for swelling smear to facilitate removal, a removal step for removing smear, and a neutralization step for neutralizing sludge generated from the desmear liquid used in the removal step.
  • the swelling step is performed using an alkali chemical such as sodium hydroxide, and facilitates smear removal with a desmear chemical.
  • removing step smear is removed using an acidic chemical solution containing an oxidizing agent such as dichromic acid or permanganic acid.
  • the neutralization step the oxidizing agent used in the removal step is reduced and removed using an alkaline chemical such as sodium hydroxide.
  • thermosetting resin composition (Examples 1 to 10) ⁇ Preparation of thermosetting resin composition>
  • the materials described in the examples were respectively mixed, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a thermosetting resin composition.
  • the values in the table are parts by mass unless otherwise specified.
  • thermosetting resin composition was applied to the pre-treated printed wiring board so as to have a thickness of 20 ⁇ m after drying. Then, it dried at 90 degreeC / 30min with the hot air circulation type drying furnace, and formed the resin layer which consists of a thermosetting resin composition.
  • A Development is possible with a sodium carbonate aqueous solution in place of the TMAH / 5 wt% ethanolamine mixed aqueous solution. There is no damage by the developer on the surface of the light irradiated area, and there is no development residue on the unirradiated area.
  • The surface of the light-irradiated part is not damaged by the developer, and the development residue is not seen in the unirradiated part.
  • X The development residue was confirmed in the non-irradiated part. Alternatively, the unexposed area could not be developed.
  • XX A state where both the light irradiated part and the unirradiated part are completely dissolved.
  • the base material on which the developability (patterning) was evaluated was further irradiated with ultraviolet rays at an energy amount of 1 J / cm 2 using an ORC ultraviolet irradiation device, and then cured at 170 ° C. for 60 minutes in a hot air circulation drying oven. (Post cure). Then, laser processing was performed on the light irradiation surface.
  • the light source was processed with a CO 2 laser (Hitachi Via Mechanics, light source 10.6 ⁇ m). Evaluation was made according to the following criteria. In order to give superiority or inferiority in workability, laser processing was performed under the same conditions.
  • the target of the processing diameter is a top diameter of 65 ⁇ m / bottom of 50 ⁇ m.
  • the desmear process was further performed with the permanganate desmear aqueous solution (wet method).
  • evaluation of desmear resistance confirmation of the surface roughness of the substrate surface and the state around the laser opening were evaluated according to the following criteria.
  • each surface roughness Ra was measured with a laser microscope VK-8500 (Keyence Corporation, measurement magnification 2000 times, Z-axis direction measurement pitch 10 nm). The laser aperture was observed with an optical microscope.
  • thermosetting resin composition was formed on a double-sided printed wiring board having a thickness of copper of 15 ⁇ m and a circuit being formed on a double-sided printed wiring board according to the preparation of the substrate for evaluating developability and curing characteristics. Then, using air reflow (Atec Techtron Co., Ltd.) set so that the exposure temperature at the above temperature is 270 ° C. and the exposure time at the above temperature is 10 seconds or more in the air atmosphere, 5 cycles of reflow treatment is performed on each substrate to conceal. Evaluation of adhesiveness and adhesion were performed according to the following criteria. Evaluation of concealment is made by visually confirming the presence or absence of discoloration of the copper circuit.
  • the substrate surface after reflow treatment is cut according to the cross-cut method (JISK5600), and the cured coating film is formed with a tape peel. Confirmed the peeling.
  • No circuit discoloration was confirmed by visual evaluation, and no peeling due to tape peel was confirmed.
  • Circuit discoloration was confirmed by visual evaluation, but peeling by tape peel was not confirmed.
  • X Discoloration of the circuit was confirmed by visual evaluation, and peeling by tape peel was also confirmed.
  • FIG. 1 shows a DSC chart of the resin layer of Example 1, and FIG. Each figure is a DSC chart of an unirradiated resin layer and a resin layer with a light irradiation amount of 1000 mJ / cm 2 .
  • the peak shifted to the low temperature side by light irradiation.
  • a peak was first exhibited by light irradiation.
  • the exothermic peak temperature T peak 1 of the light-irradiated portion and the exothermic peak temperature of the non-irradiated portion were defined as T peak 2 and ⁇ T peak was defined as follows.
  • ⁇ T peak T peak 2 ⁇ T peak 1
  • Example 1 shows a DSC chart of the pattern layer of Example 1
  • FIG. 2 shows a pattern layer of Example 9. It can be seen that the heat curing reaction proceeds more efficiently because the amount of heat generation increased in the pattern layer of Example 1 due to ultraviolet irradiation. In addition, it can be seen that the heat curing reaction proceeds more efficiently because the amount of heat generation increased and the peak shifted to the low temperature side in the pattern layer of Example 9 due to ultraviolet irradiation.
  • thermosetting resin composition having the composition shown in Table 4 below was prepared in the same manner as in the above example, and applied to the base material to prepare a base material provided with a resin layer made of the thermosetting resin composition.
  • the results of DSC measurement are shown in Table 5 below.
  • Comparative Example 1 evaluation was performed in the same manner as in Example 1 except that no photobase generator was added.
  • Comparative Example 2 evaluation was performed in the same manner as in Example 1 except that lucillin TPO was blended in place of the photobase generator.
  • the first light irradiation was not performed, and the heat treatment was performed at the temperature shown in Table 6 for 30 minutes. Further, subsequent ultraviolet irradiation and post-cure were not performed.
  • the desmear process was performed similarly to the above, and the hardening characteristic was evaluated. The obtained results are shown in Table 6 below.
  • thermosetting resin composition comprising a thermoreactive compound, an alkali developable resin, and a photobase generator. It was found that the characteristics were excellent and pattern formation by development was possible. On the other hand, in Comparative Examples 1 to 4, pattern formation was difficult.
  • thermosetting resin compositions were prepared in the same manner as in Example 1.
  • Example 11 as in Example 1, a liquid thermosetting resin composition was directly applied to a printed wiring substrate, dried, irradiated with light, heat-treated, alkali developed, irradiated with ultraviolet rays, and thermally cured in order.
  • Example 12 to 66 and Comparative Examples 5 to 7 a dry film was prepared using the thermosetting resin composition as described below, and laminated on a printed wiring substrate to prepare a printed wiring board.
  • thermosetting resin composition As a carrier film, a thermosetting resin composition was applied on a PET film having a thickness of 38 ⁇ m using an applicator, and then dried at 90 ° C. for 30 minutes to prepare a dry film. The coating amount was adjusted so that the thickness of the thermosetting resin composition was about 20 ⁇ m after drying. Thereafter, the obtained dry film was slit to a predetermined size.
  • ⁇ Laminate> A double-sided printed wiring board having a copper thickness of 15 ⁇ m and a circuit formed thereon was prepared, and a pre-processed printed wiring board using MEC CZ-8100 was used using a vacuum laminator MVLP-500 A dry film was laminated on the printed wiring board substrate to obtain a printed wiring board having a resin layer. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec.
  • thermal cycle characteristic evaluation was performed.
  • the processing conditions are as follows: -65 ° C for 30 min, 150 ° C for 30 min, heat history is added, and after 2000 cycles, the surface of the thermosetting resin composition and the state of the pattern formation periphery are observed with an optical microscope. Then, cracks were evaluated according to the following criteria. The number of observation patterns was 100 holes.
  • Measuring apparatus Appe refractometer Measuring conditions: Wavelength 589.3 nm, temperature 25 ° C.
  • WPBG-140 1- (anthraquinone-2-yl) ethylimidazolecarboxylate, Wako Pure Chemical Industries, Ltd.
  • polymer resin MAM M52 H30: MMA / nBA / MMA triblock copolymer, Arkema Co. dissolved in cyclohexanone.
  • Solid content 30% PB-3600: Epoxidized polybutadiene Mn 5900, Daicel Chemical Company KS-10 H30: Polyvinyl butyral, Sekisui Chemical Co. dissolved in cyclohexanone.
  • Solid content 30% YX8100 BH30 Phenoxy resin. Mitsubishi Chemical Corporation.
  • Example 67 is the same as Example 1 except having reduced the compounding part number of the photobase generator of Example 1 to 10 mass parts.
  • Example 15 As shown in Table 15, in Examples 1 and 8, the development was good when heated at 120 ° C. for 20 to 40 minutes. That is, in Examples 1 and 8, the range of the heating time that can be developed was 20 minutes. In Example 3, the development was good when heated at 120 ° C. for 80 to 100 minutes. That is, also in Example 3, the range of the heating time that can be developed was 20 minutes. In Examples 9 and 67, development was good only when heated at 120 ° C. for 60 or 40 minutes. Therefore, the photobase generator having a plurality of nitrogen atoms in the molecular structure used in Examples 1, 3, and 8 has a longer developable time range than that in Example 9, and thus the printed wiring board is manufactured. Was found to be easier.
  • the base material provided with the resin layers obtained in Examples 32, 36, and 50 was irradiated with a negative pattern using ORC HMW680GW (metal halide lamp, scattered light). About each base material, the light irradiation amount of light was set to 1000 mJ / cm ⁇ 2 >, and the pattern light irradiation was performed. After light irradiation, the resin layer is scraped off from the base material, and immediately heated to 30-300 ° C. at a temperature increase rate of 5 ° C./min in Seiko Instruments Inc. DSC-6200. DSC measurement was performed.
  • the film was irradiated in a negative pattern with ORC HMW680GW (metal halide lamp, scattered light) at a light irradiation amount of 300 mJ / cm 2 . Thereafter, development was performed with a 1 wt% sodium carbonate aqueous solution for 60 seconds, followed by heat treatment at 150 ° C./60 min using a hot-air circulating drying oven to obtain a patterned cured coating film. Thereafter, laser workability and desmear resistance were evaluated in the same manner as in Example 11 above. As a result, the laser processability was “ ⁇ ”, but the desmear resistance was “x”.

Abstract

Provided is an alkali-development-type thermoset resin composition with which a pattern can be formed by means of development, and a printed circuit board. An alkali-development-type thermoset resin composition characterized in containing an alkali-development resin, a thermally reactive compound, and a photobase generator, in which the alkali-development resin and the thermally reactive compound undergo an addition reaction using selective optical irradiation, thereby making it possible to form a negative pattern by alkali development.

Description

アルカリ現像型の熱硬化性樹脂組成物、プリント配線板Alkali development type thermosetting resin composition, printed wiring board
 本発明は、アルカリ現像型の熱硬化性樹脂組成物、プリント配線板に関する。 The present invention relates to an alkali development type thermosetting resin composition and a printed wiring board.
 従来、プリント配線板のソルダーレジストに用いられる材料として、アルカリ水溶液により現像が可能な光硬化性樹脂組成物がある。例えば、特許文献1、2には、エポキシ樹脂の変性により誘導されたエポキシアクリレート変性樹脂(以下、エポキシアクリレートと略記する場合がある。)を含む光硬化性樹脂組成物が用いられている。
 このような光硬化性樹脂組成物を用いるソルダーレジストの形成方法としては、基材に光硬化性樹脂組成物を塗布及び乾燥して樹脂層を形成し、その樹脂層に対して、パターン状に光照射した後、アルカリ現像液で現像することにより形成する方法がある。
Conventionally, as a material used for a solder resist of a printed wiring board, there is a photocurable resin composition that can be developed with an alkaline aqueous solution. For example, Patent Documents 1 and 2 use a photocurable resin composition containing an epoxy acrylate-modified resin (hereinafter sometimes abbreviated as epoxy acrylate) derived by modification of an epoxy resin.
As a method for forming a solder resist using such a photocurable resin composition, a photocurable resin composition is applied to a substrate and dried to form a resin layer, and the resin layer is patterned. There is a method of forming by developing with an alkali developer after light irradiation.
 一方、特許文献3では、2級水酸基を有する熱硬化性樹脂を含まないことにより、デスミア耐性が向上した組成物が開示されている。この組成物では、例えば、スクリーン印刷により、ソルダーレジストが形成されている。 On the other hand, Patent Document 3 discloses a composition having improved desmear resistance by not including a thermosetting resin having a secondary hydroxyl group. In this composition, a solder resist is formed by, for example, screen printing.
特開昭61-243869号公報(特許請求の範囲)JP 61-243869 (Claims) 特開平3-250012号公報(特許請求の範囲)Japanese Patent Laid-Open No. 3-250012 (Claims) 特開2004-240233号公報(特許請求の範囲)JP 2004-240233 A (Claims)
 しかしながら、特許文献3のような熱硬化性樹脂組成物では、光硬化性樹脂組成物のような光照射によって選択的に光照射部を硬化させるということができないため、現像によってパターン層を形成ができない。従って、熱硬化性樹脂組成物のパターン層の形成は、スクリーン印刷などの印刷方法や、レーザー加工による形成に制限されてしまうという問題がある。 However, in the thermosetting resin composition as in Patent Document 3, the light irradiation part cannot be selectively cured by light irradiation as in the photocurable resin composition, so that the pattern layer can be formed by development. Can not. Accordingly, there is a problem that the formation of the pattern layer of the thermosetting resin composition is limited to a printing method such as screen printing or formation by laser processing.
 そこで本発明の目的は、現像によるパターン形成が可能なアルカリ現像型の熱硬化性樹脂組成物、プリント配線板を提供することにある。 Accordingly, an object of the present invention is to provide an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern by development.
 本発明者等は、上記課題を解決すべく鋭意検討した結果、以下の構成とすることで上記課題を解決しうることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-described problems, the present inventors have found that the above-described problems can be solved with the following configuration, and have completed the present invention.
 即ち、本発明のアルカリ現像型の熱硬化性樹脂組成物は、アルカリ現像性樹脂、熱反応性化合物、および、光塩基発生剤を含み、選択的な光照射で前記アルカリ現像性樹脂と前記熱反応性化合物が付加反応することにより、アルカリ現像によるネガ型のパターン形成が可能となることを特徴とするものである。 That is, the alkali-developable thermosetting resin composition of the present invention contains an alkali-developable resin, a heat-reactive compound, and a photobase generator, and is selectively irradiated with the alkali-developable resin and the heat-curable resin composition. When the reactive compound undergoes an addition reaction, a negative pattern can be formed by alkali development.
 本発明のアルカリ現像型の熱硬化性樹脂組成物は、さらに着色剤を含むことが好ましい。 The alkali-developable thermosetting resin composition of the present invention preferably further contains a colorant.
 また、本発明のアルカリ現像型の熱硬化性樹脂組成物は、光照射によりDSC測定において発熱ピークを生じるか、又は、光照射したアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度が、未照射のアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度よりも低い、もしくは、光照射したアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度が、未照射のアルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度よりも低いものであることが好ましい。 In addition, the alkali development type thermosetting resin composition of the present invention generates an exothermic peak in DSC measurement by light irradiation, or starts heat generation in DSC measurement of the alkali development type thermosetting resin composition irradiated with light. The temperature is lower than the heat generation start temperature in the DSC measurement of the unirradiated alkali development type thermosetting resin composition, or the heat generation peak temperature in the DSC measurement of the light irradiated alkali development type thermosetting resin composition is It is preferable that the temperature is lower than the exothermic peak temperature in DSC measurement of the unirradiated alkali development type thermosetting resin composition.
 本発明により、現像によりパターン層の形成が可能なアルカリ現像型の熱硬化性樹脂組成物、プリント配線板を提供することができる。また、本発明のパターン層は、熱硬化性樹脂からなるため、硬化性に優れ、硬化収縮を抑えることが期待できる。 According to the present invention, an alkali development type thermosetting resin composition and a printed wiring board capable of forming a pattern layer by development can be provided. Moreover, since the pattern layer of this invention consists of thermosetting resins, it can be anticipated that it is excellent in curability and suppresses curing shrinkage.
図1は、本発明の実施例1の熱硬化性樹脂組成物からなる層の光照射部又は未照射部についてのDSCチャートを示す図である。FIG. 1 is a diagram showing a DSC chart of a light irradiated part or an unirradiated part of a layer made of the thermosetting resin composition of Example 1 of the present invention. 図2は、本発明の実施例9の熱硬化性樹脂組成物からなる層の光照射部又は未照射部についてのDSCチャートを示す図である。FIG. 2 is a diagram showing a DSC chart of the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 9 of the present invention. 図3は、本発明の実施例32の熱硬化性樹脂組成物からなる層の光照射部又は未照射部についてのDSCチャートを示す図である。FIG. 3 is a diagram showing a DSC chart of the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 32 of the present invention. 図4は、本発明の実施例36の熱硬化性樹脂組成物からなる層の光照射部又は未照射部についてのDSCチャートを示す図である。FIG. 4 is a diagram showing a DSC chart for the light irradiated portion or the non-irradiated portion of the layer made of the thermosetting resin composition of Example 36 of the present invention. 図5は、本発明の実施例50の熱硬化性樹脂組成物からなる層の光照射部又は未照射部についてのDSCチャートを示す図である。FIG. 5 is a diagram showing a DSC chart of a light irradiated part or an unirradiated part of a layer made of the thermosetting resin composition of Example 50 of the present invention. 図6は、本発明のパターン層の形成方法を示す模式図である。FIG. 6 is a schematic view showing a method for forming a pattern layer of the present invention.
 本発明のアルカリ現像型の熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」と略記する場合がある。)は、アルカリ現像性樹脂、熱反応性化合物、および、光塩基発生剤を含み、選択的な光照射でアルカリ現像性樹脂と熱反応性化合物が付加反応することにより、アルカリ現像によるネガ型のパターン形成が可能となることを特徴とするものである。
 この熱硬化性樹脂組成物からなる樹脂層では、光照射によって表面で塩基が発生する。この発生した塩基によって光塩基発生剤が不安定化して、さらに塩基が発生する。このように塩基が発生することにより、樹脂層の深部まで化学的に増殖すると考えられる。そして、塩基が、アルカリ現像性樹脂と熱反応性化合物が付加反応する際の触媒として作用しながら、深部まで付加反応が進行するので、光照射部では、深部まで樹脂層が硬化する。
 従って、熱硬化性樹脂組成物をパターン状に光照射した後、アルカリ現像することより、未照射部を除去して、パターン形成することができる。
 また、本発明の熱硬化性樹脂組成物は、アルカリ現像性樹脂と熱反応性化合物が付加反応により硬化するため、光硬化性樹脂組成物のような光連鎖反応に進行しないので、ひずみや硬化収縮の少ないパターン層を得ることができる。
 熱硬化性樹脂組成物は、未照射の状態では加熱しても硬化せず、光照射して初めて熱による硬化が可能となる組成物であってもよい。
The alkali developing type thermosetting resin composition of the present invention (hereinafter sometimes abbreviated as “thermosetting resin composition”) includes an alkali developing resin, a thermoreactive compound, and a photobase generator. In addition, a negative pattern can be formed by alkali development by an addition reaction between the alkali-developable resin and the heat-reactive compound by selective light irradiation.
In the resin layer made of this thermosetting resin composition, a base is generated on the surface by light irradiation. The generated base destabilizes the photobase generator and further generates a base. The generation of the base in this way is considered to cause chemical multiplication up to the deep part of the resin layer. And since an addition reaction advances to a deep part, a base acts as a catalyst at the time of addition reaction of an alkali developable resin and a heat-reactive compound, a resin layer hardens | cures to a deep part in a light irradiation part.
Therefore, after the thermosetting resin composition is irradiated with light in a pattern, the pattern can be formed by removing the unirradiated portion by alkali development.
Moreover, since the thermosetting resin composition of the present invention cures by an addition reaction between an alkali-developable resin and a thermoreactive compound, it does not proceed to a photo-chain reaction like a photocurable resin composition, so that distortion and curing A pattern layer with little shrinkage can be obtained.
The thermosetting resin composition may be a composition that does not cure even when heated in an unirradiated state and that can be cured by heat only after irradiation with light.
 本発明の熱硬化性樹脂組成物は、光照射によりDSC測定において発熱ピークを生じるか、又は、光照射した熱硬化性樹脂組成物のDSC測定における発熱開始温度が、未照射の熱硬化性樹脂組成物のDSC測定における発熱開始温度よりも低い、もしくは、光照射した熱硬化性樹脂組成物のDSC測定における発熱ピーク温度が、未照射の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度よりも低いものであることが好ましい。
 また、本発明の熱硬化性樹脂組成物は、光照射した熱硬化性樹脂組成物と未照射の熱硬化性樹脂組成物との、DSC測定における発熱開始温度の温度差(ΔT start)とも称する)もしくは発熱ピーク温度の温度差(ΔT peakとも称する)が、10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることがさらにより好ましい。
 ここで、ΔT startとは、同様の組成の熱硬化性樹脂組成物を用意し、一方は光照射した後に、もう一方は光照射せずにそのまま、DSC(示差走査熱量測定、Differential scanning calorimetry)測定をそれぞれ行い、光照射した樹脂組成物の硬化反応の開始を示す発熱開始温度と、未照射の樹脂組成物の発熱開始温度の温度差を指す。ΔT peakは、同様にDSC測定を行った時の、光照射、未照射の樹脂組成物の発熱ピーク温度の温度差をいう。
 なお、光照射した熱硬化性樹脂組成物のDSC測定における光照射量は、光照射量を上げていき、熱硬化性樹脂組成物の光照射による発熱ピーク温度のシフトが起こらなくなる(サチュレーション)光照射量である。
 ΔT startもしくはΔT peakが10℃以上のものであることにより、未照射部がアルカリ現像により残存してしまういわゆるカブリや、光照射部がアルカリ現像により除去されてしまういわゆる食われの発生を抑制することができる。また、ΔT startもしくはΔT peakが10℃以上のものであることにより、後述する加熱工程(B1)においてとりうる加熱温度の範囲を広くとることが可能となる。
The thermosetting resin composition of the present invention generates a heat generation peak in DSC measurement by light irradiation, or the heat generation start temperature in DSC measurement of the light-cured thermosetting resin composition is an unirradiated thermosetting resin. The exothermic peak temperature in the DSC measurement of the uncured thermosetting resin composition is lower than the exothermic peak temperature in the DSC measurement of the thermosetting resin composition that is lower than the exothermic start temperature in the DSC measurement of the composition or is irradiated with light. Is also preferably low.
In addition, the thermosetting resin composition of the present invention is also referred to as a temperature difference (ΔT start) of the heat generation starting temperature in DSC measurement between the light-irradiated thermosetting resin composition and the non-irradiated thermosetting resin composition. ) Or the exothermic peak temperature difference (also referred to as ΔT peak) is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 30 ° C. or higher.
Here, ΔT start is a thermosetting resin composition having the same composition, one is irradiated with light, and the other is not irradiated with light, and the DSC (Differential Scanning Calorimetry) is left as it is. Each measurement is performed, and refers to the temperature difference between the heat generation start temperature indicating the start of the curing reaction of the resin composition irradiated with light and the heat generation start temperature of the unirradiated resin composition. ΔT peak refers to the temperature difference between the exothermic peak temperatures of the resin composition irradiated and unirradiated when DSC measurement is similarly performed.
In addition, the light irradiation amount in DSC measurement of the thermosetting resin composition irradiated with light increases the light irradiation amount, and the shift of the exothermic peak temperature due to the light irradiation of the thermosetting resin composition does not occur (saturation). Irradiation amount.
When ΔT start or ΔT peak is 10 ° C. or higher, the occurrence of so-called fogging in which the unirradiated part remains due to alkali development and so-called biting in which the light-irradiated part is removed by alkali development is suppressed. be able to. Further, when ΔT start or ΔT peak is 10 ° C. or more, it is possible to widen the range of heating temperatures that can be taken in the heating step (B1) described later.
 以下、熱硬化性樹脂組成物の各成分について詳述する。 Hereinafter, each component of the thermosetting resin composition will be described in detail.
[アルカリ現像性樹脂]
 アルカリ現像性樹脂は、フェノール性水酸基、チオール基およびカルボキシル基のうち1種以上の官能基を含有し、アルカリ溶液で現像可能な樹脂であり、好ましくはフェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられる。
[Alkali developable resin]
The alkali-developable resin is a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution, preferably a compound having two or more phenolic hydroxyl groups, carboxyl Examples thereof include a group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
 フェノール性水酸基を2個以上有する化合物としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ビスフェノールF、ビスフェノールS型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物など公知慣用のフェノール樹脂が挙げられる。
 また、フェノール樹脂として、ビフェニル骨格、或いはフェニレン骨格、又はその両方の骨格を有する化合物と、フェノール性水酸基含有化合物としてフェノール、オルソクレゾール、パラクレゾール、メタクレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、カテコール、レゾルシノール、ハイドロキノン、メチルハイドロキノン、2,6-ジメチルハイドロキノン、トリメチルハイドロキノン、ピロガロール、フロログルシノール等とを用いて合成した、様々な骨格を有するフェノール樹脂を用いてもよい。
 これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the compound having two or more phenolic hydroxyl groups include phenol novolac resin, alkylphenol volac resin, bisphenol A novolac resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene modified phenol resin, polyvinylphenols, bisphenol F, Examples thereof include known and commonly used phenol resins such as bisphenol S-type phenol resin, poly-p-hydroxystyrene, a condensate of naphthol and aldehydes, and a condensate of dihydroxynaphthalene and aldehydes.
In addition, as a phenol resin, a compound having a biphenyl skeleton or a phenylene skeleton, or both, and as a phenolic hydroxyl group-containing compound, phenol, orthocresol, paracresol, metacresol, 2,3-xylenol, 2,4- Xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, catechol, resorcinol, hydroquinone, methylhydroquinone, 2,6-dimethylhydroquinone, trimethylhydroquinone, pyrogallol, phloroglucinol You may use the phenol resin which synthesize | combined using these and which have various frame | skeletons.
These may be used alone or in combination of two or more.
 カルボキシル基含有樹脂としては、公知のカルボキシル基を含む樹脂を用いることができる。カルボキシル基の存在により、樹脂組成物をアルカリ現像性とすることができる。また、カルボキシル基の他に、分子内にエチレン性不飽和結合を有する化合物を用いてもよいが、本発明においては、カルボキシル基含有樹脂として、例えば下記(1)のような、エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いることが好ましい。 As the carboxyl group-containing resin, a known resin containing a carboxyl group can be used. Due to the presence of the carboxyl group, the resin composition can be made alkali developable. In addition to the carboxyl group, a compound having an ethylenically unsaturated bond in the molecule may be used, but in the present invention, as the carboxyl group-containing resin, for example, ethylenically unsaturated as shown in (1) below. It is preferable to use only a carboxyl group-containing resin having no double bond.
 本発明に用いることができるカルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマー及びポリマーのいずれでもよい)が挙げられる。 Specific examples of the carboxyl group-containing resin that can be used in the present invention include the compounds listed below (any of oligomers and polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。なお、低級アルキルとは、炭素原子数1~5のアルキル基を指す。 (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene. The lower alkyl refers to an alkyl group having 1 to 5 carbon atoms.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物及びポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, polyethers A carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂 (3) Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A type Terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the terminal of urethane resin by polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物及びジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( Carboxyl group-containing urethane resin by polyaddition reaction of (meth) acrylate or its partial acid anhydride modified product, carboxyl group-containing dialcohol compound and diol compound.
 (5)上記(2)又は(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of the above (2) or (4), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing urethane resin.
 (6)上記(2)又は(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin of (2) or (4) above, one isocyanate group and one or more (meth) acryloyl groups are present in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. The carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
 (7)前述するような多官能(固形)エポキシ樹脂に(メタ)アクリル酸等の不飽和モノカルボン酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (7) An unsaturated monocarboxylic acid such as (meth) acrylic acid is reacted with the polyfunctional (solid) epoxy resin as described above, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride is added to the hydroxyl group present in the side chain. A carboxyl group-containing resin to which a dibasic acid anhydride such as an acid is added.
 (8)前述するような多官能(固形)エポキシ樹脂に飽和モノカルボン酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (8) A dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is reacted with a saturated monocarboxylic acid on the polyfunctional (solid) epoxy resin as described above, and the hydroxyl group present in the side chain. A carboxyl group-containing resin to which is added.
 (9)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (9) A carboxyl obtained by reacting (meth) acrylic acid with a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin with epichlorohydrin and adding a dibasic acid anhydride to the resulting hydroxyl group Group-containing resin.
 (10)後述するような多官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (10) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane resin as described later with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂を含まない非感光性カルボキシル基含有樹脂。 (11) A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide. Non-photosensitive carboxyl group-containing resin that does not contain.
 (12)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に飽和モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide is reacted with a saturated monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a basic acid anhydride.
 (13)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (13) Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a product.
 (14)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に飽和モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂を含まない非感光性カルボキシル基含有樹脂。 (14) A reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate, with a saturated monocarboxylic acid. A non-photosensitive carboxyl group-containing resin that does not contain a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride.
 (15)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (15) A carboxyl group obtained by reacting a polybasic acid anhydride with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. Containing resin.
 (16)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (16) Obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a reaction product obtained by reacting a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (17)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、飽和モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (17) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and a saturated monocarboxylic acid React with acid and react with polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid etc. to the alcoholic hydroxyl group of the resulting reaction product Carboxyl group-containing resin obtained by making it.
 (18)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (18) reacting an epoxy compound having a plurality of epoxy groups in one molecule with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol; Carboxyl groups obtained by reacting polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipic acid with the alcoholic hydroxyl group of the obtained reaction product Containing resin.
 (19)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (19) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Reacting with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and then reacting with the alcoholic hydroxyl group of the resulting reaction product, maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as an acid.
 (20)上記(1)~(19)のいずれかの樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。 (20) One epoxy group and one or more (meth) acryloyl groups in the molecule of glycidyl (meth) acrylate, α-methylglycidyl (meth) acrylate, etc., in addition to the resin of any one of (1) to (19) above A carboxyl group-containing resin formed by adding a group-containing compound.
 上記のようなアルカリ現像性樹脂は、バックボーン・ポリマーの側鎖に多数のカルボキシル基やヒロドキシ基等を有するため、アルカリ水溶液による現像が可能になる。
 また、上記カルボキシル基含有樹脂のヒドロキシル基当量又はカルボキシル基当量は、80~900g/eq.であることが好ましく、さらに好ましくは、100~700g/eq.である。ヒドロキシル基当量又はカルボキシル基当量が900g/eq.を超えた場合、パターン層の密着性が得られなかったり、アルカリ現像が困難となることがある。一方、ヒドロキシル基当量又はカルボキシル基当量が80g/eq.未満の場合には、現像液による光照射部の溶解が進むために、必要以上にラインが痩せたり、場合によっては、光照射部と未照射部の区別なく現像液で溶解剥離してしまい、正常なレジストパターンの描画が困難となることがあるので好ましくない。また、カルボキシル基当量やフェノール基当量が大きい場合、アルカリ現像性樹脂の含有量が少ない場合でも、現像が可能となるため、好ましい。
Such an alkali-developable resin has a large number of carboxyl groups, hydroxyl groups, and the like in the side chain of the backbone polymer, so that development with an alkaline aqueous solution becomes possible.
The hydroxyl group equivalent or carboxyl group equivalent of the carboxyl group-containing resin is 80 to 900 g / eq. And more preferably 100 to 700 g / eq. It is. Hydroxyl group equivalent or carboxyl group equivalent is 900 g / eq. If it exceeds 1, the adhesion of the pattern layer may not be obtained, or alkali development may be difficult. On the other hand, the hydroxyl group equivalent or the carboxyl group equivalent is 80 g / eq. In the case of less than, because the dissolution of the light irradiation part by the developer proceeds, the line becomes thinner than necessary, or in some cases, the light irradiation part and the unirradiated part are dissolved and peeled off with the developer, This is not preferable because it may be difficult to draw a normal resist pattern. Further, it is preferable that the carboxyl group equivalent or the phenol group equivalent is large because development is possible even when the content of the alkali-developable resin is small.
 また、本発明で用いるアルカリ現像性樹脂の重量平均分子量は、樹脂骨格により異なるが、2,000~150,000、さらには5,000~100,000の範囲が好ましい。重量平均分子量が2,000未満であると、タックフリー性能が劣ることがあり、光照射後の樹脂層の耐湿性が悪く、現像時に膜減りが生じ、解像度が大きく劣ることがある。一方、重量平均分子量が150,000を超えると、現像性が著しく悪くなることがあり、貯蔵安定性が劣ることがある。 The weight average molecular weight of the alkali-developable resin used in the present invention varies depending on the resin skeleton, but is preferably in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. If the weight average molecular weight is less than 2,000, tack-free performance may be inferior, the moisture resistance of the resin layer after light irradiation may be poor, film thickness may be reduced during development, and resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
 本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。 In this specification, the (meth) acrylate, acrylate, a term which collectively methacrylate and mixtures thereof, are the same for other similar expression.
 チオール基を有する化合物としては、例えば、トリメチロールプロパントリスチオプロピオネート、ペンタエリストールテトラキスチオプロピオネート、エチレングリコールビ スチオグリコレート、1,4-ブタンジオールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ペンタエリストールテトラキスチオグ リコレート、ジ(2-メルカプトエチル)エーテル、1,4-ブタンジチオール、1,3,5-トリメルカプトメチルベンゼン、1,3,5-トリメルカプトメ チル-2,4,6-トリメチルベンゼン、末端チオール基含有ポリエーテル、末端チオール基含有ポリチオエーテル、エポキシ化合物と硫化水素との反応によって得られるチオール化合物、ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等が挙げられる。 Examples of the compound having a thiol group include trimethylolpropane tristhiopropionate, pentaerythritol tetrakisthiopropionate, ethylene glycol bithioglycolate, 1,4-butanediol bisthioglycolate, trimethylolpropane. Tristhioglycolate, pentaerythritol tetrakisthiog lycolate, di (2-mercaptoethyl) ether, 1,4-butanedithiol, 1,3,5-trimercaptomethylbenzene, 1,3,5-trimercaptomethyl -2,4,6-trimethylbenzene, terminal thiol group-containing polyether, terminal thiol group-containing polythioether, thiol compound obtained by reaction of epoxy compound and hydrogen sulfide, reaction of polythiol compound and epoxy compound Thiol compounds having thus obtained terminal thiol group.
 アルカリ現像性樹脂は、カルボキシル基含有樹脂やフェノール性水酸基を有する化合物であることが好ましい。
 また、アルカリ現像性樹脂は、エポキシアクリレートなどの光硬化性構造を有さない非感光性であることが好ましい。このような非感光性アルカリ現像性樹脂は、エポキシアクリレートに由来するエステル結合を有さないので、デスミア液に対する耐性が高い。よって、硬化特性に優れたパターン層を形成できる。また、光硬化性構造を有さないため、硬化収縮を抑制できる。
 アルカリ現像性樹脂がカルボキシル基含有樹脂の場合、フェノール性樹脂の場合と比べて弱アルカリで現像できる。弱アルカリとしては、炭酸ナトリウム等が挙げられる。弱アルカリで現像することにより、光照射部が現像されてしまうことを抑制できる。また、下記工程(B)における光照射時間や工程(B1)における加熱時間を短縮できる。
The alkali developable resin is preferably a carboxyl group-containing resin or a compound having a phenolic hydroxyl group.
The alkali-developable resin is preferably non-photosensitive without a photocurable structure such as epoxy acrylate. Such a non-photosensitive alkali-developable resin does not have an ester bond derived from epoxy acrylate, and therefore has high resistance to desmear liquid. Therefore, a pattern layer having excellent curing characteristics can be formed. Moreover, since it does not have a photocurable structure, curing shrinkage can be suppressed.
When the alkali-developable resin is a carboxyl group-containing resin, it can be developed with a weak alkali as compared with the case of a phenolic resin. Examples of the weak alkali include sodium carbonate. By developing with weak alkali, it can suppress that a light irradiation part will be developed. Moreover, the light irradiation time in the following process (B) and the heating time in the process (B1) can be shortened.
[熱反応性化合物]
 熱反応性化合物は、熱による硬化反応が可能な官能基を有する樹脂である。エポキシ樹脂、多官能オキセタン化合物等が挙げられる。
[Heat-reactive compound]
The thermoreactive compound is a resin having a functional group that can be cured by heat. An epoxy resin, a polyfunctional oxetane compound, etc. are mentioned.
 上記エポキシ樹脂は、エポキシ基を有する樹脂であり、公知のものをいずれも使用できる。分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加された2官能エポキシ化合物であってもよい。 The epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. In addition, a hydrogenated bifunctional epoxy compound may be used.
 多官能エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ブロム化エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビキシレノール型もしくはビフェノール型エポキシ樹脂又はそれらの混合物、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、複素環式エポキシ樹脂、ジグリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂、CTBN変性エポキシ樹脂等が挙げられる。 Polyfunctional epoxy compounds include bisphenol A type epoxy resin, brominated epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic ring Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or mixtures thereof, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy resins, diglycidyl phthalate resins, tetraglycidyl xylenoyl yl ethane resins, naphthalene group-containing epoxy resin, an epoxy resin having a dicyclopentadiene skeleton, Gurishijirume Acrylate copolymer epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and a CTBN modified epoxy resin.
 その他の液状2官能性エポキシ樹脂としては、ビニルシクロヘキセンジエポキシド、(3’,4’-エポキシシクロヘキシルメチル)-3,4-エポキシシクロヘキサンカルボキシレート、(3’,4’-エポキシ-6’-メチルシクロヘキシルメチル)-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート等の脂環族エポキシ樹脂を挙げることができる。 Other liquid bifunctional epoxy resins include vinylcyclohexene diepoxide, (3 ′, 4′-epoxycyclohexylmethyl) -3,4-epoxycyclohexanecarboxylate, (3 ′, 4′-epoxy-6′-methyl) And alicyclic epoxy resins such as (cyclohexylmethyl) -3,4-epoxy-6-methylcyclohexanecarboxylate.
 上記のエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 The above epoxy resins may be used alone or in combination of two or more.
 上記多官能オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマー又は共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、又はシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物などが挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
 ここで、熱反応性化合物がベンゼン骨格を有する場合、耐熱性が向上するので、好ましい。また、熱硬化性樹脂組成物が白色顔料を含有する場合、熱反応性化合物は脂環式骨格であることが好ましい。これにより、光反応性を向上できる。
Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene), cardo-type bisphenol Le ethers, calixarenes, calix resorcin arenes, or the like ethers of a resin having a hydroxyl group such as silsesquioxane and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate is also included.
Here, it is preferable that the heat-reactive compound has a benzene skeleton because heat resistance is improved. Moreover, when a thermosetting resin composition contains a white pigment, it is preferable that a thermoreactive compound is an alicyclic skeleton. Thereby, photoreactivity can be improved.
 上記熱反応性化合物の配合量としては、アルカリ現像性樹脂との当量比(アルカリ現像性樹脂:熱反応性化合物)が1:0.5~1:10であることが好ましい。このような配合比から外れる場合、現像が困難となることがある。上記当量比は、1:0.5~1:5であることがさらに好ましい。 The amount of the heat-reactive compound, the equivalent ratio of alkali developable resin (alkali-developable resin: thermally reactive compound) is 1: 0.5 to 1: is preferably 10. If it is out of such a mixing ratio, development may be difficult. The equivalent ratio is more preferably 1: 0.5 to 1: 5.
[光塩基発生剤]
 光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、上記の熱反応性化合物の重合反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。
 光塩基発生剤として、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。
[Photobase generator]
One or more photobase generators can function as a catalyst for the polymerization reaction of the above-described thermoreactive compound by changing the molecular structure upon irradiation with light such as ultraviolet rays or visible light, or by cleaving the molecules. It is a compound that produces a basic substance. Examples of basic substances include secondary amines and tertiary amines.
Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group.
 α―アミノアセトフェノン化合物は分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成する。α-アミノアセトフェノン化合物の具体例としては、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン(イルガキュア369、商品名、BASFジャパン社製)や4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン(イルガキュア907、商品名、BASFジャパン社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(イルガキュア379、商品名、BASFジャパン社製)などの市販の化合物またはその溶液を用いることができる。 The α-aminoacetophenone compound has a benzoin ether bond in the molecule, and when irradiated with light, cleavage occurs in the molecule to produce a basic substance (amine) that exhibits a curing catalytic action. Specific examples of α-aminoacetophenone compounds include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (Irgacure 369, trade name, manufactured by BASF Japan Ltd.) and 4- (methylthiobenzoyl) -1-methyl. -1-morpholinoethane (Irgacure 907, trade name, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl]- A commercially available compound such as 1-butanone (Irgacure 379, trade name, manufactured by BASF Japan Ltd.) or a solution thereof can be used.
 オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物をいずれも使用することができる。オキシムエステル化合物としては、市販品として、BASFジャパン社製のCGI-325、イルガキュアー OXE01、イルガキュアー OXE02、アデカ社製N-1919、NCI-831などが挙げられる。また、分子内に2個のオキシムエステル基を有する化合物も好適に用いることができ、具体的には、下記一般式で表されるカルバゾール構造を有するオキシムエステル化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000001
(式中、Xは、水素原子、炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、フェニル基、フェニル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、ナフチル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)を表し、Y、Zはそれぞれ、水素原子、炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、ハロゲン基、フェニル基、フェニル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、ナフチル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、アンスリル基、ピリジル基、ベンゾフリル基、ベンゾチエニル基を表し、Arは、結合か、炭素数1~10のアルキレン、ビニレン、フェニレン、ビフェニレン、ピリジレン、ナフチレン、チオフェン、アントリレン、チエニレン、フリレン、2,5-ピロール-ジイル、
4,4’-スチルベン-ジイル、4,2’-スチレン-ジイルで表し、nは0か1の整数である。)
As the oxime ester compound, any compound that generates a basic substance by light irradiation can be used. Examples of the oxime ester compound include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan, N-1919, NCI-831 manufactured by Adeka, and the like as commercially available products. Moreover, the compound which has two oxime ester groups in a molecule | numerator can also be used suitably, Specifically, the oxime ester compound which has a carbazole structure represented with the following general formula is mentioned.
Figure JPOXMLDOC01-appb-I000001
(In the formula, X is a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, a phenyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms). Group, an amino group, an alkylamino group having an alkyl group having 1 to 8 carbon atoms or a dialkylamino group), a naphthyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms), And Y and Z are each a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, or a carbon atom having 1 carbon atom), substituted with an alkyl group having a C 1-8 alkyl group or a dialkylamino group. Alkyl groups having 8 to 8 alkoxy groups, halogen groups, phenyl groups, phenyl groups (alkyl groups having 1 to 17 carbon atoms, alkoxy groups having 1 to 8 carbon atoms, amino groups, alkyl groups having 1 to 8 carbon atoms) Or substituted with a dialkylamino group), a naphthyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an amino group, an alkylamino group having an alkyl group having 1 to 8 carbon atoms, or Represents an anthryl group, a pyridyl group, a benzofuryl group, a benzothienyl group, and Ar is a bond or alkylene having 1 to 10 carbon atoms, vinylene, phenylene, biphenylene, pyridylene, naphthylene, thiophene , Anthrylene, thienylene, furylene, 2,5-pyrrole-diyl,
It is represented by 4,4′-stilbene-diyl, 4,2′-styrene-diyl, and n is an integer of 0 or 1. )
 特に、前記一般式中、X、Yが、それぞれメチル基又はエチル基であり、Zはメチル又はフェニルであり、nは0であり、Arは、結合か、フェニレン、ナフチレン、チオフェン又はチエニレンであることが好ましい。 In particular, in the above general formula, X and Y are each a methyl group or an ethyl group, Z is methyl or phenyl, n is 0, and Ar is a bond, phenylene, naphthylene, thiophene or thienylene. It is preferable.
 また、好ましいカルバゾールオキシムエステル化合物として、下記一般式で表すことができる化合物を挙げることもできる。
Figure JPOXMLDOC01-appb-I000002
(式中、Rは、炭素原子数1~4のアルキル基、または、ニトロ基、ハロゲン原子もしくは炭素原子数1~4のアルキル基で置換されていてもよいフェニル基を表す。Rは、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、または、炭素原子数1~4のアルキル基もしくはアルコキシ基で置換されていてもよいフェニル基を表す。Rは、酸素原子または硫黄原子で連結されていてもよく、フェニル基で置換されていてもよい炭素原子数1~20のアルキル基、炭素原子数1~4のアルコキシ基で置換されていてもよいベンジル基を表す。Rは、ニトロ基、または、X-C(=O)-で表されるアシル基を表す。Xは、炭素原子数1~4のアルキル基で置換されていてもよいアリール基、チエニル基、モルホリノ基、チオフェニル基、または、下記式で示される構造を表す。)
Figure JPOXMLDOC01-appb-I000003
Moreover, the compound which can be represented by the following general formula can also be mentioned as a preferable carbazole oxime ester compound.
Figure JPOXMLDOC01-appb-I000002
(Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms, or a phenyl group optionally substituted with a nitro group, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. R 2 represents Represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group, and R 3 represents , Optionally substituted with an oxygen atom or a sulfur atom, optionally substituted with a phenyl group, optionally substituted with an alkyl group having 1 to 20 carbon atoms, or optionally substituted with an alkoxy group having 1 to 4 carbon atoms R 4 represents a nitro group or an acyl group represented by X—C (═O) —, where X is an aryl optionally substituted with an alkyl group having 1 to 4 carbon atoms Group, thienyl group, morpholino A group, a thiophenyl group, or a structure represented by the following formula:
Figure JPOXMLDOC01-appb-I000003
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。 In addition, JP-A-2004-359639, JP-A-2005-097141, JP-A-2005-220097, JP-A-2006-160634, JP-A-2008-094770, JP-A-2008-509967, Specific examples include carbazole oxime ester compounds described in JP-T-2009-040762 and JP-A-2011-80036.
 アシルオキシイミノ基を有する化合物の具体例としては,O,O’-コハク酸ジアセトフェノンオキシム,O,O’-コハク酸ジナフトフェノンオキシム、ベンゾフェノンオキシムアクリレートースチレン共重合体などが挙げられる。 Specific examples of the compound having an acyloxyimino group include O, O'-diacetphenone oxime succinate, O, O'-dinaphthophenone oxime succinate, benzophenone oxime acrylate-styrene copolymer, and the like.
 N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基を有する化合物の具体例としては、例えば、ジ-N-(p-ホルミルアミノ)ジフェニルメタン、ジ -N(p-アセエチルアミノ)ジフェニルメラン、ジ-N-(p-ベンゾアミド)ジフェニルメタン、4-ホルミルアミノトルイレン、4-アセチルアミノトルイレン、2,4-ジホルミルアミノトルイレン、1-ホルミルアミノナフタレン、1-アセチルアミノナフタレン、1,5-ジホルミルアミノナフタレン、1-ホルミルアミノアントラセン、1,4-ジホルミルアミノアントラセン、1-アセチルアミノアントラセン、1,4-ジホルミルアミノアントラキノン、1,5-ジホルミルアミノアントラキノン、3,3’-ジメチル-4,4’-ジホルミルアミノビフェニル、4,4’-ジホルミルアミノベンゾフェノンなどが挙げられる。 Specific examples of the compound having an N-formylated aromatic amino group and an N-acylated aromatic amino group include, for example, di-N- (p-formylamino) diphenylmethane, di-N (p-aceethylamino) Diphenyl melan, di-N- (p-benzamido) diphenyl methane, 4-formylaminotoluylene, 4-acetylaminotoluylene, 2,4-diformylaminotoluylene, 1-formylaminonaphthalene, 1-acetylaminonaphthalene, 1,5-diformylaminonaphthalene, 1-formylaminoanthracene, 1,4-diformylaminoanthracene, 1-acetylaminoanthracene, 1,4-diformylaminoanthraquinone, 1,5-diformylaminoanthraquinone, 3, 3'-dimethyl-4,4'-diformylaminobifu Alkenyl, such as 4,4'-formylamino benzophenones.
 ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基を有する化合物の具体例としては、例えば、ビス{{(2-ニトロベンジル)オキシ}カルボニル}ジアミノジフェニルメタン、2,4-ジ{{(2-ニトロベンジル)オキシ}トルイレン、ビス{{(2-ニトロベンジルオキシ)カルボニル}ヘキサン-1,6-ジアミン、m-キシリジン{{(2-ニトロ-4-クロロベンジル)オキシ}アミド}などが挙げられる。 Specific examples of the compound having a nitrobenzyl carbamate group or an alkoxybenzyl carbamate group include, for example, bis {{(2-nitrobenzyl) oxy} carbonyl} diaminodiphenylmethane, 2,4-di {{(2-nitrobenzyl) Oxy} toluylene, bis {{(2-nitrobenzyloxy) carbonyl} hexane-1,6-diamine, m-xylidine {{(2-nitro-4-chlorobenzyl) oxy} amide} and the like.
 光塩基発生剤としては、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。 As the photobase generator, oxime ester compounds and α-aminoacetophenone compounds are preferable. As the α-aminoacetophenone compound, those having two or more nitrogen atoms are particularly preferable.
 その他の光塩基発生剤として、
WPBG-018(商品名:9-anthrylmethyl N,N’-diethylcarbamate),WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine),WPBG-082(商品名:guanidinium2-(3-benzoylphenyl)propionate), WPBG-140 (商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)等の光塩基発生剤を使用することもできる。
 また、特開平11-71450号公報、国際公開2002/051905号、国際公開2008/072651号、特開2003-20339号公報、特開2003-212856号公報、特開2003-344992号公報、特開2007-86763号公報、特開2007-231235号公報、特開2008-3581号公報、特開2008-3582号公報、特開2009-280785、特開2009-080452、特開2010-95686号公報、特開2010-126662号公報、特開2010-185010号公報、特開2010-185036号公報、特開2010-186054号公報、特開2010-186056号公報、特開2010-275388号公報、特開2010-222586、特開2010-084144、特開2011-107199号公報、特開2011-236416、特開2011-080032等の文献記載の光塩基発生剤を使用することもできる。
As other photobase generators,
WPBG-018 (Product name: 9-anthrylmethyl N, N'-diethylcarbamate), WPBG-027 (Product name: (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine), WPBG-082 A photobase generator such as (trade name: guanidinium 2- (3-benzoylphenyl) propionate), WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethyl imidazolecarboxylate) can also be used.
Also, JP-A-11-71450, WO2002 / 051905, WO2008 / 072651, JP2003-20339, JP2003-212856, JP2003-344992, JP 2007-86763, JP 2007-23235, JP 2008-3581, JP 2008-3582, JP 2009-280785, JP 2009-080452, JP 2010-95686, JP 2010-126662 A, JP 2010-185010 A, JP 2010-185036 A, JP 2010-186054 A, JP 2010-186056 A, JP 2010-275388 A, JP 2010-222586, JP2010-0 4144, JP 2011-107199, JP 2011-236416, it is also possible to use a photobase generator described in the literature such as JP-2011-080032.
 上記光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱硬化性樹脂組成物中の光塩基発生剤の配合量は、好ましくは熱反応性化合物100質量部に対して1~50質量部であり、さらに好ましくは、1~40質量部である。1質量部未満の場合、現像が困難になることがあるため好ましくない。 The above photobase generators may be used alone or in combination of two or more. The amount of the photobase generator of the thermosetting resin composition is preferably 1 to 50 parts by weight with respect to the heat-reactive compound 100 parts by weight, more preferably from 1 to 40 parts by weight. When the amount is less than 1 part by mass, development may be difficult, which is not preferable.
(マレイミド化合物)
 本発明の熱硬化性樹脂組成物は、マレイミド化合物を含んでもよい。
 マレイミド化合物としては、多官能脂肪族/脂環族マレイミド、多官能芳香族マレイミドが挙げられる。2官能以上のマレイミド化合物(多官能マレイミド化合物)が好ましい。多官能脂肪族/脂環族マレイミドとしては、例えば、N,N’-メチレンビスマレイミド、N,N’-エチレンビスマレイミド、トリス(ヒドロキシエチル)イソシアヌレートと脂肪族/脂環族マレイミドカルボン酸とを脱水エステル化して得られるイソシアヌレート骨格のマレイミドエステル化合物;トリス(カーバメートヘキシル)イソシアヌレートと脂肪族/脂環族マレイミドアルコールとをウレタン化して得られるイソシアヌレート骨格のマレイミドウレタン化合物等のイソシアヌル骨格ポリマレイミド類;イソホロンビスウレタンビス(N-エチルマレイミド)、トリエチレングリコールビス(マレイミドエチルカーボネート)、脂肪族/脂環族マレイミドカルボン酸と各種脂肪族/脂環族ポリオールとを脱水エステル化、又は脂肪族/脂環族マレイミドカルボン酸エステルと各種脂肪族/脂環族ポリオールとをエステル交換反応して得られる脂肪族/脂環族ポリマレイミドエステル化合物類;脂肪族/脂環族マレイミドカルボン酸と各種脂肪族/脂環族ポリエポキシドとをエーテル開環反応して得られる脂肪族/脂環族ポリマレイミドエステル化合物類;脂肪族/脂環族マレイミドアルコールと各種脂肪族/脂環族ポリイソシアネートとをウレタン化反応して得られる脂肪族/脂環族ポリマレイミドウレタン化合物類等がある。
(Maleimide compound)
The thermosetting resin composition of the present invention may contain a maleimide compound.
Examples of maleimide compounds include polyfunctional aliphatic / alicyclic maleimides and polyfunctional aromatic maleimides. Bifunctional or higher maleimide compounds (polyfunctional maleimide compounds) are preferred. Examples of the polyfunctional aliphatic / alicyclic maleimide include N, N′-methylene bismaleimide, N, N′-ethylene bismaleimide, tris (hydroxyethyl) isocyanurate, and aliphatic / alicyclic maleimide carboxylic acid. Isocyanurate skeleton maleic compound obtained by urethanization of isocyanurate skeleton maleimide ester compound obtained by urethanization of tris (carbamate hexyl) isocyanurate and aliphatic / alicyclic maleimide alcohol Maleimides; isophorone bisurethane bis (N-ethylmaleimide), triethylene glycol bis (maleimide ethyl carbonate), aliphatic / alicyclic maleimide carboxylic acid and various aliphatic / alicyclic polyols, or dehydrated ester / Alicyclic maleimide carboxylic acid esters and aliphatic / alicyclic polymaleimide ester compounds obtained by transesterification of various aliphatic / alicyclic polyols; aliphatic / alicyclic maleimide carboxylic acids and various fats Aliphatic / alicyclic polymaleimide ester compounds obtained by ether ring-opening reaction of aliphatic / alicyclic polyepoxides; urethanization of aliphatic / alicyclic maleimide alcohols and various aliphatic / alicyclic polyisocyanates Examples include aliphatic / alicyclic polymaleimide urethane compounds obtained by reaction.
 多官能芳香族マレイミドとしては、マレイミドカルボン酸と各種芳香族ポリオールとを脱水エステル化、又はマレイミドカルボン酸エステルと各種芳香族ポリオールとをエステル交換反応して得られる芳香族ポリマレイミドエステル化合物類;マレイミドカルボン酸と各種芳香族ポリエポキシドとをエーテル開環反応して得られる芳香族ポリマレイミドエステル化合物類;マレイミドアルコールと各種芳香族ポリイソシアネートとをウレタン化反応して得られる芳香族ポリマレイミドウレタン化合物類等の芳香族多官能マレイミド類等がある。 As polyfunctional aromatic maleimide, aromatic polymaleimide ester compounds obtained by dehydrating esterification of maleimide carboxylic acid and various aromatic polyols, or transesterification reaction of maleimide carboxylic acid ester and various aromatic polyols; Aromatic polymaleimide ester compounds obtained by ether ring-opening reaction of carboxylic acid and various aromatic polyepoxides; Aromatic polymaleimide urethane compounds obtained by urethanization reaction of maleimide alcohol and various aromatic polyisocyanates, etc. And aromatic polyfunctional maleimides.
 多官能芳香族マレイミドの具体例としては、例えば、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、N,N’-2,4-トリレンビスマレイミド、N,N’-2,6-トリレンビスマレイミド、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4’-ビフェニレンビスマレイミド、N,N’-4,4’-〔3,3’-ジメチル-ビフェニレン〕ビスマレイミド、N,N’-4,4’-〔3,3’-ジメチルジフェニルメタン〕ビスマレイミド、N,N’-4,4’-〔3,3’-ジエチルジフェニルメタン〕ビスマレイミド、N,N’-4,4’-ジフェニルメタンビスマレイミド、N,N’-4,4’-ジフェニルプロパンビスマレイミド、N,N’-4,4’-ジフェニルエーテルビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、N,N’-4,4’-ジフェニルスルホンビスマレイミド、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-t-ブチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-s-ブチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、1,1-ビス〔4-(4-マレイミドフェノキシ)フェニル〕デカン、1,1-ビス〔2-メチル-4-(4-マレイミドフェノキシ)-5-t-ブチルフェニル〕-2-メチルプロパン、4,4’-シクロヘキシリデン-ビス〔1-(4-マレイミドフェノキシ)-2-(1,1-ジメチルエチル)ベンゼン〕、4,4’-メチレン-ビス〔1-(4-マレイミドフェノキシ)-2,6-ビス(1,1-ジメチルエチル)ベンゼン〕、4,4’-メチレン-ビス〔1-(4-マレイミドフェノキシ)-2,6-ジ-s-ブチルベンゼン〕、4,4’-シクロヘキシリデン-ビス〔1-(4-マレイミドフェノキシ)-2-シクロヘキシルベンゼン、4,4’-メチレンビス〔1-(マレイミドフェノキシ)-2-ノニルベンゼン〕、4,4’-(1-メチルエチリデン)-ビス〔1-(マレイミドフェノキシ)-2,6-ビス(1,1-ジメチルエチル)ベンゼン〕、4,4’-(2-エチルヘキシリデン)-ビス〔1-(マレイミドフェノキシ)-ベンゼン〕、4,4’-(1-メチルヘプチリデン)-ビス〔1-(マレイミドフェノキシ)-ベンゼン〕、4,4’-シクロヘキシリデン-ビス〔1-(マレイミドフェノキシ)-3-メチルベンゼン〕、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔3,5-ジメチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3,5-ジメチル-4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2-ビス〔3-エチル-4-(4-マレイミドフェノキシ)フェニル〕プロパン、2,2-ビス〔3-エチル-4-(4-マレイミドフェノキシ)フェニル〕ヘキサフルオロプロパン、ビス〔3-メチル-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3,5-ジメチル-(4-マレイミドフェノキシ)フェニル〕メタン、ビス〔3-エチル-(4-マレイミドフェノキシ)フェニル〕メタン、3,8-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、4,8-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、3,9-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、4,9-ビス〔4-(4-マレイミドフェノキシ)フェニル〕-トリシクロ〔5.2.1.02,6〕デカン、1,8-ビス〔4-(4-マレイミドフェノキシ)フェニル〕メンタン、1,8-ビス〔3-メチル-4-(4-マレイミドフェノキシ)フェニル〕メンタン、1,8-ビス〔3,5-ジメチル-4-(4-マレイミドフェノキシ)フェニル〕メンタンなどを挙げることができる。 Specific examples of the polyfunctional aromatic maleimide include, for example, N, N ′-(4,4′-diphenylmethane) bismaleimide, N, N′-2,4-tolylene bismaleimide, N, N′-2, 6-tolylene bismaleimide, 1-methyl-2,4-bismaleimide benzene, N, N′-m-phenylene bismaleimide, N, N′-p-phenylene bismaleimide, N, N′-m-toluylene Bismaleimide, N, N′-4,4′-biphenylenebismaleimide, N, N′-4,4 ′-[3,3′-dimethyl-biphenylene] bismaleimide, N, N′-4,4′- [3,3′-dimethyldiphenylmethane] bismaleimide, N, N′-4,4 ′-[3,3′-diethyldiphenylmethane] bismaleimide, N, N′-4,4′-diphenylmethane bismale N, N′-4,4′-diphenylpropane bismaleimide, N, N′-4,4′-diphenyl ether bismaleimide, N, N′-3,3′-diphenylsulfone bismaleimide, N, N ′ -4,4'-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-tert-butyl-4- (4-maleimidophenoxy) phenyl ] Propane, 2,2-bis [3-s-butyl-4- (4-maleimidophenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] decane, 1,1-bis [2-Methyl-4- (4-maleimidophenoxy) -5-t-butylphenyl] -2-methylpropane, 4,4′-cyclohexylidene-bis [1- ( -Maleimidophenoxy) -2- (1,1-dimethylethyl) benzene], 4,4'-methylene-bis [1- (4-maleimidophenoxy) -2,6-bis (1,1-dimethylethyl) benzene 4,4′-methylene-bis [1- (4-maleimidophenoxy) -2,6-di-s-butylbenzene], 4,4′-cyclohexylidene-bis [1- (4-maleimidophenoxy) ) -2-cyclohexylbenzene, 4,4′-methylenebis [1- (maleimidophenoxy) -2-nonylbenzene], 4,4 ′-(1-methylethylidene) -bis [1- (maleimidophenoxy) -2, 3,6-bis (1,1-dimethylethyl) benzene], 4,4 '- (2-ethylhexylidene xylylene den) - bis [1- (maleimide phenoxy) - benzene], 4,4' - ( 1-methylheptylidene) -bis [1- (maleimidophenoxy) -benzene], 4,4′-cyclohexylidene-bis [1- (maleimidophenoxy) -3-methylbenzene], 2,2-bis [ 4- (4-maleimidophenoxy) phenyl] hexafluoropropane, 2,2-bis [3-methyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4 -Maleimidophenoxy) phenyl] hexafluoropropane, 2,2-bis [3,5-dimethyl-4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3,5-dimethyl-4- (4 -Maleimidophenoxy) phenyl] hexafluoropropane, 2,2-bis [3-ethyl-4- (4-maleimidophenoxy) phenyl] pro 2,2-bis [3-ethyl-4- (4-maleimidophenoxy) phenyl] hexafluoropropane, bis [3-methyl- (4-maleimidophenoxy) phenyl] methane, bis [3,5-dimethyl- (4-Maleimidophenoxy) phenyl] methane, bis [3-ethyl- (4-maleimidophenoxy) phenyl] methane, 3,8-bis [4- (4-maleimidophenoxy) phenyl] -tricyclo [5.2.1 .02,6] decane, 4,8-bis [4- (4-maleimidophenoxy) phenyl] -tricyclo [5.2.1.02,6] decane, 3,9-bis [4- (4-maleimide) phenoxy) phenyl] - tricyclo [5.2.1.0 2,6] decane, 4,9-bis [4- (4-maleimide phenoxy) phenyl] - tricyclo [ 2.1.2,6] decane, 1,8-bis [4- (4-maleimidophenoxy) phenyl] menthane, 1,8-bis [3-methyl-4- (4-maleimidophenoxy) phenyl] menthane 1,8-bis [3,5-dimethyl-4- (4-maleimidophenoxy) phenyl] menthane and the like.
 マレイミド化合物の配合量としては、アルカリ現像性樹脂との当量比(アルカリ現像性樹脂:マレイミド化合物)が1:0.5~1:10であることが好ましい。このような配合比から外れる場合、現像が困難となることがある。上記当量比は、1:0.5~1:5であることがさらに好ましい。 The amount of the maleimide compound, the equivalent ratio of alkali developable resin (alkali-developable resin: maleimide compound) is 1: 0.5 to 1: is preferably 10. If it is out of such a mixing ratio, development may be difficult. The equivalent ratio is more preferably 1: 0.5 to 1: 5.
[着色剤]
 さらに、本発明の熱硬化性樹脂組成物には、着色剤を配合することができる。
 従来、プリント配線板における銅回路のエッジ部では、パターン層の着色力が不十分な場合、パターン層の形成後の熱履歴において、銅が変色し、外観上、薄い部分だけ変色して見えていた。代表的な熱履歴としてはマーキングの熱硬化、反り直し、実装前の予備加熱、実装などがある。
 このため、従来はパターン層に着色剤を多く配合して着色力を高めることにより、銅回路のエッジ部分だけ変色して見えるという問題を解消していた。
 しかし、着色剤は、光吸収性を有するため、光が深部にまで透過することを阻害してしまう。その結果、着色剤を含有する組成物では、アンダーカットが生じやすいため、十分な密着性が得られないという問題があった。
 これに対して、本発明の熱硬化性樹脂組成物では、上述したように、深部まで塩基が化学的に増殖することにより、樹脂層の深部まで十分硬化できる。
 従って、本発明の熱硬化性樹脂組成物では、着色剤を含有する場合でも、銅回路の隠蔽性に優れ、かつ、密着性に優れたパターン層を形成できる。
[Colorant]
Furthermore, a coloring agent can be mix | blended with the thermosetting resin composition of this invention.
Conventionally, at the edge of a copper circuit in a printed wiring board, if the coloring power of the pattern layer is insufficient, the copper color changes in the heat history after the pattern layer is formed, and only the thin part appears discolored in appearance. It was. Typical thermal history includes marking thermosetting, warping, preheating before mounting, mounting, and the like.
For this reason, conventionally, a problem has been solved that only the edge portion of the copper circuit looks discolored by adding a large amount of colorant to the pattern layer to enhance the coloring power.
However, since the colorant has light absorptivity, it prevents light from penetrating to the deep part. As a result, in the composition containing a colorant, undercut is likely to occur, and there is a problem that sufficient adhesion cannot be obtained.
On the other hand, in the thermosetting resin composition of the present invention, as described above, the base can be sufficiently cured to the deep part of the resin layer by chemically growing the base to the deep part.
Therefore, in the thermosetting resin composition of the present invention, even when a colorant is contained, a pattern layer having excellent copper circuit concealing property and excellent adhesion can be formed.
着色剤としては、赤、青、緑、黄、白、黒などの慣用公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。具体的には、下記のようなカラーインデックス(C.I.;ザ ソサイエティ オブ ダイヤーズ アンド カラリスツ(The Society of Dyers and Colourists)発行)番号が付されているものを挙げることができる。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。 As the coloring agent, red, blue, green, yellow, white, it is possible to use a conventional known coloring agent, such as black, pigments, dyes, it may be any of dye. Specific examples include those with the following color index numbers (CI: The Society of Dyers and Colorists). However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
赤色着色剤:
 赤色着色剤としてはモノアゾ系、ジズアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系などがあり、具体的には以下のものが挙げられる。
 モノアゾ系:PigmentRed 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114,146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, 269。
 ジスアゾ系:PigmentRed 37, 38, 41。
 モノアゾレーキ系:Pigment Red 48:1, 48:2, 48:3, 48:4, 49:1, 49:2, 50:1, 52:1, 52:2,53:1, 53:2, 57:1, 58:4, 63:1, 63:2, 64:1,68。
 ベンズイミダゾロン系:Pigment Red 171、Pigment Red 175、Pigment Red 176、Pigment Red 185、Pigment Red 208。
 ぺリレン系:SolventRed 135、Solvent Red 179、PigmentRed 123、Pigment Red 149、PigmentRed 166、Pigment Red 178、PigmentRed 179、Pigment Red 190、PigmentRed 194、Pigment Red 224。
 ジケトピロロピロール系:Pigment Red 254、Pigment Red 255、Pigment Red 264、Pigment Red 270、Pigment Red 272。
 縮合アゾ系:PigmentRed 220、Pigment Red 144、PigmentRed 166、Pigment Red 214、PigmentRed 220、Pigment Red 221、PigmentRed 242。
 アンスラキノン系:Pigment Red 168、Pigment Red 177、Pigment Red 216、Solvent Red 149、Solvent Red 150、Solvent Red 52、Solvent Red 207。
 キナクリドン系:PigmentRed 122、Pigment Red 202、PigmentRed 206、Pigment Red 207、PigmentRed 209。
Red colorant:
Examples of red colorants include monoazo, diazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone. It is done.
Monoazo: PigmentRed 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114,146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, 269.
Disazo: PigmentRed 37, 38, 41.
Monoazo lakes: Pigment Red 48: 1, 48: 2, 48: 3, 48: 4, 49: 1, 49: 2, 50: 1, 52: 1, 52: 2,53: 1, 53: 2, 57 : 1, 58: 4, 63: 1, 63: 2, 64: 1,68.
Benzimidazolone series: Pigment Red 171, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208.
Perylene series: SolventRed 135, Solvent Red 179, PigmentRed 123, Pigment Red 149, Pigment Red 166, Pigment Red 178, Pigment Red 179, Pigment Red 190, Pigment Red 194, Pigment Red 224.
Diketopyrrolopyrrole series: Pigment Red 254, Pigment Red 255, Pigment Red 264, Pigment Red 270, Pigment Red 272.
Condensed azo systems: PigmentRed 220, Pigment Red 144, PigmentRed 166, Pigment Red 214, PigmentRed 220, Pigment Red 221, and PigmentRed 242.
Anthraquinone series: Pigment Red 168, Pigment Red 177, Pigment Red 216, Solvent Red 149, Solvent Red 150, Solvent Red 52, Solvent Red 207.
Kinacridone series: PigmentRed 122, Pigment Red 202, PigmentRed 206, Pigment Red 207, PigmentRed 209.
青色着色剤:
 青色着色剤としてはフタロシアニン系、アントラキノン系があり、顔料系はピグメント(Pigment)に分類されている化合物、具体的には、下記のようなものを挙げることがで
きる:PigmentBlue 15、Pigment Blue 15:1、PigmentBlue 15:2、Pigment Blue 15:3、PigmentBlue 15:4、Pigment Blue 15:6、PigmentBlue 16、Pigment Blue 60。
 染料系としては、SolventBlue 35、Solvent Blue 63、SolventBlue 68、Solvent Blue 70、SolventBlue 83、Solvent Blue 87、SolventBlue 94、Solvent Blue 97、SolventBlue 122、Solvent Blue 136、SolventBlue 67、Solvent Blue 70等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
Blue colorant:
Examples of blue colorants include phthalocyanine and anthraquinone, and pigments include compounds classified as Pigments, specifically, PigmentBlue 15 and Pigment Blue 15: 1, PigmentBlue 15: 2, Pigment Blue 15: 3, PigmentBlue 15: 4, Pigment Blue 15: 6, PigmentBlue 16, Pigment Blue 60.
As a dye system, SolventBlue 35, Solvent Blue 63, SolventBlue 68, Solvent Blue 70, SolventBlue 83, Solvent Blue 87, SolventBlue 94, Solvent Blue 97, SolventBlue 122, Solvent Blue 136, SolventBlue 67, Solvent Blue 70, etc. are used. be able to. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
緑色着色剤:
 緑色着色剤としては、同様にフタロシアニン系、アントラキノン系、ペリレン系があり、具体的にはPigment Green 7、Pigment Green 36、Solvent Green 3、Solvent Green 5、Solvent Green 20、Solvent Green 28等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
Green colorant:
Similarly, green colorants include phthalocyanine, anthraquinone, and perylene. Specifically, Pigment Green 7, Pigment Green 36, Solvent Green 3, Solvent Green 5, Solvent Green 20, Solvent Green 28, etc. are used. be able to. In addition to the above, a metal-substituted or unsubstituted phthalocyanine compound can also be used.
黄色着色剤:
 黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等があり、具体的には以下のものが挙げられる。
 アントラキノン系:Solvent Yellow 163、Pigment Yellow 24、Pigment Yellow 108、Pigment Yellow 193、Pigment Yellow 147、Pigment Yellow 199、Pigment Yellow 202。
 イソインドリノン系:Pigment Yellow 110、Pigment Yellow 109、Pigment Yellow 139、Pigment Yellow 179、Pigment Yellow 185。
 縮合アゾ系:PigmentYellow 93、Pigment Yellow 94、PigmentYellow 95、Pigment Yellow 128、PigmentYellow 155、Pigment Yellow 166、PigmentYellow 180。
 ベンズイミダゾロン系:Pigment Yellow 120、Pigment Yellow 151、Pigment Yellow 154、Pigment Yellow 156、Pigment Yellow 175、Pigment Yellow 181。
 モノアゾ系:PigmentYellow 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62:1, 65, 73, 74, 75, 97, 100, 104,105, 111, 116, 167, 168, 169, 182, 183。
 ジスアゾ系:PigmentYellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174,176, 188, 198。
Yellow colorant:
Examples of yellow colorants include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, and the like.
Anthraquinone series: Solvent Yellow 163, Pigment Yellow 24, Pigment Yellow 108, Pigment Yellow 193, Pigment Yellow 147, Pigment Yellow 199, Pigment Yellow 202.
Isoindolinone type: Pigment Yellow 110, Pigment Yellow 109, Pigment Yellow 139, Pigment Yellow 179, Pigment Yellow 185.
Condensed azo type: PigmentYellow 93, Pigment Yellow 94, PigmentYellow 95, Pigment Yellow 128, PigmentYellow 155, Pigment Yellow 166, PigmentYellow 180.
Benzimidazolone series: Pigment Yellow 120, Pigment Yellow 151, Pigment Yellow 154, Pigment Yellow 156, Pigment Yellow 175, Pigment Yellow 181.
Monoazo: PigmentYellow 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62: 1, 65, 73, 74, 75, 97, 100, 104,105, 111, 116, 167, 168, 169, 182, 183.
Disazo series: PigmentYellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174,176, 188, 198.
 白色着色剤:
 また、本発明においては(B)着色剤として、白色着色剤を用いることもできる。白色着色剤としては、例えば酸化チタンが挙げられる。酸化チタンとしてはルチル型酸化チタンでもアナターゼ型酸化チタンでもよいが、ルチル型チタンを用いることが好ましい。同じ酸化チタンであるアナターゼ型酸化チタンは、ルチル型酸化チタンと比較して白色度が高く、白色顔料としてよく使用されるが、アナターゼ型酸化チタンは、光触媒活性を有するために、特にLEDから照射される光により、絶縁性樹脂組成物中の樹脂の変色を引き起こすことがある。これに対し、ルチル型酸化チタンは、白色度はアナターゼ型と比較して若干劣るものの、光活性を殆ど有さないために、酸化チタンの光活性に起因する光による樹脂の劣化(黄変)が顕著に抑制され、また熱に対しても安定である。このため、LEDが実装されたプリント配線板の絶縁層において白色顔料として用いられた場合に、高反射率を長期にわたり維持することができる。
White colorant:
In the present invention, a white colorant can also be used as the (B) colorant. Examples of the white colorant include titanium oxide. Titanium oxide may be rutile titanium oxide or anatase titanium oxide, but rutile titanium is preferably used. Anatase-type titanium oxide, which is the same titanium oxide, has higher whiteness compared to rutile-type titanium oxide and is often used as a white pigment. The emitted light may cause discoloration of the resin in the insulating resin composition. In contrast, rutile-type titanium oxide is slightly inferior to anatase-type in whiteness, but has almost no photoactivity, so that the resin is deteriorated by light due to the photoactivity of titanium oxide (yellowing). Is remarkably suppressed and is stable against heat. For this reason, when it is used as a white pigment in the insulating layer of the printed wiring board on which the LED is mounted, a high reflectance can be maintained over a long period of time.
 ルチル型酸化チタンとしては、公知のものを使用することができる。ルチル型酸化チタンの製造法には、硫酸法と塩素法の2種類あり、本発明では、いずれの製造法により製造されたものも好適に使用することができる。ここで、硫酸法は、イルメナイト鉱石やチタンスラグを原料とし、これを濃硫酸に溶解して鉄分を硫酸鉄として分離し、溶液を加水分解することにより水酸化物の沈殿物を得、これを高温で焼成してルチル型酸化チタンを取り出す製法をいう。一方、塩素法は、合成ルチルや天然ルチルを原料とし、これを約1000℃の高温で塩素ガスとカーボンに反応させて四塩化チタンを合成し、これを酸化してルチル型酸化チタンを取り出す製法をいう。その中で、塩素法により製造されたルチル型酸化チタンは、特に熱による樹脂の劣化(黄変)の抑制効果が顕著であり、本発明においてより好適に用いられる。 A well-known thing can be used as rutile type titanium oxide. The rutile type titanium oxide production process, there are two kinds of sulfuric acid method and chlorine method, the present invention can also be suitably used those produced by any production method. Here, the sulfuric acid method uses ilmenite ore or titanium slag as a raw material, dissolves this in concentrated sulfuric acid, separates iron as iron sulfate, and hydrolyzes the solution to obtain a hydroxide precipitate. A production method in which rutile titanium oxide is taken out by baking at a high temperature. On the other hand, the chlorine method uses synthetic rutile or natural rutile as a raw material, reacts with chlorine gas and carbon at a high temperature of about 1000 ° C to synthesize titanium tetrachloride, and oxidizes this to extract rutile titanium oxide. Say. Among them, the rutile type titanium oxide produced by a chlorine method is particularly remarkable effect of suppressing deterioration of the resin due to heat (yellowing), more preferably used in the present invention.
 これらの酸化チタンの中でも、表面が含水アルミナ又は水酸化アルミニウムで処理された酸化チタンを用いることが、組成物中での分散性、保存安定性、難燃性の観点から特に好ましい。 Among these titanium oxides, it is particularly preferable to use titanium oxide whose surface is treated with hydrous alumina or aluminum hydroxide from the viewpoints of dispersibility in the composition, storage stability, and flame retardancy.
黒色着色剤:
 本発明に用いられる黒色着色剤としては、公知慣用の黒色着色剤を使用することができる。黒色着色剤としては、C.I.Pigmentblack 6、7、9および18等に示されるカーボンブラック系の顔料、C.I.Pigment black 8、10等に示される黒鉛系の顔料、C.I.Pigmentblack 11、12および27,Pigment Brown 35等で示される酸化鉄系の顔料:例えば戸田工業(株)製KN-370の酸化鉄、三菱マテリアル(株)製13Mのチタンブラック、C.I.Pigmentblack 20等で示されるアンスラキノン系の顔料、C.I.Pigment black 13、25および29等で示される酸化コバルト系の顔料、C.I.Pigmentblack 15および28等で示される酸化銅系の顔料、C.I.Pigment black 14および26等で示されるマンガン系の顔料、C.I.Pigmentblack 23等で示される酸化アンチモン系の顔料、C.I.Pigment black 30等で示される酸化ニッケル系の顔料、C.I.Pigmentblack 31、32で示されるペリレン系の顔料、Pigment Black 1で示されるアニリン系の顔料および硫化モリブデンや硫化ビスマスも好適な顔料として例示できる。これらの顔料は、単独で、または適宜組合せて使用される。特に好ましいのは、カーボンブラックであり例えば、三菱化学(株)製のカーボンブラック、M-40、M-45、M-50、MA-8、MA-100、またペリレン系の顔料は有機顔料の中でも低ハロゲン化に有効である。
Black colorant:
As the black colorant used in the present invention, a known and commonly used black colorant can be used. Examples of black colorants include carbon black pigments such as CIPigmentblack 6, 7, 9 and 18; graphite pigments such as CIPigment black 8, 10 and the like; CIPigmentblack 11, 12 and 27; Pigment Brown 35 and the like. Iron oxide pigments shown: iron oxide of KN-370 manufactured by Toda Kogyo Co., Ltd., 13M titanium black manufactured by Mitsubishi Materials Co., Ltd., anthraquinone pigment expressed by CIPigmentblack 20, etc., CIPigment black 13, 25 And cobalt oxide pigments such as CIPigmentblack 15 and 28, manganese oxide pigments such as CIPigment black 14 and 26, antimony oxide pigments such as CIPigmentblack 23 Pigments, nickel oxide pigments such as CIPigment black 30 etc., perylene pigments such as CIPigment black 31 and 32, pigment Examples of suitable pigments include aniline pigments represented by Black 1, molybdenum sulfide, and bismuth sulfide. These pigments are used alone or in appropriate combination. Particularly preferred is carbon black, for example, carbon black manufactured by Mitsubishi Chemical Corporation, M-40, M-45, M-50, MA-8, MA-100, and perylene pigments are organic pigments. Among these, it is effective for reducing halogen.
 その他、色調を調整する目的で紫、オレンジ、茶色などの着色剤を加えてもよい。
 具体的に例示すれば、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet13、36、C.I.ピグメントオレンジ1、C.I.ピグメントオレンジ5、C.I.ピグメントオレンジ13、C.I.ピグメントオレンジ14、C.I.ピグメントオレンジ16、C.I.ピグメントオレンジ17、C.I.ピグメントオレンジ24、C.I.ピグメントオレンジ34、C.I.ピグメントオレンジ36、C.I.ピグメントオレンジ38、C.I.ピグメントオレンジ40、C.I.ピグメントオレンジ43、C.I.ピグメントオレンジ46、C.I.ピグメントオレンジ49、C.I.ピグメントオレンジ51、C.I.ピグメントオレンジ61、C.I.ピグメントオレンジ63、C.I.ピグメントオレンジ64、C.I.ピグメントオレンジ71、C.I.ピグメントオレンジ73、C.I.ピグメントブラウン23、C.I.ピグメントブラウン25、C.I.等がある。
In addition, a colorant such as purple, orange or brown may be added for the purpose of adjusting the color tone.
For example, Pigment Violet 19, 23, 29, 32, 36, 38, 42, Solvent Violet 13, 36, CI Pigment Orange 1, CI Pigment Orange 5, CI Pigment Orange 13, CI Pigment Orange 14, CI Pigment Orange 16, CI Pigment Orange 17, CI Pigment Orange 24, CI Pigment Orange 34, CI Pigment Orange 36, CI Pigment Orange 38, CI Pigment Orange 40, CI Pigment Orange 43, CI Pigment Orange 46, CI Pigment Orange 49, CI Pigment There are orange 51, CI pigment orange 61, CI pigment orange 63, CI pigment orange 64, CI pigment orange 71, CI pigment orange 73, CI pigment brown 23, CI pigment brown 25, CI and the like.
 本発明の熱硬化性樹脂組成物中の着色剤の配合量は、前記熱反応性化合物100質量部に対して、10質量部以下とすることが好ましい。より好ましくは0.1~5質量部である。
 なお、着色剤が白色の場合、白色着色剤の配合量は、前記熱反応性化合物100質量部に対して、70質量部以下とすることが好ましく、より好ましくは、60質量部以下である。
It is preferable that the compounding quantity of the coloring agent in the thermosetting resin composition of this invention shall be 10 mass parts or less with respect to 100 mass parts of said thermoreactive compounds. More preferably, it is 0.1 to 5 parts by mass.
In addition, when a colorant is white, it is preferable that the compounding quantity of a white colorant shall be 70 mass parts or less with respect to 100 mass parts of said heat-reactive compounds, More preferably, it is 60 mass parts or less.
[高分子樹脂]
 本発明の熱硬化性樹脂組成物には、得られる硬化物の可撓性、指触乾燥性の向上を目的に慣用公知の高分子樹脂を配合することができる。高分子樹脂としてはセルロース系、ポリエステル系、フェノキシ樹脂系ポリマー、ポリビニルアセタール系、ポリビニルブチラール系、ポリアミド系、ポリアミドイミド系バインダーポリマー、ブロック共重合体、エラストマー等が挙げられる。バインダーポリマーは1種類を単独で用いてもよく、2種類以上を併用してもよい。
[Polymer resin]
In the thermosetting resin composition of the present invention, a conventionally known polymer resin can be blended for the purpose of improving the flexibility and dryness of the touch of the resulting cured product. Examples of the polymer resin include cellulose, polyester, phenoxy resin, polyvinyl acetal, polyvinyl butyral, polyamide, polyamideimide binder polymer, block copolymer, elastomer and the like. A binder polymer may be used individually by 1 type, and may use 2 or more types together.
 上記高分子樹脂の添加量は、上記熱反応性化合物100質量部に対して、好ましくは50質量部以下、より好ましくは1~30質量部、特に好ましくは、5~30質量部である。高分子樹脂の配合量が、50質量部を超えた場合、熱硬化性樹脂組成物のデスミア耐性の悪化が懸念されるため好ましくない。 The addition amount of the polymer resin, with respect to the heat-reactive compound 100 parts by weight, preferably not more than 50 parts by weight, more preferably 1 to 30 parts by weight, particularly preferably 5 to 30 parts by weight. When the amount of the polymer resin exceeds 50 parts by mass, there is a concern about deterioration of desmear resistance of the thermosetting resin composition, which is not preferable.
(ブロック共重合体)
 ブロック共重合体とは、性質の異なる二種類以上のポリマーが、共有結合で繋がり長い連鎖になった分子構造の共重合体のことである。
(Block copolymer)
The block copolymer is a copolymer having a molecular structure in which two or more kinds of polymers having different properties are connected by a covalent bond to form a long chain.
 本発明で用いるブロック共重合体としてはA-B-A、あるいはA-B-A’型ブロック共重合体が好ましい。A-B-AあるいはA-B-A’型ブロック共重合体のうち、中央のBがソフトブロックでありガラス転移点Tgが低く、好ましくは0℃未満であり、その両外側A又はA’がハードブロックでありTgが高く、好ましくは0℃以上のポリマー単位により構成されているものが好ましい。ガラス転移点Tgは示差走査熱量測定(DSC)により測定される。
 また、A-B-AあるいはA-B-A’型ブロック共重合体のうち、A又はA’がTgが50℃以上のポリマー単位からなり、BがTgが-20℃以下であるポリマー単位からなるブロック共重合体がさらに好ましい。
 また、A-B-AあるいはA-B-A’型ブロック共重合体のうち、A又はA’が上記熱反応性化合物との相溶性が高いものが好ましく、Bが上記熱反応性化合物との相溶性が低いものが好ましい。このように、両端のブロックがマトリックスに相溶であり、中央のブロックがマトリックスに不相溶であるブロック共重合体とすることで、マトリックス中において特異的な構造を示しやすくなると考えられる。
The block copolymer used in the present invention is preferably an ABA or ABA ′ type block copolymer. A-B-A or A-B-A 'of the block copolymer, the center of B is the soft block low glass transition point Tg, preferably less than 0 ° C., the both outer A or A' Is a hard block and has a high Tg, and is preferably composed of polymer units of 0 ° C. or higher. The glass transition point Tg is measured by differential scanning calorimetry (DSC).
Also, A-B-A or 'out of block copolymer, A or A' A-B-A is Tg consists of more than 50 ° C. polymer unit, the polymer units B is Tg of -20 ° C. or less More preferred is a block copolymer of
In addition, among the ABA and ABA ′ type block copolymers, those in which A or A ′ is highly compatible with the heat-reactive compound are preferable, and B is the same as the heat-reactive compound. Those having low compatibility are preferred. Thus, it is considered that a specific structure in the matrix can be easily shown by using a block copolymer in which the blocks at both ends are compatible with the matrix and the central block is incompatible with the matrix.
 A又はA’として、ポリメチル(メタ)アクリレート(PMMA)、ポリスチレン(PS)などを含むことが好ましく、Bとしてポリn-ブチルアクリレート(PBA)、ポリブタジエン(PB)などを含むことが好ましい。また、A又はA’成分の一部にスチレンユニット、水酸基含有ユニット、カルボキシル基含有ユニット、エポキシ含有ユニット、N置換アクリルアミドユニット等に代表される前述に記載したマトリックスと相溶性に優れる親水性ユニットを導入し、更に相溶性を向上させることが可能となる。 A or A ′ preferably includes polymethyl (meth) acrylate (PMMA), polystyrene (PS) or the like, and B preferably includes poly n-butyl acrylate (PBA), polybutadiene (PB) or the like. Further, a hydrophilic unit excellent in compatibility with the matrix described above represented by a styrene unit, a hydroxyl group-containing unit, a carboxyl group-containing unit, an epoxy-containing unit, an N-substituted acrylamide unit, etc. as part of the A or A ′ component It becomes possible to introduce and further improve the compatibility.
 また本発明に用いるブロック共重合体としては3元以上のブロック共重合体が好ましく、リビング重合法により合成された分子構造が精密にコントロールされたブロック共重合体が本発明の効果を得る上でより好ましい。これは、リビング重合法により合成されたブロック共重合体は分子量分布が狭く、それぞれのユニットの特徴が明確になったためであると考えられる。用いるブロック共重合体の分子量分布(Mw/Mn)は3以下が好ましく、2.5以下がより好ましく、更に好ましくは2.0以下である。 The block copolymer used in the present invention is preferably a ternary or more block copolymer, and a block copolymer having a precisely controlled molecular structure synthesized by a living polymerization method is effective for obtaining the effects of the present invention. More preferred. This block copolymer synthesized by a living polymerization method has a narrow molecular weight distribution, features of each unit is considered to be because became clear. The molecular weight distribution (Mw / Mn) of the block copolymer used is preferably 3 or less, more preferably 2.5 or less, and still more preferably 2.0 or less.
 上記のような(メタ)アクリレートポリマーブロックを含むブロック共重合体は、例えば、特開2007-516326号、特開2005-515281号明細書記載の方法、特に、下記式(1)~(4)のいずれかで表されるアルコキシアミン化合物を開始剤としてY単位を重合した後に、X単位を重合することにより好適に得ることができる。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
(式中、nは2を表し、Zは、2価の有機基を表し、好ましくは、1,2-エタンジオキシ、1,3-プロパンジオキシ、1,4-ブタンジオキシ、1,6-ヘキサンジオキシ、1,3,5-トリス(2-エトキシ)シアヌル酸、ポリアミノアミン、例えばポリエチレンアミン、1,3,5-トリス(2-エチルアミノ)シアヌル酸、ポリチオキシ、ホスホネートまたはポリホスホネートの中から選択されるものである。Arは2価のアリール基を表す。)
The block copolymers containing the (meth) acrylate polymer block as described above are, for example, the methods described in JP-A-2007-516326 and JP-A-2005-515281, particularly the following formulas (1) to (4). After the Y unit is polymerized using the alkoxyamine compound represented by any of the above as an initiator, it can be suitably obtained by polymerizing the X unit.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
(Wherein n represents 2 and Z represents a divalent organic group, preferably 1,2-ethanedioxy, 1,3-propanedioxy, 1,4-butanedioxy, 1,6-hexanedioxy Selected from among oxy, 1,3,5-tris (2-ethoxy) cyanuric acid, polyaminoamines such as polyethyleneamine, 1,3,5-tris (2-ethylamino) cyanuric acid, polythioxy, phosphonate or polyphosphonate Ar represents a divalent aryl group.)
 ブロック共重合体の重量平均分子量は好ましくは20,000~400,000、より好ましくは50,000~300,000の範囲である。重量平均分子量が20,000未満であると、目的とする強靭性、柔軟性の効果が得られず、熱硬化性樹脂組成物をドライフィルム化した時や基材に塗布し仮乾燥した時のタック性にも劣る。一方、重量平均分子量が400,000を超えると、熱硬化性樹脂組成物の粘度が高くなり、印刷性、加工性が著しく悪くなることがある。重量平均分子量が50000以上であると、外部からの衝撃に対する緩和性において優れた効果が得られる。 The weight average molecular weight of the block copolymer is preferably in the range of 20,000 to 400,000, more preferably 50,000 to 300,000. When the weight average molecular weight is less than 20,000, the desired toughness and flexibility effects cannot be obtained, and when the thermosetting resin composition is formed into a dry film or applied to a substrate and temporarily dried. Inferior to tackiness. On the other hand, when the weight average molecular weight exceeds 400,000, the viscosity of the thermosetting resin composition becomes high, and the printability and processability may be remarkably deteriorated. When the weight average molecular weight is 50000 or more, an excellent effect is obtained in terms of relaxation against external impact.
(エラストマー)
 本発明の熱硬化性樹脂組成物には、官能基を有するエラストマーを添加することができる。官能基を有するエラストマーを加えることで、コーティング性が向上し、塗膜の強度も向上することが期待できる。また、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリエステルウレタン系エラストマー、ポリアミド系エラストマー、ポリエステルアミド系エラストマー、アクリル系エラストマー、オレフィン系エラストマー等を用いることができる。また、種々の骨格を有するエポキシ樹脂の一部又は全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴムで変性した樹脂なども使用できる。さらには、エポキシ含有ポリブタジエン系エラストマー、アクリル含有ポリブタジエン系エラストマー、水酸基含有ポリブタジエン系エラストマー、水酸基含有イソプレン系エラストマーなども使用することができる。また、これらのエラストマーは、1種を単独で用いてもよく、2種類以上を併用してもよい。
(Elastomer)
An elastomer having a functional group can be added to the thermosetting resin composition of the present invention. By adding an elastomer having a functional group, it is expected that the coating property is improved and the strength of the coating film is also improved. Further, polyester elastomers, polyurethane elastomers, polyester urethane elastomers, polyamide elastomers, polyester amide elastomers, acrylic elastomers, olefin elastomers, and the like can be used. In addition, resins in which a part or all of epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can be used. Furthermore, epoxy-containing polybutadiene elastomers, acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, and the like can also be used. Moreover, these elastomers may be used individually by 1 type, and may use 2 or more types together.
[無機充填剤]
 上記熱硬化性樹脂組成物は、無機充填剤を含有することが好ましい。無機充填剤は、熱硬化性樹脂組成物の硬化物の硬化収縮を抑制し、密着性、硬度などの特性を向上させるために使用される。無機充填剤としては、例えば、硫酸バリウム、無定形シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ノイブルグシリシャスアース等が挙げられる。
[Inorganic filler]
The thermosetting resin composition preferably contains an inorganic filler. The inorganic filler is used for suppressing the curing shrinkage of the cured product of the thermosetting resin composition and improving the properties such as adhesion and hardness. Examples of the inorganic filler include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, and Neuburg Examples include rich earth.
 無機充填剤の平均粒径(D50)は1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μmであることがさらに好ましい。平均粒径が1μmを超える場合、パターン層が白濁する恐れがあるため、好ましくない。平均粒径(D50)は、レーザー回折/散乱法により測定することができる。平均粒径が上記範囲にあることにより、屈折率が樹脂成分と近くなり、透過性が向上し、光照射による光塩基発生剤からの塩基の発生効率が上昇する。無機充填剤と、アルカリ現像性樹脂との屈折率差は、0.3以下であることが好ましい。屈折率差を0.3以下とすることにより、光の散乱を抑えて、良好な深部硬化性を得ることができる。ここで、無機充填剤の屈折率は、1.4以上1.8以下であることが好ましい。なお、無機充填剤の屈折率は、JIS K 7105に準拠して測定することができる。
 無機充填剤の配合割合は、上記熱硬化性樹脂組成物の全固形分を基準として75質量%以下が好ましく、より好ましくは0.1~60質量%である。無機充填剤の配合割合が75質量%を超えると、組成物の粘度が高くなり、塗布性が低下したり、熱硬化性樹脂組成物の硬化物が脆くなることがある。
The average particle size (D50) of the inorganic filler is preferably 1 μm or less, more preferably 0.7 μm or less, and even more preferably 0.5 μm. When the average particle diameter exceeds 1 μm, the pattern layer may become cloudy, which is not preferable. The average particle diameter (D50) can be measured by a laser diffraction / scattering method. When the average particle diameter is in the above range, the refractive index is close to that of the resin component, the permeability is improved, and the generation efficiency of the base from the photobase generator by light irradiation is increased. The difference in refractive index between the inorganic filler and the alkali developable resin is preferably 0.3 or less. By setting the difference in refractive index to 0.3 or less, it is possible to suppress light scattering and obtain good deep curability. Here, the refractive index of the inorganic filler is preferably 1.4 or more and 1.8 or less. In addition, the refractive index of an inorganic filler can be measured based on JISK7105.
The blending ratio of the inorganic filler is preferably 75% by mass or less, more preferably 0.1 to 60% by mass based on the total solid content of the thermosetting resin composition. When the blending ratio of the inorganic filler exceeds 75% by mass, the viscosity of the composition is increased, the applicability may be lowered, and the cured product of the thermosetting resin composition may be brittle.
 [有機溶剤]
 本発明の熱硬化性樹脂組成物には、樹脂組成物の調製のためや、基材やキャリアフィルムに塗布するための粘度調整のために、有機溶剤を使用することができる。
[Organic solvent]
In the thermosetting resin composition of the present invention, an organic solvent can be used for preparing the resin composition or adjusting the viscosity for application to a substrate or a carrier film.
 このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などが挙げることができる。このような有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。 Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
[光重合性モノマー]
 本発明の熱硬化性樹脂組成物は、本発明の効果を阻害しない範囲で光重合性モノマーを含んでいてもよい。
 光重合性モノマーとしては、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキシド誘導体のモノ又はジ(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキシド或いはプロピレンオキシド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリジジルエーテルの(メタ)アクリレート類;及びメラミン(メタ)アクリレート等を挙げることができる。
 光重合性モノマーの配合量は、熱硬化性樹脂組成物の溶剤を除く固形分を基準として、50質量%以下であることが好ましく、より好ましくは、30質量%以下であり、さらにより好ましくは、15質量%以下である。光重合性モノマーの配合量が50質量%を超える場合、硬化収縮が大きくなるため、反りが大きくなる可能性がある。また、光重合性モノマーが(メタ)アクリレート由来の場合、エステル結合を含む。この場合、デスミア処理によって、エステル結合の加水分解が起こるため、電気特性が低下する可能性がある。
[Photopolymerizable monomer]
The thermosetting resin composition of the present invention may contain a photopolymerizable monomer as long as the effects of the present invention are not impaired.
Photopolymerizable monomers include alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate; hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate (Meth) acrylates; mono- or di (meth) acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, Polyhydric alcohols such as trishydroxyethyl isocyanurate or polyvalent (meth) acrylates of these ethylene oxide or propylene oxide adducts (Meth) acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth) acrylate and polyethoxydi (meth) acrylate of bisphenol A; glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl (Meth) acrylates of glycidyl ether such as isocyanurate; and melamine (meth) acrylate.
The blending amount of the photopolymerizable monomer is preferably 50% by mass or less, more preferably 30% by mass or less, and still more preferably based on the solid content excluding the solvent of the thermosetting resin composition. 15 mass% or less. When the blending amount of the photopolymerizable monomer exceeds 50% by mass, the curing shrinkage increases, so that the warpage may increase. When the photopolymerizable monomer is derived from (meth) acrylate, it contains an ester bond. In this case, since the ester bond is hydrolyzed by the desmear treatment, the electrical characteristics may be deteriorated.
(その他の任意成分)
 本発明の熱硬化性樹脂組成物には、必要に応じてさらに、メルカプト化合物、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。また、上記の熱硬化性樹脂組成物には、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、シランカップリング剤、防錆剤などのような公知慣用の添加剤類を配合することができる。
 また、熱硬化性成分として、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂等を配合してもよい。
 さらに、アルカリ現像性樹脂としてフェノール樹脂を含有し、熱反応性化合物としてエポキシ樹脂を含有することで、Tgを高くでき、原料の軟化点に依存すること無くHAST耐性に優れた硬化物が得られる樹脂組成物とすることができる。また、光重合性モノマー(分子内にエチレン性不飽和基を含有し、カルボキシル基含有樹脂を主成分とする光硬化性樹脂組成物において、光硬化を促進するために配合される低分子化合物)を配合しない組成とした場合、タック性に優れる樹脂組成物とすることができる。
 従来の光硬化性樹脂組成物では、光硬化反応を室温下で起こす為、硬化時に樹脂組成物のTgが上昇する結果、硬化反応が停止してしまう場合があり、樹脂組成物のTgを低く設計する必要があった。それに対して本発明のアルカリ現像型の熱硬化性樹脂組成物は、硬化反応前のTgに制限はなく、高Tgとすることが期待できる。また、本発明のアルカリ現像型熱硬化性樹脂組成物は、酸素阻害を受けずに硬化することが期待できる。
(Other optional ingredients)
The thermosetting resin composition of the present invention may further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary. As these, those known in the field of electronic materials can be used. In addition, the thermosetting resin composition includes a known and commonly used thickening agent such as finely divided silica, hydrotalcite, organic bentonite, and montmorillonite, an antifoaming agent such as silicone, fluorine, and polymer, and / or Known and commonly used additives such as a leveling agent, a silane coupling agent, and a rust preventive agent can be blended.
Moreover, you may mix | blend well-known and usual thermosetting resins, such as a block isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, an episulfide resin, etc. as a thermosetting component.
Furthermore, by containing a phenol resin as the alkali-developable resin and an epoxy resin as the heat-reactive compound, a Tg can be increased, and a cured product having excellent HAST resistance can be obtained without depending on the softening point of the raw material. It can be set as a resin composition. In addition, a photopolymerizable monomer (a low molecular compound compounded to promote photocuring in a photocurable resin composition containing an ethylenically unsaturated group in the molecule and containing a carboxyl group-containing resin as a main component) When it is set as the composition which does not mix | blend, it can be set as the resin composition excellent in tackiness.
In the conventional photocurable resin composition, since the photocuring reaction occurs at room temperature, the Tg of the resin composition rises at the time of curing. As a result, the curing reaction may stop, and the Tg of the resin composition may be lowered. There was a need to design. On the other hand, the alkali development type thermosetting resin composition of the present invention is not limited to Tg before the curing reaction, and can be expected to have a high Tg. Further, the alkali development type thermosetting resin composition of the present invention can be expected to be cured without being inhibited by oxygen.
 本発明の熱硬化性樹脂組成物は、プリント配線板のパターン層の形成に有用であり、中でもソルダーレジストや層間絶縁層の材料として有用である。 The thermosetting resin composition of the present invention is useful for formation of a printed wiring board pattern layer, it is useful as a material for inter alia solder resist or an interlayer insulating layer.
[パターン形成方法]
 本発明の熱硬化性樹脂組成物を好適に用いることができるパターン形成方法は、基材に熱硬化性樹脂組成物からなる樹脂層を形成する工程(A)、ネガ型のパターン状の光照射にて熱硬化性樹脂組成物に含まれる光塩基発生剤を活性化して光照射部を硬化する工程(B)、現像により未照射部を除去することによりネガ型のパターン層を形成する工程(C)を含む。
 パターン状の光照射により熱硬化性樹脂組成物の光照射部内に塩基を発生させることにより、光照射部を硬化させる。その後、有機溶剤又はアルカリ水溶液にて現像することで、未照射部を除去し、ネガ型のパターン層を形成する。
 ここで、本発明では、工程(B)の後、樹脂層を加熱する工程(B1)を有することが好ましい。これにより、樹脂層を十分に硬化して、さらに硬化特性に優れたパターン層を得ることができる。
[Pattern formation method]
The pattern forming method in which the thermosetting resin composition of the present invention can be suitably used includes the step (A) of forming a resin layer made of a thermosetting resin composition on a substrate, and a negative pattern-shaped light irradiation. Activating the photobase generator contained in the thermosetting resin composition in step (B) to cure the light-irradiated part, and forming a negative pattern layer by removing the unirradiated part by development ( C).
A light irradiation part is hardened by generating a base in the light irradiation part of a thermosetting resin composition by pattern-shaped light irradiation. Then, by developing with an organic solvent or an aqueous alkali solution, the unirradiated part is removed, and a negative pattern layer is formed.
Here, in this invention, it is preferable to have the process (B1) of heating a resin layer after a process (B). Thereby, a resin layer can fully be hardened and the pattern layer excellent in the hardening characteristic can be obtained.
[工程(A)]
 工程(A)は、基材に熱硬化性樹脂組成物からなる樹脂層を形成する工程である。樹脂層を形成する方法は、液状の熱硬化性樹脂組成物を基材上に、塗布、乾燥する方法や、熱硬化性樹脂組成物をドライフィルムにしたものを基材上にラミネートする方法によることができる。
[Step (A)]
A process (A) is a process of forming the resin layer which consists of a thermosetting resin composition in a base material. The resin layer is formed by a method in which a liquid thermosetting resin composition is applied and dried on a substrate, or a method in which a thermosetting resin composition is formed into a dry film and laminated on the substrate. be able to.
 熱硬化性樹脂組成物の基材への塗布方法は、ブレードコーター、リップコーター、コンマコーター、フィルムコーター等の公知の方法を適宜採用することができる。また、乾燥方法は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等、蒸気による加熱方式の熱源を備えたものを用い、乾燥機内の熱風を向流接触させる方法、およびノズルより支持体に吹き付ける方法等、公知の方法が適用できる。
 基材としては、予め回路形成されたプリント配線基材やフレキシブルプリント配線基材の他、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不繊布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・PPO・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリイミドフィルム、PETフィルム、ガラス基材、セラミック基材、ウエハ基材等を用いることができる。
As a method for applying the thermosetting resin composition to the substrate, a known method such as a blade coater, a lip coater, a comma coater, or a film coater can be appropriately employed. Also, the drying method is a method using a hot-air circulation type drying furnace, IR furnace, hot plate, convection oven, etc., equipped with a heat source of the heating method by steam, and the hot air in the dryer is counter-contacted and supported by the nozzle Known methods such as a method of spraying on the body can be applied.
In addition to printed wiring substrates and flexible printed wiring substrates that have been pre-circuited, paper-phenolic resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, glass cloth / non-woven cloth-epoxy Resin, glass cloth / paper-epoxy resin, synthetic fiber-epoxy resin, all grades (FR-4, etc.) copper-clad laminates using polyimide, polyethylene, PPO, cyanate ester, etc., polyimide film, A PET film, a glass substrate, a ceramic substrate, a wafer substrate and the like can be used.
[工程(B)]
 工程(B)は、ネガ型のパターン状に光照射して熱硬化性樹脂組成物に含まれる光塩基発生剤を活性化して光照射部を硬化する工程である。工程(B)は、光照射部で発生した塩基により、光塩基発生剤が不安定化し、さらに塩基が発生すると考えられる。このように塩基が化学的に増殖することにより、光照射部の深部まで十分硬化できる。
 光照射に用いられる光照射機としては、直接描画装置(例えばコンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)、メタルハライドランプを搭載した光照射機、(超)高圧水銀ランプを搭載した光照射機、水銀ショートアークランプを搭載した光照射機、もしくは(超)高圧水銀ランプ等の紫外線ランプを使用した直接描画装置を用いることができる。パターン状の光照射用のマスクは、ネガ型のマスクを用いることができる。
[Step (B)]
Step (B) is a step of irradiating light in a negative pattern and activating the photobase generator contained in the thermosetting resin composition to cure the light irradiated portion. In the step (B), it is considered that the photobase generator is destabilized by the base generated in the light irradiation part, and further the base is generated. In this way, the base can be sufficiently cured to the deep part of the light irradiation part by chemically growing.
As the light irradiator used for light irradiation, a direct drawing device (for example, a laser direct imaging device that directly draws an image with a laser using CAD data from a computer), a light irradiator equipped with a metal halide lamp, and an (ultra) high pressure mercury lamp It is possible to use an on-board light irradiation machine, a light irradiation machine equipped with a mercury short arc lamp, or a direct drawing apparatus using an ultraviolet lamp such as a (super) high pressure mercury lamp. As the patterned light irradiation mask, a negative mask can be used.
 活性エネルギー線としては、最大波長が350~410nmの範囲にあるレーザー光又は散乱光を用いることが好ましい。最大波長をこの範囲とすることにより、効率よく熱硬化性樹脂組成物の熱反応性を向上させることができる。この範囲のレーザー光を用いていればガスレーザー、固体レーザーのいずれでもよい。また、その光照射量は膜厚等によって異なるが、一般には100~1500mJ/cm、好ましくは300~1500mJ/cmの範囲内とすることができる。 As the active energy ray, it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 410 nm. By setting the maximum wavelength within this range, the thermal reactivity of the thermosetting resin composition can be improved efficiently. If a laser beam in this range is used, either a gas laser or a solid laser may be used. The amount of light irradiation varies depending on the film thickness and the like, but can be generally in the range of 100 to 1500 mJ / cm 2 , preferably 300 to 1500 mJ / cm 2 .
 直接描画装置としては、例えば、日本オルボテック社製、ペンタックス社製等のものを使用することができ、最大波長が350~410nmのレーザー光を発振する装置であればいずれの装置を用いてもよい。 As the direct drawing apparatus, for example, those manufactured by Nippon Orbotech, Pentax, etc. can be used, and any apparatus that oscillates laser light having a maximum wavelength of 350 to 410 nm may be used. .
[工程(B1)]
 工程(B1)は、加熱により光照射部を硬化する。工程(B1)は、工程(B)で発生した塩基により深部まで硬化できる。
 加熱温度は、熱硬化性樹脂組成物のうち光照射部は熱硬化するが、未照射部は熱硬化しない温度であることが好ましい。
 例えば、工程(B1)は、未照射の熱硬化性樹脂組成物の発熱開始温度又は発熱ピーク温度よりも低く、かつ、光照射した熱硬化性樹脂組成物の発熱開始温度又は発熱ピーク温度よりも高い温度で加熱することが好ましい。このように加熱することにより、光照射部のみを選択的に硬化することができる。
 ここで、加熱温度は、例えば、80~140℃である。加熱温度を80℃以上とすることにより、光照射部を十分に硬化できる。一方、加熱温度を140℃以下とすることにより、光照射部のみを選択的に硬化できる。加熱時間は、例えば、10~100分である。加熱方法は、上記乾燥方法と同様である。
 なお、未照射部では、光塩基発生剤から塩基が発生しないため、熱硬化が抑制される。
[Step (B1)]
In the step (B1), the light irradiation part is cured by heating. Step (B1) can be cured to a deep portion by the base generated in step (B).
The heating temperature is preferably a temperature at which the light-irradiated portion of the thermosetting resin composition is thermally cured, but the non-irradiated portion is not thermally cured.
For example, in the step (B1), the heat generation start temperature or the heat generation peak temperature of the unirradiated thermosetting resin composition is lower than the heat generation start temperature or the heat generation peak temperature of the light irradiated thermosetting resin composition. Heating at a high temperature is preferred. By heating in this way, only the light irradiation part can be selectively cured.
Here, the heating temperature is, for example, 80 to 140 ° C. By setting the heating temperature to 80 ° C. or higher, the light irradiation part can be sufficiently cured. On the other hand, by setting the heating temperature to 140 ° C. or lower, only the light irradiation part can be selectively cured. The heating time is, for example, 10 to 100 minutes. The heating method is the same as the drying method.
In the unirradiated portion, no base is generated from the photobase generator, so that thermosetting is suppressed.
[工程(C)]
 工程(C)は、現像により未照射部を除去することによりネガ型のパターン層を形成する工程である。現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等公知の方法によることができる。また、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、エタノールアミンなどのアミン類、水酸化テトラメチルアンモニウム水溶液(TMAH)等のアルカリ水溶液またはこれらの混合液を用いることができる。
[Step (C)]
Step (C) is a step of forming a negative pattern layer by removing unirradiated portions by development. As a developing method, a known method such as a dipping method, a shower method, a spray method, or a brush method can be used. Developers include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines such as ethanolamine, and alkalis such as tetramethylammonium hydroxide aqueous solution (TMAH). An aqueous solution or a mixed solution thereof can be used.
[工程(D)]
 上記パターン形成方法は、工程(C)の後に、さらに、紫外線照射工程(D)を含むことが好ましい。工程(C)の後にさらに紫外線照射を行うことで、光照射時に活性化せずに残った光塩基発生剤を活性化させることができる。工程(C)の後の紫外線照射工程(D)における紫外線の波長および光照射量(露光量)は、工程(B)と同じであってもよく、異なっていてもよい。好適な光照射量(露光量)は、150~2000mJ/cmである。
[Step (D)]
The pattern forming method preferably further includes an ultraviolet irradiation step (D) after the step (C). By further irradiating with ultraviolet rays after the step (C), the photobase generator remaining without being activated at the time of light irradiation can be activated. The wavelength of ultraviolet rays and the light irradiation amount (exposure amount) in the ultraviolet irradiation step (D) after the step (C) may be the same as or different from those in the step (B). A suitable light irradiation amount (exposure amount) is 150 to 2000 mJ / cm 2 .
[工程(E)]
 上記パターン形成方法は、工程(C)の後に、さらに、熱硬化(ポストキュア)工程(E)を含むことが好ましい。
 工程(C)の後に工程(D)と工程(E)をともに行う場合、工程(E)は、工程(D)の後に行うことが好ましい。
 工程(E)は、工程(B)、または工程(B)および工程(D)により光塩基発生剤から発生した塩基により、パターン層を十分に熱硬化させる。工程(E)の時点では、未照射部を既に除去しているため、工程(E)は、未照射の熱硬化性樹脂組成物の硬化反応開始温度以上の温度で行うことができる。これにより、パターン層を十分に熱硬化させることができる。加熱温度は、例えば、160℃以上である。
[Step (E)]
The pattern formation method preferably further includes a thermosetting (post-cure) step (E) after the step (C).
When performing a process (D) and a process (E) together after a process (C), it is preferable to perform a process (E) after a process (D).
In the step (E), the pattern layer is sufficiently heat-cured by the base generated from the photobase generator in the step (B) or the steps (B) and (D). Since the unirradiated portion has already been removed at the time of the step (E), the step (E) can be performed at a temperature equal to or higher than the curing reaction start temperature of the unirradiated thermosetting resin composition. Thereby, a pattern layer can fully be thermosetted. The heating temperature is, for example, 160 ° C. or higher.
[工程(F)]
 上記パターン形成方法は、さらに、レーザー加工工程(F)を含んでもよい。レーザー加工により微細な開口部を形成することができる。レーザーは、YAGレーザー、CO2レーザー、エキシマレーザーなど公知のレーザーを用いることができる。
 工程(F)は、工程(C)の後、又は、工程(D)、(E)を含む場合は、工程(D)、(E)の後に行うことが好ましい。
[Step (F)]
The pattern forming method may further include a laser processing step (F). Fine openings can be formed by laser processing. As the laser, a known laser such as a YAG laser, a CO2 laser, or an excimer laser can be used.
The step (F) is preferably performed after the step (C) or after the steps (D) and (E) when the step (F) includes the steps (D) and (E).
[工程(G)]
 本発明のパターン形成方法は、さらに、工程(F)後、デスミア工程(G)を含むことが好ましい。
 工程(G)は、スミアを膨潤させて除去されやすくするためのスミア膨潤工程、スミアを除去する除去工程、および除去工程で使用されたデスミア液から生じるスラッジを中和する中和工程を含む。
 膨潤工程は、水酸化ナトリウム等のアルカリ薬液を用いて行うもので、デスミア薬液によるスミア除去を容易にするものである。
 除去工程は、重クロム酸や過マンガン酸等の酸化剤を含む酸性薬液を用いてスミアを除去する。
 中和工程は、水酸化ナトリウム等のアルカリ薬液を用いて、除去工程で使用した酸化剤を還元、除去する。
[Step (G)]
The pattern forming method of the present invention preferably further includes a desmear process (G) after the process (F).
Step (G) includes a smear swelling step for swelling smear to facilitate removal, a removal step for removing smear, and a neutralization step for neutralizing sludge generated from the desmear liquid used in the removal step.
The swelling step is performed using an alkali chemical such as sodium hydroxide, and facilitates smear removal with a desmear chemical.
In the removing step, smear is removed using an acidic chemical solution containing an oxidizing agent such as dichromic acid or permanganic acid.
In the neutralization step, the oxidizing agent used in the removal step is reduced and removed using an alkaline chemical such as sodium hydroxide.
 以下、実施例、比較例により本発明をさらに詳細に説明するが、本発明は、これら実施例、比較例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
(実施例1~10)
<熱硬化性樹脂組成物の調製>
 下記表1記載の配合に従って、実施例に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、熱硬化性樹脂組成物を調製した。表中の値は、特に断りが無い限り、質量部である。
(Examples 1 to 10)
<Preparation of thermosetting resin composition>
In accordance with the formulation shown in Table 1 below, the materials described in the examples were respectively mixed, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a thermosetting resin composition. The values in the table are parts by mass unless otherwise specified.
<樹脂層を備えるプリント配線基材の作製>
 銅厚15μmで回路が形成されている板厚0.4mmの両面プリント配線基材を用意し、メック社CZ-8100を使用して、前処理を行った。その後、ロールコーター(ファーネス社)を用い、前記前処理を行ったプリント配線基材に熱硬化性樹脂組成物を乾燥後で20μmになるように両面塗布をおこなった。その後、熱風循環式乾燥炉にて90℃/30minにて乾燥、熱硬化性樹脂組成物からなる樹脂層を形成した。
<Preparation of a printed wiring board provided with a resin layer>
A double-sided printed wiring substrate having a copper thickness of 15 μm and a circuit formed thereon having a thickness of 0.4 mm was prepared, and pre-treated using MEC CZ-8100. Thereafter, using a roll coater (Furness Co., Ltd.), the thermosetting resin composition was applied to the pre-treated printed wiring board so as to have a thickness of 20 μm after drying. Then, it dried at 90 degreeC / 30min with the hot air circulation type drying furnace, and formed the resin layer which consists of a thermosetting resin composition.
<現像性(パターニング)、硬化特性評価用基材の作製>
 上記で得られた樹脂層を備える基材に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にてネガパターンにて光照射した。光照射量については、DSCによる発熱ピーク温度を参考に下記表2に記載のように設定した。次いで表3に記載の温度条件にて60~80分間加熱処理を行った。その後、35℃の、3wt% TMAH/5wt%エタノールアミン混合水溶液中に基材を浸漬して3分間現像を行い、現像性およびパターニングの評価を下記基準に従って行った。得られた結果を下記表3に示す。
◎:TMAH/5wt%エタノールアミン混合水溶液に代えて、炭酸ナトリウム水溶液でも、現像が可能。光照射部表面に現像液によるダメージが無く、また未照射部に現像残渣がみられない状態。
○:光照射部表面に現像液によるダメージが無く、また未照射部に現像残渣がみられない状態。
×:未照射部に現像残渣が確認された。または、未照射部の現像ができなかった状態。
××:光照射部および未照射部ともに完全に溶解した状態。
<Development (patterning) and production of substrate for evaluating curing characteristics>
The base material provided with the resin layer obtained above was irradiated with a negative pattern with ORC HMW680GW (metal halide lamp, scattered light). The light irradiation amount was set as described in Table 2 below with reference to the exothermic peak temperature by DSC. Next, heat treatment was performed for 60 to 80 minutes under the temperature conditions shown in Table 3. Thereafter, the substrate was immersed in a 3 wt% TMAH / 5 wt% ethanolamine mixed aqueous solution at 35 ° C. and developed for 3 minutes, and development and patterning were evaluated according to the following criteria. The obtained results are shown in Table 3 below.
A: Development is possible with a sodium carbonate aqueous solution in place of the TMAH / 5 wt% ethanolamine mixed aqueous solution. There is no damage by the developer on the surface of the light irradiated area, and there is no development residue on the unirradiated area.
○: The surface of the light-irradiated part is not damaged by the developer, and the development residue is not seen in the unirradiated part.
X: The development residue was confirmed in the non-irradiated part. Alternatively, the unexposed area could not be developed.
XX: A state where both the light irradiated part and the unirradiated part are completely dissolved.
(レーザー加工性)
 上記の現像性(パターニング)の評価をおこなった基材について、更にORC社紫外線照射装置にて1J/cmのエネルギー量で紫外線照射を行い、ついで熱風循環式乾燥炉にて170℃/60min硬化させた(ポストキュア)。
 その後、光照射面にレーザー加工をおこなった。光源はCO2レーザー(日立ビアメカニクス社、光源10.6μm)にて加工した。下記基準に従って評価した。加工性の優劣をつけるために、全て同条件でレーザー加工を行った。
 加工径狙いはトップ径65μm/ボトム50μmである。
条件:アパチャー(マスク径):3.1mm/パルス幅20μsec/出力2W/周波数5kHz/ショット数:バースト3ショット
○:狙い加工径との差が±2μm未満
×:狙い加工径との差が±2μm以上
(Laser processability)
The base material on which the developability (patterning) was evaluated was further irradiated with ultraviolet rays at an energy amount of 1 J / cm 2 using an ORC ultraviolet irradiation device, and then cured at 170 ° C. for 60 minutes in a hot air circulation drying oven. (Post cure).
Then, laser processing was performed on the light irradiation surface. The light source was processed with a CO 2 laser (Hitachi Via Mechanics, light source 10.6 μm). Evaluation was made according to the following criteria. In order to give superiority or inferiority in workability, laser processing was performed under the same conditions.
The target of the processing diameter is a top diameter of 65 μm / bottom of 50 μm.
Condition: Aperture (mask diameter): 3.1 mm / pulse width 20 μsec / output 2 W / frequency 5 kHz / number of shots: burst 3 shots ○: difference from target processing diameter is less than ± 2 μm ×: difference from target processing diameter is ± 2μm or more
 (デスミア耐性)
 上記レーザー加工を行った基材について、更に過マンガン酸デスミア水溶液(湿式法)によりデスミア処理を行った。デスミア耐性の評価として、基材表面の表面粗度の確認および、レーザー開口部周辺の状態を下記基準に従って評価をおこなった。表面粗度の確認は、レーザー顕微鏡VK-8500(キーエンス社、測定倍率2000倍、Z軸方向測定ピッチ10nm)により、それぞれの表面粗度Raを測定した。レーザー開口部の観察は、光学顕微鏡によっておこなった。
 薬液について(ローム&ハース社)
膨潤     MLB-211 温度80℃/時間10min
過マンガン酸 MLB-213 温度80℃/時間15min
還元     MLB-216 温度50℃/時間5min
 評価方法について
◎:過マンガン酸デスミア後の表面粗度Raが0.1μm未満、かつレーザー加工後の加工径との差が2μm以下
○:過マンガン酸デスミア後の表面粗度Raが0.1~0.3μm以下、かつレーザー加工後の加工径との差が2~5μm
×:過マンガン酸デスミア後の表面粗度Raが0.3μmを超えるかつレーザー加工後の加工径との差が5μm以上
(Desmear resistance)
About the base material which performed the said laser processing, the desmear process was further performed with the permanganate desmear aqueous solution (wet method). As evaluation of desmear resistance, confirmation of the surface roughness of the substrate surface and the state around the laser opening were evaluated according to the following criteria. For confirmation of the surface roughness, each surface roughness Ra was measured with a laser microscope VK-8500 (Keyence Corporation, measurement magnification 2000 times, Z-axis direction measurement pitch 10 nm). The laser aperture was observed with an optical microscope.
About chemicals (Rohm & Haas)
Swelling MLB-211 Temperature 80 ℃ / hour 10min
Permanganic acid MLB-213 Temperature 80 ℃ / hour 15min
Reduction MLB-216 Temperature 50 ℃ / hour 5min
Evaluation method A: Surface roughness Ra after permanganate desmear is less than 0.1 μm, and the difference from the processed diameter after laser processing is 2 μm or less ○: Surface roughness Ra after permanganate desmear is 0.1 ~ 0.3μm or less, and the difference from the processed diameter after laser processing is 2 ~ 5μm
×: Surface roughness Ra after permanganate desmear exceeds 0.3 μm and the difference from the processed diameter after laser processing is 5 μm or more
(隠蔽性/密着性の評価)
 上記現像性、硬化特性評価基材の作製に準じて、銅厚15μmで回路が形成されている板厚0.4mmの両面プリント配線基材上に熱硬化性樹脂組成物を形成した。
 その後、大気雰囲気下でピーク温度270℃、前記の温度での暴露時間が10sec以上になるよう設定したエアーリフロー(エイテックテクトロン社)を使用し、それぞれの基板にて5サイクルリフロー処理を行い、隠蔽性の評価および密着性の評価を下記基準に従っておこなった。
 隠蔽性の評価は、目視にて銅回路の変色の有無の確認を行い、密着性については、クロスカット法(JISK5600)に従いリフロー処理後の基板表面に切れ込みをつけ、テープピールにて硬化塗膜のはがれの確認をおこなった。
○:目視評価にて回路の変色が確認されず、またテープピールによるハガレも確認されなかった。
△:目視評価にて回路の変色が確認されたが、テープピールによるハガレは確認されなかった。
×:目視評価にて回路の変色が確認され、またテープピールによるハガレも確認された。
(Evaluation of concealment / adhesion)
A thermosetting resin composition was formed on a double-sided printed wiring board having a thickness of copper of 15 μm and a circuit being formed on a double-sided printed wiring board according to the preparation of the substrate for evaluating developability and curing characteristics.
Then, using air reflow (Atec Techtron Co., Ltd.) set so that the exposure temperature at the above temperature is 270 ° C. and the exposure time at the above temperature is 10 seconds or more in the air atmosphere, 5 cycles of reflow treatment is performed on each substrate to conceal. Evaluation of adhesiveness and adhesion were performed according to the following criteria.
Evaluation of concealment is made by visually confirming the presence or absence of discoloration of the copper circuit. For adhesion, the substrate surface after reflow treatment is cut according to the cross-cut method (JISK5600), and the cured coating film is formed with a tape peel. Confirmed the peeling.
○: No circuit discoloration was confirmed by visual evaluation, and no peeling due to tape peel was confirmed.
Δ: Circuit discoloration was confirmed by visual evaluation, but peeling by tape peel was not confirmed.
X: Discoloration of the circuit was confirmed by visual evaluation, and peeling by tape peel was also confirmed.
<DSC測定>
 上記で得られた樹脂層を備える基材に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にてネガパターンにて光照射した。それぞれの基材について、光照射量を500mJ/cm、1000mJ/cmとした2パターンの光照射を行った。光照射後、基材上より樹脂層を削りだし、直ちにセイコーインスツルメンツ社DSC-6200において、昇温速度5℃/minにて30~300℃まで昇温し、光照射部と未照射部それぞれについてDSC測定をおこなった。それぞれについて、得られたDSCチャートより発熱ピーク温度を求めた。結果を下記表2に示す。図1に実施例1の、図2に実施例9の樹脂層のDSCチャートを示す。それぞれの図は、未照射の樹脂層、光照射量1000mJ/cmの樹脂層のDSCチャート図である。実施例1の樹脂層では、光照射によりピークが低温側にシフトした。また、実施例9の樹脂層では、光照射により初めてピークが発現した。
<DSC measurement>
The base material provided with the resin layer obtained above was irradiated with a negative pattern with ORC HMW680GW (metal halide lamp, scattered light). For each substrate, light irradiation was performed two patterns where the light irradiation amount is 500mJ / cm 2, 1000mJ / cm 2. After light irradiation, the resin layer is scraped off from the base material, and immediately heated to 30-300 ° C. at a temperature increase rate of 5 ° C./min in Seiko Instruments Inc. DSC-6200. DSC measurement was performed. About each, exothermic peak temperature was calculated | required from the obtained DSC chart. The results are shown in Table 2 below. FIG. 1 shows a DSC chart of the resin layer of Example 1, and FIG. Each figure is a DSC chart of an unirradiated resin layer and a resin layer with a light irradiation amount of 1000 mJ / cm 2 . In the resin layer of Example 1, the peak shifted to the low temperature side by light irradiation. Moreover, in the resin layer of Example 9, a peak was first exhibited by light irradiation.
 前記方法にて得られたDSCチャートから、光照射部の発熱ピーク温度T peak 1、未照射部の発熱ピーク温度をT peak 2とし、ΔT peakを以下のように定義した。
ΔT peak=T peak 2-T peak 1
 上記定義より、ΔT peakがプラス(正の値)のときは光照射部の発熱ピークが低温側にシフトしていることを表し、光照射をおこなうことで光塩基発生剤が活性化されていることをあらわす。
From the DSC chart obtained by the above method, the exothermic peak temperature T peak 1 of the light-irradiated portion and the exothermic peak temperature of the non-irradiated portion were defined as T peak 2 and ΔT peak was defined as follows.
ΔT peak = T peak 2−T peak 1
From the above definition, when ΔT peak is positive (positive value), it indicates that the exothermic peak of the light irradiation part is shifted to the low temperature side, and the photobase generator is activated by light irradiation. I express that.
 また、実施例1,9において、紫外線照射直後、ポストキュア前のパターン層に対して、上述したようなDSC測定をおこなった。具体的には、パターン層を光照射量1000mJ/cmで光照射した後更に1000mJ/cmで紫外線照射したパターン層について、DSC測定を行った。
 実施例1、9のパターン層について、得られたDSCチャートより発熱ピーク温度を求めた。図1に実施例1の、図2に実施例9のパターン層のDSCチャートを示す。 
 紫外線照射により、実施例1のパターン層では、発熱量が増大したため、さらに効率的に熱硬化反応が進行していることがわかる。また、紫外線照射により、実施例9のパターン層では、発熱量が増大し、かつ、ピークが低温側にシフトしたため、さらに効率的に熱硬化反応が進行していることがわかる。
Further, in Examples 1 and 9, the DSC measurement as described above was performed on the pattern layer immediately after the ultraviolet irradiation and before the post cure. Specifically, DSC measurement was performed on the pattern layer irradiated with ultraviolet rays at 1000 mJ / cm 2 after the pattern layer was irradiated with light at a light irradiation amount of 1000 mJ / cm 2 .
About the pattern layer of Example 1, 9, the exothermic peak temperature was calculated | required from the obtained DSC chart. FIG. 1 shows a DSC chart of the pattern layer of Example 1, and FIG. 2 shows a pattern layer of Example 9.
It can be seen that the heat curing reaction proceeds more efficiently because the amount of heat generation increased in the pattern layer of Example 1 due to ultraviolet irradiation. In addition, it can be seen that the heat curing reaction proceeds more efficiently because the amount of heat generation increased and the peak shifted to the low temperature side in the pattern layer of Example 9 due to ultraviolet irradiation.
Figure JPOXMLDOC01-appb-T000006
※828:Bis-A型液状エポキシ(当量190)、三菱化学社
※HP-4032:ナフトール型エポキシ(当量150)、DIC社
※HP-7200H60:ジシクロペンタジエン型エポキシ(当量265)、DIC社をシクロヘキサノンで溶解。固形分60%
※HF-1M H60:フェノールノボラック(水酸基当量105)、明和化成社をシクロヘキサノンで溶解。固形分60%
※ジョンクリル68 H60:スチレンアクリル酸共重合樹脂、Mw=10000、酸価195、ジョンソンポリマー社
※Irg907:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、BASFジャパン社
※Irg369:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、BASFジャパン社
※Irg379:2-(4-メチルベンジル)-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)エタン-1-オン、BASFジャパン社
※OXE-02:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)、BASFジャパン社
※TPO:ルシリンTPO、BASFジャパン社
Figure JPOXMLDOC01-appb-T000006
* 828: Bis-A type liquid epoxy (equivalent 190), Mitsubishi Chemical Corporation * HP-4032: Naphthol type epoxy (equivalent 150), DIC * HP-7200H60: Dicyclopentadiene type epoxy (equivalent 265), DIC Dissolved in cyclohexanone. 60% solids
* HF-1M H60: phenol novolak (hydroxyl equivalent: 105), Meiwa Kasei Co. dissolved in cyclohexanone. 60% solids
* Joncrill 68 H60: Styrene acrylic acid copolymer resin, Mw = 10000, acid value 195, Johnson polymer company * Irg907: 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, BASF Japan * Irg369: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, BASF Japan * Irg379: 2- (4-methylbenzyl) -2- (dimethylamino) -1- (4-morpholinophenyl) ethane-1-one, BASF Japan Ltd. * OXE-02: Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (o-acetyloxime), BASF Japan Ltd. * TPO: Lucillin TPO, BASF Japan Company
Figure JPOXMLDOC01-appb-T000007
※1:光照射部の発熱ピーク温度
※2:未照射部の発熱ピーク温度
※3:T peak 2-T peak 1
※4:実施例9、10では、未照射では発熱ピークが見られず、光照射することで発熱ピークが発現した。
Figure JPOXMLDOC01-appb-T000007
* 1: Exothermic peak temperature of the light irradiated part * 2: Exothermic peak temperature of the non-irradiated part * 3: T peak 2-T peak 1
* 4: In Examples 9 and 10, no exothermic peak was observed when not irradiated, but an exothermic peak was expressed by light irradiation.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(比較例1~4)
 下記表4に記載の配合で、上記実施例と同様に熱硬化性樹脂組成物を調製し、基材に塗布して、熱硬化性樹脂組成物からなる樹脂層を備える基材を作製した。DSC測定の結果を下記表5に示す。
 比較例1では、光塩基発生剤を配合しなかった以外は、実施例1と同様に評価した。
 比較例2では、光塩基発生剤の代わりにルシリンTPOを配合した以外は、実施例1と同様に評価した。
 比較例3、4については、はじめの光照射を行わずに、表6記載の温度で30分間加熱処理を行った。また、その後の紫外線照射およびポストキュアも行わなかった。比較例4については、上記と同様にデスミア処理を行って硬化特性を評価した。得られた結果を下記表6に示す。
(Comparative Examples 1 to 4)
A thermosetting resin composition having the composition shown in Table 4 below was prepared in the same manner as in the above example, and applied to the base material to prepare a base material provided with a resin layer made of the thermosetting resin composition. The results of DSC measurement are shown in Table 5 below.
In Comparative Example 1, evaluation was performed in the same manner as in Example 1 except that no photobase generator was added.
In Comparative Example 2, evaluation was performed in the same manner as in Example 1 except that lucillin TPO was blended in place of the photobase generator.
In Comparative Examples 3 and 4, the first light irradiation was not performed, and the heat treatment was performed at the temperature shown in Table 6 for 30 minutes. Further, subsequent ultraviolet irradiation and post-cure were not performed. About the comparative example 4, the desmear process was performed similarly to the above, and the hardening characteristic was evaluated. The obtained results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記表3,表6の結果から、実施例1~10では、熱反応性化合物、アルカリ現像性樹脂、及び光塩基発生剤からなる熱硬化性樹脂組成物を用いることより、デスミア耐性などの硬化特性に優れ、現像によるパターン形成が可能であることがわかった。一方、比較例1~4では、パターン形成が困難であった。 From the results shown in Tables 3 and 6, in Examples 1 to 10, curing such as desmear resistance was achieved by using a thermosetting resin composition comprising a thermoreactive compound, an alkali developable resin, and a photobase generator. It was found that the characteristics were excellent and pattern formation by development was possible. On the other hand, in Comparative Examples 1 to 4, pattern formation was difficult.
(実施例11~66、比較例5~7)
 実施例11~66、比較例5~7において、実施例1と同様にして、熱硬化性樹脂組成物を調製した。
 実施例11では、実施例1と同様に、液状の熱硬化性樹脂組成物をプリント配線基材に直接塗布、乾燥、光照射、加熱処理、アルカリ現像、紫外線照射、熱硬化を順に行った。
(Examples 11 to 66, Comparative Examples 5 to 7)
In Examples 11 to 66 and Comparative Examples 5 to 7, thermosetting resin compositions were prepared in the same manner as in Example 1.
In Example 11, as in Example 1, a liquid thermosetting resin composition was directly applied to a printed wiring substrate, dried, irradiated with light, heat-treated, alkali developed, irradiated with ultraviolet rays, and thermally cured in order.
 実施例12~66、比較例5~7においては、熱硬化性樹脂組成物を用いて下記のように、ドライフィルムを作製し、プリント配線基材にラミネートして、プリント配線板を作製した。 In Examples 12 to 66 and Comparative Examples 5 to 7, a dry film was prepared using the thermosetting resin composition as described below, and laminated on a printed wiring substrate to prepare a printed wiring board.
<ドライフィルムの作製>
 キャリアフィルムとして、38μmの厚みのPETフィルム上に、熱硬化性樹脂組成物を、アプリケーターを用いて塗布し、その後90℃/30min乾燥しドライフィルムを作製した。熱硬化性樹脂組成物の厚みは乾燥後、約20μmになるように塗布量を調整した。その後、得られたドライフィルムを所定のサイズにスリット加工を行った。
<Production of dry film>
As a carrier film, a thermosetting resin composition was applied on a PET film having a thickness of 38 μm using an applicator, and then dried at 90 ° C. for 30 minutes to prepare a dry film. The coating amount was adjusted so that the thickness of the thermosetting resin composition was about 20 μm after drying. Thereafter, the obtained dry film was slit to a predetermined size.
<ラミネート>
 銅厚15μmで回路が形成されている両面プリント配線基材を用意し、メック社CZ-8100を使用して前処理を行ったプリント配線基材に、名機社真空ラミネーターMVLP-500を用いてプリント配線板基材上にドライフィルムをラミネートし、樹脂層を備えるプリント配線板を得た。ラミネート条件は温度80℃、圧力5kg/cm/60secでおこなった。
<Laminate>
A double-sided printed wiring board having a copper thickness of 15 μm and a circuit formed thereon was prepared, and a pre-processed printed wiring board using MEC CZ-8100 was used using a vacuum laminator MVLP-500 A dry film was laminated on the printed wiring board substrate to obtain a printed wiring board having a resin layer. Lamination conditions were temperature 80 ° C., was conducted at a pressure 5kg / cm 2 / 60sec.
<冷熱サイクル特性の評価>
 上記のように過マンガン酸デスミア処理を行ったプリント配線板に対して、更に市販品の無電解ニッケルめっき浴および無電解金メッキ浴を用いて、ニッケル0.5μm、金メッキ0.03μmの条件にてメッキを行い、パターン層に金メッキ処理を施した。得られたプリント配線板について、冷熱サイクル特性評価をおこなった。処理条件は、-65℃で30min、150℃で30minを1サイクルとして、熱履歴を加え2000サイクル経過後で、熱硬化性樹脂組成物の表面およびパターン形成周辺部の状態を光学顕微鏡にて観察し、下記基準に従ってクラックの評価をおこなった。観察パターン数は100穴であった。得られた結果を下記表7~表14に示す。
(評価方法)
◎:樹脂組成物表面およびパターン層の周辺部にクラック発生なし
○:パターン層の周辺部のクラック発生率30%未満
△:パターン層の周辺部のクラック発生率30%以上
<Evaluation of thermal cycle characteristics>
The printed wiring board subjected to the permanganate desmear treatment as described above was further subjected to nickel 0.5 μm and gold plating 0.03 μm using commercially available electroless nickel plating bath and electroless gold plating bath. Plating was performed, and the pattern layer was gold-plated. About the obtained printed wiring board, the thermal cycle characteristic evaluation was performed. The processing conditions are as follows: -65 ° C for 30 min, 150 ° C for 30 min, heat history is added, and after 2000 cycles, the surface of the thermosetting resin composition and the state of the pattern formation periphery are observed with an optical microscope. Then, cracks were evaluated according to the following criteria. The number of observation patterns was 100 holes. The obtained results are shown in Tables 7 to 14 below.
(Evaluation methods)
A: No cracks occurred on the surface of the resin composition and the periphery of the pattern layer. O: A crack occurrence rate of less than 30% in the periphery of the pattern layer. Δ: Crack occurrence rate of 30% or more in the periphery of the pattern layer.
<Bステージ状態の評価(基材への形成時のハンドリング)>
 実施例11~66について、DFのBステージ状態(半硬化状態)の評価を行った。得られた熱硬化性樹脂組成物が形成されているDFの所定のサイズにスリット加工を行い、DFの状態を以下の方法で確認した。
(評価方法)
○:スリット加工後、樹脂層の割れや樹脂の粉落ちが確認されない
△:スリット加工後、樹脂層の割れや、樹脂の粉落ちが確認された。
<Evaluation of the B stage state (handling during formation on the substrate)>
For Examples 11 to 66, the DF B-stage state (semi-cured state) was evaluated. Slit processing was performed to a predetermined size of the DF on which the obtained thermosetting resin composition was formed, and the state of the DF was confirmed by the following method.
(Evaluation methods)
◯: No cracking of resin layer or resin powder falling after slit processing Δ: Cracking of resin layer or resin powder falling after slit processing was confirmed.
<熱反応性化合物、マレイミド化合物、及びアルカリ現像性樹脂の屈折率の測定方法>
 測定装置:アッペ屈折率計
 測定条件:波長589.3nm、温度25℃
<Method of measuring refractive index of heat-reactive compound, maleimide compound, and alkali-developable resin>
Measuring apparatus: Appe refractometer Measuring conditions: Wavelength 589.3 nm, temperature 25 ° C.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(マレイミド化合物)
UVT-302:マレイミド基を側鎖に有するアクリルポリマー(当量320)、東亞合成社
(アルカリ現像性樹脂)
MEH-7851M H60:ビフェニル/フェノールノボラック(水酸基当量210)、明和化成社をシクロヘキサノンで溶解。固形分60%。
ジョンクリル586 H60:スチレンアクリル酸共重合樹脂、Mw=3100、固形分酸価=108、ジョンソンポリマー社をシクロヘキサノンで溶解。固形分60%
R-2000PG:固形分65%(DIC社製)、エポキシアクリレート構造を有する。
(光塩基発生剤)
WPBG-140:1-(アントラキノン-2-イル)エチルイミダゾールカルボキシレート、和光純薬社
(高分子樹脂)
MAM M52 H30:MMA/nBA/MMAトリブロック共重合物、アルケマ社をシクロヘキサノンで溶解。固形分30%
PB-3600:エポキシ化ポリブタジエンMn=5900、ダイセル化学社
KS-10 H30:ポリビニルブチラール、積水化学社をシクロヘキサノンで溶解。固形分30%
YX8100 BH30:フェノキシ樹脂。三菱化学社。固形分30%SO-C2:
(シリカ)
AO-502:球状アルミナ D50=0.7μm、屈折率=1.76、アドマテックス社
ハイジライトH-42M:水酸化アルミニウムD50=1.0μm、屈折率=1.65、昭和電工社
B-30:硫酸バリウム、D50=0.3μm、屈折率=1.64、堺化学社
(着色剤)
フタロシアニンブルー:C.I. Pigment Blue 15:3
カーボンM-50 カーボンブラック:三菱化学社
CR58 ルチル型酸化チタン:D50=0.28μm、石原産業
クロモフタルイエロー:C.I. Pigment Yellow 147
(その他)
ラロマーLR8863:3官能アクリレートモノマー、BASF社
DA-600:アクリレートモノマー、三洋化成工業社
LUCILINE TPO(BASFジャパン(株))
(Maleimide compound)
UVT-302: acrylic polymer having maleimide groups in the side chain (equivalent 320), Toagosei Co., Ltd. (alkali developable resin)
MEH-7851M H60: Biphenyl / phenol novolak (hydroxyl equivalent 210), Meiwa Kasei Co., Ltd. dissolved in cyclohexanone. Solid content 60%.
Joncrill 586 H60: Styrene acrylic acid copolymer resin, Mw = 3100, solid content acid value = 108, Johnson Polymer was dissolved in cyclohexanone. 60% solids
R-2000PG: Solid content 65% (manufactured by DIC), having an epoxy acrylate structure.
(Photobase generator)
WPBG-140: 1- (anthraquinone-2-yl) ethylimidazolecarboxylate, Wako Pure Chemical Industries, Ltd. (polymer resin)
MAM M52 H30: MMA / nBA / MMA triblock copolymer, Arkema Co. dissolved in cyclohexanone. Solid content 30%
PB-3600: Epoxidized polybutadiene Mn = 5900, Daicel Chemical Company KS-10 H30: Polyvinyl butyral, Sekisui Chemical Co. dissolved in cyclohexanone. Solid content 30%
YX8100 BH30: Phenoxy resin. Mitsubishi Chemical Corporation. Solid content 30% SO-C2:
(silica)
AO-502: Spherical Alumina D50 = 0.7 μm, Refractive Index = 1.76, Admatex Hygielite H-42M: Aluminum Hydroxide D50 = 1.0 μm, Refractive Index = 1.65, Showa Denko B-30 : Barium sulfate, D50 = 0.3 μm, refractive index = 1.64, Sakai Chemical Co., Ltd. (colorant)
Phthalocyanine blue: C.I. I. Pigment Blue 15: 3
Carbon M-50 Carbon black: Mitsubishi Chemical Corporation CR58 Rutile type titanium oxide: D50 = 0.28 μm, Ishihara Sangyo Chromophthal Yellow: C.I. I. Pigment Yellow 147
(Other)
Laromar LR8863: trifunctional acrylate monomer, BASF DA-600: acrylate monomer, Sanyo Chemical Industries LUCILLINE TPO (BASF Japan K.K.)
(実施例1、3、8、9、67における温度/時間違いによる現像可能な条件)
 詳細な現像性/パターニング性の評価として、更に上記実施例1、3、8、9、および下記実施例67にて作製したプリント配線板について、光照射後の加熱温度および加熱時間の評価をおこなった。表中に、現像可能な加熱時間の範囲を示す。なお、実施例67は、実施例1の光塩基発生剤の配合部数を10質量部に減らした以外は、実施例1と同様である。
(Developable conditions due to temperature / time differences in Examples 1, 3, 8, 9, and 67)
As a detailed evaluation of the developability / patterning property, the heating temperature and heating time after light irradiation were further evaluated for the printed wiring boards produced in Examples 1, 3, 8, 9 and Example 67 below. It was. The table shows the range of heating time that can be developed. In addition, Example 67 is the same as Example 1 except having reduced the compounding part number of the photobase generator of Example 1 to 10 mass parts.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表15に示すように、実施例1、8では、120℃で、20~40分間加熱した場合現像が良好であった。つまり、実施例1、8では、現像可能な加熱時間の範囲は、20分であった。実施例3では、120℃で、80~100分間加熱した場合現像が良好であった。つまり、実施例3でも、現像可能な加熱時間の範囲は、20分であった。実施例9,67では、120℃で、60分間又は40分間加熱した場合のみ現像が良好であった。
 従って、実施例1、3、8で用いた、分子構造内に窒素原子を複数有する光塩基発生剤では、実施例9の場合よりも、現像可能時間の幅が長いので、プリント配線板の製造が容易となることが分かった。
As shown in Table 15, in Examples 1 and 8, the development was good when heated at 120 ° C. for 20 to 40 minutes. That is, in Examples 1 and 8, the range of the heating time that can be developed was 20 minutes. In Example 3, the development was good when heated at 120 ° C. for 80 to 100 minutes. That is, also in Example 3, the range of the heating time that can be developed was 20 minutes. In Examples 9 and 67, development was good only when heated at 120 ° C. for 60 or 40 minutes.
Therefore, the photobase generator having a plurality of nitrogen atoms in the molecular structure used in Examples 1, 3, and 8 has a longer developable time range than that in Example 9, and thus the printed wiring board is manufactured. Was found to be easier.
<光照射直後のDSC測定>
 実施例32、36、50で得られた樹脂層を備える基材に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にてネガパターンにて光照射した。それぞれの基材について、光照射量を1000mJ/cmとしてパターンの光照射を行った。光照射後、基材上より樹脂層を削りだし、直ちにセイコーインスツルメンツ社DSC-6200において、昇温速度5℃/minにて30~300℃まで昇温し、光照射部と未照射部それぞれについてDSC測定をおこなった。また、紫外線照射直後、ポストキュア前の熱硬化性樹脂組成物からなる硬化層に対して、同様にDSC測定をおこなった。
 図3~5は、それぞれ実施例32、36、50における、未照射部、光照射量1000mJ/cmの光照射部、光照射量1000mJ/cmで光照射した後更に1000mJ/cmで紫外線照射した光照射部のDSCチャート図である。
 実施例32、36、50の光照射部では、光照射により発熱ピークが低温側にシフトした。
<DSC measurement immediately after light irradiation>
The base material provided with the resin layers obtained in Examples 32, 36, and 50 was irradiated with a negative pattern using ORC HMW680GW (metal halide lamp, scattered light). About each base material, the light irradiation amount of light was set to 1000 mJ / cm < 2 >, and the pattern light irradiation was performed. After light irradiation, the resin layer is scraped off from the base material, and immediately heated to 30-300 ° C. at a temperature increase rate of 5 ° C./min in Seiko Instruments Inc. DSC-6200. DSC measurement was performed. Moreover, DSC measurement was similarly performed with respect to the cured layer which consists of a thermosetting resin composition immediately after ultraviolet irradiation and before postcure.
3-5, in each Example 32,36,50, unirradiated portions, the light irradiation portion of the light irradiation amount 1000 mJ / cm 2, at a further 1000 mJ / cm 2 after irradiation with light irradiation amount 1000 mJ / cm 2 It is a DSC chart figure of the light irradiation part irradiated with the ultraviolet-ray.
In the light irradiation parts of Examples 32, 36, and 50, the heat generation peak shifted to the low temperature side by light irradiation.
(比較例8)
 銅厚15μmで回路が形成されている板厚0.4mmの両面プリント配線基材を用意し、メック社CZ-8100を使用して、前処理を行った。その後、商品名PSR-4000G23K(太陽インキ製造(株)社、エポキシアクリレート構造を有するアルカリ現像性樹脂を含む光硬化性樹脂組成物)をスクリーン印刷にて、乾燥後で20μmになるように塗布をおこなった。次いで、熱風循環式乾燥炉にて80℃/30minにて乾燥後、ORC社HMW680GW(メタルハライドランプ、散乱光)にて、光照射量300mJ/cmにてネガ型のパターン状に光照射した。その後、1wt%炭酸ナトリウム水溶液で60秒間現像し、次いで熱風循環式乾燥炉を用いて150℃/60min熱処理を行い、パターン状の硬化塗膜を得た。
 その後、上記実施例11と同様にレーザー加工性およびデスミア耐性の評価をおこなった。その結果、レーザー加工性は、「〇」であったが、デスミア耐性は、「×」であった。
(Comparative Example 8)
A double-sided printed wiring substrate having a copper thickness of 15 μm and a circuit formed thereon having a thickness of 0.4 mm was prepared, and pre-treated using MEC CZ-8100. Thereafter, the product name PSR-4000G23K (Taiyo Ink Manufacturing Co., Ltd., photocurable resin composition containing an alkali-developable resin having an epoxy acrylate structure) was applied by screen printing so that it would be 20 μm after drying. I did it. Next, after drying at 80 ° C./30 min in a hot air circulation drying furnace, the film was irradiated in a negative pattern with ORC HMW680GW (metal halide lamp, scattered light) at a light irradiation amount of 300 mJ / cm 2 . Thereafter, development was performed with a 1 wt% sodium carbonate aqueous solution for 60 seconds, followed by heat treatment at 150 ° C./60 min using a hot-air circulating drying oven to obtain a patterned cured coating film.
Thereafter, laser workability and desmear resistance were evaluated in the same manner as in Example 11 above. As a result, the laser processability was “◯”, but the desmear resistance was “x”.

Claims (4)

  1.  アルカリ現像性樹脂、
     熱反応性化合物、および、
     光塩基発生剤、を含み、
     選択的な光照射で前記アルカリ現像性樹脂と前記熱反応性化合物が付加反応することにより、アルカリ現像によるネガ型のパターン形成が可能となることを特徴とするアルカリ現像型の熱硬化性樹脂組成物。
    Alkali developable resin,
    A thermoreactive compound, and
    A photobase generator,
    By selective irradiation said heat reactive compound and the alkali-developable resin is an addition reaction, an alkali development type thermosetting resin composition, characterized in that the patterning of the negative by alkali development becomes possible object.
  2.  さらに着色剤を含むことを特徴とする請求項1記載のアルカリ現像型の熱硬化性樹脂組成物。 2. The alkali developing type thermosetting resin composition according to claim 1, further comprising a colorant.
  3.  光照射によりDSC測定において発熱ピークを生じるか、又は、光照射した前記アルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度が、未照射の前記アルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱開始温度よりも低い、もしくは、光照射した前記アルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度が、未照射の前記アルカリ現像型の熱硬化性樹脂組成物のDSC測定における発熱ピーク温度よりも低いものであることを特徴とする請求項1または2記載のアルカリ現像型の熱硬化性樹脂組成物。 An exothermic peak occurs in DSC measurement by light irradiation, or the alkali developing type thermosetting resin composition in which the heat generation starting temperature in DSC measurement of the alkali developing type thermosetting resin composition irradiated with light is not irradiated. The alkali development type thermosetting resin composition having an exothermic peak temperature in DSC measurement of the alkali development type thermosetting resin composition that is lower than the heat generation start temperature in the DSC measurement of the product or irradiated with light is not irradiated 3. The alkali developing type thermosetting resin composition according to claim 1, wherein the temperature is lower than an exothermic peak temperature in DSC measurement of the product.
  4.  請求項1~3のいずれか一項に記載のアルカリ現像型の熱硬化性樹脂組成物からなるパターン層を有することを特徴とするプリント配線板。 A printed wiring board comprising a pattern layer comprising the alkali development type thermosetting resin composition according to any one of claims 1 to 3.
PCT/JP2012/062716 2012-05-17 2012-05-17 Alkali-development-type thermoset resin composition and printed circuit board WO2013171888A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/062716 WO2013171888A1 (en) 2012-05-17 2012-05-17 Alkali-development-type thermoset resin composition and printed circuit board
KR1020147034929A KR20150013767A (en) 2012-05-17 2013-05-16 Alkaline-developable thermosetting resin composition and printed circuit board
PCT/JP2013/063728 WO2013172435A1 (en) 2012-05-17 2013-05-16 Alkaline-developable thermosetting resin composition and printed circuit board
JP2014515680A JPWO2013172435A1 (en) 2012-05-17 2013-05-16 Alkali development type thermosetting resin composition, printed wiring board
TW102117519A TWI620018B (en) 2012-05-17 2013-05-17 Alkali developing type thermosetting resin composition, printed wiring board
JP2017175858A JP2018036651A (en) 2012-05-17 2017-09-13 Alkali development type thermosetting resin composition and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062716 WO2013171888A1 (en) 2012-05-17 2012-05-17 Alkali-development-type thermoset resin composition and printed circuit board

Publications (1)

Publication Number Publication Date
WO2013171888A1 true WO2013171888A1 (en) 2013-11-21

Family

ID=49583330

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/062716 WO2013171888A1 (en) 2012-05-17 2012-05-17 Alkali-development-type thermoset resin composition and printed circuit board
PCT/JP2013/063728 WO2013172435A1 (en) 2012-05-17 2013-05-16 Alkaline-developable thermosetting resin composition and printed circuit board

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063728 WO2013172435A1 (en) 2012-05-17 2013-05-16 Alkaline-developable thermosetting resin composition and printed circuit board

Country Status (4)

Country Link
JP (2) JPWO2013172435A1 (en)
KR (1) KR20150013767A (en)
TW (1) TWI620018B (en)
WO (2) WO2013171888A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064280A1 (en) * 2013-10-30 2015-05-07 太陽インキ製造株式会社 Photosensitive heat-curable resin composition and flexible printed wiring board
WO2015141527A1 (en) * 2014-03-20 2015-09-24 住友ベークライト株式会社 Photosensitive resin composition and electronic device
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
JP2017043649A (en) * 2015-08-24 2017-03-02 住友ベークライト株式会社 Resin composition, resin film, circuit board and semiconductor device
WO2021180578A1 (en) * 2020-03-09 2021-09-16 Merck Patent Gmbh Negative type photosensitive composition comprising reflectance modifier

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078535B2 (en) * 2012-05-17 2017-02-08 太陽インキ製造株式会社 Alkali development type thermosetting resin composition, printed wiring board
JP6306296B2 (en) * 2013-07-09 2018-04-04 太陽インキ製造株式会社 Photosensitive thermosetting resin composition and flexible printed wiring board
JP6605821B2 (en) * 2014-03-14 2019-11-13 株式会社Adeka Photosensitive resin composition
JP6363861B2 (en) * 2014-03-31 2018-07-25 太陽インキ製造株式会社 Curable resin composition, dry film and cured product thereof, and printed wiring board having cured coating formed using the same
JP6723788B2 (en) 2016-03-31 2020-07-15 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
CN110494469B (en) * 2017-04-13 2022-07-26 捷恩智株式会社 Thermosetting resin composition, cured film, substrate with cured film, electronic component, and ink for inkjet
JP2019194292A (en) * 2018-05-02 2019-11-07 学校法人東京理科大学 Photocrosslinkable resin composition and its crosslinked object, and method for producing crosslinked object
US11873380B2 (en) * 2018-05-07 2024-01-16 Tokyo University Of Science Foundation Photoreactive composition, reaction product, and method of producing reaction product
KR20210016389A (en) * 2018-06-01 2021-02-15 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, metal foil coated laminate, resin sheet, and printed wiring board
JP2020013107A (en) 2018-07-05 2020-01-23 日本化薬株式会社 Photosensitive resin composition
CN113156762A (en) 2019-12-24 2021-07-23 日本化药株式会社 Photosensitive resin composition, dry film, cured product and printed wiring board
CN111856881B (en) * 2020-07-16 2024-03-26 杭州福斯特电子材料有限公司 Photosensitive resin composition, dry film resist and corresponding element
CN112739040B (en) * 2021-02-19 2023-03-07 南京工业职业技术大学 PCB board high accuracy etching equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171450A (en) * 1997-08-22 1999-03-16 Ciba Specialty Chem Holding Inc Photogeneration of amine from alpha-aminoacetophenone
JP2003344992A (en) * 2002-05-24 2003-12-03 San Nopco Ltd Photosensitive resin composition
JP2012036117A (en) * 2010-08-05 2012-02-23 Hitachi Chem Co Ltd Photopolymerizable compound, optical amine generator, photosensitive resin composition, and photosensitive film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69324942T2 (en) * 1992-02-14 1999-10-07 Shipley Co Radiation sensitive compositions and methods
JP4532002B2 (en) * 2000-03-06 2010-08-25 互応化学工業株式会社 Solder resist ink
JP2003020339A (en) * 2001-07-10 2003-01-24 Nippon Kayaku Co Ltd Photocurable resin composition and its cured item
JP2003344993A (en) * 2002-05-24 2003-12-03 San Nopco Ltd Photosensitive resin composition
JP4615194B2 (en) * 2003-04-07 2011-01-19 株式会社スリオンテック Photosensitive adhesive composition, photosensitive adhesive sheet, and method for producing uneven substrate using the same
JP4994922B2 (en) * 2007-04-06 2012-08-08 太陽ホールディングス株式会社 Solder resist composition and cured product thereof
JP4994923B2 (en) * 2007-04-06 2012-08-08 太陽ホールディングス株式会社 Black solder resist composition and cured product thereof
JP5043516B2 (en) * 2007-06-04 2012-10-10 太陽ホールディングス株式会社 Photocurable / thermosetting resin composition and printed wiring obtained using the same
JP2010084144A (en) * 2008-09-08 2010-04-15 Tokyo Univ Of Science Base generator and photosensitive resin composition comprising base generator
JP5306952B2 (en) * 2009-09-29 2013-10-02 太陽ホールディングス株式会社 Photosensitive resin composition and cured product thereof, and printed wiring board
JP2011095469A (en) * 2009-10-29 2011-05-12 Hitachi Chem Co Ltd Photosensitive resin composition, method for forming silica-based film using the same, and semiconductor device, planar display device and electronic device member including silica-based film
JP5732815B2 (en) * 2009-10-30 2015-06-10 日立化成株式会社 Photosensitive adhesive composition, film adhesive using the same, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, transparent substrate with adhesive layer, and semiconductor device.
JP5439254B2 (en) * 2010-03-31 2014-03-12 太陽ホールディングス株式会社 Photosensitive resin composition
JP5007453B2 (en) * 2010-06-11 2012-08-22 株式会社タムラ製作所 Black curable resin composition
JP5612373B2 (en) * 2010-06-16 2014-10-22 旭化成イーマテリアルズ株式会社 Photocurable resin composition, method for producing patterned substrate, and electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171450A (en) * 1997-08-22 1999-03-16 Ciba Specialty Chem Holding Inc Photogeneration of amine from alpha-aminoacetophenone
JP2003344992A (en) * 2002-05-24 2003-12-03 San Nopco Ltd Photosensitive resin composition
JP2012036117A (en) * 2010-08-05 2012-02-23 Hitachi Chem Co Ltd Photopolymerizable compound, optical amine generator, photosensitive resin composition, and photosensitive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064280A1 (en) * 2013-10-30 2015-05-07 太陽インキ製造株式会社 Photosensitive heat-curable resin composition and flexible printed wiring board
WO2015141527A1 (en) * 2014-03-20 2015-09-24 住友ベークライト株式会社 Photosensitive resin composition and electronic device
JP2015184325A (en) * 2014-03-20 2015-10-22 住友ベークライト株式会社 Photosensitive resin composition and electronic device
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
JPWO2016060237A1 (en) * 2014-10-16 2017-04-27 太陽インキ製造株式会社 Laminated structure, dry film and flexible printed wiring board
JP2017043649A (en) * 2015-08-24 2017-03-02 住友ベークライト株式会社 Resin composition, resin film, circuit board and semiconductor device
WO2021180578A1 (en) * 2020-03-09 2021-09-16 Merck Patent Gmbh Negative type photosensitive composition comprising reflectance modifier

Also Published As

Publication number Publication date
WO2013172435A1 (en) 2013-11-21
KR20150013767A (en) 2015-02-05
TWI620018B (en) 2018-04-01
JP2018036651A (en) 2018-03-08
JPWO2013172435A1 (en) 2016-01-12
TW201407284A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
WO2013171888A1 (en) Alkali-development-type thermoset resin composition and printed circuit board
JP6317253B2 (en) Liquid development type maleimide composition, printed wiring board
JP6105858B2 (en) Pattern forming method, alkali-developable thermosetting resin composition, and printed wiring board
JP6082733B2 (en) Alkali development type thermosetting resin composition, printed wiring board
US9188871B2 (en) Pattern forming method, alkali-developable thermosetting resin composition, printed circuit board and manufacturing method thereof
WO2013094606A1 (en) Dry film, printed wiring board using same, method for producing printed wiring board, and flip chip mounting substrate
CN103554433B (en) Curable resin composition
JP5930704B2 (en) Printed wiring board manufacturing method, printed wiring board and flip chip mounting board
JP6078535B2 (en) Alkali development type thermosetting resin composition, printed wiring board
JP6010340B2 (en) Printed wiring board and printed wiring board manufacturing method
KR102574957B1 (en) Curable resin composition, dry film and printed wiring board using the same
JP6363861B2 (en) Curable resin composition, dry film and cured product thereof, and printed wiring board having cured coating formed using the same
CN104977805A (en) Curable resin composition composition for forming permanent coating dry film and printed wiring board
KR102168004B1 (en) Curable resin composition, cured product thereof, printed wiring board having same, and method for producing cured product
WO2022211122A1 (en) Laminated structure, dry film, cured product, and electronic component
JP2020166211A (en) Curable resin composition, dry film, cured product, printed wiring board, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP