WO2013150795A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2013150795A1
WO2013150795A1 PCT/JP2013/002327 JP2013002327W WO2013150795A1 WO 2013150795 A1 WO2013150795 A1 WO 2013150795A1 JP 2013002327 W JP2013002327 W JP 2013002327W WO 2013150795 A1 WO2013150795 A1 WO 2013150795A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
space
header collecting
collecting pipe
refrigerant
Prior art date
Application number
PCT/JP2013/002327
Other languages
English (en)
French (fr)
Inventor
正憲 神藤
好男 織谷
菊池 芳正
泰弘 笹井
博治 久保
智嗣 井上
鉉永 金
宏和 藤野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES13772745T priority Critical patent/ES2708210T3/es
Priority to CN201380018414.0A priority patent/CN104246414B/zh
Priority to US14/385,432 priority patent/US20150027672A1/en
Priority to EP13772745.9A priority patent/EP2857788B1/en
Publication of WO2013150795A1 publication Critical patent/WO2013150795A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Definitions

  • the present invention relates to a heat exchanger including a plurality of flat tubes and a header collecting tube connected to each flat tube.
  • Patent Documents 1 and 2 each disclose this type of heat exchanger. Specifically, in the heat exchangers of each of these patent documents, the header collecting pipes are installed one by one at the left end and the right end of the heat exchanger, and the first header collecting pipe is changed to the second header collecting pipe. A plurality of flat tubes are arranged over the entire area. And the heat exchanger of each of these patent documents heat-exchanges the refrigerant
  • the heat exchanger described in Patent Document 1 functions as a condenser.
  • the gas refrigerant flowing into the upper end portion of the first header collecting pipe is distributed to all flat tubes.
  • the refrigerant flowing through each flat tube dissipates heat and condenses, and then flows into the second header collecting tube. Thereafter, the refrigerant flows out from the lower end of the second header collecting pipe to the outside of the heat exchanger.
  • the heat exchanger described in Patent Document 2 also functions as a condenser.
  • the refrigerant that has flowed into the upper end portion of the first header collecting pipe flows out from the lower end portion of the second header collecting pipe once and a half between the two header collecting pipes.
  • a heat exchanger as described in the above patent document as an evaporator.
  • the gas-liquid two-phase refrigerant supplied to the heat exchanger flows into one header collecting pipe and then flows into a plurality of flat tubes.
  • the present invention has been made in view of the above points, and its purpose is to maximize its performance when a heat exchanger provided with a plurality of flat tubes and header collecting tubes functions as an evaporator. There is to make it.
  • the first invention includes a plurality of flat tubes (31), a first header collecting tube (60) into which one end of each flat tube (31) is inserted, and the other of the flat tubes (31).
  • the second header collecting pipe (70) into which the end of the pipe is inserted, and a plurality of fins (36) joined to the flat pipe (31), the heat provided in the refrigerant circuit (20) that performs the refrigeration cycle Intended for exchangers.
  • the second header collecting pipe (70) communicates with the plurality of flat pipes (31), and when the heat exchanger functions as an evaporator, a flow space in which a gas-liquid two-phase refrigerant flows upward.
  • the flow space (71a to 71c) and from the cross-sectional area of the flow space (71a to 71c) perpendicular to the axial direction of the second header collecting pipe (70), the flow space ( When the area obtained by subtracting the projected area on the plane perpendicular to the axial direction of the second header collecting pipe (70) of the portion located at 71a to 71c) is the effective sectional area of the distribution space (71a to 71c) In addition, the effective area of the circulation space (71a to 71c) is set based on the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) when the heat exchanger functions as an evaporator. Is.
  • the heat exchanger (23) of the first invention is provided in the refrigerant circuit (20) that performs the refrigeration cycle.
  • the second header collecting pipe (70) forms a circulation space (71a to 71c).
  • the flow of the refrigerant when the heat exchanger (23) functions as an evaporator will be described.
  • the gas-liquid two-phase refrigerant flows into the flow space (71a to 71c) of the second header collecting pipe (70).
  • the refrigerant flowing in flows upward.
  • the refrigerant flowing through the circulation spaces (71a to 71c) is divided into a plurality of flat tubes (31) communicating with the circulation spaces (71a to 71c).
  • the refrigerant flowing into the flat tube (31) from the circulation space (71a to 71c) passes through the flat tube (31) and flows into the first header collecting tube (60).
  • the effective area A of the circulation space (71a to 71c) of the second header collecting pipe (70) is the circulation space when the heat exchanger (23) functions as an evaporator. It is set based on the mass flow rate of the refrigerant flowing into (71a to 71c).
  • the heat exchanger when the heat exchanger functions as an evaporator, one value included in the fluctuation range of the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) is obtained.
  • the reference mass flow rate M R [kg / h] when used, the effective area A [mm 2 ] of the flow space (71a to 71c) is (1.91M R ⁇ 22.7) or more (1.96M R ). +30.8) or less.
  • the heat exchanger when the heat exchanger functions as an evaporator, one value included in the fluctuation range of the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) is obtained.
  • the reference mass flow rate M R [kg / h] is set, the effective area A [mm 2 ] of the flow space (71a to 71c) is (1.96M R ⁇ 25.0) or more (1.96M R +30.0) or less.
  • the mass flow rate of the refrigerant flowing into the heat exchanger (23) functioning as an evaporator depends on the operating state of the refrigerant circuit (20) provided with the heat exchanger (23). Change.
  • the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) varies within a predetermined range.
  • Reference mass flow rate M R may be a maximum value and a minimum value of, for example, the variation range may be a central value of the fluctuation range.
  • a unit of the reference mass flow rate M R is "kg / h"
  • the unit of effective area A is "mm 2".
  • the effective area A of the flow space (71a to 71c) of the second header collecting pipe (70) is a value that satisfies the following mathematical formula. 1.91M R ⁇ 22.7 ⁇ A ⁇ 1.96M R +30.8
  • the effective cross-sectional area A of the flow space (71a to 71c) of the second header collecting pipe (70) is a value that satisfies the following mathematical formula. 1.96M R -25.0 ⁇ A ⁇ 1.96M R +30.0
  • the reference mass flow rate M R [kg / h] is supplied to the circulation space (71a to 71c) when the heat exchanger functions as an evaporator. This is the maximum value of the fluctuation range of the mass flow rate of the refrigerant flowing in.
  • the maximum value of the variation range of the mass flow rate of refrigerant flowing into flow space (71a ⁇ 71c) when the heat exchanger (23) functions as an evaporator becomes a reference mass flow rate M R.
  • the first header collecting pipe (60) and the second header collecting pipe (70) are installed in an upright state, and the heat When the exchanger functions as an evaporator, the refrigerant is configured to flow into the lower end of the circulation space (71a to 71c).
  • the first header collecting pipe (60) and the second header collecting pipe (70) are erected.
  • the heat exchanger (23) of the present invention functions as an evaporator, the refrigerant flowing into the lower end of the flow space (71a to 71c) of the second header collecting pipe (70) flows upward.
  • the gas-liquid two-phase refrigerant flowing upward through the circulation spaces (71a to 71c) of the second header collecting pipe (70) is supplied to a plurality of flat tubes (31 )
  • the effective cross-sectional area A of the flow space (71a to 71c) of the second header collecting pipe (70) is determined as the flow space (71a to 71c) when the heat exchanger (23) functions as an evaporator. It is set based on the mass flow rate of the refrigerant flowing in.
  • the effective sectional area A of the circulation space (71a to 71c) and the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) are physical quantities that affect the flow velocity of the refrigerant flowing in the circulation space (71a to 71c). .
  • the effective area A of the circulation space (71a to 71c) is set based on the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c), the flow rate of the refrigerant flowing through the circulation space (71a to 71c) It is possible to set an appropriate value such that the refrigerant is evenly distributed from the distribution space (71a to 71c) to the plurality of flat tubes (31). Therefore, according to this invention, it becomes possible to fully exhibit the performance of the heat exchanger (23) which functions as an evaporator.
  • the heat absorption amount of the refrigerant in the heat exchanger (23) functioning as an evaporator is insufficient.
  • the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) is smaller than the maximum value of the fluctuation range, the refrigerant mass absorption is increased by increasing the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c). It is possible to increase the amount of heat.
  • the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) has already reached the maximum fluctuation range, the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) cannot be increased any further. .
  • the reference mass flow rate M R to be used for setting the effective area A of the flow space (71a ⁇ 71c), when the heat exchanger (23) functions as an evaporator The maximum value of the fluctuation range of the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c). Therefore, according to the present invention, when the mass flow rate of the refrigerant flowing into the circulation space (71a to 71c) cannot be increased, the performance of the heat exchanger (23) can be maximized.
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner including the outdoor heat exchanger according to the first embodiment.
  • FIG. 2 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the first embodiment.
  • FIG. 3 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing a part of the AA cross section of FIG. 5 is an enlarged cross-sectional view showing the main part of the BB cross section of FIG. 3, wherein (a) shows the dimensions of each part, and (b) shows the cross-sectional area of the partial space in the second header collecting pipe.
  • FIG. 6 is a graph showing the relationship between the refrigerant flow velocity V in the partial space in the second header collecting pipe and the capacity ratio of the outdoor heat exchanger.
  • FIG. 7 is a graph showing the range of the effective area A in the outdoor heat exchanger according to the first embodiment.
  • FIG. 8 is a graph showing the range of the effective area A in the outdoor heat exchanger according to the second modification of the first embodiment.
  • the heat exchanger of this embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10). Below, an air conditioner (10) is demonstrated first, and the outdoor heat exchanger (23) is demonstrated in detail after that.
  • the air conditioner (10) includes an outdoor unit (11) and an indoor unit (12).
  • the outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
  • the refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side communication pipe (13), and the gas side communication pipe (14).
  • the refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing.
  • the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11).
  • the outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23).
  • the indoor heat exchanger (25) is accommodated in the indoor unit (12).
  • the indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
  • the refrigerant circuit (20) is a closed circuit filled with refrigerant.
  • the compressor (21) has its discharge side connected to the first port of the four-way switching valve (22) and its suction side connected to the second port of the four-way switching valve (22). Yes.
  • the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.
  • Compressor (21) is a scroll type or rotary type hermetic compressor.
  • the compressor (21) has a variable rotational speed. When the rotational speed of the compressor (21) is changed, the operating capacity of the compressor (21) changes.
  • the four-way switching valve (22) has a first state (state indicated by a broken line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port, The port is switched to a second state (state indicated by a solid line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
  • the expansion valve (24) is a so-called electronic expansion valve.
  • the outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger (23) will be described later.
  • the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.
  • the air conditioner (10) selectively performs a cooling operation and a heating operation.
  • the refrigeration cycle is performed with the four-way switching valve (22) set to the first state.
  • the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser.
  • the outdoor heat exchanger (23) functions as a condenser.
  • the outdoor heat exchanger (23) functions as an evaporator.
  • the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24).
  • the refrigeration cycle is performed with the four-way switching valve (22) set to the second state.
  • the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser.
  • the indoor heat exchanger (25) functions as a condenser.
  • (23) functions as an evaporator.
  • the refrigerant that has expanded into the gas-liquid two-phase state flows into the outdoor heat exchanger (23) when passing through the expansion valve (24).
  • the refrigerant that has flowed into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21).
  • the outdoor heat exchanger (23) includes one first header collecting pipe (60), one second header collecting pipe (70), and many flat tubes (31, 31). 32) and a large number of fins (36).
  • the first header collecting pipe (60), the second header collecting pipe (70), the flat pipe (31, 32) and the fin (35) are all made of an aluminum alloy and are joined to each other by brazing. Yes.
  • the outdoor heat exchanger (23) is divided into a main heat exchange region (51) and an auxiliary heat exchange region (52).
  • some flat tubes (32) constitute an auxiliary heat exchange region (52)
  • the remaining flat tubes (31) constitute a main heat exchange region (51). .
  • the first header collecting pipe (60) and the second header collecting pipe (70) are both formed in an elongated cylindrical shape whose both ends are closed. 2 and 3, the first header collecting pipe (60) stood up at the left end of the outdoor heat exchanger (23), and the second header collecting pipe (70) stood up at the right end of the outdoor heat exchanger (23). It is installed in a state. That is, the first header collecting pipe (60) and the second header collecting pipe (70) are installed in a state where the respective axial directions are in the vertical direction.
  • the flat tubes (31, 32) are heat transfer tubes whose cross-sectional shape is a flat oval.
  • the plurality of flat tubes (31, 32) are arranged in a state in which the extending direction is the left-right direction and the flat side surfaces face each other.
  • the plurality of flat tubes (31, 32) are arranged side by side at regular intervals and are substantially parallel to each other.
  • Each flat tube (31, 32) has one end inserted into the first header collecting tube (60) and the other end inserted into the second header collecting tube (70).
  • the axial direction of each flat tube (31, 32) is substantially orthogonal to the axial direction of each header collecting tube (60, 70).
  • the flat side surfaces (upper and lower side surfaces in this embodiment) of each flat tube (31, 32) are substantially orthogonal to the axial direction of each header collecting tube (60, 70).
  • each fluid passage (34) is a passage extending in the extending direction of the flat tube (31, 32).
  • the plurality of fluid passages (34) are arranged in a line in the width direction of the flat tube (31, 32) (that is, the direction orthogonal to the longitudinal direction).
  • One end of each of the plurality of fluid passages (34) formed in each flat tube (31, 32) communicates with the internal space of the first header collecting pipe (60), and the other end of each fluid passage (34) is the second header collecting pipe. It communicates with the internal space of (70).
  • the refrigerant supplied to the outdoor heat exchanger (23) exchanges heat with air while flowing through the fluid passage (34) of the flat tubes (31, 32).
  • the fin (36) is a vertically long plate-like fin formed by pressing a metal plate.
  • the fin (36) is formed with a number of elongated notches (45) extending in the width direction of the fin (36) from the front edge of the fin (36) (that is, the windward edge).
  • a large number of notches (45) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (36).
  • the portion closer to the lee of the notch (45) constitutes the tube insertion portion (46).
  • the tube insertion portion (46) has a vertical width substantially equal to the thickness of the flat tube (31, 32) and a length substantially equal to the width of the flat tube (31, 32).
  • the flat tubes (31, 32) are inserted into the tube insertion portion (46) of the fin (36) and joined to the peripheral portion of the tube insertion portion (46) by brazing. Moreover, the louver (40) for promoting heat transfer is formed in the fin (36).
  • the plurality of fins (36) are arranged in the extending direction of the flat tubes (31, 32) so that the air flows between the adjacent flat tubes (31, 32) into the plurality of ventilation paths (38). It is partitioned.
  • the outdoor heat exchanger (23) is divided into two heat exchange regions (51, 52) in the vertical direction.
  • the upper heat exchange region is the main heat exchange region (51)
  • the lower heat exchange region is the auxiliary heat exchange region (52).
  • Each heat exchange area (51, 52) is divided into three heat exchange sections (51a to 51c, 52a to 52c). That is, in the outdoor heat exchanger (23), each of the main heat exchange region (51) and the auxiliary heat exchange region (52) is divided into a plurality of heat exchange portions (51a to 51c, 52a to 52c). ing.
  • the number of heat exchanging portions (51a to 51c, 52a to 52c) formed in each heat exchanging region (51, 52) may be two, or four or more.
  • the first main heat exchange unit (51a), the second main heat exchange unit (51b), and the third main heat exchange unit are sequentially arranged from the bottom to the top. (51c) is formed.
  • a first auxiliary heat exchange unit (52a), a second auxiliary heat exchange unit (52b), and a third auxiliary heat exchange unit (52c) Is formed.
  • Each main heat exchange section (51a to 51c) and each auxiliary heat exchange section (52a to 52c) are provided with a plurality of flat tubes (31, 32). Further, as shown in FIG.
  • the number of flat tubes (31) constituting each main heat exchange section (51a to 51c) is equal to the number of flat tubes (32) constituting each auxiliary heat exchange section (52a to 52c). More than the number. Therefore, the number of flat tubes (31) constituting the main heat exchange region (51) is larger than the number of flat tubes (32) constituting the auxiliary heat exchange region (52).
  • the internal space of the first header collecting pipe (60) is vertically divided by a partition plate (39a).
  • the space above the partition plate (39a) is the upper space (61), and the space below the partition plate (39a) is the lower space (62).
  • the upper space (61) constitutes a main communication space corresponding to the main heat exchange area (51).
  • the upper space (61) is a single space communicating with all of the flat tubes (31) constituting the main heat exchange region (51). That is, the upper space (61) communicates with the flat tube (31) of each main heat exchange section (51a to 51c).
  • the lower space (62) constitutes an auxiliary communication space corresponding to the auxiliary heat exchange region (52).
  • the lower space (62) is partitioned up and down by two partition plates (39b). Specifically, the lower space (62) is partitioned into the same number (three in this embodiment) of communication chambers (62a to 62c) as the auxiliary heat exchange sections (52a to 52c).
  • the lowermost first communication chamber (62a) communicates with all the flat tubes (32) constituting the first auxiliary heat exchange section (52a).
  • the second communication chamber (62b) located above the first communication chamber (62a) communicates with all the flat tubes (32) constituting the second auxiliary heat exchange section (52b).
  • the uppermost third communication chamber (62c) communicates with all the flat tubes (32) constituting the third auxiliary heat exchange section (52c).
  • the internal space of the second header collecting pipe (70) is divided into a main communication space (71) corresponding to the main heat exchange area (51) and an auxiliary communication space (72) corresponding to the auxiliary heat exchange area (52). Has been.
  • the main communication space (71) is divided up and down by two partition plates (39c).
  • the partition plate (39c) divides the main communication space (71) into the same number (three in this embodiment) of partial spaces (71a to 71c) as the main heat exchange portions (51a to 51c).
  • the lowermost first partial space (71a) communicates with all the flat tubes (31) constituting the first main heat exchange section (51a).
  • the second partial space (71b) located above the first partial space (71a) communicates with all the flat tubes (31) constituting the second main heat exchange section (51b).
  • the uppermost third partial space (71c) communicates with all the flat tubes (31) constituting the third main heat exchange section (51c).
  • Each partial space (71a to 71c) is a circulation space in which the refrigerant flows upward when the outdoor heat exchanger (23) functions as an evaporator.
  • the auxiliary communication space (72) is vertically divided by two partition plates (39d).
  • the partition plate (39d) divides the auxiliary communication space (72) into the same number (three in this embodiment) of partial spaces (72a to 72c) as the auxiliary heat exchange parts (52a to 52c).
  • the lowermost fourth partial space (72a) communicates with all the flat tubes (32) constituting the first auxiliary heat exchange section (52a).
  • the fifth partial space (72b) located above the fourth partial space (72a) communicates with all the flat tubes (32) constituting the second auxiliary heat exchange section (52b).
  • the sixth partial space (72c) located at the uppermost position communicates with all the flat tubes (32) constituting the third auxiliary heat exchange section (52c).
  • connection pipes (76, 77) are attached to the second header collecting pipe (70). These connection pipes (76, 77) are all circular pipes.
  • the first connection pipe (76) has one end connected to the second partial space (71b) corresponding to the second main heat exchange part (51b) and the other end corresponding to the first auxiliary heat exchange part (52a). Connected to the fourth partial space (72a).
  • the second connection pipe (77) has one end connected to the third partial space (71c) corresponding to the third main heat exchange part (51c) and the other end corresponding to the second auxiliary heat exchange part (52b). Connected to the fifth partial space (72b).
  • a sixth partial space (72c) corresponding to the third auxiliary heat exchange section (52c) and a first partial space corresponding to the first main heat exchange section (51a) ( 71a) form one continuous space.
  • the 1st main heat exchange part (51a) and the 3rd auxiliary heat exchange part (52c) are connected in series, and the 2nd main heat exchange part (51b ) And the first auxiliary heat exchanger (52a) are connected in series, and the third main heat exchanger (51c) and the second auxiliary heat exchanger (52b) are connected in series.
  • the outdoor heat exchanger (23) is provided with a liquid side connection member (80) and a gas side connection pipe (85).
  • the liquid side connection member (80) and the gas side connection pipe (85) are attached to the first header collecting pipe (60).
  • the liquid side connection member (80) includes one shunt (81) and three small diameter tubes (82a to 82c).
  • a pipe (17) connecting the outdoor heat exchanger (23) and the expansion valve (24) is connected to the lower end of the flow divider (81).
  • One end of each small diameter pipe (82a to 82c) is connected to the upper end of the flow divider (81).
  • the pipe connected to the lower end portion thereof communicates with the small diameter pipes (82a to 82c).
  • the other end of each small-diameter pipe (82a to 82c) is connected to the first header collecting pipe (60) and communicates with the corresponding lower partial space (62a to 62c).
  • each small-diameter pipe (82a to 82c) has a portion near the lower end of the corresponding lower partial space (62a to 62c) (ie, the vertical direction of the lower partial space (62a to 62c)). (The part below the center). That is, the first small-diameter pipe (82a) opens at a portion near the lower end of the first lower partial space (62a), and the second small-diameter pipe (82b) is near the lower end of the second lower partial space (62b).
  • the third small-diameter pipe (82c) opens in a portion near the lower end of the third lower partial space (62c).
  • the lengths of the small diameter tubes (82a to 82c) are individually set so that the difference in the flow rate of the refrigerant flowing into the heat exchange sections (50a to 50c) is as small as possible.
  • One end of the gas side connection pipe (57) is connected to the upper part of the first header collecting pipe (60) and communicates with the upper space (61).
  • the other end of the gas side connection pipe (57) is connected to a pipe (18) connecting the outdoor heat exchanger (23) and the third port of the four-way switching valve (22).
  • the gas refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23).
  • the gas refrigerant sent from the compressor (21) flows into the upper space (61) of the first header collecting pipe (60) via the gas side connection pipe (57), and then flows into the main heat exchange region (51). It is distributed to each flat tube (31).
  • the refrigerant flowing into the fluid passage (34) of the flat tube (31) dissipates heat to the outdoor air while flowing through the fluid passage (34). Then, it condenses and then flows into the corresponding partial spaces (71a to 71c) of the second header collecting pipe (70).
  • the refrigerant that has flowed into the partial spaces (71a to 71c) of the main communication space (71) is sent to the corresponding partial spaces (72a to 72c) of the auxiliary communication space (72).
  • the refrigerant flowing into the first partial space (71a) of the main communication space (71) flows down and flows into the sixth partial space (72c) of the auxiliary communication space (72).
  • the refrigerant flowing into the second partial space (71b) of the main communication space (71) flows into the fourth partial space (72a) of the auxiliary communication space (72) through the first connection pipe (76).
  • the refrigerant that has flowed into the third partial space (71c) of the main communication space (71) flows into the fifth partial space (72b) of the auxiliary communication space (72) through the second connection pipe (77).
  • the refrigerant that has flowed into the partial spaces (72a to 72c) of the auxiliary communication space (72) is distributed to the flat tubes (32) of the corresponding auxiliary heat exchange sections (52a to 52c).
  • the refrigerant flowing through the fluid passage (34) of each flat tube (32) dissipates heat to the outdoor air and becomes supercooled liquid, and then the corresponding communication chamber in the lower space (62) of the first header collecting pipe (60). Flows into (62a-62c).
  • the refrigerant in each communication chamber (62a to 62c) flows into the flow divider (81) through the narrow pipes (82a to 82c), joins, and flows out from the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) is supplied with a refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24).
  • the refrigerant sent from the expansion valve (24) flows into the flow divider (81) of the liquid side connection member (80) and then into the three small diameter tubes (82a to 82c). (50a-50c).
  • the refrigerant that has flowed into the communication chambers (62a to 62c) of the first header collecting pipe (60) is distributed to the flat tubes (32) of the corresponding auxiliary heat exchange sections (52a to 52c).
  • the refrigerant flowing into the fluid passage (34) of each flat tube (32) absorbs heat from the outdoor air while flowing through the fluid passage (34), and a part of the liquid refrigerant evaporates.
  • the refrigerant that has passed through the fluid passage (34) of the flat tube (32) flows into the corresponding partial spaces (72a to 72c) of the auxiliary communication space (72) of the second header collecting pipe (70).
  • the refrigerant that has flowed into the partial spaces (72a to 72c) still remains in a gas-liquid two-phase state.
  • the refrigerant that has flowed into the partial spaces (72a to 72c) of the auxiliary communication space (72) is sent to the corresponding partial spaces (71a to 71c) of the main communication space (71).
  • the refrigerant that has flowed into the fourth partial space (72a) of the auxiliary communication space (72) passes through the first connection pipe (76) and flows into the second partial space (71b) of the main communication space (71). It flows into the lower end.
  • the refrigerant flowing into the fifth partial space (72b) of the auxiliary communication space (72) flows into the lower end of the third partial space (71c) of the main communication space (71) through the second connection pipe (77).
  • the refrigerant flowing into the sixth partial space (72c) of the auxiliary communication space (72) flows upward and flows into the lower end portion of the first partial space (71a) of the main communication space (71).
  • each partial space (71a to 71c) of the main communication space (71) of the main communication space (71) the refrigerant flowing in flows upward.
  • the refrigerant in each partial space (71a to 71c) is distributed to each flat tube (31) of the corresponding main heat exchange section (51a to 51c).
  • the refrigerant flowing through the fluid passageway (34) of each flat tube (31) absorbs heat from the outdoor air and evaporates to substantially become a gas single-phase state, and then the upper space of the first header collecting pipe (60) ( 61). Thereafter, the refrigerant flows out of the outdoor heat exchanger (23) through the gas side connection pipe (57).
  • the insertion length L of the flat tube (31) to the second header collecting pipe (70) is the main communication space formed in the second header collecting pipe (70).
  • the effective area A of each partial space (71a to 71c) of (71) is set to a predetermined design value.
  • the unit of the insertion length L is “mm”, and the unit of the effective area A is “mm 2 ”. Further, in FIG. 5, illustration of the fin (36) is omitted.
  • the insertion length L of the flat tube (31) into the second header collecting tube (70) is the portion of the flat tube (31) inserted into the partial spaces (71a to 71c). Is the length of That is, the insertion length L is the distance from the end surface of the portion inserted into the partial space (71a to 71c) of the flat tube (31) to the inner surface of the second header collecting tube (70).
  • the effective cross-sectional area A of the partial space (71a to 71c) is the area of the region marked with dots in FIG.
  • Sectional area A 0 of the subspace (71a ⁇ 71c) is the area of the region marked with dots in FIG. 5 (b). That is, the sectional area A 0 of the partial spaces (71a to 71c) is the area of the cross section of the partial space (71a to 71c) orthogonal to the axial direction of the second header collecting pipe (70).
  • the partial space (71a to 71c) has a circular cross section. Accordingly, the sectional area A 0 of the partial spaces (71a to 71c) is ( ⁇ / 4) d 2 .
  • Projected area A 1 of the flat tube (31) is an area of the region marked with dots in FIG. 5 (c). That is, the projected area A 1 of the flat tube (31), the portion located subspace (71a ⁇ 71c) of the flat tubes (31), onto a plane perpendicular to the axial direction of the second header collecting pipe (70) Is the projected area.
  • the width W of the flat tube (31) is selected according to the design value of the capacity of the outdoor heat exchanger (23). Further, the inner diameter d of the second header collecting pipe (70) is set to a value such that a flat pipe (31) having a width W can be inserted.
  • the width W of the flat tube (31) and the inner diameter d of the second header collecting pipe (70) are determined first, and then the partial space The insertion length L of the flat tube (31) is determined so that the effective area A of (71a to 71c) becomes a predetermined value.
  • the operating capacity of the compressor (21) of the air conditioner (10) is variable.
  • the amount of refrigerant circulating in the refrigerant circuit (20) changes, and the mass flow rate of refrigerant flowing into the outdoor heat exchanger (23) changes.
  • the amount of refrigerant circulating in the refrigerant circuit (20) is approximately 90 kg / h or more and 270 kg / h. It fluctuates within the following range.
  • the outdoor heat exchanger (23) is formed with three main heat exchange portions (51a to 51c), and the main communication space (71) in the second header collecting pipe (70) is divided into three partial spaces (71a ⁇ 71c). Therefore, in the outdoor heat exchanger (23) functioning as an evaporator, the mass flow rate of the refrigerant flowing into each partial space (71a to 71c) of the main communication space (71) in the second header collecting pipe (70) is In general, it fluctuates within the range of 30 kg / h to 90 kg / h.
  • the maximum value (that is, 90 kg / h) of the fluctuation range of the mass flow rate of the refrigerant flowing into the partial spaces (71a to 71c) of the main communication space (71) is It has become a reference mass flow rate M R.
  • the effective sectional area A of each partial space (71a to 71c) of the main communication space (71) is (1.91M R -22.7) or more (1. and has a 96M R +30.8) below.
  • the outdoor heat exchanger (23), the effective area A of each subspace of the main communication space (71) (71a ⁇ 71c) is such that the 149 mm 2 or more 207 mm 2 or less, the second header collecting pipe ( 70), the insertion length L of the flat tube (31) is set.
  • the second header collecting pipe (70) is set so that the effective sectional area A of each partial space (71a to 71c) of the main communication space (71) is 188 mm 2. It is most desirable to set the insertion length L of the flat tube (31) with respect to (). For example, when the width W of the flat pipe (31) is 18 mm and the inner diameter d of the second header collecting pipe (70) is 21 mm, the effective disconnection of each partial space (71a to 71c) of the main communication space (71) In order to set the area A to 188 mm 2 , the insertion length L of the flat tube (31) with respect to the second header collecting tube (70) may be set to 10 mm.
  • the insertion length L of the flat tube (31) with respect to the second header collecting pipe (70) is the main communication of the second header collecting pipe (70).
  • the effective area A of each partial space (71a to 71c) of the space (71) is set to a predetermined design value.
  • each partial space (71a to 71c) of the main communication space (71) is (1.91M R -22.7) or more (1. and has a 96M R +30.8) below.
  • the reference mass flow rate M R [kg / h] is the mass of the refrigerant flowing into each partial space (71a to 71c) of the main communication space (71) when the outdoor heat exchanger (23) functions as an evaporator. It is an arbitrary value within the flow rate fluctuation range.
  • each partial space (71a to 71c) of the main communication space (71) is a value within the above range, each partial space (71a to 71c) of the main communication space (71).
  • mass flow rate of refrigerant flowing into is at a reference mass flow rate M R, the performance of the outdoor heat exchanger (23) functioning as an evaporator can be sufficiently exhibited.
  • M R mass flow rate
  • FIG. 6 shows the main communication space (71) of the second header collecting pipe (70) for each of the heating low temperature condition, the heating rated condition, and the heating intermediate condition, which are the operating conditions of the heating operation of the air conditioner (10).
  • the effective area A of each partial space (71a to 71c) is changed, the flow rate V of the refrigerant in the partial space (71a to 71c) and the capacity ratio of the outdoor heat exchanger (23) functioning as an evaporator Shows the relationship.
  • the flat tube (31) has a width W of 18 mm
  • the second header collecting pipe (70) has a circular cross section, and the inner diameter of the second header collecting pipe (70).
  • the target was an outdoor heat exchanger (23) in which d is 21 mm, and R410A was used as a refrigerant.
  • the experiment for obtaining FIG. 6 was conducted on a plurality of types of heat exchangers in which only the effective cross-sectional area A of each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70) is different. It was performed using.
  • the heating low temperature condition is that the evaporating temperature Te of the refrigerant in the outdoor heat exchanger (23) is ⁇ 7 ° C., and to each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70). This is an operating condition in which the mass flow rate M of the refrigerant flowing in is 90 kg / h.
  • the rated heating condition is that the refrigerant evaporating temperature Te in the outdoor heat exchanger (23) is 0 ° C., and flows into each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70). This is an operating condition in which the mass flow rate M of the refrigerant is 80 kg / h.
  • the heating intermediate condition is that the refrigerant evaporating temperature Te in the outdoor heat exchanger (23) is 2 ° C. and flows into each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70).
  • This is an operating condition in which the mass flow rate M of the refrigerant is 40 kg / h.
  • the horizontal axis in FIG. 6 represents the refrigerant flow velocity V [m / s] in each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70).
  • the capacity ratio R is a percentage of the capacity ratio of the outdoor heat exchanger (23) of each specification with respect to a predetermined standard capacity.
  • the standard capacity of the outdoor heat exchanger (23) is the capacity of the outdoor heat exchanger (23) when the effective sectional area A of the partial spaces (71a to 71c) is 188 mm 2 .
  • the reference capacities in the heating low temperature condition, the heating rated condition, and the heating intermediate condition are different from each other (Q 01 ⁇ Q 02 ⁇ Q 03 ).
  • G is the mass flow rate of the refrigerant passing through the outdoor heat exchanger (23)
  • h in is the specific enthalpy of the refrigerant at the inlet of the outdoor heat exchanger (23)
  • h out is the outdoor heat exchanger (23 ) Is the specific enthalpy of the refrigerant at the outlet.
  • the capacity of the outdoor heat exchanger (23) under heating and low temperature conditions is such that the effective sectional area A of each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70) is 152 mm 2 , 188 mm 2. , 214 mm 2 , 240 mm 2 of four types of outdoor heat exchangers (23). As a result, as shown in FIG. 6, the capacity of the outdoor heat exchanger (23) was maximized when the effective sectional area A of each partial space (71a to 71c) was 188 mm 2 .
  • the capacity of the outdoor heat exchanger (23) in the intermediate heating condition is that the effective sectional area A of each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70) is 54 mm 2 and 79 mm 2. were measured for 117mm 2, 152mm 2, 188mm 2 , 214mm 2 six kinds of the outdoor heat exchanger (23). As a result, as shown in FIG. 6, when the effective cross-sectional area A of each partial space (71a to 71c) was 79 mm 2 , the capacity of the outdoor heat exchanger (23) was maximized.
  • the mass flow rate M of the refrigerant flowing into the partial spaces (71a to 71c) is constant, the flow velocity V of the refrigerant in the partial spaces (71a to 71c) increases as the effective sectional area A of the partial spaces (71a to 71c) increases. Lower.
  • the gas-liquid two-phase refrigerant flows upward. For this reason, when the flow velocity V of the refrigerant in the partial spaces (71a to 71c) decreases, a large amount of liquid refrigerant flows into the lower flat tube (31), and a low density gas refrigerant flows into the upper flat tube (31). A large amount flows into 31). That is, the mass flow rate of the refrigerant flowing into the flat tubes (31) from the partial spaces (71a to 71c) becomes uneven.
  • the refrigerant In the upper flat pipe (31) with a small amount of liquid refrigerant flowing in, the refrigerant enters a single-phase state before reaching the first header collecting pipe (60), and the temperature of the refrigerant approaches the temperature of the outdoor air. .
  • the amount of heat exchange between the refrigerant and air in the upper portion of each main heat exchange section (51a to 51c) decreases, and the capacity of the outdoor heat exchanger (23) decreases.
  • the refrigerant In the lower flat pipe (31) with a small amount of liquid refrigerant flowing in, the refrigerant enters a single-phase state before reaching the first header collecting pipe (60), and the temperature of the refrigerant approaches the temperature of the outdoor air. .
  • the amount of heat exchange between the refrigerant and air in the lower portion of each main heat exchange section (51a to 51c) is reduced, and the capacity of the outdoor heat exchanger (23) is reduced.
  • the flow velocity V of the refrigerant in each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70) is too high or too low.
  • the distribution amount of the refrigerant to the flat tubes (31) communicating with the partial spaces (71a to 71c) becomes uneven, and as a result, the capacity of the outdoor heat exchanger (23) decreases.
  • the refrigerant flow velocity V in the partial spaces (71a to 71c) is proportional to the effective area A of the partial spaces (71a to 71c). To do.
  • FIG. 7 shows the experimental results shown in FIG. 6 with the mass flow rate M of the refrigerant flowing into the partial spaces (71a to 71c) of the main communication space (71) of the second header collecting pipe (70) and the partial spaces ( 71a to 71c) are rearranged into the relationship with the effective area A.
  • the effective disconnection of each partial space (71a to 71c) is adjusted by adjusting the insertion length L of the flat tube (31) with respect to the second header collecting pipe (70). if the area a (1.91M R -22.7) above (1.96M R +30.8) below, the mass flow rate of refrigerant flowing into each subspace (71a ⁇ 71c) and a reference mass flow rate M R In the operation state, the capacity of the outdoor heat exchanger (23) functioning as an evaporator is 95% or more of the maximum capacity in the operation state.
  • the maximum value (that is, 90 kg) of the fluctuation range of the mass flow rate of the refrigerant flowing into the partial spaces (71a to 71c) of the main communication space (71). / h) is the reference mass flow rate M R, and the effective area a of the main communicating each subspace of the space (71) (71a ⁇ 71c) (1.91M R -22.7) or (1.96M R +30. 8) It is as follows. Therefore, according to the present embodiment, the outdoor heat exchanger (23) is 95% of the maximum capacity under the heating low temperature condition in which the operating capacity of the compressor (21) provided in the refrigerant circuit (20) is the maximum value. The above can be demonstrated.
  • the outdoor heat exchanger (23) of the present embodiment has its capability in an operating condition in which the mass flow rate of the refrigerant flowing into each partial space (71a to 71c) of the main communication space (71) is less than the heating low temperature condition. May fall below 95% of maximum capacity.
  • the operating capacity of the compressor (21) is smaller than the maximum value.
  • the heating capacity of the air conditioner (10) is increased by increasing the operating capacity of the compressor (21) under the operating conditions where the mass flow rate of the refrigerant flowing into each partial space (71a to 71c) is less than the heating low temperature condition. Capability can be secured.
  • the main communication space maximum value of the variation range of the mass flow rate of refrigerant flowing into each subspace (71a ⁇ 71c) (71) i.e., 90 kg / h
  • a reference mass flow rate M R If the effective cross-sectional area A of each partial space (71a to 71c) is set as follows, the capacity of the outdoor heat exchanger (23) can be fully exerted when the operating capacity of the compressor (21) reaches the maximum value. Can do. As a result, the heating capacity of the air conditioner (10) can be increased without increasing the size of the outdoor heat exchanger (23).
  • a value smaller than the maximum value of the fluctuation range of the mass flow rate of the refrigerant flowing into the partial spaces (71a to 71c) of the main communication space (71) is set to the reference mass flow rate M.
  • R and the second header collecting pipe (70) so that the effective area A of each partial space (71a to 71c) is (1.91M R -22.7) or more and (1.96M R +30.8) or less.
  • the insertion length L of the flat tube (31) may be set.
  • the time during which the compressor (21) of the refrigerant circuit (20) reaches the maximum capacity within one year is not so long. In other words, the compressor (21) is operated for a longer time than the maximum capacity than the maximum capacity.
  • the most mass flow rate of refrigerant flowing into each subspace (71a ⁇ 71c) occurrences main communication through the high operating state of constant space (71) per year it is conceivable to a reference mass flow rate M R.
  • the mass flow rate as a reference mass flow rate M R, the effective area A of the subspaces (71a ⁇ 71c) is (1.91M R -22.7) above (1.96M R +30.8) as to become less
  • the outdoor heat exchanger (23) has the maximum capacity in the operating state in the operating state with the highest appearance rate in the year. 95% or more can be exhibited. Therefore, in this case, it is possible to improve the operation efficiency of the air conditioner (10) in the operation state having the highest appearance rate in the year, and to reduce the annual power consumption of the air conditioner (10).
  • Formula 1 which is a linear approximate expression at which the capacity of the outdoor heat exchanger (23) is maximized in each of the heating low temperature condition, the heating rated condition, and the heating intermediate condition.
  • the range of the effective area A of each partial space (71a to 71c) may be set.
  • one value within the fluctuation range of the mass flow rate of the refrigerant flowing into each partial space (71a to 71c) of the main communication space (71) of the second header collecting pipe (70) is used as a reference.
  • the effective area a of the subspaces (71a ⁇ 71c) is (1.96M R -b) above (1.96M R + a) as to become less, the second header collecting pipe
  • the insertion length L of the flat tube (31) with respect to (70) may be set.
  • the capacity of the outdoor heat exchanger (23) is approximately 95% or more of the maximum capacity in that case.
  • the present invention is useful for a heat exchanger including a plurality of flat tubes and a header collecting tube connected to each flat tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 熱交換器において、扁平管(31)の端部は、ヘッダ集合管(70)に差し込まれる。熱交換器が蒸発器として機能する場合、ヘッダ集合管(70)内の部分空間(71a)では、気液二相状態の冷媒が上向きに流れる。ヘッダ集合管(70)の部分空間(71a)の実効断面積Aは、ヘッダ集合管(70)内の部分空間(71a)へ流入する冷媒の質量流量に基づいて設定される。この実効断面積Aは、ヘッダ集合管(70)の軸方向と直交する部分空間(71a)の断面の面積Aから、扁平管(31)のうち部分空間(71a)に位置する部分のヘッダ集合管(70)の軸方向と直交する平面への投影面積Aを差し引いた面積である。

Description

熱交換器
 本発明は、複数の扁平管と各扁平管に接続するヘッダ集合管とを備えた熱交換器に関するものである。
 従来より、複数の扁平管と、各扁平管に接続するヘッダ集合管とを備えた熱交換器が知られている。特許文献1及び2のぞれぞれには、この種の熱交換器が開示されている。具体的に、これら各特許文献の熱交換器では、熱交換器の左端と右端にヘッダ集合管が起立した状態で一本ずつ設置され、第1のヘッダ集合管から第2のヘッダ集合管に亘って複数の扁平管が配置されている。そして、これら各特許文献の熱交換器は、扁平管の内部を流れる冷媒を、扁平管の外部を流れる空気と熱交換させる。
 特許文献1に記載された熱交換器は、凝縮器として機能する。この熱交換器において、第1のヘッダ集合管の上端部へ流入したガス冷媒は、全ての扁平管へ分配される。各扁平管を流れる冷媒は、空気へ放熱して凝縮し、その後に第2のヘッダ集合管へ流入する。その後、冷媒は、第2のヘッダ集合管の下端部から熱交換器の外部へ流出してゆく。
 また、特許文献2に記載された熱交換器も、凝縮器として機能する。この熱交換器において、第1のヘッダ集合管の上端部へ流入した冷媒は、二つのヘッダ集合管の間を一往復半して第2のヘッダ集合管の下端部から流出してゆく。
特開2006-105545号公報 特開2005-003223号公報
 ところで、上記の特許文献に記載されているような熱交換器を蒸発器として用いることが考えられる。この熱交換器が蒸発器として機能する場合、熱交換器へ供給された気液二相状態の冷媒は、一方のヘッダ集合管へ流入し、その後に複数の扁平管へ分かれて流入する。その際には、各扁平管へ流入する冷媒の流量をできるだけ均一にするのが望ましい。各扁平管へ流入する冷媒の流量が不均一だと、冷媒の流量が少ない扁平管の途中で冷媒がガス単相状態となってしまい、熱交換器の性能が充分に発揮されなくなるからである。
 ところが、従来は、気液二相状態の冷媒をヘッダ集合管から複数の扁平管へ均等に分配するのに必要な要因が充分に究明されていなかったため、蒸発器として機能する熱交換器に充分な性能を発揮させるのが困難であった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、複数の扁平管とヘッダ集合管とを備えた熱交換器が蒸発器として機能する場合に、その性能を最大限に発揮させることにある。
 第1の発明は、複数の扁平管(31)と、上記各扁平管(31)の一方の端部が差し込まれた第1ヘッダ集合管(60)と、上記各扁平管(31)の他方の端部が差し込まれた第2ヘッダ集合管(70)と、上記扁平管(31)に接合された複数のフィン(36)とを備え、冷凍サイクルを行う冷媒回路(20)に設けられる熱交換器を対象とする。そして、上記第2ヘッダ集合管(70)は、複数の上記扁平管(31)に連通すると共に上記熱交換器が蒸発器として機能する場合に気液二相状態の冷媒が上向きに流れる流通空間(71a~71c)を形成し、上記第2ヘッダ集合管(70)の軸方向と直交する上記流通空間(71a~71c)の断面の面積から、上記扁平管(31)のうち上記流通空間(71a~71c)に位置する部分の上記第2ヘッダ集合管(70)の軸方向と直交する平面への投影面積を差し引いた面積を、上記流通空間(71a~71c)の実効断面積とした場合に、上記流通空間(71a~71c)の上記実効断面積は、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量に基づいて設定されるものである。
 第1の発明の熱交換器(23)は、冷凍サイクルを行う冷媒回路(20)に設けられる。この熱交換器(23)では、第2ヘッダ集合管(70)が流通空間(71a~71c)を形成する。熱交換器(23)が蒸発器として機能する場合の冷媒の流れを説明する。第2ヘッダ集合管(70)の流通空間(71a~71c)には、気液二相状態の冷媒が流入する。流通空間(71a~71c)では、流入した冷媒が上向きに流れる。流通空間(71a~71c)を流れる冷媒は、流通空間(71a~71c)に連通する複数の扁平管(31)へ分かれて流入する。流通空間(71a~71c)から扁平管(31)へ流入した冷媒は、扁平管(31)を通過して第1ヘッダ集合管(60)へ流入する。
 第1の発明において、第2ヘッダ集合管(70)の流通空間(71a~71c)の実効断面積Aは、上記第2ヘッダ集合管(70)の軸方向と直交する流通空間(71a~71c)の断面の面積Aから、扁平管(31)のうち流通空間(71a~71c)に位置する部分の第2ヘッダ集合管(70)の軸方向と直交する平面への投影面積Aを差し引いた面積である(A=A-A)。この発明の熱交換器(23)において、第2ヘッダ集合管(70)の流通空間(71a~71c)の実効断面積Aは、熱交換器(23)が蒸発器として機能する場合に流通空間(71a~71c)へ流入する冷媒の質量流量に基づいて設定される。
 第2の発明は、上記第1の発明において、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲に含まれる一つの値を基準質量流量M[kg/h] とした場合に、上記流通空間(71a~71c)の上記実効断面積A [mm] が(1.91M-22.7)以上(1.96M+30.8)以下であるものである。
 第3の発明は、上記第1の発明において、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲に含まれる一つの値を基準質量流量M[kg/h] とした場合に、上記流通空間(71a~71c)の上記実効断面積A [mm] が(1.96M-25.0)以上(1.96M+30.0)以下であるものである。
 第2及び第3の各発明において、蒸発器として機能する熱交換器(23)へ流入する冷媒の質量流量は、熱交換器(23)が設けられた冷媒回路(20)の運転状態に応じて変化する。熱交換器(23)が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量は、所定の範囲内で変動する。この冷媒の質量流量の変動範囲に含まれる一つの値を、基準質量流量Mとする。基準質量流量Mは、例えば変動範囲の最大値や最小値であってもよいし、変動範囲の中央値であってもよい。なお、第2及び第3の各発明において、基準質量流量Mの単位は「kg/h」であり、実効断面積Aの単位は「mm」である。
 第2の発明では、第2ヘッダ集合管(70)の流通空間(71a~71c)の実効断面積Aが、下記の数式を満たす値となる。
   1.91M-22.7≦A≦1.96M+30.8
 一方、第3の発明では、第2ヘッダ集合管(70)の流通空間(71a~71c)の実効断面積Aが、下記の数式を満たす値となる。
   1.96M-25.0≦A≦1.96M+30.0
 第4の発明は、上記第2又は第3の発明において、上記基準質量流量M[kg/h] は、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値であるものである。
 第4の発明では、熱交換器(23)が蒸発器として機能する場合に流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値が、基準質量流量Mとなる。
 第5の発明は、上記第1~第4のいずれか一つの発明において、上記第1ヘッダ集合管(60)及び上記第2ヘッダ集合管(70)は、起立した状態で設置され、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)の下端部へ冷媒が流入するように構成されるものである。
 第5の発明では、第1ヘッダ集合管(60)と第2ヘッダ集合管(70)が起立した状態となる。この発明の熱交換器(23)が蒸発器として機能する場合、第2ヘッダ集合管(70)の流通空間(71a~71c)では、その下端部へ流入した冷媒が上向きに流れる。
 ここで、蒸発器として機能する熱交換器(23)において、第2ヘッダ集合管(70)の流通空間(71a~71c)を上向きに流れる気液二相状態の冷媒を複数の扁平管(31)へ均等に分配するには、流通空間(71a~71c)における冷媒の流速を適切な値に設定する必要がある。このことは、本願発明の発明者らが様々な実験の結果を検討した結果、見出された事実である。
 つまり、流通空間(71a~71c)を上向きに流れる冷媒の流速が低すぎると、上寄りの扁平管(31)には液冷媒が殆ど到達できないため、上寄りの扁平管(31)へ流入する冷媒の乾き度が高くなる。このため、流通空間(71a~71c)に連通する扁平管(31)のうち上寄りに配置されたものでは、そこを流れる冷媒の吸熱量が少なくなり、熱交換器(23)の性能が充分に発揮されなくなる。また、流通空間(71a~71c)を上向きに流れる冷媒の流速が高すぎると、勢いよく吹き上げられた液冷媒の大半が上寄りの扁平管(31)へ流入し、下寄りの扁平管(31)に多くのガス冷媒が流入するため、下寄りの扁平管(31)へ流入する冷媒の乾き度が高くなる。このため、流通空間(71a~71c)に連通する扁平管(31)のうち下寄りに配置されたものでは、そこを流れる冷媒の吸熱量が少なくなり、熱交換器(23)の性能が充分に発揮されなくなる。このように、流通空間(71a~71c)を上向きに流れる冷媒の流速が低すぎる場合と高すぎる場合の両方において、熱交換器(23)の性能が充分に発揮されなくなる。
 そこで、本発明では、第2ヘッダ集合管(70)の流通空間(71a~71c)の実効断面積Aを、熱交換器(23)が蒸発器として機能する場合に流通空間(71a~71c)へ流入する冷媒の質量流量に基づいて設定している。流通空間(71a~71c)の実効断面積Aと、流通空間(71a~71c)へ流入する冷媒の質量流量とは、流通空間(71a~71c)を流れる冷媒の流速に影響を与える物理量である。このため、流通空間(71a~71c)へ流入する冷媒の質量流量に基づいて流通空間(71a~71c)の実効断面積Aを設定すれば、流通空間(71a~71c)を流れる冷媒の流速を、流通空間(71a~71c)から複数の扁平管(31)へ冷媒が均等に分配されるような適正値に設定することが可能となる。従って、本発明によれば、蒸発器として機能する熱交換器(23)の性能を、充分に発揮させることが可能となる。
 ここで、仮に、蒸発器として機能する熱交換器(23)における冷媒の吸熱量が不足していたとする。このとき、流通空間(71a~71c)へ流入する冷媒の質量流量が変動範囲の最大値よりも小さければ、流通空間(71a~71c)へ流入する冷媒の質量流量を増やすことによって、冷媒の吸熱量を増加させることが可能である。ところが、流通空間(71a~71c)へ流入する冷媒の質量流量が既に変動範囲の最大値に達していれば、流通空間(71a~71c)へ流入する冷媒の質量流量をそれ以上増やすことはできない。
 これに対し、上記第4の発明では、流通空間(71a~71c)の実効断面積Aを設定する際に用いる基準質量流量Mを、熱交換器(23)が蒸発器として機能する場合に流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値としている。従って、この発明によれば、流通空間(71a~71c)へ流入する冷媒の質量流量を増やすことができない場合に、熱交換器(23)の性能を最大限に発揮させることができる。
図1は、実施形態1の室外熱交換器を備えた空気調和機の概略構成を示す冷媒回路図である。 図2は、実施形態1の室外熱交換器の概略構成を示す正面図である。 図3は、実施形態1の室外熱交換器の正面を示す一部断面図である。 図4は、図3のA-A断面の一部を拡大して示す断面図である。 図5は、図3のB-B断面の要部を拡大して示す断面図であって、(a)は各部の寸法を示し、(b)は第2ヘッダ集合管内の部分空間の断面積Aを示し、(c)は扁平管の投影面積Aを示し、(d)は第2ヘッダ集合管内の部分空間の実効断面積Aを示す。 図6は、第2ヘッダ集合管内の部分空間における冷媒の流速Vと、室外熱交換器の能力比の関係を示すグラフである。 図7は、実施形態1の室外熱交換器における実効断面積Aの範囲を示すグラフである。 図8は、実施形態1の変形例2の室外熱交換器における実効断面積Aの範囲を示すグラフである。
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態の熱交換器は、空気調和機(10)に設けられた室外熱交換器(23)である。以下では、先ず空気調和機(10)について説明し、その後に室外熱交換器(23)について詳細に説明する。
  -空気調和機-
 先ず、空気調和機(10)について、図1を参照しながら説明する。
   〈空気調和機の構成〉
 空気調和機(10)は、室外ユニット(11)及び室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)及びガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)、及びガス側連絡配管(14)によって、冷媒回路(20)が形成されている。
 冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、及び膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。一方、室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。
 冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出側が四方切換弁(22)の第1のポートに、その吸入側が四方切換弁(22)の第2のポートに、それぞれ接続されている。また、冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。
 圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。圧縮機(21)は、その回転速度が可変となっている。圧縮機(21)の回転速度を変更すると、圧縮機(21)の運転容量が変化する。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に破線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に実線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。
 室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)については後述する。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。
   〈空気調和機の運転動作〉
 空気調和機(10)は、冷房運転と暖房運転を選択的に行う。
 冷房運転中の冷媒回路(20)では、四方切換弁(22)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、室外熱交換器(23)、膨張弁(24)、室内熱交換器(25)の順に冷媒が循環し、室外熱交換器(23)が凝縮器として機能し、室内熱交換器(25)が蒸発器として機能する。室外熱交換器(23)では、圧縮機(21)から流入したガス冷媒が室外空気へ放熱して凝縮し、凝縮後の冷媒が膨張弁(24)へ向けて流出してゆく。
 暖房運転中の冷媒回路(20)では、四方切換弁(22)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、室内熱交換器(25)、膨張弁(24)、室外熱交換器(23)の順に冷媒が循環し、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が流入する。室外熱交換器(23)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(21)へ向けて流出してゆく。
  -室外熱交換器-
 室外熱交換器(23)について、図2~7を適宜参照しながら説明する。なお、以下の説明に示す扁平管(31,32)の本数と、主熱交換部(51a~51c)及び補助熱交換部(52a~52c)の数は、何れも単なる一例である。
   〈室外熱交換器の構成〉
 図2及び図3に示すように、室外熱交換器(23)は、一つの第1ヘッダ集合管(60)と、一つの第2ヘッダ集合管(70)と、多数の扁平管(31,32)と、多数のフィン(36)とを備えている。第1ヘッダ集合管(60)、第2ヘッダ集合管(70)、扁平管(31,32)およびフィン(35)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。
 なお、詳しくは後述するが、室外熱交換器(23)は、主熱交換領域(51)と補助熱交換領域(52)に区分されている。この室外熱交換器(23)では、一部の扁平管(32)が補助熱交換領域(52)を構成し、残りの扁平管(31)が主熱交換領域(51)を構成している。
 第1ヘッダ集合管(60)と第2ヘッダ集合管(70)は、何れも両端が閉塞された細長い円筒状に形成されている。図2及び図3において、第1ヘッダ集合管(60)は室外熱交換器(23)の左端に、第2ヘッダ集合管(70)は室外熱交換器(23)の右端に、それぞれ起立した状態で設置されている。つまり、第1ヘッダ集合管(60)及び第2ヘッダ集合管(70)は、それぞれの軸方向が上下方向となる状態で設置されている。
 図4に示すように、扁平管(31,32)は、その断面形状が扁平な長円形となった伝熱管である。図3に示すように、室外熱交換器(23)において、複数の扁平管(31,32)は、その伸長方向が左右方向となり、それぞれの平坦な側面が対向する状態で配置されている。また、複数の扁平管(31,32)は、互いに一定の間隔をおいて上下に並んで配置され、互いに実質的に平行となっている。各扁平管(31,32)は、その一端が第1ヘッダ集合管(60)に挿入され、その他端が第2ヘッダ集合管(70)に挿入されている。各扁平管(31,32)の軸方向は、各ヘッダ集合管(60,70)の軸方向と実質的に直交している。また、各扁平管(31,32)の平坦な側面(本実施形態では、上下の側面)は、各ヘッダ集合管(60,70)の軸方向と実質的に直交している。
 図4に示すように、各扁平管(31,32)には、複数の流体通路(34)が形成されている。各流体通路(34)は、扁平管(31,32)の伸長方向に延びる通路である。各扁平管(31,32)において、複数の流体通路(34)は、扁平管(31,32)の幅方向(即ち、長手方向と直交する方向)に一列に並んでいる。各扁平管(31,32)に形成された複数の流体通路(34)は、それぞれの一端が第1ヘッダ集合管(60)の内部空間に連通し、それぞれの他端が第2ヘッダ集合管(70)の内部空間に連通している。室外熱交換器(23)へ供給された冷媒は、扁平管(31,32)の流体通路(34)を流れる間に空気と熱交換する。
 図4に示すように、フィン(36)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(36)には、フィン(36)の前縁(即ち、風上側の縁部)からフィン(36)の幅方向に延びる細長い切り欠き部(45)が、多数形成されている。フィン(36)では、多数の切り欠き部(45)が、フィン(36)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(45)の風下寄りの部分は、管挿入部(46)を構成している。管挿入部(46)は、上下方向の幅が扁平管(31,32)の厚さと実質的に等しく、長さが扁平管(31,32)の幅と実質的に等しい。扁平管(31,32)は、フィン(36)の管挿入部(46)に挿入され、管挿入部(46)の周縁部とロウ付けによって接合される。また、フィン(36)には、伝熱を促進するためのルーバー(40)が形成されている。そして、複数のフィン(36)は、扁平管(31,32)の伸長方向に配列されることで、隣り合う扁平管(31,32)の間を空気が流れる複数の通風路(38)に区画している。
 図2及び図3に示すように、室外熱交換器(23)は、上下に二つの熱交換領域(51,52)に区分されている。室外熱交換器(23)では、上側の熱交換領域が主熱交換領域(51)となり、下側の熱交換領域が補助熱交換領域(52)となっている。
 各熱交換領域(51,52)は、上下に三つずつの熱交換部(51a~51c,52a~52c)に区分されている。つまり、室外熱交換器(23)では、主熱交換領域(51)と補助熱交換領域(52)のそれぞれが、複数且つ互いに同数の熱交換部(51a~51c,52a~52c)に区分されている。なお、各熱交換領域(51,52)に形成される熱交換部(51a~51c,52a~52c)の数は、二つであってもよいし、四つ以上であってもよい。
 具体的に、主熱交換領域(51)には、下から上に向かって順に、第1主熱交換部(51a)と、第2主熱交換部(51b)と、第3主熱交換部(51c)とが形成されている。補助熱交換領域(52)には、下から上に向かって順に、第1補助熱交換部(52a)と、第2補助熱交換部(52b)と、第3補助熱交換部(52c)とが形成されている。各主熱交換部(51a~51c)と各補助熱交換部(52a~52c)は、扁平管(31,32)が複数本ずつ備えている。また、図3に示すように、各主熱交換部(51a~51c)を構成する扁平管(31)の本数は、各補助熱交換部(52a~52c)を構成する扁平管(32)の本数よりも多い。従って、主熱交換領域(51)を構成する扁平管(31)の本数は、補助熱交換領域(52)を構成する扁平管(32)の本数よりも多い。
 図3に示すように、第1ヘッダ集合管(60)の内部空間は、仕切板(39a)によって上下に仕切られている。第1ヘッダ集合管(60)では、仕切板(39a)の上側の空間が上側空間(61)となり、仕切板(39a)の下側の空間が下側空間(62)となっている。
 上側空間(61)は、主熱交換領域(51)に対応した主連通空間を構成している。上側空間(61)は、主熱交換領域(51)を構成する扁平管(31)の全てと連通する単一の空間である。つまり、上側空間(61)は、各主熱交換部(51a~51c)の扁平管(31)と連通している。
 下側空間(62)は、補助熱交換領域(52)に対応した補助連通空間を構成している。下側空間(62)は、二枚の仕切板(39b)によって上下に仕切られている。具体的に、下側空間(62)は、補助熱交換部(52a~52c)と同数(本実施形態では三つ)の連通室(62a~62c)に区画されている。最も下方に位置する第1連通室(62a)は、第1補助熱交換部(52a)を構成する全ての扁平管(32)と連通する。第1連通室(62a)の上方に位置する第2連通室(62b)は、第2補助熱交換部(52b)を構成する全ての扁平管(32)と連通する。最も上方に位置する第3連通室(62c)は、第3補助熱交換部(52c)を構成する全ての扁平管(32)と連通する。
 第2ヘッダ集合管(70)の内部空間は、主熱交換領域(51)に対応した主連通空間(71)と、補助熱交換領域(52)に対応した補助連通空間(72)とに区分されている。
 主連通空間(71)は、二枚の仕切板(39c)によって上下に仕切られている。この仕切板(39c)は、主連通空間(71)を、主熱交換部(51a~51c)と同数(本実施形態では三つ)の部分空間(71a~71c)に区画している。最も下方に位置する第1部分空間(71a)は、第1主熱交換部(51a)を構成する全ての扁平管(31)と連通する。第1部分空間(71a)の上方に位置する第2部分空間(71b)は、第2主熱交換部(51b)を構成する全ての扁平管(31)と連通する。最も上方に位置する第3部分空間(71c)は、第3主熱交換部(51c)を構成する全ての扁平管(31)と連通する。各部分空間(71a~71c)は、室外熱交換器(23)が蒸発器として機能するときに冷媒が上向きに流れる流通空間である。
 補助連通空間(72)は、二枚の仕切板(39d)によって上下に仕切られている。この仕切板(39d)は、補助連通空間(72)を、補助熱交換部(52a~52c)と同数(本実施形態では三つ)の部分空間(72a~72c)に区画している。最も下方に位置する第4部分空間(72a)は、第1補助熱交換部(52a)を構成する全ての扁平管(32)と連通する。第4部分空間(72a)の上方に位置する第5部分空間(72b)は、第2補助熱交換部(52b)を構成する全ての扁平管(32)と連通する。最も上方に位置する第6部分空間(72c)は、第3補助熱交換部(52c)を構成する全ての扁平管(32)と連通する。
 第2ヘッダ集合管(70)には、二本の接続用配管(76,77)が取り付けられている。これら接続用配管(76,77)は、何れも円管である。
 第1接続用配管(76)は、その一端が第2主熱交換部(51b)に対応する第2部分空間(71b)に接続され、その他端が第1補助熱交換部(52a)に対応する第4部分空間(72a)に接続される。第2接続用配管(77)は、その一端が第3主熱交換部(51c)に対応する第3部分空間(71c)に接続され、その他端が第2補助熱交換部(52b)に対応する第5部分空間(72b)に接続される。また、第2ヘッダ集合管(70)では、第3補助熱交換部(52c)に対応する第6部分空間(72c)と、第1主熱交換部(51a)に対応する第1部分空間(71a)とが、互いに連続した一つの空間を形成している。
 このように、本実施形態の室外熱交換器(23)では、第1主熱交換部(51a)と第3補助熱交換部(52c)が直列に接続され、第2主熱交換部(51b)と第1補助熱交換部(52a)が直列に接続され、第3主熱交換部(51c)と第2補助熱交換部(52b)が直列に接続されている。
 図2に示すように、室外熱交換器(23)には、液側接続部材(80)とガス側接続管(85)とが設けられている。液側接続部材(80)及びガス側接続管(85)は、第1ヘッダ集合管(60)に取り付けられている。
 液側接続部材(80)は、一つの分流器(81)と、三本の細径管(82a~82c)とを備えている。分流器(81)の下端部には、室外熱交換器(23)と膨張弁(24)を繋ぐ配管(17)が接続されている。分流器(81)の上端部には、各細径管(82a~82c)の一端が接続されている。分流器(81)の内部では、その下端部に接続された配管と、各細径管(82a~82c)とが連通している。各細径管(82a~82c)の他端は、第1ヘッダ集合管(60)に接続され、対応する下側部分空間(62a~62c)に連通している。
 図3にも示すように、各細径管(82a~82c)は、対応する下側部分空間(62a~62c)の下端寄りの部分(即ち、下側部分空間(62a~62c)の上下方向の中央よりも下側の部分)に開口している。つまり、第1細径管(82a)は第1下側部分空間(62a)の下端寄りの部分に開口し、第2細径管(82b)は第2下側部分空間(62b)の下端寄りの部分に開口し、第3細径管(82c)は第3下側部分空間(62c)の下端寄りの部分に開口している。なお、各細径管(82a~82c)の長さは、各熱交換部(50a~50c)へ流入する冷媒の流量の差がなるべく小さくなるように、個別に設定されている。
 ガス側接続管(57)の一端は、第1ヘッダ集合管(60)の上部に接続され、上側空間(61)に連通している。ガス側接続管(57)の他端は、室外熱交換器(23)と四方切換弁(22)の第3のポートを繋ぐ配管(18)に接続されている。
   〈室外熱交換器における冷媒の流れ/凝縮器の場合〉
 空気調和機(10)の冷房運転中には、室外熱交換器(23)が凝縮器として機能する。冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
 室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が供給される。圧縮機(21)から送られたガス冷媒は、ガス側接続管(57)を介して第1ヘッダ集合管(60)の上側空間(61)へ流入した後、主熱交換領域(51)の各扁平管(31)へ分配される。主熱交換領域(51)の各主熱交換部(51a~51c)において、扁平管(31)の流体通路(34)へ流入した冷媒は、流体通路(34)を流れる間に室外空気へ放熱して凝縮し、その後に第2ヘッダ集合管(70)の対応する各部分空間(71a~71c)へ流入する。
 主連通空間(71)の各部分空間(71a~71c)へ流入した冷媒は、補助連通空間(72)の対応する部分空間(72a~72c)へ送られる。具体的に、主連通空間(71)の第1部分空間(71a)へ流入した冷媒は、下方へ流れ落ちて補助連通空間(72)の第6部分空間(72c)へ流れ込む。主連通空間(71)の第2部分空間(71b)へ流入した冷媒は、第1接続用配管(76)を通って補助連通空間(72)の第4部分空間(72a)へ流入する。主連通空間(71)の第3部分空間(71c)へ流入した冷媒は、第2接続用配管(77)を通って補助連通空間(72)の第5部分空間(72b)へ流入する。
 補助連通空間(72)の各部分空間(72a~72c)へ流入した冷媒は、対応する補助熱交換部(52a~52c)の各扁平管(32)へ分配される。各扁平管(32)の流体通路(34)を流れる冷媒は、室外空気へ放熱して過冷却液となり、その後に第1ヘッダ集合管(60)の下側空間(62)の対応する連通室(62a~62c)へ流入する。各連通室(62a~62c)の冷媒は、細径管(82a~82c)を通って分流器(81)へ流入し、合流して室外熱交換器(23)から流出してゆく。
   〈室外熱交換器における冷媒の流れ/蒸発器の場合〉
 空気調和機(10)の暖房運転中には、室外熱交換器(23)が蒸発器として機能する。暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
 室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が供給される。膨張弁(24)から送られた冷媒は、液側接続部材(80)の分流器(81)へ流入した後に三本の細径管(82a~82c)へ分かれて流入し、各熱交換部(50a~50c)へ分配される。
 具体的に、分流器(81)から細径管(82a~82c)へ流入した冷媒は、対応する第1ヘッダ集合管(60)の連通室(62a~62c)へ流入する。第1ヘッダ集合管(60)の各連通室(62a~62c)へ流入した冷媒は、対応する補助熱交換部(52a~52c)の各扁平管(32)へ分配される。各扁平管(32)の流体通路(34)へ流入した冷媒は、流体通路(34)を流れる間に室外空気から吸熱し、一部の液冷媒が蒸発する。扁平管(32)の流体通路(34)を通過した冷媒は、第2ヘッダ集合管(70)の補助連通空間(72)の対応する部分空間(72a~72c)へ流入する。この部分空間(72a~72c)へ流入した冷媒は、依然として気液二相状態のままである。
 補助連通空間(72)の各部分空間(72a~72c)へ流入した冷媒は、主連通空間(71)の対応する部分空間(71a~71c)へ送られる。具体的に、補助連通空間(72)の第4部分空間(72a)へ流入した冷媒は、第1接続用配管(76)を通って主連通空間(71)の第2部分空間(71b)の下端部へ流入する。補助連通空間(72)の第5部分空間(72b)へ流入した冷媒は、第2接続用配管(77)を通って主連通空間(71)の第3部分空間(71c)の下端部へ流入する。補助連通空間(72)の第6部分空間(72c)へ流入した冷媒は、上方へ向かって流れて主連通空間(71)の第1部分空間(71a)の下端部へ流入する。
 主連通空間(71)の各部分空間(71a~71c)では、流入した冷媒が上向きに流れる。各部分空間(71a~71c)内の冷媒は、対応する主熱交換部(51a~51c)の各扁平管(31)へ分配される。各扁平管(31)の流体通路(34)を流れる冷媒は、室外空気から吸熱して蒸発し、実質的にガス単相状態となった後に、第1ヘッダ集合管(60)の上側空間(61)へ流入する。その後、冷媒は、ガス側接続管(57)を通って室外熱交換器(23)から流出してゆく。
   〈扁平管の差し込み長さL〉
 本実施形態の室外熱交換器(23)において、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLは、第2ヘッダ集合管(70)内に形成された主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが所定の設計値となるように設定される。なお、差し込み長さLの単位は「mm」であり、実効断面積Aの単位は「mm」である。また、図5では、フィン(36)の図示を省略している。
 図5(a)に示すように、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLは、扁平管(31)のうち部分空間(71a~71c)に差し込まれた部分の長さである。つまり、この差し込み長さLは、扁平管(31)のうち部分空間(71a~71c)に差し込まれた部分の端面から第2ヘッダ集合管(70)の内側面までの距離である。
 部分空間(71a~71c)の実効断面積Aは、図5(d)においてドットを付した領域の面積である。この実効断面積Aは、部分空間(71a~71c)の断面積Aから扁平管(31)の投影面積Aを差し引いた面積である(A=A-A)。部分空間(71a~71c)の断面積Aは、図5(b)においてドットを付した領域の面積である。つまり、部分空間(71a~71c)の断面積Aは、第2ヘッダ集合管(70)の軸方向に直交する部分空間(71a~71c)の断面の面積である。部分空間(71a~71c)の断面は円形である。従って、部分空間(71a~71c)の断面積Aは、(π/4)dである。扁平管(31)の投影面積Aは、図5(c)においてドットを付した領域の面積である。つまり、扁平管(31)の投影面積Aは、扁平管(31)のうち部分空間(71a~71c)に位置する部分の、第2ヘッダ集合管(70)の軸方向に直交する平面への投影面積である。
 ここで、扁平管(31)の幅Wは、室外熱交換器(23)の能力の設計値等に応じて選定される。また、第2ヘッダ集合管(70)の内径dは、幅Wの扁平管(31)を差し込めるような値に設定される。このように、室外熱交換器(23)を設計する際には、扁平管(31)の幅Wと第2ヘッダ集合管(70)の内径dとが先に決定され、その後に、部分空間(71a~71c)の実効断面積Aが所定値となるように扁平管(31)の差し込み長さLが決定される。
 上述したように、空気調和機(10)の圧縮機(21)は、その運転容量が可変となっている。圧縮機(21)の運転容量が変化すると、冷媒回路(20)における冷媒の循環量が変化し、室外熱交換器(23)へ流入する冷媒の質量流量が変化する。暖房運転中の空気調和機(10)において、冷媒回路(20)における冷媒の循環量(即ち、室外熱交換器(23)へ流入する冷媒の質量流量)は、概ね90kg/h以上270kg/h以下の範囲内で変動する。一方、室外熱交換器(23)に三つの主熱交換部(51a~51c)が形成されており、第2ヘッダ集合管(70)内の主連通空間(71)が三つの部分空間(71a~71c)に区分されている。このため、蒸発器として機能する室外熱交換器(23)において、第2ヘッダ集合管(70)内の主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量は、概ね30kg/h以上90kg/h以下の範囲内で変動する。
 本実施形態の室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値(即ち、90kg/h)が、基準質量流量Mとなっている。一方、本実施形態の室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが(1.91M-22.7)以上(1.96M+30.8)以下となっている。従って、この室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが149mm以上207mm以下となるように、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLが設定されている。
 なお、本実施形態の室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが188mmとなるように、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLを設定するのが最も望ましい。例えば、扁平管(31)の幅Wが18mmであり、第2ヘッダ集合管(70)の内径dが21mmである場合、主連通空間(71)の各部分空間(71a~71c)の実効断面積Aを188mmとするためには、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLを10mmに設定すればよい。
   〈主連通空間の部分空間の実効断面積A〉
 上述したように、本実施形態の室外熱交換器(23)では、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLが、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが所定の設計値となるように設定される。
 この室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)の実効断面積A [mm] が、(1.91M-22.7)以上(1.96M+30.8)以下となっている。なお、基準質量流量M [kg/h] は、室外熱交換器(23)が蒸発器として機能する場合に主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量の変動範囲内の任意の値である。そして、主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが上記の範囲内の値となっていれば、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量が基準質量流量Mであるときに、蒸発器として機能する室外熱交換器(23)の性能が充分に発揮される。ここでは、その理由について、図6,7を参照しながら説明する。
 図6は、空気調和機(10)の暖房運転の運転条件である暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれについて、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)の実効断面積Aを変化させた場合の、部分空間(71a~71c)における冷媒の流速Vと、蒸発器として機能する室外熱交換器(23)の能力比との関係を示している。なお、図6を得るための実験は、扁平管(31)の幅Wが18mmであり、第2ヘッダ集合管(70)の断面形状が円形であり、第2ヘッダ集合管(70)の内径dが21mmである室外熱交換器(23)を対象とし、冷媒としてR410Aを用いて行った。また、図6を得るための実験は、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)の実効断面積Aだけが相違する複数種類の熱交換器を用いて行った。
 暖房低温条件は、室外熱交換器(23)における冷媒の蒸発温度Teが-7℃であり、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量Mが90kg/hである運転条件である。暖房定格条件は、室外熱交換器(23)における冷媒の蒸発温度Teが0℃であり、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量Mが80kg/hである運転条件である。暖房中間条件は、室外熱交換器(23)における冷媒の蒸発温度Teが2℃であり、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量Mが40kg/hである運転条件である。
 図6の横軸は、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)における冷媒の流速V [m/s] である。この流速Vは、各部分空間(71a~71c)へ流入する冷媒の体積流量X [m/s] を、各部分空間(71a~71c)の実効断面積A [m] で除することによって算出される(V=X/A)。また、各部分空間(71a~71c)へ流入する冷媒の体積流量X [m/s] は、各部分空間(71a~71c)へ流入する冷媒の質量流量M [kg/h] を、各部分空間(71a~71c)へ流入する冷媒の密度D [kg/m] で除することによって算出される(X=(M/3600)/D)。
 図6の縦軸は、各運転条件における室外熱交換器(23)の能力比Rである。能力比Rは、所定の基準能力に対する各仕様の室外熱交換器(23)の能力の比を百分率で示したものである。室外熱交換器(23)の基準能力は、部分空間(71a~71c)の実効断面積Aが188mmである場合の室外熱交換器(23)の能力である。
 暖房低温条件における室外熱交換器(23)の能力比Rは、各仕様の室外熱交換器(23)の暖房低温条件における能力Qを、部分空間(71a~71c)の実効断面積Aが188mmである室外熱交換器(23)の暖房低温条件における能力(即ち、暖房低温条件における基準能力Q01)で除することによって算出される(R=100(Q/Q01))。暖房定格条件における室外熱交換器(23)の能力比Rは、各仕様の室外熱交換器(23)の暖房定格条件における能力Qを、部分空間(71a~71c)の実効断面積Aが188mmである室外熱交換器(23)の暖房定格条件における能力(即ち、暖房定格条件における基準能力Q02)で除することによって算出される(R=100(Q/Q02))。暖房中間条件における室外熱交換器(23)の能力比Rは、各仕様の室外熱交換器(23)の暖房中間条件における能力Qを、部分空間(71a~71c)の実効断面積Aが188mmである室外熱交換器(23)の暖房中間条件における能力(即ち、暖房中間条件における基準能力Q03)で除することによって算出される(R=100(Q/Q03))。当然ながら、暖房低温条件と暖房定格条件と暖房中間条件のそれぞれにおける基準能力は、互いに相違する(Q01≠Q02≠Q03)。
 室外熱交換器(23)の能力Qは、数式:Q=G(hout-hin)によって算出される。ただし、Gは室外熱交換器(23)を通過する冷媒の質量流量であり、hinは室外熱交換器(23)の入口における冷媒の比エンタルピであり、houtは室外熱交換器(23)の出口における冷媒の比エンタルピである。
 暖房低温条件における室外熱交換器(23)の能力を、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが152mm,188mm,214mm,240mmの四種類の室外熱交換器(23)について測定した。その結果、図6に示すように、各部分空間(71a~71c)の実効断面積Aが188mmである場合に、室外熱交換器(23)の能力が最大となった。
 暖房定格条件における室外熱交換器(23)の能力を、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが117mm,152mm,188mm,214mmの四種類の室外熱交換器(23)について測定した。その結果、図6に示すように、各部分空間(71a~71c)の実効断面積Aが152mmである場合に、室外熱交換器(23)の能力が最大となった。
 暖房中間条件における室外熱交換器(23)の能力を、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが54mm,79mm,117mm,152mm,188mm,214mmの六種類の室外熱交換器(23)について測定した。その結果、図6に示すように、各部分空間(71a~71c)の実効断面積Aが79mmである場合に、室外熱交換器(23)の能力が最大となった。
 このように、暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれにおいて、室外熱交換器(23)の能力が最大となる部分空間(71a~71c)の実効断面積Aが存在する。その理由は、次の通りである。
 部分空間(71a~71c)へ流入する冷媒の質量流量Mが一定であれば、部分空間(71a~71c)の実効断面積Aが大きくなるほど、部分空間(71a~71c)における冷媒の流速Vが低くなる。一方、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)では、気液二相状態の冷媒が上向きに流れる。このため、部分空間(71a~71c)における冷媒の流速Vが低くなると、密度の大きい液冷媒が下寄りの扁平管(31)へ多く流入し、密度の小さいガス冷媒が上寄りの扁平管(31)へ多く流入する。つまり、部分空間(71a~71c)から各扁平管(31)へ流入する冷媒の質量流量が不均一となる。
 液冷媒の流入量が少ない上寄りの扁平管(31)では、冷媒が第1ヘッダ集合管(60)へ到達する前にガス単相状態となり、冷媒の温度が室外空気の温度に近付いてゆく。その結果、各主熱交換部(51a~51c)の上寄りの部分における冷媒と空気の熱交換量が少なくなり、室外熱交換器(23)の能力が低下する。
 また、部分空間(71a~71c)へ流入する冷媒の質量流量Mが一定であれば、部分空間(71a~71c)の実効断面積Aが小さくなるほど、部分空間(71a~71c)における冷媒の流速Vが高くなる。部分空間(71a~71c)における冷媒の流速Vが高くなると、密度の大きい液冷媒に作用する慣性力が大きくなる。一方、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)では、気液二相状態の冷媒が上向きに流れる。このため、部分空間(71a~71c)では、勢いよく吹き上げられた液冷媒が上寄りの扁平管(31)へ多く流入し、密度の小さいガス冷媒が下寄りの扁平管(31)へ多く流入する。つまり、部分空間(71a~71c)から各扁平管(31)へ流入する冷媒の質量流量が不均一となる。
 液冷媒の流入量が少ない下寄りの扁平管(31)では、冷媒が第1ヘッダ集合管(60)へ到達する前にガス単相状態となり、冷媒の温度が室外空気の温度に近付いてゆく。その結果、各主熱交換部(51a~51c)の下寄りの部分における冷媒と空気の熱交換量が少なくなり、室外熱交換器(23)の能力が低下する。
 このように、室外熱交換器(23)では、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)における冷媒の流速Vが高すぎても低すぎても、部分空間(71a~71c)に連通する各扁平管(31)に対する冷媒の分配量が不均一となり、その結果、室外熱交換器(23)の能力が低下する。一方、部分空間(71a~71c)へ流入する冷媒の体積流量が一定であれば、部分空間(71a~71c)における冷媒の流速Vは、部分空間(71a~71c)の実効断面積Aに比例する。従って、上述したように、暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれにおいて、室外熱交換器(23)の能力が最大となる部分空間(71a~71c)の実効断面積Aが存在する。
 図7は、図6に示す実験結果を、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量Mと、各部分空間(71a~71c)の実効断面積Aとの関係に整理し直したものである。
 暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれにおいて室外熱交換器(23)の能力が最大となる点(即ち、M=40kg/h且つA=79mmの点、M=80kg/h且つA=152mmの点、及びM=90kg/h且つA=188mmの点)の一次近似式は、下記の式1となる。
  (式1)A=1.96M
 また、暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれにおいて室外熱交換器(23)の能力が最大値の95%となる点のうち、実効断面積Aが式1によって算出される値よりも大きい方(即ち、M=40kg/h且つA=109mmの点、M=80kg/h且つA=187mmの点、及びM=90kg/h且つA=207mmの点)の一次近似式は、下記の式2となる。
  (式2)A=1.96M+30.8
 また、暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれにおいて室外熱交換器(23)の能力が最大値の95%となる点のうち、実効断面積Aが式1によって算出される値よりも小さい方(即ち、M=40kg/h且つA=53mmの点、M=80kg/h且つA=130mmの点、及びM=90kg/h且つA=149mmの点)の一次近似式は、下記の式3となる。
  (式3)A=1.91M-22.7
 従って、本実施形態の室外熱交換器(23)では、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLを調節することによって各部分空間(71a~71c)の実効断面積Aを(1.91M-22.7)以上(1.96M+30.8)以下にすれば、各部分空間(71a~71c)へ流入する冷媒の質量流量が基準質量流量Mとなる運転状態において、蒸発器として機能する室外熱交換器(23)の能力が、その運転状態における最大能力の95%以上となる。
  -実施形態の効果-
 上述したように、本実施形態の室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値(即ち、90kg/h)が基準質量流量Mとなり、主連通空間(71)の各部分空間(71a~71c)の実効断面積Aが(1.91M-22.7)以上(1.96M+30.8)以下となっている。従って、本実施形態によれば、冷媒回路(20)に設けられた圧縮機(21)の運転容量が最大値となる暖房低温条件において、室外熱交換器(23)にその最大能力の95%以上を発揮させることができる。
 ところで、本実施形態の室外熱交換器(23)は、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量が暖房低温条件よりも少ない運転条件において、その能力が最大能力の95%を下回る可能性がある。しかし、このような運転条件では、圧縮機(21)の運転容量が最大値よりも小さい。このため、各部分空間(71a~71c)へ流入する冷媒の質量流量が暖房低温条件よりも少ない運転条件では、圧縮機(21)の運転容量を増やすことによって、空気調和機(10)の暖房能力を確保することができる。
 従って、本実施形態のように、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値(即ち、90kg/h)を基準質量流量Mとして各部分空間(71a~71c)の実効断面積Aを設定すれば、圧縮機(21)の運転容量が最大値に達した状態において室外熱交換器(23)の能力を充分に発揮させることができる。その結果、室外熱交換器(23)を大型化させずに、空気調和機(10)の暖房能力を増大させることができる。
  -実施形態の変形例1-
 本実施形態の室外熱交換器(23)では、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値よりも小さい値を基準質量流量Mとし、各部分空間(71a~71c)の実効断面積Aが(1.91M-22.7)以上(1.96M+30.8)以下となるように、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLを設定してもよい。
 ここで、一年間のうちで冷媒回路(20)の圧縮機(21)が最大容量となる時間は、それほど長くはない。つまり、圧縮機(21)は、最大容量で運転される時間よりも、最大容量よりも小さい運転容量で運転される時間の方が長い。
 そこで、年間で最も出現率の高い運転状態において主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量を、基準質量流量Mとすることが考えられる。この質量流量を基準質量流量Mとし、各部分空間(71a~71c)の実効断面積Aが(1.91M-22.7)以上(1.96M+30.8)以下となるように第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLを設定すれば、年間で最も出現率の高い運転状態において、室外熱交換器(23)にその運転状態における最大能力の95%以上を発揮させることができる。従って、この場合には、年間で最も出現率の高い運転状態における空気調和機(10)の運転効率を改善でき、空気調和機(10)の年間の消費電力を低減することができる。
  -実施形態の変形例2-
 本実施形態の室外熱交換器(23)では、暖房低温条件、暖房定格条件、及び暖房中間条件のそれぞれにおいて室外熱交換器(23)の能力が最大となる点の一次近似式である式1だけを用いて、各部分空間(71a~71c)の実効断面積Aの範囲を設定してもよい。
 つまり、図8に示すように、第2ヘッダ集合管(70)の主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量の変動範囲内の一つの値を基準質量流量Mとした場合に、各部分空間(71a~71c)の実効断面積Aが(1.96M-b)以上(1.96M+a)以下となるように、第2ヘッダ集合管(70)に対する扁平管(31)の差し込み長さLを設定してもよい。例えば、a=30.0とし、b=25.0とすれば、主連通空間(71)の各部分空間(71a~71c)へ流入する冷媒の質量流量が基準質量流量Mである場合の室外熱交換器(23)の能力は、その場合における最大能力の概ね95%以上となる。
 以上説明したように、本発明は、複数の扁平管と各扁平管に接続するヘッダ集合管とを備えた熱交換器について有用である。
 20  冷媒回路
 23  熱交換器(室外熱交換器)
 31  扁平管
 36  フィン
 60  第1ヘッダ集合管
 70  第2ヘッダ集合管
 71a  第1部分空間(流通空間)
 71b  第2部分空間(流通空間)
 71c  第3部分空間(流通空間)

Claims (5)

  1.  複数の扁平管(31)と、上記各扁平管(31)の一方の端部が差し込まれた第1ヘッダ集合管(60)と、上記各扁平管(31)の他方の端部が差し込まれた第2ヘッダ集合管(70)と、上記扁平管(31)に接合された複数のフィン(36)とを備え、冷凍サイクルを行う冷媒回路(20)に設けられる熱交換器であって、
     上記第2ヘッダ集合管(70)は、複数の上記扁平管(31)に連通すると共に上記熱交換器が蒸発器として機能する場合に気液二相状態の冷媒が上向きに流れる流通空間(71a~71c)を形成し、
     上記第2ヘッダ集合管(70)の軸方向と直交する上記流通空間(71a~71c)の断面の面積から、上記扁平管(31)のうち上記流通空間(71a~71c)に位置する部分の上記第2ヘッダ集合管(70)の軸方向と直交する平面への投影面積を差し引いた面積を、上記流通空間(71a~71c)の実効断面積とした場合に、
     上記流通空間(71a~71c)の上記実効断面積は、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量に基づいて設定されている
    ことを特徴とする熱交換器。
  2.  請求項1において、
     上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲に含まれる一つの値を基準質量流量M[kg/h] とした場合に、上記流通空間(71a~71c)の上記実効断面積A [mm] が(1.91M-22.7)以上(1.96M+30.8)以下である
    ことを特徴とする熱交換器。
  3.  請求項1において、
     上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲に含まれる一つの値を基準質量流量M[kg/h] とした場合に、上記流通空間(71a~71c)の上記実効断面積A [mm] が(1.96M-25.0)以上(1.96M+30.0)以下である
    ことを特徴とする熱交換器。
  4.  請求項2又は3において、
     上記基準質量流量M [kg/h] は、上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)へ流入する冷媒の質量流量の変動範囲の最大値である
    ことを特徴とする熱交換器。
  5.  請求項1乃至4のいずれか一つにおいて、
     上記第1ヘッダ集合管(60)及び上記第2ヘッダ集合管(70)は、起立した状態で設置され、
     上記熱交換器が蒸発器として機能する場合に上記流通空間(71a~71c)の下端部へ冷媒が流入するように構成されている
    ことを特徴とする熱交換器。
PCT/JP2013/002327 2012-04-05 2013-04-03 熱交換器 WO2013150795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES13772745T ES2708210T3 (es) 2012-04-05 2013-04-03 Intercambiador de calor
CN201380018414.0A CN104246414B (zh) 2012-04-05 2013-04-03 热交换器
US14/385,432 US20150027672A1 (en) 2012-04-05 2013-04-03 Heat exchanger
EP13772745.9A EP2857788B1 (en) 2012-04-05 2013-04-03 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-086622 2012-04-05
JP2012086622A JP5626254B2 (ja) 2012-04-05 2012-04-05 熱交換器

Publications (1)

Publication Number Publication Date
WO2013150795A1 true WO2013150795A1 (ja) 2013-10-10

Family

ID=49300297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002327 WO2013150795A1 (ja) 2012-04-05 2013-04-03 熱交換器

Country Status (6)

Country Link
US (1) US20150027672A1 (ja)
EP (1) EP2857788B1 (ja)
JP (1) JP5626254B2 (ja)
CN (1) CN104246414B (ja)
ES (1) ES2708210T3 (ja)
WO (1) WO2013150795A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175346A1 (ja) * 2016-04-07 2017-10-12 三菱電機株式会社 分配器、熱交換器、空気調和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520353B2 (ja) * 2015-04-27 2019-05-29 ダイキン工業株式会社 熱交換器及び空気調和機
KR20170087807A (ko) * 2016-01-21 2017-07-31 삼성전자주식회사 공기조화기
US10907903B2 (en) 2016-01-21 2021-02-02 Samsung Electronics Co., Ltd. Air conditioner with flow direction changing mechanism
US20190234626A1 (en) 2016-09-12 2019-08-01 Mitsubishi Electric Corporation Header, heat exchanger, and air-conditioning apparatus
EP3511655B1 (en) 2016-09-12 2022-04-27 Mitsubishi Electric Corporation Heat exchanger and air-conditioner
EP3605000B1 (en) 2017-03-24 2023-01-11 Mitsubishi Electric Corporation Air conditioning device
JP2019011941A (ja) * 2017-07-03 2019-01-24 ダイキン工業株式会社 熱交換器
EP3859263B1 (en) * 2018-09-30 2022-04-20 Zhejiang Sanhua Intelligent Controls Co., Ltd. Heat exchanger
JP7255215B2 (ja) * 2019-02-06 2023-04-11 株式会社デンソー 熱交換器
TWI718485B (zh) * 2019-02-27 2021-02-11 雙鴻科技股份有限公司 熱交換裝置
JP7383935B2 (ja) * 2019-08-29 2023-11-21 株式会社デンソー 熱交換器
WO2022215165A1 (ja) * 2021-04-06 2022-10-13 三菱電機株式会社 熱交換器及び空気調和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181047U (ja) * 1978-06-13 1979-12-21
JPH03177759A (ja) * 1989-12-05 1991-08-01 Matsushita Refrig Co Ltd 熱交換器
JPH08121987A (ja) * 1994-10-27 1996-05-17 Aisin Seiki Co Ltd 熱交換器
JP2001116396A (ja) * 1999-10-15 2001-04-27 Mitsubishi Electric Corp 冷媒分配器、それを用いた冷凍サイクル装置および空調装置
JP2004177041A (ja) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd 熱交換器
JP2005003223A (ja) 2003-06-09 2005-01-06 Denso Corp 熱交換器
JP2006105545A (ja) 2004-10-08 2006-04-20 Nikkei Nekko Kk 熱交換器及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069277A (en) * 1990-03-13 1991-12-03 Diesel Kiki Co., Ltd. Vehicle-loaded heat exchanger of parallel flow type
JP3298432B2 (ja) * 1996-10-30 2002-07-02 ダイキン工業株式会社 熱交換器
KR20050044325A (ko) * 2001-11-15 2005-05-12 쇼와 덴코 가부시키가이샤 열 교환기, 열 교환기 헤더 탱크 및 그 제조 방법
JP4055449B2 (ja) * 2002-03-27 2008-03-05 三菱電機株式会社 熱交換器およびこれを用いた空気調和機
CN1914465A (zh) * 2004-01-27 2007-02-14 昭和电工株式会社 冷凝器
JP2006084047A (ja) * 2004-09-14 2006-03-30 Kansai Electric Power Co Inc:The 熱交換器
JP2006183962A (ja) * 2004-12-28 2006-07-13 Denso Corp 蒸発器
JP4784418B2 (ja) * 2006-07-18 2011-10-05 株式会社デンソー エジェクタ式冷凍サイクルおよび蒸発器ユニット
US20100011803A1 (en) * 2008-07-15 2010-01-21 Johnson Controls Technology Company Horizontal discharge air conditioning unit
JP5486782B2 (ja) * 2008-08-05 2014-05-07 株式会社ケーヒン・サーマル・テクノロジー エバポレータ
JP2010243076A (ja) * 2009-04-07 2010-10-28 Daikin Ind Ltd 冷媒熱交換器
JP2012021679A (ja) * 2010-07-13 2012-02-02 Mitsubishi Electric Corp 冷媒分配器、それを備えた熱交換器、及び、その熱交換器を搭載した空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54181047U (ja) * 1978-06-13 1979-12-21
JPH03177759A (ja) * 1989-12-05 1991-08-01 Matsushita Refrig Co Ltd 熱交換器
JPH08121987A (ja) * 1994-10-27 1996-05-17 Aisin Seiki Co Ltd 熱交換器
JP2001116396A (ja) * 1999-10-15 2001-04-27 Mitsubishi Electric Corp 冷媒分配器、それを用いた冷凍サイクル装置および空調装置
JP2004177041A (ja) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd 熱交換器
JP2005003223A (ja) 2003-06-09 2005-01-06 Denso Corp 熱交換器
JP2006105545A (ja) 2004-10-08 2006-04-20 Nikkei Nekko Kk 熱交換器及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175346A1 (ja) * 2016-04-07 2017-10-12 三菱電機株式会社 分配器、熱交換器、空気調和装置
JPWO2017175346A1 (ja) * 2016-04-07 2018-11-01 三菱電機株式会社 分配器、熱交換器、空気調和装置
GB2562935A (en) * 2016-04-07 2018-11-28 Mitsubishi Electric Corp Distributor, heat exchanger, and air conditioning device
US10753688B2 (en) 2016-04-07 2020-08-25 Mitsubishi Electric Corporation Distributer, heat exchanger, and air-conditioning apparatus
GB2562935B (en) * 2016-04-07 2021-02-17 Mitsubishi Electric Corp Distributer, heat exchanger, and air-conditioning apparatus

Also Published As

Publication number Publication date
JP5626254B2 (ja) 2014-11-19
CN104246414A (zh) 2014-12-24
CN104246414B (zh) 2016-08-17
EP2857788A1 (en) 2015-04-08
EP2857788B1 (en) 2018-10-31
EP2857788A4 (en) 2016-03-23
ES2708210T3 (es) 2019-04-09
US20150027672A1 (en) 2015-01-29
JP2013217528A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5626254B2 (ja) 熱交換器
US9651317B2 (en) Heat exchanger and air conditioner
US10309701B2 (en) Heat exchanger and air conditioner
US9494368B2 (en) Heat exchanger and air conditioner
WO2016174830A1 (ja) 熱交換器および空気調和機
JP7026830B2 (ja) アルミニウム製押出扁平多穴管及び熱交換器
JP2013083419A (ja) 熱交換器および空気調和機
JP2012163328A5 (ja)
US9518788B2 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP6098451B2 (ja) 熱交換器および空気調和機
JP6115111B2 (ja) 熱交換器
JP2012163313A (ja) 熱交換器および空気調和機
US10544969B2 (en) Heat exchanger and air conditioner
JP5716496B2 (ja) 熱交換器および空気調和機
JP2014137177A (ja) 熱交換器および冷凍装置
WO2013046729A1 (ja) 熱交換器および空気調和機
JP2013083420A (ja) 熱交換器および空気調和機
JP2014137172A (ja) 熱交換器及び冷凍装置
JP7386613B2 (ja) 熱交換器およびそれを備えた空気調和機
CN218065155U (zh) 换热器和换热***
JP2014137173A (ja) 熱交換器及び冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14385432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE