WO2013166883A1 - 传输或接收上行sps业务数据的方法和用户设备和基站 - Google Patents

传输或接收上行sps业务数据的方法和用户设备和基站 Download PDF

Info

Publication number
WO2013166883A1
WO2013166883A1 PCT/CN2013/072560 CN2013072560W WO2013166883A1 WO 2013166883 A1 WO2013166883 A1 WO 2013166883A1 CN 2013072560 W CN2013072560 W CN 2013072560W WO 2013166883 A1 WO2013166883 A1 WO 2013166883A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
retransmission
rtt
retransmitted
ttis
Prior art date
Application number
PCT/CN2013/072560
Other languages
English (en)
French (fr)
Inventor
南方
吴强
万蕾
李博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013166883A1 publication Critical patent/WO2013166883A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for transmitting or receiving uplink semi-persistent Scheduling (SPS) service data in a Frequency Division Duplexing (FDD) system, a user equipment and a base station.
  • SPS uplink semi-persistent Scheduling
  • FDD Frequency Division Duplexing
  • VoIP Voice over IP
  • a business feature that is important for Long Term Evolution (LTE) is to eliminate all circuit domain services and propose the concept of an all-IP network. Therefore, VoIP is one of the types of services that LTE can support.
  • the resources of the LTE system are divided into a plurality of symbols in the time domain and are divided into subcarriers in the frequency domain.
  • a radio frame is 10 ms long in time and contains 10 subframes. Each regular subframe is lms long and contains two slots.
  • is the basic unit of time when resources are scheduled.
  • Hybrid Automatic Repeat Request HQQ is a technology that combines Forward Error Correction (FEC) and Automatic Repeat Request (ARQ).
  • the processing flow includes: including error correction and error detection bits in each data packet sent, and if the number of error bits in the received data packet is within the error correction capability of the receiving end, the error is corrected by itself.
  • the receiving end causes the transmitting end to retransmit the data packet.
  • multi-process stop-wait HARQ is employed. After a transmitted data packet is sent, it takes a certain time to transmit a new data packet or retransmit the old data packet. The length of the waiting time is the same as the transmission delay and the processing time of the UE or the processing time of the eNodeB. Related.
  • Round Trip Time is defined as the difference between the time the same packet starts from one transmission and the next.
  • the eNodeB or the UE needs to initiate other parallel HARQ processes during the waiting period, and the number of parallel HARQ processes is related to the RTT.
  • the RTT is 8 TTIs, and the uplink and downlink use 8 parallel HARQ processes.
  • ACK Acknowledgement
  • the receiving end sends an Acknowledgement (ACK) message. If the data packet received by the receiving end is incorrect, the feedback is non-acknowledgment (Negative Acknowledgement).
  • NACK NACK
  • the sender waits for ACK/NACK feedback of a certain process, the process temporarily stops transmission.
  • the feedback is received, whether to send a new data packet or retransmit the old data packet according to whether the ACK or NACK is fed back.
  • the present invention provides a method for transmitting or receiving uplink SPS service data, a user equipment and a base station, to solve the problem of how to improve the time density of transmission in the uplink data transmission of the SPS service of the prior art.
  • a method for transmitting uplink semi-persistent scheduling SPS service data in a frequency division duplex FDD system comprising:
  • the size of the TTI bundling of the initially transmitted data packet and the retransmission data packet are ⁇ in the case that the transmitted data does not collide
  • the bundling size is different and/or the round-trip delay RTT of the initial transmission and the first retransmission is different from the RTT of the adjacent two retransmissions.
  • a user equipment in a second aspect, includes:
  • a transmission module configured to transmit to the base station or retransmit the uplink semi-persistent scheduling SPS service by using a transmission time interval TTI to bind the bundled data packet; wherein, in the case that the transmitted data does not collide, the initially transmitted data packet
  • the size of the TTI bundling is different from the size of the TTI bundling of the retransmitted data packet and/or the round-trip delay RTT of the initial transmission and the first retransmission is different from the RTT of the adjacent two retransmissions;
  • a receiving module configured to: when receiving a retransmission indication of the data packet sent by the base station, indicating The transport module retransmits the data packet.
  • a method for receiving uplink semi-persistent scheduling SPS service data in a frequency division duplex FDD system comprising:
  • the size of the TTI bundling of the initially transmitted data packet is in the case of ensuring that the transmitted data does not collide
  • the size of the TTI bundling of the retransmitted data packet is different and/or the round-trip delay RTT of the initial transmission and the first retransmission is different from the RTT of the adjacent two retransmissions.
  • a base station where the base station includes:
  • the receiving module is configured to receive the uplink semi-persistent scheduling SPS service of the initial transmission or retransmission of the user equipment, and use the transmission time interval TTI to bind the bundled data packet; wherein, in the case that the transmitted data does not collide, the initial transmission
  • the size of the TTI bundling of the data packet is different from the size of the TTI bundling of the retransmitted data packet and/or the round-trip delay RTT of the initial transmission and the first retransmission is different from the RTT of the adjacent two retransmissions
  • the processing module is used for Detecting the data packet received by the receiving module, and when detecting the data packet error, sending a retransmission indication to the sending module;
  • a sending module configured to send the retransmission indication to the user equipment.
  • the invention adopts the difference of the size of the TTI bundling of the initially transmitted data packet and the size of the TTI bundling of the retransmitted data packet and/or the initial transmission and the first retransmission in the case that the guaranteed transmission data does not collide.
  • the RTT is different from the RTT of two adjacent retransmissions, instead of using the initial data packet and the retransmitted data packet specified in the prior art protocol, the RTT of the four TTI bundling and the adjacent two transmitted data packets are used. It is a 16 TTI scheme, thereby increasing the time density of transmission in the prior art when transmitting uplink SPS services.
  • FIG. 1 is a schematic diagram of a technology in which uplink TTI bundling and HARQ are combined in the prior art
  • FIG. 2 is a timing diagram of multi-process transmission of uplink SPS services in the prior art
  • FIG. 3 is a flowchart of a method for transmitting uplink SPS service data according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a frame according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another frame according to an embodiment of the present invention.
  • FIG. 5( a ) is a schematic diagram of still another frame structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of still another frame structure according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for receiving an uplink SPS service according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • TTI bundling and HARQ For VoIP services, in order to achieve better coverage performance, the existing technology of LTE adopts a combination of TTI bundling and HARQ in the uplink.
  • a schematic diagram of TTI bundling and HARQ is shown in Figure 1.
  • the prior art uses four TTI bundlings, that is, different redundant versions of Protocol Data Units (PDUs) are transmitted in four consecutive TTIs (Redundancy Version, RV).
  • RV Resource Version
  • the protocol also stipulates that, in the prior art, the RTT of the same data packet transmitted twice in the prior art takes 16 ms. That is to say, if the detection error occurs, the 16 TTIs after the start of the data packet can be retransmitted.
  • the retransmission also uses four TTI bundlings, that is, within four consecutive TTIs. Transmit different RVs for retransmission. TTI bundling actually increases the number of retransmissions over a certain period of time and uses fewer ACK/NACK bits.
  • the LTE introduces a new resource scheduling method, semi-static scheduling technology.
  • the semi-persistent scheduling mode refers to the initial scheduling of the eNodeB through the physical downlink control channel during the scheduling transmission of LTE (Physical The Downlink Control Channel (PDCCH) indicates the current scheduling information of the UE. If the UE identifies the semi-persistent scheduling, the current scheduling information is saved, and the service data is transmitted or received at the same time-frequency resource location every fixed period.
  • PDCCH Physical The Downlink Control Channel
  • the characteristics of the periodic arrival of voice data packets can be fully utilized, and one-time authorization and periodic use can effectively save the PDCCH resources used by the LTE system for scheduling indication, so that the call quality and system performance can be improved without affecting the call quality and system performance. Support more voice users.
  • uplink data can be scheduled by means of SPS; at the same time, bundling can enhance coverage.
  • the VoIP service forms one PDU every 20ms.
  • the transmission of one PDU is a HARQ process, that is, VoIP starts a new HARQ process every 20ms.
  • Each HARQ process includes initial transmission and retransmission, and initial transmission and retransmission can be implemented by TTI bundling.
  • the multi-process transmission of the uplink VoIP service under FDD is as shown in FIG. 2, in which four TTI bundling and HARQ technologies are simultaneously adopted.
  • the same padding style is used in Figure 2 to indicate the initial and retransmission of the same packet, using different padding styles to represent different HARQ processes.
  • the Physical Hybrid ARQ Indicator Channel (PHICH) of the eNodeB includes the ACK/NACK information fed back by the base station, and the PHICH in the figure indicates that the ACK/NACK information fed back by the base station is received at the TTI.
  • the same TTI cannot be used for the initial transmission and retransmission of the data packet and the retransmission and retransmission.
  • the arrival period of VoIP packets is 20ms, each data packet can occupy a maximum transmission time of 20 TTIs. However, as can be seen from FIG.
  • the base station may choose to combine these different RVs to detect whether the detection is correct by an ACK/NACK bit. For this detection method of the base station, when the UE completes one transmission of the four RVs of one data packet at the eleventh 111 (eg, TTI #3), the UE will be at the n+4th TTI, eg, TTI #7 Receiving a message about the packet fed back by the base station ACK/NACK of the secondary transmission.
  • the RTT can be at least 1 lms.
  • the existing protocol ⁇ bundling takes 16ms, which causes the UE to use up to 12 TTIs in the uplink data transmission of the SPS service, such as VoIP service, and 8 TTIs that can be utilized are not utilized. The time density of the transmission is not maximized and can be improved.
  • the base station after receiving the four RVs of a TTI bundling, the base station combines the four different RVs to detect.
  • the base station may also not combine the four RVs, but immediately after receiving the first RV, and determine whether retransmission is required according to the detection result of the RV.
  • the UE transmits an RV of a data packet at the 11th 111 (eg, TTI #0)
  • the UE will receive feedback from the base station at the n+4th TTI (eg, TTI #4).
  • This packet is the ACK/NACK of this RV. If a NACK is received, the UE's next retransmission of this packet can be sent at least on the n+8th TTI (eg, ⁇ #8).
  • Subsequent base station detection is performed by combining the remaining 3 RVs with the first RV of the next retransmission.
  • the RTT can be 8 ms. Therefore, RTT can also be less than l lms.
  • embodiments of the present invention provide an implementation of a method of transmitting or receiving semi-statically scheduled SPS service data, which improves the time density of transmission.
  • the embodiment of the present invention provides a method for transmitting uplink semi-persistent scheduling SPS service data, as shown in FIG. 3, the method includes:
  • Step 301 Initially transmit or retransmit the data packet of the uplink SPS service using the TTI bundling; Step 302, when receiving the retransmission indication of the data packet, retransmit the data packet, where the data that is guaranteed to be transmitted is not In the case of a collision, the size of the TTI bundling of the initially transmitted packet is different from the size of the TTI bundling of the retransmitted packet and/or the initial transmission is different from the RTT of the first retransmission and the RTT of the adjacent two retransmissions.
  • the retransmission indication in the embodiment of the present invention may be a NACK message, but the embodiment of the present invention is not limited to a NACK message, and may be other types of retransmission indications.
  • the NACK message is taken as an example for description.
  • the size of the transmitted TTI bundling may be an integer multiple of 4, or may not be, wherein the redundancy version number of ⁇ bundling is 0, 2, 3, 1, 0, 2, 3, 1, 0.
  • the order of ## is arranged.
  • the size of the TTI bundling of the initially transmitted data packet and the size of the TTI bundling of the retransmitted data packet are different and/or the RTT of the initial transmission and the first retransmission and the RTT of the adjacent two retransmissions
  • four und bundlings are used, thereby improving the time density of transmission in the VoIP uplink data transmission in the prior art.
  • the RTT transmitted twice adjacent to each other may be at least 11 ⁇ .
  • the same data packet is retransmitted at most twice.
  • the initial data packet uses 8 b bundling
  • the first retransmitted data packet uses 4 TTI bundling
  • the second retransmitted data packet uses 8 TTI bundling.
  • the first retransmission and the initial transmission RTT are 16 TTIs
  • the second retransmission and the first retransmission RTT are 12 TTIs.
  • the initial data packet uses 4 b bundlings
  • the first retransmitted data packet uses 8 TTI bundlings
  • the second retransmitted data packet uses 8 TTI bundlings.
  • the RTT of the first retransmission and the initial transmission is 12 TTIs
  • the RTT of the second retransmission and the first retransmission is 32 TTIs.
  • the initial data packet uses 4 b bundlings
  • the retransmitted data packet uses 16 TTI bundlings
  • the retransmissions and initial transmissions of the RTT are 24 ⁇ .
  • the embodiment of the present invention is directed to a semi-persistent scheduling service, which can maximize the time density of transmission in the case of ensuring that the transmitted data does not collide, so that a data packet occupies a transmission time of up to 20 ms in 50 ms, thus adding a data packet.
  • this embodiment also provides an application example of three optional data frame structures.
  • the initial data packet adopts 8 TTIs.
  • Bundling the first retransmitted packet uses four TTI bundlings, and the second retransmitted packet uses eight TTI bundlings.
  • the RTT of the first packet and the retransmission of the same data packet is 16, and the RTT of the two retransmissions is 12, and the data packet can be retransmitted at most twice.
  • an initial transmission packet fails to be detected, that is, the NACK of the initially transmitted data packet is received, the data packet is retransmitted, and the RTT of the first retransmitted data packet and the first transmitted data packet is 16 TTI, that is to say, the data packet will be retransmitted for the first time after the 16th TTI after the start of the initial data packet. Therefore, the end time of the initial data packet and the start time of the first retransmission The interval between them is 8 TTIs.
  • the RTT of the second retransmitted data packet and the first retransmitted data packet is 12, so the end time of the first retransmission of the data packet and The interval between the start times of the second retransmission is 8 ⁇ .
  • one packet in this example can be retransmitted up to 2 times, that is, up to a total of 3 times, and the second retransmission is completed at 36ms.
  • the application example shortens the retransmission twice. RTT between packets.
  • the TTI bundling size of the packet initial transmission and the second retransmission is changed to 8 TTIs.
  • multiple processes happen to fill the ⁇ in the time domain, and the time domain density of the transmission is maximized.
  • the initial data packet uses four bundled bundlings
  • the first retransmission uses eight TTI bundlings
  • the second retransmission data uses 8 bundles of bundling.
  • the RTT of the initial transmission and the retransmission of the same data packet is 12, and the RTT of the two consecutive retransmissions is 32, and the data packet can be retransmitted at most twice.
  • an initial transmission packet fails to be detected, that is, the NACK of the initially transmitted data packet is received, the data packet is retransmitted, and the RTT of the first retransmitted data packet and the first transmitted data packet is 12.
  • TTI that is to say, the data packet will be retransmitted for the first time after the 12th TTI after the start of the initial data packet. Therefore, the end time of the first data packet and the first retransmission in this example.
  • the interval between the start times is 8 TTIs. If the first retransmission detection of the data packet fails, the RTT of the second retransmitted data packet and the first retransmitted data packet are 32 ⁇ . Therefore, in this example, the data packet is retransmitted for the first time.
  • the interval between the end time and the start time of the second retransmission is 24 ⁇ .
  • one packet in this application example can be retransmitted up to 2 times, that is, up to 3 times in total, and the second retransmission is completed at 52 ms. It can be seen that this application example shortens the initial data packet compared with the data packet transmitted in the prior art and the data packet of the first retransmission and the data packet of the two retransmissions are both 16 ms RTT.
  • the RTTo of the first retransmitted packet and the second retransmitted packet are extended with the TTI bundling size of the prior art for initial transmission and retransmission to 4
  • this application example changes the TTI bundling size of the first retransmitted data packet and the second retransmitted data packet to 8 TTIo.
  • multiple processes just fill up. In the time domain, the time domain density of the transmission is maximized.
  • the initial data packet uses 4 b bundlings
  • the retransmitted data packet uses 16 TTI bundlings
  • the initial packet and retransmission RTT of the same data packet is 24, and the data packet can be retransmitted at most once.
  • an initial data packet fails to be detected, that is, the NACK of the initially transmitted data packet is received, and the data packet is retransmitted, and the RTT of the first retransmitted data packet and the first transmitted data packet is 24 TTI, that is to say, the data packet will be retransmitted for the first time after the 24th TTI after the start of the initial data packet. Therefore, in this example, the end time of the initial data and the start of the first retransmission The interval between times is 20 ⁇ . Considering the 50ms delay requirement, a packet in this example can be retransmitted at most once, that is, up to a total of 2 times, and this retransmission is completed at the 40th.
  • the application example extends the initial data packet compared with the data packet transmitted in the prior art and the data packet of the first retransmission and the data packet of the two retransmissions are both 16 ms RTT. RTT with the retransmitted packet.
  • the size of the TTI bundling is changed to 16 TTIs.
  • multiple processes just occupy the time domain, and the time domain density of the transmission is maximized.
  • the frame structure of the above three application examples given in the embodiments of the present invention is only for some alternatives, and the embodiment of the present invention is not limited thereto, as long as it is the initial data packet.
  • the size of the bundling and the size of the TTI bundling of the retransmitted data packet are different and/or the frame structure of the original RTT different from the first retransmitted RTT and the adjacent two retransmitted RTT may be, for example, as shown in FIG.
  • the initial data packet uses 4 TTI bundling
  • the first retransmitted data packet uses 9 TTI bundling
  • the second retransmitted data packet uses 7 TTI bundling
  • the RTT of the first packet and the first retransmission of the same packet is 11, and the RTT of the two retransmissions is 33, and one packet can be retransmitted at most. 2 times.
  • the frame structure provided by the embodiment of the present invention is a frame structure capable of occupying a frame on the time domain, so that the time domain density of the transmission is maximized.
  • the size of the bundling is different and/or the frame structure of the RTT of the first transmission and the first retransmission is different from that of the adjacent two retransmissions, and further utilizes the 8 TTIs that can be utilized but not utilized in the prior art.
  • the time density of the transmission is maximized, so that a data packet occupies a transmission time of up to 20 ms in 50 ms, thus increasing the weight of one data packet.
  • the embodiment further provides a user equipment.
  • the user equipment includes: a transmission module 701, configured to transmit or retransmit an uplink semi-persistent scheduling SPS service to a base station.
  • the TTI is bound to the bundled packet; wherein, in the case that the transmitted data does not collide, the size of the TTI bundling of the initially transmitted packet is different from the size of the TTI bundling of the retransmitted packet and/or the first pass and the first
  • the retransmission of the RTT is different from the RTT of the two retransmissions; and
  • the receiving module 702 is configured to, when receiving the retransmission indication of the data packet sent by the base station, instruct the transmission module 701 to retransmit the data packet.
  • the size of the TTI bundling of the initially transmitted data packet is different from the size of the TTI bundling of the retransmitted data packet, and/or the initial transmission and the RTT of the first retransmission are different from the RTT of the adjacent two retransmissions.
  • four und bundling and the RTT of the adjacent two transmitted data packets are 16 TTI schemes, thereby improving the existing The time density of transmission during VoIP uplink data transmission in the technology.
  • the RTT transmitted twice adjacent to each other may be at least 11 TTIs.
  • the packet is retransmitted at most twice.
  • the initial data packet uses 8 b bundling
  • the first retransmitted data packet uses 4 TTI bundling
  • the second retransmitted data packet uses 8 TTI bundling.
  • the first weight The RTT transmitted and transmitted is 16 TTIs
  • the RTT of the second retransmission and the first retransmission is 12 ⁇ . or
  • the initial data packet uses 4 b bundlings
  • the first retransmitted data packet uses 8 TTI bundlings
  • the second retransmitted data packet uses 8 TTI bundlings.
  • the RTT of the first retransmission and the initial transmission is 12 TTIs
  • the RTT of the second retransmission and the first retransmission is 32 TTIs.
  • the initial data packet uses 4 b bundlings
  • the retransmitted data packet uses 16 TTI bundlings
  • the retransmissions and initial transmissions of the RTT are 24 ⁇ .
  • the round-trip delay RTT of the adjacent two transmissions is at least 11 TTIs
  • the size of the TTI bundling of the initially transmitted data packet and the size of the TTI bundling of the retransmitted data packet are different and/or initial transmission
  • the first retransmission of the RTT is different from the adjacent two retransmissions of the RTT, instead of using the initial data packet and the retransmitted data packet specified in the prior art protocol, four TTI bundlings are used and two adjacent times.
  • the RTT of the transmitted data packet is a 16 TTI scheme, thereby maximizing the time density of transmission in the prior art VoIP uplink data transmission.
  • a second embodiment of the present invention provides a method for receiving uplink SPS service data in the uplink. As shown in FIG. 8, the method includes:
  • Step 801 Receive a TTI bundling data packet of the uplink SPS service that is initially transmitted or retransmitted.
  • Step 802 When detecting that the data packet error is received, return a retransmission indication and receive the retransmitted data packet. ;
  • the size of the TTI bundling of the initially transmitted data packet and the size of the TTI bundling of the retransmitted data packet are different and/or the initial transmission and the RTT of the first retransmission are adjacent to each other.
  • the RTT of the two retransmissions is different.
  • the round-trip delay RTT of the adjacent two transmissions is at least 11 TTIs
  • the size of the TTI bundling of the initially transmitted data packet and the size of the TTI bundling of the retransmitted data packet are different and/or initial transmission and
  • the first retransmission of the RTT is different from the adjacent two retransmissions of the RTT, instead of using the initial data packet and the retransmitted data packet specified in the prior art protocol, four TTI bundlings are used and two adjacent times. Number of transmissions According to the RTT of the packet, the scheme of 16 TTIs improves the time density of transmission in the VoIP uplink data transmission in the prior art.
  • the RTTs transmitted in the adjacent two times may be at least 11 TTIs, and the data packets that are retransmitted are received at most twice.
  • the initial data packet uses 8 TTI bundlings
  • the first retransmitted data packet uses 4 TTI bundlings
  • the second retransmitted data packet uses 8 TTI bundlings.
  • the RTT of the first retransmission and the initial retransmission is 16 TTIs
  • the RTT of the second retransmission and the first retransmission is 12 TTIs.
  • the initial data packet uses 4 b bundlings
  • the first retransmitted data packet uses 8 TTI bundlings
  • the second retransmitted data packet uses 8 TTI bundlings.
  • the RTT of the first retransmission and the initial transmission is 12 TTIs
  • the RTT of the second retransmission and the first retransmission is 32 TTIs.
  • the initial data packet uses 4 b bundlings
  • the retransmitted data packet uses 16 TTI bundlings
  • the retransmissions and initial transmissions of the RTT are 24 ⁇ .
  • the round-trip delay RTT of the adjacent two transmissions is at least 11 TTIs
  • the size of the TTI bundling of the initially transmitted data packet and the size of the TTI bundling of the retransmitted data packet are different and/or initial transmission
  • the first retransmission of the RTT is different from the adjacent two retransmissions of the RTT, instead of using the initial data packet and the retransmitted data packet specified in the prior art protocol, four TTI bundlings are used and two adjacent times.
  • the RTT of the transmitted data packet is a 16 TTI scheme, thereby maximizing the time density of transmission in the prior art VoIP uplink data transmission.
  • the embodiment further provides a base station.
  • the base station includes: a receiving module 901, configured to receive a data packet of an uplink SPS service that is initially transmitted or retransmitted by the user equipment by using a bundling packet.
  • the size of the TTI bundling of the initially transmitted packet is different from the size of the TTI bundling of the retransmitted packet and/or the RTT and phase of the initial transmission and the first retransmission The RTT of the two retransmissions is different;
  • the processing module 902 is configured to detect the data packet received by the receiving module 901, and send a retransmission indication to the sending module 903 when the data packet error is detected;
  • the sending module 903 is configured to send a retransmission indication to the user equipment.
  • the RTT transmitted twice adjacent to each other may be at least 11 ⁇ .
  • the receiving module 901 receives the data packet of two retransmissions.
  • the initial data packet uses 8 b bundling
  • the first retransmitted data packet uses 4 TTI bundling
  • the second retransmitted data packet uses 8 TTI bundling.
  • the RTT of the first retransmission and the initial retransmission is 16 TTIs
  • the RTT of the second retransmission and the first retransmission is 12 TTIs.
  • the first transmitted data packet uses four b bundlings
  • the first retransmitted data packet uses eight TTI bundlings
  • the second retransmitted data packet uses eight TTI bundlings.
  • the RTT of the first retransmission and the initial transmission is 12 TTIs
  • the RTT of the second retransmission and the first retransmission is 32 TTIs.
  • the initial data packet uses 4 b bundlings
  • the retransmitted data packet uses 16 TTI bundlings
  • the retransmissions and initial transmissions of the RTT are 24 ⁇ .
  • the embodiment of the present invention maximizes the time density of transmission in the case of ensuring that the transmitted data does not collide, so that a data packet occupies a transmission time of up to 20 ms in 50 ms, thus increasing the number of retransmissions of one data packet. Therefore, the required signal-to-noise ratio is reduced in the case of a certain rBLER performance requirement of the VoIP service, thereby enhancing coverage.
  • the embodiment of the present invention further provides a system for retransmitting uplink VoIP service data, where the system includes a base station and user equipment, where
  • a user equipment configured to transmit a TSI bundling data packet to the base station for initial uplink SPS service; and retransmit the data packet when receiving the retransmission indication of the data packet sent by the base station, where the data is guaranteed to be transmitted
  • the size of the TTI bundling of the initial transmitted packet is different from the size of the TTI bundling of the retransmitted packet and/or the initial transmission is different from the RTT of the first retransmission and the RTT of the adjacent two retransmissions.
  • the base station is configured to receive the uplink SPS service initially transmitted or retransmitted by the user equipment by adopting TTI bundling
  • the data packet detects the received data packet, and when the data packet error is detected, sends a retransmission indication to the user equipment.
  • the RTT transmitted twice adjacent to each other may be at least 11 ⁇ .
  • the packet is retransmitted at most twice.
  • the initial data packet uses 8 b bundling
  • the first retransmitted data packet uses 4 TTI bundling
  • the second retransmitted data packet uses 8 TTI bundling.
  • the RTT of the first retransmission and the initial retransmission is 16 TTIs
  • the RTT of the second retransmission and the first retransmission is 12 TTIs.
  • the initial data packet uses 4 b bundlings
  • the first retransmitted data packet uses 8 TTI bundlings
  • the second retransmitted data packet uses 8 TTI bundlings.
  • the RTT of the first retransmission and the initial transmission is 12 TTIs
  • the RTT of the second retransmission and the first retransmission is 32 TTIs.
  • the initial data packet uses 4 b bundlings
  • the retransmitted data packet uses 16 TTI bundlings
  • the retransmissions and initial transmissions of the RTT are 24 ⁇ .
  • the embodiment of the present invention solves the problem that the time domain density of the transmission is not maximized when the TTI bundling and HARQ technologies are used only under the original UL SPS, and the data packet is guaranteed.
  • a packet can occupy up to 20 TTIs for transmission, and more redundant versions can be transmitted within 50 ms (the redundancy version number is 0, 2. 3, 1, 0, 2, 3, 1 ... order), more efficient use of the time domain resources available for transmission, thereby achieving the purpose of enhancing UL VoIP coverage.
  • each functional module is only an example. In actual applications, the foregoing functions may be considered according to requirements, such as configuration requirements of corresponding hardware or convenience of implementation of software.
  • the allocation is performed by different functional modules, that is, the internal structure of the user equipment and the base station are divided into different functional modules to complete all or part of the above description.
  • the corresponding functional modules in this embodiment may be implemented by corresponding hardware, or may be performed by corresponding hardware to execute corresponding software.
  • the foregoing transmission module may be configured to perform the foregoing to the base station.
  • the hardware of the bundling packet function such as the transmitter, may also be a general transceiver or other hardware device capable of executing the corresponding computer program to perform the foregoing functions; and the processing module as described above, It may be hardware having a function of performing the foregoing detection of the data packet received by the receiving module, and transmitting a NACK message to the transmitting module when detecting the data packet error, such as a processor, or may be capable of executing a corresponding computer program.
  • a general processor or other hardware device that performs the aforementioned functions (the various embodiments described in this specification apply the above described principles).
  • the program can be stored in a computer readable storage medium, and the storage medium can include: Read only memory (ROM, Read Only Memory), random access memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种频分双工FDD***中传输上行半静态调度SPS业务数据的方法,所述方法包括:初传或重传上行SPS业务的采用传输时间间隔TTI绑定bundling的数据包;以及当接收到所述数据包的重传指示时,重传所述数据包,其中,在保证传输的数据不碰撞的情况下,初传的数据包的TTI bundling的大小和重传数据包的TTI bundling的大小不同和/或初传与第一次重传的往返时延RTT与相邻两次重传的RTT不同。相应的,本发明还公开了一种接收SPS业务数据的方法,用户设备和基站。本发明提高了SPS业务上行数据传输时的传输的时间密度。

Description

传输或接收上行 SPS业务数据的方法和用户设备和基站 本申请要求于 2012年 5月 9日提交中国专利局、 申请号为 201210141497.X、 发明名称为"传输或接收上行 SPS业务数据的方法和用户设备和基站 "的中国专利 申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域 , 尤其涉及频分双工 ( Frequency Division Duplexing ,FDD )***中传输或接收上行半静态调度( Semi-Persistent Scheduling , SPS )业务数据的方法,用户设备和基站。 背景技术
VoIP的基本原理是通过 IP网络发送语音数据。 而长期演进( Long Term Evolution , LTE )很重要的一个业务上的特点就是取消了全部电路域的业务,并 提出了全 IP网络的概念。 因此, VoIP是 LTE能够支持的业务类型之一。
通过仿真和计算发现,物理上行共享信道用于传输上行 VoIP业务时,覆盖 受限。为了解决物理上行共享信道用于传输上行 VoIP业务时覆盖受限这一问题, 现有技术采用如下方案。
LTE***的资源在时域上被划分为多个符号,在频域上被划分为子载波。一 个无线帧在时间上长 10ms,包含 10个子帧。每个常规子帧长 lms,且包含两个时 隙。定义 ^子帧的长度为 ^传输时间间隔( Transmission Time Interval ,ΤΤΙ ) , 即 lTTI=lms。 ΤΤΙ是资源调度时,时间上的基本单位。混合自动重传请求( Hybrid Automatic Repeat Request , HARQ )是_种将前向纠错和检错( Forward Error Correction , FEC )和自动重传请求 ( Automatic Repeat Request , ARQ )相结合 的技术,其具体处理流程包括:在发送的每个数据包中含有纠错和检错的校验 比特,如果接收的数据包中的出错比特数目在接收端的纠错能力之内 ,则错误 被自行纠正。 当差错严重以致接收的数据包中的出错比特数目超出纠错能力时, 则接收端让发送端重传数据包。 在 LTE中 ,采用多进程的停止 -等待 HARQ。 在 一次传输的数据包被发出后,需要等待一定的时间才能够传输新数据包或者重 传旧数据包,等待的时间的长短跟传输延迟和 UE的处理时间或 eNodeB的处理时 间有关。往返时延( Round Trip Time , RTT )定义为同一数据包从一次传输开始 到下一次传输开始的时间之差。 为了充分利用时域资源,在等待的这段时间内 , eNodeB或 UE需要发起其他的并行 HARQ进程,并行 HARQ进程的数量跟 RTT相 关。 对于 FDD***, RTT为 8个 TTI ,上下行都是采用 8个并行的 HARQ进程。 对 于某一个 HARQ进程,若接收端接收到的数据包正确,不需要重传,则接收端反 馈确认( Acknowledgement, ACK )消息,若接收端接收到的数据包不正确,反 馈非确认( Negative Acknowledgement, NACK )消息指示重传。发送端在等待某 一进程的 ACK/NACK反馈时,此进程暂时停止传输, 当收到反馈后,再根据反 馈的是 ACK还是 NACK选择发送新的数据包还是重传旧的数据包。
然而,现有技术的 UE在 VoIP业务的上行数据传输中 ,一个数据包传输的时 间密度还能够得到提高。 发明内容
本发明提供了传输或接收上行 SPS业务数据的方法,用户设备和基站,以解 决如何提高现有技术的 SPS业务上行数据传输时的传输的时间密度的问题。
第一方面,提供了一种频分双工 FDD***中传输上行半静态调度 SPS业务数 据的方法,所述方法包括:
初传或重传上行 SPS业务的采用传输时间间隔 TTI绑定 bundling的数据包;以 及
当接收到所述数据包的重传指示时,重传所述数据包,其中 ,在保证传输 的数据不碰撞的情况下,初传的数据包的 TTI bundling的大小和重传数据包的 ΤΉ bundling的大小不同和 /或初传与第一次重传的往返时延 RTT与相邻两次重传的 RTT不同。
第二方面,提供了一种用户设备,所述用户设备包括:
传输模块,用于向基站初传或重传上行半静态调度 SPS业务的采用传输时间 间隔 TTI绑定 bundling的数据包;其中 ,在保证传输的数据不碰撞的情况下,初 传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或 初传与第一次重传的往返时延 RTT与相邻两次重传的 RTT不同;以及
接收模块,用于当接收到基站发送的所述数据包的重传指示时,指示所述 传输模块重传所述数据包。
第三方面,提供了一种频分双工 FDD***中接收上行半静态调度 SPS业务数 据的方法,所述方法包括:
接收初传的或重传的上行半静态调度 SPS业务的采用传输时间间隔 TTI绑定 bundling的数据包;
当检测到接收到所述数据包错误时,返回重传指示并接收重传的所述数据 包,其中 ,在保证传输的数据不碰撞的情况下,初传的数据包的 TTI bundling的 大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次重传的往返时 延 RTT与相邻两次重传的 RTT不同。
第四方面,提供了一种基站,所述基站包括:
接收模块,用于接收用户设备初传的或重传的上行半静态调度 SPS业务的采 用传输时间间隔 TTI绑定 bundling的数据包;其中 ,在保证传输的数据不碰撞的 情况下,初传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小 不同和 /或初传与第一次重传的往返时延 RTT与相邻两次重传的 RTT不同; 处理模块,用于检测所述接收模块接收到的所述数据包, 当检测到所述数 据包错误时, 向发送模块发送重传指示;以及
发送模块,用于向所述用户设备发送所述重传指示。
本发明采用了在保证保证传输的数据不发生碰撞的情况下,初传的数据包 的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一 次重传的 RTT与相邻两次重传的 RTT不同,而不采用现有技术协议中规定的初传 的数据包和重传的数据包均采用 4个 TTI bundling且相邻两次传输的数据包的 RTT为 16个 TTI的方案,从而提高了现有技术中传输上行 SPS业务时的传输的时 间密度。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对现有技术或实施例 描述中所需要使用的附图作简单地介绍 ,显而易见地,下面描述中的附图仅仅 是一些实施例,对于本领域技术人员来讲,还可以利用这些附图获得其他的附 图。
图 1为现有技术中上行采用了 TTI bundling和 HARQ相结合的技术的示意图 ; 图 2为现有技术中上行 SPS业务的多进程传输的时序图 ;
图 3为本发明实施例一传输上行 SPS业务数据的方法的流程图 ;
图 4为本发明实施例的一种帧结构示意图 ;
图 5为本发明实施例的另一种帧结构示意图 ;
图 5 ( a )为本发明实施例的又一种帧结构示意图 ;
图 6为本发明实施例的又一种帧结构示意图 ;
图 7为本发明实施例用户设备的结构示意图 ;
图 8为本发明实施例二的接收上行 SPS业务的方法的流程图 ;
图 9为本发明实施例基站的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行清 楚、 完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。 基于本发明中的实施例 ,本领域技术人员所获得的所有其他实 施例,都属于本发明保护的范围。
对于 VoIP业务,为了达到更好的覆盖性能, LTE的现有技术在上行采用了 TTI绑定( TTI bundling )和 HARQ相结合的技术。 对于 FDD***, TTI bundling 和 HARQ的示意图如图 1所示。 从图 1中可以看出 , 现有技术采用 4个 TTI的 bundling,即在连续的 4个 TTI内 ,分别传输一个协议数据单元( Protocol Data Unit , PDU )的不同冗余版本 (Redundancy Version , RV)。 同时协议还规定,简便起见, 现有技术中同一数据包相邻两次传输的 RTT取 16ms。 也就是说,若检测错误, 本次传输的数据包开始后的 16个 TTI可以进行重传,而且,现有技术中 ,重传也 采用 4个 TTI的 bundling ,即在连续的 4个 TTI内传输重传的不同 RV。 TTI bundling 实际上增大了一定时间内的重传次数,并采用了更少的 ACK/NACK比特。
LTE引入了一种新的资源调度方式——半静态调度技术。半静态调度方式是 指在 LTE的调度传输过程中 , eNodeB初始调度通过物理下行控制信道( Physical Downlink Control Channel , PDCCH )指示 UE当前的调度信息, UE识别是半静态 调度,则保存当前的调度信息,每隔固定的周期在相同的时频资源位置上进行 该业务数据的发送或接收。 使用半静态调度传输,可以充分利用话音数据包周 期性到达的特点,一次授权,周期使用 ,可以有效节省 LTE***用于调度指示的 PDCCH资源,从而可以在不影响通话质量和***性能的同时,支持更多的话音 用户。为了减少控制信令的开销,可以通过 SPS的方式来调度上行数据;同时 ΤΉ bundling可以增强覆盖。
VoIP业务的语音编码决定了其数据包的到达周期为 20ms。 由于语音业务的 服务质量要求,数据包从发送端信源编码开始到接收端成功译码的最大延迟为 50ms ,数据包的重传需要在 50ms之内结束。 按照现有技术的方案,若发送端检 测到接收端接收到的数据包错误,数据包将在 16个 TTI后进行重传。 由于 16msx 3=48ms , 因此一个数据包在 50ms内最多总共传输 3次,即最多可以重传 2次。 由 于现有技术的方案采用 4个 TTI的 bundling ,因此,一个数据包最多总共占用 4ΤΉ x3=12TTI进行传输。
VoIP业务每 20ms形成一个 PDU , —个 PDU的传输就是一个 HARQ进程,即 VoIP每 20ms开始一个新的 HARQ进程。 每个 HARQ进程包括初传和重传,初传 和重传可以通过 TTI bundling来实现。 现有技术中 ,上行 VoIP业务在 FDD下的多 进程传输如图 2所示,其中 ,同时采用了 4个 TTI bundling和 HARQ技术。 图 2中使 用相同的填充样式表示同一个数据包的初传和重传,使用不同的填充样式表示 不同的 HARQ进程。 UE接收到 eNodeB的物理 HARQ指示信道( Physical Hybrid ARQ Indicator Channel , PHICH )中含有基站反馈的 ACK/NACK信息,图中的 PHICH表示在该 TTI接收到基站反馈的 ACK/NACK信息。在采用半静态调度非自 适应 HARQ的 VoIP业务中 ,为了保证数据的传输不发生碰撞,数据包的初传和 重传以及重传和重传均不能使用相同的 TTI。 考虑到 VoIP数据包的到达周期为 20ms的特性,每个数据包最大可占用 20个 TTI的传输时间。 然而,从图 2中可以 看出 ,由于现有的 LTE***采用 4个 TTI的 bundling ,即在连续的 4个 TTI内 ,分别 传输一个 PDU的不同 RV。 当基站收到这 4个 RV后,可以选择将这些不同的 RV合 并起来检测,通过一个 ACK/NACK比特来反馈是否检测正确。 针对基站的这种 检测方法, 当 UE在第 11个111 (如, TTI #3 )完成一个数据包的这 4个 RV的一次 传输,该 UE将在第 n+4个 TTI如, TTI #7)接收到基站反馈的关于该数据包的本 次传输的 ACK/NACK。 当 UE接收到 ACK/NACK ,再考虑到 UE的处理时延, UE 对这个数据包的下一次重传最少可以在第 n+8个 TTI (如, TTI #11 )上发送。 因 此,针对现有技术中上述方案, RTT最小可以是 l lms。 而现有的协议规定 ΤΉ bundling取 16ms,从而造成 UE在 SPS业务,如 VoIP业务的上行数据传输中 ,一个 数据包最多只利用了 12个 TTI ,还有 8个可以利用的 TTI未被利用 ,传输的时间密 度没有达到最大化,还能够得到提高。
进一步地,上述方案中 ,基站收到一个 TTI bundling的这 4个 RV后,是将这 4 个不同的 RV合并起来检测的。 基站也可以不将这 4个 RV合并,而是在刚收到第 一个 RV后就进行检测 ,并根据这一个 RV的检测结果决定是否需要重传。 假设 UE在第 11个111(如,TTI #0 )第_次发送一个数据包的一个 RV,该 UE将在第 n+4 个 TTI (如 , TTI #4)就可以接收到基站反馈的关于该数据包这个 RV的 ACK/NACK。 如果收到的是 NACK , UE对这个数据包的下一次重传最少可以在 第 n+8个 TTI (如, ΤΤΙ #8 )上发送。基站后续检测是将剩下的 3个 RV和下一次重 传的第一个 RV合并起来进行的。 针对基站的这种检测方案, RTT可以是 8ms。 因此, RTT还可以小于 l lms。
需要说明的是,虽然上述问题是针对 VoIP业务进行分析得到的 ,然而采用 TTI bundling和 SPS传输的其他业务存在同样的问题。
基于上述问题,本发明实施例提供了传输或接收半静态调度 SPS业务数据的 方法的实施方案,提高了传输的时间密度。
实施例一
一方面,本发明实施例提供了一种传输上行半静态调度 SPS业务数据的方 法,如图 3所示,该方法包括:
步骤 301 ,初传或重传上行 SPS业务的采用 TTI bundling的数据包; 步骤 302 ,当接收到所述数据包的重传指示时,重传所述数据包,其中 ,在 保证传输的数据不碰撞的情况下,初传的数据包的 TTI bundling的大小和重传数 据包的 TTI bundling的大小不同和 /或初传与第一次重传的 RTT与相邻两次重传 的 RTT不同。 需要说明的是,本发明实施例中的重传指示可以是 NACK消息,但本发明实 施例并不限于是 NACK消息,也可以是其他类型的重传指示。下文中 ,均以 NACK 消息为例进行说明。
本实施例中 ,传输的 TTI bundling的大小可以为 4的整数倍,也可以不是,其 中 ,ΤΤΙ bundling的冗余版本号按照 0、 2、 3、 1、 0、 2、 3、 1、 0......的顺序排列。
本实施例中 釆用了初传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次重传的 RTT与相邻两次重传的 RTT不同 , 而不采用现有技术协议中规定的初传的数据包和重传的数据包均采用 4个 ΤΉ bundling ,从而提高了现有技术中 VoIP上行数据传输时的传输的时间密度。
进一步地,本实施例中 ,相邻两次传输的 RTT可以至少为 11个 ΤΉ。
本实施例中 ,同一数据包最多被重传两次。
其中 ,初传的数据包采用 8个 ΤΤΙ的 bundling ,第一次重传的数据包采用 4个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。优选的,第一次重 传与初传的 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling ,第一次重传的数据包采用 8个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。 优选的 ,第一次重传与 初传的 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT为 32个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling , 重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 ΤΉ。
本发明实施例针对半静态调度业务,在保证发送数据不碰撞的情况下,能 够最大化传输的时间密度,使一个数据包在 50ms内最多占用 20ms的传输时间 , 这样就增加了一个数据包的重传次数,从而使得 VoIP业务在一定的 rBLER性能 要求情况下,所要求的信噪比降低, 因此增强了覆盖。
基于上述方法,本实施例还提供了三种可选数据帧结构的应用示例。
应用示例一
在一种帧结构的应用示例中 , 如图 4所示 ,初传的数据包采用 8个 TTI的 bundling ,第一次重传的数据包采用 4个 TTI的 bundling ,第二次重传的数据包采 用 8个 TTI的 bundling。 优选的 ,同一数据包的初传与重传的 RTT为 16 ,相邻两次 重传的 RTT为 12 ,—个数据包最多可以重传 2次。
具体的,若一个初传的数据包检测失败,即收到该初传的数据包的 NACK , 重传该数据包,且第一次重传的数据包与初传的数据包的 RTT为 16个 TTI ,也就 是说该数据包将在初传的数据包开始后的第 16个 TTI后进行第一次重传, 因此, 初传的数据包的结束时间与第一次重传的开始时间之间的间隔为 8个 TTI。 若该 数据包第一次重传检测失败,第二次重传的数据包与第一次重传的数据包的 RTT 为 12个 ΤΤΙ ,因此,该数据包第一次重传的结束时间和第二次重传的开始时间之 间的间隔为 8个 ΤΤΙ。 考虑到 50ms的时延要求,本示例中一个数据包最多可以重 传 2次,即最多总共传输 3次,第 2次重传在第 36ms处完成。
可见,与现有技术中初传的数据包和第一次重传的数据包、 以及相邻两次 重传的数据包均采用 16ms的 RTT相比,本应用示例縮短了两次重传的数据包之 间的 RTT。 与现有技术中的初传和重传的 TTI bundling大小为 4个 TTI相比,本应 用实例把数据包初传和第二次重传的 TTI bundling大小改为 8个 TTI。而且,由图 4 可以看出 ,多个进程恰好占满了时域上的 ΤΤΙ ,传输的时域密度达到了最大化。
应用示例二 在一种帧结构的应用示例中 , 如图 5所示 ,初传的数据包采用 4个 ΤΤΙ的 bundling ,第一次重传采用 8个 TTI的 bundling ,第二次重传的数据包采用 8个 ΤΉ 的 bundling。优选的 ,同一数据包的初传与重传的 RTT为 12,相邻两次重传的 RTT 为 32 ,—个数据包最多可以重传 2次。
具体的,若一个初传的数据包检测失败,即收到该初传的数据包的 NACK , 重传该数据包,且第一次重传的数据包与初传的数据包的 RTT为 12个 TTI ,也就 是说该数据包将在初传的数据包开始后的第 12个 TTI后进行第一次重传, 因此, 本示例中初传的数据包的结束时间与第一次重传的开始时间之间的间隔为 8个 TTI。 若该数据包第一次重传检测失败,第二次重传的数据包与第一次重传的数 据包的 RTT为 32个 ΤΤΙ , 因此,本示例中该数据包第一次重传的结束时间和第二 次重传的开始时间的间隔为 24个 ΤΤΙ。考虑到 50ms的时延要求,本应用示例中一 个数据包最多可以重传 2次,即最多总共传输 3次,第 2次重传在第 52ms处完成。 可见,与现有技术中初传的数据包和第一次重传的数据包、 以及相邻两次 重传的数据包均采用 16ms的 RTT相比,本应用示例縮短了初传的数据包与第一 次重传的数据包的 RTT ,延长了第一次重传的数据包与第二次重传的数据包的 RTTo 与现有技术中的初传和重传的 TTI bundling大小为 4个 TTI相比,本应用实 例把第一次重传的数据包和第二次重传的数据包的 TTI bundling大小改为 8个 TTIo 而且,由图 5可以看出 ,多个进程恰好占满了时域上的 ΤΤΙ ,传输的时域密 度达到了最大化。
应用示例三
在又一种帧结构的应用示例中 ,如图 6所示。 初传的数据包采用 4个 ΤΤΙ的 bundling ,重传的数据包采用 16个 TTI的 bundling ,且同一数据包的初传与重传的 RTT为 24 ,—个数据包最多可以重传 1次。
具体的,若一个初传的数据包检测失败,即收到该初传的数据包的 NACK , 重传该数据包,且第一次重传的数据包与初传的数据包的 RTT为 24个 TTI ,也就 是说该数据包将在初传的数据包开始后的第 24个 TTI后进行第一次重传, 因此, 本示例中初传数据的结束时间与第一次重传的开始时间之间的间隔为 20个 ΤΉ。 考虑到 50ms的时延要求,本示例中一个数据包最多可以重传 1次,即最多总共传 输 2次,这 1次重传在第 40ms处完成。
可见,与现有技术中初传的数据包和第一次重传的数据包、 以及相邻两次 重传的数据包均采用 16ms的 RTT相比,本应用示例延长了初传的数据包与重传 的数据包的 RTT。与现有技术中的初传和重传的 TTI bundling大小为 4个 TTI相比, 本应用实例把重传的 TTI bundling大小改为 16个 TTI。 而且, 由图 6可以看出 ,多 个进程恰好占满了时域上的 ΤΤΙ ,传输的时域密度达到了最大化。
需要说明的是,本发明实施例中所给出的上述三种应用示例的帧结构仅仅 是给出一些可选方案,本发明实施例并不限定于此,只要是初传的数据包的 ΤΉ bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次重传 的 RTT与相邻两次重传的 RTT不同的帧结构都可以,例如,如图 5 ( a )所示的帧 结构,初传的数据包采用 4个 TTI的 bundling ,第一次重传的数据包采用 9个 TTI 的 bundling ,第二次重传的数据包采用 7个 TTI的 bundling ,且同一数据包的初传 与第一次重传的 RTT为 11,相邻两次重传的 RTT为 33,一个数据包最多可以重传 2次。
此外,本发明实施例提供的帧结构为能够为恰好占满时域上的 ΤΤΙ的帧结 构,从而传输的时域密度达到了最大化。 当然,也可以不将时域上的 ΤΤΙ占满, 而仅仅通过使用相邻两次传输的 RTT至少为 11个 ΤΤΙ,并且,初传的数据包的 ΤΉ bundling的大小和重传数据包的 ΤΤΙ bundling的大小不同和 /或初传与第一次重传 的 RTT与相邻两次重传的 RTT不同的帧结构,而进一步利用现有技术中可以利用 但未被利用的 8个 TTI中的一个或多个 TTI ,从而增加传输的时间密度。
本发明实施例针对上行 SPS业务,在保证传输的数据不碰撞的情况下,最大 化传输的时间密度,使一个数据包在 50ms内最多占用 20ms的传输时间 ,这样就 增加了一个数据包的重传次数,从而使得 VoIP业务在一定的 rBLER性能要求情 况下,所要求的信噪比降低, 因此增强了覆盖。
另一方面,本实施例还提供了一种用户设备,如图 7所示,该用户设备包括: 传输模块 701 ,用于向基站初传或重传上行半静态调度 SPS业务的采用传输 时间间隔 TTI绑定 bundling的数据包;其中 ,在保证传输的数据不碰撞的情况下, 初传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 / 或初传与第一次重传的 RTT与相邻两次重传的 RTT不同;以及
接收模块 702 ,用于当接收到基站发送的所述数据包的重传指示时,指示所 述传输模块 701重传所述数据包。
本实施例采用了初传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次重传的 RTT与相邻两次重传的 RTT不同 , 而不采用现有技术协议中规定的初传的数据包和重传的数据包均采用 4个 ΤΉ bundling且相邻两次传输的数据包的 RTT为 16个 TTI的方案,从而提高了现有技 术中 VoIP上行数据传输时的传输的时间密度。
本实施例中 ,相邻两次传输的 RTT可以至少为 11个 TTI。 数据包最多被重传 两次。
其中 ,初传的数据包采用 8个 ΤΤΙ的 bundling ,第一次重传的数据包采用 4个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。优选的,第一次重 传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 ΤΤΙ。 或者,
初传的数据包采用 4个 ΤΤΙ的 bundling ,第一次重传的数据包采用 8个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。 优选的 ,第一次重传与 初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT为 32个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling , 重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 ΤΉ。
本实施例采用了相邻两次传输的往返时延 RTT至少为 11个 TTI ,并且,初传 的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初 传与第一次重传的 RTT与相邻两次重传的 RTT不同,而不采用现有技术协议中规 定的初传的数据包和重传的数据包均采用 4个 TTI bundling且相邻两次传输的数 据包的 RTT为 16个 TTI的方案,从而最大化了现有技术中 VoIP上行数据传输时的 传输的时间密度。
实施例二
本发明实施例二提供了一种上行接收上行 SPS业务数据的方法,如图 8所示, 该方法包括:
步骤 801 ,接收初传的或重传的上行 SPS业务的采用 TTI bundling的数据包; 步骤 802 ,当检测到接收到所述数据包错误时,返回重传指示并接收重传的 所述数据包;
其中 ,在保证传输的数据不碰撞的情况下,初传的数据包的 TTI bundling的 大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次重传的 RTT与 相邻两次重传的 RTT不同。
本实施例采用了相邻两次传输的往返时延 RTT至少为 11个 TTI ,并且,初传 的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初 传与第一次重传的 RTT与相邻两次重传的 RTT不同,而不采用现有技术协议中规 定的初传的数据包和重传的数据包均采用 4个 TTI bundling且相邻两次传输的数 据包的 RTT为 16个 TTI的方案,从而提高了现有技术中 VoIP上行数据传输时的传 输的时间密度。
本实施例中 ,相邻两次传输的 RTT可以至少为 11个 TTI ,最多接收两次重传 的所述数据包。
其中 ,初传的数据包采用 8个 TTI的 bundling ,第一次重传的数据包采用 4个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。优选的,第一次重 传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling ,第一次重传的数据包采用 8个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。 优选的 ,第一次重传与 初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT为 32个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling , 重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 ΤΉ。
本实施例采用了相邻两次传输的往返时延 RTT至少为 11个 TTI ,并且,初传 的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初 传与第一次重传的 RTT与相邻两次重传的 RTT不同,而不采用现有技术协议中规 定的初传的数据包和重传的数据包均采用 4个 TTI bundling且相邻两次传输的数 据包的 RTT为 16个 TTI的方案,从而最大化了现有技术中 VoIP上行数据传输时的 传输的时间密度。
另一方面,本实施例还提供了一种基站,如图 9所示,该基站包括: 接收模块 901 ,用于接收用户设备初传的或重传的上行 SPS业务的采用 ΤΉ bundling的数据包;其中 ,在保证传输的数据不碰撞的情况下,初传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次 重传的 RTT与相邻两次重传的 RTT不同 ;
处理模块 902 ,用于检测接收模块 901接收到的所述数据包, 当检测到所述 数据包错误时, 向发送模块 903发送重传指示;以及 发送模块 903 ,用于向该用户设备发送重传指示。
本实施例获得的技术效果同上述实施例二中的方法实施例的效果,此处不 再赘述。
本实施例中 ,相邻两次传输的 RTT可以至少为 11个 ΤΤΙ。接收模块 901接收两 次重传的数据包。
其中 ,初传的数据包采用 8个 ΤΤΙ的 bundling ,第一次重传的数据包采用 4个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。优选的,第一次重 传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 TTI。
或者
所述初传的数据包采用 4个 ΤΤΙ的 bundling,第一次重传的数据包采用 8个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。 优选的 ,第一次重传 与初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT为 32个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling , 重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 ΤΉ。
本发明实施例针对 SPS业务,在保证发送数据不碰撞的情况下,最大化传输 的时间密度,使一个数据包在 50ms内最多占用 20ms的传输时间 ,这样就增加了 一个数据包的重传次数,从而使得 VoIP业务在一定的 rBLER性能要求情况下, 所要求的信噪比降低, 因此增强了覆盖。
此外,本发明实施例还提供了一种上行 VoIP业务数据重传的***,该*** 包括基站和用户设备,其中
用户设备,用于向基站初传上行 SPS业务的采用 TTI bundling的数据包;以 及在接收到该基站发送的该数据包的重传指示时,重传该数据包,其中 ,在保 证传输的数据不碰撞的情况下,初传的数据包的 TTI bundling的大小和重传数据 包的 TTI bundling的大小不同和 /或初传与第一次重传的 RTT与相邻两次重传的 RTT不同 ;
基站,用于接收用户设备初传的或重传的上行 SPS业务的采用 TTI bundling 的数据包,检测接收到的所述数据包, 当检测到所述数据包错误时, 向该用户 设备发送重传指示。
本实施例中 ,相邻两次传输的 RTT可以至少为 11个 ΤΤΙ。 数据包最多被重传 两次。
其中 ,初传的数据包采用 8个 ΤΤΙ的 bundling ,第一次重传的数据包采用 4个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。优选的,第一次重 传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 TTI。
或者,
初传的数据包采用 4个 ΤΤΙ的 bundling ,第一次重传的数据包采用 8个 TTI的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。 优选的 ,第一次重传与 初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT为 32个 TTI。
或者
初传的数据包采用 4个 ΤΤΙ的 bundling , 重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 ΤΉ。
本***实施例能够获得的技术效果与上述方法实施例获得的技术效果相 同,可参照上述方法实施例的描述,此处不再赘述。
本发明实施例通过设计新的 TTI bundling大小和 HARQ RTT时间 ,解决了原 有 UL SPS 下在 FFD下仅采用 TTI bundling和 HARQ技术时,传输的时域密度没有 最大化的问题,在保证数据包初传和重传、 重传和重传不发生碰撞的同时,使 得一个数据包最多占用 20个 TTI进行传输,在 50ms内可以传输更多的冗余版本 (冗余版本号按照 0、 2、 3、 1、 0、 2、 3、 1......的顺序) ,更加有效的利用了 可用来传输的时域资源,从而达到增强 UL VoIP覆盖的目的。
需要说明的是,以上用户设备和基站的实施方式中 ,各功能模块的划分仅 是举例说明 ,实际应用中可以根据需要,例如相应硬件的配置要求或者软件的 实现的便利考虑,而将上述功能分配由不同的功能模块完成,即将所述用户设 备和基站的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分 功能。 而且,实际应用中 ,本实施例中的相应的功能模块可以是由相应的硬件 实现,也可以由相应的硬件执行相应的软件完成,例如,前述的传输模块,可 以是具有执行前述向基站初传或重传上行 SPS业务的采用 ΤΤΙ bundling的数据包 功能的硬件,例如发射器,也可以是能够执行相应计算机程序从而完成前述功 能的一般收发器或者其他硬件设备;再如前述的处理模块,可以是具有执行前 述检测接收模块接收到的所述数据包, 当检测到所述数据包错误时, 向发送模 块发送 NACK消息的功能的硬件,例如处理器,也可以是能够执行相应计算机程 序从而完成前述功能的一般处理器或者其他硬件设备(本说明书提供的各个实 施例都可应用上述描述原则)。
需要说明的是,上述装置各模块 /单元之间的信息交互、 执行过程等内容, 由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施 例相同,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存 储介质中 ,存储介质可以包括:只读存储器( ROM , Read Only Memory )、 随 机存取存储器( RAM , Random Access Memory )、 磁盘或光盘等。
以上对本发明实施例提供的方法和用户设备和基站进行了详细介绍 ,本文 中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明 只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领域的一般技术 人员 ,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综 上所述,本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种频分双工 FDD***中传输上行半静态调度 SPS业务数据的方法,其 特征在于,所述方法包括:
初传或重传上行 SPS业务的采用传输时间间隔 TTI绑定 bundling的数据包;以 及
当接收到所述数据包的重传指示时,重传所述数据包,其中 ,在保证传输 的数据不碰撞的情况下,初传的数据包的 TTI bundling的大小和重传数据包的 ΤΉ bundling的大小不同和 /或初传与第一次重传的往返时延 RTT与相邻两次重传的 RTT不同。
2、 如权利要求 1所述的方法,其特征在于,相邻两次传输的 RTT至少为 11 个 TTIo
3、如权利要求 1或 2所述的方法,其特征在于,所述数据包最多被重传两次。
4、 如权利要求 1或 2所述的方法,其特征在于,
所述初传的数据包采用 8个 ΤΤΙ的 bundling,第一次重传的数据包采用 4个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling.
5、 如权利要求 4所述的方法,其特征在于,所述第一次重传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 ΤΉ。
6、 如权利要求 1或 2所述的方法,其特征在于,
所述初传的数据包采用 4个 ΤΤΙ的 bundling,第一次重传的数据包采用 8个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。
7、 如权利要求 6所述的方法,其特征在于,所述第一次重传与初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT为 32个 ΤΉ。
8、 如权利要求 1所述的方法,其特征在于 ,初传的数据包采用 4个 ΤΉ的 bundling ,重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 TTIo
9、 一种用户设备,其特征在于,所述用户设备包括:
传输模块,用于向基站初传或重传上行半静态调度 SPS业务的采用传输时间 间隔 TTI绑定 bundling的数据包;其中 ,在保证传输的数据不碰撞的情况下,初 传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小不同和 /或 初传与第一次重传的往返时延 RTT与相邻两次重传的 RTT不同;以及
接收模块,用于当接收到基站发送的所述数据包的重传指示时,指示所述 传输模块重传所述数据包。
10、 如权利要求 9所述的用户设备,其特征在于,相邻两次传输的 RTT至少 为 11个 TTI。
11、 如权利要求 9或 10所述的用户设备,其特征在于,所述数据包最多被重 传两次。
12、 如权利要求 9或 10所述的用户设备,其特征在于,
所述初传的数据包采用 8个 ΤΤΙ的 bundling,第一次重传的数据包采用 4个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling
13、 如权利要求 12所述的用户设备,其特征在于,所述第一次重传与初传 的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT为 12个 ΤΉ。
14、 如权利要求 9或 10所述的用户设备,其特征在于,
所述初传的数据包采用 4个 ΤΤΙ的 bundling,第一次重传的数据包采用 8个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。
15、 如权利要求 14所述的用户设备,其特征在于,
第一次重传与初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT 为 32个 TTI。
16、 如权利要求 9所述的用户设备,其特征在于,初传的数据包采用 4个 ΤΉ 的 bundling ,重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT 为 24个 TTI。
17、 一种频分双工 FDD***中接收上行半静态调度 SPS业务数据的方法,其 特征在于,所述方法包括:
接收初传的或重传的上行半静态调度 SPS业务的采用传输时间间隔 TTI绑定 bundling的数据包; 当检测到接收到所述数据包错误时,返回重传指示并接收重传的所述数据 包,其中 ,在保证传输的数据不碰撞的情况下,初传的数据包的 TTI bundling的 大小和重传数据包的 TTI bundling的大小不同和 /或初传与第一次重传的往返时 延 RTT与相邻两次重传的 RTT不同。
18、 如权利要求 17所述的方法,其特征在于,相邻两次传输的 RTT至少为 11 个 TTIo
19、 如权利要求 17或 18所述的方法,其特征在于,最多接收两次重传的所 述数据包。
20、 如权利要求 17或 18所述的方法,其特征在于,
所述初传的数据包采用 8个 ΤΤΙ的 bundling,第一次重传的数据包采用 4个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。
21、 如权利要求 20所述的方法,其特征在于,
第一次重传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT 为 12个 TTI。
22、 如权利要求 17或 18所述的方法,其特征在于,
所述初传的数据包采用 4个 ΤΤΙ的 bundling,第一次重传的数据包采用 8个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。
23、 如权利要求 22所述的方法,其特征在于,
第一次重传与初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT 为 32个 TTI。
24、 如权利要求 9所述的方法,其特征在于,初传的数据包采用 4个 ΤΉ的 bundling ,重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 TTIo
25、 一种基站,其特征在于,所述基站包括:
接收模块,用于接收用户设备初传的或重传的上行半静态调度 SPS业务的采 用传输时间间隔 TTI绑定 bundling的数据包;其中 ,在保证传输的数据不碰撞的 情况下,初传的数据包的 TTI bundling的大小和重传数据包的 TTI bundling的大小 不同和 /或初传与第一次重传的往返时延 RTT与相邻两次重传的 RTT不同; 处理模块,用于检测所述接收模块接收到的所述数据包, 当检测到所述数 据包错误时, 向发送模块发送重传指示;以及
发送模块,用于向所述用户设备发送所述重传指示。
26、 如权利要求 25所述的基站,其特征在于,相邻两次传输的 RTT至少为 11 个 ΤΤΙο
27、 如权利要求 25或 26所述的基站,其特征在于,最多接收两次重传的所 述数据包。
28、 如权利要求 25或 26所述的基站,其特征在于,
所述初传的数据包采用 8个 ΤΤΙ的 bundling,第一次重传的数据包采用 4个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。
29、 如权利要求 28所述的基站,其特征在于,
第一次重传与初传的所述 RTT为 16个 TTI ,第二次重传与第一次重传的 RTT 为 12个 TTI。
30、 如权利要求 25或 26所述的基站,其特征在于,
所述初传的数据包采用 4个 ΤΤΙ的 bundling,第一次重传的数据包采用 8个 TTI 的 bundling ,第二次重传的数据包采用 8个 TTI的 bundling。
31、 如权利要求 30所述的基站,其特征在于,
第一次重传与初传的所述 RTT为 12个 TTI ,第二次重传与第一次重传的 RTT 为 32个 TTI。
32、 如权利要求 25所述的基站,其特征在于,初传的数据包采用 4个 ΤΉ的 bundling ,重传的数据包采用 16个 TTI的 bundling ,以及重传与初传的所述 RTT为 24个 TTIo
PCT/CN2013/072560 2012-05-09 2013-03-14 传输或接收上行sps业务数据的方法和用户设备和基站 WO2013166883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210141497.XA CN103391175B (zh) 2012-05-09 2012-05-09 传输或接收上行sps业务数据的方法和用户设备和基站
CN201210141497.X 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013166883A1 true WO2013166883A1 (zh) 2013-11-14

Family

ID=49535340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072560 WO2013166883A1 (zh) 2012-05-09 2013-03-14 传输或接收上行sps业务数据的方法和用户设备和基站

Country Status (2)

Country Link
CN (1) CN103391175B (zh)
WO (1) WO2013166883A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427964A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 一种数据传输方法、设备及***
CN104378185B (zh) * 2014-12-04 2017-07-11 武汉虹信通信技术有限责任公司 一种用于lte***中子帧绑定的调度方法及装置
CN107135051B (zh) * 2016-02-29 2020-04-28 ***通信集团公司 一种上行数据重传的方法、设备和***
WO2018078547A1 (en) * 2016-10-26 2018-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Instant uplink access without always on feedback
CN108270527A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种混合自动重传请求harq传输方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677448A (zh) * 2008-09-19 2010-03-24 大唐移动通信设备有限公司 一种数据包的传输方法
CN101682488A (zh) * 2007-06-18 2010-03-24 Lm爱立信电话有限公司 通过发送时间间隔集束处理来增强上行链路传输
CN101754268A (zh) * 2008-12-04 2010-06-23 ***通信集团公司 用户上行数据调度方法及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682488A (zh) * 2007-06-18 2010-03-24 Lm爱立信电话有限公司 通过发送时间间隔集束处理来增强上行链路传输
CN101677448A (zh) * 2008-09-19 2010-03-24 大唐移动通信设备有限公司 一种数据包的传输方法
CN101754268A (zh) * 2008-12-04 2010-06-23 ***通信集团公司 用户上行数据调度方法及用户设备

Also Published As

Publication number Publication date
CN103391175B (zh) 2017-07-28
CN103391175A (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
JP7004338B2 (ja) Ttiバンドリングによるアップリンク送信の強化
JP5609535B2 (ja) 無線通信システムで使用される方法、無線通信システム、ユーザ装置、アンカーネットワーク局、補助ネットワーク局
US9025573B2 (en) Introducing a delay in the transmission of a nack for a packet received employing coordinated multi-point transmission
EP2915271B1 (en) Telecommunications apparatus and methods
EP2915272B1 (en) Telecommunications apparatus and methods
JP2015092676A (ja) 再送方法および再送装置
TW201010457A (en) Method and apparatus of handling TTI bundling retransmission
CN107113114B (zh) 无线通信***中的方法和节点
WO2013107408A1 (zh) 数据传输的方法及装置
EP2974107A1 (en) Method and apparatus to use more transmission opportunities in a distributed network topology with limited harq processes
WO2013044880A1 (zh) 一种数据传输方法和装置
WO2013166883A1 (zh) 传输或接收上行sps业务数据的方法和用户设备和基站
WO2009152673A1 (zh) 上行混合自动重传请求的实现方法和***
WO2013163895A1 (zh) 数据包传输方法及***、用户设备与基站
WO2014008818A1 (zh) 时分双工***中的上行数据发送及接收方法和设备
WO2019128937A1 (zh) 一种上行数据调度方法以及相关设备
WO2013170464A1 (zh) 传输或接收上行sps业务数据的方法及用户设备、基站
KR20090017398A (ko) Harq를 이용한 데이터 전송방법
WO2017132888A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2012106975A1 (zh) 一种正确/错误应答消息的发送方法及实现终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787499

Country of ref document: EP

Kind code of ref document: A1