WO2013147436A1 - Electrolyte for lithium secondary battery and lithium secondary battery using same - Google Patents

Electrolyte for lithium secondary battery and lithium secondary battery using same Download PDF

Info

Publication number
WO2013147436A1
WO2013147436A1 PCT/KR2013/001920 KR2013001920W WO2013147436A1 WO 2013147436 A1 WO2013147436 A1 WO 2013147436A1 KR 2013001920 W KR2013001920 W KR 2013001920W WO 2013147436 A1 WO2013147436 A1 WO 2013147436A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
lithium secondary
secondary battery
acrylate compound
linear
Prior art date
Application number
PCT/KR2013/001920
Other languages
French (fr)
Korean (ko)
Inventor
정철수
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2013147436A1 publication Critical patent/WO2013147436A1/en
Priority to US14/501,927 priority Critical patent/US20150024267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery using the same, and more particularly, to a lithium secondary battery using the same, in which a moving electrolyte desorbs an active material from a current collector during charging and discharging in a secondary battery. will be.
  • the battery can be broadly separated into a positive electrode, a negative electrode and an electrolyte, and also includes components such as a separator and a packaging material.
  • a typical lithium ion battery is assembled by alternately stacking a positive electrode, a negative electrode and a separator, inserting a can or pouch of a predetermined size and shape, and finally injecting an electrolyte. At this time, the electrolyte injected later is permeated between the positive electrode, the negative electrode and the separator by a capillary force.
  • a lithium secondary battery using a non-aqueous electrolyte in particular, is used in which a cathode is coated with a lithium metal mixed oxide as a cathode active material on a metal, and a cathode is coated with carbon material or metal lithium as a cathode active material on a metal.
  • an electrolyte in which lithium salt is dissolved in an organic solvent is used with these positive and negative electrodes interposed therebetween.
  • the lithium ion existing in the ionic state in the electrolyte to generate electricity while moving from the positive electrode to the negative electrode during charging, from the negative electrode to the positive electrode during discharge.
  • lithium secondary batteries are used in various fields. Recently, lithium secondary batteries, which have been developed for electric vehicles, require much higher rate characteristics than lithium secondary batteries mounted in mobile phones and laptop computers. As electrolytes suitable for lithium secondary batteries having such high rate characteristics, liquid electrolytes or gel polymers having high ionic conductivity have been developed.
  • An object of the present invention to solve the above problems is to provide a technology that can suppress the phenomenon that the active material is detached from the electrode plate.
  • an object of the present invention is to provide a lithium secondary battery that can extend the life of the battery by inhibiting the detachment of the active material.
  • the present invention provides a linear acrylate compound in the electrolyte for a lithium secondary battery electrolyte, wherein the linear acrylate compound is a linear acrylic made of any one linear structure among ether, ketone, ester and amide.
  • the electrolyte for a lithium secondary battery which is rate.
  • the present invention provides a lithium secondary battery electrolyte, characterized in that the linear acrylate compound is a linear acrylate consisting of any one of a linear structure of ether, ketone, ester and amide.
  • the present invention provides a lithium secondary battery electrolyte, characterized in that the molecular weight (Mn) of the linear acrylate compound is 1,000 to 5,000.
  • the present invention also includes a non-aqueous organic solvent, a lithium salt and the linear acrylate compound, wherein the linear acrylate compound comprises 0.1 to 20% by weight of the total electrolyte electrolyte lithium secondary battery electrolyte to provide.
  • the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2 -Dimethoxyethene (DME), ⁇ -butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF)
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC 1,2 -Dimethoxyethene
  • DME 1,3-dioxolane
  • DEE diethylether
  • MF methyl formate
  • the lithium salt is LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), one or one selected from the group consisting of LiCl and LiI It provides a lithium secondary battery electrolyte characterized by the above mixture.
  • the present invention provides a lithium secondary battery composed of the electrolyte, the negative electrode, the positive electrode and the separator.
  • the electrolyte for a lithium secondary battery and the lithium secondary battery using the same according to the present invention have an effect of suppressing the rapid micro-falling phenomenon of the electrolyte in the vicinity of the current collector even under severe charging and discharging conditions.
  • the lithium secondary battery electrolyte and the lithium secondary battery using the same according to the present invention has the effect of suppressing the phenomenon that the active material is detached from the electrode plate.
  • the lithium secondary battery electrolyte and the lithium secondary battery using the same according to the present invention has the effect of extending the life of the battery by suppressing the detachment of the active material from the electrode plate.
  • Example 1 is a photograph showing the state of the positive electrode and the separator of Example 1 to Example 8 and Comparative Example 1.
  • the present invention relates to an electrolyte capable of suppressing detachment of active material from a current collector, wherein the electrolyte includes a linear acrylate compound.
  • the linear acrylate compound is preferably mono acrylate or diacrylate in which ether, ketone, ester and amide are formed in a linear structure.
  • Structural formula of such a linear acrylate is as follows.
  • the molecular size of the linear acrylate contained in the electrolyte according to the present invention should be smaller than the size of the microgap between the active material coated on the electrode plate.
  • the size of these micro cracks is also highly related to the average particle diameter of the active material constituting the electrode plate and the mixture density of the electrode plate.
  • the compound formed of the linear acrylate structure is excellent in affinity with the positive electrode active material, and formed into a molecular structure of an appropriate size to enter the micro-gap between the active material to suppress the rapid micro-falling phenomenon of the electrolyte near the current collector Can be. As a result, the phenomenon in which the active material is detached from the electrode plate can be suppressed.
  • Mn molecular weight
  • the polymer when the molecular weight (Mn) is 5,000 or less, the polymer may be formed in a gel form by entering microgaps between the active materials.
  • the molecular weight (Mn) is preferably 5,000 or less, and more preferably 1,000 to 5,000.
  • cathode active material may be any carbon material having a double layer capacity, and may be used in the group consisting of activated carbon, natural fibers, amorphous carbon, fullerene, nanotubes, and graphene.
  • the acrylate which has excellent affinity with the positive electrode active material and has an appropriate size molecular structure, may be well impregnated to the current collector layer inside the electrode plate by using a gap between the active materials coated on the electrode plate to form a gel.
  • the electrolyte is trapped inside the gel-like electrode plate, it is possible to suppress the rapid micro-falling phenomenon of the electrolyte in the vicinity of the current collector even under severe charging and discharging conditions. As a result, the phenomenon in which the active material is detached from the electrode plate can be suppressed.
  • the lithium secondary battery electrolyte according to the present invention includes a linear acrylate compound, a non-aqueous organic solvent and a lithium salt.
  • the linear acrylate compound preferably contains 0.1 to 20% by weight of the total electrolyte.
  • the current collector layer inside the electrode plate may be well impregnated to form a gel, thereby suppressing the phenomenon in which the active material is detached from the electrode plate.
  • the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2-dimethoxy Ten (DME), ⁇ -butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF), methylpropio It may consist of one or more mixtures selected from the group consisting of nates (MP), sulfolane (S), dimethyl sulfoxide (DMSO) and acetonitrile (AN).
  • nates MP
  • S sulfolane
  • DMSO dimethyl sulfoxide
  • AN acetonitrile
  • the lithium salt is LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural water), LiCl and LiI, or one or more mixtures selected from the group consisting of It may be made of.
  • the electrolyte for a lithium secondary battery and the lithium secondary battery using the same according to the present invention have an effect of suppressing the phenomenon of rapid micro-falling of the electrolyte in the vicinity of the current collector even under severe charging and discharging conditions, thereby preventing the active material from being detached from the electrode plate.
  • the electrolyte was prepared by mixing an organic solvent in which ethylene carbonate (EC): diethyl carbonate (DEC) was mixed in a volume ratio of 30:70 and 1 M of LiPF 6 , and ether monoacrylate (Mn 1100) 4 weight of the total electrolyte. % was added.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Mn 1100 ether monoacrylate
  • a negative electrode, a positive electrode, and a separate composition constituted a lithium secondary battery.
  • Ether monoacrylate (Mn 1100) was added at 10% by weight relative to the total electrolyte.
  • Ether monoacrylate (Mn 1100) was added at 20% by weight relative to the total electrolyte.
  • Ester monoacrylate (Mn 1400) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
  • Ketone monoacrylate (Mn 1600) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
  • Amide monoacrylate (Mn 1300) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
  • the molecular weight (Mn) of the ether monoacrylate was 4200 and added at 4% by weight based on the total electrolyte.
  • Ester diacrylate (Mn 2300) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
  • the electrolyte was prepared by mixing only 1M LiPF 6 and an organic solvent in which ethylene carbonate (EC): diethyl carbonate (DEC) was mixed in a volume ratio of 30:70.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • -"5C life" in Table 1 is a value showing the remaining capacity after 50 runs at 60 °C. That is, after charging and discharging 50 times at 60 ° C., it shows the percentage of the maximum charging capacity. For example, in the case of Example 1, it means that only 50% of the charge is performed after 50 charge and discharge processes.

Abstract

The present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery using same, and more specifically, provides an electrolyte for a lithium secondary battery and a lithium secondary battery using same, the electrolyte comprising a linear acrylate compound, wherein the linear acrylate compound comprises one linear structure from among an ether, a ketone, an ester, and an amide.

Description

리튬이차전지용 전해질 및 이를 이용한 리튬이차전지Electrolyte for lithium secondary battery and lithium secondary battery using same
본 발명은 리튬이차전지용 전해질 및 이를 이용한 리튬이차전지에 관한 것으로 보다 상세하게는 이차전지에서 충전 및 방전이 진행되는 동안 이동하는 전해질 이 집전체로부터 활물질을 탈리시키는 것을 및 이를 이용한 리튬이차전지에 관한 것이다.The present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery using the same, and more particularly, to a lithium secondary battery using the same, in which a moving electrolyte desorbs an active material from a current collector during charging and discharging in a secondary battery. will be.
휴대폰, 노트북 컴퓨터, 휴대용 게임기와 같은 휴대용 전자기기의 급속한 확산과 수요 덕분에 이들의 공급 장치로 사용되는 리튬 이온 이차전지에 대한 수요 또한 증가하고 있고 고성능 및 대용량의 리튬 이차전지에 대한 필요성 또한 대두하고 있다. 이러한 요구에 발맞춰 높은 방전 전압과 높은 에너지 밀도를 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.The rapid proliferation and demand of portable electronic devices such as mobile phones, notebook computers, and portable game consoles are increasing the demand for lithium ion secondary batteries used as their supply devices, and the need for high performance and high capacity lithium secondary batteries is also emerging. have. In response to this demand, researches on lithium secondary batteries having high discharge voltage and high energy density have been actively conducted.
전지는 광의적으로 양극과 음극, 전해질로 분리될 수 있으며 협의적으로 분리막, 외장재 등의 구성 요소도 포함된다. 일반적인 리튬 이온 전지의 조립은 양극, 음극 및 분리막을 서로 번갈아가며 겹친 후, 일정 크기 및 모양의 캔(can) 혹은 파우치(pouch) 등에 삽입한 후, 최종적으로 전해질을 주입함으로써 이루어진다. 이때, 나중에 주입된 전해질은 모세관 힘(capillary force)에 의해 양극, 음극 및 분리막 사이로 스며들게 된다.The battery can be broadly separated into a positive electrode, a negative electrode and an electrolyte, and also includes components such as a separator and a packaging material. A typical lithium ion battery is assembled by alternately stacking a positive electrode, a negative electrode and a separator, inserting a can or pouch of a predetermined size and shape, and finally injecting an electrolyte. At this time, the electrolyte injected later is permeated between the positive electrode, the negative electrode and the separator by a capillary force.
리튬이차전지 중에서 특히 비수계 전해질을 이용한 리튬이차전지는 양극은 금속에 양극 활물지로서 리튬금속 혼합산화물이 코팅된 것이 사용되며, 음극은 금속에 음극 활물질로서 탄소재료 또는 금속리튬 등을 코팅하여 사용하며 이들 양극과 음극을 사이에 두고 유기 용매에 리튬염을 용해시킨 전해질을 사용하게 된다.Among the lithium secondary batteries, a lithium secondary battery using a non-aqueous electrolyte, in particular, is used in which a cathode is coated with a lithium metal mixed oxide as a cathode active material on a metal, and a cathode is coated with carbon material or metal lithium as a cathode active material on a metal. In addition, an electrolyte in which lithium salt is dissolved in an organic solvent is used with these positive and negative electrodes interposed therebetween.
리튬이차전지의 작동원리를 간단히 살펴보면, 전해질 내에서 이온상태로 존재하는 리튬이온이 충전시에는 양극에서 음극으로, 방전시에는 음극에서 양극으로 이동하면서 전기를 생성하게 되는 것이다.Briefly looking at the operation principle of the lithium secondary battery, the lithium ion existing in the ionic state in the electrolyte to generate electricity while moving from the positive electrode to the negative electrode during charging, from the negative electrode to the positive electrode during discharge.
이러한 리튬이차전지는 다양한 분야에서 사용되는 데, 최근 전기자동차용으로 개발되고 있는 리튬이차전지는, 휴대폰이나 노트북 등에 탑재되는 리튬이차전지에 비해 훨씬 높은 고율특성이 요구된다. 이러한 고율특성을 갖는 리튬이차전지에 적합한 전해질로서 높은 이온전도도를 지닌 액체전해질 또는 젤폴리머 등이 개발되어 왔다.Such lithium secondary batteries are used in various fields. Recently, lithium secondary batteries, which have been developed for electric vehicles, require much higher rate characteristics than lithium secondary batteries mounted in mobile phones and laptop computers. As electrolytes suitable for lithium secondary batteries having such high rate characteristics, liquid electrolytes or gel polymers having high ionic conductivity have been developed.
그러나 단순히 이온전도도가 높은 전해질은 고온에서의 고율수명으로 충전 및 방전이 진행되는 경우 빠른 속도로 충방전이 진행되므로 그동안 전해질의 이동도 빨라지기 때문에, 빠른 전해질의 이동현상에 따른 활물질이 집전체로부터 탈리되는 현상이 발생되는 문제점이 발생한다.However, since the electrolyte having high ion conductivity simply charges and discharges at a high rate of life at high temperature and charges and discharges at a high rate, the electrolyte moves faster. There is a problem in that the detachment phenomenon occurs.
따라서, 충방전이 빠르게 진행되는 리튬이차전지의 경우에 전해질의 이동에 따라 활물질이 집전체로부터 탈리되지 않도록 하는 기술의 개발이 요구되었다.Therefore, in the case of a lithium secondary battery in which charging and discharging proceeds rapidly, it has been required to develop a technology for preventing the active material from being detached from the current collector as the electrolyte moves.
상기 문제점을 해결하기 위해 본 발명의 목적은 활물질이 극판으로부터 탈리되는 현상을 억제시킬 수 있는 기술을 제공하는 데 있다.An object of the present invention to solve the above problems is to provide a technology that can suppress the phenomenon that the active material is detached from the electrode plate.
또한 본 발명의 목적은 활물질의 탈리를 억제하게 됨으로써 전지의 수명이 연장될 수 있는 리튬이차전지를 제공하는 데 있다.In addition, an object of the present invention is to provide a lithium secondary battery that can extend the life of the battery by inhibiting the detachment of the active material.
상기 목적을 달성하기 위해 본 발명은 리튬이차전지용 전해질에 있어서, 상기 전해질에 선형 아크릴레이트 화합물이 포함되되, 상기 선형 아크릴레이트 화합물은 에테르, 케톤, 에스테르 및 아미드 중에서 어느 하나의 선형구조로 이루어진 선형 아크릴레이트 인 것을 특징으로 하는 리튬이차전지용 전해질을 제공한다.In order to achieve the above object, the present invention provides a linear acrylate compound in the electrolyte for a lithium secondary battery electrolyte, wherein the linear acrylate compound is a linear acrylic made of any one linear structure among ether, ketone, ester and amide. Provided is an electrolyte for a lithium secondary battery, which is rate.
또한 본 발명은 상기 선형 아크릴레이트 화합물이 에테르, 케톤, 에스테르 및 아미드 중에서 어느 하나의 선형구조로 이루어진 선형 아크릴레이트 인 것을 특징으로 하는 리튬이차전지용 전해질을 제공한다.In another aspect, the present invention provides a lithium secondary battery electrolyte, characterized in that the linear acrylate compound is a linear acrylate consisting of any one of a linear structure of ether, ketone, ester and amide.
또한 본 발명은 상기 선형 아크릴레이트 화합물의 분자량(Mn)이 1,000 내지 5,000인 것을 특징으로 하는 리튬이차전지용 전해질을 제공한다.In another aspect, the present invention provides a lithium secondary battery electrolyte, characterized in that the molecular weight (Mn) of the linear acrylate compound is 1,000 to 5,000.
또한 본 발명은 상기 전해질이 비수계 유기용매, 리튬염 및 상기 선형 아크릴레이트 화합물을 포함하되, 상기 선형 아크릴레이트 화합물은 전체 전해질 중 0.1 내지 20 중량%를 포함하는 것을 특징으로 하는 리튬이차전지용 전해질을 제공한다.The present invention also includes a non-aqueous organic solvent, a lithium salt and the linear acrylate compound, wherein the linear acrylate compound comprises 0.1 to 20% by weight of the total electrolyte electrolyte lithium secondary battery electrolyte to provide.
또한 본 발명은 상기 비수계 유기용매가 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 테트라하이드로퓨란(THF), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN)로 이루어진 군으로부터 선택된 1종 또는 1종 이상의 혼합물인 것을 특징으로 하는 리튬이차전지용 전해질을 제공한다.In the present invention, the non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2 -Dimethoxyethene (DME), γ-butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF) To provide a lithium secondary battery electrolyte, characterized in that one or more mixtures selected from the group consisting of methyl propionate (MP), sulfolane (S), dimethyl sulfoxide (DMSO) and acetonitrile (AN). do.
또한 본 발명은 상기 리튬염이 LiPF6, LiBF4, LiTFSI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl 및 LiI로 이루어진 군으로부터 선택된 1종 또는 1종 이상의 혼합물인 것을 특징으로 하는 리튬이차전지용 전해질을 제공한다.In the present invention, the lithium salt is LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), one or one selected from the group consisting of LiCl and LiI It provides a lithium secondary battery electrolyte characterized by the above mixture.
또한 본 발명은 상기 전해질, 음극, 양극 및 세퍼레이트로 구성된 리튬이차전지를 제공한다.In another aspect, the present invention provides a lithium secondary battery composed of the electrolyte, the negative electrode, the positive electrode and the separator.
본 발명에 따른 리튬이차전지용 전해질 및 이를 이용한 리튬이차전지는 가혹한 충방전 조건에서도 집전체 부근에서 전해질의 급격한 미세쏠림현상을 억제시켜주는 효과가 있다.The electrolyte for a lithium secondary battery and the lithium secondary battery using the same according to the present invention have an effect of suppressing the rapid micro-falling phenomenon of the electrolyte in the vicinity of the current collector even under severe charging and discharging conditions.
또한 본 발명에 따른 리튬이차전지용 전해질 및 이를 이용한 리튬이차전지는 활물질이 극판으로부터 탈리되는 현상을 억제시키는 효과가 있다. In addition, the lithium secondary battery electrolyte and the lithium secondary battery using the same according to the present invention has the effect of suppressing the phenomenon that the active material is detached from the electrode plate.
또한 본 발명에 따른 리튬이차전지용 전해질 및 이를 이용한 리튬이차전지는 극판으로부터 활물질의 탈리를 억제하게 됨으로써 전지의 수명이 연장되는 효과가 있다.In addition, the lithium secondary battery electrolyte and the lithium secondary battery using the same according to the present invention has the effect of extending the life of the battery by suppressing the detachment of the active material from the electrode plate.
도 1은 실시예 1~ 실시예 8 및 비교예 1의 양극 및 세퍼레이트의 상태를 나타낸 사진이다.1 is a photograph showing the state of the positive electrode and the separator of Example 1 to Example 8 and Comparative Example 1.
이하 본 발명에 첨부된 도면을 참조하여 발명의 실시를 위한 구체적인 내용에서는 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본 발명은 집전체로부터 활물질 탈리를 억제시킬 수 있는 전해질에 관한 것으로 상기 전해질에는 선형 아크릴레이트 화합물이 포함되어 있는 것이 특징이다.The present invention relates to an electrolyte capable of suppressing detachment of active material from a current collector, wherein the electrolyte includes a linear acrylate compound.
다관능성 아크릴레이트 화합물의 경우에는 분자 골격상 활물질의 미세구멍 속으로 함침되기 어렵기 때문에 본 발명에서 실현하고자 하는 목적을 달성하기 어렵다.In the case of the polyfunctional acrylate compound, since it is difficult to be impregnated into the micropores of the molecular skeleton active material, it is difficult to achieve the object to be realized in the present invention.
상기 선형 아크릴레이트 화합물은 에테르, 케톤, 에스테르 및 아미드가 선형구조로 형성된 모노 아크릴레이트 또는 디아크릴레이트인 것이 바람직하다.The linear acrylate compound is preferably mono acrylate or diacrylate in which ether, ketone, ester and amide are formed in a linear structure.
이러한 선형 아크릴레이트의 구조식은 아래와 같다.Structural formula of such a linear acrylate is as follows.
Figure PCTKR2013001920-appb-I000001
Figure PCTKR2013001920-appb-I000001
Figure PCTKR2013001920-appb-I000002
Figure PCTKR2013001920-appb-I000002
Figure PCTKR2013001920-appb-I000003
Figure PCTKR2013001920-appb-I000003
Figure PCTKR2013001920-appb-I000004
Figure PCTKR2013001920-appb-I000004
Figure PCTKR2013001920-appb-I000005
Figure PCTKR2013001920-appb-I000005
Figure PCTKR2013001920-appb-I000006
Figure PCTKR2013001920-appb-I000006
Figure PCTKR2013001920-appb-I000007
Figure PCTKR2013001920-appb-I000007
Figure PCTKR2013001920-appb-I000008
Figure PCTKR2013001920-appb-I000008
본 발명에 따른 전해질에 포함되는 선형 아크릴레이트의 분자크기는 극판에 코팅되어 있는 활물질 사이의 미세틈의 크기보다 작아야 한다. 이러한 미세틈의 크기는 극판을 구성하고 있는 활물질의 평균입경과 극판의 합제 밀도와도 관계가 매우 깊다.The molecular size of the linear acrylate contained in the electrolyte according to the present invention should be smaller than the size of the microgap between the active material coated on the electrode plate. The size of these micro cracks is also highly related to the average particle diameter of the active material constituting the electrode plate and the mixture density of the electrode plate.
상기 선형 아크릴레이트 구조로 형성되는 화합물은 양극 활물질과 친화성이 우수하며, 적절한 크기의 분자구조로 형성하여 활물질 사이의 미세틈에 들어갈 수 있도록 함으로써 집전체 부근에서 전해질의 급격한 미세쏠림현상을 억제시킬 수 있다. 이에 따라 활물질이 극판으로부터 탈리되는 현상을 억제시킬 수 있게 되는 것이다.The compound formed of the linear acrylate structure is excellent in affinity with the positive electrode active material, and formed into a molecular structure of an appropriate size to enter the micro-gap between the active material to suppress the rapid micro-falling phenomenon of the electrolyte near the current collector Can be. As a result, the phenomenon in which the active material is detached from the electrode plate can be suppressed.
보다 상세하게는 분자량(Mn)이 5,000이하의 경우에는 활물질 사이의 미세틈에 들어가 젤 형태의 폴리머를 형성한다.In more detail, when the molecular weight (Mn) is 5,000 or less, it enters the microgap between the active materials to form a gel polymer.
보다 상세하게는 분자량(Mn)이 5,000이하의 경우에는 활물질 사이의 미세틈에 들어가 젤 형태의 폴리머를 형성할 수 있다.In more detail, when the molecular weight (Mn) is 5,000 or less, the polymer may be formed in a gel form by entering microgaps between the active materials.
따라서, 분자량(Mn)은 5,000이하가 바람직하며, 1,000 내지 5,000 인 것이 더 바람직하다.Therefore, the molecular weight (Mn) is preferably 5,000 or less, and more preferably 1,000 to 5,000.
상기 양극 활물질의 예로는 이중층 용량을 가지는 모든 탄소 재료가 가능하고, 활성탄, 천연섬유, 비정질 카본, 플라렌(fullerene), 나노 튜브 및 그래핀 (graphene) 등으로 이루어진 군에서 1 이상 사용할 수 있다.Examples of the cathode active material may be any carbon material having a double layer capacity, and may be used in the group consisting of activated carbon, natural fibers, amorphous carbon, fullerene, nanotubes, and graphene.
양극 활물질과 친화성이 우수하고 적절한 크기의 분자구조로 이루어진 아크릴레이트는 극판에 코팅되어 있는 활물질 사이의 틈새를 이용하여 극판 내부인 집전체 층까지 잘 함침되어 젤을 형성할 수 있다.The acrylate, which has excellent affinity with the positive electrode active material and has an appropriate size molecular structure, may be well impregnated to the current collector layer inside the electrode plate by using a gap between the active materials coated on the electrode plate to form a gel.
따라서 젤형태의 극판 내부에 전해질이 갇혀있게 됨으로써, 가혹한 충방전 조건에서도 집전체 부근에서 전해질의 급격한 미세쏠림현상을 억제시킬 수 있다. 이에 따라 활물질이 극판으로부터 탈리되는 현상을 억제시킬 수 있게 되는 것이다.Therefore, since the electrolyte is trapped inside the gel-like electrode plate, it is possible to suppress the rapid micro-falling phenomenon of the electrolyte in the vicinity of the current collector even under severe charging and discharging conditions. As a result, the phenomenon in which the active material is detached from the electrode plate can be suppressed.
한편, 본 발명에 따른 리튬이차전지용 전해질은 선형 아크릴레이트 화합물, 비수계 유기용매 및 리튬염을 포함한다.On the other hand, the lithium secondary battery electrolyte according to the present invention includes a linear acrylate compound, a non-aqueous organic solvent and a lithium salt.
상기 선형 아크릴레이트 화합물은 전체 전해질 중 0.1 내지 20 중량%를 포함하는 것이 바람직하다. 상기 범위내에서 극판 내부의 집전체 층까지 잘 함침되어 젤을 형성하며 활물질이 극판으로부터 탈리되는 현상을 억제할 수 있다.The linear acrylate compound preferably contains 0.1 to 20% by weight of the total electrolyte. Within the above range, the current collector layer inside the electrode plate may be well impregnated to form a gel, thereby suppressing the phenomenon in which the active material is detached from the electrode plate.
상기 비수계 유기용매는 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 테트라하이드로퓨란(THF), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN)로 이루어진 군으로부터 선택된 1종 또는 1종 이상의 혼합물로 이루어질 수 있다.The non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2-dimethoxy Ten (DME), γ-butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF), methylpropio It may consist of one or more mixtures selected from the group consisting of nates (MP), sulfolane (S), dimethyl sulfoxide (DMSO) and acetonitrile (AN).
또한, 상기 리튬염은 LiPF6, LiBF4, LiTFSI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl 및 LiI로 이루어진 군으로부터 선택된 1종 또는 1종 이상의 혼합물로 이루어질 수 있다.In addition, the lithium salt is LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural water), LiCl and LiI, or one or more mixtures selected from the group consisting of It may be made of.
본 발명에 따른 리튬이차전지용 전해질 및 이를 이용한 리튬이차전지는 가혹한 충방전 조건에서도 집전체 부근에서 전해질의 급격한 미세쏠림현상을 억제시켜, 활물질이 극판으로부터 탈리되는 현상을 억제시키는 효과가 있다.The electrolyte for a lithium secondary battery and the lithium secondary battery using the same according to the present invention have an effect of suppressing the phenomenon of rapid micro-falling of the electrolyte in the vicinity of the current collector even under severe charging and discharging conditions, thereby preventing the active material from being detached from the electrode plate.
이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.
실시예 1Example 1
전해질의 제조는 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 1M의 LiPF6 을 혼합하였으며, 에테르 모노아크릴레이트(Mn 1100)를 전체 전해질 대비 4중량%로 첨가하였다. 그리고, 음극, 양극 및 세퍼레이트구성하여 리튬이차전지를 제조하였다.The electrolyte was prepared by mixing an organic solvent in which ethylene carbonate (EC): diethyl carbonate (DEC) was mixed in a volume ratio of 30:70 and 1 M of LiPF 6 , and ether monoacrylate (Mn 1100) 4 weight of the total electrolyte. % Was added. In addition, a negative electrode, a positive electrode, and a separate composition constituted a lithium secondary battery.
60℃에서 5C으로 충방전을 50회 실시한 후에 극판에서의 탈리현상을 관찰하였다.After 50 charge / discharge cycles were performed at 5 ° C. at 60 ° C., the desorption phenomenon was observed on the plate.
실시예 2Example 2
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트(Mn 1100)를 전체 전해질 대비 10중량%로 첨가하였다.Ether monoacrylate (Mn 1100) was added at 10% by weight relative to the total electrolyte.
실시예 3Example 3
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트(Mn 1100)를 전체 전해질 대비 20중량%로 첨가하였다.Ether monoacrylate (Mn 1100) was added at 20% by weight relative to the total electrolyte.
실시예 4Example 4
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트(Mn 1100) 대신 에스테르 모노아크릴레이트(Mn 1400)를 사용하였으며 전체 전해질 대비 4중량%로 첨가하였다.Ester monoacrylate (Mn 1400) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
실시예 5Example 5
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트(Mn 1100) 대신 케톤 모노아크릴레이트(Mn 1600)를 사용하였으며 전체 전해질 대비 4중량%로 첨가하였다.Ketone monoacrylate (Mn 1600) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
실시예 6Example 6
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트(Mn 1100) 대신 아미드 모노아크릴레이트(Mn 1300)를 사용하였으며 전체 전해질 대비 4중량%로 첨가하였다.Amide monoacrylate (Mn 1300) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
실시예 7Example 7
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트의 분자량(Mn)을 4200으로 하여 전체 전해질 대비 4중량%로 첨가하였다.The molecular weight (Mn) of the ether monoacrylate was 4200 and added at 4% by weight based on the total electrolyte.
실시예 8Example 8
실시예 1과 동일하게 실시하되,The same as in Example 1,
에테르 모노아크릴레이트(Mn 1100) 대신 에스테르 디아크릴레이트(Mn 2300)를 사용하였으며 전체 전해질 대비 4중량%로 첨가하였다.Ester diacrylate (Mn 2300) was used instead of ether monoacrylate (Mn 1100) and added at 4% by weight relative to the total electrolyte.
비교예 1Comparative Example 1
실시예 1과 동일하게 실시하되,The same as in Example 1,
전해질은 에틸렌 카보네이트(EC):디에틸 카보네이트(DEC)를 30 : 70의 부피비로 혼합한 유기용매 및 1M의 LiPF6 만을 혼합하여 제조하였다.The electrolyte was prepared by mixing only 1M LiPF 6 and an organic solvent in which ethylene carbonate (EC): diethyl carbonate (DEC) was mixed in a volume ratio of 30:70.
표 1
구분 선형아크릴레이트 분자량(Mn) 선형아크릴레이트 함량 극판 상태 5C 수명
실시예 1 에테르 모노아크릴레이트 1100 4중량% 비탈리 85%
실시예 2 에테르 모노아크릴레이트 1100 10중량% 비탈리 65%
실시예 3 에테르 모노아크릴레이트 1100 20중량% 비탈리 55%
실시예 4 에스테르 모노아크릴레이트 1400 4중량% 비탈리 79%
실시예 5 케톤 모노아크릴레이트 1600 4중량% 비탈리 82%
실시예 6 아미드 모노아크릴레이트 1300 4중량% 비탈리 75%
실시예 7 에테르 모노아크릴레이트 4200 4중량% 비탈리 63%
실시예 8 에스테르 디아크릴레이트 2300 4중량% 비탈리 55%
비교예 1 - - - 탈리 50%
Table 1
division Linear acrylate Molecular Weight (Mn) Linear acrylate content Plate state 5C lifespan
Example 1 Ether monoacrylate 1100 4 wt% Vitali 85%
Example 2 Ether monoacrylate 1100 10 wt% Vitali 65%
Example 3 Ether monoacrylate 1100 20 wt% Vitali 55%
Example 4 Ester monoacrylate 1400 4 wt% Vitali 79%
Example 5 Ketone monoacrylate 1600 4 wt% Vitali 82%
Example 6 Amide monoacrylate 1300 4 wt% Vitali 75%
Example 7 Ether monoacrylate 4200 4 wt% Vitali 63%
Example 8 Ester diacrylate 2300 4 wt% Vitali 55%
Comparative Example 1 - - - Tally 50%
- 상기 표 1에서 “5C 수명”은 60℃에서 50회 진행 후의 잔존용량을 나타낸 값이다. 즉, 충방전을 60℃에서 50회 진행한 후에 최대 충전용량 대비 퍼센트를 나타낸 것이다. 예로서 실시예 1의 경우 50회 충방전 진행 후에 85%까지만 충전되는 것을 의미한다.-"5C life" in Table 1 is a value showing the remaining capacity after 50 runs at 60 ℃. That is, after charging and discharging 50 times at 60 ° C., it shows the percentage of the maximum charging capacity. For example, in the case of Example 1, it means that only 50% of the charge is performed after 50 charge and discharge processes.
도 1은 실시예 1 ∼ 실시예 8 및 비교예 1의 양극 및 세퍼레이트의 상태를 나타낸 사진이다.1 is a photograph showing the state of the positive electrode and the separator of Examples 1 to 8 and Comparative Example 1.
표 1 및 도 1의 사진을 참조하면, 본 발명에 따른 선형 아크릴레이트가 가혹한 충방전상태에서도 극판에서 활물질은 탈리되지 않으며, 수명도 비교예 1에 비하여 늘어나는 것을 확인할 수 있다.Referring to Table 1 and the photograph of FIG. 1, it can be seen that the active material is not detached from the electrode plate even when the linear acrylate according to the present invention is severely charged and discharged, and the lifespan is also increased as compared with Comparative Example 1.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (6)

  1. 리튬이차전지용 전해질에 있어서,In the electrolyte for lithium secondary batteries,
    상기 전해질에 선형 아크릴레이트 화합물이 포함되되,Wherein the electrolyte includes a linear acrylate compound,
    상기 선형 아크릴레이트 화합물은 에테르, 케톤, 에스테르 및 아미드 중에서 어느 하나의 선형구조로 이루어진 선형 아크릴레이트 인 것을 특징으로 하는 리튬이차전지용 전해질.The linear acrylate compound is a lithium secondary battery electrolyte, characterized in that the linear acrylate consisting of any one of a linear structure of ether, ketone, ester and amide.
  2. 제1항에 있어서,The method of claim 1,
    상기 선형 아크릴레이트 화합물의 분자량(Mn)은 1,000 내지 5,000인 것을 특징으로 하는 리튬이차전지용 전해질.The molecular weight (Mn) of the linear acrylate compound is a lithium secondary battery electrolyte, characterized in that 1,000 to 5,000.
  3. 제1항에 있어서,The method of claim 1,
    상기 전해질은 비수계 유기용매, 리튬염 및 상기 선형 아크릴레이트 화합물을 포함하되,The electrolyte includes a non-aqueous organic solvent, a lithium salt and the linear acrylate compound,
    상기 선형 아크릴레이트 화합물은 전체 전해질 중 0.1 내지 20 중량%를 포함하는 것을 특징으로 하는 리튬이차전지용 전해질.The linear acrylate compound is a lithium secondary battery electrolyte, characterized in that it comprises 0.1 to 20% by weight of the total electrolyte.
  4. 제3항에 있어서,The method of claim 3,
    상기 비수계 유기용매는 에틸렌 카본네이트(EC), 프로필렌 카본네이트(PC), 디메틸 카본네이트(DMC), 디에틸 카본네이트(DEC), 에틸메틸 카본 네이트(EMC), 1,2-디메톡시에텐(DME), γ-부티로락톤(BL), 테트라하이드로퓨란(THF), 1,3-디옥솔레인(DOL), 디에틸이써(DEE), 메틸 포르메이트(MF), 메틸프로피오네이트(MP), 술폴레인(S), 디메틸설폭사이드(DMSO) 및 아세토니트릴(AN)로 이루어진 군으로부터 선택된 1종 또는 1종 이상의 혼합물인 것을 특징으로 하는 리튬이차전지용 전해질.The non-aqueous organic solvent is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), 1,2-dimethoxy Ten (DME), γ-butyrolactone (BL), tetrahydrofuran (THF), 1,3-dioxolane (DOL), diethylether (DEE), methyl formate (MF), methylpropio Electrode for lithium secondary battery, characterized in that one or more mixtures selected from the group consisting of Nate (MP), sulfolane (S), dimethyl sulfoxide (DMSO) and acetonitrile (AN).
  5. 제3항에 있어서,The method of claim 3,
    상기 리튬염은 LiPF6, LiBF4, LiTFSI, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl 및 LiI로 이루어진 군으로부터 선택된 1종 또는 1종 이상의 혼합물인 것을 특징으로 하는 리튬이차전지용 전해질.The lithium salt is LiPF 6 , LiBF 4 , LiTFSI, LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (wherein x and y are natural numbers), one or more mixtures selected from the group consisting of LiCl and LiI Lithium secondary battery electrolyte characterized in that.
  6. 제1항 내지 제5항 중 어느 한항에 따른 전해질, 음극, 양극 및 세퍼레이트로 구성된 리튬이차전지.A lithium secondary battery comprising an electrolyte, a negative electrode, a positive electrode and a separator according to any one of claims 1 to 5.
PCT/KR2013/001920 2012-03-30 2013-03-11 Electrolyte for lithium secondary battery and lithium secondary battery using same WO2013147436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/501,927 US20150024267A1 (en) 2012-03-30 2014-09-30 Electrolyte having improved high-rate charge and discharge property, and capacitor comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120032960A KR101420154B1 (en) 2012-03-30 2012-03-30 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery containing the same
KR10-2012-0032960 2012-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001919 Continuation-In-Part WO2013147435A1 (en) 2012-03-30 2013-03-11 Electrolyte having enhanced high-rate charge/discharge properties and capacitor comprising same

Publications (1)

Publication Number Publication Date
WO2013147436A1 true WO2013147436A1 (en) 2013-10-03

Family

ID=49260638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001920 WO2013147436A1 (en) 2012-03-30 2013-03-11 Electrolyte for lithium secondary battery and lithium secondary battery using same

Country Status (2)

Country Link
KR (1) KR101420154B1 (en)
WO (1) WO2013147436A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008581A (en) * 2000-07-24 2002-01-31 김순택 Polymer electrolyte compositions polymerized acrylate monomer and lithium secondary battery comprising the same
KR20080027728A (en) * 2006-09-25 2008-03-28 주식회사 엘지화학 Non-aqueous electrolyte and electrochemical device comprising the same
KR20080037525A (en) * 2006-10-25 2008-04-30 주식회사 엘지화학 Non-aqueous electrolyte and electrochemical device comprising the same
JP2010177020A (en) * 2009-01-29 2010-08-12 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium-ion secondary battery using the same
JP2010205474A (en) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium ion secondary battery including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709838B1 (en) * 2005-07-07 2007-04-23 삼성에스디아이 주식회사 Electrolyte for lithium rechargeable battery and a lithium rechargeable battery comprising it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008581A (en) * 2000-07-24 2002-01-31 김순택 Polymer electrolyte compositions polymerized acrylate monomer and lithium secondary battery comprising the same
KR20080027728A (en) * 2006-09-25 2008-03-28 주식회사 엘지화학 Non-aqueous electrolyte and electrochemical device comprising the same
KR20080037525A (en) * 2006-10-25 2008-04-30 주식회사 엘지화학 Non-aqueous electrolyte and electrochemical device comprising the same
JP2010177020A (en) * 2009-01-29 2010-08-12 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium-ion secondary battery using the same
JP2010205474A (en) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium ion secondary battery including the same

Also Published As

Publication number Publication date
KR101420154B1 (en) 2014-08-14
KR20130110753A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2013100651A1 (en) Cathode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including same
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
WO2015034257A1 (en) Cathode additive for high-capacity lithium secondary battery
WO2012015241A2 (en) Nonaqueous electrolyte solution for lithium secondary battery, and lithium secondary battery containing same
WO2013165077A1 (en) Electrolyte additive, lithium secondary battery and non-aqueous electrolyte comprising additive
CN105633467B (en) Electrolyte and lithium ion battery adopting same
WO2010117219A2 (en) Lithium-sulfur battery
WO2018159950A1 (en) Lithium secondary battery
WO2016048093A1 (en) Nonaqueous electrolyte solution and lithium secondary battery containing same
WO2016052850A1 (en) Negative electrode active material for lithium secondary battery, method for manufacturing same, negative electrode for lithium secondary battery comprising same, and lithium secondary battery
WO2014168327A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2016104894A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2015065093A1 (en) Electrolyte additive for lithium secondary battery, non-aqueous electrolyte comprising electrolyte additive, and lithium secondary battery
WO2016052910A1 (en) Anode active material for lithium secondary battery, manufacturing method therefor, anode for lithium secondary battery comprising same, and lithium secondary battery
WO2020105981A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2016104895A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery having same
WO2017061807A1 (en) Battery cell comprising gelled electrolyte component in air pore of separation film constituting electrode assembly
WO2014116084A1 (en) High-voltage lithium secondary battery
KR100736909B1 (en) Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte
WO2019221450A1 (en) Anode, and lithium secondary battery comprising anode
WO2015119486A1 (en) Electrochemical element
WO2015080357A1 (en) Lithium-sulfur battery including protective film for lithium-sulfur battery electrode and manufacturing method therefor
CN101841065A (en) Lithium-ion secondary battery and electrolyte thereof
WO2022149751A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2014046408A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768560

Country of ref document: EP

Kind code of ref document: A1