WO2013166665A1 - 核壳结构的硅酸盐发光材料及其制备方法 - Google Patents

核壳结构的硅酸盐发光材料及其制备方法 Download PDF

Info

Publication number
WO2013166665A1
WO2013166665A1 PCT/CN2012/075209 CN2012075209W WO2013166665A1 WO 2013166665 A1 WO2013166665 A1 WO 2013166665A1 CN 2012075209 W CN2012075209 W CN 2012075209W WO 2013166665 A1 WO2013166665 A1 WO 2013166665A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
core
shell structure
silicate luminescent
precursor
Prior art date
Application number
PCT/CN2012/075209
Other languages
English (en)
French (fr)
Inventor
周明杰
王荣
陈贵堂
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to JP2015510598A priority Critical patent/JP5926449B2/ja
Priority to PCT/CN2012/075209 priority patent/WO2013166665A1/zh
Priority to CN201280072761.7A priority patent/CN104271706A/zh
Priority to US14/397,942 priority patent/US9416308B2/en
Priority to EP12876298.6A priority patent/EP2848675A4/en
Publication of WO2013166665A1 publication Critical patent/WO2013166665A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0433Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a reactive gas
    • B05D3/0453After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77742Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77922Silicates

Definitions

  • the invention relates to the technical field of luminescent materials, in particular to a silicate luminescent material having a core-shell structure and a preparation method thereof.
  • the conventional sulfide system phosphor mainly includes: blue powder ZnS: Ag, CI, SrGa 2 S 4 : Ce, green powder SrGa 2 S 4 : Eu, and red powder Y 2 0 2 S: Eu.
  • the matrix is unstable, and it is easy to decompose and generate gas, such as H 2 S, which not only poisons the cathode, but also causes the cathode to emit electrons, and the phosphor
  • gas such as H 2 S
  • M is one or two of Li, Na and K elements
  • Ln is one or two of Y, Sc, Lu, and La elements, and x has a value range of 0 ⁇ x ⁇ 0.6; RE is one, two or three of the Tb, Gd, Sm, Eu, Dy, Ce and Tm elements.
  • X has a value in the range of 0.01 x 0.3.
  • a method for preparing a core-shell structured silicate luminescent material comprises the following steps:
  • the nitrate solution of the corresponding RE and the nitrate solution of M are taken, mixed with a water bath at 50 ° C ⁇ 90 ° C and the pH is adjusted to 1 ⁇ 6, then Adding tetraethyl orthosilicate to obtain a mixed solution, wherein M is one or two of lanthanum, Na and K elements, and Ln is one or two of Y, Sc, Lu and La elements, and X is taken The value ranges from 0 ⁇ x ⁇ 0.6, and RE is one, two or three of Tb, Gd, Sm, Eu, Dy, Ce and Tm elements;
  • the precursor is pre-fired and ground, and the pre-burning and grinding operation is repeated once to four times, and then calcined in an air atmosphere or a reducing atmosphere to obtain a core-shell structured silicate luminescent material.
  • the formula is: MLn 1-x Si0 4 : xRE@Si0 2 , where @ indicates cladding.
  • the operation of removing impurities after centrifugation is:
  • the suspension of the impurity-containing SiO 2 microspheres was centrifuged at a rotational speed of 12,000 rpm to obtain a precipitate, followed by washing the precipitate three times with deionized water.
  • the nitrate solution of the corresponding RE and the nitrate solution of M are in the range of 0.1 M to 5 M.
  • X has a value in the range of 0.01 x 0.3.
  • the precursor is obtained by: drying the gel completely at 80 ° C to 150 ° C to obtain a precursor.
  • the pre-burning and polishing of the precursor is performed by: pre-sintering the precursor at 500 ° C to 800 ° C for 2 h to 7 h, cooling and grinding.
  • the calcination temperature in an air atmosphere or a reducing atmosphere is from 900 ° C to 1600 ° C for a period of from 2 h to 10 h.
  • the reducing atmosphere is a mixed atmosphere consisting of 95% by volume of N 2 and 5% of H 2 .
  • the core-shell structured silicate luminescent material has the general formula MLn 1-x Si0 4 :xRE@Si0 2 , and its components are all compounds with high chemical stability.
  • the matrix is stable under the bombardment of long-term electron beams. Not easy to break down.
  • FIG. 1 is a flow chart showing a method for preparing a core-shell structured silicate luminescent material according to an embodiment
  • FIG. 2 is a silicate luminescent material having a core-shell structure prepared in Example 5 and NaY. . 8 Si0 4 : 0.18Gd 3+ , 0.02Tb 3+ luminescent material comparison chart of luminescence spectra under 5kV electron beam excitation.
  • M is one or two of Li, Na and K elements
  • Ln is one or two of Y, Sc, Lu and La elements, and x has a value range of 0 ⁇ x ⁇ 0.6;
  • RE is one, two or three of the Tb, Gd, Sm, Eu, Dy, Ce and Tm elements.
  • the silicate luminescent material of such a core-shell structure is stable under a long-term electron beam bombardment and is not easily decomposed. Compared with the luminescent material without core-shell structure, it has higher luminous efficiency and can be better applied to field emission light source devices.
  • X may have a value in the range of 0.01 X 0.3.
  • a method for preparing a core-shell structured silicate luminescent material as shown in FIG. 1 includes the following steps: S10, according to the volume fraction, 10 parts to 20 parts of water, 15 parts to 50 parts of absolute ethanol and 1 part to 7 parts of ammonia water are mixed, and then 0.5 parts to 3 parts of the volume fraction are added under stirring. Ethyl orthosilicate, continue to stir the reaction for 2h ⁇ 6h, remove the impurities after centrifugation, and re-disperse the precipitate into 10 ⁇ 20 parts of absolute ethanol to obtain a suspension of Si0 2 microspheres.
  • the conditions of stirring can be provided by magnetic stirring.
  • a suspension of SiO 2 microspheres containing impurities is centrifuged at a rotational speed of 12,000 rpm to obtain a precipitate, and then the precipitate is washed three times with deionized water to remove residual ammonia water and residual TEOS to obtain SiO 2 microspheres.
  • the process of precipitation redispersion can be dispersed by ultrasound.
  • the concentration range of the corresponding RE nitrate solution and M nitrate solution is 0.1M ⁇ 5M.
  • X may have a value in the range of 0.01 x 0.3.
  • the order of S10 and S20 can be adjusted to each other without affecting the preparation method of the silicate luminescent material of the core-shell structure.
  • the gel is completely dried in an oven at 80 ° C to 150 ° C to obtain a precursor.
  • S40 pre-burning the precursor obtained in S30, grinding, repeating the pre-burning and grinding operation once to four times, followed by calcination in an air atmosphere or a reducing atmosphere, and cooling to obtain a core-shell structured silicate luminescent material.
  • Its molecular formula is: MLn 1-x Si0 4 : xRE@Si0 2 , where @ represents the coating.
  • the precursor is placed in a high temperature furnace and calcined at 500 ° C ⁇ 800 ° C for 2 h ⁇ 7 h, cooled to room temperature and then ground.
  • the process after calcination can be repeated once to four times.
  • the ground precursor is placed in a box type high temperature furnace or a tube furnace, in an air atmosphere or a reducing atmosphere,
  • the reducing atmosphere is a mixed atmosphere composed of 95% by volume of N 2 and 5% of H 2 .
  • the preparation method of the silicate luminescent material having such a core-shell structure is prepared by a sol-gel method to prepare a core-shell structured silicate powder having a small size and a uniform morphology without ball milling.
  • Most of the traditional commercial luminescent materials are prepared by high-temperature solid-phase method. The high-temperature reaction consumes a lot of energy and the particle distribution is uneven. The morphology of the powders is different. It is necessary to use a ball milling method to obtain luminescent materials with a particle size of 2-8 microns. This process reduces the luminous intensity of the luminescent material.
  • the preparation method of the silicate luminescent material having the core-shell structure, the thickness of the luminescent material shell layer can be controlled by the process, and the prepared core-shell luminescent material has a single and unique shape, and has better luminescence performance than the conventional commercial luminescent material. .
  • NaY was prepared by a sol-gel method. 99 Si0 4 : 0.01Tb 3+ @SiO 2 .
  • the suspension of the above Si0 2 microspheres was added with stirring at 50 ° C in a water bath, and stirred well until a gel was obtained. Put the gel obtained The oven was completely dried in an oven at 80 ° C to obtain a precursor.
  • the precursor was placed in a high temperature furnace, pre-fired at 500 ° C for 7 h, cooled to room temperature, and ground; then, placed in a tube furnace at 900 ° C, 95% N 2 + 5% H 2 Calcination in a reducing atmosphere for 10 h, natural cooling, and the desired core-shell luminescent material is obtained after removal.
  • Sol - gel method LiLa 0 7 SiO 4:. 0.3Ce 3+ @SiO 2.
  • Si0 2 microspheres 20 mL of water was placed in a beaker, then 50 mL of absolute ethanol and 7 mL of ammonia water were added in sequence, magnetically stirred evenly, and then 3 mL of orthosilicate was added dropwise under magnetic stirring.
  • TEOS TEOS
  • reaction was stirred for 2 h, to give a suspension containing Si0 2 impurities microspheres; the resulting impurity-containing Si0 2 suspension of microspheres was centrifuged 12000rpm rotation speed of deionized water Three times, to remove the remaining ammonia and residual TEOS, the resulting precipitate is the Si0 2 microspheres.
  • the obtained Si0 2 microspheres were redispersed by ultrasonic dispersion into 20 mL of absolute ethanol to obtain a suspension of Si0 2 microspheres.
  • LiLa 0 . 7 SiO 4 0.3Ce 3+ @SiO 2 core-shell luminescent material: According to the chemical formula, accurately weigh 3.5ml 2mol/L La(N0 3 ) 3 , 1.5ml 2mol/L Ce ( N0 3 ) 3 and 5 ml of a 2 mol/L LiN0 3 solution were placed in a beaker, heated in a water bath at 90 ° C, and adjusted to pH 6 with aqueous ammonia and dilute nitric acid. Depending on the amount of silicon source required, 2.3 ml of tetraethyl orthosilicate (TEOS) was added dropwise to the above solution.
  • TEOS tetraethyl orthosilicate
  • Si0 2 microspheres 15m L of water was placed in a beaker, then 20m L of absolute ethanol and 3mL of ammonia water were added in sequence, magnetically stirred evenly, and then 1.5 mL of orthosilicate was added dropwise under magnetic stirring. Ethyl ester (TEOS), after the completion of the dropwise addition, reaction was stirred for 3h, to give a suspension containing Si0 2 impurities microspheres; the resulting impurity-containing Si0 2 suspension of microspheres was centrifuged 12000rpm rotation speed of deionized The water was washed three times to remove the remaining ammonia water and residual TEOS, and the resulting precipitate was SiO 2 microspheres. The obtained SiO 2 microspheres were redispersed by ultrasonic dispersion into 15 mL of absolute ethanol to obtain a suspension of SiO 2 microspheres.
  • TEOS thyl ester
  • TEOS tetraethyl orthosilicate
  • Si0 2 microspheres Place 15m L of water in a beaker, then add 30m L of absolute ethanol and 5mL of ammonia water in sequence, stir evenly, then add 2 mL of orthosilicate in a magnetic stirring environment. Ethyl acetate (TEOS), after completion of the dropwise addition, the reaction was further stirred for 4 hours to obtain a suspension of SiO 2 microspheres containing impurities.
  • the obtained SiO 2 suspension containing impurities was centrifuged at 12,000 rpm and washed three times with deionized water to remove residual ammonia and residual TEOS, and the obtained precipitate was SiO 2 microspheres.
  • the obtained Si0 2 microspheres were redispersed by ultrasonic dispersion into 20 mL of absolute ethanol to obtain a suspension of Si0 2 microspheres.
  • TEOS tetraethyl orthosilicate
  • NaY 0 . 8 SiO 4 : 0.18 Gd 3+ , 0.02 Tb 3+ @SiO 2 was prepared by a sol-gel method.
  • Si0 2 microspheres 15m L of water was placed in a beaker, then 30m L of absolute ethanol and 5mL of ammonia water were added in sequence, magnetically stirred evenly, and then 1.5 mL of orthosilicate was added dropwise under magnetic stirring. Ethyl acetate (TEOS), after completion of the dropwise addition, the reaction was further stirred for 4 hours to obtain a suspension of SiO 2 microspheres containing impurities. The obtained SiO 2 suspension containing impurities was centrifuged at 12,000 rpm and washed three times with deionized water to remove residual ammonia and residual TEOS, and the obtained precipitate was SiO 2 microspheres. The obtained SiO 2 microspheres were redispersed by ultrasonic dispersion into 15 mL of absolute ethanol to obtain a suspension of SiO 2 microspheres.
  • TEOS thyl acetate
  • TEOS tetraethyl orthosilicate
  • 0.18Gd 3+, 0.02Tb 3+ luminescent materials Si0 2 without addition of a suspension of microspheres, 4 0 8 SiO NaY prepared under the same conditions. Curves a and b in Fig. 1 are NaY prepared in this example, respectively. 8 Si0 4 : 0.18Gd 3+ , 0.02Tb 3+ @SiO 2 core-shell luminescent material and NaY. . 8 Si0 4 : 0.18Gd 3+ , 0.02Tb 3+ luminescent material comparison chart of luminescence spectra under 5kV electron beam excitation.
  • NaLa was prepared by a sol-gel method. 95 Si0 4 : 0.05Dy 3+ @SiO 2 .
  • Si0 2 microspheres Place 15m L of water in a beaker, then add 30m L of absolute ethanol and 5mL of ammonia water in sequence, stir evenly, then add 2 mL of orthosilicate in a magnetic stirring environment. Ethyl acetate (TEOS), after completion of the dropwise addition, the reaction was further stirred for 4 hours to obtain a suspension of SiO 2 microspheres containing impurities.
  • the obtained SiO 2 suspension containing impurities was centrifuged at 12,000 rpm and washed three times with deionized water to remove residual ammonia and residual TEOS, and the obtained precipitate was SiO 2 microspheres.
  • the obtained Si0 2 microspheres were redispersed by ultrasonic dispersion into 20 mL of absolute ethanol to obtain a suspension of Si0 2 microspheres.
  • the above-mentioned impurity-free SiO 2 suspension was added while stirring in a water bath at 80 ° C, and stirred well until a gel was obtained.
  • the obtained gel was completely dried in an oven at 100 ° C to obtain a precursor.
  • the precursor is placed in a high temperature furnace, pre-fired at 650 ° C for 5 h, cooled to room temperature, and ground; then, placed in a box-type high temperature furnace or tube furnace at 950 ° C in an air atmosphere Calcination for 5 h, natural cooling, and the desired core-shell luminescent material is obtained after removal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种核壳结构的硅酸盐发光材料及其制备方法,该发光材料的分子通式为:MLn1-xSiO4:xRE@SiO2;其中,@表示包覆;M为Li、Na和K元素中的一种或两种,Ln为Y、Sc、Lu和La元素中的一种或两种,x的取值范围为0≤x≤0.6;RE为Tb、Gd、Sm、Eu、Dy、Ce和Tm元素中的一种、两种或三种,该发光材料的成分均为化学稳定性较高的化学物,在长期电子束的轰击下,基质温度,不易分解。

Description

发明名称: 核壳结构的硅酸盐发光材料及其制备方法 【技术领域】
本发明涉及发光材料技术领域, 特别是涉及核壳结构的硅酸盐发光材料及 其制备方法。
【背景技术】
近年来场发射器件由于其运行电压低, 功耗小, 不需偏转线圏, 无 X射线 辐射, 抗辐射和磁场干扰等优点而备受关注。 其中, 制备高性能的发光材料是 制造优良性能场发射器件的关键因素之一。
传统的硫化物体系荧光粉主要包括: 蓝粉 ZnS:Ag,CI、 SrGa2S4:Ce , 绿粉 SrGa2S4:Eu以及红粉 Y202S:Eu。
对于硫化物系列荧光粉来讲, 容易受潮, 在长期电子束的轰击下, 基质不 稳定, 容易分解产生气体, 如 H2S, 不仅毒化阴极, 造成阴极发射电子能力的下 降, 而且造成荧光粉本身发光效率的下降, 缩短其寿命。
【发明内容】
基于此, 针对传统的硫化物系列荧光粉在长期电子束的轰击下, 基质不稳 定, 容易分解的问题, 有必要提供一种在长期电子束的轰击下, 基质稳定, 不 容易分解的硅酸盐发光材料及其制备方法。
一种核壳结构的硅酸盐发光材料, 分子通式为:
MLni-xSi04:x E@Si02
其中, @表示包覆;
M为 Li、 Na和 K元素中的一种或两种;
Ln为 Y、 Sc、 Lu和 La元素中的一种或两种, x的取值范围为 0<x≤0.6; RE为 Tb、 Gd、 Sm、 Eu、 Dy、 Ce和 Tm元素中的一种、 两种或三种。
在一个实施例中, X的取值范围为 0.01 x 0.3。
一种核壳结构的硅酸盐发光材料的制备方法, 包括如下步骤:
按照体积分数将 10份~20份的水、 15份~50份的无水乙醇和 1份~7份氨水 混匀, 接着在搅拌的条件下按照体积分数滴加 0.5份~3份的正硅酸乙酯, 继续 搅拌反应 2h~6h , 离心分离后除杂, 取沉淀重新分散到体积分数 10份~20份的 无水乙醇中, 得到 Si02 i球的悬浮液;
按照化学式 MLn1-xSi04:xRE的计量比, 量取对应的 RE的硝酸盐溶液和 M的 硝酸盐溶液, 混勾后 50°C~90°C水浴并调节 pH为 1~6, 接着滴加正硅酸乙酯, 得到混合溶液, 其中 M为 ϋ、 Na和 K元素中的一种或两种, Ln为 Y、 Sc、 Lu和 La元素中的一种或两种, X的取值范围为 0<x≤0.6, RE为 Tb、 Gd、 Sm、 Eu、 Dy、 Ce和 Tm元素中的一种、 两种或三种;
按照化学式 MLn1-xSi04:xRE@Si02的计量比,在 50°C~90°C水浴下向所述混合 溶液中加入所述 Si02微球的悬浮液, 充分搅拌直至得到凝胶, 将所述凝胶干燥 后, 得到前驱物;
将所述前驱物预烧后研磨, 重复该预烧后研磨的操作 1次~4次, 接着在空 气气氛或还原气氛下煅烧, 冷却后得到核壳结构的硅酸盐发光材料, 其分子通 式为: MLn1-xSi04:xRE@Si02, 其中 @表示包覆。
在一个实施例中, 所述离心分离后除杂的操作为:
将所述含有杂质的 Si02微球的悬浮液经转速 12000rpm离心分离取沉淀,接 着用去离子水洗涤沉淀三次。
在一个实施例中,所述对应的 RE的硝酸盐溶液和 M的硝酸盐溶液的浓度范 围均为 0.1M~5M。
在一个实施例中, X的取值范围为 0.01 x 0.3。
在一个实施例中, 所述将所述凝胶干燥后, 得到前驱物的操作为: 将所述 凝胶在 80°C ~150°C下完全干燥, 得到前驱物。
在一个实施例中, 所述将所述前驱物预烧后研磨的操作为: 将所述前驱物 在 500°C ~800°C下预烧 2h~7h, 冷却后研磨。 在一个实施例中, 所述在空气气氛或还原气氛下煅烧的温度为 900 °C -1600 °C , 时间为 2h~10h。
在一个实施例中, 所述还原气氛为按照体积分数 95%的 N2和 5%的 H2组成 的混合气氛。
这种核壳结构的硅酸盐发光材料分子通式为 MLn1-xSi04:xRE@Si02,其成分都 为化学稳定性较高的化合物, 在长期电子束的轰击下, 基质稳定, 不容易分解。
【附图说明】
图 1为一实施方式的核壳结构的硅酸盐发光材料的制备方法的流程图; 图 2为实施例 5制备的核壳结构的硅酸盐发光材料与 NaY。.8Si04: 0.18Gd3+, 0.02Tb3+发光材料在 5kV电子束激发下的发光光谱对比图。
【具体实施方式】
为了便于理解本发明, 下面将参照相关附图对本发明进行更全面的描述。 附图中给出了本发明的较佳实施例。 但是, 本发明可以以许多不同的形式来实 现, 并不限于本文所描述的实施例。 相反地, 提供这些实施例的目的是使对本 发明的公开内容的理解更加透彻全面。
一实施方式的核壳结构的硅酸盐发光材料, 分子通式为:
MLni-xSi04:x E@Si02
其中, @表示包覆;
M为 Li、 Na和 K元素中的一种或两种;
Ln为 Y、 Sc、 Lu和 La元素中的一种或两种, x的取值范围为 0<x≤0.6;
RE为 Tb、 Gd、 Sm、 Eu、 Dy、 Ce和 Tm元素中的一种、 两种或三种。
这种核壳结构的硅酸盐发光材料, 在长期电子束的轰击下, 基质稳定, 不 容易分解。 与无核壳结构的发光材料相比, 具有较高的发光效率, 可以较好地 应用于场发射光源器件中。
在优选的实施例中, X的取值范围可以为 0.01 X 0.3。
如图 1所示的一种核壳结构的硅酸盐发光材料的制备方法, 包括如下步骤: S10、 按照体积分数将 10份~20份的水、 15份~50份的无水乙醇和 1份~7 份氨水混匀, 接着在搅拌的条件下按照体积分数滴加 0.5份~3份的正硅酸乙酯, 继续搅拌反应 2h~6h, 离心分离后除杂, 取沉淀重新分散到体积分数 10份~20 份的无水乙醇中, 得到 Si02微球的悬浮液。
搅拌的条件可以通过磁力搅拌提供。
本实施方式中,将含有杂质的 Si02微球的悬浮液经转速 12000rpm离心分离 取沉淀, 接着用去离子水洗涤沉淀三次, 以去除剩余的氨水和残留的 TEOS, 得 到 Si02微球。
沉淀重新分散的过程可以采用超声分散。
S20、 按照化学式 MLn1-xSi04:xRE的计量比, 量取对应的 RE的硝酸盐溶液和 M的硝酸盐溶液, 混匀后 50°C ~90°C水浴并调节 pH为 1~6, 接着滴加正硅酸乙 酯, 得到混合溶液, 其中 1\ 1为 Na和 K元素中的一种或两种, Ln为 Y、 Sc、 Lu和 La元素中的一种或两种, X的取值范围为 0<x≤0.6, RE为 Tb、 Gd、 Sm、 Eu、 Dy、 Ce和 Tm元素中的一种、 两种或三种。
对应的 RE的硝酸盐溶液和 M的硝酸盐溶液的浓度范围均为 0.1M~5M。 在一个实施例中, X的取值范围可以为 0.01 x 0.3。
本实施方式中, S10和 S20的次序可以相互调整, 不会影响该核壳结构的硅 酸盐发光材料的制备方法。
S30、按照化学式 MLn1-xSi04:xRE@Si02的计量比,在 50°C~90°C水浴下向 S20 得到的混合溶液中加入 S10得到的 Si02微球的悬浮液, 充分搅拌直至得到凝胶, 将凝胶干燥后, 得到前驱物。
MLn1-xSi04:x E和 Si02按照摩尔比为 1: 1混合。
本实施方式中, 将凝胶在 80°C~150°C的烘箱中下完全干燥, 得到前驱物。 S40、将 S30得到的前驱物预烧后研磨,重复该预烧后研磨的操作 1次~4次, 接着在空气气氛或还原气氛下煅烧, 冷却后得到核壳结构的硅酸盐发光材料, 其分子通式为: MLn1-xSi04:xRE@Si02, 其中 @表示包覆。
前驱物置于高温炉中,在 500°C~800°C下预烧 2h~7h,冷却后至室温后研磨。 为增加 MLn1-xSi04: xRE的包覆厚度, 可以预烧后的过程重复进行 1次~4次。 研磨后的前驱物置于箱式高温炉中或管式炉中, 在空气气氛或还原气氛下,
900°C ~1600°C下煅烧 2h~10h , 得到所需的核壳结构的硅酸盐发光材料。
本实施方式中, 还原气氛为按照体积分数 95%的 N2和 5%的 H2组成的混合 气氛
这种核壳结构的硅酸盐发光材料的制备方法通过溶胶凝胶法, 制备出尺寸 小、 形貌均匀, 不需球磨的核壳结构硅酸盐粉体。 传统的商用发光材料大多是 用高温固相法制备的, 高温反应耗能多且颗粒分布不均, 粉粒形貌各异, 需用 球磨的方法以获得 2~8微米粒径的发光材料, 此过程会降低发光材料的发光强 度。 这种核壳结构的硅酸盐发光材料的制备方法, 发光材料壳层的厚度可以通 过工艺控制, 制备的核壳发光材料形貌均勾且单一, 与传统的商用发光材料相 比发光性能强。 下面为具体实施例部分。 实施例 1
溶胶凝胶法制备 NaY。.99Si04: 0.01Tb3+@SiO2
1 ) Si02微球的制备: 将 10 mL水置于烧杯中, 然后依次加入 15 mL的无水 乙醇和 lmL的氨水, 磁力搅拌均匀, 然后在磁力搅拌的环境下滴加 0.5 mL正硅 酸乙酯(TEOS ), 滴加完成后, 继续搅拌反应 6h, 得到含有杂质的 Si02微球的 悬浮液。 将得到的含有杂质的 Si02微球悬浮液经转速为 12000rpm的离心分离、 去离子水洗涤三次, 以去除剩余的氨水和残留的 TEOS, 得到的沉淀即为 Si02微 球。 将得到的 Si02微球经超声分散重新分散到 10mL的无水乙醇中, 得到 Si02 微球的悬浮液。
2 ) NaY。.99Si04: 0.01Tb3+@SiO2核壳发光材料的制备: 根据化学式, 准确称取 4.95ml 2mol/L的 Y(N03)3溶液、 1ml O.lmol/L的 Tb(N03)3溶液和 5ml 2mol/L NaN03 溶液置于烧杯中, 50°C水浴加热, 并用氨水和稀硝酸调节 pH为 1。 根据所需硅 源的量, 取 2.3ml的正硅酸乙酯(TEOS )滴加入到上述溶液中。 50°C的水浴搅拌 下, 加入上述 Si02微球的悬浮液, 充分搅拌直至得到凝胶。 将得到的凝胶放到 80°C的烘箱中完全干燥, 得到前驱物。 将前驱体置于高温炉中, 在 500°C下预烧 7h, 冷却至室温, 研磨; 然后, 将其置于管式炉中, 在 900°C下, 95%N2+5%H2 还原气氛中煅烧 10h, 自然冷却, 取出后即得所需核壳发光材料。 实施例 2
溶胶凝胶法制备 LiLa0.7SiO4: 0.3Ce3+@SiO2
1 ) Si02微球的制备: 将 20mL水置于烧杯中, 然后依次加入 50mL的无水乙 醇和 7mL的氨水, 磁力搅拌均匀, 然后在磁力搅拌的环境下滴加 3mL正硅酸乙 酯 (TEOS ), 滴加完成后, 继续搅拌反应 2 h , 得到含有杂质的 Si02微球的悬浮 液; 将得到的含有杂质的 Si02微球悬浮液经转速为 12000rpm的离心分离、去离 子水洗涤三次, 以去除剩余的氨水和残留的 TEOS, 得到的沉淀即为 Si02微球。 将得到的 Si02微球经超声分散重新分散到 20mL的无水乙醇中,得到 Si02微球的 悬浮液。
2 ) LiLa0.7SiO4: 0.3Ce3+@SiO2核壳发光材料的制备: 根据化学式, 准确称取 3.5ml 2mol/L的 La(N03)3、 1.5ml 2mol/L的 Ce(N03)3和 5ml 2mol/L LiN03溶液置于 烧杯中,在 90°C水浴加热,并用氨水和稀硝酸调节 PH为 6。根据所需硅源的量, 取 2.3ml的正硅酸乙酯(TEOS )滴加入到上述溶液中。 在 90°C的水浴中搅拌下, 加入上述 Si02微球的悬浮液, 充分搅拌直至得到凝胶。将得到的凝胶放到 150°C 的烘箱中完全干燥, 得到前驱物。 将前驱体置于高温炉中, 在 800°C下预烧 2h , 冷却至室温, 研磨, 为增加 ULa。.7Si04: 0.3Ce3+@SiO2的包覆厚度, 可以将上述过 程重复进行 4次。 然后, 将其置于管式炉中, 在 1600 V下, 95%N2+5%H2还原 气氛中煅烧 2h , 自然冷却, 取出后即得所需核壳发光材料。 实施例 3
溶胶凝胶法制备 KLu0.4SiO4: 0.5Gd3+, 0.05Eu3+, 0.05Tm3+@SiO2
1 ) Si02微球的制备: 将 15m L水置于烧杯中, 然后依次加入 20m L的无水乙 醇和 3mL的氨水, 磁力搅拌均匀, 然后在磁力搅拌的环境下滴加 1.5 mL正硅酸 乙酯 (TEOS ), 滴加完成后, 继续搅拌反应 3h, 得到含有杂质的 Si02微球的悬 浮液; 将得到的含有杂质的 Si02微球悬浮液经转速为 12000rpm的离心分离、去 离子水洗涤三次, 以去除剩余的氨水和残留的 TEOS,得到的沉淀即为 Si02微球。 将得到的 Si02微球经超声分散重新分散到 15mL的无水乙醇中,得到 Si02微球的 悬浮液。
2 ) KLu0.4SiO4: 0.5Gd3+, 0.05Eu3+, 0.05Tm3+@SiO2核壳发光材料的制备: 根据化 学式, 准确称取 2ml 2mol/L的 Lu(N03)3、 2.5ml 2mol/L的 Gd(N03)3、 lml 0.5mol/L 的 Eu(N03)3、 lml 0.5mol/L的 Tm(N03)3和 5ml 2mol/L KN03溶液置于烧杯中, 在
70°C水浴加热, 并用氨水和稀硝酸调节 PH为 3; 根据所需硅源的量, 取 2.3ml 的正硅酸乙酯(TEOS ) 滴加入到上述溶液中; 在 80°C的水浴中搅拌下, 加入上 述不含杂质的 Si02悬浮液, 充分搅拌直至得到凝胶;将得到的凝胶放到 100°C的 烘箱中完全干燥, 得到前驱物; 将前驱体置于高温炉中, 在 600°C下预烧 4h , 冷却至室温, 研磨, 为增加 KLu。.4Si04: 0.5Gd3+, 0.05Eu3+, 0.05Tm3+@SiO2的包覆厚 度, 可以将上述过程重复进行 2次; 然后, 将其置于箱式高温炉中或管式炉中, 在 1200 V下, 空气气氛中煅烧 3h, 自然冷却, 取出后即得所需核壳发光材料。 实施例 4
溶胶凝胶法制备 Na0.9Lio.iYo.7Sco.iSi04: 0.15Gd3+, 0.05Sm3+@SiO2
1 ) Si02微球的制备: 将 15m L水置于烧杯中, 然后依次加入 30m L的无水乙 醇和 5mL的氨水, 磁力搅拌均匀, 然后在磁力搅拌的环境下滴加 2 mL正硅酸乙 酯(TEOS ), 滴加完成后, 继续搅拌反应 4h, 得到含有杂质的 Si02微球的悬浮 液。将得到的含有杂质的 Si02微球悬浮液经转速为 12000rpm的离心分离、去离 子水洗涤三次, 以去除剩余的氨水和残留的 TEOS, 得到的沉淀即为 Si02微球。 将得到的 Si02微球经超声分散重新分散到 20mL的无水乙醇中,得到 Si02微球的 悬浮液。
2 ) Na0.9Lio.iYo.7SCo.iSi04: 0.15Gd3+, 0.05Sm3+@SiO2核壳发光材料的制备: 根据 化学式,准确称取 3.5ml 2mol/L的 Y(N03)3、 0.5ml 2mol/L的 Sc(N03)3、3ml 0.5mol/L 的 Gd(N03)3、 lml 0.5mol/L的 Sm(N03)3、 4.5ml 2mol/L NaN03、 0.5ml 2mol/L LiN03 溶液置于烧杯中, 在 80°C水浴加热, 并用氨水和稀硝酸调节 PH为 2。 根据所需 硅源的量, 取 2.3ml的正硅酸乙酯 (TEOS ) 滴加入到上述溶液中。 在 80°C的水 浴中搅拌下, 加入上述不含杂质的 Si02悬浮液, 充分搅拌直至得到凝胶; 将得 到的凝胶放到 100 °C的烘箱中完全干燥, 得到前驱物。 将前驱体置于高温炉中, 在 700°C下预烧 4h , 冷却至室温, 研磨。 然后, 将其置于箱式高温炉中或管式 炉中, 在 1100 °C下, 空气气氛中煅烧 4h , 自然冷却, 取出后即得所需核壳发 光材料。 实施例 5
溶胶凝胶法制备 NaY0.8SiO4: 0.18Gd3+, 0.02Tb3+@SiO2
1 ) Si02微球的制备: 将 15m L水置于烧杯中, 然后依次加入 30m L的无水乙 醇和 5mL的氨水, 磁力搅拌均匀, 然后在磁力搅拌的环境下滴加 1.5 mL正硅酸 乙酯 (TEOS ), 滴加完成后, 继续搅拌反应 4h, 得到含有杂质的 Si02微球的悬 浮液。将得到的含有杂质的 Si02微球悬浮液经转速为 12000rpm的离心分离、去 离子水洗涤三次, 以去除剩余的氨水和残留的 TEOS,得到的沉淀即为 Si02微球。 将得到的 Si02微球经超声分散重新分散到 15mL的无水乙醇中,得到 Si02微球的 悬浮液。
2 ) NaY0.8SiO4: 0.18Gd3+, 0.02Tb3+@SiO2核壳发光材料的制备: 根据化学式, 准确称取 4ml 2mol/L的 Y(N03)3、 3.6ml 0.5mol/L的 Gd(N03)3、 0.4ml 0.5mol/L的 Tb(N03)3、 5ml 2mol/L NaN03溶液置于烧杯中, 在 80°C水浴加热, 并用氨水和稀 硝酸调节 PH为 3。 根据所需硅源的量, 取 2.3ml的正硅酸乙酯(TEOS ) 滴加入 到上述溶液中。 在 80°C的水浴中搅拌下, 加入上述不含杂质的 Si02悬浮液, 充 分搅拌直至得到凝胶。将得到的凝胶放到 120°C的烘箱中完全干燥,得到前驱物。 将前驱体置于高温炉中, 在 600°C下预烧 5h , 冷却至室温, 研磨。 然后, 将其 置于箱式高温炉中或管式炉中,在 1100 °C下, 95%N2+5%H2还原气氛中煅烧 4h , 自然冷却, 取出后即得所需 NaY。.8Si04: 0.18Gd3+, 0.02Tb3+@SiO2核壳发光材料。
不加入 Si02微球的悬浮液, 同样的条件下制备 NaY0.8SiO4: 0.18Gd3+, 0.02Tb3+ 发光材料。 图 1中曲线 a和 b分别是本实施例制备的 NaY。.8Si04: 0.18Gd3+, 0.02Tb3+@SiO2 核壳发光材料与 NaY。.8Si04: 0.18Gd3+, 0.02Tb3+发光材料在 5kV电子束激发下的发 光光谱对比图。
由图 1可以看出, 与 NaY。.8Si04: 0.18Gd3+, 0.02Tb3+发光材料相比, NaY。.8Si04: 0.18Gd3+, 0.02Tb3+@SiO2核壳发光材料发光强度更高, 提高了 33%。 实施例 6
溶胶凝胶法制备 NaLa。.95Si04: 0.05Dy3+@SiO2
1 ) Si02微球的制备: 将 15m L水置于烧杯中, 然后依次加入 30m L的无水乙 醇和 5mL的氨水, 磁力搅拌均匀, 然后在磁力搅拌的环境下滴加 2 mL正硅酸乙 酯(TEOS ), 滴加完成后, 继续搅拌反应 4h, 得到含有杂质的 Si02微球的悬浮 液。将得到的含有杂质的 Si02微球悬浮液经转速为 12000rpm的离心分离、去离 子水洗涤三次, 以去除剩余的氨水和残留的 TEOS, 得到的沉淀即为 Si02微球。 将得到的 Si02微球经超声分散重新分散到 20mL的无水乙醇中,得到 Si02微球的 悬浮液。
2 ) NaLa。.95Si04: 0.05Dy3+@SiO2核壳发光材料的制备: 根据化学式, 准确称 取 4.75ml 2mol/L的 La(N03)3、 lml 0.5mol/L的 Dy(N03)3、 5.0ml 2mol/L NaN03溶 液置于烧杯中, 在 80°C水浴加热, 并用氨水和稀硝酸调节 PH为 5。 根据所需硅 源的量, 取 2.3ml的正硅酸乙酯(TEOS ) 滴加入到上述溶液中。 在 80 °C的水浴 中搅拌下, 加入上述不含杂质的 Si02悬浮液, 充分搅拌直至得到凝胶。 将得到 的凝胶放到 100°C的烘箱中完全干燥, 得到前驱物。 将前驱体置于高温炉中, 在 650°C下预烧 5h,冷却至室温,研磨; 然后,将其置于箱式高温炉中或管式炉中, 在 950 °C下, 空气气氛中煅烧 5h, 自然冷却, 取出后即得所需核壳发光材料。 以上所述实施例仅表达了本发明的一种或几种实施方式, 其描述较为具体和详 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本 领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变 形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以 所附权利要求为准。

Claims

权利要求书
1、 一种核壳结构的硅酸盐发光材料, 其特征在于, 分子通式为:
MLni-xSi04:x E@Si02
其中, @表示包覆;
M为 Li、 Na和 K元素中的一种或两种;
Ln为 Y、 Sc、 Lu和 La元素中的一种或两种, x的取值范围为 0<x≤0.6;
RE为 Tb、 Gd、 Sm、 Eu、 Dy、 Ce和 Tm元素中的一种、 两种或三种。
2、 根据权利要求 1所述的核壳结构的硅酸盐发光材料, 其特征在于, X的 取值范围为 0.01 < x < 0.3o
3、 一种核壳结构的硅酸盐发光材料的制备方法, 其特征在于, 包括如下步 骤:
按照体积分数将 10份~20份的水、 15份~50份的无水乙醇和 1份~7份氨水 混匀, 接着在搅拌的条件下按照体积分数滴加 0.5份~3份的正硅酸乙酯, 继续 搅拌反应 2h~6h , 离心分离后除杂, 取沉淀重新分散到体积分数 10份~20份的 无水乙醇中, 得到 Si02 i球的悬浮液;
按照化学式 MLn1-xSi04:xRE的计量比, 量取对应的 RE的硝酸盐溶液和 M的 硝酸盐溶液, 混勾后 50°C~90°C水浴并调节 pH为 1~6, 接着滴加正硅酸乙酯, 得到混合溶液, 其中 M为 ϋ、 Na和 K元素中的一种或两种, Ln为 Y、 Sc、 Lu和 La元素中的一种或两种, X的取值范围为 0<x≤0.6, RE为 Tb、 Gd、 Sm、 Eu、 Dy、 Ce和 Tm元素中的一种、 两种或三种;
按照化学式 MLn1-xSi04:xRE@Si02的计量比,在 50°C~90°C水浴下向所述混合 溶液中加入所述 Si02微球的悬浮液, 充分搅拌直至得到凝胶, 将所述凝胶干燥 后, 得到前驱物;
将所述前驱物预烧后研磨, 重复该预烧后研磨的操作 1次~4次, 接着在空 气气氛或还原气氛下煅烧, 冷却后得到核壳结构的硅酸盐发光材料, 其分子通 式为: MLn1-xSi04:xRE@Si02, 其中 @表示包覆。
4、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特征 在于, 所述离心分离后除杂的操作为:
将所述含有杂质的 Si02微球的悬浮液经转速 12000rpm离心分离取沉淀,接 着用去离子水洗涤沉淀三次。
5、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特征 在于, 所述对应的 RE 的硝酸盐溶液和 M 的硝酸盐溶液的浓度范围均为 0·1Μ~5Μ。
6、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特征 在于, X的取值范围为 0.01 χ 0.3。
7、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特征 在于,所述将所述凝胶干燥后,得到前驱物的操作为:将所述凝胶在 80°C~150°C 下完全干燥, 得到前驱物。
8、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特征 在于, 所述将所述前驱物预烧后研磨的操作为: 将所述前驱物在 500°C ~800°C下 预烧 2h~7h , 冷却后研磨。
9、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特征 在于, 所述在空气气氛或还原气氛下煅烧的温度为 900 °C ~1600 °C , 时间为 2h~10h。
10、 根据权利要求 3所述的核壳结构的硅酸盐发光材料的制备方法, 其特 征在于, 所述还原气氛为按照体积分数 95%的 N2和 5%的 H2组成的混合气氛。
PCT/CN2012/075209 2012-05-08 2012-05-08 核壳结构的硅酸盐发光材料及其制备方法 WO2013166665A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015510598A JP5926449B2 (ja) 2012-05-08 2012-05-08 コア−シェル構造のケイ酸塩発光材料およびその製造方法
PCT/CN2012/075209 WO2013166665A1 (zh) 2012-05-08 2012-05-08 核壳结构的硅酸盐发光材料及其制备方法
CN201280072761.7A CN104271706A (zh) 2012-05-08 2012-05-08 核壳结构的硅酸盐发光材料及其制备方法
US14/397,942 US9416308B2 (en) 2012-05-08 2012-05-08 Core-shell structured silicate luminescent material and preparation method therefor
EP12876298.6A EP2848675A4 (en) 2012-05-08 2012-05-08 SILICATE LUMINESCENT MATERIAL WITH A CUR-STRUCTURE STRUCTURE AND PREPARATION METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075209 WO2013166665A1 (zh) 2012-05-08 2012-05-08 核壳结构的硅酸盐发光材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2013166665A1 true WO2013166665A1 (zh) 2013-11-14

Family

ID=49550071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075209 WO2013166665A1 (zh) 2012-05-08 2012-05-08 核壳结构的硅酸盐发光材料及其制备方法

Country Status (5)

Country Link
US (1) US9416308B2 (zh)
EP (1) EP2848675A4 (zh)
JP (1) JP5926449B2 (zh)
CN (1) CN104271706A (zh)
WO (1) WO2013166665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285955A (zh) * 2023-03-22 2023-06-23 成都理工大学 一种用于湿热环境下的led荧光粉

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590620A (zh) * 2016-11-22 2017-04-26 青岛海信电器股份有限公司 一种荧光粉及其制备方法、荧光粉膜片、荧光粉模组结构
KR102646578B1 (ko) * 2021-07-20 2024-03-11 한국조폐공사 적외선 영역 발광 특성을 가지는 형광체 조성물 및 이의 제조 방법
CN114514955B (zh) * 2022-02-14 2023-05-23 浙江汇能生物股份有限公司 一种复合包被二甲酸钾微囊及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1626615A (zh) * 2003-11-12 2005-06-15 日亚化学工业株式会社 绿色发光钇硅酸盐荧光体以及使用该荧光体的阴极射线管
CN101033398A (zh) * 2007-03-29 2007-09-12 兰州大学 一种真空紫外光激发的绿色硅酸盐发光材料
CN102191033A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 一种核壳结构荧光材料及其制备方法
CN102191055A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 核壳结构硅酸盐发光材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943400A (en) 1971-07-24 1976-03-09 U.S. Philips Corporation Cathode-ray tube provided with a luminescent silicate
BE786655A (fr) * 1971-07-24 1973-01-24 Philips Nv Tube a rayons cathodiques muni d'un silicate luminescent
JPS512313A (ja) 1974-06-24 1976-01-09 Nippon Telegraph & Telephone Eiseitsushinhoshiki
JP2514423B2 (ja) 1989-03-15 1996-07-10 日亜化学工業株式会社 二酸化ケイ素でコ―ティングされた蛍光体の製造方法
JP2001181626A (ja) 1999-12-24 2001-07-03 Sumitomo Chem Co Ltd 真空紫外線励起発光素子用蛍光体
JP2001181627A (ja) 1999-12-24 2001-07-03 Sumitomo Chem Co Ltd 真空紫外線励起発光素子用蛍光体
RU2242545C1 (ru) 2003-11-04 2004-12-20 Загуменный Александр Иосифович Сцинтиляционное вещество (варианты)
JP4524469B2 (ja) * 2004-06-03 2010-08-18 Dowaエレクトロニクス株式会社 蛍光体粒子およびその製造方法並びにプラズマディスプレイパネル、照明装置およびled
JP5487636B2 (ja) 2008-02-18 2014-05-07 株式会社豊田中央研究所 単分散球状無機蛍光体及びその製造方法、並びに、規則配列体
DE102009012698A1 (de) * 2009-03-11 2010-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Partikel mit einer lumineszierenden anorganischen Schale, Verfahren zur Beschichtung von Partikeln sowie deren Verwendung
EP2554630B1 (en) * 2010-03-31 2014-09-03 Ocean's King Lighting Science&Technology Co., Ltd. Double core-shell fluorescent materials and preparation methods thereof
US8562866B2 (en) 2010-04-27 2013-10-22 Ocean's King Lighting Science & Technology Co., Ltd. Preparation method of zinc manganese silicate
CN104302730A (zh) * 2012-05-08 2015-01-21 海洋王照明科技股份有限公司 包覆有金属纳米颗粒的硅酸盐发光材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1626615A (zh) * 2003-11-12 2005-06-15 日亚化学工业株式会社 绿色发光钇硅酸盐荧光体以及使用该荧光体的阴极射线管
CN101033398A (zh) * 2007-03-29 2007-09-12 兰州大学 一种真空紫外光激发的绿色硅酸盐发光材料
CN102191033A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 一种核壳结构荧光材料及其制备方法
CN102191055A (zh) * 2010-03-11 2011-09-21 海洋王照明科技股份有限公司 核壳结构硅酸盐发光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848675A4 *
WEN, YAN ET AL.: "Intense Red-Emitting NaYSi04: Eu3+, Mo6+ Phosphors for White Light-Emitting Diodes.", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 158, no. 8, 15 June 2011 (2011-06-15), pages J250 - J254, XP055172304 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285955A (zh) * 2023-03-22 2023-06-23 成都理工大学 一种用于湿热环境下的led荧光粉

Also Published As

Publication number Publication date
CN104271706A (zh) 2015-01-07
EP2848675A1 (en) 2015-03-18
US9416308B2 (en) 2016-08-16
JP5926449B2 (ja) 2016-05-25
EP2848675A4 (en) 2015-12-02
US20150083965A1 (en) 2015-03-26
JP2015516015A (ja) 2015-06-04

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis and Luminescent Properties of LaAlO3: RE3+ (RE= Tm, Tb) Nanocrystalline Phosphors via a Sol Gel Process
CN101760195B (zh) 硅酸盐蓝色发光材料及其制备方法
WO2013166665A1 (zh) 核壳结构的硅酸盐发光材料及其制备方法
CN104710982A (zh) 一种稀土离子共掺杂的铝硅酸盐新型绿光荧光粉及其制备方法
Yang et al. Synthesis and photoluminescence of Eu3+-or Tb3+-doped Mg2SiO4 nanoparticles prepared by a combined novel approach
CN102933684B (zh) 含有金属颗粒的硅酸锌锰发光材料及其制备方法
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
JP5655141B2 (ja) 珪酸塩発光材料及びその調製方法
CN101665688B (zh) 一种超细高亮荧光粉的制备方法
CN105331363B (zh) 一种磷铝酸盐荧光粉及其制备方法
CN115321579B (zh) 一种高性能硫氧化物荧光粉的制备方法
CN101892049B (zh) 用于白光led的单一基质白光荧光粉的制备方法
JP5700306B2 (ja) 緑色発光材料およびその調製方法
US9605202B2 (en) Silicate luminescent materials doped with metal nano particles and preparation methods therefor
CN102191055A (zh) 核壳结构硅酸盐发光材料及其制备方法
CN101831296B (zh) 一种真空紫外激发的绿色硅酸盐荧光粉的制备方法
CN112592711B (zh) 一种远红光荧光粉及其制备和改性方法
CN108893108A (zh) 一种双钙钛矿型硅酸盐蓝色荧光粉及其制备方法
CN107603616A (zh) 一种钒钛酸钡近红外发光材料、制备方法及其应用
CN104830344B (zh) 一种Er3+,Yb3+共掺YOF红色上转换荧光材料的制备方法
CN106281313A (zh) 一种硅酸盐荧光粉及其制备方法和应用
CN107794042B (zh) 一种掺杂稀土元素Sm的磷钨酸盐发光材料及其制备方法
CN104031641B (zh) 基于水热反应的铝酸盐荧光粉表面包覆方法及其制备的荧光粉
CN110283590B (zh) 磷酸锂钡蓝绿色荧光粉及其制备方法
CN106634998B (zh) 一种锰离子掺杂磷酸锶钾红色荧光粉的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14397942

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012876298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012876298

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015510598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE