WO2013153692A1 - Method for collecting lithium - Google Patents

Method for collecting lithium Download PDF

Info

Publication number
WO2013153692A1
WO2013153692A1 PCT/JP2012/078215 JP2012078215W WO2013153692A1 WO 2013153692 A1 WO2013153692 A1 WO 2013153692A1 JP 2012078215 W JP2012078215 W JP 2012078215W WO 2013153692 A1 WO2013153692 A1 WO 2013153692A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solution
metal
electrodialysis
ions
Prior art date
Application number
PCT/JP2012/078215
Other languages
French (fr)
Japanese (ja)
Inventor
昌 木口
裕一 有戸
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2013153692A1 publication Critical patent/WO2013153692A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering lithium.
  • Lithium is an alkali metal used as a charge transfer medium for lithium secondary batteries.
  • Lithium secondary batteries are well known as lightweight and high electric capacity batteries, and are used in large quantities as secondary batteries for various portable devices.
  • lithium secondary batteries are also used in hybrid cars and electric cars that have been developed to comply with carbon dioxide emission regulations.
  • Many recycling technologies for lithium secondary batteries have been developed so far, but in many cases, recycling costs exceed the market price of recovered materials, and development of lower cost lithium recovery technologies is eagerly desired. Has been.
  • Patent Document 1 discloses a method of recovering lithium from a lithium secondary battery by repeating solvent extraction.
  • Patent Document 1 since an organic solvent is used, it is necessary to make the equipment explosion-proof, and there is a cost for measures against odor of the organic solvent. Furthermore, since the extraction operation has to be repeated many times, the process becomes longer and the cost is increased.
  • Patent Document 2 discloses a technique of reusing a positive electrode active material as a positive electrode active material raw material by adding a lithium salt after all the positive electrode active material is dissolved with an acid. This method makes it possible to recycle lithium at a relatively low cost.
  • lithium cobalt oxide has been used as the positive electrode active material of the lithium ion secondary battery.
  • the positive electrode active material of the lithium ion secondary battery for in-vehicle use has cobalt acid for safety and cost reasons.
  • lithium manganate, nickel nickelate, lithium iron phosphate, etc. are also used and are diversified. For this reason, in order to recycle as a positive electrode active material material, a single type of positive electrode active material lithium secondary battery is selected for each of various positive electrode materials such as cobalt, nickel, manganese, and ternary. Each had to be handled individually.
  • Patent Document 3 a metal is leached with an aqueous hydrochloric acid solution from a coal ash containing a metal and a metal oxide obtained by baking and sieving of a lithium ion battery, and the pH of the leachate is adjusted.
  • a technique for recovering metallic copper and metallic cobalt by electrolysis while adjusting, further precipitating iron and aluminum as hydroxides by raising the pH, and finally recovering lithium as lithium carbonate precipitates Yes.
  • the economy will deteriorate because even metals with low market prices such as iron and aluminum are recovered.
  • Patent Document 4 proposes a method using oxalic acid.
  • oxalic acid is a relatively expensive acid and difficult to recover as leaching acid, there is a concern that the cost of leaching acid increases.
  • Patent Document 5 A low-cost technique using electrodialysis is also disclosed as a lithium secondary battery recycling technique.
  • Patent Document 5 Japanese Patent No. 3454769 (Patent Document 5), it is proposed to use a monovalent selective cation exchange membrane for the purpose of selectively extracting lithium from a waste lithium secondary battery.
  • transition metals such as cobalt, nickel, and manganese, and lithium was not sufficiently purified.
  • the transition metal ions contained in the leachate permeate the ion exchange membrane slightly during electrodialysis and mix into the electrode solution, which is oxidized at the anode to generate insoluble scale in water, and the surface of the ion exchange membrane. There is a problem that it adheres to and accumulates. In this case, frequent film cleaning work is required, the productivity is remarkably deteriorated, and the cost is increased.
  • Patent Document 6 discloses a method for reducing oxides in an electrode solution with a reducing agent. In order to prevent oxidative deterioration of the film, a new dedicated channel in contact with the electrode solution is provided. Although a method of flowing sulfite is disclosed, there is a problem that sulfite ions decompose and generate scale.
  • the present invention has been made in view of such conventional circumstances, and an object thereof is to provide a method for selectively recovering only lithium from a lithium-containing solid in a high yield.
  • the present invention is as follows. [1] From monovalent metal ion lithium ion, iron ion, cobalt ion, nickel ion and manganese ion using an electrodialyzer having a monovalent metal ion selective permeable cation exchange membrane and an anion exchange membrane An electrodialysis method for selectively permeating and concentrating lithium ions from a solution containing at least one divalent transition metal ion selected from the group consisting of trivalent or higher polyvalent metal ions An electrodialysis method. [2] The electrodialysis method according to [1], wherein the trivalent or higher metal ion is a trivalent aluminum ion and / or a trivalent iron ion.
  • the concentration of the trivalent or higher metal ion is 20% by weight to 100% by weight with respect to the total weight of the divalent transition metal ions in the solution, according to [1] or [2].
  • Electrodialysis method [4] The solution according to any one of [1] to [3], wherein the trivalent or higher polyvalent metal ion is added to increase the concentration of the trivalent or higher polyvalent metal ion.
  • [5] The electrodialysis method according to any one of [1] to [4], wherein the solution is a solid leachate containing lithium.
  • the solid leaching solution containing lithium is obtained by leaching lithium from a lithium-containing solid using an acidic leaching solution in which a divalent or higher-valent metal salt is dissolved in an acid.
  • Electrodialysis method [7]
  • the divalent or higher metal includes at least one metal selected from the group consisting of iron, cobalt, nickel, and manganese, and the concentration of the metal salt in the acidic leachate is 7000 ppm or higher, respectively.
  • the electrodialysis method according to [6] wherein the electrodialysis method is in a range below the concentration.
  • the electrodialysis apparatus further includes a cathode chamber containing a cathode and an electrode solution, an anode chamber containing an anode and an electrode solution, a desalting solution chamber containing a desalting solution, and a concentrated solution chamber containing a concentrate,
  • a cathode chamber containing a cathode and an electrode solution
  • an anode chamber containing an anode and an electrode solution
  • a desalting solution chamber containing a desalting solution
  • a concentrated solution chamber containing a concentrate The electrodialysis method according to any one of [1] to [7], wherein a first reducing agent is added to the electrode solution in the anode chamber.
  • the first reducing agent is selected from the group consisting of oxalic acid, formic acid, salts thereof, aldehydes, and reducing sugars.
  • [13] Add at least one compound selected from the group consisting of a metal hydroxide having a valence of 2 or more, an oxide of a metal having a valence of 2 or more, and a second reducing agent to the solution,
  • the electrodialysis method according to any one of [1] to [12], further comprising a step of adjusting the pH of the solution to 2 to 6.
  • the metal hydroxide having a valence of 2 or more is at least one metal compound selected from the group consisting of cobalt hydroxide, nickel hydroxide, aluminum hydroxide, iron hydroxide, and manganese oxide, The method according to [13], wherein the metal oxide having a valence of 2 or more is manganese oxide.
  • the method further includes a step of separating the product, and a step of reducing metal components other than lithium in the solution with an ion exchange resin, and the step of recovering lithium hydroxide and acid after these steps is included [17] Lithium recovery method.
  • the electrolytic method includes an anode chamber, a cathode chamber, a salt chamber sandwiched between the anode chamber and the cathode chamber, an anion exchange membrane that separates the anode chamber from the salt chamber, and the salt chamber and the cathode.
  • lithium can be selectively recovered from a lithium-containing solid with a high yield. Furthermore, preferred embodiments of the present invention allow lithium to be recovered from lithium-containing solids with minimal waste and high economic efficiency.
  • the graph which shows the relationship between the ratio of Al with respect to the total weight of the bivalent metal ion in the desalination liquid for electrodialysis, and the ratio of the impurity metal after electrodialysis.
  • An electrolytic apparatus comprising an anion exchange membrane and a cation exchange membrane used in a preferred embodiment of the present invention.
  • a general electrolyzer consisting of a cation exchange membrane.
  • lithium ions are selectively permeated by containing trivalent or higher polyvalent metal ions in the solution. It can be concentrated.
  • the divalent metal ion is a divalent transition metal ion selected from at least one selected from the group consisting of iron ions, cobalt ions, nickel ions, and manganese ions.
  • the polyvalent metal ions contained in the solution containing lithium ions and divalent metal ions are ions having a valence of 3 or more, and can be trivalent metal ions and / or tetravalent metal ions.
  • trivalent or tetravalent ions such as aluminum, iron, manganese, titanium, cobalt, tin, and chromium can be mentioned, and trivalent aluminum ions and iron ions are preferable, and trivalent aluminum ions are more preferable.
  • the substance that forms the polyvalent metal ion can be dissolved or decomposed in acid or water to form a polyvalent metal ion. That's fine.
  • the substance that forms ions is preferably in the form of a simple metal, a metal oxide, or a salt.
  • Strong acid salts such as sulfates, hydrochlorides, and nitrates are preferred because of their high degree of dissociation.
  • sulfates and hydrochlorides are particularly preferred because they are generally inexpensive, stable and have good solubility in water.
  • the effect is recognized even if the content of the polyvalent metal ion is small.
  • the ratio of polyvalent metal ions to the total weight of divalent metal ions in the solution for electrodialysis increases, the selectivity of the monovalent selective cation exchange membrane increases, and the ratio of impurity metals after electrodialysis increases. Decrease.
  • the ratio of the polyvalent metal ions becomes excessive, the influence of the permeation of the polyvalent metal ions themselves through the membrane increases, and the method of decreasing the ratio of the impurity metals becomes gradual.
  • the content of the polyvalent metal ions is 0.1% or more with respect to the total weight of the divalent metal ions, preferably 0.5% or more, 1.0% or more, 2.0% or more, 5.0 % Or more, 10% or more, 15% or more, 18% or more, 20% or more, 25% or more, 30% or more.
  • the content of polyvalent metal ions is preferably 1000% or less, 500% or less, 300% or less, 200% or less, or 100% or less with respect to the total weight of divalent metal ions.
  • the content of the polyvalent metal ion is 100% or more, the smaller the content, the better.
  • the reason why the monovalent metal ion selective permeability of the cation exchange membrane is improved by the inclusion of the polyvalent metal ion is not limited by the theory, but the contained polyvalent metal ion is adsorbed on the surface of the cation exchange membrane. It is thought that it is concentrated in the vicinity to prevent permeation of divalent cations. The polyvalent metal ion itself hardly permeates the monovalent metal ion selective cation exchange membrane.
  • An electrodialysis apparatus is an apparatus that can simultaneously perform desalting and concentration.
  • the electrodialysis apparatus used in the present invention includes a monovalent metal ion selective cation exchange membrane, an anion exchange membrane, a desalting chamber and a concentration chamber partitioned by a cation exchange membrane and an anion exchange membrane, and both ends thereof.
  • an apparatus including a cathode chamber and an anode chamber, and a power supply facility for applying a voltage between the electrodes.
  • Electrodialysis is an operation in which desalting and concentration are performed simultaneously. A DC voltage is applied while supplying a fluid, and the positive ions are moved to the cathode side and anions are moved to the anode side by the potential difference. A salt solution and a concentrated solution (for example, a lithium concentrated solution) are obtained. Thereby, the metal contained in the lithium recovery solution is separated into bivalent or higher metal ions and lithium.
  • an electrodialysis method using a combination of a cation exchange membrane and an anion exchange membrane can be employed.
  • an anion exchange membrane having a positive charge such as a quaternary ammonium base or an amine
  • a cation exchange membrane having a negative charge such as a sulfonic acid group or a carboxylic acid group are alternately arranged from both electrodes.
  • any membrane may be used as the anion exchange membrane.
  • a membrane obtained by introducing a quaternary ammonium group into a copolymer base membrane of styrene and divinylbenzene, or a styrene-butadiene type copolymer examples thereof include a film in which a quaternary ammonium group is introduced into a polymer base film, and a film made of a copolymer of tetraethylene and perfluorovinyl ethers having a quaternary ammonium group in the side chain.
  • Neoceptor ACM Neoceptor ACM
  • Neoceptor AM-1 Neoceptor ACS
  • Neoceptor ACLE-5P Neoceptor AHA
  • Neoceptor AMH (trade name, manufactured by Astom Co., Ltd.)
  • Selemion AMV Selemion AMT
  • Selemion DSV Selemion AAV
  • Selemion ASV Selemion AHT
  • Selemion APS trademark, manufactured by Asahi Glass Co., Ltd.
  • FAB FAA
  • FAA trademark, manufactured by Fumatec Co., Ltd.
  • Aciplex A-501, A-231 aboveve, manufactured by Asahi Kasei Corporation
  • a monovalent metal ion permselective cation exchange membrane for selectively extracting monovalent metal ions from a solution containing monovalent and divalent metal ions is used.
  • this film for example, a film obtained by introducing a sulfonic acid group into a copolymer base film of styrene and divinylbenzene, a film obtained by introducing a sulfonic acid group into a styrene-butadiene copolymer base film, phenol and formalin
  • a film made of a condensate of styrene, a film in which styrene is graft-polymerized on a polyolefin film and a sulfonic acid group is introduced into the film, a film made of a copolymer of tetrafluoroethylene and perfluorosulfonylethoxyvinyl ether, and a side of tetrafluor
  • Neoceptor CIMS Neoceptor CMI
  • Neoceptor CLS-25 trade name, manufactured by Astom Co., Ltd.
  • Selemion CSO Selemion CSV
  • Selemion CSV trade name, manufactured by Asahi Glass Co., Ltd.
  • the monovalent metal ion selective permeability is a property of a membrane that allows more monovalent ions to permeate than polyvalent metal ions when electrodialysis is performed on a solution containing monovalent ions and polyvalent metal ions.
  • the monovalent ion selective permeability of lithium ions with respect to cobalt ions can be evaluated by the following formula RTN Co / Li .
  • the solution to be electrodialyzed contains lithium ions, cobalt ions, nickel ions, manganese ions, a film in which any one of RTN Co / Li , RTN Ni / Li, or RTN Mn / Li is smaller than 1 has an RTN of It may be recognized that it is a monovalent ion selective permeable membrane.
  • the solution containing monovalent metal ions and divalent metal ions in the present invention is, for example, a solution containing lithium ions or the like as monovalent metal ions and containing cobalt, nickel, manganese, iron or the like as divalent metal ions.
  • a solid leaching solution containing lithium can be mentioned, and when the electrodialysis method of the present invention recovers lithium from a solid containing lithium, the lithium is selectively extracted from the solid leaching solution containing lithium. It can be used suitably.
  • the solid containing lithium include non-standard products discharged in the lithium ion battery positive electrode active material manufacturing process and processed products of deteriorated lithium ion batteries.
  • the treated product indicates a solid containing the positive electrode active material recovered from the lithium ion battery. These materials contain monovalent lithium and divalent transition metals such as cobalt, nickel, manganese, iron and the like at a high content.
  • Each transition metal ion is usually present in a +2 valence and is relatively easily soluble in water, but the phenomenon that salts and oxides produced by oxidation become hardly soluble in water is well known.
  • manganese (II) sulfate is water-soluble, but manganese (IV) produced by oxidation of manganese sulfate is difficult to dissolve in water.
  • electrodialysis is performed on a solution containing these transition metal ions, the transition metal ions that have leached into the electrode solution through the ion exchange membrane are oxidized at the anode to form salts and oxides insoluble in water. As it comes out. Furthermore, if electrodialysis is continued, the scale adheres and accumulates on the surface of the ion exchange membrane, which causes membrane clogging.
  • First reducing agent The present inventors have found that it is extremely effective to add a specific reducing agent (first reducing agent) to the electrode solution in order to prevent oxidation of the transition metal ion.
  • a specific reducing agent first reducing agent
  • reducing agents that can be used in an extremely strong oxidizing and reducing atmosphere, such as the electrode solution of an electrodialyzer.
  • sulfites such as sodium sulfite are not preferable because sulfite ions undergo an oxidation-reduction reaction at the electrode and generate a scale insoluble in water.
  • Examples of the reducing agent that can be used as the first reducing agent include hydrazine, ascorbic acid, oxalic acid, formic acid and salts thereof, aldehydes such as formaldehyde and acetaldehyde, reducing sugars such as sucrose, glucose, and fructose.
  • aldehydes such as formaldehyde and acetaldehyde
  • reducing sugars such as sucrose, glucose, and fructose.
  • oxalic acid and formic acid are preferable, and oxalic acid is particularly preferable because it can be easily removed by decarboxylation by heating or the like even when mixed in the electrodialysis concentrate.
  • the amount of the first reducing agent added to the electrode solution is preferably 100 ppm to 100,000 ppm, preferably 300 ppm to 10,000 ppm, more preferably 500 ppm to 5000 ppm, based on the total amount of transition metal ions in the desalting solution. If it is 100 ppm or more, scale generation tends to be suppressed, and if it is 100000 ppm or less, there is a low possibility that excess first reducing agent leaks from the ion exchange membrane and contaminates the concentrate.
  • the method for adding the first reducing agent is not particularly limited, and a general method can be applied.
  • the required amount of the first reducing agent can be dissolved in the electrode solution in advance, or the first reducing agent can be added to the electrode solution while confirming the occurrence of scale. It is also possible to go.
  • a method in which the first reducing agent is appropriately added while monitoring the state of the scale is suitable.
  • oxalic acid is particularly preferable because of its fast reactivity to remove the generated scale.
  • the above-mentioned membrane can be used as the anion exchange membrane, but a membrane that is not a monovalent permselective membrane can also be used as the cation exchange membrane.
  • Neoceptor CMV Neoceptor CMB
  • Neoceptor CMS Neoceptor CMT
  • Neoceptor CL-25T Neoceptor CMD
  • Neoceptor CMD Neoceptor CM-2
  • Neoceptor CSO above, Astom Co., Ltd., trademark
  • Selemion CMD Selemion CMT
  • Selemion CMV Selemion CAV
  • Selemion HSF Selemion CMF
  • Selemion FX-151 aboveve, Asahi Glass Co., Ltd., Trademark
  • FKF FKC
  • FKL FKE
  • Nafion 324 Nafion 117
  • Nafion 115 aboveve And Aciplex K-501 (trademark, manufactured by Asahi Kasei Co., Ltd.).
  • the configuration in which the membrane in contact with the electrode solution is an anion exchange membrane makes it difficult for the cation to leak into the electrode solution, and the first reducing agent to be added is small. It is preferable. Furthermore, it is preferable that the electrode chamber is configured to be a concentrate chamber having a relatively low metal ion concentration because the amount of metal ions leaking into the electrode solution is reduced and the first reducing agent to be added is reduced. . Specific examples are shown below. (Cathode solution chamber) A ⁇ Dense> C ⁇ De> A ⁇ Dense> C ...
  • Lithium leaching with a solution containing metal ions Furthermore, when the present inventors used an acidic aqueous solution containing a divalent or higher metal ion when leaching lithium, the lithium with less acid than in the case of an acid alone containing no divalent or higher metal ion. Confirmed that it can be leached. Thereby, the amount of acid used for leaching can be suppressed, and the recovery cost can be reduced.
  • the valence of metal ions cobalt, nickel and iron are divalent and trivalent, and manganese is divalent to a maximum of 7 valences.
  • the valence of the metal ion is preferably from 2 to 7, more preferably from 2 to 4, more preferably from 2 or 3.
  • the metal salt having a valence of 2 or more includes cobalt, nickel, manganese and / or iron as a metal having a valence of 2 or more.
  • the acid forming the acidic leachate may be either an inorganic acid or an organic acid.
  • the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid and the like.
  • the organic acid include carboxylic acids such as formic acid, acetic acid, citric acid, and oxalic acid. In view of cost, work environment, and ease of metal recovery from the leachate, it is preferable to use sulfuric acid.
  • a lithium recovery solution is obtained by leaching lithium from a lithium-containing solid using an acidic leaching solution in which a divalent or higher-valent metal salt is dissolved in an acid.
  • an acidic leachate in which a divalent or higher metal salt is dissolved in an acid lithium is leached at a high recovery rate while suppressing leaching of a metal that can be a divalent or higher metal ion contained in a lithium-containing solid. (See Example 19). Thereby, the amount of acid required for leaching can be suppressed.
  • metals that can be divalent or higher-valent metal ions that have not been leached into the acid leachate liquid layer contain a large amount of expensive cobalt, nickel, etc. at the market price. If it contains a lot of relatively inexpensive metals such as iron and manganese, it may be turned to a crude steel raw material.
  • the bivalent or higher metal contains at least one metal selected from the group consisting of iron, cobalt, nickel, and manganese, and the concentration of the metal salt in the acidic leachate is 7000 ppm or higher for each metal.
  • the range is as follows.
  • the concentration is 10,000 ppm or more, more preferably 20000 ppm or more. If the concentration of the metal salt having a valence of 2 or more is within the above range, 100% of lithium is likely to leach out.
  • the reason why lithium can be efficiently leached when leached with an acidic aqueous solution in which metal ions having a valence of 2 or more are dissolved is estimated as follows. That is, when a metal is leached out of a solid into an aqueous solution, a reaction in which the metal ion is stabilized in the aqueous solution by hydration proceeds in a non-equilibrium state. When present, the leaching of the same kind of metal is suppressed, and the leaching rate is slower than when the metal ion is not present. Therefore, lithium ions are not present in the aqueous solution, or the concentration thereof is low, so that the lithium ions are not affected by the metal ions already present in the aqueous solution, so that lithium is likely to be leached out.
  • the present method can recover lithium in an electrodialyzer comprising a combination of a monovalent selectively permeable cation exchange membrane and an anion exchange membrane before or after the step of obtaining a lithium recovery solution or before the step of obtaining a lithium recovery solution. It is preferable to further include a desalting step of desalting lithium from the solution to obtain a desalting solution, and a desalting solution reusing step of reusing the desalting solution as an acidic leachate in the leachate providing step.
  • the desalting step at least one compound selected from the group consisting of a metal hydroxide having a valence of 2 or more, a metal oxide of a valence of 2 or more, and a second reducing agent,
  • the pH of the lithium recovery solution is adjusted to 2.0 or more and 6.0 or less, preferably 2.5 or more and 6.0 or less, more preferably 2.5 or more and 5.0 or less. Is preferred. This can improve the current efficiency of lithium in electrodialysis and reduce the power cost of electrodialysis (see Example 24).
  • the material to add can add a bivalent or more metal hydroxide, a bivalent or more metal oxide, and a reducing agent each independently.
  • the pH of the lithium recovery solution is 2.0 or more, the hydrogen ion concentration is lowered, and the power consumption due to the movement of hydrogen is reduced, so that the current efficiency is increased.
  • the pH of the lithium recovery solution is 6.0 or less, the metal hydroxide having a valence of 2 or more is not only difficult to precipitate but also difficult to adhere to an ion exchange membrane or the like. Therefore, current efficiency is improved and the useful life of the ion exchange membrane is extended.
  • Examples of the metal hydroxide having a valence of 2 or more include cobalt hydroxide, nickel hydroxide, iron hydroxide, and aluminum hydroxide.
  • Examples of the bivalent or higher metal oxide include manganese oxide.
  • the residue from which lithium is selectively leached contains an oxide of a metal having a valence of 2 or more.
  • this oxide is not dissolved only by an acid, it can be reduced by adding a second reducing agent. It becomes easy to dissolve. Therefore, the acid is consumed by dissolving the divalent or higher metal, and the pH of the lithium recovery solution increases.
  • the second reducing agent hydrogen peroxide, oxalic acid, or the like is preferably used.
  • the desalting solution contains divalent or higher-valent metal ions from which lithium has been desalted and separated by an electrodialyzer.
  • an acid is added to the desalting solution generated by electrodialysis to adjust the pH of the desalting solution to a range of 0 to 1.0, preferably to a pH of 0 to 0.5. Can be used as an acidic leachate.
  • the acid used for pH adjustment in the desalting solution recycling step may be an acid as described above.
  • the desalting solution reuse step eliminates the need to treat the desalting solution as a waste solution, thereby minimizing the cost of waste solution treatment.
  • the present inventors add lithium hydroxide to a lithium concentrated solution (for example, a lithium solution purified by electrodialysis) containing a trace amount of metal ions having a valence of 2 or more during or after the desalting step.
  • a lithium concentrated solution for example, a lithium solution purified by electrodialysis
  • metal ions having a valence of 2 or more
  • divalent or higher-valent metal ions that have leaked into the concentrated solution can be precipitated as hydroxides and separated into individual liquids. Therefore, in this method, lithium hydroxide is added to the purified lithium solution to adjust the pH to 7 to 13, and the dissolved transition metal (for example, the divalent or higher metal) is used as a hydroxide.
  • a step of precipitating, a step of separating the hydroxide from the solution, a step of reducing metal components other than lithium in the solution with an ion exchange resin, and a step of recovering lithium hydroxide and sulfuric acid by electrolysis is preferred.
  • the pH of the lithium concentrated solution for precipitating divalent or higher valent metal ions from the lithium concentrated solution as a hydroxide is 7 or more and 13 or less, preferably 8 or more and 11 or less.
  • This pH adjustment is performed by adding lithium hydroxide to the lithium concentrated solution.
  • metal ions having a valence of 2 or more are sufficiently precipitated, and a small amount of adsorbent for post-purification is sufficient, so that the purification efficiency is good.
  • the pH of the lithium concentrated solution is 13 or less, the lithium hydroxide is not used excessively after the deposition of divalent or higher metal ions, so that the economy is high.
  • the metal hydroxide separated in this way can be used as a pH adjuster when electrodialysis is performed.
  • the purified lithium solution from which the hydroxide has been separated can be further purified by an adsorbent such as an ion exchange resin or activated carbon.
  • an adsorbent such as an ion exchange resin or activated carbon.
  • chelate ion exchange resins such as polyamine chelate resins, amidooxime chelate resins, aminocarboxylic acid chelate resins, etc. select metal ions having a valence of 2 or more in a high concentration lithium salt solution. It is preferable because it adsorbs chemically.
  • Preferred ion exchange resins include Diaion CR-20 manufactured by Mitsubishi Chemical Corporation, Sumichel MC900, Sumichel MC850, and Sumichel MC600 manufactured by Sumika Chemtex Co., Ltd.
  • the lithium solution purified as described above can be decomposed into lithium hydroxide and acid by electrolysis, and lithium hydroxide can be recovered.
  • the acid recovered by electrolysis may be the acid described above, in particular sulfuric acid.
  • the electrolysis apparatus When sulfuric acid is used as the acid forming the acid leachate, the electrolysis apparatus includes an electrolysis apparatus 1 including an anode chamber 21, a cathode chamber 31, and a salt chamber 61 sandwiched between the anode chamber 21 and the cathode chamber 31, or Furthermore, the electrolysis apparatus 1 (FIG. 2) including the anion exchange membrane 4 that isolates the anode chamber 21 and the salt chamber 61 and the cation exchange membrane 5 that isolates the salt chamber 61 and the cathode chamber 31 can be used.
  • the electrolysis apparatus 1 including the anion exchange membrane 4 that isolates the anode chamber 21 and the salt chamber 61 and the cation exchange membrane 5 that isolates the salt chamber 61 and the cathode chamber 31 can be used.
  • this apparatus lithium hydroxide is easily generated in the cathode chamber 31 and sulfuric acid is easily generated in the anode chamber 21.
  • Electrolysis can be performed at an electrolysis temperature of 0 to 90 ° C.
  • an electrode obtained by applying nickel oxide as a catalyst to nickel expanded metal can be used.
  • an electrode in which ruthenium, iridium, or titanium is applied as a catalyst to an expanded metal of titanium can be used.
  • the cation exchange membrane used for electrolysis is a membrane that can pass lithium ions, and is a membrane made of a polymer having at least one sulfonic acid group, carboxylic acid group, phosphonic acid group, sulfate ester group, or phosphate ester group. Can be used.
  • the anion exchange membrane used for electrolysis is a membrane made of a polymer having a strong basic group such as a quaternary ammonium group, or a weakly basic such as a primary amino group, a secondary amino group, or a tertiary amino group.
  • a film made of a polymer having a functional group can be used.
  • the acid for example, sulfuric acid, etc.
  • the acid generated simultaneously with lithium hydroxide during electrolysis can be used for regeneration of the ion exchange resin used for purification.
  • it can be adjusted to a desired concentration with water and / or a high concentration acid.
  • the acid generated by electrolysis or the acid used to regenerate the ion exchange resin can be used to adjust the acidic leachate.
  • the lithium salt solution whose concentration has been reduced by electrolysis can be used as an initial concentrated solution for electrodialysis by adjusting the concentration by further diluting.
  • lithium is recovered from a lithium-containing solid derived from a lithium ion battery.
  • the lithium-containing solid include a lithium ion battery or a processed product thereof, or a solid discharged in the process of manufacturing a lithium ion battery.
  • a positive electrode active material or the like of a lithium ion secondary battery is preferable because it contains particles having a high lithium content.
  • Lithium ion batteries that have deteriorated due to use are usually baked at a temperature of 300 ° C or higher, organic materials such as binders are removed, and then crushed. Next, the copper current collector or the nickel electrode and the positive electrode active material containing a large amount of lithium can be separated from each other by sieving the pulverized product or sorting based on magnetic force.
  • lithium can be recovered from a non-standard product discharged in the lithium ion battery positive electrode active material manufacturing process or a positive electrode active material recovered from a deteriorated lithium ion battery.
  • lithium cobaltate lithium nickelate, lithium manganate, ternary system containing cobalt, nickel and manganese, or lithium iron phosphate.
  • lithium can be recovered in high yield from various lithium-containing solids as described above.
  • lithium-containing solid is lithium manganate or lithium iron phosphate
  • lithium can be recovered in an excellent yield.
  • the recovery system of the present invention can recover lithium with an excellent yield.
  • the method of the present invention selectively recovers only lithium from a lithium-containing solid such as a treated product of a lithium ion secondary battery in a high yield.
  • a lithium-containing solid such as a treated product of a lithium ion secondary battery in a high yield.
  • Example 1 ⁇ Improved selectivity by containing polyvalent metal ions (Example 1 to Example 11)> [Example 1]
  • 1520 g of 1M sulfuric acid manufactured by Wako Pure Chemical Industries, Ltd.
  • 80 g of ternary active material cell seed NMC manufactured by Nippon Chemical Industry Co., Ltd.
  • the extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m.
  • 17.56 g of aluminum sulfate 14-18 hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (corresponding to an aluminum concentration of 25% by weight with respect to the total weight of divalent metal ions in the leachate) was added to 500 ml of the filtrate. This was added and dissolved to obtain a desalting solution for electrodialysis.
  • the results of analyzing the metal ion concentration of this solution are shown in Table 1.
  • lithium sulfate was desalted with respect to 500 ml of this solution using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) having an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus Acylator EX3B, manufactured by Astom Co., Ltd.
  • the electrode solution 500 ml of a 5% lithium sulfate monohydrate solution was used, and 500 ml of pure water was used as the concentrate.
  • Neoceptor AMX manufactured by Astom Co., Ltd.
  • monovalent selective membrane Neocepta CIMS manufactured by Astom Co., Ltd.
  • electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C.
  • Table 1 shows the results of analyzing the metal ion concentration of the concentrate.
  • Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • Example 2 Electrodialysis was carried out in the same manner as in Example 1 except that 70.26 g of aluminum sulfate (100 wt% with respect to the total weight of divalent metal ions) was added to 500 ml of the filtrate.
  • Table 1 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • Example 3 Electrodialysis was carried out in the same manner as in Example 1 except that 0.70 g of aluminum sulfate (1% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate.
  • Table 1 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • Example 4 Electrodialysis was carried out in the same manner as in Example 1 except that 3.51 g of aluminum sulfate (5% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate.
  • Table 1 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • FIG. 1 shows the relationship between the ratio of Al to the total weight of divalent metal ions in the desalting solution for electrodialysis and the ratio of impurity metals after electrodialysis.
  • the selectivity of the monovalent selective cation exchange membrane increases and the ratio of impurity metals after electrodialysis decreases.
  • the proportion of aluminum exceeds 20% with respect to the total weight of divalent metal ions, the method of decreasing the proportion of impurity metals becomes gradual. This is presumably because the proportion of aluminum became excessive and the influence of the permeation of the aluminum film increased.
  • Example 5 In a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 80 g of ternary active material cell seed NMC (manufactured by Nippon Chemical Industry Co., Ltd.) was added, and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m.
  • lithium sulfate was desalted using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus acylator EX3B, manufactured by Astom Co., Ltd.
  • the electrode solution 500 ml of a 5% lithium sulfate monohydrate solution was used, and 500 ml of pure water was used as the concentrate.
  • Neoceptor AMX (manufactured by Astom Co., Ltd.) was used as the anion exchange membrane, and monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.) was used as the cation exchange membrane, and electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C.
  • Table 3 shows the results of analyzing the metal ion concentration of the concentrate.
  • Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
  • Example 6 Electrodialysis was carried out in the same manner as in Example 5 except that 30.69 g of iron (III) sulfate (100 wt% with respect to the total weight of divalent metal ions) was added to 500 ml of the filtrate.
  • Table 3 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
  • Example 7 Electrodialysis was carried out in the same manner as in Example 5 except that 0.31 g of iron (III) sulfate (1% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate.
  • Table 3 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
  • Example 8 Electrodialysis was carried out in the same manner as in Example 5 except that 1.52 g of iron (III) sulfate (5% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate.
  • Table 3 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
  • Example 9 Electrodialysis was performed in the same manner as in Example 1 except that no polyvalent metal ions were added to the filtrate.
  • Tables 1 and 3 show the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Tables 2 and 4 show the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • Example 10 Ten used lithium ion secondary batteries (cylindrical can type 18650) were immersed in a 5% lithium sulfate solution and deactivated, and then the contents were taken out from the exterior, and an electrode containing an active material from the positive electrode plate and the negative electrode plate The material was peeled off. This was calcined in a muffle furnace at 700 ° C. for 2 hours, then pulverized in a ball mill for 2 hours, and passed through a 150 mesh sieve to obtain 100 g of a powder containing an active material.
  • lithium sulfate was desalted using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus acylator EX3B, manufactured by Astom Co., Ltd.
  • the electrode solution 500 ml of a 5% lithium sulfate monohydrate solution was used, and 500 ml of pure water was used as the concentrate.
  • Neoceptor AMX manufactured by Astom Co., Ltd.
  • monovalent selective membrane Neocepta CIMS manufactured by Astom Co., Ltd.
  • electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C.
  • Table 5 shows the result of analyzing the metal ion concentration of the concentrate.
  • Table 6 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • Example 11 (comparative example) Electrodialysis was performed in the same manner as in Example 10 except that no polyvalent metal ions were added to 500 ml of the filtrate.
  • Table 5 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution.
  • Table 6 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
  • Example 12 Inhibition of scale generation by addition of first reducing agent (Examples 12 to 17)> [Example 12]
  • 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. in a water bath, and stirred with a stirrer.
  • 80 g of ternary active material cell seed NMC (manufactured by Nippon Chemical Industry Co., Ltd.) was added, and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated.
  • the extracted leachate was filtered through a filter having a pore size of 0.45 ⁇ m, and this was used as a desalting solution for electrodialysis.
  • the lithium ion concentration of this solution was 4000 ppm, and the transition metal ion concentrations were cobalt 5920 ppm, nickel 6120 ppm, and manganese 5 ppm.
  • lithium sulfate was desalted using an electrodialysis apparatus (acylizer EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • the electrode solution is 500 mg of a 5% lithium sulfate monohydrate solution and 12 mg of oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as the first reducing agent (corresponding to 2000 ppm of the total amount of transition metal ions)
  • the dissolved solution was used, and 500 ml of pure water was used as the concentrate.
  • Neoceptor AMX (manufactured by Astom Co., Ltd.) is used as the anion exchange membrane
  • monovalent ion selective permeable membrane Neoceptor CIMS (manufactured by Astom Co., Ltd.) is used as the cation exchange membrane.
  • Chamber (where A: anion exchange membrane, C: cation exchange membrane), the effective membrane area was 550 cm 2 , the voltage was 10 V, and the temperature was 25 ° C., and electrodialysis was performed. The electrode solution was 490 ml and no turbidity was observed, and no scale was generated.
  • the concentration of the metal ion was analyzed at 550 ml, the concentration was 3880 ppm for lithium, 920 ppm for cobalt, 890 ppm for nickel, and 0.8 ppm for manganese.
  • the current efficiency at this time was 76%.
  • Example 13 Electrodialysis was carried out in the same manner as in Example 12 except that 4 mg (corresponding to 700 ppm of the total amount of transition metal ions) of formic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a first reducing agent was dissolved in the electrode solution.
  • the electrode solution was 490 ml and no turbidity was observed, and no scale was generated.
  • the concentration of the metal ion was analyzed at 550 ml, the concentration was 3870 ppm for lithium, 930 ppm for cobalt, 870 ppm for nickel, and 0.9 ppm for manganese, and the current efficiency at this time was 78%.
  • Example 14 Electrodialysis was performed in the same manner as in Example 12 except that no reducing agent was added to the electrode solution.
  • the electrode solution was 490 ml and became magenta due to the occurrence of scale.
  • the electrode solution was filtered and the scale was recovered to find 6 mg.
  • the concentration of the metal ion was analyzed at 550 ml, the concentration was 3860 ppm for lithium, 920 ppm for cobalt, 880 ppm for nickel, and 0.8 ppm for manganese.
  • the current efficiency at this time was 77%.
  • Example 15 Five used lithium ion secondary batteries (cylindrical can type 18650) were baked at 700 ° C. for 2 hours in a muffle furnace, and the contents were taken out by peeling off the exterior. This was chopped to about 2 mm square with a cutting machine, pulverized with a ball mill for 2 hours, and passed through a 150 mesh sieve to obtain 50 g of powder containing the active material.
  • lithium sulfate was desalted from 500 ml of this solution using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • the electrode solution was prepared by dissolving 28 mg of oxalic acid dihydrate (corresponding to 2000 ppm of the total amount of transition metal ions) as a first reducing agent in 500 ml of a 5% lithium sulfate monohydrate solution. 500 ml of pure water was used.
  • the anion exchange membrane uses Neoceptor AMX (manufactured by Astom Co., Ltd.), and the cation exchange membrane uses monovalent selective membrane Neoceptor CIMS Co., Ltd.
  • Example 16 Electrodialysis was carried out in the same manner as in Example 15 except that 10 mg of formic acid (corresponding to 700 ppm of the total amount of transition metal ions) was dissolved in the electrode solution as the first reducing agent.
  • the electrode solution was 490 ml and no turbidity was observed, and no scale was generated.
  • the concentration of the metal ion was analyzed at 550 ml, the concentration was 3280 ppm for lithium, 1420 ppm for cobalt, 1340 ppm for nickel, and 1360 ppm for manganese, and the current efficiency at this time was 77%.
  • Example 17 Electrodialysis was performed in the same manner as in Example 15 except that no reducing agent was added to the electrode solution.
  • the electrode solution was 490 ml and became magenta due to the occurrence of scale. It was 7 mg when the electrode liquid was filtered and the scale was recovered.
  • the concentration of the metal ion was analyzed at 550 ml, the concentration was 3270 ppm for lithium, 1440 ppm for cobalt, 1360 ppm for nickel, and 1370 ppm for manganese, and the current efficiency at this time was 75%.
  • Example 18 Lithium sulfate was desalted from 1000 ml of the leachate of Experimental Example 1 using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • the recovered liquid was 1000 ml of pure water
  • the anion exchange membrane was Neocepta AMX (manufactured by Astom Co., Ltd.)
  • the cation exchange membrane was monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.)
  • the voltage was 10V. Electrodialysis was performed at a temperature of 25 ° C.
  • the analysis of the concentration of the metal ions in 1200 ml of the recovered liquid revealed lithium 3400 ppm, cobalt 500 ppm, nickel 510 ppm, and manganese 0.4 ppm.
  • the metal ion composition was lithium 90 ppm and cobalt 6860 ppm. Nickel, 6940 ppm and manganese, 1 ppm.
  • metal ions were leached from the active material using this desalting solution.
  • sulfuric acid was added to the desalted solution to bring the pH to zero.
  • the sulfuric acid concentration at this time was 0.4M.
  • 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer.
  • 40 g of a ternary active material was added and stirred for 3 hours to leach out lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated.
  • the extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 19 (leaching with a saturated salt solution) Desalting and leaching were repeated until the sulfates of cobalt, nickel, and manganese were saturated.
  • the concentration of each metal ion at this time was lithium 1000 ppm, cobalt 40000 ppm, nickel 50000 ppm, and manganese 70000 ppm.
  • Metal ions were leached from the active material in the same manner as in Example 18 except that this saturated solution was used as the leaching solution. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 20 (reference example)
  • the metal ion concentration of the leachate prepared in Experimental Example 1 was analyzed. The analysis results are shown in Table 1.
  • Example 21 (reference example)
  • Metal ions of the active material were leached in the same manner as in Experimental Example 1 except that the sulfuric acid concentration of the leaching solution was 0.4M.
  • Table 7 shows the result of analyzing the metal ion concentration of the leachate.
  • Example 22 (Salt concentration and leaching rate 1) Sulfuric acid was added to 1000 ml of a salt solution in which 10% cobalt sulfate and 10% nickel sulfate were dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this, 40 g of a ternary active material was added and stirred for 3 hours to leach out lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 23 (Salt concentration and leaching rate 2) Metal ions were leached from the active material in the same manner as in Example 22 except that a salt solution in which 2% cobalt sulfate and 2% nickel sulfate were dissolved was used. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 24 (pH adjustment 1 after leaching) Add 850 g of 1.5 M sulfuric acid to a 1000 ml Erlenmeyer flask, heat to 80 ° C. with a water bath, and stir with a stirrer. To this, 150 g of a ternary active material was added and stirred for 3 hours to leach lithium, cobalt, nickel, and manganese. The pH of the leachate was measured to be 1.7, and the metal ion concentrations were lithium 12400 ppm, cobalt 19700 ppm, nickel 19800 ppm, and manganese 1900 ppm.
  • lithium sulfate was desalted from 500 ml of the leachate using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus acylator EX3B, manufactured by Astom Co., Ltd.
  • Neocepta AMX manufactured by Astom Co., Ltd.
  • Neoceptor CIMS manufactured by Astom Co., Ltd.
  • Electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C. Analysis of the concentration of the metal ions in 550 ml of the collected liquid revealed lithium 10280 ppm, cobalt 1610 ppm, nickel 1770 ppm, manganese 150 ppm, and the current efficiency at this time was 76%.
  • Example 25 (pH adjustment 2 after leaching) Active material in the same manner as in Example 24, except that 0.65 g of manganese oxide (manufactured by Wako Pure Chemical Industries, Ltd.) is used as the oxide of a divalent or higher metal in place of nickel hydroxide for pH adjustment after leaching. The metal ions were leached from the solution to adjust the pH. The pH after adjustment was 2.77. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 26 (pH adjustment 3 after leaching) From the active material in the same manner as in Example 24, except that 10 g of 30% hydrogen peroxide water (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the second reducing agent instead of nickel hydroxide for pH adjustment after leaching. Metal ions were leached to adjust the pH. The pH after adjustment was 2.83. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 24 electrodialysis was performed in the same manner as in Example 24 on 500 ml of the leachate.
  • 550 ml of the recovered liquid was analyzed for the concentration of the metal ions, it was found to be 11000 ppm for lithium, 1740 ppm for cobalt, 1780 ppm for nickel, and 250 ppm for manganese.
  • the current efficiency at this time was 85%.
  • Example 27 (reference example) In the same manner as in Example 24, metal ions were leached from the ternary active material, and 2.88 g of 10% aqueous ammonia was added to adjust the pH. The pH was 2.66.
  • Example 28 Purification with ion exchange resin 1
  • 30.6 ml of 2M lithium hydroxide was added to adjust the pH to 8 and precipitate transition metal ions as hydroxides.
  • the composition of the metal ions in the filtrate after filtering the precipitate was lithium 9250 ppm, cobalt 122 ppm, nickel 43 ppm, and manganese 4 ppm.
  • the transition metal was further removed to a low concentration with an ion exchange resin.
  • the column was filled with 530 cc of ion-exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) together with distilled water and passed through at a rate of 10 ml / min to remove transition metals.
  • the composition of the metal ions after purification was 9160 ppm lithium, less than 0.5 ppb cobalt, less than 5 ppb nickel, and less than 1 ppb manganese.
  • Example 29 Purification with ion exchange resin 2
  • the recovered liquid obtained in Example 25 was purified in the same manner as in Example 28, except that transition metal ions were precipitated at pH 10 and Diaion CR20 (manufactured by Mitsubishi Chemical Corporation) was used as the ion exchange resin.
  • the composition of metal ions after precipitation filtration was less than 9240 ppm lithium, 120 ppb cobalt, 35 ppb nickel, and 1 ppb manganese.
  • the composition of the metal ion after the ion exchange resin purification was lithium 9150 ppm, cobalt less than 0.5 ppb, nickel less than 5 ppb, and manganese less than 1 ppb.
  • Example 30 (Production of lithium hydroxide by electrolysis) Electrolysis was performed on the liquid purified with the ion exchange resin in Example 28.
  • the configuration of the electrolyzer used is shown in FIG.
  • Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 .
  • As the cathode an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used.
  • an electrode in which ruthenium, iridium, and titanium were applied as catalysts to titanium expanded metal was used as the anode.
  • a power supply unit is made so that 500 ml of purified liquid in the salt chamber, 300 ml of 11% lithium hydroxide aqueous solution in the cathode chamber, and 300 ml of 10% sulfuric acid in the anode chamber are passed at 60 ° C., respectively, and the current density is 0.2 A / cm 2.
  • a voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V.
  • This electrolysis recovered 330 ml of 14.6% lithium hydroxide from the cathode compartment and 330 ml of 18.3% sulfuric acid from the anode compartment.
  • the pH of the salt chamber liquid was 8 and the current efficiency was 81%.
  • Example 31 (reference example)
  • the liquid purified with the ion exchange resin was electrolyzed in the same manner as in Example 30 except that the purified liquid was passed through the anode chamber using the electrolysis apparatus having the configuration shown in FIG. 550 ml of% lithium hydroxide was recovered.
  • the pH of the salt chamber was 8 at the start of electrolysis, 0.1 at the end, and the current efficiency was 48%.
  • Example 32 Lithium sulfate was desalted from 1000 ml of the leachate of Experimental Example 2 using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) composed of an anion exchange membrane and a cation exchange membrane.
  • the recovered liquid was 1000 ml of pure water
  • the anion exchange membrane was Neocepta AMX (manufactured by Astom Co., Ltd.)
  • the cation exchange membrane was monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.)
  • the voltage was 10V. Electrodialysis was performed at a temperature of 25 ° C.
  • metal ions were leached from the active material using this desalting solution.
  • sulfuric acid was added to the desalted solution to bring the pH to zero.
  • the sulfuric acid concentration at this time was 0.4M.
  • 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer.
  • the active material 40g was thrown into this, and it stirred for 3 hours, and leached lithium and manganese.
  • the supernatant was taken out and the undissolved material was separated.
  • the extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 33 (leaching with a saturated salt solution) Desalting and leaching were repeated until the manganese sulfate was saturated. At this time, the concentration of lithium was 1000 ppm and the concentration of manganese was 140000 ppm. Metal ions were leached from the active material in the same manner as in Example 32 except that this saturated solution was used as the leaching solution. Table 2 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 34 (reference example)
  • the metal ion concentration of the leachate prepared in Experimental Example 2 was analyzed. The analysis results are shown in Table 8.
  • Example 35 (reference example)
  • the active material metal ions were leached in the same manner as in Experimental Example 2 except that the sulfuric acid concentration of the leaching solution was 0.4M.
  • Table 8 shows the result of analyzing the metal ion concentration of the leachate.
  • Example 36 (Salt concentration and leaching rate 1) Sulfuric acid was added to 1000 ml of a salt solution in which 10% manganese sulfate was dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this was added 40 g of lithium manganate, and the mixture was stirred for 3 hours to leach lithium and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 37 (Salt concentration and leaching rate 2) Metal ions were leached from the active material in the same manner as in Example 36 except that a salt solution in which 2% manganese sulfate was dissolved was used. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 38 (pH adjustment 1 after leaching)
  • 150 g of lithium manganate To this was added 150 g of lithium manganate, and the mixture was stirred for 3 hours to leach lithium and manganese.
  • the pH of the leachate was measured and found to be 1.37, and the metal ion concentration was 6700 ppm of lithium and 24,000 ppm of manganese.
  • lithium sulfate was desalted from 500 ml of the leaching solution using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) composed of an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus acylator EX3B, manufactured by Astom Co., Ltd.
  • Neoceptor AMX manufactured by Astom Co., Ltd.
  • monovalent selective membrane Neoceptor CIMS manufactured by Astom Co., Ltd.
  • Electrodialysis was performed at 10 V and a temperature of 25 ° C.
  • 550 ml of the collected liquid was analyzed for the concentration of the metal ions, it was 5720 ppm for lithium and 2350 ppm for manganese, and the current efficiency at this time was 75%.
  • Example 39 (pH adjustment 2 after leaching) The pH was adjusted by leaching metal ions from the active material in the same manner as in Example 38, except that 22 g of 30% hydrogen peroxide water was used as the second reducing agent instead of manganese oxide for pH adjustment after leaching. did. The pH after adjustment was 2.94. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 40 (reference example) In the same manner as in Example 38, metal ions were leached from the active material, and pH was adjusted by adding 6.17 g of 10% aqueous ammonia. The pH was 2.62.
  • the transition metal was further removed to a low concentration with an ion exchange resin.
  • the column was filled with 520 cc of ion-exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) together with distilled water and passed through at a rate of 10 ml / min to remove transition metals.
  • the composition of the metal ion after purification was lithium 5100 ppm and manganese less than 1 ppb.
  • Example 42 (Production of lithium hydroxide by electrolysis) Electrolysis was performed on the liquid purified with the ion exchange resin in Example 41.
  • the configuration of the electrolyzer used is shown in FIG.
  • Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 .
  • As the cathode an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used.
  • an electrode in which ruthenium, iridium and titanium were applied as a catalyst to an expanded metal of titanium was used.
  • Liquid 500ml purified salt chamber, 13% aqueous lithium hydroxide 300ml the cathode chamber, and liquid permeation of 10% sulfuric acid 300ml at 60 ° C. respectively to the anode chamber, the power supply such that the current density is 0.2 A / cm 2 A voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V.
  • This electrolysis recovered 330 ml of 14.4% lithium hydroxide from the cathode compartment and 330 ml of 19.2% sulfuric acid from the anode compartment.
  • the pH of the salt chamber solution was unchanged at 8, and the current efficiency was 88%.
  • Example 43 For the liquid purified with the ion exchange resin, electrolysis was performed in the same manner as in Example 42 except that the purified liquid was passed through the anode chamber using the electrolysis apparatus having the configuration shown in FIG. 330 ml of 2% lithium hydroxide was recovered.
  • the pH of the salt chamber was 8 at the start of electrolysis, 0.1 at the end, and the current efficiency was 41%.
  • Example 44 Lithium sulfate was desalted from 1000 ml of the leachate of Experimental Example 3 using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus Acylator EX3B, manufactured by Astom Co., Ltd.
  • Neocepta AMX manufactured by Astom Co., Ltd.
  • monovalent selective membrane Neocepta CIMS manufactured by Astom Co., Ltd.
  • Example 45 (leaching with a saturated salt solution) Desalting and leaching were repeated until the iron sulfate was saturated. At this time, the concentration of lithium ions was 1000 ppm, and the concentration of iron ions was 84000 ppm. Metal ions were leached from the active material in the same manner as in Example 44 except that this saturated solution was used as the leaching solution. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 46 (reference example)
  • the metal ion concentration of the leachate prepared in Experimental Example 3 was analyzed.
  • the analysis results are shown in Table 9.
  • Example 47 (reference example)
  • the active material metal ions were leached in the same manner as in Experimental Example 3 except that the sulfuric acid concentration of the leaching solution was 0.4M.
  • Table 9 shows the results of analyzing the metal ion concentration of the leachate.
  • Example 48 (Salt concentration and leaching rate 1) Sulfuric acid was added to 1000 ml of a salt solution in which 10% of iron sulfate was dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this was added 40 g of lithium iron phosphate, and the mixture was stirred for 3 hours to leach lithium and iron. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 49 (Salt concentration and leaching rate 2) Metal ions were leached from the active material in the same manner as in Example 48 except that a salt solution in which 2% of iron sulfate was dissolved was used. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
  • Example 50 (pH adjustment after leaching)
  • pH adjustment after leaching Add 850 g of 1.5 M sulfuric acid to a 1000 ml Erlenmeyer flask, heat to 80 ° C. with a water bath, and stir with a stirrer.
  • 150 g of lithium iron phosphate To this was added 150 g of lithium iron phosphate, and the mixture was stirred for 3 hours to leach lithium and iron.
  • the pH of the leachate was measured and found to be 0.98.
  • 9.48 g of manganese oxide was added as an oxide of a metal having a valence of 2 or more and stirred at 80 ° C. for 2 hours, the pH became 2.72.
  • lithium sulfate was desalted from 500 ml of the leachate using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) composed of an anion exchange membrane and a cation exchange membrane.
  • an electrodialysis apparatus acylator EX3B, manufactured by Astom Co., Ltd.
  • Neoceptor AMX manufactured by Astom Co., Ltd.
  • monovalent selective membrane Neoceptor CIMS manufactured by Astom Co., Ltd.
  • Electrodialysis was performed at 10 V and a temperature of 25 ° C.
  • 550 ml of the collected liquid was analyzed for the concentration of the metal ions, it was 7360 ppm for lithium and 5570 ppm for iron, and the current efficiency at this time was 78%.
  • Example 51 (reference example)
  • metal ions were leached from the active material, and pH was adjusted by adding 15.1 g of 10% aqueous ammonia. The pH was 2.71.
  • Example 52 ⁇ Purification of transition metal from concentrated lithium solution (Example 52)> [Example 52] (Purification with ion exchange resin) To 500 ml of the recovered liquid obtained in Example 50, 50.2 ml of 2M lithium hydroxide was added to adjust the pH to 8, and transition metal ions were precipitated as hydroxides. The composition of the metal ions in the filtrate after filtering the precipitate was 5010 ppm lithium and 83 ppm iron.
  • the transition metal was further removed to a low concentration with an ion exchange resin.
  • the column was filled with 550 cc of ion-exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) together with distilled water and passed through at a rate of 10 ml / min to remove transition metals.
  • the composition of the metal ions after purification was 4960 ppm of lithium and less than 5 ppb of iron.
  • Example 53 (Production of lithium hydroxide by electrolysis) Electrolysis was performed on the liquid purified with the ion exchange resin in Example 52.
  • the configuration of the electrolyzer used is shown in FIG.
  • Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 .
  • As the cathode an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used.
  • an electrode in which ruthenium, iridium, and titanium were applied as catalysts to titanium expanded metal was used.
  • Liquid 500ml purified salt chamber, 13% aqueous lithium hydroxide 300ml the cathode chamber, and liquid permeation of 10% sulfuric acid 300ml at 60 ° C. respectively to the anode chamber, the power supply such that the current density is 0.2 A / cm 2 A voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V.
  • This electrolysis recovered 330 ml of 14.3% lithium hydroxide from the cathode compartment and 330 ml of 14.2% sulfuric acid from the anode compartment.
  • the pH of the salt chamber solution was unchanged at 8, and the current efficiency was 82%.
  • Example 54 For the liquid purified with the ion exchange resin, electrolysis was performed in the same manner as in Example 53 except that the purified liquid was passed through the anode chamber using the electrolysis apparatus having the configuration shown in FIG. 330 ml of 1% lithium hydroxide was recovered.
  • the pH of the salt chamber was 8 at the start of electrolysis, 0.1 at the end, and the current efficiency was 47%.
  • Example 55 ⁇ Recovery of lithium from used lithium ion secondary battery (Example 55 to Example 57)> [Example 55]
  • Five used lithium ion secondary batteries (cylindrical can type 18650) were baked at 700 ° C. for 2 hours in a muffle furnace, and the contents were taken out by peeling off the exterior. This was chopped to about 2 mm square with a cutting machine, pulverized with a ball mill for 2 hours, and passed through a 150 mesh sieve to obtain 50 g of powder containing the active material.
  • Sulfuric acid was added to 1000 ml of a salt solution in which 2% cobalt sulfate and 2% nickel sulfate were dissolved to bring the pH to zero.
  • the sulfuric acid concentration at this time was 0.4M.
  • 950 g of this liquid is placed in a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. 50 g of powder was put into this and stirred for 3 hours to leach lithium and transition metals.
  • 1 g of the leaching residue was taken out, placed in a mixed solution of 10 ml of 5M sulfuric acid and 1 ml of 30% hydrogen peroxide solution, stirred at 80 ° C. for 3 hours and filtered, and the filtrate was analyzed for metal ions, and lithium was not detected. .
  • the pH of the leachate was measured and found to be 1.8. When 1.87 g of nickel hydroxide was added thereto and stirred at 80 ° C. for 2 hours, the pH became 2.78. Thereafter, the mixture was allowed to stand, the supernatant was taken out, and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 ⁇ m. Table 1 shows the results of analyzing the concentration of metal ions in the leachate. In addition to the metal contained in the positive electrode shown in Table 1, the lithium battery uses aluminum or copper as a current collector, and the leachate from the waste lithium battery contains these ions.
  • lithium sulfate was desalted from 950 ml of the leachate using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane.
  • acylator EX3B manufactured by Astom Co., Ltd.
  • 950 ml of pure water was used as the recovery liquid
  • Neocepta AMX manufactured by Astom Co., Ltd.
  • monovalent selective membrane Neocepta CIMS manufactured by Astom Co., Ltd.
  • Electrodialysis was performed at a temperature of 25 ° C.
  • transition metals were removed from the recovered liquid with an ion exchange resin. 29.6 ml of 2M lithium hydroxide was added to 1050 ml of the collected liquid to adjust its pH to 8, and transition metal ions were precipitated as hydroxides.
  • the composition of the metal ions in the filtrate after filtering the precipitate was lithium 2930 ppm, cobalt 122 ppm, nickel 43 ppm, and manganese 4 ppm.
  • transition metal was further removed to a low concentration with an ion exchange resin.
  • 960 cc of ion exchange resin Sumichel MC900 manufactured by Sumika Chemtex Co., Ltd.
  • the composition of the metal ions after purification was lithium 2900 ppm, cobalt less than 0.5 ppb, nickel less than 5 ppb, and manganese less than 1 ppb.
  • Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 .
  • As the cathode an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used.
  • As the anode an electrode in which ruthenium, iridium, and titanium were applied as catalysts to titanium expanded metal was used.
  • Example 56 (reference example) 950 g of 0.4M sulfuric acid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 50 g of a powder containing an active material obtained in the same manner as in Example 55 was added and stirred for 3 hours to leach lithium and transition metal. 1 g of the leaching residue was taken out, put in a mixed solution of 10 ml of 5M sulfuric acid and 1 ml of 30% hydrogen peroxide solution, stirred and filtered at 80 ° C. for 3 hours, and analyzed for metal ions, and 3600 ppm of lithium was detected. .
  • Example 57 (reference example) In the same manner as in Example 55, metal ions were leached and 2.28 g of 10% aqueous ammonia was added to adjust the pH. The pH was 2.77. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
  • this leaching solution was electrodialyzed in the same manner as in Example 35.
  • lithium was 3230 ppm
  • cobalt was 760 ppm
  • nickel was 770 ppm
  • manganese was 50 ppm.
  • the current efficiency at this time was 38%.
  • the lithium recovery system of the present invention can be suitably used for recovering lithium from lithium-containing solids.

Abstract

Provided is a method for collecting only lithium from a lithium-containing solid selectively and with high yield. The method is an electrodialytic method, in which lithium ions, which are monovalent metal ions, are permeation-concentrated selectively from a solution containing lithium ions and at least one kind of bivalent transition metal ion selected from the group consisting of iron ions, cobalt ions, nickel ions and manganese ions using an electrodialytic apparatus equipped with a cation exchange membrane through which monovalent metal ions can pass selectively and an anion exchange membrane, wherein the solution contains polyvalent metal ions having a valency of 3 or more.

Description

リチウム回収方法Lithium recovery method
 本発明は、リチウムの回収方法に関する。 The present invention relates to a method for recovering lithium.
 リチウムは、リチウム二次電池の電荷移動媒体として使用されるアルカリ金属である。リチウム二次電池は、軽量で高電気容量の電池としてよく知られており、各種携帯機器用二次電池として大量に使用されている。また、近年、炭酸ガス排出規制への対応の為に開発されているハイブリッドカー及び電気自動車にもリチウム二次電池が使用されている。このリチウム二次電池のリサイクル技術は、これまでにも、多数開発されてきているが、多くの場合、回収有価物の市場価格よりリサイクルコストが上回り、より低コストのリチウム回収技術の開発が切望されている。 Lithium is an alkali metal used as a charge transfer medium for lithium secondary batteries. Lithium secondary batteries are well known as lightweight and high electric capacity batteries, and are used in large quantities as secondary batteries for various portable devices. In recent years, lithium secondary batteries are also used in hybrid cars and electric cars that have been developed to comply with carbon dioxide emission regulations. Many recycling technologies for lithium secondary batteries have been developed so far, but in many cases, recycling costs exceed the market price of recovered materials, and development of lower cost lithium recovery technologies is eagerly desired. Has been.
 これまでに提案されてきた技術として、特許第4581553号公報(特許文献1)には溶媒抽出を繰り返すことによりリチウム二次電池からリチウムを回収する方法が開示されている。この方法では、有機溶剤を用いるため、設備を防爆仕様にする必要があり、更に有機溶剤の臭気対策などにも費用がかかる。さらに、抽出操作を何度も繰り返さなくてはならないため、工程が長くなり、コストが嵩んでいた。 As a technique that has been proposed so far, Japanese Patent No. 4581553 (Patent Document 1) discloses a method of recovering lithium from a lithium secondary battery by repeating solvent extraction. In this method, since an organic solvent is used, it is necessary to make the equipment explosion-proof, and there is a cost for measures against odor of the organic solvent. Furthermore, since the extraction operation has to be repeated many times, the process becomes longer and the cost is increased.
 また、特許第4144820号公報(特許文献2)には、正極活物質を全て酸で溶解した後、リチウム塩を加える事により、正極活物質原料へとリサイクルする技術が開示されている。この方法は比較的低コストでリチウムをリサイクルすることを可能とする。従来は、リチウムイオン二次電池の正極活物質はコバルト酸リチウムが使用されていたが、近年、車載用のリチウムイオン二次電池の正極活物質には、安全性及びコスト等の理由からコバルト酸リチウムのほかに、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム等も用いており、多様化している。この為、正極活物質原料としてリサイクルするためには、コバルト系、ニッケル系、マンガン系、三元系等の多様な正極材料毎に単一の種類の正極活物質のリチウム二次電池を選別して夫々個別に処理しなければならなくなった。 Also, Japanese Patent No. 4144820 (Patent Document 2) discloses a technique of reusing a positive electrode active material as a positive electrode active material raw material by adding a lithium salt after all the positive electrode active material is dissolved with an acid. This method makes it possible to recycle lithium at a relatively low cost. Conventionally, lithium cobalt oxide has been used as the positive electrode active material of the lithium ion secondary battery. However, in recent years, the positive electrode active material of the lithium ion secondary battery for in-vehicle use has cobalt acid for safety and cost reasons. In addition to lithium, lithium manganate, nickel nickelate, lithium iron phosphate, etc. are also used and are diversified. For this reason, in order to recycle as a positive electrode active material material, a single type of positive electrode active material lithium secondary battery is selected for each of various positive electrode materials such as cobalt, nickel, manganese, and ternary. Each had to be handled individually.
 更に、特許第3675392号公報(特許文献3)には、リチウムイオン電池の焼き付け及び篩い分けにより得た金属及び金属酸化物を含む炭灰から、塩酸水溶液で金属を浸出し、この浸出液のpHを調整しながら電解することによって金属銅、金属コバルトを回収し、更にpHを上げる事により鉄とアルミを水酸化物として沈殿させ、最後にリチウムを炭酸リチウムの沈殿物として回収する技術が開示されている。この場合、鉄、アルミ等の市場価格の低い金属まで回収するため経済性が悪化する事が懸念される。 Furthermore, in Japanese Patent No. 3675392 (Patent Document 3), a metal is leached with an aqueous hydrochloric acid solution from a coal ash containing a metal and a metal oxide obtained by baking and sieving of a lithium ion battery, and the pH of the leachate is adjusted. Disclosed is a technique for recovering metallic copper and metallic cobalt by electrolysis while adjusting, further precipitating iron and aluminum as hydroxides by raising the pH, and finally recovering lithium as lithium carbonate precipitates. Yes. In this case, there is a concern that the economy will deteriorate because even metals with low market prices such as iron and aluminum are recovered.
 また、リチウムと遷移金属を含有する固体から、リチウムを選択的に浸出する技術として、特許4492222号公報(特許文献4)にはシュウ酸を用いる方法が提案されている。しかしながら、シュウ酸は比較的高価な酸で、浸出酸として回収する事が困難なため、浸出酸のコストが嵩んでしまう事が懸念される。 Also, as a technique for selectively leaching lithium from a solid containing lithium and a transition metal, Japanese Patent No. 4492222 (Patent Document 4) proposes a method using oxalic acid. However, since oxalic acid is a relatively expensive acid and difficult to recover as leaching acid, there is a concern that the cost of leaching acid increases.
 リチウム二次電池のリサイクル技術として電気透析を用いた低コストの技術も開示されている。特許第3452769号公報(特許文献5)では、廃リチウム二次電池からリチウムを選択的に取り出す目的で、1価選択性陽イオン交換膜を用いることが提案されているが、電池の正極材の成分であるコバルトやニッケル、マンガンなどの遷移金属のイオンが少なからず混入し、リチウムの精製は十分ではなかった。 A low-cost technique using electrodialysis is also disclosed as a lithium secondary battery recycling technique. In Japanese Patent No. 3454769 (Patent Document 5), it is proposed to use a monovalent selective cation exchange membrane for the purpose of selectively extracting lithium from a waste lithium secondary battery. There were not a few ions of transition metals such as cobalt, nickel, and manganese, and lithium was not sufficiently purified.
 また浸出液に含有する遷移金属イオンは、電気透析の際にイオン交換膜を僅かに透過して電極液に混入するため、これが陽極で酸化されて水に不溶のスケールが発生し、イオン交換膜表面に付着堆積するという問題がある。この場合、頻繁な膜の洗浄作業が必要になり、生産性が著しく悪化し、コスト高の原因になる。 In addition, the transition metal ions contained in the leachate permeate the ion exchange membrane slightly during electrodialysis and mix into the electrode solution, which is oxidized at the anode to generate insoluble scale in water, and the surface of the ion exchange membrane. There is a problem that it adheres to and accumulates. In this case, frequent film cleaning work is required, the productivity is remarkably deteriorated, and the cost is increased.
 電極液中の酸化物を還元剤で還元する方法としては特公昭59-16485号公報(特許文献6)に、膜の酸化劣化を防止する目的で電極液に接して新しく設けた専用流路に亜硫酸塩を流す方法が開示されているが、亜硫酸イオンが分解してスケールを発生するという問題がある。 Japanese Patent Publication No. 59-16485 (Patent Document 6) discloses a method for reducing oxides in an electrode solution with a reducing agent. In order to prevent oxidative deterioration of the film, a new dedicated channel in contact with the electrode solution is provided. Although a method of flowing sulfite is disclosed, there is a problem that sulfite ions decompose and generate scale.
特許第4581553号公報Japanese Patent No. 4581553 特許第4144820号公報Japanese Patent No. 4144820 特許第3675392号公報Japanese Patent No. 3675392 特許第4492222号公報Japanese Patent No. 4492222 特許第3452769号公報Japanese Patent No. 3454769 特公昭59-16485号公報Japanese Patent Publication No.59-16485
 本発明は、このような従来の事情に鑑みてなされたものであり、リチウム含有固体からリチウムのみを選択的に高収率で回収する方法を提供することを目的とする。 The present invention has been made in view of such conventional circumstances, and an object thereof is to provide a method for selectively recovering only lithium from a lithium-containing solid in a high yield.
 本発明は以下の通りである。
[1] 1価金属イオン選択透過性陽イオン交換膜と陰イオン交換膜とを有する電気透析装置を用いて、1価金属イオンのリチウムイオン、並びに鉄イオン、コバルトイオン、ニッケルイオン及びマンガンイオンからなる群より選択される少なくとも一種の2価の遷移金属イオンを含む溶液から、該リチウムイオンを選択的に透過濃縮する電気透析方法であって、該溶液が3価以上の多価金属イオンを含有している、電気透析方法。
[2] 前記3価以上の金属イオンが、3価のアルミニウムイオン及び/または3価の鉄イオンである、[1]に記載の電気透析方法。
[3] 前記3価以上の金属イオンの濃度が、前記溶液中の2価の遷移金属イオンの合計重量に対して20重量%以上100重量%以下である、[1]又は[2]に記載の電気透析方法。
[4] 前記溶液は、前記3価以上の多価金属イオンが添加されることによって、前記3価以上の多価金属イオンの濃度が高められている、[1]~[3]のいずれか一項に記載の電気透析方法。
[5] 前記溶液が、リチウムを含有する固体の浸出液である、[1]~[4]のいずれか一項に記載の電気透析方法。
[6] 前記リチウムを含有する固体の浸出液は、酸に2価以上の金属の塩が溶解している酸性浸出液を用いてリチウム含有固体からリチウムを浸出して得られる、[5]に記載の電気透析方法。
[7] 前記2価以上の金属は、鉄、コバルト、ニッケル、及びマンガンからなる群より少なくとも1種選択される金属を含み、該金属の塩の前記酸性浸出液中の濃度は、それぞれ7000ppm以上飽和濃度以下の範囲である、[6]に記載の電気透析方法。
[8] 前記電気透析装置が、陰極及び電極液を含む陰極室、陽極及び電極液を含む陽極室、脱塩液を含む脱塩液室、並びに濃縮液を含む濃縮液室をさらに有し、該陽極室の電極液に、第一の還元剤が添加されている、[1]~[7]のいずれか一項に記載の電気透析方法。
[9] 前記第一の還元剤は、シュウ酸、蟻酸、及びこれらの塩、アルデヒド並びに還元性糖類からなる群より少なくとも1種選択される、[8]に記載の電気透析方法。
[10] 前記第一の還元剤は、前記溶液の2価の遷移金属イオンの総量に対して、100ppm以上100000ppm以下で添加する、[8]又は[9]に記載の電気透析方法。
[11] 前記電気透析装置は、前記電極液と前記アニオン交換膜が接している、[8]~[10]のいずれか一項に記載の電気透析方法。
[12] 前記電気透析装置は、前記電極液室の隣に前記濃縮液室を有する、[8]~[11]のいずれか一項に記載の電気透析方法。
[13] 前記溶液に2価以上の金属の水酸化物、2価以上の金属の酸化物、及び第二の還元剤からなる群より選択される少なくとも1種の化合物を添加して、前記溶液のpHを2~6に調整する工程をさらに含む、[1]~[12]のいずれかに記載の電気透析方法。
[14] 前記2価以上の金属の水酸化物は、水酸化コバルト、水酸化ニッケル、水酸化アルミニウム、水酸化鉄及び酸化マンガンからなる群より選択される少なくとも1種の金属化合物であり、前記2価以上の金属の酸化物は酸化マンガンである、[13]に記載の方法。
[15] 前記第二の還元剤は、過酸化水素又はシュウ酸を含む、[13]又は[14]に記載の電気透析方法。
[16] 前記脱塩液を、前記浸出液として再利用する工程を含む、[8]~[15]に記載の方法。
[17] [1]~[16]のいずれかに一項に記載の電気透析方法によってリチウム濃縮溶液を得る工程、及び該リチウム濃縮溶液から電解法により水酸化リチウム及び酸を回収する工程を含む、リチウム回収方法。
[18] 前記リチウム濃縮溶液に、水酸化リチウムを添加しかつ該溶液のpHを7~13に調整して、溶存する遷移金属を水酸化物として沈殿させる工程、該溶液から該沈殿した水酸化物を分離する工程、及び該溶液中のリチウム以外の金属成分をイオン交換樹脂により低減させる工程をさらに含み、これらの工程の後に水酸化リチウム及び酸を回収する前記工程を含む[17]に記載のリチウム回収方法。
[19] 前記電解法は、陽極室、陰極室、該陽極室と該陰極室に挟まれた塩室、該陽極室と該塩室を隔絶する陰イオン交換膜、及び該塩室と該陰極室を隔絶する陽イオン交換膜を有する電解装置によって行い、該陰極室に水酸化リチウムを生成させて回収し、かつ該陽極室に酸を生成させて回収する、[17]又は[18]に記載のリチウム回収方法。
[20] 前記回収した水酸化リチウムを用いて、前記リチウム濃縮溶液のpH調整を行い、かつ前記回収した酸を前記イオン交換樹脂の再生に用いる、[18]又は[19]に記載のリチウム回収方法。
[21] 前記酸は硫酸である、[17]~[20]のいずれか一項に記載の方法。
[22] 前記リチウムを含有する固体は、リチウムイオン電池若しくはその処理物、又はリチウムイオン電池を製造する過程で排出された固体である、[5]~[21]のいずれか1項に記載の方法。
The present invention is as follows.
[1] From monovalent metal ion lithium ion, iron ion, cobalt ion, nickel ion and manganese ion using an electrodialyzer having a monovalent metal ion selective permeable cation exchange membrane and an anion exchange membrane An electrodialysis method for selectively permeating and concentrating lithium ions from a solution containing at least one divalent transition metal ion selected from the group consisting of trivalent or higher polyvalent metal ions An electrodialysis method.
[2] The electrodialysis method according to [1], wherein the trivalent or higher metal ion is a trivalent aluminum ion and / or a trivalent iron ion.
[3] The concentration of the trivalent or higher metal ion is 20% by weight to 100% by weight with respect to the total weight of the divalent transition metal ions in the solution, according to [1] or [2]. Electrodialysis method.
[4] The solution according to any one of [1] to [3], wherein the trivalent or higher polyvalent metal ion is added to increase the concentration of the trivalent or higher polyvalent metal ion. The electrodialysis method according to one item.
[5] The electrodialysis method according to any one of [1] to [4], wherein the solution is a solid leachate containing lithium.
[6] The solid leaching solution containing lithium is obtained by leaching lithium from a lithium-containing solid using an acidic leaching solution in which a divalent or higher-valent metal salt is dissolved in an acid. Electrodialysis method.
[7] The divalent or higher metal includes at least one metal selected from the group consisting of iron, cobalt, nickel, and manganese, and the concentration of the metal salt in the acidic leachate is 7000 ppm or higher, respectively. The electrodialysis method according to [6], wherein the electrodialysis method is in a range below the concentration.
[8] The electrodialysis apparatus further includes a cathode chamber containing a cathode and an electrode solution, an anode chamber containing an anode and an electrode solution, a desalting solution chamber containing a desalting solution, and a concentrated solution chamber containing a concentrate, The electrodialysis method according to any one of [1] to [7], wherein a first reducing agent is added to the electrode solution in the anode chamber.
[9] The electrodialysis method according to [8], wherein the first reducing agent is selected from the group consisting of oxalic acid, formic acid, salts thereof, aldehydes, and reducing sugars.
[10] The electrodialysis method according to [8] or [9], wherein the first reducing agent is added at 100 ppm or more and 100,000 ppm or less with respect to a total amount of divalent transition metal ions in the solution.
[11] The electrodialysis method according to any one of [8] to [10], wherein the electrodialyzer is in contact with the electrode solution and the anion exchange membrane.
[12] The electrodialysis method according to any one of [8] to [11], wherein the electrodialyzer has the concentrate chamber adjacent to the electrode solution chamber.
[13] Add at least one compound selected from the group consisting of a metal hydroxide having a valence of 2 or more, an oxide of a metal having a valence of 2 or more, and a second reducing agent to the solution, The electrodialysis method according to any one of [1] to [12], further comprising a step of adjusting the pH of the solution to 2 to 6.
[14] The metal hydroxide having a valence of 2 or more is at least one metal compound selected from the group consisting of cobalt hydroxide, nickel hydroxide, aluminum hydroxide, iron hydroxide, and manganese oxide, The method according to [13], wherein the metal oxide having a valence of 2 or more is manganese oxide.
[15] The electrodialysis method according to [13] or [14], wherein the second reducing agent includes hydrogen peroxide or oxalic acid.
[16] The method according to [8] to [15], comprising a step of reusing the desalted solution as the leachate.
[17] A step of obtaining a lithium concentrated solution by the electrodialysis method according to any one of [1] to [16] and a step of recovering lithium hydroxide and an acid from the lithium concentrated solution by an electrolytic method , Lithium recovery method.
[18] A step of adding lithium hydroxide to the lithium concentrated solution and adjusting the pH of the solution to 7 to 13 to precipitate the dissolved transition metal as a hydroxide, the precipitated hydroxide from the solution The method further includes a step of separating the product, and a step of reducing metal components other than lithium in the solution with an ion exchange resin, and the step of recovering lithium hydroxide and acid after these steps is included [17] Lithium recovery method.
[19] The electrolytic method includes an anode chamber, a cathode chamber, a salt chamber sandwiched between the anode chamber and the cathode chamber, an anion exchange membrane that separates the anode chamber from the salt chamber, and the salt chamber and the cathode. [17] or [18], wherein the electrolysis apparatus having a cation exchange membrane that isolates the chamber is used, lithium hydroxide is generated and recovered in the cathode chamber, and acid is generated and recovered in the anode chamber. The lithium recovery method as described.
[20] The lithium recovery according to [18] or [19], wherein the pH of the lithium concentrated solution is adjusted using the recovered lithium hydroxide, and the recovered acid is used for regeneration of the ion exchange resin. Method.
[21] The method according to any one of [17] to [20], wherein the acid is sulfuric acid.
[22] The solid containing lithium is a lithium ion battery or a processed product thereof, or a solid discharged in the process of manufacturing a lithium ion battery, according to any one of [5] to [21] Method.
 本発明によれば、リチウム含有固体からリチウムのみを選択的に高い収率で回収することができる。更に、本発明の好ましい実施態様により、廃棄物を最小限に抑え、高い経済性でリチウム含有固体からリチウムを回収することができる。 According to the present invention, only lithium can be selectively recovered from a lithium-containing solid with a high yield. Furthermore, preferred embodiments of the present invention allow lithium to be recovered from lithium-containing solids with minimal waste and high economic efficiency.
電気透析用脱塩液中の2価金属イオンの合計重量に対するAlの割合と電気透析後の不純物金属の比率の関係を示すグラフ。The graph which shows the relationship between the ratio of Al with respect to the total weight of the bivalent metal ion in the desalination liquid for electrodialysis, and the ratio of the impurity metal after electrodialysis. 本発明の好ましい実施態様で用いる陰イオン交換膜および陽イオン交換膜から成る電解装置。An electrolytic apparatus comprising an anion exchange membrane and a cation exchange membrane used in a preferred embodiment of the present invention. 陽イオン交換膜から成る一般的な電解装置。A general electrolyzer consisting of a cation exchange membrane.
<多価金属イオンの含有による選択性の向上>
 本発明の方法によれば、1価のリチウムイオンおよび2価金属イオンを含む溶液の電気透析において、該溶液に3価以上の多価金属イオンが含有することにより、リチウムイオンを選択的に透過濃縮することができる。上記2価金属イオンは、鉄イオン、コバルトイオン、ニッケルイオンおよび及びマンガンイオンからなる群より少なくとも一種以上選択される2価の遷移金属イオンである。
<Improved selectivity by containing polyvalent metal ions>
According to the method of the present invention, in electrodialysis of a solution containing monovalent lithium ions and divalent metal ions, lithium ions are selectively permeated by containing trivalent or higher polyvalent metal ions in the solution. It can be concentrated. The divalent metal ion is a divalent transition metal ion selected from at least one selected from the group consisting of iron ions, cobalt ions, nickel ions, and manganese ions.
(多価金属イオン)
 リチウムイオンおよび2価金属イオンを含む溶液に含有する多価金属イオンは、価数が3以上のイオンであり、3価金属イオン及び/又は4価金属イオンとすることができる。例えば、アルミニウム、鉄、マンガン、チタン、コバルト、錫、クロムの3価または4価のイオン等が挙げられるが、3価のアルミニウムイオン及び鉄イオンが好ましく、3価のアルミニウムイオンがより好ましい。
(Polyvalent metal ion)
The polyvalent metal ions contained in the solution containing lithium ions and divalent metal ions are ions having a valence of 3 or more, and can be trivalent metal ions and / or tetravalent metal ions. For example, trivalent or tetravalent ions such as aluminum, iron, manganese, titanium, cobalt, tin, and chromium can be mentioned, and trivalent aluminum ions and iron ions are preferable, and trivalent aluminum ions are more preferable.
 多価金属イオンを含まない溶液に多価金属イオンを含有させるためには、その多価金属イオンを形成する物質を酸や水に溶解または分解して溶解し、多価金属イオンを生成させればよい。イオンを形成する物質は、金属単体、金属酸化物又は塩の形が好ましい。金属としてはアルミニウムや鉄、塩としてはそれらの金属の硫酸塩、塩酸塩、硝酸塩、炭酸塩、りん酸塩、亜硫酸塩、塩素酸塩、及び有機酸塩、例えば蟻酸、シュウ酸、酢酸の塩などが挙げられるが、硫酸塩、塩酸塩、硝酸塩等の強酸の塩が、解離度が大きく好ましい。さらに硫酸塩、塩酸塩が一般に安価で、安定であり、かつ水への溶解性も良好なので特に好ましい。 In order to contain a polyvalent metal ion in a solution that does not contain the polyvalent metal ion, the substance that forms the polyvalent metal ion can be dissolved or decomposed in acid or water to form a polyvalent metal ion. That's fine. The substance that forms ions is preferably in the form of a simple metal, a metal oxide, or a salt. Aluminum and iron as metals, sulfates, hydrochlorides, nitrates, carbonates, phosphates, sulfites, chlorates and organic acid salts of those metals, such as formic acid, oxalic acid, acetic acid salts Strong acid salts such as sulfates, hydrochlorides, and nitrates are preferred because of their high degree of dissociation. Furthermore, sulfates and hydrochlorides are particularly preferred because they are generally inexpensive, stable and have good solubility in water.
 多価金属イオンが含有していると、脱塩液の不純物が増加していることになるが、その含有によって、透過膜を透過する1価イオンの選択性が向上するため、2価イオンの漏れが減少する。多価金属イオン自体も漏れが小さいので、結果的に濃縮液の1価イオンの比率が増大することになる。ただし、多価金属イオンを過剰に含有すると漏れ出た多価金属イオンの汚染で1価イオンの比率が低下する場合がある。 When polyvalent metal ions are contained, impurities in the desalting solution are increased. However, the inclusion improves the selectivity of monovalent ions that permeate the permeable membrane. Leakage is reduced. Since the multivalent metal ions themselves have a small leakage, the ratio of monovalent ions in the concentrated liquid increases as a result. However, if polyvalent metal ions are contained excessively, the ratio of monovalent ions may decrease due to contamination of leaked polyvalent metal ions.
 1つの実施態様において、多価金属イオンの含有量は、僅かであっても効果が認められる。電気透析を行う溶液中の2価金属イオンの合計重量に対する多価金属イオンの割合が増すにつれて、1価選択性陽イオン交換膜の選択性は増大して、電気透析後の不純物金属の比率が減少する。ところが、多価金属イオンの割合が過剰になると、多価金属イオン自体の膜の透過の影響が大きくなるため、不純物金属の比率の減少の仕方が緩やかになる。多価金属イオンの含有量は、2価の金属イオン合計重量に対して0.1%以上であり、好ましくは0.5%以上、1.0%以上、2.0%以上、5.0%以上、10%以上、15%以上、18%以上、20%以上、25%以上、30%以上である。多価金属イオンの含有量が30%以下の場合は含有量が大きくなるほど好ましい。また、多価金属イオンの含有量は、2価の金属イオン合計重量に対して、1000%以下、500%以下、300%以下、200%以下又は100%以下であることが好ましい。多価金属イオンの含有量が100%以上の場合は含有量が小さくなるほど好ましい。 In one embodiment, the effect is recognized even if the content of the polyvalent metal ion is small. As the ratio of polyvalent metal ions to the total weight of divalent metal ions in the solution for electrodialysis increases, the selectivity of the monovalent selective cation exchange membrane increases, and the ratio of impurity metals after electrodialysis increases. Decrease. However, when the ratio of the polyvalent metal ions becomes excessive, the influence of the permeation of the polyvalent metal ions themselves through the membrane increases, and the method of decreasing the ratio of the impurity metals becomes gradual. The content of the polyvalent metal ions is 0.1% or more with respect to the total weight of the divalent metal ions, preferably 0.5% or more, 1.0% or more, 2.0% or more, 5.0 % Or more, 10% or more, 15% or more, 18% or more, 20% or more, 25% or more, 30% or more. When the content of the polyvalent metal ion is 30% or less, it is more preferable as the content increases. The content of polyvalent metal ions is preferably 1000% or less, 500% or less, 300% or less, 200% or less, or 100% or less with respect to the total weight of divalent metal ions. When the content of the polyvalent metal ion is 100% or more, the smaller the content, the better.
 多価金属イオンの含有により陽イオン交換膜の1価金属イオン選択透過性が向上する理由については、その理論に拘束されないが、含有された多価金属イオンが陽イオン交換膜の表面に吸着または近傍に濃縮され2価陽イオンが透過するのを阻止していると考えられる。多価金属イオン自体は、1価金属イオン選択性陽イオン交換膜を透過しにくい。 The reason why the monovalent metal ion selective permeability of the cation exchange membrane is improved by the inclusion of the polyvalent metal ion is not limited by the theory, but the contained polyvalent metal ion is adsorbed on the surface of the cation exchange membrane. It is thought that it is concentrated in the vicinity to prevent permeation of divalent cations. The polyvalent metal ion itself hardly permeates the monovalent metal ion selective cation exchange membrane.
(電気透析装置)
 電気透析装置は、脱塩と濃縮を同時に行なうことができる装置である。本発明で用いられる電気透析装置としては、1価金属イオン選択性陽イオン交換膜、陰イオン交換膜、陽イオン交換膜及び陰イオン交換膜により区画された脱塩室及び濃縮室、これらの両端に形成される陰極室及び陽極室、並びに両電極間に電圧を印加する電源設備を具備する装置が挙げられる。また各々の室に液の入口と出口を設けてポンプで液循環できるような構成も好ましい。このような電気透析装置としては具体的には、アシライザー10、25、02およびマイクロアシライザーS3、EX3B(いずれも(株)アストム製、商標)等が挙げられる。また、電気透析は、脱塩と濃縮を同時に行なう操作であり、流体を供給しながら直流電圧を印加して、その電位差により陽イオンを陰極側に、陰イオンを陽極側に移動させることにより脱塩液と濃縮液(例えば、リチウム濃縮溶液)を得る。これにより、リチウム回収溶液に含まれる金属は、2価以上の金属イオンとリチウムとに分離される。
(Electrodialysis machine)
An electrodialysis apparatus is an apparatus that can simultaneously perform desalting and concentration. The electrodialysis apparatus used in the present invention includes a monovalent metal ion selective cation exchange membrane, an anion exchange membrane, a desalting chamber and a concentration chamber partitioned by a cation exchange membrane and an anion exchange membrane, and both ends thereof. And an apparatus including a cathode chamber and an anode chamber, and a power supply facility for applying a voltage between the electrodes. In addition, it is also preferable to provide a liquid inlet and outlet in each chamber so that the liquid can be circulated by a pump. Specific examples of such an electrodialyzer include an acylator 10, 25, 02, and a microacylator S3, EX3B (both manufactured by Astom Co., Ltd.). Electrodialysis is an operation in which desalting and concentration are performed simultaneously. A DC voltage is applied while supplying a fluid, and the positive ions are moved to the cathode side and anions are moved to the anode side by the potential difference. A salt solution and a concentrated solution (for example, a lithium concentrated solution) are obtained. Thereby, the metal contained in the lithium recovery solution is separated into bivalent or higher metal ions and lithium.
 本発明の実施態様における電気透析法においては、例えば陽イオン交換膜と陰イオン交換膜とを組み合わせて用いる電気透析法を採用することができる。この方法においては、第4級アンモニウム塩基、アミンなどの陽電荷をもつ陰イオン交換膜と、スルホン酸基やカルボン酸基などの陰電荷をもつ陽イオン交換膜とを交互に並べて両側の電極から直流電流を通すことによって、陽イオン種は、陽イオン交換膜を透過し、かつ陰イオン種は、陰イオン交換膜を透過して、透析が行われることになる。 In the electrodialysis method according to the embodiment of the present invention, for example, an electrodialysis method using a combination of a cation exchange membrane and an anion exchange membrane can be employed. In this method, an anion exchange membrane having a positive charge such as a quaternary ammonium base or an amine and a cation exchange membrane having a negative charge such as a sulfonic acid group or a carboxylic acid group are alternately arranged from both electrodes. By passing a direct current, the cation species permeate the cation exchange membrane and the anion species permeate the anion exchange membrane, and dialysis is performed.
 陰イオン交換膜はどのような膜を用いてもよいが、この膜として例えばスチレンとジビニルベンゼンの共重合体ベース膜に4級アンモニウム基を導入して得られた膜、スチレン-ブタジェン系の共重合体ベース膜に4級アンモニウム基を導入した膜、テトラエチレンと4級アンモニウム基を側鎖に持つパーフルオロビニルエーテル類との共重合物からなる膜等を挙げることができる。具体的には、ネオセプタACM、ネオセプタAM-1、ネオセプタACS、ネオセプタACLE-5P、ネオセプタAHA、ネオセプタAMH(以上、(株)アストム製、商標)、セレミオンAMV、セレミオンAMT、セレミオンDSV、セレミオンAAV、セレミオンASV、セレミオンAHT、セレミオンAPS(以上、旭硝子社製、商標)、FAB,FAA(以上、フマテック社製、商標)、アシプレックスA-501、A-231、A-101(以上、旭化成社製、商標)等がある。 Any membrane may be used as the anion exchange membrane. For example, a membrane obtained by introducing a quaternary ammonium group into a copolymer base membrane of styrene and divinylbenzene, or a styrene-butadiene type copolymer. Examples thereof include a film in which a quaternary ammonium group is introduced into a polymer base film, and a film made of a copolymer of tetraethylene and perfluorovinyl ethers having a quaternary ammonium group in the side chain. Specifically, Neoceptor ACM, Neoceptor AM-1, Neoceptor ACS, Neoceptor ACLE-5P, Neoceptor AHA, Neoceptor AMH (trade name, manufactured by Astom Co., Ltd.), Selemion AMV, Selemion AMT, Selemion DSV, Selemion AAV, Selemion ASV, Selemion AHT, Selemion APS (trademark, manufactured by Asahi Glass Co., Ltd.), FAB, FAA (trademark, manufactured by Fumatec Co., Ltd.), Aciplex A-501, A-231, A-101 (above, manufactured by Asahi Kasei Corporation) Trademark).
 陽イオン交換膜には、1価および2価金属イオンを含む溶液から選択的に1価金属イオンを取り出す、1価金属イオン選択透過性陽イオン交換膜が用いられる。この膜として、例えばスチレンとジビニルベンゼンの共重合体ベース膜にスルホン酸基を導入して得られた膜、スチレン-ブタジエン系の共重合体ベース膜にスルホン酸基を導入した膜、フェノールおよびホルマリンの縮合物からなる膜、ポリオレフィンフィルムにスチレンをグラフト重合しこれにスルホン酸基を導入した膜、テトラフルオロエチレンとパーフルオロスルホニルエトキシビニルエーテルの共重合物からなる膜、テトラフルオロエチレンとカルボキシル基を側鎖にもつパーフルオロビニルエーテル類との共重合物からなる膜等の陽イオン交換膜の表面に4級アンモニウム基を導入したポリマーの薄膜を形成させた膜等を挙げることができる。具体的には、ネオセプタCIMS、ネオセプタCMI、ネオセプタCLS-25(以上、(株)アストム製、商標)、セレミオンCSO、セレミオンCSV(以上、旭硝子社製、商標)等がある。 As the cation exchange membrane, a monovalent metal ion permselective cation exchange membrane for selectively extracting monovalent metal ions from a solution containing monovalent and divalent metal ions is used. As this film, for example, a film obtained by introducing a sulfonic acid group into a copolymer base film of styrene and divinylbenzene, a film obtained by introducing a sulfonic acid group into a styrene-butadiene copolymer base film, phenol and formalin A film made of a condensate of styrene, a film in which styrene is graft-polymerized on a polyolefin film and a sulfonic acid group is introduced into the film, a film made of a copolymer of tetrafluoroethylene and perfluorosulfonylethoxyvinyl ether, and a side of tetrafluoroethylene and a carboxyl group Examples thereof include a film in which a polymer thin film in which a quaternary ammonium group is introduced is formed on the surface of a cation exchange membrane such as a membrane made of a copolymer with perfluorovinyl ethers in the chain. Specific examples include Neoceptor CIMS, Neoceptor CMI, Neoceptor CLS-25 (trade name, manufactured by Astom Co., Ltd.), Selemion CSO, and Selemion CSV (trade name, manufactured by Asahi Glass Co., Ltd.).
 本発明において、1価金属イオン選択透過性とは、1価イオン及び多価金属イオンを含む溶液に電気透析をした場合に、多価金属イオンより1価イオンをより多く透過させる膜の性質をいう。例えばコバルトイオンに対するリチウムイオンの1価イオン選択透過性は、下記式RTNCo/Liによって評価することができる。
RTNCo/Li=PCo/Li=(tCo/tLi)/(CCo/CLi
(ここで、PCo/LiはLiに対するCoの相対輸率を表し、tCoおよびtLiはそれぞれコバルトイオンおよびリチウムイオンの膜中での輸率、CCoおよびCLiはそれぞれ希釈側でのコバルトイオンおよびリチウムイオンの濃度である。)
In the present invention, the monovalent metal ion selective permeability is a property of a membrane that allows more monovalent ions to permeate than polyvalent metal ions when electrodialysis is performed on a solution containing monovalent ions and polyvalent metal ions. Say. For example, the monovalent ion selective permeability of lithium ions with respect to cobalt ions can be evaluated by the following formula RTN Co / Li .
RTN Co / Li = PCo / Li = (t Co / t Li ) / (C Co / C Li )
(Where P Co / Li represents the relative transport number of Co to Li, t Co and t Li are the transport numbers of cobalt ions and lithium ions in the film, respectively, and C Co and C Li are the dilution side values, respectively. Cobalt ion and lithium ion concentration.)
 例えば、電気透析する溶液が、リチウムイオン、コバルトイオン、ニッケルイオン、マンガンイオンを含む場合、RTNCo/Li、RTNNi/Li又はRTNMn/Liのいずれかが1よりも小さい膜は、RTNが1未満であるとされ、1価イオン選択透過性の膜であると認められる場合がある。 For example, when the solution to be electrodialyzed contains lithium ions, cobalt ions, nickel ions, manganese ions, a film in which any one of RTN Co / Li , RTN Ni / Li, or RTN Mn / Li is smaller than 1 has an RTN of It may be recognized that it is a monovalent ion selective permeable membrane.
(1価金属イオンおよび2価金属イオンを含む溶液)
 本発明における1価金属イオンおよび2価金属イオンを含む溶液とは、例えば1価金属イオンとしてリチウムイオン等を含み、かつ2価の金属イオンとしてコバルト、ニッケル、マンガン、鉄等を含む溶液である。具体的には、リチウムを含有する固体の浸出液が挙げられ、本発明の電気透析方法は、リチウムを含む固体からリチウムを回収する際、リチウムを含む固体の浸出液からリチウムを選択的に取り出す場合に好適に使用できる。リチウムを含有する固体としては、リチウムイオン電池正極活物質製造工程で排出された規格外品や、劣化したリチウムイオン電池の処理物などが挙げられる。ここで処理物とはリチウムイオン電池から回収した正極活物質を含む固体を示す。これらのものは1価のリチウムおよびコバルト、ニッケル、マンガン、鉄等の2価の遷移金属を高い含有率で含む。
(Solution containing monovalent metal ions and divalent metal ions)
The solution containing monovalent metal ions and divalent metal ions in the present invention is, for example, a solution containing lithium ions or the like as monovalent metal ions and containing cobalt, nickel, manganese, iron or the like as divalent metal ions. . Specifically, a solid leaching solution containing lithium can be mentioned, and when the electrodialysis method of the present invention recovers lithium from a solid containing lithium, the lithium is selectively extracted from the solid leaching solution containing lithium. It can be used suitably. Examples of the solid containing lithium include non-standard products discharged in the lithium ion battery positive electrode active material manufacturing process and processed products of deteriorated lithium ion batteries. Here, the treated product indicates a solid containing the positive electrode active material recovered from the lithium ion battery. These materials contain monovalent lithium and divalent transition metals such as cobalt, nickel, manganese, iron and the like at a high content.
<第一の還元剤添加によるスケール発生の抑制>
 本発明のさらに好ましい実施態様によれば、陽イオン交換膜と陰イオン交換膜とを有する電気透析装置によって、遷移金属イオンを含む水溶液からリチウムイオンを分離する電気透析方法において、電気透析装置の陽極室の電極液に第一の還元剤を添加することによって、電極液におけるスケールの発生を抑制し、低コストで長期的に安定な電気透析の運転が可能になる。
<Inhibition of scale generation by adding first reducing agent>
According to a further preferred embodiment of the present invention, in an electrodialysis method for separating lithium ions from an aqueous solution containing transition metal ions by an electrodialysis apparatus having a cation exchange membrane and an anion exchange membrane, the anode of the electrodialysis apparatus By adding the first reducing agent to the electrode liquid in the chamber, generation of scale in the electrode liquid is suppressed, and stable electrodialysis operation can be performed at low cost for a long term.
 各々の遷移金属イオンは、通常は+2価で存在し、比較的水に溶けやすいが、酸化されて生成する塩や酸化物が、水に難溶になる現象はよく知られている。例えば硫酸マンガン(II)は水溶性であるが、これが酸化されて生成する二酸化マンガン(IV)は水に溶けにくい。これらの遷移金属イオンを含有する溶液に電気透析を行った場合、イオン交換膜を通して、電極液に浸み出してきた遷移金属イオンが、陽極で酸化されて水に不溶な塩や酸化物となりスケールとして析出してくる。さらに電気透析を継続するとスケールはイオン交換膜の表面に付着堆積するようになり、膜詰まりなどの原因になる。 Each transition metal ion is usually present in a +2 valence and is relatively easily soluble in water, but the phenomenon that salts and oxides produced by oxidation become hardly soluble in water is well known. For example, manganese (II) sulfate is water-soluble, but manganese (IV) produced by oxidation of manganese sulfate is difficult to dissolve in water. When electrodialysis is performed on a solution containing these transition metal ions, the transition metal ions that have leached into the electrode solution through the ion exchange membrane are oxidized at the anode to form salts and oxides insoluble in water. As it comes out. Furthermore, if electrodialysis is continued, the scale adheres and accumulates on the surface of the ion exchange membrane, which causes membrane clogging.
(第一の還元剤)
 本発明者らは、この遷移金属イオンの酸化を防止するために、電極液に特定の還元剤(第一の還元剤)を添加することが極めて効果的であることを見出した。電気透析装置の電極液のように極めて強い酸化および還元雰囲気の中で使用できる還元剤は限られる。例えば亜硫酸ナトリウムなどの亜硫酸塩は、亜硫酸イオンが電極で酸化還元反応し、水に不溶なスケールを発生するので好ましくない。第一の還元剤として使用可能な還元剤としては、ヒドラジン、アスコルビン酸、シュウ酸、蟻酸及びこれらの塩類、ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類、ショ糖、ブドウ糖、果糖などの還元性糖類等が挙げられるが、中でもシュウ酸、蟻酸が好ましく、特にシュウ酸は電気透析濃縮液に混入した場合でも加熱などによる脱炭酸で容易に除去することが可能なので好ましい。電極液に添加する第一の還元剤の量は脱塩液中の遷移金属イオンの総量の100ppm以上100000ppm以下、好ましくは300ppm以上10000ppm以下、さらに好ましくは500ppm以上5000ppm以下が好ましい。100ppm以上であればスケールの発生を抑制できる傾向にあり、また100000ppm以下であれば過剰な第一の還元剤がイオン交換膜から漏れ出して濃縮液を汚染する可能性が低い。
(First reducing agent)
The present inventors have found that it is extremely effective to add a specific reducing agent (first reducing agent) to the electrode solution in order to prevent oxidation of the transition metal ion. There are limited reducing agents that can be used in an extremely strong oxidizing and reducing atmosphere, such as the electrode solution of an electrodialyzer. For example, sulfites such as sodium sulfite are not preferable because sulfite ions undergo an oxidation-reduction reaction at the electrode and generate a scale insoluble in water. Examples of the reducing agent that can be used as the first reducing agent include hydrazine, ascorbic acid, oxalic acid, formic acid and salts thereof, aldehydes such as formaldehyde and acetaldehyde, reducing sugars such as sucrose, glucose, and fructose. Of these, oxalic acid and formic acid are preferable, and oxalic acid is particularly preferable because it can be easily removed by decarboxylation by heating or the like even when mixed in the electrodialysis concentrate. The amount of the first reducing agent added to the electrode solution is preferably 100 ppm to 100,000 ppm, preferably 300 ppm to 10,000 ppm, more preferably 500 ppm to 5000 ppm, based on the total amount of transition metal ions in the desalting solution. If it is 100 ppm or more, scale generation tends to be suppressed, and if it is 100000 ppm or less, there is a low possibility that excess first reducing agent leaks from the ion exchange membrane and contaminates the concentrate.
 第一の還元剤の添加方法については特に限定されず、一般的な方法が適用できる。バッチ式の電気透析の場合は必要量の第一の還元剤をあらかじめ電極液に溶解しておくこともできるし、スケールの発生の様子を確認しながら電極液に第一の還元剤を添加していく方法も可能である。連続式の電気透析の場合は運転が長期に渡ることが多いのでスケールの状況を監視しながら適宜第一の還元剤を添加していく方法が適している。この添加方法を用いる場合、発生するスケールを除去する反応性の早さからシュウ酸が特に好ましい。 The method for adding the first reducing agent is not particularly limited, and a general method can be applied. In the case of batch-type electrodialysis, the required amount of the first reducing agent can be dissolved in the electrode solution in advance, or the first reducing agent can be added to the electrode solution while confirming the occurrence of scale. It is also possible to go. In the case of continuous electrodialysis, since the operation often takes a long time, a method in which the first reducing agent is appropriately added while monitoring the state of the scale is suitable. In the case of using this addition method, oxalic acid is particularly preferable because of its fast reactivity to remove the generated scale.
 陰イオン交換膜は前述の膜が使用できるが、陽イオン交換膜は1価選択透過性膜でない膜も使用可能である。 The above-mentioned membrane can be used as the anion exchange membrane, but a membrane that is not a monovalent permselective membrane can also be used as the cation exchange membrane.
 例えば、ネオセプタCMV、ネオセプタCMB、ネオセプタCMS、ネオセプタCMT、ネオセプタCL-25T、ネオセプタCMD、ネオセプタCM-2、ネオセプタCSO(以上、(株)アストム製、商標)、セレミオンCMD、セレミオンCMT、セレミオンCMV、セレミオンCAV、セレミオンHSF、セレミオンCMF、セレミオンFX-151(以上、旭硝子社製、商標)、FKF,FKC,FKL,FKE(以上、フマテック社製、商標)、ナフィオン324、ナフィオン117、ナフィオン115(以上、デュポン社製、商標)、アシプレックスK-501(旭化成社製、商標)等が挙げられる。 For example, Neoceptor CMV, Neoceptor CMB, Neoceptor CMS, Neoceptor CMT, Neoceptor CL-25T, Neoceptor CMD, Neoceptor CM-2, Neoceptor CSO (above, Astom Co., Ltd., trademark), Selemion CMD, Selemion CMT, Selemion CMV, Selemion CAV, Selemion HSF, Selemion CMF, Selemion FX-151 (above, Asahi Glass Co., Ltd., Trademark), FKF, FKC, FKL, FKE (above, made by Fumatec Corp., Trademark), Nafion 324, Nafion 117, Nafion 115 (above And Aciplex K-501 (trademark, manufactured by Asahi Kasei Co., Ltd.).
 陽イオン交換膜と陰イオン交換膜の並びの構成については、電極液に接する膜が陰イオン交換膜となる構成が、陽イオンが電極液に漏れにくくなり、添加する第一の還元剤が少なく済み好ましい。さらに電極液室の隣は、金属イオン濃度が比較的低い濃縮液室になるように構成した方が、電極液に漏れる金属イオンの量が少なくなり、添加する第一の還元剤が少なく済み好ましい。以下に具体例を示す。
(陰極液室)A<濃>C<脱>A<濃>C・・・A<濃>C<脱>A<濃>A(陽極液室)
(ここでA:陰イオン交換膜、C:陽イオン交換膜、<濃>:濃縮液室、<脱>:脱塩液室)
As for the arrangement of the cation exchange membrane and the anion exchange membrane, the configuration in which the membrane in contact with the electrode solution is an anion exchange membrane makes it difficult for the cation to leak into the electrode solution, and the first reducing agent to be added is small. It is preferable. Furthermore, it is preferable that the electrode chamber is configured to be a concentrate chamber having a relatively low metal ion concentration because the amount of metal ions leaking into the electrode solution is reduced and the first reducing agent to be added is reduced. . Specific examples are shown below.
(Cathode solution chamber) A <Dense> C <De> A <Dense> C ... A <Dense> C <D> A <Dense> A (Anode solution chamber)
(Here, A: anion exchange membrane, C: cation exchange membrane, <concentration>: concentrated liquid chamber, <de>: demineralized liquid chamber)
<金属イオンを含有した溶液によるリチウムの浸出>
 さらに、本発明者らは、リチウムを浸出するときに、2価以上の金属イオンを含有している酸性水溶液を用いると、2価以上の金属イオンを含有しない酸のみの場合より少ない酸でリチウムを浸出できることを確認した。これにより、浸出に使用する酸の量を抑制する事が出来、回収コストを低減できる。
<Lithium leaching with a solution containing metal ions>
Furthermore, when the present inventors used an acidic aqueous solution containing a divalent or higher metal ion when leaching lithium, the lithium with less acid than in the case of an acid alone containing no divalent or higher metal ion. Confirmed that it can be leached. Thereby, the amount of acid used for leaching can be suppressed, and the recovery cost can be reduced.
 金属イオンの価数については、コバルト、ニッケル及び鉄では2価と3価があり、マンガンでは2価から最大7価まである。本発明においては、金属イオンの価数は、2価以上7価以下が好ましく、2価以上4価以下がより好ましく、2価又は3価がさらに好ましい。 Regarding the valence of metal ions, cobalt, nickel and iron are divalent and trivalent, and manganese is divalent to a maximum of 7 valences. In the present invention, the valence of the metal ion is preferably from 2 to 7, more preferably from 2 to 4, more preferably from 2 or 3.
 2価以上の金属塩は、2価以上の金属としてコバルト、ニッケル、マンガン及び/又は鉄を含む。また、酸性浸出液を形成している酸は、無機酸又は有機酸のいずれでもよい。無機酸としては、硫酸、硝酸、塩酸などが挙げられる。有機酸としては、例えば、ギ酸、酢酸、クエン酸、シュウ酸などのカルボン酸が挙げられる。コスト面、作業環境面、及び浸出液からの金属の回収の容易性を考慮すると、硫酸を使用することが好ましい。 The metal salt having a valence of 2 or more includes cobalt, nickel, manganese and / or iron as a metal having a valence of 2 or more. Further, the acid forming the acidic leachate may be either an inorganic acid or an organic acid. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid and the like. Examples of the organic acid include carboxylic acids such as formic acid, acetic acid, citric acid, and oxalic acid. In view of cost, work environment, and ease of metal recovery from the leachate, it is preferable to use sulfuric acid.
 リチウムを回収するときに、酸に2価以上の金属塩が溶解している酸性浸出液を用いてリチウム含有固体からリチウムを浸出することにより、リチウム回収溶液が得られる。酸に2価以上の金属塩が溶解している酸性浸出液を用いることにより、リチウム含有固体に含まれる2価以上の金属イオンになり得る金属の浸出を抑制しながら、リチウムを高い回収率で浸出させることができると分かった(例19を参照)。また、それにより、浸出に必要な酸の量を抑制できる。 When recovering lithium, a lithium recovery solution is obtained by leaching lithium from a lithium-containing solid using an acidic leaching solution in which a divalent or higher-valent metal salt is dissolved in an acid. By using an acidic leachate in which a divalent or higher metal salt is dissolved in an acid, lithium is leached at a high recovery rate while suppressing leaching of a metal that can be a divalent or higher metal ion contained in a lithium-containing solid. (See Example 19). Thereby, the amount of acid required for leaching can be suppressed.
 リチウムを回収するときに、酸性浸出液の液層へ浸出されなかった2価以上の金属イオンになり得る金属は、市場価格の高価なコバルト、ニッケル等を多く含む場合は、別の回収工程へ回してよいし、又は鉄、マンガン等の比較的安価な金属を多く含む場合は、粗鋼原料へ回してもよい。 When recovering lithium, metals that can be divalent or higher-valent metal ions that have not been leached into the acid leachate liquid layer contain a large amount of expensive cobalt, nickel, etc. at the market price. If it contains a lot of relatively inexpensive metals such as iron and manganese, it may be turned to a crude steel raw material.
 その2価以上の金属は、鉄、コバルト、ニッケル、及びマンガンからなる群より少なくとも1種選択される金属を含み、金属の塩の前記酸性浸出液中の濃度は、それぞれの金属で7000ppm以上飽和濃度以下の範囲である。好ましくは、その濃度は10000ppm以上であり、より好ましくは20000ppm以上である。2価以上の金属塩の濃度が前記の範囲内であれば、リチウムが100%浸出し易い。 The bivalent or higher metal contains at least one metal selected from the group consisting of iron, cobalt, nickel, and manganese, and the concentration of the metal salt in the acidic leachate is 7000 ppm or higher for each metal. The range is as follows. Preferably, the concentration is 10,000 ppm or more, more preferably 20000 ppm or more. If the concentration of the metal salt having a valence of 2 or more is within the above range, 100% of lithium is likely to leach out.
 2価以上の金属イオンが溶存する酸性水溶液で浸出すると、リチウムを効率的に浸出できる理由は、以下のように推定される。即ち、固体中から金属が水溶液中へ浸出される場合は、金属イオンが水和により水溶液中で安定化される反応が非平衡状態で進行するが、浸出の際に水溶液中に既に金属イオンが存在している場合、同種の金属の浸出は抑制され、該金属イオンが存在しない場合より浸出の速度が遅くなる。したがって、リチウムイオンは水溶液中に存在しないか、又はその濃度が低いために、水溶液中に既に存在している金属イオンの影響を受けないので、リチウムが浸出し易くなっていると考えられる。 The reason why lithium can be efficiently leached when leached with an acidic aqueous solution in which metal ions having a valence of 2 or more are dissolved is estimated as follows. That is, when a metal is leached out of a solid into an aqueous solution, a reaction in which the metal ion is stabilized in the aqueous solution by hydration proceeds in a non-equilibrium state. When present, the leaching of the same kind of metal is suppressed, and the leaching rate is slower than when the metal ion is not present. Therefore, lithium ions are not present in the aqueous solution, or the concentration thereof is low, so that the lithium ions are not affected by the metal ions already present in the aqueous solution, so that lithium is likely to be leached out.
(脱塩液の再利用)
 本発明の方法においては、リチウム回収溶液からリチウムを脱塩することにより得られた脱塩液を酸性浸出液として再利用することが好ましい。したがって、本方法は、リチウム回収液を得る工程中又はリチウム回収液を得る工程の前後で、一価選択透過性陽イオン交換膜と陰イオン交換膜とを組み合わせて成る電気透析装置内でリチウム回収溶液からリチウムを脱塩して、脱塩液を得る脱塩工程、及び該脱塩液を酸性浸出液として浸出液提供工程に再利用する脱塩液再利用工程をさらに含むことが好ましい。
(Reuse of desalted solution)
In the method of the present invention, it is preferable to reuse a desalted solution obtained by desalting lithium from a lithium recovery solution as an acidic leachate. Therefore, the present method can recover lithium in an electrodialyzer comprising a combination of a monovalent selectively permeable cation exchange membrane and an anion exchange membrane before or after the step of obtaining a lithium recovery solution or before the step of obtaining a lithium recovery solution. It is preferable to further include a desalting step of desalting lithium from the solution to obtain a desalting solution, and a desalting solution reusing step of reusing the desalting solution as an acidic leachate in the leachate providing step.
<電気透析時のpH調整による電流効率の向上>
 本発明方法においては、脱塩工程において、2価以上の金属の水酸化物、2価以上の金属の酸化物、及び第二の還元剤からなる群より選択される少なくとも1種の化合物を、リチウム回収溶液に添加することにより、リチウム回収溶液のpHを2.0以上6.0以下、好ましくは2.5以上6.0以下、さらに好ましくは2.5以上5.0以下に調整することが好ましい。これにより、電気透析におけるリチウムの電流効率を向上させ、電気透析の電力コストを低減できる(例24を参照)。尚、pH調整が容易であるとの点から、添加する材料は2価以上の金属の水酸化物、2価以上の金属の酸化物、還元剤を各々単独で添加できることが好ましい。リチウム回収溶液のpHが2.0以上である場合、水素イオン濃度が低くなり、そして水素の移動による電力消費が減るので、電流効率が上昇する。また、リチウム回収溶液のpHが6.0以下である場合、2価以上の金属水酸化物は、析出することが困難になるだけでなく、イオン交換膜等へも付着することが困難になるので、電流効率が向上し、イオン交換膜の耐用寿命も延びる。
<Improvement of current efficiency by pH adjustment during electrodialysis>
In the method of the present invention, in the desalting step, at least one compound selected from the group consisting of a metal hydroxide having a valence of 2 or more, a metal oxide of a valence of 2 or more, and a second reducing agent, By adding to the lithium recovery solution, the pH of the lithium recovery solution is adjusted to 2.0 or more and 6.0 or less, preferably 2.5 or more and 6.0 or less, more preferably 2.5 or more and 5.0 or less. Is preferred. This can improve the current efficiency of lithium in electrodialysis and reduce the power cost of electrodialysis (see Example 24). In addition, from the point that pH adjustment is easy, it is preferable that the material to add can add a bivalent or more metal hydroxide, a bivalent or more metal oxide, and a reducing agent each independently. When the pH of the lithium recovery solution is 2.0 or more, the hydrogen ion concentration is lowered, and the power consumption due to the movement of hydrogen is reduced, so that the current efficiency is increased. Further, when the pH of the lithium recovery solution is 6.0 or less, the metal hydroxide having a valence of 2 or more is not only difficult to precipitate but also difficult to adhere to an ion exchange membrane or the like. Therefore, current efficiency is improved and the useful life of the ion exchange membrane is extended.
 2価以上の金属の水酸化物としては、水酸化コバルト、水酸化ニッケル、水酸化鉄、水酸化アルミ等が挙げられる。2価以上の金属の酸化物としては、酸化マンガン等が挙げられる。 Examples of the metal hydroxide having a valence of 2 or more include cobalt hydroxide, nickel hydroxide, iron hydroxide, and aluminum hydroxide. Examples of the bivalent or higher metal oxide include manganese oxide.
 また、リチウムを選択的に浸出した残渣には2価以上の金属の酸化物が含まれているが、この酸化物は、酸のみでは溶解されないので、第二の還元剤を添加することにより還元されて溶解し易くなる。したがって、2価以上の金属が溶解することにより酸が消費されて、リチウム回収溶液のpHが増大する。第二の還元剤としては、過酸化水素、シュウ酸などが好適に用いられる。 The residue from which lithium is selectively leached contains an oxide of a metal having a valence of 2 or more. However, since this oxide is not dissolved only by an acid, it can be reduced by adding a second reducing agent. It becomes easy to dissolve. Therefore, the acid is consumed by dissolving the divalent or higher metal, and the pH of the lithium recovery solution increases. As the second reducing agent, hydrogen peroxide, oxalic acid, or the like is preferably used.
 なお、2価以上の金属水酸化物、2価以上の金属酸化物、及び第二の還元剤からなる群より選択される少なくとも1種の化合物の添加によりpHを調整するとき、2価以上の金属イオン濃度を増加させても、2価以上の金属イオンは、一価選択透過性陽イオン交換膜を透過しないため電流効率を低下させないが、アンモニア等の1価陽イオンが添加される場合、一価選択透過性陽イオン交換膜を透過するため、リチウム濃縮の電流効率が低下することが分かった(例27を参照)。 In addition, when adjusting pH by addition of at least one compound selected from the group consisting of a bivalent or higher metal hydroxide, a bivalent or higher metal oxide, and a second reducing agent, Even if the metal ion concentration is increased, bivalent or higher-valent metal ions do not permeate the monovalent selectively permeable cation exchange membrane, so that the current efficiency is not reduced. However, when a monovalent cation such as ammonia is added, It has been found that the current efficiency of lithium concentration decreases due to permeation through the monovalent selectively permeable cation exchange membrane (see Example 27).
 電気透析を行うときには、初期濃縮液に希薄リチウム塩を用いると、電気透析初期の電気抵抗が小さくなり、電流効率が上がるので好ましい。更に、初期の脱塩処理液に対する濃縮処理液の比率を小さくすることにより、リチウムの初期脱塩液濃度より終了時濃縮液濃度を高くする事が可能である。 When performing electrodialysis, it is preferable to use a diluted lithium salt for the initial concentrated solution because the electric resistance in the initial stage of electrodialysis is reduced and the current efficiency is increased. Furthermore, by reducing the ratio of the concentration treatment liquid to the initial desalination treatment liquid, it is possible to make the concentration concentration at the end higher than the initial concentration of lithium desalination liquid.
 脱塩液は、リチウムが脱塩されており、かつ電気透析装置により分離された2価以上の金属イオンを含む。脱塩液再利用工程では、電気透析により生成した脱塩液に酸を添加して、脱塩液のpHを0から1.0の範囲、好ましくはpH0~0.5の範囲に調整することにより、酸性浸出液として用いることができる。脱塩液再利用工程におけるpH調整に使用される酸は、上記で説明したような酸でよい。脱塩液再利用工程により、前記脱塩液を廃液として処理する必要が無くなり、廃液処理費用を最小限に抑えることができる。 The desalting solution contains divalent or higher-valent metal ions from which lithium has been desalted and separated by an electrodialyzer. In the desalting solution reuse step, an acid is added to the desalting solution generated by electrodialysis to adjust the pH of the desalting solution to a range of 0 to 1.0, preferably to a pH of 0 to 0.5. Can be used as an acidic leachate. The acid used for pH adjustment in the desalting solution recycling step may be an acid as described above. The desalting solution reuse step eliminates the need to treat the desalting solution as a waste solution, thereby minimizing the cost of waste solution treatment.
 一方、前記脱塩工程において分離精製したリチウム濃縮溶液中には、一価選択透過陽イオン交換膜を抜けてきた2価以上の金属イオンが微量存在する。この微量の2価以上の金属イオンは、水酸化リチウムを回収する電解工程において、水酸化物として電解膜の表面又は内部に析出して電解の電流効率を下げるか、又は電解膜の寿命を縮める虞がある。 On the other hand, in the lithium concentrated solution separated and purified in the desalting step, a trace amount of divalent or higher-valent metal ions that have passed through the monovalent selective permeation cation exchange membrane exists. This trace amount of divalent or higher-valent metal ions is deposited as a hydroxide on the surface or inside of the electrolytic membrane in the electrolytic process for recovering lithium hydroxide, thereby reducing the current efficiency of electrolysis or shortening the lifetime of the electrolytic membrane. There is a fear.
<リチウム濃縮溶液からの遷移金属の精製>
 本発明者らは、脱塩工程中又は脱塩工程後に、この2価以上の金属イオンを微量含有するリチウム濃縮溶液(例えば、電気透析により精製されたリチウム溶液)に水酸化リチウムを添加することにより、濃縮溶液側へ漏れこんできた2価以上の金属イオンを水酸化物として析出させ、個液分離することが出来ることを見出した。したがって、この方法においては、精製されたリチウム溶液に、水酸化リチウムを添加してpHを7~13に調整して、溶存する遷移金属(例えば、前記2価以上の金属)を水酸化物として沈殿させる工程、該溶液から該水酸化物を分離する工程、該溶液中のリチウム以外の金属成分をイオン交換樹脂により低減させる工程、次いで電解により水酸化リチウム及び硫酸を回収する工程をさらに含むことが好ましい。
<Purification of transition metal from concentrated lithium solution>
The present inventors add lithium hydroxide to a lithium concentrated solution (for example, a lithium solution purified by electrodialysis) containing a trace amount of metal ions having a valence of 2 or more during or after the desalting step. Thus, it has been found that divalent or higher-valent metal ions that have leaked into the concentrated solution can be precipitated as hydroxides and separated into individual liquids. Therefore, in this method, lithium hydroxide is added to the purified lithium solution to adjust the pH to 7 to 13, and the dissolved transition metal (for example, the divalent or higher metal) is used as a hydroxide. A step of precipitating, a step of separating the hydroxide from the solution, a step of reducing metal components other than lithium in the solution with an ion exchange resin, and a step of recovering lithium hydroxide and sulfuric acid by electrolysis. Is preferred.
 リチウム濃縮溶液から2価以上の金属イオンを水酸化物として析出させるためのリチウム濃縮溶液のpHは7以上13以下、好ましくは8以上11以下である。このpH調整は、水酸化リチウムをリチウム濃縮溶液に添加することにより行われる。リチウム濃縮溶液のpHが7以上の場合では、2価以上の金属イオンが十分に析出して、後精製するための吸着剤が少量で済むので精製効率が良い。また、リチウム濃縮溶液のpHが13以下である場合では、2価以上の金属イオンの析出後に、水酸化リチウムが過剰に使用されないので、経済性が高い。また、このようにして分離された金属水酸化物は、電気透析を行うときのpH調整剤として用いる事が出来る。 The pH of the lithium concentrated solution for precipitating divalent or higher valent metal ions from the lithium concentrated solution as a hydroxide is 7 or more and 13 or less, preferably 8 or more and 11 or less. This pH adjustment is performed by adding lithium hydroxide to the lithium concentrated solution. When the pH of the lithium concentrated solution is 7 or more, metal ions having a valence of 2 or more are sufficiently precipitated, and a small amount of adsorbent for post-purification is sufficient, so that the purification efficiency is good. Further, when the pH of the lithium concentrated solution is 13 or less, the lithium hydroxide is not used excessively after the deposition of divalent or higher metal ions, so that the economy is high. Moreover, the metal hydroxide separated in this way can be used as a pH adjuster when electrodialysis is performed.
 水酸化物を分離された前記精製されたリチウム溶液は、イオン交換樹脂又は活性炭等の吸着剤により更に精製することができる。精製に用いる吸着剤としては、ポリアミン型キレート樹脂、アミドオキシム型キレート樹脂、アミノカルボン酸型キレート樹脂等のキレート型イオン交換樹脂が、高濃度のリチウム塩溶液中の2価以上の金属イオンを選択的に吸着するので好ましい。 The purified lithium solution from which the hydroxide has been separated can be further purified by an adsorbent such as an ion exchange resin or activated carbon. As the adsorbent used for purification, chelate ion exchange resins such as polyamine chelate resins, amidooxime chelate resins, aminocarboxylic acid chelate resins, etc. select metal ions having a valence of 2 or more in a high concentration lithium salt solution. It is preferable because it adsorbs chemically.
 好ましいイオン交換樹脂としては、三菱化学株式会社製のダイヤイオンCR-20、及び住化ケムテックス株式会社製のスミキレートMC900、スミキレートMC850、スミキレートMC600等が挙げられる。 Preferred ion exchange resins include Diaion CR-20 manufactured by Mitsubishi Chemical Corporation, Sumichel MC900, Sumichel MC850, and Sumichel MC600 manufactured by Sumika Chemtex Co., Ltd.
<水酸化リチウム及び酸の回収>
 上記のように精製されたリチウム溶液は、電解により水酸化リチウムと酸に分解され、そして水酸化リチウムが回収されることができる。電解により回収される酸は、上記で説明した酸でよく、特に硫酸であろう。
<Recovery of lithium hydroxide and acid>
The lithium solution purified as described above can be decomposed into lithium hydroxide and acid by electrolysis, and lithium hydroxide can be recovered. The acid recovered by electrolysis may be the acid described above, in particular sulfuric acid.
 酸性浸出液を形成する酸として硫酸を用いる場合には、電解を行う装置としては、陽極室21、陰極室31及び陽極室21と陰極室31に挟まれた塩室61を含む電解装置1、又はさらに陽極室21と塩室61を隔絶する陰イオン交換膜4及び塩室61と陰極室31を隔絶する陽イオン交換膜5を具備する電解装置1(図2)を用いる事ができる。この装置を用いることにより、水酸化リチウムが陰極室31に容易に生成し、そして硫酸が陽極室21に容易に生成する。 When sulfuric acid is used as the acid forming the acid leachate, the electrolysis apparatus includes an electrolysis apparatus 1 including an anode chamber 21, a cathode chamber 31, and a salt chamber 61 sandwiched between the anode chamber 21 and the cathode chamber 31, or Furthermore, the electrolysis apparatus 1 (FIG. 2) including the anion exchange membrane 4 that isolates the anode chamber 21 and the salt chamber 61 and the cation exchange membrane 5 that isolates the salt chamber 61 and the cathode chamber 31 can be used. By using this apparatus, lithium hydroxide is easily generated in the cathode chamber 31 and sulfuric acid is easily generated in the anode chamber 21.
 なお、酸性浸出液を形成する酸として硫酸を用いる場合に、図3に示すような陽極室21と陰極室31を陽イオン交換膜5で隔絶した電解槽を用いると、電解により陽極室21のpHが低下して電流効率が低下する懸念がある。 When sulfuric acid is used as an acid for forming the acidic leachate, if an electrolytic cell in which the anode chamber 21 and the cathode chamber 31 are separated by the cation exchange membrane 5 as shown in FIG. 3 is used, the pH of the anode chamber 21 is obtained by electrolysis. There is a concern that the current efficiency may be reduced due to the decrease.
 電解は0~90℃の電解温度で行うことができる。 Electrolysis can be performed at an electrolysis temperature of 0 to 90 ° C.
 電解のときの陰極としては、ニッケルのエキスパンドメタルに、触媒として酸化ニッケルが塗布された電極を使用できる。また、陽極としては、チタンのエキスパンドメタルに、触媒としてルテニウム、イリジウム、チタンが塗布された電極を使用できる。 As the cathode during electrolysis, an electrode obtained by applying nickel oxide as a catalyst to nickel expanded metal can be used. Further, as the anode, an electrode in which ruthenium, iridium, or titanium is applied as a catalyst to an expanded metal of titanium can be used.
 電解に用いる陽イオン交換膜は、リチウムイオンを通過しうる膜であり、スルホン酸基、カルボン酸基、ホスホン酸基、硫酸エステル基、リン酸エステル基を少なくとも1種以上有する高分子から成る膜を使用できる。 The cation exchange membrane used for electrolysis is a membrane that can pass lithium ions, and is a membrane made of a polymer having at least one sulfonic acid group, carboxylic acid group, phosphonic acid group, sulfate ester group, or phosphate ester group. Can be used.
 電解に用いる陰イオン交換膜は、第4級アンモニウム基等の強塩基性基を有する高分子から成る膜、第1級アミノ基、第2級アミノ基、第3級アミノ基等の弱塩基性官能基を有する高分子から成る膜を使用できる。 The anion exchange membrane used for electrolysis is a membrane made of a polymer having a strong basic group such as a quaternary ammonium group, or a weakly basic such as a primary amino group, a secondary amino group, or a tertiary amino group. A film made of a polymer having a functional group can be used.
 電解時に水酸化リチウムと同時に生成した酸(例えば、硫酸など)は、精製に使用したイオン交換樹脂の再生に用いる事が出来る。イオン交換樹脂の再生に用いる場合、水及び/又は高濃度酸により所望の濃度に調整して用いる事が出来る。 The acid (for example, sulfuric acid, etc.) generated simultaneously with lithium hydroxide during electrolysis can be used for regeneration of the ion exchange resin used for purification. When used for regeneration of an ion exchange resin, it can be adjusted to a desired concentration with water and / or a high concentration acid.
 更に、電解により生成した酸又はイオン交換樹脂の再生に用いた酸は、酸性浸出液の調整に用いる事が出来る。 Furthermore, the acid generated by electrolysis or the acid used to regenerate the ion exchange resin can be used to adjust the acidic leachate.
 また、電解により、濃度が下がったリチウム塩溶液は、更に希釈するなどして濃度を調整して電気透析の初期濃縮液として利用できる。 Also, the lithium salt solution whose concentration has been reduced by electrolysis can be used as an initial concentrated solution for electrodialysis by adjusting the concentration by further diluting.
<使用済みリチウムイオン2次電池からのリチウムの回収>
 本発明方法においては、リチウムイオン電池に由来するリチウム含有固体からリチウムが回収される。リチウム含有固体としては、リチウムイオン電池若しくはその処理物、又はリチウムイオン電池を製造する過程で排出された固体が挙げられる。リチウム含有固体としては、リチウムイオン二次電池の正極活物質等が、リチウム含有率の高い粒子を含む為に好ましい。
<Recovery of lithium from used lithium ion secondary batteries>
In the method of the present invention, lithium is recovered from a lithium-containing solid derived from a lithium ion battery. Examples of the lithium-containing solid include a lithium ion battery or a processed product thereof, or a solid discharged in the process of manufacturing a lithium ion battery. As the lithium-containing solid, a positive electrode active material or the like of a lithium ion secondary battery is preferable because it contains particles having a high lithium content.
 使用により劣化したリチウムイオン電池は、通常300℃以上の温度で焙焼され、結着剤等の有機材料を除去され、その後に破砕される。次に、粉砕物の篩い分け又は磁力に拠る選別などにより、銅集電体又はニッケル電極等と、リチウムを多く含有する正極活物質とが分離されることができる。 リ チ ウ ム Lithium ion batteries that have deteriorated due to use are usually baked at a temperature of 300 ° C or higher, organic materials such as binders are removed, and then crushed. Next, the copper current collector or the nickel electrode and the positive electrode active material containing a large amount of lithium can be separated from each other by sieving the pulverized product or sorting based on magnetic force.
 また、本方法によれば、リチウムイオン電池正極活物質製造工程で排出された規格外品、又は劣化したリチウムイオン電池から回収した正極活物質などから、リチウムを回収できる。 Moreover, according to this method, lithium can be recovered from a non-standard product discharged in the lithium ion battery positive electrode active material manufacturing process or a positive electrode active material recovered from a deteriorated lithium ion battery.
 リチウムイオン電池の正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、又はコバルト、ニッケル及びマンガンを含有する三元系、又はリン酸鉄リチウム等の多くの種類が挙げられる。 As the positive electrode active material of the lithium ion battery, there are many types such as lithium cobaltate, lithium nickelate, lithium manganate, ternary system containing cobalt, nickel and manganese, or lithium iron phosphate.
 本方法によれば、上記のような多様なリチウム含有固体からリチウムを高い収率で回収できる。 According to this method, lithium can be recovered in high yield from various lithium-containing solids as described above.
 リチウム含有固体が、マンガン酸リチウムの場合もリン酸鉄リチウムの場合も同様に、優れた収率でリチウムを回収する事が出来る。 Similarly, when the lithium-containing solid is lithium manganate or lithium iron phosphate, lithium can be recovered in an excellent yield.
 リチウム含有固体が、リチウムイオン2次電池を処理したものでも、本発明の回収システムで優れた収率でリチウムを回収できる。 Even if the lithium-containing solid is obtained by treating a lithium ion secondary battery, the recovery system of the present invention can recover lithium with an excellent yield.
 上述のような実施態様を全て又は部分的に組み合わせた場合に、本発明の方法は、リチウムイオン二次電池処理物等のリチウム含有固体からリチウムのみを選択的に高い収率で回収し、更に廃棄物を最小限に抑えることにより、環境に配慮しつつ高い経済性でリチウムを回収できる。 When all or part of the embodiments as described above are combined, the method of the present invention selectively recovers only lithium from a lithium-containing solid such as a treated product of a lithium ion secondary battery in a high yield. By minimizing waste, it is possible to recover lithium with high economic efficiency while considering the environment.
 次に、実施例に基づいて、本発明を更に具体的に説明するが、本発明はかかる実施例によって限定されるものではない。 Next, the present invention will be described more specifically based on examples. However, the present invention is not limited to the examples.
[分析]
・pH測定
  HM-20P(東亜ディーケーケー社製)を用いて25℃で測定した。
・水溶液中の金属イオン濃度の分析
  イオン濃度が1ppm以上の場合、誘導結合プラズマ(ICP)発光分析により測定した。
  イオン濃度が1ppm未満の場合、ICP―質量分析法(MAS)により測定した。
・浸出率(%)
  下記式:
浸出率(%)={(浸出処理後の回収液中の金属絶対量)/(固体中の金属絶対量)}
に従って算出した。
[analysis]
-PH measurement It measured at 25 degreeC using HM-20P (made by Toa DKK Corporation).
-Analysis of metal ion concentration in aqueous solution When the ion concentration was 1 ppm or more, it was measured by inductively coupled plasma (ICP) emission analysis.
When the ion concentration was less than 1 ppm, it was measured by ICP-mass spectrometry (MAS).
・ Leaching rate (%)
Following formula:
Leaching rate (%) = {(Absolute amount of metal in recovered liquid after leaching treatment) / (Absolute amount of metal in solid)}
Calculated according to
<多価金属イオンの含有による選択性の向上(例1~例11)>
[例1]
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌した。これに三元系活物質セルシードNMC(日本化学工業株式会社製)80gを投入し、3時間攪拌してリチウムおよびコバルト、ニッケル、マンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。ろ液500mlに硫酸アルミニウム14~18水和物(和光純薬(株)製)17.56g(上記浸出液中の2価の金属イオン合計重量に対して、25重量%のアルミニウム濃度に相当)を添加して溶解し、これを電気透析用脱塩液とした。この溶液の金属イオン濃度を分析した結果を表1に示す。
<Improved selectivity by containing polyvalent metal ions (Example 1 to Example 11)>
[Example 1]
In a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this, 80 g of ternary active material cell seed NMC (manufactured by Nippon Chemical Industry Co., Ltd.) was added, and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. 17.56 g of aluminum sulfate 14-18 hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (corresponding to an aluminum concentration of 25% by weight with respect to the total weight of divalent metal ions in the leachate) was added to 500 ml of the filtrate. This was added and dissolved to obtain a desalting solution for electrodialysis. The results of analyzing the metal ion concentration of this solution are shown in Table 1.
 次にこの溶液500mlに対して、陰イオン交換膜と陽イオン交換膜を具備する電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。電極液は硫酸リチウム1水和物5%溶液500mlを用い、濃縮液は500mlの純水を用いた。陰イオン交換膜はネオセプタAMX((株)アストム製)、陽イオン交換膜は1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。濃縮液の金属イオン濃度を分析した結果を表1に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表2に示す。 Next, lithium sulfate was desalted with respect to 500 ml of this solution using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) having an anion exchange membrane and a cation exchange membrane. As the electrode solution, 500 ml of a 5% lithium sulfate monohydrate solution was used, and 500 ml of pure water was used as the concentrate. Neoceptor AMX (manufactured by Astom Co., Ltd.) was used as the anion exchange membrane, and monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.) was used as the cation exchange membrane, and electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C. Table 1 shows the results of analyzing the metal ion concentration of the concentrate. Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
[例2]
 ろ液500mlに硫酸アルミニウムを70.26g(2価の金属イオン合計重量に対して100重量%)添加すること以外は例1と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表1に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表2に示す。
[Example 2]
Electrodialysis was carried out in the same manner as in Example 1 except that 70.26 g of aluminum sulfate (100 wt% with respect to the total weight of divalent metal ions) was added to 500 ml of the filtrate. Table 1 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
[例3]
 ろ液500mlに硫酸アルミニウムを0.70g(2価の金属イオン合計重量に対して1重量%)添加すること以外は例1と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表1に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表2に示す。
[Example 3]
Electrodialysis was carried out in the same manner as in Example 1 except that 0.70 g of aluminum sulfate (1% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate. Table 1 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
[例4]
 ろ液500mlに硫酸アルミニウムを3.51g(2価の金属イオン合計重量に対して5重量%)添加すること以外は例1と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表1に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表2に示す。
[Example 4]
Electrodialysis was carried out in the same manner as in Example 1 except that 3.51 g of aluminum sulfate (5% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate. Table 1 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 2 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
 図1に電気透析用脱塩液中の2価金属イオンの合計重量に対するAlの割合と電気透析後の不純物金属の比率の関係を示した。2価金属イオンの合計重量に対するアルミニウムの割合が増大するに従って1価選択性陽イオン交換膜の選択性が増大して電気透析後の不純物金属の比率が減少する。アルミニウムの割合が2価の金属イオン合計重量に対して20%を過ぎたところから不純物金属の比率の減少の仕方が緩やかになる。これはアルミニウムの割合が過剰になりアルミニウム自体の膜の透過の影響が大きくなったためと考えられる。 FIG. 1 shows the relationship between the ratio of Al to the total weight of divalent metal ions in the desalting solution for electrodialysis and the ratio of impurity metals after electrodialysis. As the ratio of aluminum to the total weight of divalent metal ions increases, the selectivity of the monovalent selective cation exchange membrane increases and the ratio of impurity metals after electrodialysis decreases. When the proportion of aluminum exceeds 20% with respect to the total weight of divalent metal ions, the method of decreasing the proportion of impurity metals becomes gradual. This is presumably because the proportion of aluminum became excessive and the influence of the permeation of the aluminum film increased.
[例5]
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに三元系活物質セルシードNMC(日本化学工業株式会社製)80gを投入し、3時間攪拌してリチウムおよびコバルト、ニッケル、マンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。ろ液500mlに硫酸鉄(III)n水和物(Fe(SO60~80%)(和光純薬(株)製)7.67g(2価の金属イオン合計重量に対して25重量%)を添加し溶解しこれを電気透析用脱塩液とした。この溶液の金属イオン濃度を分析した結果を表3に示す。
[Example 5]
In a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 80 g of ternary active material cell seed NMC (manufactured by Nippon Chemical Industry Co., Ltd.) was added, and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. To 500 ml of the filtrate, 7.67 g of iron sulfate (III) n hydrate (Fe 2 (SO 4 ) 3 60-80%) (manufactured by Wako Pure Chemical Industries, Ltd.) (25 based on the total weight of divalent metal ions) (Weight%) was added and dissolved to obtain a desalting solution for electrodialysis. Table 3 shows the results of analyzing the metal ion concentration of this solution.
 次にこの溶液500mlについて陰イオン交換膜と陽イオン交換膜からなる電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。電極液は硫酸リチウム1水和物5%溶液500mlを用い、濃縮液は500mlの純水を用いた。陰イオン交換膜はネオセプタAMX((株)アストム製)、陽イオン交換膜は1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。濃縮液の金属イオン濃度を分析した結果を表3に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表4に示す。 Next, about 500 ml of this solution, lithium sulfate was desalted using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. As the electrode solution, 500 ml of a 5% lithium sulfate monohydrate solution was used, and 500 ml of pure water was used as the concentrate. Neoceptor AMX (manufactured by Astom Co., Ltd.) was used as the anion exchange membrane, and monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.) was used as the cation exchange membrane, and electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C. Table 3 shows the results of analyzing the metal ion concentration of the concentrate. Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
[例6]
 ろ液500mlに硫酸鉄(III)を30.69g(2価の金属イオン合計重量に対して100重量%)添加すること以外は例5と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表3に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表4に示す。
[Example 6]
Electrodialysis was carried out in the same manner as in Example 5 except that 30.69 g of iron (III) sulfate (100 wt% with respect to the total weight of divalent metal ions) was added to 500 ml of the filtrate. Table 3 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
[例7]
 ろ液500mlに硫酸鉄(III)を0.31g(2価の金属イオン合計重量に対して1重量%)添加すること以外は例5と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表3に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表4に示す。
[Example 7]
Electrodialysis was carried out in the same manner as in Example 5 except that 0.31 g of iron (III) sulfate (1% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate. Table 3 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
[例8]
 ろ液500mlに硫酸鉄(III)を1.52g(2価の金属イオン合計重量に対して5重量%)添加すること以外は例5と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表3に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表4に示す。
[Example 8]
Electrodialysis was carried out in the same manner as in Example 5 except that 1.52 g of iron (III) sulfate (5% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate. Table 3 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 4 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and the concentrated solution before and after electrodialysis.
[例9(比較例)]
 ろ液に多価金属イオンを添加しないこと以外は例1と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表1および3に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表2および4に示す。
[Example 9 (comparative example)]
Electrodialysis was performed in the same manner as in Example 1 except that no polyvalent metal ions were added to the filtrate. Tables 1 and 3 show the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Tables 2 and 4 show the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
[例10]
 使用済みのリチウムイオン2次電池(円筒缶型18650)10本について5%硫酸リチウム溶液に浸漬して失活させた後、外装から内容物を取り出し、正極板と負極板から活物質を含む電極材料を剥離した。これをマッフル炉にて700℃で2時間焼成した後ボールミルで2時間粉砕し、150メッシュの篩にかけて活物質を含む粉体100gを得た。
[Example 10]
Ten used lithium ion secondary batteries (cylindrical can type 18650) were immersed in a 5% lithium sulfate solution and deactivated, and then the contents were taken out from the exterior, and an electrode containing an active material from the positive electrode plate and the negative electrode plate The material was peeled off. This was calcined in a muffle furnace at 700 ° C. for 2 hours, then pulverized in a ball mill for 2 hours, and passed through a 150 mesh sieve to obtain 100 g of a powder containing an active material.
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに活物質を含む粉体80gを投入し、3時間攪拌してリチウムおよびコバルト、ニッケル、マンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。ろ液500mlに硫酸アルミニウム14~18水和物(和光純薬(株)製)41.30g(2価の金属イオン合計重量に対して25重量%)を添加し溶解しこれを電気透析用脱塩液とした。この溶液の金属イオン濃度を分析した結果を表5に示す。 Into a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this, 80 g of powder containing the active material was added and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. 41.30 g of aluminum sulfate 14-18 hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (25% by weight based on the total weight of divalent metal ions) was added to 500 ml of the filtrate and dissolved, and this was removed for electrodialysis. Saline solution was used. Table 5 shows the results of analyzing the metal ion concentration of this solution.
 次にこの溶液500mlについて陰イオン交換膜と陽イオン交換膜からなる電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。電極液は硫酸リチウム1水和物5%溶液500mlを用い、濃縮液は500mlの純水を用いた。陰イオン交換膜はネオセプタAMX((株)アストム製)、陽イオン交換膜は1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。濃縮液の金属イオン濃度を分析した結果を表5に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表6に示す。 Next, about 500 ml of this solution, lithium sulfate was desalted using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. As the electrode solution, 500 ml of a 5% lithium sulfate monohydrate solution was used, and 500 ml of pure water was used as the concentrate. Neoceptor AMX (manufactured by Astom Co., Ltd.) was used as the anion exchange membrane, and monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.) was used as the cation exchange membrane, and electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C. Table 5 shows the result of analyzing the metal ion concentration of the concentrate. Table 6 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
[例11(比較例)]
 ろ液500mlに多価金属イオンを添加しないこと以外は例10と同様にして電気透析を実施した。脱塩液の金属イオン濃度と濃縮液の金属イオン濃度を分析した結果を表5に示す。また、電気透析前後の脱塩液と濃縮液の金属イオン濃度の結果から得られたリチウムの選択透過性および電気透析後の不純物金属の比率を表6に示す。
[Example 11 (comparative example)]
Electrodialysis was performed in the same manner as in Example 10 except that no polyvalent metal ions were added to 500 ml of the filtrate. Table 5 shows the results of analyzing the metal ion concentration of the desalted solution and the metal ion concentration of the concentrated solution. Table 6 shows the selective permeability of lithium and the ratio of impurity metals after electrodialysis obtained from the results of the metal ion concentrations of the desalted solution and concentrated solution before and after electrodialysis.
<第一の還元剤添加によるスケール発生の抑制(例12~例17)>
[例12]
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに三元系活物質セルシードNMC(日本化学工業株式会社製)80gを投入し、3時間攪拌してリチウムおよびコバルト、ニッケル、マンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過しこれを電気透析用脱塩液とした。この溶液のリチウムイオンの濃度は4000ppm、遷移金属イオンの濃度はコバルト5920ppm、ニッケル6120ppm、マンガン5ppmであった。
<Inhibition of scale generation by addition of first reducing agent (Examples 12 to 17)>
[Example 12]
In a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 80 g of ternary active material cell seed NMC (manufactured by Nippon Chemical Industry Co., Ltd.) was added, and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered through a filter having a pore size of 0.45 μm, and this was used as a desalting solution for electrodialysis. The lithium ion concentration of this solution was 4000 ppm, and the transition metal ion concentrations were cobalt 5920 ppm, nickel 6120 ppm, and manganese 5 ppm.
 次にこの溶液500mlについて陰イオン交換膜と陽イオン交換膜からなる電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。電極液は、硫酸リチウム1水和物5%溶液500mlに、第一の還元剤としてシュウ酸2水和物(和光純薬(株)製)を12mg(遷移金属イオンの総量の2000ppmに相当)溶解したものを用い、濃縮液は500mlの純水を用いた。陰イオン交換膜はネオセプタAMX((株)アストム製)、陽イオン交換膜は1価イオン選択透過性膜ネオセプタCIMS(株)アストム製)を使用し、膜の構成は(陰極室)ACACACACACACACACACACA(陽極室)(ここでA:陰イオン交換膜、C:陽イオン交換膜)で有効膜面積は550cm、電圧10V、温度25℃で電気透析を実施した。電極液は490mlで濁りはまったく認められず、スケールは発生しなかった。濃縮液は550mlでその金属イオンの濃度分析をしたところ、リチウム3880ppm、コバルト920ppm、ニッケル890ppm、マンガン0.8ppmであり、このときの電流効率は76%であった。 Next, about 500 ml of this solution, lithium sulfate was desalted using an electrodialysis apparatus (acylizer EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. The electrode solution is 500 mg of a 5% lithium sulfate monohydrate solution and 12 mg of oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as the first reducing agent (corresponding to 2000 ppm of the total amount of transition metal ions) The dissolved solution was used, and 500 ml of pure water was used as the concentrate. Neoceptor AMX (manufactured by Astom Co., Ltd.) is used as the anion exchange membrane, and monovalent ion selective permeable membrane Neoceptor CIMS (manufactured by Astom Co., Ltd.) is used as the cation exchange membrane. Chamber) (where A: anion exchange membrane, C: cation exchange membrane), the effective membrane area was 550 cm 2 , the voltage was 10 V, and the temperature was 25 ° C., and electrodialysis was performed. The electrode solution was 490 ml and no turbidity was observed, and no scale was generated. When the concentration of the metal ion was analyzed at 550 ml, the concentration was 3880 ppm for lithium, 920 ppm for cobalt, 890 ppm for nickel, and 0.8 ppm for manganese. The current efficiency at this time was 76%.
[例13]
 電極液に第一の還元剤として蟻酸(和光純薬(株)製)を、4mg(遷移金属イオンの総量の700ppmに相当)溶解した以外は、例12と同様にして電気透析を実施した。電極液は490mlで濁りはまったく認められず、スケールは発生しなかった。濃縮液は550mlでその金属イオンの濃度分析をしたところ、リチウム3870ppm、コバルト930ppm、ニッケル870ppm、マンガン0.9ppmであり、このときの電流効率は78%であった。
[Example 13]
Electrodialysis was carried out in the same manner as in Example 12 except that 4 mg (corresponding to 700 ppm of the total amount of transition metal ions) of formic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a first reducing agent was dissolved in the electrode solution. The electrode solution was 490 ml and no turbidity was observed, and no scale was generated. When the concentration of the metal ion was analyzed at 550 ml, the concentration was 3870 ppm for lithium, 930 ppm for cobalt, 870 ppm for nickel, and 0.9 ppm for manganese, and the current efficiency at this time was 78%.
 [例14(参考例)]
 電極液に還元剤を添加しないこと以外は、例12と同様にして電気透析を実施した。電極液は490mlでスケールの発生により茶褐色に濁った。電極液をろ過してスケールを回収したところ6mgであった。濃縮液は550mlでその金属イオンの濃度分析をしたところ、リチウム3860ppm、コバルト920ppm、ニッケル880ppm、マンガン0.8ppmであり、このときの電流効率は77%であった。
[Example 14 (reference example)]
Electrodialysis was performed in the same manner as in Example 12 except that no reducing agent was added to the electrode solution. The electrode solution was 490 ml and became magenta due to the occurrence of scale. The electrode solution was filtered and the scale was recovered to find 6 mg. When the concentration of the metal ion was analyzed at 550 ml, the concentration was 3860 ppm for lithium, 920 ppm for cobalt, 880 ppm for nickel, and 0.8 ppm for manganese. The current efficiency at this time was 77%.
 [例15]
 使用済みのリチウムイオン2次電池(円筒缶型18650)5本をマッフル炉にて700℃で2時間焼成し、外装をはがして内容物を取り出した。これを裁断機で2mm角程度に細断してボールミルで2時間粉砕し、150メッシュの篩にかけて活物質を含む粉体50gを得た。
[Example 15]
Five used lithium ion secondary batteries (cylindrical can type 18650) were baked at 700 ° C. for 2 hours in a muffle furnace, and the contents were taken out by peeling off the exterior. This was chopped to about 2 mm square with a cutting machine, pulverized with a ball mill for 2 hours, and passed through a 150 mesh sieve to obtain 50 g of powder containing the active material.
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに粉体80gを投入し、3時間攪拌して粉体中の金属イオンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過し、これを電気透析用脱塩液とした。この溶液のリチウムイオンの濃度は3400ppm、遷移金属イオンの濃度はコバルト9330ppm、ニッケル9840ppm、マンガン9150ppmであった。 Into a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. with a water bath, and stirred with a stirrer. The powder 80g was thrown into this and it stirred for 3 hours, and the metal ion in powder was leached. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered through a filter having a pore size of 0.45 μm, and this was used as a desalting solution for electrodialysis. The concentration of lithium ions in this solution was 3400 ppm, and the concentrations of transition metal ions were 9330 ppm cobalt, 9840 ppm nickel, and 9150 ppm manganese.
 次にこの溶液500mlから、陰イオン交換膜と陽イオン交換膜からなる電気透析装置(アシライザーEX3B、(株)アストム製)を用いて、硫酸リチウムを脱塩した。電極液は、硫酸リチウム1水和物5%溶液500mlに、第一の還元剤としてシュウ酸2水和物を28mg(遷移金属イオンの総量の2000ppmに相当)溶解したものを用い、濃縮液は500mlの純水を用いた。陰イオン交換膜は、ネオセプタAMX((株)アストム製)、陽イオン交換膜は1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、膜の構成は(陰極室)ACACACACACACACACACACA(陽極室)(ここでA:陰イオン交換膜、C:陽イオン交換膜)で有効膜面積は550cm、電圧10V、温度25℃で電気透析を実施した。電極液は490mlで濁りはまったく認められず、スケールは発生しなかった。濃縮液は550mlでその金属イオンの濃度分析をしたところ、リチウム3300ppm、コバルト1430ppm、ニッケル1350ppm、マンガン1350ppmであり、このときの電流効率は76%であった。 Next, lithium sulfate was desalted from 500 ml of this solution using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. The electrode solution was prepared by dissolving 28 mg of oxalic acid dihydrate (corresponding to 2000 ppm of the total amount of transition metal ions) as a first reducing agent in 500 ml of a 5% lithium sulfate monohydrate solution. 500 ml of pure water was used. The anion exchange membrane uses Neoceptor AMX (manufactured by Astom Co., Ltd.), and the cation exchange membrane uses monovalent selective membrane Neoceptor CIMS Co., Ltd. (Astom Co., Ltd.). ) (Where A: anion exchange membrane, C: cation exchange membrane), the effective membrane area was 550 cm 2 , the voltage was 10 V, and the temperature was 25 ° C., and electrodialysis was performed. The electrode solution was 490 ml and no turbidity was observed, and no scale was generated. When the concentration of the metal ion was analyzed at 550 ml, the concentration was 3300 ppm for lithium, 1430 ppm for cobalt, 1350 ppm for nickel, and 1350 ppm for manganese, and the current efficiency at this time was 76%.
 [例16]
 電極液に第一の還元剤として蟻酸10mg(遷移金属イオンの総量の700ppmに相当)を溶解した以外は例15と同様にして電気透析を実施した。電極液は490mlで濁りはまったく認められず、スケールは発生しなかった。濃縮液は550mlでその金属イオンの濃度分析をしたところ、リチウム3280ppm、コバルト1420ppm、ニッケル1340ppm、マンガン1360ppmであり、このときの電流効率は77%であった。
[Example 16]
Electrodialysis was carried out in the same manner as in Example 15 except that 10 mg of formic acid (corresponding to 700 ppm of the total amount of transition metal ions) was dissolved in the electrode solution as the first reducing agent. The electrode solution was 490 ml and no turbidity was observed, and no scale was generated. When the concentration of the metal ion was analyzed at 550 ml, the concentration was 3280 ppm for lithium, 1420 ppm for cobalt, 1340 ppm for nickel, and 1360 ppm for manganese, and the current efficiency at this time was 77%.
 [例17(参考例)]
 電極液に還元剤を添加しないこと以外は例15と同様にして電気透析を実施した。電極液は490mlでスケールの発生により茶褐色に濁った。電極液をろ過してスケールを回収したところ7mgであった。濃縮液は550mlでその金属イオンの濃度分析をしたところ、リチウム3270ppm、コバルト1440ppm、ニッケル1360ppm、マンガン1370ppmであり、このときの電流効率は75%であった。
[Example 17 (reference example)]
Electrodialysis was performed in the same manner as in Example 15 except that no reducing agent was added to the electrode solution. The electrode solution was 490 ml and became magenta due to the occurrence of scale. It was 7 mg when the electrode liquid was filtered and the scale was recovered. When the concentration of the metal ion was analyzed at 550 ml, the concentration was 3270 ppm for lithium, 1440 ppm for cobalt, 1360 ppm for nickel, and 1370 ppm for manganese, and the current efficiency at this time was 75%.
[活物質が三元系の場合]
<金属イオンを含有した溶液によるリチウムの浸出(例18~例23)>
[実験例1] (初回の浸出)
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに三元系活物質セルシードNMC(日本化学工業株式会社製)80gを投入し、3時間攪拌してリチウム並びにコバルト、ニッケル及びマンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。
[When the active material is ternary]
<Lithium leaching with a solution containing metal ions (Examples 18 to 23)>
[Experiment 1] (First leaching)
In a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 80 g of ternary active material cell seed NMC (manufactured by Nippon Chemical Industry Co., Ltd.) was added and stirred for 3 hours to leach lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm.
[例18] (脱塩液による浸出)
 実験例1の浸出液1000mlから、陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液は1000mlの純水を用い、陰イオン交換膜はネオセプタAMX((株)アストム製)、陽イオン交換膜は1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。1200mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム3400ppm、コバルト500ppm、ニッケル510ppm、マンガン0.4ppmであり、800mlの脱塩液において、その金属イオンの組成はリチウム90ppm、コバルト6860ppm、ニッケル6940ppm、マンガン1ppmであった。
[Example 18] (Leaching with desalting solution)
Lithium sulfate was desalted from 1000 ml of the leachate of Experimental Example 1 using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. The recovered liquid was 1000 ml of pure water, the anion exchange membrane was Neocepta AMX (manufactured by Astom Co., Ltd.), the cation exchange membrane was monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.), and the voltage was 10V. Electrodialysis was performed at a temperature of 25 ° C. The analysis of the concentration of the metal ions in 1200 ml of the recovered liquid revealed lithium 3400 ppm, cobalt 500 ppm, nickel 510 ppm, and manganese 0.4 ppm. In the 800 ml desalted liquid, the metal ion composition was lithium 90 ppm and cobalt 6860 ppm. Nickel, 6940 ppm and manganese, 1 ppm.
 次にこの脱塩液を用いて活物質から金属イオンを浸出した。まず脱塩液に硫酸を加えて、そのpHを0にした。このときの硫酸濃度は0.4Mであった。この液760gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに三元系活物質40gを投入し、3時間攪拌してリチウム並びにコバルト、ニッケル及びマンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表7に示す。 Next, metal ions were leached from the active material using this desalting solution. First, sulfuric acid was added to the desalted solution to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this, 40 g of a ternary active material was added and stirred for 3 hours to leach out lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
[例19] (塩の飽和溶液で浸出)
 コバルト、ニッケル、及びマンガンの各硫酸塩が飽和濃度になるまで脱塩と浸出を繰り返した。このときの各金属イオンの濃度は、リチウム1000ppm、コバルト40000ppm、ニッケル50000ppm、マンガン70000ppmであった。浸出用の液にこの飽和溶液を用いること以外は例18と同様にして活物質から金属イオンを浸出した。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
Example 19 (leaching with a saturated salt solution)
Desalting and leaching were repeated until the sulfates of cobalt, nickel, and manganese were saturated. The concentration of each metal ion at this time was lithium 1000 ppm, cobalt 40000 ppm, nickel 50000 ppm, and manganese 70000 ppm. Metal ions were leached from the active material in the same manner as in Example 18 except that this saturated solution was used as the leaching solution. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
[例20(参考例)]
 実験例1で作製した浸出液の金属イオン濃度を分析した。分析結果を表1に示す。
[Example 20 (reference example)]
The metal ion concentration of the leachate prepared in Experimental Example 1 was analyzed. The analysis results are shown in Table 1.
[例21(参考例)]
 浸出用の液の硫酸濃度を0.4Mにすること以外は実験例1と同様にして活物質の金属イオンを浸出した。浸出液の金属イオン濃度を分析した結果を表7に示す。
[Example 21 (reference example)]
Metal ions of the active material were leached in the same manner as in Experimental Example 1 except that the sulfuric acid concentration of the leaching solution was 0.4M. Table 7 shows the result of analyzing the metal ion concentration of the leachate.
[例22] (塩濃度と浸出率1)
 硫酸コバルト10%及び硫酸ニッケル10%を溶解した塩溶液1000mlに硫酸を加えて、そのpHを0にした。このときの硫酸濃度は0.4Mであった。この液760gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに三元系活物質40gを投入し、3時間攪拌してリチウム並びにコバルト、ニッケル及びマンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
[Example 22] (Salt concentration and leaching rate 1)
Sulfuric acid was added to 1000 ml of a salt solution in which 10% cobalt sulfate and 10% nickel sulfate were dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this, 40 g of a ternary active material was added and stirred for 3 hours to leach out lithium, cobalt, nickel and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
[例23] (塩濃度と浸出率2)
 硫酸コバルト2%及び硫酸ニッケル2%を溶解した塩溶液を用いること以外は例22と同様にして活物質から金属イオンを浸出した。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
[Example 23] (Salt concentration and leaching rate 2)
Metal ions were leached from the active material in the same manner as in Example 22 except that a salt solution in which 2% cobalt sulfate and 2% nickel sulfate were dissolved was used. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
<電気透析時のpH調整による電流効率の向上(例24~例27)>
[例24](浸出後pH調整1)
 1000mlの三角フラスコに1.5Mの硫酸を850g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに三元系活物質150gを投入し、3時間攪拌してリチウムおよびコバルト、ニッケル、マンガンを浸出した。浸出液のpHを測定すると1.7で、金属イオン濃度はリチウム12400ppm、コバルト19700ppm、ニッケル19800ppm、マンガン1900ppmであった。これに2価以上の金属の水酸化物として水酸化ニッケル(和光純薬(株)製)を2.38g投入し、80℃で2時間攪拌したところ、pHは2.62となった。その後静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
<Improvement of current efficiency by adjusting pH during electrodialysis (Examples 24 to 27)>
[Example 24] (pH adjustment 1 after leaching)
Add 850 g of 1.5 M sulfuric acid to a 1000 ml Erlenmeyer flask, heat to 80 ° C. with a water bath, and stir with a stirrer. To this, 150 g of a ternary active material was added and stirred for 3 hours to leach lithium, cobalt, nickel, and manganese. The pH of the leachate was measured to be 1.7, and the metal ion concentrations were lithium 12400 ppm, cobalt 19700 ppm, nickel 19800 ppm, and manganese 1900 ppm. When 2.38 g of nickel hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a metal hydroxide having a valence of 2 or more and stirred at 80 ° C. for 2 hours, the pH was 2.62. Thereafter, the mixture was allowed to stand, the supernatant was taken out, and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
 次にこの浸出液500mlについて陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液として500mlの純水を用い、陰イオン交換膜としてネオセプタAMX((株)アストム製)を用い、そして陽イオン交換膜として1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム10280ppm、コバルト1610ppm、ニッケル1770ppm、マンガン150ppmであり、このときの電流効率は76%であった。 Next, lithium sulfate was desalted from 500 ml of the leachate using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. Using 500 ml of pure water as the recovery liquid, using Neocepta AMX (manufactured by Astom Co., Ltd.) as the anion exchange membrane, and using monovalent selective membrane Neoceptor CIMS (manufactured by Astom Co., Ltd.) as the cation exchange membrane, Electrodialysis was performed at a voltage of 10 V and a temperature of 25 ° C. Analysis of the concentration of the metal ions in 550 ml of the collected liquid revealed lithium 10280 ppm, cobalt 1610 ppm, nickel 1770 ppm, manganese 150 ppm, and the current efficiency at this time was 76%.
[例25](浸出後pH調整2)
 浸出後のpH調整に水酸化ニッケルの代わりに2価以上の金属の酸化物として酸化マンガン(和光純薬(株)製)0.65gを使用すること以外は例24と同様にして、活物質から金属イオンを浸出してpH調整を実施した。調整後のpHは2.77であった。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
[Example 25] (pH adjustment 2 after leaching)
Active material in the same manner as in Example 24, except that 0.65 g of manganese oxide (manufactured by Wako Pure Chemical Industries, Ltd.) is used as the oxide of a divalent or higher metal in place of nickel hydroxide for pH adjustment after leaching. The metal ions were leached from the solution to adjust the pH. The pH after adjustment was 2.77. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
 次にこの浸出液500mlについて例24と同様にして電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム10770ppm、コバルト1610ppm、ニッケル1620ppm、マンガン350ppmであり、このときの電流効率は80%であった。 Next, electrodialysis was performed in the same manner as in Example 24 on 500 ml of the leachate. Analysis of the concentration of the metal ions in 550 ml of the recovered liquid revealed lithium 10770 ppm, cobalt 1610 ppm, nickel 1620 ppm, and manganese 350 ppm, and the current efficiency at this time was 80%.
[例26](浸出後pH調整3)
 浸出後のpH調整に水酸化ニッケルの代わりに第二の還元剤として30%過酸化水素水(和光純薬(株)製)10gを使用すること以外は例24と同様にして、活物質から金属イオンを浸出してpH調整を実施した。調整後のpHは2.83であった。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
[Example 26] (pH adjustment 3 after leaching)
From the active material in the same manner as in Example 24, except that 10 g of 30% hydrogen peroxide water (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the second reducing agent instead of nickel hydroxide for pH adjustment after leaching. Metal ions were leached to adjust the pH. The pH after adjustment was 2.83. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
 次にこの浸出液500mlについて例24と同様にして電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム11000ppm、コバルト1740ppm、ニッケル1780ppm、マンガン250ppmであり、このときの電流効率は85%であった。 Next, electrodialysis was performed in the same manner as in Example 24 on 500 ml of the leachate. When 550 ml of the recovered liquid was analyzed for the concentration of the metal ions, it was found to be 11000 ppm for lithium, 1740 ppm for cobalt, 1780 ppm for nickel, and 250 ppm for manganese. The current efficiency at this time was 85%.
[例27(参考例)]
 例24と同様にして三元系活物質から金属イオンを浸出し、10%アンモニア水2.88gを添加してpH調整を行った。pHは2.66であった。
[Example 27 (reference example)]
In the same manner as in Example 24, metal ions were leached from the ternary active material, and 2.88 g of 10% aqueous ammonia was added to adjust the pH. The pH was 2.66.
 次にこの浸出液500mlについて例24と同様にして電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム10600ppm、コバルト1610ppm、ニッケル1620ppm、マンガン160ppmであり、このときの電流効率は45%であった。 Next, electrodialysis was performed in the same manner as in Example 24 on 500 ml of the leachate. Analysis of the concentration of the metal ions in 550 ml of the recovered liquid revealed lithium 10600 ppm, cobalt 1610 ppm, nickel 1620 ppm, and manganese 160 ppm, and the current efficiency at this time was 45%.
<リチウム濃縮溶液からの遷移金属の精製(例28及び29)>
[例28](イオン交換樹脂による精製1)
 例24で得られた回収液500mlに2M水酸化リチウムを30.6ml加えて、そのpHを8として、遷移金属イオンを水酸化物として沈殿させた。沈殿をろ過した後のろ液の金属イオンの組成は、リチウム9250ppm、コバルト122ppm、ニッケル43ppm、マンガン4ppmであった。
<Purification of transition metal from concentrated lithium solution (Examples 28 and 29)>
[Example 28] (Purification with ion exchange resin 1)
To 500 ml of the recovered liquid obtained in Example 24, 30.6 ml of 2M lithium hydroxide was added to adjust the pH to 8 and precipitate transition metal ions as hydroxides. The composition of the metal ions in the filtrate after filtering the precipitate was lithium 9250 ppm, cobalt 122 ppm, nickel 43 ppm, and manganese 4 ppm.
 次にイオン交換樹脂によりさらに遷移金属を低濃度まで除去した。イオン交換樹脂スミキレートMC900(住化ケムテックス(株)製)530ccを蒸留水とともにカラムに充填し、10ml/分の速度で通液して遷移金属を除去した。精製後の金属イオンの組成は、リチウム9160ppm、コバルト0.5ppb未満、ニッケル5ppb未満、マンガン1ppb未満であった。 Next, the transition metal was further removed to a low concentration with an ion exchange resin. The column was filled with 530 cc of ion-exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) together with distilled water and passed through at a rate of 10 ml / min to remove transition metals. The composition of the metal ions after purification was 9160 ppm lithium, less than 0.5 ppb cobalt, less than 5 ppb nickel, and less than 1 ppb manganese.
[例29](イオン交換樹脂による精製2)
 pHを10として遷移金属イオンを沈殿させ、イオン交換樹脂にダイヤイオンCR20(三菱化学(株)製)を用いること以外は例28と同様にして、例25で得られた回収液を精製した。沈殿ろ過後の金属イオンの組成は、リチウム9240ppm、コバルト120ppb、ニッケル35ppb、マンガン1ppb未満であった。また、イオン交換樹脂精製後の金属イオンの組成は、リチウム9150ppm、コバルト0.5ppb未満、ニッケル5ppb未満、マンガン1ppb未満であった。
[Example 29] (Purification with ion exchange resin 2)
The recovered liquid obtained in Example 25 was purified in the same manner as in Example 28, except that transition metal ions were precipitated at pH 10 and Diaion CR20 (manufactured by Mitsubishi Chemical Corporation) was used as the ion exchange resin. The composition of metal ions after precipitation filtration was less than 9240 ppm lithium, 120 ppb cobalt, 35 ppb nickel, and 1 ppb manganese. Moreover, the composition of the metal ion after the ion exchange resin purification was lithium 9150 ppm, cobalt less than 0.5 ppb, nickel less than 5 ppb, and manganese less than 1 ppb.
<水酸化リチウム及び酸の回収(例30及び31)>
[例30](電解による水酸化リチウムの生成)
 例28においてイオン交換樹脂で精製した液に対して電解を実施した。使用した電解装置の構成を図2に示す。フッ素系陽イオン交換膜は旭化成ケミカルズ(株)製アシプレックスF2205D、陰イオン交換膜は(株)アストム製ネオセプタAMXを用いた。どちらも有効膜面積は25.5cmであった。陰極はニッケルのエキスパンドメタルに触媒として酸化ニッケルが塗布された電極を用いた。陽極は、チタンのエキスパンドメタルに触媒としてルテニウム、イリジウム、チタンが塗布された電極を用いた。塩室に精製した液500ml、陰極室に11%水酸化リチウム水溶液300ml、陽極室に10%硫酸300mlをそれぞれ60℃で通液し、電流密度が0.2A/cmになるように電源装置PK36-11(松定プレシジョン(株)製)で電圧を印加した。電圧は50Vであった。この電解により陰極室から14.6%水酸化リチウム330ml、陽極室から18.3%硫酸330mlを回収した。塩室の液のpHは8で変化なく、電流効率は81%であった。
<Recovery of lithium hydroxide and acid (Examples 30 and 31)>
[Example 30] (Production of lithium hydroxide by electrolysis)
Electrolysis was performed on the liquid purified with the ion exchange resin in Example 28. The configuration of the electrolyzer used is shown in FIG. Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 . As the cathode, an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used. As the anode, an electrode in which ruthenium, iridium, and titanium were applied as catalysts to titanium expanded metal was used. A power supply unit is made so that 500 ml of purified liquid in the salt chamber, 300 ml of 11% lithium hydroxide aqueous solution in the cathode chamber, and 300 ml of 10% sulfuric acid in the anode chamber are passed at 60 ° C., respectively, and the current density is 0.2 A / cm 2. A voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V. This electrolysis recovered 330 ml of 14.6% lithium hydroxide from the cathode compartment and 330 ml of 18.3% sulfuric acid from the anode compartment. The pH of the salt chamber liquid was 8 and the current efficiency was 81%.
[例31(参考例)]
 イオン交換樹脂で精製した液について、図3で示す構成の電解装置を用いて陽極室に精製した液を通液すること以外は例30と同様にして電解を実施し、陰極室から14.4%水酸化リチウム550mlを回収した。塩室のpHは、電解開始時には8であり、終了時には0.1であり、そして電流効率は48%であった。
[Example 31 (reference example)]
The liquid purified with the ion exchange resin was electrolyzed in the same manner as in Example 30 except that the purified liquid was passed through the anode chamber using the electrolysis apparatus having the configuration shown in FIG. 550 ml of% lithium hydroxide was recovered. The pH of the salt chamber was 8 at the start of electrolysis, 0.1 at the end, and the current efficiency was 48%.
[活物質がマンガン酸リチウムの場合]
<金属イオンを含有した溶液によるリチウムの浸出(例32~例37)>
[実験例2] (初回の浸出)
 2000mlの三角フラスコに2Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにマンガン酸リチウム(日揮触媒化成(株))80gを投入し、3時間攪拌してリチウム及びマンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。
[When the active material is lithium manganate]
<Lithium leaching with a solution containing metal ions (Examples 32 to 37)>
[Experiment 2] (First leaching)
In a 2000 ml Erlenmeyer flask, 1520 g of 2M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this, 80 g of lithium manganate (JGC Catalysts & Chemicals Co., Ltd.) was added, and stirred for 3 hours to leach lithium and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm.
[例32] (脱塩液による浸出)
 実験例2の浸出液1000mlから、陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液は1000mlの純水を用い、陰イオン交換膜はネオセプタAMX((株)アストム製)、陽イオン交換膜は1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。1100mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム1730ppm、マンガン580ppmであり、900mlの脱塩液において、その金属イオンの組成はリチウム110ppm、マンガン7160ppmであった。
[Example 32] (Leaching with desalting solution)
Lithium sulfate was desalted from 1000 ml of the leachate of Experimental Example 2 using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) composed of an anion exchange membrane and a cation exchange membrane. The recovered liquid was 1000 ml of pure water, the anion exchange membrane was Neocepta AMX (manufactured by Astom Co., Ltd.), the cation exchange membrane was monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.), and the voltage was 10V. Electrodialysis was performed at a temperature of 25 ° C. Analysis of the concentration of the metal ions in 1100 ml of the recovered liquid revealed that lithium was 1730 ppm and manganese was 580 ppm. In the 900 ml desalted liquid, the composition of the metal ions was 110 ppm lithium and 7160 ppm manganese.
 次にこの脱塩液を用いて活物質から金属イオンを浸出した。まず脱塩液に硫酸を加えて、pHを0にした。このときの硫酸濃度は0.4Mであった。この液760gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに活物質40gを投入し、3時間攪拌してリチウムおよびマンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表8に示す。 Next, metal ions were leached from the active material using this desalting solution. First, sulfuric acid was added to the desalted solution to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. The active material 40g was thrown into this, and it stirred for 3 hours, and leached lithium and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
[例33] (塩の飽和溶液で浸出)
 硫酸マンガンが飽和濃度になるまで脱塩と浸出を繰り返した。このときのリチウムの濃度は1000ppm、マンガンの濃度は140000ppmであった。浸出用の液にこの飽和溶液を用いること以外は例32と同様にして活物質から金属イオンを浸出した。浸出液中の金属イオンの濃度を分析した結果を表2に示す。
Example 33 (leaching with a saturated salt solution)
Desalting and leaching were repeated until the manganese sulfate was saturated. At this time, the concentration of lithium was 1000 ppm and the concentration of manganese was 140000 ppm. Metal ions were leached from the active material in the same manner as in Example 32 except that this saturated solution was used as the leaching solution. Table 2 shows the results of analyzing the concentration of metal ions in the leachate.
[例34(参考例)]
 実験例2で作製した浸出液の金属イオン濃度を分析した。分析結果を表8に示す。
[Example 34 (reference example)]
The metal ion concentration of the leachate prepared in Experimental Example 2 was analyzed. The analysis results are shown in Table 8.
[例35(参考例)]
 浸出用の液の硫酸濃度を0.4Mにすること以外は実験例2と同様にして活物質の金属イオンを浸出した。浸出液の金属イオン濃度を分析した結果を表8に示す。
[Example 35 (reference example)]
The active material metal ions were leached in the same manner as in Experimental Example 2 except that the sulfuric acid concentration of the leaching solution was 0.4M. Table 8 shows the result of analyzing the metal ion concentration of the leachate.
[例36] (塩濃度と浸出率1)
 硫酸マンガン10%を溶解した塩溶液1000mlに硫酸を加えて、そのpHを0にした。このときの硫酸濃度は0.4Mであった。この液760gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにマンガン酸リチウム40gを投入し、3時間攪拌してリチウムおよびマンガンを浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表8に示す。
[Example 36] (Salt concentration and leaching rate 1)
Sulfuric acid was added to 1000 ml of a salt solution in which 10% manganese sulfate was dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this was added 40 g of lithium manganate, and the mixture was stirred for 3 hours to leach lithium and manganese. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
[例37] (塩濃度と浸出率2)
 硫酸マンガン2%を溶解した塩溶液を用いること以外は例36と同様にして活物質から金属イオンを浸出した。浸出液中の金属イオンの濃度を分析した結果を表8に示す。
[Example 37] (Salt concentration and leaching rate 2)
Metal ions were leached from the active material in the same manner as in Example 36 except that a salt solution in which 2% manganese sulfate was dissolved was used. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
<電気透析時のpH調整による電流効率の向上(例38~例40)>
[例38] (浸出後pH調整1)
 1000mlの三角フラスコに1.5Mの硫酸を850g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにマンガン酸リチウム150gを投入し、3時間攪拌してリチウムおよびマンガンを浸出した。浸出液のpHを測定すると1.37であり、金属イオン濃度はリチウム6700ppm、マンガン24000ppmであった。これに2価以上の金属の酸化物として酸化マンガンを3.87g投入し、80℃で2時間攪拌したところ、pHは2.61となった。その後静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表8に示す。
<Improvement of current efficiency by pH adjustment during electrodialysis (Example 38 to Example 40)>
[Example 38] (pH adjustment 1 after leaching)
Add 850 g of 1.5 M sulfuric acid to a 1000 ml Erlenmeyer flask, heat to 80 ° C. with a water bath, and stir with a stirrer. To this was added 150 g of lithium manganate, and the mixture was stirred for 3 hours to leach lithium and manganese. The pH of the leachate was measured and found to be 1.37, and the metal ion concentration was 6700 ppm of lithium and 24,000 ppm of manganese. When 3.87 g of manganese oxide was added as an oxide of a metal having a valence of 2 or more and stirred at 80 ° C. for 2 hours, the pH was 2.61. Thereafter, the mixture was allowed to stand, the supernatant was taken out, and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
 次にこの浸出液500mlを陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液として500mlの純水を用い、陰イオン交換膜としてネオセプタAMX((株)アストム製)を用い、陽イオン交換膜として1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム5720ppm、マンガン2350ppmであり、このときの電流効率は75%であった。 Next, lithium sulfate was desalted from 500 ml of the leaching solution using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) composed of an anion exchange membrane and a cation exchange membrane. Using 500 ml of pure water as the recovered liquid, Neoceptor AMX (manufactured by Astom Co., Ltd.) as the anion exchange membrane, and monovalent selective membrane Neoceptor CIMS (manufactured by Astom Co., Ltd.) as the cation exchange membrane, and voltage Electrodialysis was performed at 10 V and a temperature of 25 ° C. When 550 ml of the collected liquid was analyzed for the concentration of the metal ions, it was 5720 ppm for lithium and 2350 ppm for manganese, and the current efficiency at this time was 75%.
[例39] (浸出後pH調整2)
 浸出後のpH調整に酸化マンガンの代わりに第二の還元剤として30%過酸化水素水22gを使用すること以外は例38と同様にして、活物質から金属イオンを浸出してpH調整を実施した。調整後のpHは2.94であった。浸出液中の金属イオンの濃度を分析した結果を表8に示す。
[Example 39] (pH adjustment 2 after leaching)
The pH was adjusted by leaching metal ions from the active material in the same manner as in Example 38, except that 22 g of 30% hydrogen peroxide water was used as the second reducing agent instead of manganese oxide for pH adjustment after leaching. did. The pH after adjustment was 2.94. Table 8 shows the results of analyzing the concentration of metal ions in the leachate.
 次にこの浸出液500mlについて例38と同様にして電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム5440ppm、マンガン2320ppmであり、このときの電流効率は86%であった。 Next, electrodialysis was performed on 500 ml of the leachate in the same manner as in Example 38. When 550 ml of the collected liquid was analyzed for the concentration of metal ions, it was 5440 ppm for lithium and 2320 ppm for manganese, and the current efficiency at this time was 86%.
[例40(参考例)]
 例38と同様にして活物質から金属イオンを浸出し、10%アンモニア水6.17gを添加してpH調整を行った。pHは2.62であった。
[Example 40 (reference example)]
In the same manner as in Example 38, metal ions were leached from the active material, and pH was adjusted by adding 6.17 g of 10% aqueous ammonia. The pH was 2.62.
 次にこの浸出液500mlについて例38と同様にして電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム5600ppm、マンガン2180ppmであり、このときの電流効率は43%であった。 Next, electrodialysis was performed on 500 ml of the leachate in the same manner as in Example 38. When 550 ml of the collected liquid was analyzed for the concentration of metal ions, it was 5600 ppm for lithium and 2180 ppm for manganese, and the current efficiency at this time was 43%.
<リチウム濃縮溶液からの遷移金属の精製(例41)>
[例41] (イオン交換樹脂による精製)
 例38で得られた回収液500mlに2M水酸化リチウムを21.9ml加えて、そのpHを8とし、遷移金属イオンを水酸化物として沈殿させた。沈殿をろ過した後のろ液の金属イオンの組成は、リチウム5150ppm、マンガン4ppmであった。
<Purification of transition metal from concentrated lithium solution (Example 41)>
[Example 41] (Purification with ion exchange resin)
To 500 ml of the recovered liquid obtained in Example 38, 21.9 ml of 2M lithium hydroxide was added to adjust the pH to 8, and transition metal ions were precipitated as hydroxides. The composition of metal ions in the filtrate after filtering the precipitate was lithium 5150 ppm and manganese 4 ppm.
 次にイオン交換樹脂によりさらに遷移金属を低濃度まで除去した。イオン交換樹脂スミキレートMC900(住化ケムテックス(株)製)520ccを蒸留水とともにカラムに充填し、10ml/分の速度で通液して遷移金属を除去した。精製後の金属イオンの組成は、リチウム5100ppm、マンガン1ppb未満であった。 Next, the transition metal was further removed to a low concentration with an ion exchange resin. The column was filled with 520 cc of ion-exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) together with distilled water and passed through at a rate of 10 ml / min to remove transition metals. The composition of the metal ion after purification was lithium 5100 ppm and manganese less than 1 ppb.
<水酸化リチウム及び酸の回収(例42及び43)>
[例42] (電解による水酸化リチウムの生成)
 例41でイオン交換樹脂で精製した液について電解を実施した。使用した電解装置の構成を図2に示す。フッ素系陽イオン交換膜は旭化成ケミカルズ(株)製アシプレックスF2205D、陰イオン交換膜は(株)アストム製ネオセプタAMXを用いた。どちらも有効膜面積は25.5cmであった。陰極は、ニッケルのエキスパンドメタルに触媒として酸化ニッケルが塗布された電極を用いた。陽極は、チタンのエキスパンドメタルに触媒としてルテニウム、イリジウム及びチタンが塗布された電極を用いた。塩室に精製した液500ml、陰極室に13%水酸化リチウム水溶液300ml、陽極室に10%硫酸300mlをそれぞれ60℃で通液し、電流密度が0.2A/cmになるように電源装置PK36-11(松定プレシジョン(株)製)で電圧を印加した。電圧は50Vであった。この電解により陰極室から14.4%水酸化リチウム330ml、陽極室から19.2%硫酸330mlを回収した。塩室の液のpHは8で変化なく、電流効率は88%であった。
<Recovery of lithium hydroxide and acid (Examples 42 and 43)>
[Example 42] (Production of lithium hydroxide by electrolysis)
Electrolysis was performed on the liquid purified with the ion exchange resin in Example 41. The configuration of the electrolyzer used is shown in FIG. Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 . As the cathode, an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used. As the anode, an electrode in which ruthenium, iridium and titanium were applied as a catalyst to an expanded metal of titanium was used. Liquid 500ml purified salt chamber, 13% aqueous lithium hydroxide 300ml the cathode chamber, and liquid permeation of 10% sulfuric acid 300ml at 60 ° C. respectively to the anode chamber, the power supply such that the current density is 0.2 A / cm 2 A voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V. This electrolysis recovered 330 ml of 14.4% lithium hydroxide from the cathode compartment and 330 ml of 19.2% sulfuric acid from the anode compartment. The pH of the salt chamber solution was unchanged at 8, and the current efficiency was 88%.
[例43(参考例)]
 イオン交換樹脂で精製した液について、図3で示す構成の電解装置を用いて陽極室に精製した液を通液すること以外は例42と同様にして電解を実施して、陰極室から14.2%水酸化リチウム330mlを回収した。塩室のpHは、電解開始時では8であり、終了時では0.1であり、そして電流効率は41%であった。
[Example 43 (reference example)]
For the liquid purified with the ion exchange resin, electrolysis was performed in the same manner as in Example 42 except that the purified liquid was passed through the anode chamber using the electrolysis apparatus having the configuration shown in FIG. 330 ml of 2% lithium hydroxide was recovered. The pH of the salt chamber was 8 at the start of electrolysis, 0.1 at the end, and the current efficiency was 41%.
[活物質がリン酸鉄リチウムの場合]
<金属イオンを含有した溶液によるリチウムの浸出(例44~例49)>
[実験例3] (初回の浸出)
 2000mlの三角フラスコに1Mの硫酸(和光純薬(株)製)を1520g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにリン酸鉄リチウム(Formasa Energy & Material Tech.社製)80gを投入し、3時間攪拌してリチウムおよび鉄を浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。
[When the active material is lithium iron phosphate]
<Lithium leaching with a solution containing metal ions (Example 44 to Example 49)>
[Experiment 3] (First leaching)
In a 2000 ml Erlenmeyer flask, 1520 g of 1M sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) is added, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 80 g of lithium iron phosphate (made by Formasa Energy & Material Tech.) Was added and stirred for 3 hours to leach out lithium and iron. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm.
[例44] (脱塩液による浸出)
 実験例3の浸出液1000mlから、陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液として1000mlの純水を用い、陰イオン交換膜としてネオセプタAMX((株)アストム製)を用い、陽イオン交換膜として1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。1100mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム2200ppm、鉄1660ppmであり、900mlの脱塩液において、その金属イオンの組成はリチウム200ppm、鉄18100ppmであった。
[Example 44] (Leaching with desalting solution)
Lithium sulfate was desalted from 1000 ml of the leachate of Experimental Example 3 using an electrodialysis apparatus (Acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. Using 1000 ml of pure water as the recovery liquid, using Neocepta AMX (manufactured by Astom Co., Ltd.) as the anion exchange membrane, and using monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.) as the cation exchange membrane, the voltage Electrodialysis was performed at 10 V and a temperature of 25 ° C. Analysis of the concentration of the metal ions in 1100 ml of the recovered liquid revealed that lithium was 2200 ppm and iron was 1660 ppm. In the 900 ml of desalted liquid, the composition of the metal ions was 200 ppm lithium and 18100 ppm iron.
 次にこの脱塩液を用いて活物質から金属イオンを浸出した。まず脱塩液に硫酸を加えてpH0にした。このときの硫酸濃度は0.4Mであった。この液760gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにリン酸鉄リチウム40gを投入し、3時間攪拌してリチウムおよび鉄を浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表9に示す。 Next, metal ions were leached from the active material using this desalting solution. First, sulfuric acid was added to the desalted solution to adjust the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this was added 40 g of lithium iron phosphate, and the mixture was stirred for 3 hours to leach lithium and iron. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
[例45] (塩の飽和溶液で浸出)
 硫酸鉄が飽和濃度になるまで脱塩と浸出を繰り返した。このときのリチウムイオンの濃度は1000ppm、鉄イオンの濃度は84000ppmであった。浸出用の液にこの飽和溶液を用いること以外は例44と同様にして活物質から金属イオンを浸出した。浸出液中の金属イオンの濃度を分析した結果を表9に示す。
Example 45 (leaching with a saturated salt solution)
Desalting and leaching were repeated until the iron sulfate was saturated. At this time, the concentration of lithium ions was 1000 ppm, and the concentration of iron ions was 84000 ppm. Metal ions were leached from the active material in the same manner as in Example 44 except that this saturated solution was used as the leaching solution. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
[例46(参考例)]
 実験例3で作製した浸出液の金属イオン濃度を分析した。分析結果を表9に示す。
[Example 46 (reference example)]
The metal ion concentration of the leachate prepared in Experimental Example 3 was analyzed. The analysis results are shown in Table 9.
[例47(参考例)]
 浸出用の液の硫酸濃度を0.4Mにすること以外は実験例3と同様にして活物質の金属イオンを浸出した。浸出液の金属イオン濃度を分析した結果を表9に示す。
[Example 47 (reference example)]
The active material metal ions were leached in the same manner as in Experimental Example 3 except that the sulfuric acid concentration of the leaching solution was 0.4M. Table 9 shows the results of analyzing the metal ion concentration of the leachate.
[例48] (塩濃度と浸出率1)
 硫酸鉄10%を溶解した塩溶液1000mlに硫酸を加えて、そのpHを0にした。このときの硫酸濃度は0.4Mであった。この液760gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにリン酸鉄リチウム40gを投入し、3時間攪拌してリチウムおよび鉄を浸出した。静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表9に示す。
[Example 48] (Salt concentration and leaching rate 1)
Sulfuric acid was added to 1000 ml of a salt solution in which 10% of iron sulfate was dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 760 g of this liquid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. To this was added 40 g of lithium iron phosphate, and the mixture was stirred for 3 hours to leach lithium and iron. The supernatant was taken out and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
[例49] (塩濃度と浸出率2)
 硫酸鉄2%を溶解した塩溶液を用いること以外は例48と同様にして活物質から金属イオンを浸出した。浸出液中の金属イオンの濃度を分析した結果を表9に示す。
[Example 49] (Salt concentration and leaching rate 2)
Metal ions were leached from the active material in the same manner as in Example 48 except that a salt solution in which 2% of iron sulfate was dissolved was used. Table 9 shows the results of analyzing the concentration of metal ions in the leachate.
<電気透析時のpH調整による電流効率の向上(例50及び例51)>
[例50] (浸出後pH調整)
 1000mlの三角フラスコに1.5Mの硫酸を850g入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これにリン酸鉄リチウム150gを投入し、3時間攪拌してリチウムおよび鉄を浸出した。浸出液のpHを測定すると0.98であった。これに2価以上の金属の酸化物として酸化マンガンを9.48g投入し、80℃で2時間攪拌したところ、pHは2.72となった。その後静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中のリチウムイオンと鉄イオンの濃度を分析した結果を表9に示す。
<Improvement of current efficiency by pH adjustment during electrodialysis (Example 50 and Example 51)>
[Example 50] (pH adjustment after leaching)
Add 850 g of 1.5 M sulfuric acid to a 1000 ml Erlenmeyer flask, heat to 80 ° C. with a water bath, and stir with a stirrer. To this was added 150 g of lithium iron phosphate, and the mixture was stirred for 3 hours to leach lithium and iron. The pH of the leachate was measured and found to be 0.98. When 9.48 g of manganese oxide was added as an oxide of a metal having a valence of 2 or more and stirred at 80 ° C. for 2 hours, the pH became 2.72. Thereafter, the mixture was allowed to stand to take out the supernatant, and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 9 shows the results of analyzing the concentrations of lithium ions and iron ions in the leachate.
 次に、この浸出液500mlから、陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液として500mlの純水を用い、陰イオン交換膜としてネオセプタAMX((株)アストム製)を用い、陽イオン交換膜として1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム7360ppm、鉄5570ppmであり、このときの電流効率は78%であった。 Next, lithium sulfate was desalted from 500 ml of the leachate using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) composed of an anion exchange membrane and a cation exchange membrane. Using 500 ml of pure water as the recovered liquid, Neoceptor AMX (manufactured by Astom Co., Ltd.) as the anion exchange membrane, and monovalent selective membrane Neoceptor CIMS (manufactured by Astom Co., Ltd.) as the cation exchange membrane, and voltage Electrodialysis was performed at 10 V and a temperature of 25 ° C. When 550 ml of the collected liquid was analyzed for the concentration of the metal ions, it was 7360 ppm for lithium and 5570 ppm for iron, and the current efficiency at this time was 78%.
[例51(参考例)]
 例50と同様にして活物質から金属イオンを浸出し、10%アンモニア水15.1gを添加してpH調整を行った。pHは2.71であった。
[Example 51 (reference example)]
In the same manner as in Example 50, metal ions were leached from the active material, and pH was adjusted by adding 15.1 g of 10% aqueous ammonia. The pH was 2.71.
 次にこの浸出液500mlについて例50と同様にして電気透析を実施した。550mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム7440ppm、鉄5570ppmであり、このときの電流効率は39%であった。 Next, electrodialysis was performed in the same manner as in Example 50 on 500 ml of the leachate. When 550 ml of the collected liquid was analyzed for the concentration of the metal ions, it was lithium 7440 ppm and iron 5570 ppm, and the current efficiency at this time was 39%.
<リチウム濃縮溶液からの遷移金属の精製(例52)>
[例52] (イオン交換樹脂による精製)
 例50で得られた回収液500mlに2M水酸化リチウムを50.2ml加えて、そのpH8をとし、遷移金属イオンを水酸化物として沈殿させた。沈殿をろ過した後のろ液の金属イオンの組成は、リチウム5010ppm、鉄83ppmであった。
<Purification of transition metal from concentrated lithium solution (Example 52)>
[Example 52] (Purification with ion exchange resin)
To 500 ml of the recovered liquid obtained in Example 50, 50.2 ml of 2M lithium hydroxide was added to adjust the pH to 8, and transition metal ions were precipitated as hydroxides. The composition of the metal ions in the filtrate after filtering the precipitate was 5010 ppm lithium and 83 ppm iron.
 次に、イオン交換樹脂によりさらに遷移金属を低濃度まで除去した。イオン交換樹脂スミキレートMC900(住化ケムテックス(株)製)550ccを蒸留水とともにカラムに充填し、10ml/分の速度で通液して遷移金属を除去した。精製後の金属イオンの組成は、リチウム4960ppm、鉄5ppb未満であった。 Next, the transition metal was further removed to a low concentration with an ion exchange resin. The column was filled with 550 cc of ion-exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) together with distilled water and passed through at a rate of 10 ml / min to remove transition metals. The composition of the metal ions after purification was 4960 ppm of lithium and less than 5 ppb of iron.
<水酸化リチウム及び酸の回収(例53及び54)>
[例53] (電解による水酸化リチウムの生成)
 例52においてイオン交換樹脂で精製した液について電解を実施した。使用した電解装置の構成を図2に示す。フッ素系陽イオン交換膜は旭化成ケミカルズ(株)製アシプレックスF2205D、陰イオン交換膜は(株)アストム製ネオセプタAMXを用いた。どちらも有効膜面積は25.5cmであった。陰極は、ニッケルのエキスパンドメタルに触媒として酸化ニッケルが塗布された電極を用いた。陽極は、チタンのエキスパンドメタルに触媒としてルテニウム、イリジウム、チタンが塗布された電極を用いた。塩室に精製した液500ml、陰極室に13%水酸化リチウム水溶液300ml、陽極室に10%硫酸300mlをそれぞれ60℃で通液し、電流密度が0.2A/cmになるように電源装置PK36-11(松定プレシジョン(株)製)で電圧を印加した。電圧は50Vであった。この電解により陰極室から14.3%水酸化リチウム330ml、陽極室から14.2%硫酸330mlを回収した。塩室の液のpHは8で変化なく、電流効率は82%であった。
<Recovery of lithium hydroxide and acid (Examples 53 and 54)>
[Example 53] (Production of lithium hydroxide by electrolysis)
Electrolysis was performed on the liquid purified with the ion exchange resin in Example 52. The configuration of the electrolyzer used is shown in FIG. Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 . As the cathode, an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used. As the anode, an electrode in which ruthenium, iridium, and titanium were applied as catalysts to titanium expanded metal was used. Liquid 500ml purified salt chamber, 13% aqueous lithium hydroxide 300ml the cathode chamber, and liquid permeation of 10% sulfuric acid 300ml at 60 ° C. respectively to the anode chamber, the power supply such that the current density is 0.2 A / cm 2 A voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V. This electrolysis recovered 330 ml of 14.3% lithium hydroxide from the cathode compartment and 330 ml of 14.2% sulfuric acid from the anode compartment. The pH of the salt chamber solution was unchanged at 8, and the current efficiency was 82%.
[例54]
 イオン交換樹脂で精製した液について、図3で示す構成の電解装置を用いて陽極室に精製した液を通液すること以外は例53と同様にして電解を実施して、陰極室から14.1%水酸化リチウム330mlを回収した。塩室のpHは、電解開始時には8であり、終了時には0.1、そして電流効率は47%であった。
[Example 54]
For the liquid purified with the ion exchange resin, electrolysis was performed in the same manner as in Example 53 except that the purified liquid was passed through the anode chamber using the electrolysis apparatus having the configuration shown in FIG. 330 ml of 1% lithium hydroxide was recovered. The pH of the salt chamber was 8 at the start of electrolysis, 0.1 at the end, and the current efficiency was 47%.
<使用済みリチウムイオン2次電池からのリチウムの回収(例55~例57)>
[例55] 
 使用済みのリチウムイオン2次電池(円筒缶型18650)5本をマッフル炉にて700℃で2時間焼成し、外装をはがして内容物を取り出した。これを裁断機で2mm角程度に細断してボールミルで2時間粉砕し、150メッシュの篩にかけて活物質を含む粉体50gを得た。
<Recovery of lithium from used lithium ion secondary battery (Example 55 to Example 57)>
[Example 55]
Five used lithium ion secondary batteries (cylindrical can type 18650) were baked at 700 ° C. for 2 hours in a muffle furnace, and the contents were taken out by peeling off the exterior. This was chopped to about 2 mm square with a cutting machine, pulverized with a ball mill for 2 hours, and passed through a 150 mesh sieve to obtain 50 g of powder containing the active material.
 硫酸コバルト2%、硫酸ニッケル2%を溶解した塩溶液1000mlに硫酸を加えて、そのpHを0にした。このときの硫酸濃度は0.4Mであった。この液950gを1000mlの三角フラスコに入れ、ウォーターバスで80℃に加熱し、スターラーで攪拌する。これに粉体50gを投入し、3時間攪拌してリチウムおよび遷移金属類を浸出した。浸出残渣1gを取り出して5M硫酸10mlと30%過酸化水素水1mlの混合液に入れ80℃で3時間攪拌してろ過し、ろ液について金属イオンの分析を実施したところリチウムは検出されなかった。 Sulfuric acid was added to 1000 ml of a salt solution in which 2% cobalt sulfate and 2% nickel sulfate were dissolved to bring the pH to zero. The sulfuric acid concentration at this time was 0.4M. 950 g of this liquid is placed in a 1000 ml Erlenmeyer flask, heated to 80 ° C. with a water bath, and stirred with a stirrer. 50 g of powder was put into this and stirred for 3 hours to leach lithium and transition metals. 1 g of the leaching residue was taken out, placed in a mixed solution of 10 ml of 5M sulfuric acid and 1 ml of 30% hydrogen peroxide solution, stirred at 80 ° C. for 3 hours and filtered, and the filtrate was analyzed for metal ions, and lithium was not detected. .
 浸出液のpHを測定すると1.8であった。これに水酸化ニッケルを1.87g投入し、80℃で2時間攪拌したところ、pHは2.78となった。その後静置して上澄みを取り出し、未溶解物を分離した。取り出した浸出液を孔径0.45μmのフィルターでろ過した。浸出液中の金属イオンの濃度を分析した結果を表1に示す。なお、リチウム電池には表1で示した正極に含まれる金属の他に、集電体としてアルミニウム又は銅が使用されており、廃リチウム電池からの浸出液にはこれらのイオンが含まれる。 The pH of the leachate was measured and found to be 1.8. When 1.87 g of nickel hydroxide was added thereto and stirred at 80 ° C. for 2 hours, the pH became 2.78. Thereafter, the mixture was allowed to stand, the supernatant was taken out, and the undissolved material was separated. The extracted leachate was filtered with a filter having a pore size of 0.45 μm. Table 1 shows the results of analyzing the concentration of metal ions in the leachate. In addition to the metal contained in the positive electrode shown in Table 1, the lithium battery uses aluminum or copper as a current collector, and the leachate from the waste lithium battery contains these ions.
 次に、この浸出液950mlから、陰イオン交換膜と陽イオン交換膜から成る電気透析装置(アシライザーEX3B、(株)アストム製)を用いて硫酸リチウムを脱塩した。回収液として950mlの純水を用い、陰イオン交換膜としてネオセプタAMX((株)アストム製)、陽イオン交換膜として1価選択性膜ネオセプタCIMS(株)アストム製)を使用し、電圧10V、温度25℃で電気透析を実施した。1050mlの回収液において、その金属イオンの濃度分析をしたところ、リチウム3260ppm、コバルト760ppm、ニッケル800ppm、マンガン50ppmであり、このときの電流効率は79%であった。 Next, lithium sulfate was desalted from 950 ml of the leachate using an electrodialysis apparatus (acylator EX3B, manufactured by Astom Co., Ltd.) comprising an anion exchange membrane and a cation exchange membrane. 950 ml of pure water was used as the recovery liquid, Neocepta AMX (manufactured by Astom Co., Ltd.) was used as the anion exchange membrane, and monovalent selective membrane Neocepta CIMS (manufactured by Astom Co., Ltd.) was used as the cation exchange membrane. Electrodialysis was performed at a temperature of 25 ° C. When 1050 ml of the collected liquid was analyzed for the concentration of the metal ions, it was lithium 3260 ppm, cobalt 760 ppm, nickel 800 ppm, and manganese 50 ppm, and the current efficiency at this time was 79%.
 次にこの回収液についてイオン交換樹脂で遷移金属類を除去した。回収液1050mlに2M水酸化リチウムを29.6ml加えて、そのpH8をとし、遷移金属イオンを水酸化物として沈殿させた。沈殿をろ過した後のろ液の金属イオンの組成は、リチウム2930ppm、コバルト122ppm、ニッケル43ppm、マンガン4ppmであった。 Next, transition metals were removed from the recovered liquid with an ion exchange resin. 29.6 ml of 2M lithium hydroxide was added to 1050 ml of the collected liquid to adjust its pH to 8, and transition metal ions were precipitated as hydroxides. The composition of the metal ions in the filtrate after filtering the precipitate was lithium 2930 ppm, cobalt 122 ppm, nickel 43 ppm, and manganese 4 ppm.
 次に、イオン交換樹脂によりさらに遷移金属を低濃度まで除去した。イオン交換樹脂スミキレートMC900(住化ケムテックス(株)製)960ccを蒸留水とともにカラムに充填し、10ml/分の速度で通液して遷移金属を除去した。精製後の金属イオンの組成は、リチウム2900ppm、コバルト0.5ppb未満、ニッケル5ppb未満、マンガン1ppb未満であった。 Next, the transition metal was further removed to a low concentration with an ion exchange resin. 960 cc of ion exchange resin Sumichel MC900 (manufactured by Sumika Chemtex Co., Ltd.) was packed in a column together with distilled water, and passed through at a rate of 10 ml / min to remove transition metals. The composition of the metal ions after purification was lithium 2900 ppm, cobalt less than 0.5 ppb, nickel less than 5 ppb, and manganese less than 1 ppb.
 次に、イオン交換樹脂で精製した液について電解を実施した。使用した電解装置の構成を図2に示す。フッ素系陽イオン交換膜は旭化成ケミカルズ(株)製アシプレックスF2205D、陰イオン交換膜は(株)アストム製ネオセプタAMXを用いた。どちらも有効膜面積は25.5cmであった。陰極はニッケルのエキスパンドメタルに触媒として酸化ニッケルが塗布された電極を用いた。陽極は、チタンのエキスパンドメタルに触媒としてルテニウム、イリジウム、チタンが塗布された電極を用いた。塩室に精製した液960ml、陰極室に13%水酸化リチウム水溶液300ml、陽極室に10%硫酸300mlをそれぞれ60℃で通液し、電流密度が0.2A/cmになるように電源装置PK36-11(松定プレシジョン(株)製)で電圧を印加した。電圧は50Vであった。この電解により陰極室から14.8%水酸化リチウム330、陽極室から15%硫酸330mlを回収した。塩室の液のpHは8で変化なく、電流効率は84%であった。 Next, electrolysis was performed on the liquid purified with the ion exchange resin. The configuration of the electrolyzer used is shown in FIG. Asciplex F2205D manufactured by Asahi Kasei Chemicals Corporation was used as the fluorine-based cation exchange membrane, and Neoceptor AMX manufactured by Astom Co., Ltd. was used as the anion exchange membrane. In both cases, the effective membrane area was 25.5 cm 2 . As the cathode, an electrode in which nickel expanded metal was applied as a catalyst to an expanded metal of nickel was used. As the anode, an electrode in which ruthenium, iridium, and titanium were applied as catalysts to titanium expanded metal was used. 960 ml of purified liquid in the salt chamber, 300 ml of 13% lithium hydroxide aqueous solution in the cathode chamber, and 300 ml of 10% sulfuric acid in the anode chamber at 60 ° C., respectively, so that the current density is 0.2 A / cm 2. A voltage was applied with PK36-11 (manufactured by Matsusada Precision Co., Ltd.). The voltage was 50V. By this electrolysis, 14.8% lithium hydroxide 330 was recovered from the cathode chamber, and 330 ml of 15% sulfuric acid was recovered from the anode chamber. The pH of the salt chamber solution was 8 and the current efficiency was 84%.
[例56(参考例)]
 1000mlの三角フラスコに0.4M硫酸を950g入れ、ウォーターバス80℃に加熱し、スターラーで攪拌する。これに例55と同様にして得た活物質を含む粉体50gを投入し、3時間攪拌してリチウムおよび遷移金属を浸出した。浸出残渣1gを取り出して5M硫酸10mlと30%過酸化水素水1mlの混合液に入れ80℃で3時間攪拌してろ過し、ろ液について金属イオンの分析を実施したところリチウムが3600ppm検出された。
[Example 56 (reference example)]
950 g of 0.4M sulfuric acid is put into a 1000 ml Erlenmeyer flask, heated to 80 ° C. in a water bath, and stirred with a stirrer. To this, 50 g of a powder containing an active material obtained in the same manner as in Example 55 was added and stirred for 3 hours to leach lithium and transition metal. 1 g of the leaching residue was taken out, put in a mixed solution of 10 ml of 5M sulfuric acid and 1 ml of 30% hydrogen peroxide solution, stirred and filtered at 80 ° C. for 3 hours, and analyzed for metal ions, and 3600 ppm of lithium was detected. .
[例57(参考例)]
 例55と同様にして金属イオンを浸出し、10%アンモニア水2.28gを添加してpH調整を行った。pHは2.77であった。浸出液中の金属イオンの濃度を分析した結果を表7に示す。
[Example 57 (reference example)]
In the same manner as in Example 55, metal ions were leached and 2.28 g of 10% aqueous ammonia was added to adjust the pH. The pH was 2.77. Table 7 shows the results of analyzing the concentration of metal ions in the leachate.
 次にこの浸出液について実施例35と同様にして電気透析を実施した。回収液の金属イオンの濃度分析をしたところ、リチウム3230ppm、コバルト760ppm、ニッケル770ppm、マンガン50ppmで、このときの電流効率は38%であった。 Next, this leaching solution was electrodialyzed in the same manner as in Example 35. As a result of analyzing the concentration of metal ions in the recovered liquid, lithium was 3230 ppm, cobalt was 760 ppm, nickel was 770 ppm, and manganese was 50 ppm. The current efficiency at this time was 38%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明のリチウム回収システムは、リチウム含有固体からのリチウム回収に好適に使用できる。 The lithium recovery system of the present invention can be suitably used for recovering lithium from lithium-containing solids.
 1  電解槽
 2  陽極
 21  陽極室
 22  陽極室入口
 23  陽極室出口
 3  陰極
 31  陰極室
 32  陰極室入口
 33  陽極室出口
 4  陰イオン交換膜
 5  陽イオン交換膜
 61  塩室
 62  塩室入口
 63  塩室出口
DESCRIPTION OF SYMBOLS 1 Electrolytic cell 2 Anode 21 Anode chamber 22 Anode chamber inlet 23 Anode chamber outlet 3 Cathode 31 Cathode chamber 32 Cathode chamber inlet 33 Anode chamber outlet 4 Anion exchange membrane 5 Cation exchange membrane 61 Salt chamber 62 Salt chamber inlet 63 Salt chamber outlet

Claims (22)

  1.  1価金属イオン選択透過性陽イオン交換膜と陰イオン交換膜とを有する電気透析装置を用いて、1価金属イオンのリチウムイオン、並びに鉄イオン、コバルトイオン、ニッケルイオン及びマンガンイオンからなる群より選択される少なくとも一種の2価の遷移金属イオンを含む溶液から、該リチウムイオンを選択的に透過濃縮する電気透析方法であって、該溶液が3価以上の多価金属イオンを含有している、電気透析方法。 Using an electrodialyzer having a monovalent metal ion permselective cation exchange membrane and an anion exchange membrane, from the group consisting of lithium ions of monovalent metal ions, iron ions, cobalt ions, nickel ions and manganese ions An electrodialysis method for selectively permeating and concentrating lithium ions from a solution containing at least one selected divalent transition metal ion, wherein the solution contains a trivalent or higher polyvalent metal ion. Electrodialysis method.
  2.  前記3価以上の多価金属イオンが、3価のアルミニウムイオン及び/または3価の鉄イオンである、請求項1に記載の電気透析方法。 The electrodialysis method according to claim 1, wherein the trivalent or higher polyvalent metal ion is a trivalent aluminum ion and / or a trivalent iron ion.
  3.  前記3価以上の金属イオンの濃度が、前記溶液中の2価の遷移金属イオンの合計重量に対して20重量%以上100重量%以下である、請求項1又は2に記載の電気透析方法。 The electrodialysis method according to claim 1 or 2, wherein the concentration of the trivalent or higher metal ion is 20 wt% or more and 100 wt% or less with respect to the total weight of the divalent transition metal ions in the solution.
  4.  前記溶液は、前記3価以上の多価金属イオンが添加されることによって、前記3価以上の多価金属イオンの濃度が高められている、請求項1~3のいずれか一項に記載の電気透析方法。 4. The solution according to claim 1, wherein the concentration of the trivalent or higher polyvalent metal ion is increased by adding the trivalent or higher polyvalent metal ion. Electrodialysis method.
  5.  前記溶液が、リチウムを含有する固体の浸出液である、請求項1~4のいずれか一項に記載の電気透析方法。 The electrodialysis method according to any one of claims 1 to 4, wherein the solution is a solid leaching solution containing lithium.
  6.  前記リチウムを含有する固体の浸出液は、酸に2価以上の金属の塩が溶解している酸性浸出液を用いてリチウム含有固体からリチウムを浸出して得られる、請求項5に記載の電気透析方法。 6. The electrodialysis method according to claim 5, wherein the lithium-containing solid leaching solution is obtained by leaching lithium from a lithium-containing solid using an acidic leaching solution in which a divalent or higher-valent metal salt is dissolved in an acid. .
  7.  前記2価以上の金属は、鉄、コバルト、ニッケル、及びマンガンからなる群より少なくとも1種選択される金属を含み、該金属の塩の前記酸性浸出液中の濃度は、それぞれ7000ppm以上飽和濃度以下の範囲である、請求項6に記載の電気透析方法。 The divalent or higher metal includes at least one metal selected from the group consisting of iron, cobalt, nickel, and manganese, and the concentration of the metal salt in the acidic leachate is 7000 ppm or more and a saturation concentration or less, respectively. The electrodialysis method according to claim 6, which is a range.
  8.  前記電気透析装置が、陰極及び電極液を含む陰極室、陽極及び電極液を含む陽極室、脱塩液を含む脱塩液室、並びに濃縮液を含む濃縮液室をさらに有し、該陽極室の電極液に、第一の還元剤が添加されている、請求項1~7のいずれか一項に記載の電気透析方法。 The electrodialysis apparatus further includes a cathode chamber containing a cathode and an electrode solution, an anode chamber containing an anode and an electrode solution, a desalting solution chamber containing a desalting solution, and a concentrated solution chamber containing a concentrate, and the anode chamber The electrodialysis method according to any one of claims 1 to 7, wherein a first reducing agent is added to the electrode solution.
  9.  前記第一の還元剤は、シュウ酸、蟻酸、及びこれらの塩、アルデヒド並びに還元性糖類からなる群より少なくとも1種選択される、請求項8に記載の電気透析方法。 The electrodialysis method according to claim 8, wherein the first reducing agent is selected from the group consisting of oxalic acid, formic acid, and salts thereof, aldehydes, and reducing sugars.
  10.  前記第一の還元剤は、前記溶液の2価の遷移金属イオンの総量に対して、100ppm以上100000ppm以下で添加する、請求項8又は9に記載の電気透析方法。 The electrodialysis method according to claim 8 or 9, wherein the first reducing agent is added at 100 ppm or more and 100,000 ppm or less with respect to the total amount of divalent transition metal ions in the solution.
  11.  前記電気透析装置は、前記電極液と前記アニオン交換膜が接している、請求項8~10のいずれか一項に記載の電気透析方法。 The electrodialysis method according to any one of claims 8 to 10, wherein the electrodialyzer is in contact with the electrode solution and the anion exchange membrane.
  12.  前記電気透析装置は、前記電極液室の隣に前記濃縮液室を有する、請求項8~11のいずれか一項に記載の電気透析方法。 The electrodialysis method according to any one of claims 8 to 11, wherein the electrodialyzer has the concentrated liquid chamber adjacent to the electrode liquid chamber.
  13.  前記溶液に2価以上の金属の水酸化物、2価以上の金属の酸化物、及び第二の還元剤からなる群より選択される少なくとも1種の化合物を添加して、前記溶液のpHを2~6に調整する工程をさらに含む、請求項1~12のいずれかに記載の電気透析方法。 Add at least one compound selected from the group consisting of a metal hydroxide having a valence of 2 or more, a metal oxide having a valence of 2 or more, and a second reducing agent to the solution to adjust the pH of the solution. The electrodialysis method according to any one of claims 1 to 12, further comprising a step of adjusting to 2 to 6.
  14.  前記2価以上の金属の水酸化物は、水酸化コバルト、水酸化ニッケル、水酸化アルミニウム、及び水酸化鉄からなる群より選択される少なくとも1種の金属化合物であり、前記2価以上の金属の酸化物は酸化マンガンである、請求項13に記載の方法。 The divalent or higher metal hydroxide is at least one metal compound selected from the group consisting of cobalt hydroxide, nickel hydroxide, aluminum hydroxide, and iron hydroxide, and the divalent or higher metal metal. The method of claim 13, wherein the oxide is manganese oxide.
  15.  前記第二の還元剤は、過酸化水素又はシュウ酸を含む、請求項13又は14に記載の電気透析方法。 The electrodialysis method according to claim 13 or 14, wherein the second reducing agent contains hydrogen peroxide or oxalic acid.
  16.  前記脱塩液を、前記浸出液として再利用する工程を含む、請求項8~15に記載の方法。 The method according to any one of claims 8 to 15, comprising a step of reusing the desalted liquid as the leachate.
  17.  請求項1~16のいずれかに一項に記載の電気透析方法によってリチウム濃縮溶液を得る工程、及び該リチウム濃縮溶液から電解法により水酸化リチウム及び酸を回収する工程を含む、リチウム回収方法。 A lithium recovery method comprising a step of obtaining a lithium concentrated solution by the electrodialysis method according to any one of claims 1 to 16, and a step of recovering lithium hydroxide and an acid from the lithium concentrated solution by an electrolytic method.
  18.  前記リチウム濃縮溶液に、水酸化リチウムを添加しかつ該溶液のpHを7~13に調整して、溶存する遷移金属を水酸化物として沈殿させる工程、該溶液から該沈殿した水酸化物を分離する工程、及び該溶液中のリチウム以外の金属成分をイオン交換樹脂により低減させる工程をさらに含み、これらの工程の後に水酸化リチウム及び酸を回収する前記工程を含む請求項17に記載のリチウム回収方法。 Lithium hydroxide is added to the lithium concentrated solution and the pH of the solution is adjusted to 7 to 13 to precipitate dissolved transition metal as a hydroxide, and the precipitated hydroxide is separated from the solution. The lithium recovery according to claim 17, further comprising: a step of reducing metal components other than lithium in the solution with an ion exchange resin, and the step of recovering lithium hydroxide and acid after these steps Method.
  19.  前記電解法は、陽極室、陰極室、該陽極室と該陰極室に挟まれた塩室、該陽極室と該塩室を隔絶する陰イオン交換膜、及び該塩室と該陰極室を隔絶する陽イオン交換膜を有する電解装置によって行い、該陰極室に水酸化リチウムを生成させて回収し、かつ該陽極室に酸を生成させて回収する、請求項17又は18に記載のリチウム回収方法。 The electrolytic method includes an anode chamber, a cathode chamber, a salt chamber sandwiched between the anode chamber and the cathode chamber, an anion exchange membrane that isolates the anode chamber from the salt chamber, and an isolation between the salt chamber and the cathode chamber. The lithium recovery method according to claim 17 or 18, wherein the method is performed by an electrolysis apparatus having a cation exchange membrane, wherein lithium hydroxide is generated and recovered in the cathode chamber, and acid is generated and recovered in the anode chamber. .
  20.  前記回収した水酸化リチウムを用いて、前記リチウム濃縮溶液のpH調整を行い、かつ前記回収した酸を前記イオン交換樹脂の再生に用いる、請求項18又は19に記載のリチウム回収方法。 The lithium recovery method according to claim 18 or 19, wherein the pH of the lithium concentrated solution is adjusted using the recovered lithium hydroxide, and the recovered acid is used for regeneration of the ion exchange resin.
  21.  前記酸は硫酸である、請求項17~20のいずれか一項に記載のリチウム回収方法。 The lithium recovery method according to any one of claims 17 to 20, wherein the acid is sulfuric acid.
  22.  前記リチウムを含有する固体は、リチウムイオン電池若しくはその処理物、又はリチウムイオン電池を製造する過程で排出された固体である、請求項5~21のいずれか1項に記載の方法。 The method according to any one of claims 5 to 21, wherein the solid containing lithium is a lithium ion battery or a processed product thereof, or a solid discharged in a process of manufacturing a lithium ion battery.
PCT/JP2012/078215 2012-04-13 2012-10-31 Method for collecting lithium WO2013153692A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012092210 2012-04-13
JP2012-092210 2012-04-13
JP2012092307 2012-04-13
JP2012-092307 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013153692A1 true WO2013153692A1 (en) 2013-10-17

Family

ID=49327291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078215 WO2013153692A1 (en) 2012-04-13 2012-10-31 Method for collecting lithium

Country Status (2)

Country Link
JP (1) JPWO2013153692A1 (en)
WO (1) WO2013153692A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512256A (en) * 2014-02-24 2017-05-18 ネマスカ リチウム インコーポレーテッド Method for processing lithium-containing materials
JP2018035065A (en) * 2013-10-23 2018-03-08 ネマスカ リチウム インコーポレイテッド Processes for preparing lithium carbonate, lithium hydroxide and lithium sulphate
KR20180074177A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Method for manufacturing lithium hydroxide and lithium carbonate
JP2018158318A (en) * 2017-03-23 2018-10-11 株式会社アストム Reverse electrodialysis method and utilization thereof
CN108879012A (en) * 2018-07-11 2018-11-23 江西环锂新能源科技有限公司 A kind of recoverying and utilizing method for scrapping nickel cobalt aluminium acid lithium battery
CN109546254A (en) * 2018-11-27 2019-03-29 桑顿新能源科技有限公司 A kind of processing method of waste and old nickle cobalt lithium manganate ion battery positive electrode
US10597305B2 (en) 2015-08-27 2020-03-24 Nemaska Lithium Inc. Methods for treating lithium-containing materials
US10633748B2 (en) 2012-04-23 2020-04-28 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
US10800663B2 (en) 2012-05-30 2020-10-13 Nemaska Lithium Inc. Processes for preparing lithium carbonate
US11078583B2 (en) 2013-03-15 2021-08-03 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
US11083978B2 (en) 2016-08-26 2021-08-10 Nemaska Lithium Inc. Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid
WO2021166479A1 (en) * 2020-02-17 2021-08-26 住友金属鉱山株式会社 Lithium hydroxide production method
CN113453788A (en) * 2019-02-20 2021-09-28 笹仓机械工程有限公司 Lithium recovery method
US11142466B2 (en) 2017-11-22 2021-10-12 Nemaska Lithium Inc. Processes for preparing hydroxides and oxides of various metals and derivatives thereof
JP6990348B1 (en) * 2021-07-23 2022-01-12 生態環境部華南環境科学研究所 How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid
CN114875238A (en) * 2022-05-20 2022-08-09 北京化工大学 Method for recycling nickel, manganese, cobalt and lithium in waste lithium battery ternary cathode material
WO2022203055A1 (en) * 2021-03-25 2022-09-29 出光興産株式会社 Method for producing lithium hydroxide
WO2023030655A1 (en) * 2021-09-03 2023-03-09 K-Utec Ag Salt Technologies Process for preparing lithium hydroxide or an aqueous solution thereof using untreated water containing lithium salt, thus produced product and corresponding use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197076A (en) * 1997-09-18 1999-04-09 Toshiba Corp Method for processing battery
JP2003157913A (en) * 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide
JP2012234732A (en) * 2011-05-02 2012-11-29 Asahi Kasei Corp Lithium recovery method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129364A (en) * 1998-10-27 2000-05-09 Toshiba Corp Method for recovering metal
JP5429658B2 (en) * 2008-07-29 2014-02-26 独立行政法人日本原子力研究開発機構 Lithium isotope separation and concentration method and apparatus, and 6Li isotope or 7Li isotope highly concentrated recovery system and recovery method
CN105498545A (en) * 2008-11-17 2016-04-20 罗克伍德锂公司 Recovery of lithium from aqueous solutions
JP2011032151A (en) * 2009-08-04 2011-02-17 Kee:Kk Method of converting lithium carbonate to lithium hydroxide
JP5765850B2 (en) * 2010-08-12 2015-08-19 国立研究開発法人日本原子力研究開発機構 Lithium recovery method and lithium recovery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197076A (en) * 1997-09-18 1999-04-09 Toshiba Corp Method for processing battery
JP2003157913A (en) * 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
JP2009269810A (en) * 2008-05-07 2009-11-19 Kee:Kk Method for producing high-purity lithium hydroxide
JP2012234732A (en) * 2011-05-02 2012-11-29 Asahi Kasei Corp Lithium recovery method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10633748B2 (en) 2012-04-23 2020-04-28 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
US11634336B2 (en) 2012-05-30 2023-04-25 Nemaska Lithium Inc. Processes for preparing lithium carbonate
US11254582B2 (en) 2012-05-30 2022-02-22 Nemaska Lithium Inc. Processes for preparing lithium carbonate
US10800663B2 (en) 2012-05-30 2020-10-13 Nemaska Lithium Inc. Processes for preparing lithium carbonate
US11078583B2 (en) 2013-03-15 2021-08-03 Nemaska Lithium Inc. Processes for preparing lithium hydroxide
JP2018035065A (en) * 2013-10-23 2018-03-08 ネマスカ リチウム インコーポレイテッド Processes for preparing lithium carbonate, lithium hydroxide and lithium sulphate
US11697861B2 (en) 2013-10-23 2023-07-11 Nemaska Lithium Inc. Processes for preparing lithium carbonate
KR102195934B1 (en) 2013-10-23 2020-12-29 네마스카 리튬 인코포레이션 Processes for preparing lithium carbonate
JP2019194154A (en) * 2013-10-23 2019-11-07 ネマスカ リチウム インコーポレイテッド Method for preparing lithium carbonate, lithium hydroxide and lithium sulfate
KR20200085365A (en) * 2013-10-23 2020-07-14 네마스카 리튬 인코포레이션 Processes for preparing lithium carbonate
US10544512B2 (en) 2014-02-24 2020-01-28 Nemaska Lithium Inc. Methods for treating lithium-containing materials
JP2020164416A (en) * 2014-02-24 2020-10-08 ネマスカ リチウム インコーポレーテッド Methods for treating lithium-containing materials
JP2017512256A (en) * 2014-02-24 2017-05-18 ネマスカ リチウム インコーポレーテッド Method for processing lithium-containing materials
US11519081B2 (en) 2014-02-24 2022-12-06 Nemaska Lithium Inc. Methods for treating lithium-containing materials
US11085121B2 (en) 2014-02-24 2021-08-10 Nemaska Lithium Inc. Methods for treating lithium-containing materials
US10597305B2 (en) 2015-08-27 2020-03-24 Nemaska Lithium Inc. Methods for treating lithium-containing materials
US11083978B2 (en) 2016-08-26 2021-08-10 Nemaska Lithium Inc. Processes for treating aqueous compositions comprising lithium sulfate and sulfuric acid
KR20180074177A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Method for manufacturing lithium hydroxide and lithium carbonate
KR101888181B1 (en) 2016-12-23 2018-08-13 주식회사 포스코 Method for manufacturing lithium hydroxide and lithium carbonate
JP2018158318A (en) * 2017-03-23 2018-10-11 株式会社アストム Reverse electrodialysis method and utilization thereof
US11542175B2 (en) 2017-11-22 2023-01-03 Nemaska Lithium Inc. Processes for preparing hydroxides and oxides of various metals and derivatives thereof
US11142466B2 (en) 2017-11-22 2021-10-12 Nemaska Lithium Inc. Processes for preparing hydroxides and oxides of various metals and derivatives thereof
CN108879012A (en) * 2018-07-11 2018-11-23 江西环锂新能源科技有限公司 A kind of recoverying and utilizing method for scrapping nickel cobalt aluminium acid lithium battery
CN109546254A (en) * 2018-11-27 2019-03-29 桑顿新能源科技有限公司 A kind of processing method of waste and old nickle cobalt lithium manganate ion battery positive electrode
CN109546254B (en) * 2018-11-27 2021-09-17 桑顿新能源科技(长沙)有限公司 Treatment method of waste nickel cobalt lithium manganate ion battery positive electrode material
CN113453788A (en) * 2019-02-20 2021-09-28 笹仓机械工程有限公司 Lithium recovery method
JP7156322B2 (en) 2020-02-17 2022-10-19 住友金属鉱山株式会社 Method for producing lithium hydroxide
JP2021127282A (en) * 2020-02-17 2021-09-02 住友金属鉱山株式会社 Lithium hydroxide production method
WO2021166479A1 (en) * 2020-02-17 2021-08-26 住友金属鉱山株式会社 Lithium hydroxide production method
WO2022203055A1 (en) * 2021-03-25 2022-09-29 出光興産株式会社 Method for producing lithium hydroxide
JP6990348B1 (en) * 2021-07-23 2022-01-12 生態環境部華南環境科学研究所 How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid
WO2023030655A1 (en) * 2021-09-03 2023-03-09 K-Utec Ag Salt Technologies Process for preparing lithium hydroxide or an aqueous solution thereof using untreated water containing lithium salt, thus produced product and corresponding use
CN114875238A (en) * 2022-05-20 2022-08-09 北京化工大学 Method for recycling nickel, manganese, cobalt and lithium in waste lithium battery ternary cathode material
CN114875238B (en) * 2022-05-20 2023-06-13 北京化工大学 Method for recycling nickel, manganese, cobalt and lithium in ternary positive electrode material of waste lithium battery

Also Published As

Publication number Publication date
JPWO2013153692A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2013153692A1 (en) Method for collecting lithium
JP2012234732A (en) Lithium recovery method
CA2347473C (en) Method and apparatus for preventing scaling in electrodeionization units
US8951399B2 (en) Method for purifying lithium-containing waste waters during the continuous manufacture of lithium transition metal phosphates
EP3926062A1 (en) Recovery of graphite from an acid solution
CN113023844B (en) Method for treating salt-containing fermentation waste liquid by combining diffusion dialysis with electrodialysis
Yu et al. Research progress on the removal, recovery and direct high-value materialization of valuable metal elements in electroplating/electroless plating waste solution
Kavitha et al. Optimization of process using carboxymethyl chitosan for the removal of mixed heavy metals from aqueous streams
CN110818149A (en) PTA refining mother liquor recovery method and recovery system
CN101402496A (en) Clean production process for treating electroplating poaching water with nona-filtering method
CN110665370A (en) Method for improving acid-base concentration in bipolar membrane electrodialysis regeneration
KR20150070895A (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
US9493880B2 (en) Process and apparatus for precipitating cationic metal hydroxides and the recovery of sulfuric acid from acidic solutions
JP3770620B2 (en) Method for isolating catalyst by membrane electrodialysis
JP2008081791A (en) Method and apparatus for recovering phosphoric acid from phosphoric ion-containing water
US4325792A (en) Purification process
JP6080070B2 (en) Rare metal recovery method and recovery device
JP2014237091A (en) Apparatus and method for recovering phosphoric acid from sewage sludge incineration ash
JP2711241B2 (en) Acid waste liquid regeneration method
CN103420520A (en) Processing method of vanadium-containing aluminum-containing wastewater
Hoinkis et al. Sustainable small-scale, membrane based arsenic remediation for developing countries
US9085469B2 (en) Process for reducing perchlorate in water
US20230014044A1 (en) Electro-Pressure Membrane Method for Recovery and Concentration of Lithium from Aqueous Sources
JPH07100337A (en) Treatment of hardly water-soluble metal salt
US20220144673A1 (en) Electrodialyzer and electrodialysis system for co2 capture from ocean water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874315

Country of ref document: EP

Kind code of ref document: A1