WO2013145941A1 - Method for producing multilayer optical recording medium - Google Patents

Method for producing multilayer optical recording medium Download PDF

Info

Publication number
WO2013145941A1
WO2013145941A1 PCT/JP2013/053968 JP2013053968W WO2013145941A1 WO 2013145941 A1 WO2013145941 A1 WO 2013145941A1 JP 2013053968 W JP2013053968 W JP 2013053968W WO 2013145941 A1 WO2013145941 A1 WO 2013145941A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered body
laminated
adherend
layer
attached
Prior art date
Application number
PCT/JP2013/053968
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 雅春
早坂 拓哉
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2013145941A1 publication Critical patent/WO2013145941A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B2007/00457Two photon recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B2007/25303Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes

Definitions

  • the present invention relates to a method for producing a multilayer optical recording medium.
  • multilayer optical recording method a method for recording data three-dimensionally (hereinafter, also referred to as “multilayer optical recording method”) has been proposed with the aim of further improving the recording density.
  • Y. Kawata et al. Have reported a technique for performing multilayer optical recording on a photopolymer material having a photoreactive component having photopolymerization reactivity (see, for example, Non-Patent Document 1).
  • the optical medium applied to the multilayer optical recording method is a multilayer optical recording medium as described in, for example, Patent Document 1, and the number of optical recording layers provided in the multilayer optical recording medium tends to increase year by year.
  • Patent Document 1 discloses a laminate having 20 optical recording layers in Examples.
  • a recording layer is not directly provided on the substrate, but a pressure-sensitive adhesive sheet in which an optical recording layer and a pressure-sensitive adhesive layer are laminated is applied to the substrate.
  • a method has been proposed.
  • the medium is strong in the main surface (a surface normal to a direction parallel to the thickness direction of the medium).
  • the tensile stress remained and the medium was warped.
  • the degree of warpage is large, there is a concern that reading failure may occur when data is reproduced from the multilayer optical recording medium using a reproducing apparatus.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method of manufacturing a multilayer optical recording medium in which the possibility of warping is reduced.
  • a plurality of unit laminates each including at least an adhesive layer and an optical recording layer are laminated on one surface of a substrate, and further laminated on the most distal side from the substrate.
  • a method for manufacturing a multilayer optical recording medium comprising a laminated structure in which a cover layer is formed on the unit laminated body, wherein the substrate in a deposition structure comprising the substrate and at least one unit laminated body And laminating an attached layered body selected from the group consisting of the unit laminate body, the cover layer, and these laminate bodies on the surface of the adherend laminate body, which is the unit laminate body located on the most distal side from
  • a layering step in which the attached layered body laminated on the attachment structure has a tensile stress, and the lamination step includes an attaching step of attaching the attachment layered body to the attached structure, and the attachment layered body External force
  • An inter-stress angle R of the first direction which is the direction of the main stress component in the tensile stress caused by the external force
  • the second direction which is the direction of the main stress component in the tensile stress of the adherend laminate
  • the said application process gives the external force which consists of at least one of tension
  • the application step includes pulling the attached layered body in a main surface inward direction by an external force applying member on a surface of the attached layered body opposite to the surface facing the adherend laminate. It is preferable that it is the process of providing external force so that it may have a stress (invention 3).
  • the adherend structure can be rotated with the normal direction of the main surface thereof as a rotation axis, and the adherend structure is rotated as the direction control step, It is preferable to carry out the pasting step (Invention 4).
  • the attached layered body can be rotated about the normal direction of the main surface of the adherend structure as a rotation axis, and the attached layered body is rotated as the direction control step. Then, it is preferable to carry out the pasting step (Invention 5).
  • the unit laminate is preferably provided with a hard layer having a glass transition temperature Tg of 25 ° C. or more (Invention 6).
  • a release material is laminated on at least one surface of the attached layered body, and the release material is peeled from the attached layered body to expose one surface of the attached layered body. It is preferable that the attached layered body is stuck to the adherend structure by pasting the face and the face of the adherend laminate opposite to the substrate (Invention 7).
  • the adherent structure has a release material laminated on a surface on the adherend laminate side, and the release material is peeled from the adherend structure to remove the adherend laminate. It is preferable to stick the attached layered body to the adherend structure by exposing one surface and bonding the surface and one surface of the attached layered body (Invention 8).
  • the attached layered body cut in advance so as to have a shape corresponding to the substrate is stacked on the adherend structure in the stacking step (Invention 9).
  • invention 1-8 it is preferable to have the cutting process which cuts the said attachment layered body so that it may have a shape corresponding to the said board
  • the attaching step is an attaching step in which a long attached layered body is conveyed in a certain direction and attached to the adherend structure (Invention 11).
  • each attached layered body in the laminating step of laminating the attached layered bodies, is given an external force so that the attached layered bodies are laminated in a state having a tensile stress. At this time, the concentration of stress remaining in the laminated structure obtained by laminating the cover layers can be reduced by controlling the external force to be applied. Therefore, the manufacturing method according to the present invention can provide a multilayer optical recording medium in which the possibility of warping is reduced.
  • FIG. 1 It is a schematic sectional drawing of one specific example of the unit laminated body which concerns on one Embodiment of this invention.
  • Two specific examples of a multilayer optical recording medium according to an embodiment of the present invention that is, (a) when a unit laminate is laminated on a substrate via an adhesive layer, (b) a unit laminate is laminated directly on the substrate. It is a schematic sectional drawing about the case where it does. It is sectional drawing which shows notionally the lamination process of the laminated structure which concerns on one Embodiment of this invention.
  • FIG. 3 is a schematic plan view of the multilayer optical recording media according to Examples 1 and 3 as viewed from the upper surface side, and shows the in-plane direction of tensile stress in each of the unit laminate body and the cover layer constituting the multilayer optical recording medium.
  • FIG. 3 is a schematic cross-sectional view of a unit laminate produced in Example 2.
  • FIG. It is the front view (i) and sectional drawing (ii) which show notionally about two specific examples (a) and (b) of the attachment layered body cut
  • Unit Laminate The method for producing a multilayer optical recording medium according to an embodiment of the present invention uses a unit laminate comprising at least an adhesive layer and an optical recording layer.
  • the specific structure of the unit laminate is not limited as long as it satisfies the above structural requirements.
  • a laminate of the pressure-sensitive adhesive layer and the optical recording layer may be used, or a laminate in which layers other than the pressure-sensitive adhesive layer, the optical recording layer, the pressure-sensitive adhesive layer, and the optical recording layer are laminated in this order.
  • the pressure-sensitive adhesive layer can preferably include two modes: (A) a non-curable pressure-sensitive adhesive layer and (B) an energy-curable pressure-sensitive adhesive layer. .
  • Non-curing pressure-sensitive adhesive layer As the pressure-sensitive adhesive constituting the non-curing pressure-sensitive adhesive layer of (1), the pressure-sensitive adhesive property at the bonding temperature when producing a laminated structure (details will be described later). Those having an adhesive property to the optical recording layer are preferably used. As such an adhesive, an acrylic adhesive is preferable from the viewpoint of optical use.
  • acrylic pressure-sensitive adhesive for example, a material containing a (meth) acrylic acid ester copolymer and a crosslinking agent can be used.
  • (meth) acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • Examples of the (meth) acrylic acid ester copolymer include a (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 20 carbon atoms, a monomer having a functional group having active hydrogen, and other optionally used.
  • the copolymer with the monomer of this can be mentioned preferably.
  • examples of the (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 20 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth).
  • Acrylate iso-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, dodecyl ( Examples include meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
  • examples of monomers having a functional group having active hydrogen include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl ( Hydroxyalkyl (meth) acrylates such as meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; monomethylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, monomethylaminopropyl Monoalkylaminoalkyl (meth) acrylates such as (meth) acrylate and monoethylaminopropyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, citraconic acid, etc. Such as ethylenically unsaturated carboxylic acids. These monomers may be used independently
  • Examples of other monomers used as desired include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; styrene Styrene monomers such as ⁇ -methylstyrene; diene monomers such as butadiene, isoprene and chloroprene; nitrile monomers such as acrylonitrile and methacrylonitrile; acrylamide, N-methylacrylamide, N, N— Examples include acrylamides such as dimethylacrylamide. These may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester copolymer used as a resin component is not particularly limited with respect to the copolymerization form, and may be any of random, block, and graft copolymers. .
  • the molecular weight is preferably in the range of 200,000 to 2,000,000 in terms of weight average molecular weight.
  • the said weight average molecular weight is the value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • this (meth) acrylic acid ester copolymer may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive constituting the energy-curable pressure-sensitive adhesive layer is energy-curable and preferably has adhesiveness at the bonding temperature when producing a laminated structure. Has adhesiveness to the optical recording layer and has a function to harden and increase hardness by applying energy such as heat and light, and to make the resulting laminated structure difficult to be imprinted. Yes.
  • Such an energy curable pressure-sensitive adhesive is not particularly limited as long as it has the above functions and can be used for optical applications, and is appropriately selected from conventionally known energy curable pressure-sensitive adhesives. Can be used.
  • an energy curable pressure sensitive adhesive for example, a heat curable adhesive and an energy ray curable pressure sensitive adhesive can be used.
  • the energy curable pressure-sensitive adhesive includes acrylic, silicone, rubber and the like.
  • the energy curable acrylic pressure-sensitive adhesive is preferable from the viewpoint of optical use. Examples of energy rays include ultraviolet rays and electron beams.
  • the energy curable acrylic pressure-sensitive adhesive examples include (a) a pressure-sensitive adhesive containing a pressure-sensitive acrylic polymer, an energy curable polymerizable oligomer and / or a polymerizable monomer, and, optionally, a polymerization initiator, (b) A tacky acrylic polymer (hereinafter sometimes referred to as “energy curable copolymer”) having an energy curable functional group having a polymerizable double bond in the side chain, and a polymerization initiator if desired. Examples thereof include an adhesive.
  • a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms and a functional group having an active hydrogen optionally used can be used. Preferred examples include monomers and copolymers with other monomers.
  • this (meth) acrylic acid ester copolymer it is as having shown in description of the acrylic adhesive which comprises the adhesive layer of said (A).
  • the molecular weight is preferably 300,000 or more in terms of weight average molecular weight.
  • Examples of the energy curable polymerizable oligomer include polyester acrylate, epoxy acrylate, urethane acrylate, polyether acrylate, polybutadiene acrylate, and silicone acrylate.
  • examples of the polyester acrylate oligomer include esterification of hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of polyvalent carboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid.
  • the epoxy acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
  • a carboxyl-modified epoxy acrylate oligomer obtained by partially modifying this epoxy acrylate oligomer with a dibasic carboxylic acid anhydride can also be used.
  • the urethane acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. It can be obtained by esterifying the hydroxyl group of ether polyol with (meth) acrylic acid.
  • the weight average molecular weight of the polymerizable oligomer is a value in terms of standard polymethyl methacrylate measured by GPC method, preferably 500 to 100,000, more preferably 1,000 to 70,000, and still more preferably 3,000 to 40. , 000 is selected.
  • This polymerizable oligomer may be used alone or in combination of two or more.
  • examples of the energy curable polymerizable monomer include monofunctional acrylates such as cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isobornyl (meth) acrylate.
  • an organic peroxide or an azo compound is used as the polymerization initiator used as desired.
  • the organic peroxide include dialkyl peroxides such as di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide, and diacyl peroxides such as acetyl peroxide, lauroyl peroxide, and benzoyl peroxide.
  • Oxides methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, ketone peroxides such as methylcyclohexanone peroxide, peroxy such as 1,1-bis (t-butylperoxy) cyclohexane Ketals, t-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropyl Hydroperoxides such as pyrbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, t-butyl And peroxyesters such as peroxybenzoate and t-butylperoxyisopropyl carbonate.
  • Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropionitrile), and 2,2′-azobis. (2,4-dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2- ( And carbamoylazo) isobutyronitrile and 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile.
  • These polymerization initiators may be used alone or in combination of two or more.
  • the energy curable pressure-sensitive adhesive is energy ray curable
  • usually ultraviolet rays or electron beams are irradiated as energy rays.
  • a photopolymerization initiator is used as a polymerization initiator. Can be used.
  • photopolymerization initiator examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]- 2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4'-diethylamino Benzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanth
  • the adhesive acrylic polymer in which the energy curable functional group having a polymerizable double bond in the side chain is introduced in the adhesive (b) for example, the above-mentioned adhesive (a) is used.
  • An active site such as —COOH, —NCO, epoxy group, —OH, —NH 2, etc. is introduced into the polymer chain of the adhesive acrylic polymer described in the above, and this active site reacts with a compound having a polymerizable double bond.
  • an energy-curable functional group having a polymerizable double bond introduced into the side chain of the adhesive acrylic polymer.
  • a functional group such as —COOH, —NCO, epoxy group, —OH, —NH 2 , A monomer or oligomer having a polymerizable double bond may be present in the reaction system.
  • Examples of the compound having a polymerizable double bond to be reacted with these active sites include (meth) acryloxyethyl isocyanate, glycidyl (meth) acrylate, pentaerythritol mono (meth) acrylate, dipentaerythritol mono (meth) acrylate, The trimethylolpropane mono (meth) acrylate can be appropriately selected and used depending on the type of active site.
  • an adhesive acrylic polymer is obtained in which an energy curable functional group having a polymerizable double bond is introduced into the side chain of the adhesive acrylic polymer via the active site.
  • the energy curable pressure sensitive adhesive is a thermosetting type
  • the organic peroxide or azo compound exemplified in the description of the pressure sensitive adhesive (a) is used.
  • the energy curable pressure sensitive adhesive is energy ray curable and ultraviolet rays are used as the energy rays
  • the photopolymerization initiator exemplified in the description of the pressure sensitive adhesive (a) described above can be used.
  • a crosslinking agent In the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, a crosslinking agent, a tackifier, an antioxidant, an ultraviolet absorber, a light stabilizer, a softener, a filler, etc., as desired, within a range where the effects of the present invention are not impaired. Can be added.
  • crosslinking agent examples include polyisocyanate compounds, epoxy resins, melamine resins, urea resins, dialdehydes, methylol polymers, aziridine compounds, metal chelate compounds, metal alkoxides, metal salts, and the like.
  • a metal chelate compound in which a change in light transmittance due to discoloration (yellowing) hardly occurs is preferably used.
  • polyisocyanate compound examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, and hydrogenated diphenylmethane diisocyanate.
  • aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
  • aliphatic polyisocyanates such as hexamethylene diisocyanate
  • isophorone diisocyanate isophorone diisocyanate
  • hydrogenated diphenylmethane diisocyanate examples include polyisocyanates, etc., and biurets, isocyanurates, and adducts that are a reaction product of low molecular active hydrogen-containing compounds such as ethylene glycol, propy
  • metal chelate compound examples include an aluminum chelate compound.
  • crosslinking agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an accelerator composed of an organometallic compound or the like may be included in order to promote the progress of the crosslinking reaction.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is usually about 1 to 30 ⁇ m, preferably 2 to 20 ⁇ m. With such a thickness, the adhesive state with the optical recording layer is good.
  • the material constituting the optical recording layer provided in the unit laminate of the present invention is not particularly limited as long as it contains a photosensitive material (photoreactive component). Any material known as a constituent material of the optical recording layer can be appropriately selected and used. As such a material, for example, a material obtained by forming a photosensitive material alone or a material in which a photosensitive material is included in a material constituting a matrix can be cited.
  • the material constituting the matrix may be an inorganic material or an organic material.
  • an organic polymer material is used. Is preferred.
  • the polymer material may be a homopolymer or a copolymer, and there are no particular restrictions on the type of monomer, molecular weight, polymerization form, and the like.
  • polystyrene resin examples include various polyethylenes, ethylene / 1-butene copolymers, ethylene / 4-methyl-1-pentene copolymers, ethylene / 1-hexene copolymers, polypropylene, ethylene / propylene copolymers.
  • Polymer propylene / 1-butene copolymer, poly 1-butene, 1-butene / 4-methyl-1-pentene copolymer, poly 4-methyl-1-pentene, poly 3-methyl-1-butene, Polyolefins such as ethylene / cyclic olefin copolymers and cyclic olefin resins, ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers or metal salts thereof, polymethyl methacrylate, alicyclic acrylic resins and other poly ( Polyester resins such as (meth) acrylate, polyethylene terephthalate, polyethylene naphthalate, Fluoropolymers such as perfluoroethylene and perfluoroalkenyl vinyl ether polymers, polystyrene, polyvinyl alcohol, polycarbonate, polyphenylene sulfide, polyethersulfone, polyimide, polyphenylene oxide, olefin / N-substit
  • the photosensitive material may be chemically bonded as a main chain or side chain component to the matrix, or may be simply dispersed or dissolved in the matrix.
  • a multiphoton absorptive material is used preferably.
  • the multi-photon absorbing material means a compound having a property of simultaneously absorbing two or more photons and transitioning to an excited state.
  • those containing a two-photon absorbing material having a two-photon absorption cross-sectional area of 0.1 GM or more are preferable, and particularly those containing a two-photon absorbing material of 100 GM or more are further included.
  • the “GM” means 10 ⁇ 50 cm 4 ⁇ s ⁇ molecule ⁇ 1 ⁇ photon ⁇ 1 .
  • the material constituting the matrix may be an inorganic material or an organic material, but organic polymer materials are used from the standpoints of the ease of manufacturing the unit laminate and many choices of materials. preferable.
  • the polymer material may be a homopolymer or a copolymer, and there are no particular restrictions on the type of monomer, molecular weight, polymerization form, and the like, and examples thereof include polymethyl methacrylate.
  • the multiphoton absorbing material may be chemically bonded as a main chain or side chain component to the matrix, or may be simply dispersed or dissolved in the matrix.
  • the multiphoton absorbing material is not particularly limited, and various compounds can be used. For example, cyanine compounds, styryl compounds, pyrylium compounds, thiapyrylium compounds, merocyanine compounds, arylidene compounds, oxonol compounds, squalium compounds, azurenium compounds, coumarin compounds, pyran compounds, quinone compounds, anthraquinone compounds, triphenylmethane compounds, diphenylmethane compounds, xanthenes Compound, thioxanthene compound, phenothiazine compound, azo compound, azomethine compound, fluorenone compound, diarylethene compound, spiropyran compound, fulgide compound, perylene compound, polyene compound, diphenylamine compound, quinacdrine compound,
  • a material isomerized by light such as an azo group, a C ⁇ C group, or a C ⁇ N group-containing compound, or a (meth) acrylate compound
  • a material that causes a polymerization reaction by light such as an organic photochromic material
  • a method that reads refractive index modulation using an organic refractory material in which charge distribution is caused by light A method of reading fluorescence using a material whose fluorescence characteristics change, a combination of a material that generates an acid by light and an acid-chromogenic compound, and a combination of a decolorizer and a decolorizable compound to perform absorption rate modulation and refractive index modulation. Examples include reading methods.
  • the multiphoton absorbing compound itself may have such photoreactivity, or from the multiphoton absorbing compound excited by multiphoton absorption to another reactive compound
  • the thickness of the optical recording layer is not limited as long as the optical recording function can be exhibited. Usually, the thickness is about 1 to 5000 nm, preferably 10 to 4000 nm.
  • the unit laminate according to the present embodiment has irregularities on the surface as recording pits and / or grooves for providing positional information inside the multilayer optical recording medium, as necessary, for reinforcing the unit laminate.
  • a layer other than the position information imparting layer, and an adhesive layer such as an optical waveguide layer, a reflective layer, and a dielectric layer and an optical recording layer may be provided.
  • such layers other than the pressure-sensitive adhesive layer and the optical recording layer are collectively referred to as “other layers”.
  • Hard layer means that the glass transition temperature Tg of the material which comprises the said hard layer is 25 degreeC or more. From the viewpoint of more stably protecting the optical recording layer, the glass transition temperature Tg is preferably 30 ° C. or higher, and more preferably 35 ° C. or higher.
  • the upper limit of the glass transition temperature Tg of the hard layer is not particularly limited, but the glass transition temperature Tg is preferably 400 ° C. or lower because the degree of shrinkage during the production process may increase depending on the composition. More preferably, it is 350 degrees C or less.
  • the hard layer preferably has a storage elastic modulus of 10 7 Pa or more, and more preferably 10 8 Pa or more.
  • the hard layer preferably has a storage elastic modulus of 10 12 Pa or less, and preferably 10 11 Pa or less.
  • the material constituting the hard layer is not particularly limited.
  • a layered body (other layers) other than the pressure-sensitive adhesive layer and the optical recording layer, which is a hard layer provided for the purpose of reinforcing the unit laminate, is also referred to as a “support layer”.
  • Examples of the hard layer made of a material different from the material constituting the pressure-sensitive adhesive layer include those made of a resin film.
  • a resin for providing such a hard layer polyvinyl chloride (Tg: 87 ° C.), polystyrene (Tg: 100 ° C.), polyamide 6 (Tg: 50 ° C.), polycarbonate (Tg: 150 ° C.), polyphenylene sulfide (Tg: 126 ° C.), polyethersulfone (Tg: 230 ° C.), polyamideimide (Tg: 275 ° C.), polylactic acid (Tg: 57 ° C.), polytetrafluoroethylene (Tg: 126 ° C.), polyvinylidene fluoride (Tg: 35 ° C), polybutylene terephthalate (Tg: 50 ° C), polyethylene terephthalate (Tg: 69 ° C), polymethyl methacrylate (Tg: 100 ° C
  • a unit laminate formed by laminating an adhesive layer and an optical recording layer has the simplest configuration among unit laminates.
  • the other layer may be laminated between the pressure-sensitive adhesive layer and the optical recording layer, or the surface opposite to the side facing the pressure-sensitive adhesive layer of the optical recording layer It may be laminated.
  • a plurality of other layers may be laminated on the unit laminate.
  • the pressure-sensitive adhesive layer is preferably located in at least one outermost layer.
  • the unit laminate is not limited to the surface on the pressure-sensitive adhesive layer side, but as a member for protecting the surface of the recording layer or the like, or the pressure-sensitive adhesive layer and the recording layer until use (pasting step)
  • a release material may be provided as a carrier for forming the respective layers.
  • the release material is optional as long as it has peelability, and various synthetic resin films having such peelability can be used as the release material.
  • polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene Film, polycarbonate film, polymethylpentene film, polysulfone film, polyetheretherketone film, polyethersulfone film, polyphenylene sulfide film, polyetherimide film, polyimide film, fluororesin film, polyamide film, acrylic resin film, norbornene resin Film, cycloolefin resin film, cellulose acetate Mention may be made of the butter, and the like.
  • the thickness of the release material is not particularly limited, but is usually 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m.
  • the release material may be obtained by subjecting the base material of the release material to a release treatment on the surface corresponding to the release surface side of the release material.
  • the resin film is exemplified as the base material, and further, a material made of a paper material such as fine paper is also exemplified.
  • the release treatment include a method in which a known release agent such as a silicone release agent, a polybutadiene release agent, a fluororesin release agent, or an alkyd release agent is applied to at least one surface of a substrate.
  • the thickness of the release agent layer obtained by applying the release agent is not particularly limited and may be set as desired, but is usually 0.05 to 50 ⁇ m.
  • corona discharge treatment for example, corona discharge treatment, plasma discharge treatment, chromic acid treatment, flame treatment, hot air treatment, Ozone / ultraviolet irradiation treatment or the like may be performed.
  • the peeling force of the release material is preferably 10 to 700 mN / 25 mm. When the peeling force is within this range, the pressure-sensitive adhesive layer side surface can be exposed without excessively deforming the unit laminate, which is preferable from the viewpoint of improving workability. A more preferable peeling force is 30 to 500 mN / 25 mm.
  • the unit laminate is produced with the release material attached on both sides thereof, and these are used during use. It is preferable to peel the release material as appropriate. Moreover, it is preferable that a filler does not exist in the peeling surface of the said peeling material.
  • the manufacturing method of a unit laminated body is not specifically limited. What is necessary is just to laminate
  • the method for laminating the layers is not particularly limited, and the layers may be formed by a so-called wet process or a so-called dry process.
  • the unit laminate body 11 shown in FIG. 1 is a laminate composed of one optical recording layer 1 and one adhesive layer 2, and a first release layer is formed on both sides of the unit laminate body 11.
  • a material 3 and a second release material 4 are provided.
  • a coating liquid containing an optical recording layer forming material at an appropriate concentration is applied to the release surface of the first release material 3 by a known application means such as knife coating, roll coating, bar coating, blade coating.
  • the optical recording layer 1 is formed by coating and drying so that the thickness of the dry coating film becomes a predetermined thickness by a method, a die coating method, a gravure coating method, etc., and the optical recording layer 1 and the first release material 3 are formed.
  • the 1st laminated body which consists of these is produced.
  • a coating solution for forming the pressure-sensitive adhesive layer 2 on the release surface of the second release material 4 (the solvent is appropriately set according to the components of the pressure-sensitive adhesive layer) is applied to a known method such as a knife coating method.
  • the pressure-sensitive adhesive layer 2 and the second adhesive layer 2 are coated by a roll coating method, a bar coating method, a blade coating method, a die coating method, a gravure coating method, etc.
  • the 2nd laminated body which consists of this peeling material 4 is produced.
  • the unit laminate 11 having the structure shown in FIG. 1 provided with the release material 3 and the release material 4 is obtained by pressure-bonding the laminate with the body with a rubber roll or the like.
  • the multilayer optical recording medium 20 includes a plurality of unit laminates, that is, a unit laminate 11-1, a unit laminate 11-2,.
  • a plurality of unit laminate bodies 11- (n-1) and unit laminate bodies 11-n are laminated on one surface of the substrate 12, and further laminated on the most distal side (upper side in FIG. 1) from the substrate 12.
  • a laminated structure 14 in which a cover layer 13 is laminated on 11-n is provided as a basic structure.
  • the multilayer structure 14 directly constitutes the multilayer optical recording medium 20, or for example, by forming a printing layer on one surface of the multilayer structure 14, the multilayer optical The recording medium 20 may be obtained.
  • the multilayer optical recording medium 20 may be obtained by cutting the members (unit laminate, cover layer, etc.) constituting the laminated structure 14.
  • each of the unit laminated body 11-1 to the unit laminated body 11-n included in the laminated structure 14 includes the optical recording layer 1 and the pressure-sensitive adhesive layer 2, but is not limited thereto.
  • the unit laminate can take various configurations as described above, and the laminate structure 14 may include unit laminates having different configurations.
  • the unit laminate body 11-1 to the unit laminate body 11-n are composed of a unit laminate body having a configuration composed of the optical recording layer 1 and the pressure-sensitive adhesive layer 2, and a support layer, the optical recording layer 1 and the pressure-sensitive adhesive layer 2. It is a unit laminated body provided with a structure, and these may be laminated
  • Substrate The specific shape and composition of the substrate 12 included in the multilayer optical recording medium 20 according to the present embodiment should be appropriately set according to the target multilayer optical recording medium 20.
  • the material include polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and polyolefin resin materials.
  • optical disc shape having a donut shape having a through hole in the thickness direction at the center of the main surface when viewed from the main surface side with a thickness of several tens to several hundred ⁇ m. Can be mentioned.
  • the substrate 12 may be composed of one type of member or a plurality of members. For example, a plurality of sheet-like members made of the above resin materials may be bonded together.
  • the material which comprises the cover layer 13 with which the multilayer optical recording medium 20 which concerns on this embodiment is equipped is not restrict
  • the material include polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and polyolefin plastic films (hereinafter referred to as plastic films).
  • the thickness of the plastic film is not particularly limited, but is usually about 20 to 600 ⁇ m, preferably 20 to 150 ⁇ m.
  • the plastic film is a non-stretched film or a film that has undergone a stress relaxation process after the stretching process, such that the stress remaining in the interior is small, and the external force applied to the cover layer 13 and the laminated structure 14
  • the correlation with the in-plane direction component of the internal stress of the cover layer 13 in a state of being laminated as a part is preferable, which is preferable.
  • the cover layer 13 may be composed of one type of member or a plurality of members. For example, a plurality of the above plastic films may be laminated. Or the adhesive layer may be provided in the surface on the side facing the unit laminated body 11 in the cover layer 13, and the above-mentioned hard layer may be provided. In the laminated structure 14 shown in FIG. 2A, the cover layer 13 is not provided with such an adhesive layer and is laminated on the surface of the unit laminate 11 on the adhesive layer 2 side. Show. When the pressure-sensitive adhesive layer 15 is laminated on the cover layer 13 as shown in FIG. 2B, it is laminated as a part of the laminated structure 14 from the viewpoint of storage stability of the pressure-sensitive adhesive layer 15. Until that time, a release material may be attached to the surface of the laminate of the cover layer 13 and the pressure-sensitive adhesive layer 15 on the pressure-sensitive adhesive layer 15 side.
  • the unit laminated body 11-1 as the lowermost layer is placed on the substrate so that the surface on the optical recording layer 1 side faces the adhesive layer 15 therebetween. 12 are laminated.
  • the relationship between the unit laminated body 11-1 and the substrate 12 of the laminated structure 14 according to the present embodiment is not limited to this.
  • the unit laminate 11-1 is laminated on the substrate 12 so that the surface on the pressure-sensitive adhesive layer 2 side faces the substrate 12, and the unit laminate 11 -1 may be fixed to the substrate 12 by an adhesive force based on the adhesive layer 2 which is one of its constituent elements.
  • the cover layer 13 is laminated on the unit laminated body 11-n laminated on the most distal side from the substrate 12 via the adhesive layer 15.
  • a multilayer optical recording medium manufacturing method is a basic process in which a plurality of unit laminates 11 are laminated on a substrate 12 and finally a cover layer 13 is laminated. (Hereinafter referred to as “sequential stacking process”), and in this respect, is common to the method for manufacturing a multilayer optical recording medium according to the prior art.
  • the multilayer optical recording medium or the production thereof is caused by the residual stress in the main surface direction of the obtained multilayer optical recording medium or the laminated structure in the production process.
  • the laminated structure in the process sometimes warps.
  • the multilayer optical recording medium manufacturing method includes a stacking process described below in a sequential stacking process.
  • FIG. 3 shows a fourth unit laminate 11-4 laminated on a structure composed of a substrate 12 and three unit laminates 11-1, 11-2 and 11-3 laminated on one surface thereof. It is sectional drawing which showed the state in the middle of the process to do notionally.
  • adherend structure a structure including the substrate 12 and at least one unit laminate 11 is referred to as an adherend structure 31, and in FIG. 3, the substrate 12 and the unit laminates 11-1, 11-2, and 11-3 The structure consisting of the above becomes the adherend structure 31.
  • the unit laminated body 11 located on the most distal side from the substrate 12 in the adherend structure 31 is referred to as an adherent laminate 32.
  • the adherend structure 31 may have a release material (not shown) laminated on the surface on the adherend laminate 32 side.
  • the release material is peeled off from the adherend structure 31 to expose one surface 32a of the adherend laminate 32, and the surface 32a and one surface 33b of the attached layered body 33 are bonded together.
  • the attached layered body 33 can be attached to the adherend structure 31.
  • the adherend structure 31 includes the release material, the one surface 32a of the adherend laminate 32 can be protected.
  • the unit laminated body laminated on the adherend laminated body 32 is called an attached layered body 33, and the unit laminated body 11-4 becomes the attached layered body 33 in FIG.
  • the attached layered body 33 since the attached layered body 33 is a layered body to be laminated on the adherend laminated body 32, the attached layered body 33 may be a cover layer. Further, at least one unit laminated body may be laminated on a cover layer (which may include an adhesive layer as described above). Further, the attached layered body 33 may be formed by stacking a plurality of unit laminated bodies. In this case, the plurality of unit laminates to be laminated may be the same or different from each other.
  • the shape of the attached layered body 33 is not particularly limited. The shape may correspond to the substrate 12 as shown in FIG. 3, or may have a long shape as shown in FIG. 4 or FIG. When the attached layered body 33 is long, the attached layered body 33 may be cut into a shape corresponding to the substrate 12 after being laminated on the adherend laminate 32.
  • each of the unit laminate bodies 11-1 to 11-4 includes the optical recording layer 1 and the pressure-sensitive adhesive layer 2.
  • the unit laminate body can take various configurations as described above. Yes, it is not limited to this.
  • the attached layered body 33 may be formed by laminating release materials (release materials 34 and 35 in FIG. 3) on at least one surface of the attached layered body 33.
  • the attachment layered body 33 has the release material, so that the handleability of the attachment layered body 33 is improved, and the contamination or the attachment layered body 33 may peel off after being laminated on the adherend laminate 32. Can be reduced.
  • the release material release material 34 in FIG. 3 proximal to the surface facing the adherend laminate 32 is peeled off, and the adherent laminate 32 in the unit laminate 11-4.
  • the surface 33b on the side opposite to the substrate is exposed, and the surface 33b and the surface 32a on the opposite side of the substrate 12 in the adherend laminate 32 are bonded together, thereby attaching the attached layered body 33 to the adherend laminate 32. can do.
  • the unit laminated body 11 located on the most distal side from the substrate 12 in the adherend structure 31 including the substrate 12 and at least one unit laminated body 11.
  • the unit laminate 11 and the cover layer are formed on the surface on the adherend laminate 32 side (that is, the surface 32a opposite to the side facing the substrate 12 in the adherend laminate 32) which is the unit laminate 11-3).
  • 13 and an attached layered body 33 (in FIG. 3, the unit laminated body 11-4) selected from the group consisting of these laminated bodies are laminated on the adherend structure 31 and are laminated on the adherend structure 31.
  • the attachment layered body 33 is laminated on the surface of the adherend structure 31 on the adhesion laminate 32 side, and the attachment layered body 33 laminated on the attachment structure 31 is subjected to tensile stress. It is in the state which has.
  • the laminating step includes, as sub-steps constituting the laminating step, an attaching step of attaching the attached layered body 33 to the adherend structure 31, an applying step of applying an external force to the attached layered body 33, and application And a direction control step for controlling the direction in which an external force is applied to the attached layered body 33 in accordance with the steps, and the relative relationship between the start times of these steps varies depending on the specific contents of these steps.
  • an attaching step of attaching the attached layered body 33 to the adherend structure 31 an applying step of applying an external force to the attached layered body 33
  • application And a direction control step for controlling the direction in which an external force is applied to the attached layered body 33 in accordance with the steps, and the relative relationship between the start times of these steps varies depending on the specific contents of these steps.
  • the affixing process is a process of affixing the attached layered body 33 to the adherend structure 31.
  • the specific sticking method is arbitrary and may be carried out so that the sticking step and the applying step overlap, such as sticking while applying tension. Further, when the attached layered body 33 is long, it is preferable that the attaching step transports the long attached layered body in a certain direction and sticks it to the adherend structure 31.
  • (2) Application process The application process includes the application of an external force to the attached layered body 33 as described above, and the execution of the application process causes the attached layered body 33 to satisfy a tensile stress condition that satisfies the stress angle described below.
  • the multilayer optical recording medium 20 or the manufacturing process thereof is caused by the residual stress in the main surface direction of the obtained multilayer optical recording medium 20 or the multilayer structure 14 in the manufacturing process thereof. It is possible to effectively prevent the laminated structure 14 from warping.
  • a first direction in this embodiment, simply the direction of the principal in-plane component of the tensile stress resulting from the external force applied by the applying step
  • second direction in the present embodiment, simply referred to as “second direction”
  • the stress-to-stress angle R is greater than 0 ° and within 120 °.
  • condition 1 the condition that the stress angle satisfies is also referred to as “condition 1”.
  • the concentration of stress remaining in the laminated structure can be reduced, and due to the residual stress in the main surface direction of the laminated structure, It is possible to effectively prevent the multilayer optical recording medium or the laminated structure in the manufacturing process from warping.
  • the first direction and the second direction may be the direction vector of the external force applied to the attached layered body 33 (including the direction in which the force is applied). May be defined).
  • the inter-stress angle R in the condition 1 is the direction vector (first direction) of the external force to which the attached layered body 33 is applied, and the most distal side of the adherend structure 31 from the substrate. It is defined by the angle formed by the direction vector (second direction) of the external force applied to the adherend laminate 32 that is a unit laminate.
  • the magnitude of the residual stress in the main surface direction of the multilayer optical recording medium 20 or the laminated structure 14 in the manufacturing process thereof is generated when the stress is relaxed by X-ray diffraction, an acoustoelastic method using ultrasonic waves, machining, or the like. It can be measured by using a conventionally known means such as a method for measuring strain.
  • the multilayer optical recording medium 20 is warped due to the residual stress in the main surface direction of the laminated structure 14 due to the external force applied in each lamination step without actually measuring the residual stress. Therefore, by measuring the amount of warpage of the multilayer optical recording medium 20 manufactured by the manufacturing method according to this embodiment, it can be determined that the concentration of the residual stress is reduced.
  • Condition 1 is a condition for the attached layered body 33 in a state of being laminated on the adherend structure 31, and therefore, as an application time and an application step of attaching the attached layered body 33 to the adherend structure 31.
  • the relationship with the time when the external force is applied to the adherend structure 31 is arbitrary. That is, the application of the external force of the adherend structure 31 by the applying process may be performed before, during or after the attaching step of attaching the attached layered body 33 to the adherent structure 31. However, an external force may be applied at a plurality or all of these timings.
  • the type of external force applied in the applying step is not particularly limited. However, since the attached layered body 33 has a tensile stress in the main surface direction, at least one of a tension and a pressing force with respect to the attached layered body 33 is required. It is preferable to apply an external force consisting of the above, and it is more preferable that the external force applied in the applying step is both tension and pressing force. Specifically, the tension applied to the attached layered body 33 before or during the pasting process, the pressing force applied to the attached layered body 33 during or after the pasting process (specifically, the pressing portion while pressing) Is moved in the main surface direction of the attached layered body 33).
  • the attached layered body 33 has a tensile stress in the main surface inward direction by the external force applying member with respect to the surface 33b opposite to the surface 33a facing the adherend laminated body 32 in the attached layered body 33. It is preferable to be a step of applying an external force to the attached layered body 33 so as to be in a state.
  • the magnitude of the external force is not particularly limited as long as the effect of the present invention can be obtained, but the external force is preferably 0.02 kgf / m or more in terms of tension in the main surface direction (hereinafter the same), and 0.04 kgf / m. More preferably.
  • the external force is preferably 400 kgf / m or less, and more preferably 320 kgf / m or less.
  • tensile_strength it will hold
  • the method of giving is mentioned.
  • This holding method is arbitrary, and is appropriately set depending on the relationship between the start time of applying the tensile force and the start time of the laminating operation.
  • both ends of the attached layered body 33 may be held using holding means such as a clip, and the holding means may be separated to apply tension before the pasting step.
  • a portion corresponding to one end of the attached layered body 33 is affixed to the adherent structure 31, the adherent structure 31 is one of the holding means, and the other end is another clip or the like. While holding using the holding means, applying the tension away from the portion attached to the adherend structure 31, the remaining portion not attached in the attached layered body 33 is attached to the adherent structure 31. May be.
  • a specific example of the pressing force includes a method of applying a pressing force by pressing the attached layered body 33 using a cylindrical body such as a pressure roll as an external force applying member. That is, as a method of applying a pressing force during and / or after the pasting step, a surface 33b of the attached layered body 33 opposite to the surface 33a facing the adherend laminate 32 (the surface 33b as will be described later).
  • a release material is affixed to the surface of the release material, the surface opposite to the surface 33b of the release material is pressed in the normal direction of the main surface with a cylindrical body (roll), and the cylinder Move the roll (roll) while rotating it.
  • a force directed forward in the moving direction of the cylindrical body (roll) is applied to the attached layered body 33 as an external force (pressing force).
  • the shape of the substrate 12 is a shape like a general optical disk substrate as described above, when the cylindrical body (roll) is moved while rotating, in the vicinity of the end portion of the substrate 12, Since the area of the attached layered body 33 in contact with the cylindrical body (roll) is reduced, the external force applied to the attached layered body 33 tends to increase. At this time, the vicinity of the end portion of the substrate 12 has a relatively high tensile stress.
  • Direction control step In the direction control step, the position of at least one of the attached layered body 33 and the adherend structure 31 is set so that the stress angle R between the first direction and the second direction satisfies the condition 1.
  • the specific method is not particularly limited. Further, the relationship between the timing of performing the direction control process and the timing of starting other processes (the pasting process and the application process) constituting the stacking process is also arbitrary.
  • a preferred example is a method in which the adherend structure 31 is rotatable with the normal direction of the main surface as a rotation axis, and the attaching step is performed after the adherend structure 31 is rotated as the direction control step. Can be mentioned.
  • FIG.4 (a) shows, in the normal line direction 36 (FIG.4 (a)) of the main surface of the to-be-adhered structure 31
  • the second direction 38 is controlled so as to satisfy the above-described condition 1, and the direction control step is performed.
  • 37 represents the first direction
  • 38 represents the second direction.
  • the attached layered body 33 in a state in which tension is applied in the first direction 37 (that is, in a state where the application process is performed) is pasted to the adherend structure 31 (pasting process).
  • the first direction 37 and the second direction 38 satisfy the condition 1.
  • the application process is performed before the pasting process, but is not limited thereto.
  • the timing of starting the application of external force to the attached layered body 33 as the application process is any timing (that is, before the pasting process, during the implementation, and after the adherend structure 31 is rotated by the direction control process). Any after implementation).
  • the application process is a process of applying an external force by applying pressure using the pressure roll 42, the application process is performed after the pasting process.
  • the attached layered body 33 can be rotated with the normal direction of the main surface of the adherend structure 31 as the rotation axis, and the attached layered body 33 is rotated as the direction control step.
  • a method of performing the pasting process is also included. Specifically, as shown in FIG. 5A, when the direction in which the external force is applied is the first direction 37, the attached layered body 33 is arranged in the normal direction of the main surface of the adherend structure 31 (in FIG. 5). The first direction 37 is controlled by rotating about the vertical direction) as the rotation axis, and the direction control step is performed.
  • FIG. 5A when the direction in which the external force is applied is the first direction 37, the attached layered body 33 is arranged in the normal direction of the main surface of the adherend structure 31 (in FIG. 5).
  • the first direction 37 is controlled by rotating about the vertical direction) as the rotation axis, and the direction control step is performed.
  • the attached layered body 33 is attached to the adherend structure 31 after the first direction 37 and the second direction 38 satisfy the condition 1.
  • the attached layered body 33 to which tension is previously applied in the first direction 37 may be pasted, or as shown in FIG. A pressure may be applied to the attached layered body 33 by moving the body 33 while applying pressure using the pressure roll 42.
  • the thickness of the elongated attachment layered body 33 and the thickness of the adherend laminated body 32 are different from each other, but in reality, they are the same thickness. 4 and 5, the unit laminate body 11 and the adherend structure 31 in the adherend structure 31 have shapes corresponding to the substrate 12, but the present invention is not limited to this, and will be described in a cutting process described later. As such, the shape may not correspond to the substrate 12.
  • (Setting method 1) Inter-stress angle so that each of the laminated unit laminated body 11 and the cover layer 13 (collectively referred to as “attached layered body” in the present embodiment) in the laminated structure 14 according to the present embodiment satisfies the following relationship.
  • Set R That is, the setting method 1 is a method of setting the stress angle R in consideration of the position where the attached layered body is stacked and the number of stacked layers.
  • Tensile stress of the attached layered body i (where i is an integer from 2 to n and n is the total number of attached layered bodies in the laminated structure 14) laminated i-th to the adherend structure 31.
  • m is an integer greater than or equal to 1.
  • the first direction which is the direction of the principal in-plane component of the tensile stress of the attached layered body i is dispersed without overlapping.
  • the concentration of the tensile stress remaining in the multilayer structure 14 can be reduced, and the multilayer optical recording medium or the multilayer structure in the manufacturing process thereof is warped due to the residual stress in the main surface direction of the multilayer structure.
  • the entire layered body laminated between the substrate 12 and the attached layered body 11-1 closest to the substrate 12 is an adhesive layer 15. in some cases, the stress between the angle R 1 is not set.
  • the total thickness of the cover layer 13, the optical recording layer, and the hard layer in the laminated structure 14 is A
  • the total thickness of the cover layer, the optical recording layer, and the hard layer included in the first attached layered body is B. 1
  • the second attached cover layer layered mass is provided which is disposed most proximal to the first attached layered body, an optical recording layer, and the total thickness of the hard layer is taken as B 2
  • the laminated structure 14 in which the possibility of warping is further reduced can be obtained.
  • the layered body 33 can be obtained through the stacking step. This is preferable because the residual stress in the laminated body of the laminated attached layered body 33 and the adherend structure 31 can be reduced.
  • the attachment layered body 33 is cut into a shape corresponding to the substrate 12 in advance, and an attachment having a desired shape is performed.
  • the layered body 60 may be created (cutting step), and then the attached layered body 60 having a desired shape obtained may be stacked on the adherend stack 32 as shown in FIG. Process).
  • the multilayer optical recording medium 20 may be completed by performing the lamination process.
  • FIG. 8 is a cross-sectional view conceptually showing a specific example of the attached layered body 60 that has been cut into a shape corresponding to the substrate in advance.
  • a plurality of attached layered bodies 60 cut in advance so as to have a shape corresponding to the substrate 2 are provided on one surface of the long release material 35.
  • FIG. 8 (a) it is affixed to a long release material 35 on the surface of the optical recording layer 1.
  • FIG. 8 (b) is similar to FIG. 8 (a).
  • a plurality of attached layered bodies 60 cut in advance are provided on one surface of the long release material 34.
  • the long release material 34 is provided on the surface on the pressure-sensitive adhesive layer 2 side.
  • a separate release material may or may not be attached to the surface opposite to the long release material 34, 35 side of the attached layered body 60.
  • the shape thereof is arbitrary, and may be long like the long release materials 34 and 35, or a shape corresponding to the attached layered body 60.
  • a release material may be affixed, and by using such an attached layered body 60, the productivity of the laminating process according to the present embodiment is increased.
  • 8 has a donut shape having a through-hole in the thickness direction at the center of the main surface corresponding to a general optical disk shape. Yes.
  • the adherend laminate 32 already has a shape corresponding to the substrate 12, and only the attached layered body 33 may be a cutting target, or the attached layered body 33 and the adherend laminate 32. And may be an object to be cut. In the latter case, in the cutting step, the attached layered body 33 and the adherend laminate 32 are simultaneously cut into a shape corresponding to the substrate 12.
  • the attachment layered body 33 and the adherend laminate 32 are simultaneously cut, there is a unit laminate between the adherend laminate 32 and the substrate 12 (specific examples are shown in FIG. 3).
  • these unit laminate bodies (unit laminate bodies in FIG. 11-1 and 11-2) may also be cut simultaneously.
  • the attached layered body 33 includes the cover layer 13, the cover layer 13 may be cut at the same time.
  • the attached layered body 33, the adherend structure 31, the unit stacked body 11, and the cover layer 13 can be simultaneously cut by a single cutting process.
  • FIG. 6 is a schematic plan view of the multilayer optical recording medium according to Example 1 as viewed from the upper surface side (the surface side on which the base substrate is placed), and shows the first direction and the second direction in each stacking step. Directions are shown.
  • Example 1 Formation of optical recording layer 100 parts by weight of polymethyl methacrylate, 10 parts by weight of 1,3,3-trimethylindolino-6′-nitrobenzopyrospirane as a photochromic material, 500 parts by weight of ethyl acetate and 490 parts by weight of toluene Parts were mixed to prepare a coating solution having a solid content of 10% by mass. On one side of a 50 ⁇ m-thick polyethylene terephthalate film (PET50A4100 manufactured by Toyobo Co., Ltd.) as the first release material, the coating solution is applied by a gravure coating method, dried at 90 ° C. for 1 minute, and 2 ⁇ m thick An optical recording layer was formed.
  • PET50A4100 polyethylene terephthalate film
  • the first release material is obtained by combining the pressure-sensitive adhesive layer surface formed in (2) above and the optical recording layer surface formed in (1) above, and pressing with two rubber rolls.
  • a polycarbonate substrate manufactured by Teijin Kasei Co., Ltd.
  • Teijin Kasei Co., Ltd. having a 5-inch optical disk shape and a thickness of 1 mm is used with the vertical direction as the rotation axis so that one surface of the substrate is exposed upward. It was chucked on a base having a rotating mechanism.
  • a pressure-sensitive adhesive layer having a thickness of 40 ⁇ m was provided on the exposed surface of the substrate by coating and drying using the same material as the coating liquid of (2) above. Then, the long attached layered body obtained in (3) was conveyed in a fixed direction, and the first release material was peeled off to expose one surface of the optical recording layer.
  • the attached layered body is attached to the substrate so that the surface of the pressure-sensitive adhesive layer on the substrate opposite to the substrate and the surface of the optical recording layer are bonded, and the side of the attached layered body opposite to the substrate is attached.
  • the attached layered body was laminated on the substrate by moving the surface to one side in the in-plane direction while pressing the surface with a rubber roll (5 kgf / m in terms of tension in the main surface direction). In this way, an adherend structure having a structure in which the substrate, the pressure-sensitive adhesive layer, and the unit laminate were laminated in this order was obtained.
  • the second release material was pasted on the surface of the adherend structure most distal to the substrate. Subsequently, the long attached layered body was cut so that the adherend laminate had a shape slightly larger than the shape of the 5-inch optical disk.
  • Example 1 1st lamination process
  • the angle between stress set using the said formula (I) in the above-mentioned setting method 1 was set up.
  • the base on which the obtained adherend structure was installed was rotated 45 ° counterclockwise as viewed from the upper surface side in order to set the inter-stress angle R to 45 °. That is, the second direction 38 was controlled.
  • the second release material attached to the uppermost surface of the adherend structure was peeled to expose one surface of the pressure-sensitive adhesive layer.
  • the long attached layered body produced as described above was conveyed in a certain direction, and the first release material was peeled off to expose one surface of the optical recording layer.
  • a series of steps including the rotation of the base described above (direction control step), the attachment between the attached layered body and the adherend structure (attachment step), and the pressure bonding of the attached layered body (application step) are the first lamination step. That's it.
  • the second release material is peeled off, and the long attached layered body is transported in a certain direction in the same manner as in the first laminating step, and the first release material attached to the attached layered body is peeled off. Then, the attached layered body was affixed to the adherend structure, and further crimped by roll pressing.
  • This series of steps is referred to as a second lamination step, and the subsequent lamination steps are referred to as a third lamination step and a fourth lamination step.
  • the long attached layered body was cut after completion.
  • a first direction (37 in FIG. -2) and the stress-to-stress angle R between the second direction (38-2 in FIG. 6), which is the main in-plane direction of the tensile stress of the deposited laminate according to the second lamination step, was 45 °. .
  • the third to sixth lamination steps were continuously performed.
  • the auxiliary layered body related to the fifth stacking process in the principal plane in-plane direction of tensile stress (37-1 in FIG. 6) of the unit stack stacked in the first stacking process is obtained.
  • the angle with respect to the first direction (37-5 in FIG. 6), which is the in-plane direction of the tensile stress based on the applied external force, was 180 °.
  • the tensile stress that the unit laminate body closest to the substrate has based on the external force applied by the auxiliary layered body related to the sixth lamination step with respect to the principal surface in-plane direction (37-1 in FIG. 6).
  • the angle in the first direction (37-6 in FIG. 6), which is the in-plane direction, is 270 °.
  • the direction of the first direction (37-4 to 37-7) related to the fourth to seventh lamination steps is not shown from the viewpoint of visibility (arrows are shown).
  • the first direction and the direction shown in 38-1, 37-1 to 37-3 are parallel and opposite to each other.
  • the total number n of unit laminated bodies and cover layers in the laminated structure is 8, and the inter-stress angle R of the first direction with respect to the second direction is 45 °.
  • the following formula (I) was satisfied.
  • optical recording layer 100 parts by weight of polymethyl methacrylate, 10 parts by weight of 1,3,3-trimethylindolino-6′-nitrobenzopyrospirane as a photochromic material, 500 parts by weight of ethyl acetate and 490 parts by weight of toluene Parts were mixed to prepare a coating solution having a solid content of 10% by mass.
  • the coating solution is applied to one side of a 50 ⁇ m-thick polyethylene terephthalate film (PET50A4100 manufactured by Toyobo Co., Ltd.) as a first release material, dried at 90 ° C. for 1 minute, and a thickness of 2 ⁇ m.
  • the optical recording layer was formed.
  • Oligo (2-hydroxy-2-methyl-1- [4- (1-propenyl) phenyl] propane) (photopolymerization initiator) (100 parts by weight of the solid content of the energy curable copolymer solution (A))
  • photopolymerization initiator 100 parts by weight of the solid content of the energy curable copolymer solution (A)
  • a coating solution of an energy ray curable adhesive was prepared.
  • the optical recording layer surface thus obtained and the pressure-sensitive adhesive layer surface formed in the above (2) are combined and bonded with two rubber rolls, whereby the optical recording layer and the pressure-sensitive adhesive layer are laminated.
  • a long laminate including the laminate was produced.
  • the laminated body thus produced is irradiated with UV light of 500 mJ / cm 2 from the first release material side using a high pressure mercury lamp (high pressure mercury lamp manufactured by Eye Graphics Co., Ltd.). After curing, a first release material 51, an optical recording layer 52, a support layer 53, an optical recording layer 54, an adhesive layer 55, and a second release material 56 are laminated in this order as shown in FIG. An attached layered body 50 was obtained.
  • the above formula (II) in the setting method 2 described above is used, and any one of the first to fourth unit laminate bodies laminated in each lower layer is used.
  • Example 3 (1) Production of Adhering Structure A 5-inch optical disk-shaped polycarbonate substrate (manufactured by Teijin Kasei Co., Ltd.) whose vertical axis is the rotation axis so that one surface of the substrate is exposed upward. It was chucked on a base having a rotating mechanism. From the long attached layered body produced in Example 1, the second release material is peeled to expose one surface of the pressure-sensitive adhesive layer, and this surface is attached to the substrate, opposite to the substrate of the attached layered body. The attached layered body was laminated on the substrate by moving the side surface to one side in the in-plane direction while pressing with a rubber roll (5 kgf / m in terms of tension in the main-plane direction).
  • the surface of the attached layered body on the side of the first release material is pressed with a rubber roll and moved in one of the in-plane directions, thereby pressure-bonding the attached layered body and the adherend structure, A laminated body in which the attached layered body was laminated on the wearing structure was obtained.
  • the moving direction of the rubber roll was the same as the moving direction of the rubber roll when the above-mentioned adherend laminate was produced.
  • the first stacking step a stack including two unit stacks arranged in this order on the substrate was obtained.
  • the first release material on the surface farthest from the substrate in the adherend structure was peeled off.
  • the long attached layered body was cut so that the attached layered body after cutting had a shape larger than the disk shape.
  • the coating liquid is applied to the release surface of the second release material with a knife coater, and 1 at 90 ° C.
  • a pressure-sensitive adhesive layer having a thickness of 40 ⁇ m was formed by heating and drying for 30 minutes.
  • a cover layer made of a plastic film manufactured by Teijin Ltd., Pure Ace, which was a polycarbonate film having a thickness of 78 ⁇ m and was subjected to corona treatment on one surface, was prepared.
  • the surface on the pressure-sensitive adhesive layer side of the laminate composed of the pressure-sensitive adhesive layer and the second release material and the surface of the prepared cover layer on which the corona treatment was applied were pasted. Then, the laminated body obtained by this sticking was crimped
  • the adherend laminate was rotated 45 ° counterclockwise as viewed from the upper surface side.
  • the second release material attached to the attached laminated body having the cover layer is peeled off, and the surface of the attached laminated body on the pressure-sensitive adhesive layer side that is exposed and the substrate of the adherend structure are the most distal.
  • the attached layered body was pasted on the adherend structure so that the surfaces were pasted together. At that time, no special tension was applied to the attached laminate including the cover layer. Thereafter, similarly to the first laminating step, it was performed on the surface on the cover layer side of the attached laminated body laminated on the adherend structure.
  • Example 4 A multilayer optical recording medium was produced in the same manner as in Example 2 except that the cutting step was performed before the lamination step. Specifically, the first release material of the attached layered body is peeled off, and a punching process is performed from the exposed optical recording layer side, and only the optical recording layer, the support layer, and the optical recording layer are cut into a 5-inch optical disk shape. did. Accordingly, the attached layered body (having a structure in which the optical recording layer, the support layer, and the optical recording layer are laminated in this order) cut in advance so as to have a 5-inch optical disc shape is one of the second release materials. An attached layered body provided on the surface was obtained. Using the attached layered body obtained, a lamination process was performed at the same stress angle as in Example 2, to produce a laminated structure, and to produce a multilayer optical recording medium.
  • Example 1 A multilayer optical recording medium was manufactured by carrying out the same manufacturing method as in Example 1 except that the laminating step was performed at the same stress angle without setting the stress angle. That is, the inter-stress angle R was 0 °.
  • the present invention is useful for producing a multilayer optical recording medium with little warpage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Laminated Bodies (AREA)

Abstract

The supplied method is a method for producing a multilayer optical recording medium which exhibits a reduced likelihood of warping, and equipped with a layering step for layering an attachment-layer body (33) on the surface of an adherend structure (31) on the adherend-layer-body (32) side thereof, and creating a state in which the attachment-layer body (33) layered on the adherend structure (31) has tensile stress, the method for producing the multilayer optical recording medium being characterized in that: the layering step is equipped with an attachment step for attaching the attachment-layer body (33) to the adherend structure (31), an impression step for imparting external force to the attachment-layer body (33), and a direction-control step for controlling the direction in which the external force is imparted to the attachment-layer body (33) during the impression step; and the direction-control step is a step for controlling the direction in which the external force is imparted to the attachment-layer body (33) in a manner such that an inter-stress angle (R) of a first direction in the attachment-layer body (33) layered on the adherend structure (31), which is the direction of a principal-in-plane component of the tensile stress from the external force, in relation to a second direction in the adherend-layer body (32), which is the direction of a principal-in-plane component of the tensile stress thereof, is more than 0° and 120° or less.

Description

多層光記録媒体の製造方法Method for producing multilayer optical recording medium
 本発明は、多層光記録媒体の製造方法に関するものである。 The present invention relates to a method for producing a multilayer optical recording medium.
 近年、光記録媒体は、大量の記録データを記録可能な点が注目され、様々な用途で使用されている。最近では、さらなる記録密度の向上を目指して、三次元的にデータを記録する方法(以下、「多層光記録法」ともいう。)が提案されている。例えば、Y.Kawataらは光重合反応性の光反応性成分を有するフォトポリマー材料に多層光記録を行う技術を報告している(例えば、非特許文献1参照)。 In recent years, optical recording media have attracted attention because they can record a large amount of recording data, and are used in various applications. Recently, a method for recording data three-dimensionally (hereinafter, also referred to as “multilayer optical recording method”) has been proposed with the aim of further improving the recording density. For example, Y. Kawata et al. Have reported a technique for performing multilayer optical recording on a photopolymer material having a photoreactive component having photopolymerization reactivity (see, for example, Non-Patent Document 1).
 多層光記録法に適用される光媒体は、例えば特許文献1に記載されるような多層光記録媒体であり、多層光記録媒体が備える光記録層数は、年々増加する傾向があり、前述の特許文献1では、実施例において20層の光記録層を有する積層体が開示されている。 The optical medium applied to the multilayer optical recording method is a multilayer optical recording medium as described in, for example, Patent Document 1, and the number of optical recording layers provided in the multilayer optical recording medium tends to increase year by year. Patent Document 1 discloses a laminate having 20 optical recording layers in Examples.
特開2011-81860号公報JP 2011-81860 A
 上記多層光記録媒体を製造する方法として、基板に直接記録層を設けるのではなく、光記録層と感圧接着剤層とが積層されてなる感圧接着性シートを使用して基板に貼付する方法が提案されている。しかしながら、このようなシートを用いた方法を採用する場合には、積層するシート数が増加すると、媒体の主面(媒体の厚さ方向と平行な方向を法線とする面)内方向に強い引張応力が残留し、媒体に反りが生じてしまう場合があった。その反りの程度が大きいときには、多層光記録媒体から再生装置を用いてデータを再生する際に読み込み不良を引き起こすことが懸念される。 As a method for producing the multilayer optical recording medium, a recording layer is not directly provided on the substrate, but a pressure-sensitive adhesive sheet in which an optical recording layer and a pressure-sensitive adhesive layer are laminated is applied to the substrate. A method has been proposed. However, when adopting a method using such a sheet, when the number of sheets to be stacked increases, the medium is strong in the main surface (a surface normal to a direction parallel to the thickness direction of the medium). There was a case where the tensile stress remained and the medium was warped. When the degree of warpage is large, there is a concern that reading failure may occur when data is reproduced from the multilayer optical recording medium using a reproducing apparatus.
 本発明は、上記事情に鑑みてなされたものであって、反りが発生する可能性が低減された多層光記録媒体を製造する方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method of manufacturing a multilayer optical recording medium in which the possibility of warping is reduced.
 上記課題を解決する本発明は、第1に、少なくとも粘着剤層と光記録層とを備える単位積層体が、基板の一方の面に複数積層され、さらに、前記基板から最も遠位側に積層された前記単位積層体にカバー層が形成されてなる積層構造体を備える多層光記録媒体の製造方法であって、前記基板と少なくとも一つの前記単位積層体とを備える被着構造体における前記基板から最も遠位側にある前記単位積層体である被着積層体側の面に、前記単位積層体および前記カバー層ならびにこれらの積層体からなる群から選ばれる付設層状体を積層するとともに、前記被着構造体に積層された前記付設層状体が引張応力を有する状態とする積層工程を備え、当該積層工程は、前記付設層状体を前記被着構造体に貼付する貼付工程、前記付設層状体に外力を付与する印加工程および当該印加工程によって前記付設層状体に外力が付与される方向を制御する方向制御工程を備え、前記方向制御工程は、前記被着構造体に積層された前記付設層状体における前記外力に起因する引張応力の主面内成分の方向である第1の方向の、前記被着積層体が有する引張応力の主面内成分の方向である第2の方向に対する応力間角度Rが、0°超120°以内となるように、外力が前記付設層状体に付与される方向を制御する工程であることを特徴とする多層光記録媒体の製造方法を提供する(発明1)。 In the present invention for solving the above-mentioned problems, first, a plurality of unit laminates each including at least an adhesive layer and an optical recording layer are laminated on one surface of a substrate, and further laminated on the most distal side from the substrate. A method for manufacturing a multilayer optical recording medium comprising a laminated structure in which a cover layer is formed on the unit laminated body, wherein the substrate in a deposition structure comprising the substrate and at least one unit laminated body And laminating an attached layered body selected from the group consisting of the unit laminate body, the cover layer, and these laminate bodies on the surface of the adherend laminate body, which is the unit laminate body located on the most distal side from A layering step in which the attached layered body laminated on the attachment structure has a tensile stress, and the lamination step includes an attaching step of attaching the attachment layered body to the attached structure, and the attachment layered body External force An application step of applying, and a direction control step of controlling a direction in which an external force is applied to the attached layered body by the application step, wherein the direction control step is performed in the attached layered body stacked on the adherend structure. An inter-stress angle R of the first direction, which is the direction of the main stress component in the tensile stress caused by the external force, with respect to the second direction, which is the direction of the main stress component in the tensile stress of the adherend laminate, Provided is a method for producing a multilayer optical recording medium, characterized in that it is a step of controlling the direction in which an external force is applied to the attached layered body so as to be over 0 ° and within 120 ° (Invention 1).
 上記発明(発明1)では、付設層状体を積層するにあたり付与する外力を制御するため、カバー層を積層して得られた積層構造体に残留する応力の集中を低下させることができる。したがって、上記発明の実施により、反りが発生する可能性が低減された多層光記録媒体を得ることができる。 In the above invention (Invention 1), since the external force applied when the auxiliary layered body is laminated is controlled, the concentration of stress remaining in the laminated structure obtained by laminating the cover layer can be reduced. Therefore, by implementing the above invention, it is possible to obtain a multilayer optical recording medium in which the possibility of warping is reduced.
 上記発明(発明1)において、前記印加工程は、前記貼付工程の実施前、実施中および実施後の少なくともいずれかにおいて、前記付設層状体に対して張力および押圧力の少なくとも一方からなる外力を付与する工程であることが好ましい(発明2)。 In the said invention (invention 1), the said application process gives the external force which consists of at least one of tension | tensile_strength and pressing force with respect to the said attachment layered body in at least any one before implementation of the said sticking process, during implementation, and after implementation. It is preferable that it is a process to perform (Invention 2).
 上記発明(発明2)において、前記印加工程は、前記付設層状体における前記被着積層体に対向する面と反対側の面側に、外力付与部材により前記付設層状体が主面内方向に引張応力を有する状態となるように、外力を付与する工程であることが好ましい(発明3)。 In the above invention (Invention 2), the application step includes pulling the attached layered body in a main surface inward direction by an external force applying member on a surface of the attached layered body opposite to the surface facing the adherend laminate. It is preferable that it is the process of providing external force so that it may have a stress (invention 3).
 上記発明(発明1から3)において、前記被着構造体はその主面の法線方向を回転軸として回転可能であって、前記方向制御工程として前記被着構造体を回転させてから、前記貼付工程を実施することが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the adherend structure can be rotated with the normal direction of the main surface thereof as a rotation axis, and the adherend structure is rotated as the direction control step, It is preferable to carry out the pasting step (Invention 4).
 上記発明(発明1から4)において、前記付設層状体は、前記被着構造体の主面の法線方向を回転軸として回転可能であって、前記方向制御工程として前記付設層状体を回転させてから、前記貼付工程を実施することが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the attached layered body can be rotated about the normal direction of the main surface of the adherend structure as a rotation axis, and the attached layered body is rotated as the direction control step. Then, it is preferable to carry out the pasting step (Invention 5).
 上記発明(発明1から5)において、前記単位積層体は、ガラス転移温度Tgが25℃以上の層である硬質層を備えることが好ましい(発明6)。 In the above invention (Inventions 1 to 5), the unit laminate is preferably provided with a hard layer having a glass transition temperature Tg of 25 ° C. or more (Invention 6).
 上記発明(発明1から6)において、前記付設層状体の少なくとも一方の面には剥離材が積層され、前記付設層状体から前記剥離材を剥離して前記付設層状体の一方の面を表出させ、その面と前記被着積層体における前記基板と反対側の面とを貼合することによって、前記付設層状体を前記被着構造体に貼付することが好ましい(発明7)。 In the above invention (Invention 1 to 6), a release material is laminated on at least one surface of the attached layered body, and the release material is peeled from the attached layered body to expose one surface of the attached layered body. It is preferable that the attached layered body is stuck to the adherend structure by pasting the face and the face of the adherend laminate opposite to the substrate (Invention 7).
 上記発明(発明1から7)において、前記被着構造体はその被着積層体側の面には剥離材が積層され、前記被着構造体から前記剥離材を剥離して前記被着積層体の一方の面を表出させ、その面と前記付設層状体の一方の面とを貼合することによって、前記付設層状体を前記被着構造体に貼付することが好ましい(発明8)。 In the above inventions (Inventions 1 to 7), the adherent structure has a release material laminated on a surface on the adherend laminate side, and the release material is peeled from the adherend structure to remove the adherend laminate. It is preferable to stick the attached layered body to the adherend structure by exposing one surface and bonding the surface and one surface of the attached layered body (Invention 8).
 上記発明(発明1から8)において、前記基板に対応した形状を有するようにあらかじめ切断加工された前記付設層状体を、前記積層工程において前記被着構造体に積層することが好ましい(発明9)。 In the above inventions (Inventions 1 to 8), it is preferable that the attached layered body cut in advance so as to have a shape corresponding to the substrate is stacked on the adherend structure in the stacking step (Invention 9). .
 上記発明(発明1から8)において、前記付設層状体を、前記基板に対応した形状を有するように切断加工する切断工程を有することが好ましい(
発明10)。
In the said invention (invention 1-8), it is preferable to have the cutting process which cuts the said attachment layered body so that it may have a shape corresponding to the said board | substrate (
Invention 10).
 上記発明(発明1から9)において、前記貼付工程は、長尺の付設層状体を一定方向に搬送し、前記被着構造体に貼付する貼付工程であることが好ましい(発明11)。 In the above inventions (Inventions 1 to 9), it is preferable that the attaching step is an attaching step in which a long attached layered body is conveyed in a certain direction and attached to the adherend structure (Invention 11).
 本発明に係る製造方法では、付設層状体を積層する積層工程において、各付設層状体に外力に付与して、付設層状体が引張応力を有した状態で積層されるようにする。このとき、その付与する外力を制御することによって、カバー層を積層して得られた積層構造体に残留する応力の集中を低下させることができる。したがって、本発明に係る製造方法により、反りが発生する可能性が低減された多層光記録媒体を得ることができる。 In the manufacturing method according to the present invention, in the laminating step of laminating the attached layered bodies, each attached layered body is given an external force so that the attached layered bodies are laminated in a state having a tensile stress. At this time, the concentration of stress remaining in the laminated structure obtained by laminating the cover layers can be reduced by controlling the external force to be applied. Therefore, the manufacturing method according to the present invention can provide a multilayer optical recording medium in which the possibility of warping is reduced.
本発明の一実施形態に係る単位積層体の一具体例の概略断面図である。It is a schematic sectional drawing of one specific example of the unit laminated body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る多層光記録媒体の二つの具体例、すなわち、(a)基板に粘着剤層を介して単位積層体を積層する場合、(b)基板に直接単位積層体を積層する場合についての概略断面図である。Two specific examples of a multilayer optical recording medium according to an embodiment of the present invention, that is, (a) when a unit laminate is laminated on a substrate via an adhesive layer, (b) a unit laminate is laminated directly on the substrate. It is a schematic sectional drawing about the case where it does. 本発明の一実施形態に係る積層構造体の積層工程を概念的に示す断面図である。It is sectional drawing which shows notionally the lamination process of the laminated structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る方向制御工程における応力間角度Rの設定方法の一例を概念的に示す斜視図であり、(a)方向制御工程として基台を回転させようとする状態、(b)方向制御工程が終了して応力間角度Rが設定された状態および(c)貼付工程後に印加工程が行われる場合における印加工程が行われている状態を示す図である。It is a perspective view which shows notionally an example of the setting method of the stress angle R in the direction control process which concerns on one Embodiment of this invention, (a) The state which tries to rotate a base as a direction control process, (b (A) It is a figure which shows the state in which the application process in the state where the direction control process was complete | finished and the stress angle R was set, and the application process in the case where the application process is performed after the (c) sticking process. 本発明の一実施形態に係る方向制御工程における応力間角度Rの設定方法の一例を概念的に示す斜視図であり、(a)方向制御工程として付設層状体を回転させようとする状態、(b)方向制御工程が終了して応力間角度Rが設定された状態および(c)貼付工程後に印加工程が行われる場合における方向制御工程が終了した状態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows notionally an example of the setting method of the stress angle R in the direction control process which concerns on one Embodiment of this invention, (a) The state which tries to rotate an attached layered body as a direction control process, ( It is a figure which shows the state where the direction control process was complete | finished when the direction control process was complete | finished and the state R between stresses was set, and (c) the application process performed after a sticking process. 実施例1および3に係る多層光記録媒体を上面側からみた概略平面図であって、当該多層光記録媒体を構成する単位積層体およびカバー層のそれぞれにおける引張応力の面内方向を示す図である。FIG. 3 is a schematic plan view of the multilayer optical recording media according to Examples 1 and 3 as viewed from the upper surface side, and shows the in-plane direction of tensile stress in each of the unit laminate body and the cover layer constituting the multilayer optical recording medium. is there. 実施例2において作製した単位積層体の概略断面図である。3 is a schematic cross-sectional view of a unit laminate produced in Example 2. FIG. あらかじめ基板に対応した形状に切断加工された付設層状体の2つの具体例(a)および(b)について概念的に示す正面図(i)および断面図(ii)である。It is the front view (i) and sectional drawing (ii) which show notionally about two specific examples (a) and (b) of the attachment layered body cut | disconnected in the shape corresponding to a board | substrate previously.
 以下、本発明の実施形態について説明する。
1.単位積層体
 本発明の一実施形態に係る多層光記録媒体の製造方法は、その製造にあたり、少なくとも粘着剤層と光記録層とを備える単位積層体を用いる。
Hereinafter, embodiments of the present invention will be described.
1. Unit Laminate The method for producing a multilayer optical recording medium according to an embodiment of the present invention uses a unit laminate comprising at least an adhesive layer and an optical recording layer.
 単位積層体は、上記の構成上の要件を満たす限り、具体的な構成は限定されない。粘着剤層と光記録層との積層体でもよいし、粘着剤層、光記録層、粘着剤層および光記録層以外の層がこの順番で積層された積層体でもよい。 The specific structure of the unit laminate is not limited as long as it satisfies the above structural requirements. A laminate of the pressure-sensitive adhesive layer and the optical recording layer may be used, or a laminate in which layers other than the pressure-sensitive adhesive layer, the optical recording layer, the pressure-sensitive adhesive layer, and the optical recording layer are laminated in this order.
(1)粘着剤層
 本発明の単位積層体において、粘着剤層には、好ましくは(A)非硬化型粘着剤層と(B)エネルギー硬化型粘着剤層の2つの態様を挙げることができる。
(1) Pressure-sensitive adhesive layer In the unit laminate of the present invention, the pressure-sensitive adhesive layer can preferably include two modes: (A) a non-curable pressure-sensitive adhesive layer and (B) an energy-curable pressure-sensitive adhesive layer. .
(A)非硬化型粘着剤層
 前記(1)の非硬化型粘着剤層を構成する粘着剤としては、積層構造体(詳細は後述する。)を作製する際の貼り合わせ温度において粘着性を有するものが用いられ、好ましくは光記録層に対する接着性も有するものが用いられる。このような粘着剤としては、光学用途の面からアクリル系粘着剤が好ましい。
(A) Non-curing pressure-sensitive adhesive layer As the pressure-sensitive adhesive constituting the non-curing pressure-sensitive adhesive layer of (1), the pressure-sensitive adhesive property at the bonding temperature when producing a laminated structure (details will be described later). Those having an adhesive property to the optical recording layer are preferably used. As such an adhesive, an acrylic adhesive is preferable from the viewpoint of optical use.
 このアクリル系粘着剤としては、例えば(メタ)アクリル酸エステル共重合体および架橋剤を含むものを用いることができる。なお、本明細書において、(メタ)アクリル酸とは、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語も同様である。 As this acrylic pressure-sensitive adhesive, for example, a material containing a (meth) acrylic acid ester copolymer and a crosslinking agent can be used. In addition, in this specification, (meth) acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
 上記(メタ)アクリル酸エステル系共重合体としては、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルモノマーと、活性水素をもつ官能基を有するモノマーと、所望により用いられる他のモノマーとの共重合体を好ましく挙げることができる。 Examples of the (meth) acrylic acid ester copolymer include a (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 20 carbon atoms, a monomer having a functional group having active hydrogen, and other optionally used. The copolymer with the monomer of this can be mentioned preferably.
 ここで、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルモノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソ-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Here, examples of the (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 20 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth). Acrylate, iso-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, dodecyl ( Examples include meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
 一方、活性水素をもつ官能基を有する単量体の例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;モノメチルアミノエチル(メタ)アクリレート、モノエチルアミノエチル(メタ)アクリレート、モノメチルアミノプロピル(メタ)アクリレート、モノエチルアミノプロピル(メタ)アクリレートなどのモノアルキルアミノアルキル(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸などのエチレン性不飽和カルボン酸などが挙げられる。これらの単量体は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 On the other hand, examples of monomers having a functional group having active hydrogen include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl ( Hydroxyalkyl (meth) acrylates such as meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; monomethylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, monomethylaminopropyl Monoalkylaminoalkyl (meth) acrylates such as (meth) acrylate and monoethylaminopropyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, citraconic acid, etc. Such as ethylenically unsaturated carboxylic acids. These monomers may be used independently and may be used in combination of 2 or more type.
 また、所望により用いられる他の単量体の例としては酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;エチレン、プロピレン、イソブチレンなどのオレフィン類;塩化ビニル、ビニリデンクロリドなどのハロゲン化オレフィン類;スチレン、α-メチルスチレンなどのスチレン系単量体;ブタジエン、イソプレン、クロロプレンなどのジエン系単量体;アクリロニトリル、メタクリロニトリルなどのニトリル系単量体;アクリルアミド、N-メチルアクリルアミド、N,N-ジメチルアクリルアミドなどのアクリルアミド類などが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of other monomers used as desired include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; styrene Styrene monomers such as α-methylstyrene; diene monomers such as butadiene, isoprene and chloroprene; nitrile monomers such as acrylonitrile and methacrylonitrile; acrylamide, N-methylacrylamide, N, N— Examples include acrylamides such as dimethylacrylamide. These may be used alone or in combination of two or more.
 該アクリル系粘着剤において、樹脂成分として用いられる(メタ)アクリル酸エステル系共重合体は、その共重合形態については特に制限はなく、ランダム、ブロック、グラフト共重合体のいずれであってもよい。また、分子量は、重量平均分子量で200,000~2,000,000の範囲が好ましい。 In the acrylic pressure-sensitive adhesive, the (meth) acrylic acid ester copolymer used as a resin component is not particularly limited with respect to the copolymerization form, and may be any of random, block, and graft copolymers. . The molecular weight is preferably in the range of 200,000 to 2,000,000 in terms of weight average molecular weight.
 なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。 In addition, the said weight average molecular weight is the value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
 本発明においては、この(メタ)アクリル酸エステル系共重合体は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the present invention, this (meth) acrylic acid ester copolymer may be used alone or in combination of two or more.
(B)エネルギー硬化型粘着剤層
 一方、エネルギー硬化型粘着剤層を構成する粘着剤は、エネルギー硬化型であって、積層構造体を作製する際の貼り合わせ温度において粘着性を有し、好ましくは光記録層に対する接着性をも有すると共に、熱や光などのエネルギーを印加することにより硬化して硬さが増し、得られる積層構造体を押し跡が付きにくいものにする機能を有している。
(B) Energy-curable pressure-sensitive adhesive layer On the other hand, the pressure-sensitive adhesive constituting the energy-curable pressure-sensitive adhesive layer is energy-curable and preferably has adhesiveness at the bonding temperature when producing a laminated structure. Has adhesiveness to the optical recording layer and has a function to harden and increase hardness by applying energy such as heat and light, and to make the resulting laminated structure difficult to be imprinted. Yes.
 このようなエネルギー硬化型粘着剤としては、前記機能を有し、かつ光学用途に用い得るものであればよく、特に制限されず、従来公知のエネルギー硬化型粘着剤の中から、適宜選択して用いることができる。 Such an energy curable pressure-sensitive adhesive is not particularly limited as long as it has the above functions and can be used for optical applications, and is appropriately selected from conventionally known energy curable pressure-sensitive adhesives. Can be used.
 このようなエネルギー硬化型粘着剤としては、例えば熱硬化型およびエネルギー線硬化型の粘着剤を用いることができる。また、エネルギー硬化型粘着剤には、アクリル系、シリコーン系、ゴム系などがあるが、本発明においては、光学用途の面から、エネルギー硬化型アクリル系粘着剤が好適である。エネルギー線としては、紫外線や電子線を挙げることができる。 As such an energy curable pressure sensitive adhesive, for example, a heat curable adhesive and an energy ray curable pressure sensitive adhesive can be used. In addition, the energy curable pressure-sensitive adhesive includes acrylic, silicone, rubber and the like. In the present invention, the energy curable acrylic pressure-sensitive adhesive is preferable from the viewpoint of optical use. Examples of energy rays include ultraviolet rays and electron beams.
 前記エネルギー硬化型アクリル系粘着剤としては、例えば、(a)粘着性アクリル系重合体とエネルギー硬化型重合性オリゴマーおよび/または重合性モノマーと所望により重合開始剤とを含む粘着剤、(b)側鎖に重合性二重結合を有するエネルギー硬化型官能基が導入されてなる粘着性アクリル系重合体(以下、「エネルギー硬化型共重合体」ということがある。)と所望により重合開始剤を含む粘着剤などを挙げることができる。 Examples of the energy curable acrylic pressure-sensitive adhesive include (a) a pressure-sensitive adhesive containing a pressure-sensitive acrylic polymer, an energy curable polymerizable oligomer and / or a polymerizable monomer, and, optionally, a polymerization initiator, (b) A tacky acrylic polymer (hereinafter sometimes referred to as “energy curable copolymer”) having an energy curable functional group having a polymerizable double bond in the side chain, and a polymerization initiator if desired. Examples thereof include an adhesive.
 前記(a)の粘着剤において、粘着性アクリル系重合体としては、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルと、所望により用いられる活性水素をもつ官能基を有する単量体および他の単量体との共重合体を好ましく挙げることができる。この(メタ)アクリル酸エステル共重合体ついては、前記(A)の粘着剤層を構成するアクリル系粘着剤の説明において示したとおりである。なお、エネルギー硬化型粘着剤の樹脂成分として(メタ)アクリル酸エステル系共重合体が用いられる場合には、分子量は、重量平均分子量で30万以上であることが好ましい。 In the pressure-sensitive adhesive (a), as the pressure-sensitive acrylic polymer, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms and a functional group having an active hydrogen optionally used can be used. Preferred examples include monomers and copolymers with other monomers. About this (meth) acrylic acid ester copolymer, it is as having shown in description of the acrylic adhesive which comprises the adhesive layer of said (A). When a (meth) acrylic acid ester copolymer is used as the resin component of the energy curable pressure-sensitive adhesive, the molecular weight is preferably 300,000 or more in terms of weight average molecular weight.
 また、エネルギー硬化型重合性オリゴマーとしては、例えばポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリブタジエンアクリレート系、シリコーンアクリレート系などが挙げられる。 Examples of the energy curable polymerizable oligomer include polyester acrylate, epoxy acrylate, urethane acrylate, polyether acrylate, polybutadiene acrylate, and silicone acrylate.
 ここで、ポリエステルアクリレート系オリゴマーとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。 Here, examples of the polyester acrylate oligomer include esterification of hydroxyl groups of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of polyvalent carboxylic acid and polyhydric alcohol with (meth) acrylic acid, It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a carboxylic acid with (meth) acrylic acid.
 エポキシアクリレート系オリゴマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。また、このエポキシアクリレート系オリゴマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシル変性型のエポキシアクリレートオリゴマーも用いることができる。 The epoxy acrylate oligomer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. A carboxyl-modified epoxy acrylate oligomer obtained by partially modifying this epoxy acrylate oligomer with a dibasic carboxylic acid anhydride can also be used.
 ウレタンアクリレート系オリゴマーは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアナートの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができ、ポリオールアクリレート系オリゴマーは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。 The urethane acrylate oligomer can be obtained, for example, by esterifying a polyurethane oligomer obtained by the reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. It can be obtained by esterifying the hydroxyl group of ether polyol with (meth) acrylic acid.
 上記重合性オリゴマーの重量平均分子量は、GPC法で測定した標準ポリメチルメタクリレート換算の値で、好ましくは500~100,000、より好ましくは1,000~70,000さらに好ましくは3,000~40,000の範囲で選定される。 The weight average molecular weight of the polymerizable oligomer is a value in terms of standard polymethyl methacrylate measured by GPC method, preferably 500 to 100,000, more preferably 1,000 to 70,000, and still more preferably 3,000 to 40. , 000 is selected.
 この重合性オリゴマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 This polymerizable oligomer may be used alone or in combination of two or more.
 一方、エネルギー硬化型重合性モノマーとしては、例えばシクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボニル(メタ)アクリレートなどの単官能性アクリレート類、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロールクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロールクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートなどの多官能性アクリレート類が挙げられる。これらの重合性モノマーは1種用いてもよいし、2種以上を組み合わせて用いてもよい。 On the other hand, examples of the energy curable polymerizable monomer include monofunctional acrylates such as cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isobornyl (meth) acrylate. 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, neopentyl glycol adipate di (meth) Acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprol kuton modified dicyclopentenyl di (meth) acrylate, Renoxide-modified phosphoric acid di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid-modified dipenta Erythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, dipenta Multifunctional acrylates such as erythritol hexa (meth) acrylate and caprolcuton-modified dipentaerythritol hexa (meth) acrylate And the like. These polymerizable monomers may be used alone or in combination of two or more.
 また、所望により用いられる重合開始剤としては、エネルギー硬化型粘着剤が、熱硬化型である場合には、有機過酸化物やアゾ系化合物が用いられる。有機過酸化物としては、例えばジ-t-ブチルパーオキサイド、t-ブルチクミルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類、アセチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド等のケトンパーオキサイド類、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール類、t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド等のヒドロパーオキサイド類、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシエステル類等が挙げられる。 Further, as the polymerization initiator used as desired, when the energy curable pressure sensitive adhesive is a thermosetting type, an organic peroxide or an azo compound is used. Examples of the organic peroxide include dialkyl peroxides such as di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide, and diacyl peroxides such as acetyl peroxide, lauroyl peroxide, and benzoyl peroxide. Oxides, methyl ethyl ketone peroxide, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, ketone peroxides such as methylcyclohexanone peroxide, peroxy such as 1,1-bis (t-butylperoxy) cyclohexane Ketals, t-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, p-menthane hydroperoxide, diisopropyl Hydroperoxides such as pyrbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, t-butylperoxyacetate, t-butylperoxy-2-ethylhexanoate, t-butyl And peroxyesters such as peroxybenzoate and t-butylperoxyisopropyl carbonate.
 また、アゾ系化合物としては、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-シクロプロピルプロピオニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリルなどが挙げられる。 Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropionitrile), and 2,2′-azobis. (2,4-dimethylvaleronitrile), azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2- ( And carbamoylazo) isobutyronitrile and 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile.
 これらの重合開始剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 These polymerization initiators may be used alone or in combination of two or more.
 一方、エネルギー硬化型粘着剤がエネルギー線硬化型である場合には、エネルギー線として、通常紫外線または電子線が照射されるが、紫外線を照射する際には、重合開始剤として、光重合開始剤を用いることができる。この光重合開始剤としては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2(ヒドロキシ-2-プロプル)ケトン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4'-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミン安息香酸エステル、オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパン]などが挙げられる。これらは1種を用いてもよいし、2種以上を組み合わせて用いてもよい。 On the other hand, when the energy curable pressure-sensitive adhesive is energy ray curable, usually ultraviolet rays or electron beams are irradiated as energy rays. When irradiating ultraviolet rays, a photopolymerization initiator is used as a polymerization initiator. Can be used. Examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]- 2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4'-diethylamino Benzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2 , 4-diethylthioxanthone, benzyldimethyl ketal, acetophenone dimethyl ketal, p-dimethylamine benzoate, oligo [2-hydroxy-2-methyl-1- [4- (1-propenyl) phenyl] propane] and the like . These may be used alone or in combination of two or more.
 次に、前記(b)の粘着剤において、側鎖に重合性二重結合を有するエネルギー硬化型官能基が導入されてなる粘着性アクリル系重合体としては、例えば前述の(a)の粘着剤において説明した粘着性アクリル系重合体のポリマー鎖に-COOH、-NCO、エポキシ基、-OH、-NH2などの活性点を導入し、この活性点と重合性二重結合を有する化合物を反応させて、該粘着性アクリル系重合体の側鎖に重合性二重結合を有するエネルギー硬化型官能基を導入してなるものを挙げることができる。 Next, as the adhesive acrylic polymer in which the energy curable functional group having a polymerizable double bond in the side chain is introduced in the adhesive (b), for example, the above-mentioned adhesive (a) is used. An active site such as —COOH, —NCO, epoxy group, —OH, —NH 2, etc. is introduced into the polymer chain of the adhesive acrylic polymer described in the above, and this active site reacts with a compound having a polymerizable double bond. And an energy-curable functional group having a polymerizable double bond introduced into the side chain of the adhesive acrylic polymer.
 粘着性アクリル系重合体に前記活性点を導入するには、該粘着性アクリル系重合体を製造する際に、-COOH、-NCO、エポキシ基、-OH、-NHなどの官能基と、重合性二重結合とを有する単量体又はオリゴマーを反応系に共存させればよい。 In order to introduce the active site into the adhesive acrylic polymer, when the adhesive acrylic polymer is produced, a functional group such as —COOH, —NCO, epoxy group, —OH, —NH 2 , A monomer or oligomer having a polymerizable double bond may be present in the reaction system.
 具体的には、前述の(a)の粘着剤において説明した粘着性アクリル系重合体を製造する際に、-COOH基を導入する場合には(メタ)アクリル酸などを、-NCO基を導入する場合には、(メタ)アクリロキシエチルイソシアネートなどを、エポキシ基を導入する場合には、グリシジル(メタ)アクリレートなどを、-OH基を導入する場合には、2-ヒドロキシエチル(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレートなどを、-NH基を導入する場合には、N-メチル(メタ)アクリルアミドなどを用いればよい。 Specifically, when the -acrylic polymer described in the above-mentioned pressure-sensitive adhesive (a) is produced, when introducing -COOH groups, (meth) acrylic acid or the like is introduced, and -NCO groups are introduced. (Meth) acryloxyethyl isocyanate, when introducing an epoxy group, glycidyl (meth) acrylate, etc., when introducing an —OH group, 2-hydroxyethyl (meth) acrylate. 1,6-hexanediol mono (meth) acrylate or the like, and N-methyl (meth) acrylamide or the like may be used when the —NH 2 group is introduced.
 これらの活性点と反応させる重合性二重結合を有する化合物としては、例えば(メタ)アクリロキシエチルイソシアネート、グリシジル(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレートなどの中から、活性点の種類に応じて、適宜選択して用いることができる。 Examples of the compound having a polymerizable double bond to be reacted with these active sites include (meth) acryloxyethyl isocyanate, glycidyl (meth) acrylate, pentaerythritol mono (meth) acrylate, dipentaerythritol mono (meth) acrylate, The trimethylolpropane mono (meth) acrylate can be appropriately selected and used depending on the type of active site.
 このようにして、粘着性アクリル系重合体の側鎖に、前記活性点を介して重合性二重結合を有するエネルギー硬化型官能基が導入されてなる粘着性アクリル系重合体が得られる。 In this way, an adhesive acrylic polymer is obtained in which an energy curable functional group having a polymerizable double bond is introduced into the side chain of the adhesive acrylic polymer via the active site.
 また、所望により用いられる重合開始剤としては、このエネルギー硬化型粘着剤が熱硬化型である場合には、前述の(a)の粘着剤の説明において例示した有機過酸化物やアゾ系化合物を用いることができる。一方、このエネルギー硬化型粘着剤がエネルギー線硬化型であって、エネルギー線として紫外線を用いる場合には、前述の(a)の粘着剤の説明において例示した光重合開始剤を用いることができる。 In addition, as a polymerization initiator used as desired, when the energy curable pressure sensitive adhesive is a thermosetting type, the organic peroxide or azo compound exemplified in the description of the pressure sensitive adhesive (a) is used. Can be used. On the other hand, when the energy curable pressure sensitive adhesive is energy ray curable and ultraviolet rays are used as the energy rays, the photopolymerization initiator exemplified in the description of the pressure sensitive adhesive (a) described above can be used.
 粘着剤層を構成する粘着剤においては、本発明の効果が損なわれない範囲で、所望により、架橋剤、粘着付与剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、充填剤などを添加することができる。 In the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, a crosslinking agent, a tackifier, an antioxidant, an ultraviolet absorber, a light stabilizer, a softener, a filler, etc., as desired, within a range where the effects of the present invention are not impaired. Can be added.
 前記架橋剤としては、例えばポリイソシアネート化合物、エポキシ樹脂、メラミン樹脂、尿素樹脂、ジアルデヒド類、メチロールポリマー、アジリジン系化合物、金属キレート化合物、金属アルコキシド、金属塩などが挙げられるが、粘着剤層の変色(黄変)に起因する光透過率の変化が起きにくい金属キレート化合物が好ましく用いられる。 Examples of the crosslinking agent include polyisocyanate compounds, epoxy resins, melamine resins, urea resins, dialdehydes, methylol polymers, aziridine compounds, metal chelate compounds, metal alkoxides, metal salts, and the like. A metal chelate compound in which a change in light transmittance due to discoloration (yellowing) hardly occurs is preferably used.
 ここで、ポリイソシアネート化合物の例としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネート、ヘキサメチレンジイソシアネートなどの脂肪族ポリイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネートなどの脂環式ポリイソシアネートなど、およびそれらのビウレット体、イソシアヌレート体、さらにはエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ヒマシ油などの低分子活性水素含有化合物との反応物であるアダクト体などを挙げることができる。また、金属キレート化合物としては、アルミキレート化合物などを挙げることができる。これらの架橋剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。架橋剤を含有させる場合には、その架橋反応の進行を促進するために有機金属化合物などからなる促進剤を含有させてもよい。 Examples of the polyisocyanate compound include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, and hydrogenated diphenylmethane diisocyanate. Polyisocyanates, etc., and biurets, isocyanurates, and adducts that are a reaction product of low molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, etc. Can be mentioned. Examples of the metal chelate compound include an aluminum chelate compound. These crosslinking agents may be used individually by 1 type, and may be used in combination of 2 or more type. When a crosslinking agent is included, an accelerator composed of an organometallic compound or the like may be included in order to promote the progress of the crosslinking reaction.
 粘着剤層の厚さは特に制限はないが、通常1~30μm程度、好ましくは2~20μmである。このような厚みであれば、光記録層との接着状態が良好となる。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is usually about 1 to 30 μm, preferably 2 to 20 μm. With such a thickness, the adhesive state with the optical recording layer is good.
(2)光記録層
 本発明の単位積層体が備える光記録層を構成する材料については、感光材料(光反応性成分)を含むものであればよく、特に制限されず、従来光記録媒体における光記録層の構成材料として知られている材料の中から任意のものを適宜選択して用いることができる。このような材料としては、例えば感光材料を単独で製膜したものやマトリクスを構成する材料に感光材料を含ませたものを挙げることができる。
(2) Optical recording layer The material constituting the optical recording layer provided in the unit laminate of the present invention is not particularly limited as long as it contains a photosensitive material (photoreactive component). Any material known as a constituent material of the optical recording layer can be appropriately selected and used. As such a material, for example, a material obtained by forming a photosensitive material alone or a material in which a photosensitive material is included in a material constituting a matrix can be cited.
 前記マトリクスを構成する材料は、無機材料であっても有機材料であってもよいが、当該単位積層体の製造の簡便さや、材料の選択肢の多さなどの点から、有機系の高分子材料が好ましい。この高分子材料はホモポリマーであってもコポリマーであってもよく、そのモノマーの種類、分子量、重合形態などについては特に制限はない。 The material constituting the matrix may be an inorganic material or an organic material. However, from the viewpoints of easy manufacture of the unit laminate and a large number of choices of materials, an organic polymer material is used. Is preferred. The polymer material may be a homopolymer or a copolymer, and there are no particular restrictions on the type of monomer, molecular weight, polymerization form, and the like.
 前記高分子材料の具体例としては、各種ポリエチレン、エチレン/1-ブテン共重合体、エチレン/4-メチル-1-ペンテン共重合体、エチレン/1-ヘキセン共重合体、ポリプロピレン、エチレン/プロピレン共重合体、プロピレン/1-ブテン共重合体、ポリ1-ブテン、1-ブテン/4-メチル-1-ペンテン共重合体、ポリ4-メチル-1-ペンテン、ポリ3-メチル-1-ブテン、エチレン/環状オレフィン共重合体、環状オレフィン系樹脂などのポリオレフィン類、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体またはその金属塩、ポリメチルメタクリレート、脂環式アクリル樹脂などのポリ(メタ)アクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂、ポリパーフルオロエチレン、パーフルオロアルケニルビニルエーテル重合体などのフッ素系樹脂、ポリスチレン、ポリビニルアルコール、ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルスルホン、ポリイミド、ポリフェニレンオキシド、オレフィン/N-置換マレイミド共重合体、アリルカーボネート樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂などが挙げられる。これらの高分子材料は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of the polymer material include various polyethylenes, ethylene / 1-butene copolymers, ethylene / 4-methyl-1-pentene copolymers, ethylene / 1-hexene copolymers, polypropylene, ethylene / propylene copolymers. Polymer, propylene / 1-butene copolymer, poly 1-butene, 1-butene / 4-methyl-1-pentene copolymer, poly 4-methyl-1-pentene, poly 3-methyl-1-butene, Polyolefins such as ethylene / cyclic olefin copolymers and cyclic olefin resins, ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers or metal salts thereof, polymethyl methacrylate, alicyclic acrylic resins and other poly ( Polyester resins such as (meth) acrylate, polyethylene terephthalate, polyethylene naphthalate, Fluoropolymers such as perfluoroethylene and perfluoroalkenyl vinyl ether polymers, polystyrene, polyvinyl alcohol, polycarbonate, polyphenylene sulfide, polyethersulfone, polyimide, polyphenylene oxide, olefin / N-substituted maleimide copolymer, allyl carbonate resin, epoxy Examples include acrylate resins and urethane acrylate resins. These polymer materials may be used alone or in combination of two or more.
 一方、感光材料は、前記のマトリクスに対して、主鎖あるいは側鎖成分として化学結合したものであってもよいし、単にマトリクス中に分散あるいは溶解していてもよい。この感光材料としては特に制限はないが、多光子吸収性材料が好ましく用いられる。 On the other hand, the photosensitive material may be chemically bonded as a main chain or side chain component to the matrix, or may be simply dispersed or dissolved in the matrix. Although there is no restriction | limiting in particular as this photosensitive material, A multiphoton absorptive material is used preferably.
 多光子吸収性材料とは、2つ以上の光子を同時に吸収し、励起状態へと遷移する性質を有する化合物を意味する。その中でも実用に十分な記録感度を得るという観点から、2光子吸収断面積が0.1GM以上の2光子吸収性材料を含むものが好ましく、特に100GM以上の2光子吸収性材料を含むものがさらに好ましい。このような材料としては、例えば多光子吸収性材料を単独で構成したものや、例えば多光子吸収性材料と、励起された多光子吸収性材料からのエネルギー移動によって変化を起こす他の反応性化合物とで構成したもの、これらを必要に応じマトリクスに配合した材料で構成してもよい。 The multi-photon absorbing material means a compound having a property of simultaneously absorbing two or more photons and transitioning to an excited state. Among these, from the viewpoint of obtaining recording sensitivity sufficient for practical use, those containing a two-photon absorbing material having a two-photon absorption cross-sectional area of 0.1 GM or more are preferable, and particularly those containing a two-photon absorbing material of 100 GM or more are further included. preferable. As such a material, for example, a multiphoton absorbing material constituted alone, or a multiphoton absorbing material, for example, and other reactive compounds that change due to energy transfer from the excited multiphoton absorbing material. You may comprise with the material comprised by these, and the material which mix | blended these with the matrix as needed.
 なお、前記「GM」は、10-50cm・s・molecule-1・photon-1を意味する。前記マトリクスを構成する材料は、無機材料であっても有機材料であってもよいが、単位積層体の製造の簡便さや、材料の選択肢の多さなどの点から、有機系の高分子材料が好ましい。この高分子材料はホモポリマーであってもコポリマーであってもよく、そのモノマーの種類、分子量、重合形態などについては特に制限はなく、例えば、ポリメチルメタクリレートなどが挙げられる。 The “GM” means 10 −50 cm 4 · s · molecule −1 · photon −1 . The material constituting the matrix may be an inorganic material or an organic material, but organic polymer materials are used from the standpoints of the ease of manufacturing the unit laminate and many choices of materials. preferable. The polymer material may be a homopolymer or a copolymer, and there are no particular restrictions on the type of monomer, molecular weight, polymerization form, and the like, and examples thereof include polymethyl methacrylate.
 前記多光子吸収性材料は、前記のマトリクスに対して、主鎖あるいは側鎖成分として化学結合したものであってもよいし、単にマトリクス中に分散あるいは溶解していてもよい。この多光子吸収性材料としては特に制限はなく、様々な化合物を用いることができる。例えば、シアニン化合物、スチリル化合物、ピリリウム化合物、チアピリリウム化合物、メロシアニン化合物、アリーリデン化合物、オキソノール化合物、スクアリウム化合物、アズレニウム化合物、クマリン化合物、ピラン化合物、キノン化合物、アントラキノン化合物、トリフェニルメタン化合物、ジフェニルメタン化合物、キサンテン化合物、チオキサンテン化合物、フェノチアジン化合物、アゾ化合物、アゾメチン化合物、フルオレノン化合物、ジアリールエテン化合物、スピロピラン化合物、フルギド化合物、ペリレン化合物、ポリエン化合物、ジフェニルアミン化合物、キナクドリン化合物、アズレニウム化合物、ポルフィリン化合物、フタロシアニン化合物、スチレン系化合物、フェニレンビニレン化合物、トリフェニルアミン系化合物、カルバゾール系化合物などの化合物が挙げられる。 The multiphoton absorbing material may be chemically bonded as a main chain or side chain component to the matrix, or may be simply dispersed or dissolved in the matrix. The multiphoton absorbing material is not particularly limited, and various compounds can be used. For example, cyanine compounds, styryl compounds, pyrylium compounds, thiapyrylium compounds, merocyanine compounds, arylidene compounds, oxonol compounds, squalium compounds, azurenium compounds, coumarin compounds, pyran compounds, quinone compounds, anthraquinone compounds, triphenylmethane compounds, diphenylmethane compounds, xanthenes Compound, thioxanthene compound, phenothiazine compound, azo compound, azomethine compound, fluorenone compound, diarylethene compound, spiropyran compound, fulgide compound, perylene compound, polyene compound, diphenylamine compound, quinacdrine compound, azurenium compound, porphyrin compound, phthalocyanine compound, styrene series Compound, phenylene vinylene compound, triphenylamine System compound, compounds such as carbazole-based compounds.
 このような多光子吸収性化合物を用いて記録する方式としては、例えば、アゾ基やC=C基、C=N基含有化合物のように光によって異性化する材料や、(メタ)アクリレート化合物のように光によって重合反応を起こす材料、有機フォトクロミック材料のように光によって可逆的な構造変化を起こす材料、光によって電荷分布が起こる有機リフラクティブ材料などを用いて屈折率変調を読み取る方式や、光によって蛍光特性が変化する材料を用いて蛍光を読み取る方式、光によって酸を発生する材料と酸発色性化合物の組み合わせや、消色剤と消色性化合物を組み合わせて、吸収率変調や屈折率変調を読み取る方式などが挙げられる。これらの記録方式において、多光子吸収性化合物自身が、このような光反応性を有していても良いし、多光子吸収によって励起された多光子吸収性化合物から、他の反応性化合物へのエネルギー移動によって反応を起こしても良い。 As a recording method using such a multiphoton absorbing compound, for example, a material isomerized by light such as an azo group, a C═C group, or a C═N group-containing compound, or a (meth) acrylate compound For example, a material that causes a polymerization reaction by light, a material that causes a reversible structural change by light, such as an organic photochromic material, a method that reads refractive index modulation using an organic refractory material in which charge distribution is caused by light, A method of reading fluorescence using a material whose fluorescence characteristics change, a combination of a material that generates an acid by light and an acid-chromogenic compound, and a combination of a decolorizer and a decolorizable compound to perform absorption rate modulation and refractive index modulation. Examples include reading methods. In these recording methods, the multiphoton absorbing compound itself may have such photoreactivity, or from the multiphoton absorbing compound excited by multiphoton absorption to another reactive compound. The reaction may be caused by energy transfer.
 光記録層の厚さは、光記録機能を発揮できる限り限定されない。通常、1~5000nm程度とされ、好ましくは10~4000nmである。 The thickness of the optical recording layer is not limited as long as the optical recording function can be exhibited. Usually, the thickness is about 1 to 5000 nm, preferably 10 to 4000 nm.
 本実施形態に係る単位積層体は、必要に応じて、該単位積層体を補強するための層、多層光記録媒体内部に位置情報を設けるために記録ピットおよび/またはグルーブとして表面に凹凸を有する位置情報付与層、さらには光導波層、反射層、誘電体層等の粘着剤層および光記録層以外の層を備えてもよい。本実施形態においてこうした粘着剤層および光記録層以外の層を「他の層」と総称する。 The unit laminate according to the present embodiment has irregularities on the surface as recording pits and / or grooves for providing positional information inside the multilayer optical recording medium, as necessary, for reinforcing the unit laminate. A layer other than the position information imparting layer, and an adhesive layer such as an optical waveguide layer, a reflective layer, and a dielectric layer and an optical recording layer may be provided. In the present embodiment, such layers other than the pressure-sensitive adhesive layer and the optical recording layer are collectively referred to as “other layers”.
(3)硬質層
 本実施形態において「硬質層」とは、当該硬質層を構成する材料のガラス転移温度Tgが25℃以上であることを意味する。光記録層をより安定的に保護する観点から、ガラス転移温度Tgは30℃以上であることが好ましく、35℃以上であることがさらに好ましい。
(3) Hard layer In this embodiment, "hard layer" means that the glass transition temperature Tg of the material which comprises the said hard layer is 25 degreeC or more. From the viewpoint of more stably protecting the optical recording layer, the glass transition temperature Tg is preferably 30 ° C. or higher, and more preferably 35 ° C. or higher.
 硬質層のガラス転移温度Tgの上限は特に限定されないが、組成によっては製造の過程での収縮の程度が大きくなったりすることもあるため、ガラス転移温度Tgは400℃以下であることが好ましく、350℃以下であることがさらに好ましい。なお、硬質層は貯蔵弾性率が10Pa以上であることが好ましく、10Pa以上であることがより好ましい。また、硬質層は貯蔵弾性率が1012Pa以下であることが好ましく、1011Pa以下であることが好ましい。 The upper limit of the glass transition temperature Tg of the hard layer is not particularly limited, but the glass transition temperature Tg is preferably 400 ° C. or lower because the degree of shrinkage during the production process may increase depending on the composition. More preferably, it is 350 degrees C or less. The hard layer preferably has a storage elastic modulus of 10 7 Pa or more, and more preferably 10 8 Pa or more. The hard layer preferably has a storage elastic modulus of 10 12 Pa or less, and preferably 10 11 Pa or less.
 硬質層を構成する材料は特に限定されない。以下、粘着剤層および光記録層以外の層状体(他の層)であって、単位積層体の補強目的で設けられた硬質層を「支持層」ともいう。 The material constituting the hard layer is not particularly limited. Hereinafter, a layered body (other layers) other than the pressure-sensitive adhesive layer and the optical recording layer, which is a hard layer provided for the purpose of reinforcing the unit laminate, is also referred to as a “support layer”.
 粘着剤層を構成する材料とは異なる材料から構成される硬質層として、樹脂フィルムからなるものが例示される。そのような硬質層を与える樹脂として、ポリ塩化ビニル(Tg:87℃)、ポリスチレン(Tg:100℃)、ポリアミド6(Tg:50℃)、ポリカーボネート(Tg:150℃)、ポリフェニレンスルフィド(Tg:126℃)、ポリエーテルサルホン(Tg:230℃)、ポリアミドイミド(Tg:275℃)、ポリ乳酸(Tg:57℃)、ポリテトラフルオロエチレン(Tg:126℃)、ポリフッ化ビニリデン(Tg:35℃)、ポリブチレンテレフタレート(Tg:50℃)、ポリエチレンテレフタレート(Tg:69℃)、ポリメチルメタクリレート(Tg:100℃)、ポリサルホン(Tg:180℃)、ポリアリレート(Tg:190℃)などが例示される。また、硬質層は、公知のエネルギー線硬化型共重合体等の材料から形成されていてもよい。なお、こうした材料を含む硬質層は、後述するカバー層の構成要素の一つとされる場合もある。 Examples of the hard layer made of a material different from the material constituting the pressure-sensitive adhesive layer include those made of a resin film. As a resin for providing such a hard layer, polyvinyl chloride (Tg: 87 ° C.), polystyrene (Tg: 100 ° C.), polyamide 6 (Tg: 50 ° C.), polycarbonate (Tg: 150 ° C.), polyphenylene sulfide (Tg: 126 ° C.), polyethersulfone (Tg: 230 ° C.), polyamideimide (Tg: 275 ° C.), polylactic acid (Tg: 57 ° C.), polytetrafluoroethylene (Tg: 126 ° C.), polyvinylidene fluoride (Tg: 35 ° C), polybutylene terephthalate (Tg: 50 ° C), polyethylene terephthalate (Tg: 69 ° C), polymethyl methacrylate (Tg: 100 ° C), polysulfone (Tg: 180 ° C), polyarylate (Tg: 190 ° C), etc. Is exemplified. The hard layer may be formed of a material such as a known energy beam curable copolymer. In addition, the hard layer containing such a material may be one of the components of the cover layer described later.
 単位積層体における粘着剤層および光記録層、さらに必要に応じ設けられる他の層のそれぞれの配置関係も任意である。粘着剤層と光記録層とが積層されてなる単位積層体が、単位積層体の中で最も単純な構成のものである。単位積層体が他の層を備える場合、他の層が粘着剤層と光記録層との間に積層されていてもよいし、光記録層の粘着剤層に対向する側と反対側の面に積層されていてもよい。単位積層体に複数の他の層が積層されていてもよい。単位積層体は、少なくとも一方の最外層に粘着剤層が位置することが好ましい。 The arrangement relationship of the pressure-sensitive adhesive layer and the optical recording layer in the unit laminate and other layers provided as necessary is also arbitrary. A unit laminate formed by laminating an adhesive layer and an optical recording layer has the simplest configuration among unit laminates. When the unit laminate includes another layer, the other layer may be laminated between the pressure-sensitive adhesive layer and the optical recording layer, or the surface opposite to the side facing the pressure-sensitive adhesive layer of the optical recording layer It may be laminated. A plurality of other layers may be laminated on the unit laminate. In the unit laminate, the pressure-sensitive adhesive layer is preferably located in at least one outermost layer.
 単位積層体がとりうる構成の具体例を示せば、次のような構成が挙げられる。
 ・記録層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、記録層、粘着剤層の順番に配置された単位積層体
 ・記録層、他の層、粘着剤層の順番に配置された単位積層体
 ・他の層、記録層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、記録層、他の層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、他の層、記録層、粘着剤層の順番に配置された単位積層体
If the specific example of the structure which a unit laminated body can take is shown, the following structures will be mentioned.
-Unit laminate arranged in order of recording layer, adhesive layer-Unit laminate arranged in order of adhesive layer, recording layer, adhesive layer-In order of recording layer, other layers, adhesive layer Arranged unit laminates-Unit laminates arranged in the order of other layers, recording layers, adhesive layers-Unit laminates arranged in the order of adhesive layers, recording layers, other layers, adhesive layers -Unit laminate arranged in the order of pressure-sensitive adhesive layer, other layers, recording layer, pressure-sensitive adhesive layer
 さらに、単位積層体が他の層として、支持層を備える場合の具体例を示せば、次のような構成が挙げられる。
 ・支持層、記録層、支持層、粘着剤層の順番に配置された単位積層体
 ・記録層、支持層、記録層、粘着剤層の順番に配置された単位積層体
 ・記録層、支持層、粘着剤層、記録層、粘着剤層の順番に配置された単位積層体
 ・記録層、支持層、粘着剤層の順番に配置された単位積層体
 ・支持層、記録層、粘着剤層の順番に配置された単位積層体
 ・支持層、記録層、支持層、記録層、粘着剤層、の順番に配置された単位積層体
 ・粘着剤層、支持層、記録層、支持層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、記録層、支持層、記録層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、記録層、支持層、粘着剤層、記録層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、記録層、支持層、粘着剤層の順番に配置された単位積層体
 ・粘着剤層、支持層、記録層、支持層、記録層、粘着剤層の順番に配置された単位積層体
Furthermore, if the specific example in case a unit laminated body is equipped with a support layer as another layer is shown, the following structures will be mentioned.
-Unit laminate arranged in order of support layer, recording layer, support layer, adhesive layer-Unit laminate arranged in order of recording layer, support layer, recording layer, adhesive layer-Recording layer, support layer , Unit laminate arranged in the order of pressure-sensitive adhesive layer, recording layer, and pressure-sensitive adhesive layer. Unit laminate arranged in order of recording layer, support layer, and pressure-sensitive adhesive layer. Unit laminates arranged in order-Support layer, recording layer, support layer, recording layer, adhesive layer, unit laminates arranged in order-Adhesive layer, support layer, recording layer, support layer, adhesive Unit laminate arranged in the order of layers-Unit laminate arranged in the order of adhesive layer, recording layer, support layer, recording layer, adhesive layer-Adhesive layer, recording layer, support layer, adhesive layer , Unit laminated body arranged in order of recording layer, adhesive layer ・ Unit arranged in order of adhesive layer, recording layer, support layer, adhesive layer Sotai-sensitive adhesive layer, the support layer, the recording layer, the support layer, a recording layer, are arranged in order of an adhesive layer the unit laminate
(4)剥離材
 単位積層体には、使用時(貼付工程)まで、粘着剤層側の面に限らず、記録層等の表面を保護するための部材として、又は、粘着剤層、記録層等のそれぞれの層を製膜するためのキャリアとして、剥離材が設けられていてもよい。剥離材は剥離性を有する限り任意であって、かかる剥離性を有する各種の合成樹脂フィルムを剥離材として使用することができる。具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリメチルペンテンフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリフェニレンスルフィドフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッ素樹脂フィルム、ポリアミドフィルム、アクリル樹脂フィルム、ノルボルネン系樹脂フィルム、シクロオレフィン樹脂フィルム、酢酸セルロース樹脂等を挙げることができる。剥離材の厚さは特に限定されないが、通常、5~500μm、好ましくは、10~200μmである。
(4) Release material The unit laminate is not limited to the surface on the pressure-sensitive adhesive layer side, but as a member for protecting the surface of the recording layer or the like, or the pressure-sensitive adhesive layer and the recording layer until use (pasting step) A release material may be provided as a carrier for forming the respective layers. The release material is optional as long as it has peelability, and various synthetic resin films having such peelability can be used as the release material. Specifically, polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene Film, polycarbonate film, polymethylpentene film, polysulfone film, polyetheretherketone film, polyethersulfone film, polyphenylene sulfide film, polyetherimide film, polyimide film, fluororesin film, polyamide film, acrylic resin film, norbornene resin Film, cycloolefin resin film, cellulose acetate Mention may be made of the butter, and the like. The thickness of the release material is not particularly limited, but is usually 5 to 500 μm, preferably 10 to 200 μm.
 また、剥離材は、剥離材における基材に対して、剥離材の剥離面側に相当する側の面に剥離処理を行って得られるものでもよい。その場合の基材として上記の樹脂フィルムが例示され、さらに、上質紙など紙系の材料からなるものも例示される。剥離処理としては、シリコーン系剥離剤、ポリブタジエン系剥離剤、フッ素樹脂系剥離剤、アルキド系剥離剤など公知の剥離剤を、基材の少なくとも一方の面に塗布する方法が挙げられる。剥離剤を塗布して得られる剥離剤層の厚さは特に限定されず、所望により設定すればよいが、通常0.05~50μmである。また、剥離剤を塗布する前の基材の被処理面には、剥離剤層との密着性を向上させるために、例えばコロナ放電処理、プラズマ放電処理、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線照射処理などを施してもよい。 Further, the release material may be obtained by subjecting the base material of the release material to a release treatment on the surface corresponding to the release surface side of the release material. In this case, the resin film is exemplified as the base material, and further, a material made of a paper material such as fine paper is also exemplified. Examples of the release treatment include a method in which a known release agent such as a silicone release agent, a polybutadiene release agent, a fluororesin release agent, or an alkyd release agent is applied to at least one surface of a substrate. The thickness of the release agent layer obtained by applying the release agent is not particularly limited and may be set as desired, but is usually 0.05 to 50 μm. Moreover, in order to improve the adhesiveness with the release agent layer on the surface to be processed before applying the release agent, for example, corona discharge treatment, plasma discharge treatment, chromic acid treatment, flame treatment, hot air treatment, Ozone / ultraviolet irradiation treatment or the like may be performed.
 剥離材の剥離力は10~700mN/25mmが好ましい。剥離力がこの範囲にあると、単位積層体に過度の変形を与えることなく、その粘着剤層側の面を表出させることができ、作業性を高める観点から好ましい。より好ましい剥離力は30~500mN/25mmである。 The peeling force of the release material is preferably 10 to 700 mN / 25 mm. When the peeling force is within this range, the pressure-sensitive adhesive layer side surface can be exposed without excessively deforming the unit laminate, which is preferable from the viewpoint of improving workability. A more preferable peeling force is 30 to 500 mN / 25 mm.
 なお、単位積層体における光記録層および各粘着剤層の厚み精度、ならびに取扱い性などの点から、単位積層体をその両面に上記の剥離材が貼付された状態で製造し、使用時にこれらの剥離材を適宜剥離することが好ましい。
 また、当該剥離材の剥離面にはフィラーが存在しないことが好ましい。
In addition, from the viewpoint of the thickness accuracy of the optical recording layer and each pressure-sensitive adhesive layer in the unit laminate, and handling properties, the unit laminate is produced with the release material attached on both sides thereof, and these are used during use. It is preferable to peel the release material as appropriate.
Moreover, it is preferable that a filler does not exist in the peeling surface of the said peeling material.
(5)単位積層体の製造方法
 単位積層体の製造方法は特に限定されない。単位積層体を構成する各層を、適宜積層していけばよい。各層の積層方法も特に限定されず、いわゆるウエットプロセスで形成してもよいし、いわゆるドライプロセスで形成してもよい。
(5) Manufacturing method of unit laminated body The manufacturing method of a unit laminated body is not specifically limited. What is necessary is just to laminate | stack suitably each layer which comprises a unit laminated body. The method for laminating the layers is not particularly limited, and the layers may be formed by a so-called wet process or a so-called dry process.
 以下、単位積層体を備える積層体の製造方法の一例として、図1に示される単位積層体11の製造方法を説明する。 Hereinafter, as an example of a method for producing a laminate including a unit laminate, a method for producing the unit laminate 11 shown in FIG. 1 will be described.
 図1に示される単位積層体11は、1層の光記録層1と1層の粘着剤層2とからなる積層体であり、この単位積層体11の双方の面には、第1の剥離材3および第2の剥離材4が設けられている。 The unit laminate body 11 shown in FIG. 1 is a laminate composed of one optical recording layer 1 and one adhesive layer 2, and a first release layer is formed on both sides of the unit laminate body 11. A material 3 and a second release material 4 are provided.
 単位積層体11を製造する方法としては特に制限はないが、図1に示す層構成の単位積層体11を製造する方法の具体例として、例えば以下に示す方法を用いることができる。 Although there is no restriction | limiting in particular as a method of manufacturing the unit laminated body 11, As a specific example of the method of manufacturing the unit laminated body 11 of the layer structure shown in FIG. 1, the method shown below can be used, for example.
 まず、第1の剥離材3の剥離面上に、光記録層形成材料を適当な濃度で含む塗工液を、公知の塗布手段、例えばナイフコート法、ロールコート法、バーコート法、ブレードコート法、ダイコート法、グラビアコート法などにより、乾燥塗膜の厚さが所定の厚さになるように塗布、乾燥して光記録層1を形成させ、光記録層1と第1の剥離材3とからなる第1の積層体を作製する。 First, a coating liquid containing an optical recording layer forming material at an appropriate concentration is applied to the release surface of the first release material 3 by a known application means such as knife coating, roll coating, bar coating, blade coating. The optical recording layer 1 is formed by coating and drying so that the thickness of the dry coating film becomes a predetermined thickness by a method, a die coating method, a gravure coating method, etc., and the optical recording layer 1 and the first release material 3 are formed. The 1st laminated body which consists of these is produced.
 一方、第2の剥離材4の剥離面に、粘着剤層2を形成するための塗工液(溶媒は粘着剤層の成分により適宜設定される。)を、公知の方法、例えばナイフコート法、ロールコート法、バーコート法、ブレードコート法、ダイコート法、グラビアコート法などにより、乾燥塗膜の厚さが所定の厚さになるように塗布、乾燥して、粘着剤層2と第2の剥離材4とからなる第2の積層体を作製する。 On the other hand, a coating solution for forming the pressure-sensitive adhesive layer 2 on the release surface of the second release material 4 (the solvent is appropriately set according to the components of the pressure-sensitive adhesive layer) is applied to a known method such as a knife coating method. The pressure-sensitive adhesive layer 2 and the second adhesive layer 2 are coated by a roll coating method, a bar coating method, a blade coating method, a die coating method, a gravure coating method, etc. The 2nd laminated body which consists of this peeling material 4 is produced.
 次に、第2の積層体の粘着剤層2側の面と、第1の積層体の光記録層1側の面とを貼合し、得られた第1の積層体と第2の積層体との積層体をゴムロールなどで圧着することにより、剥離材3および剥離材4が設けられた図1に示す構成の単位積層体11が得られる。 Next, the surface on the pressure-sensitive adhesive layer 2 side of the second laminate and the surface on the optical recording layer 1 side of the first laminate are bonded together, and the obtained first laminate and second laminate are obtained. The unit laminate 11 having the structure shown in FIG. 1 provided with the release material 3 and the release material 4 is obtained by pressure-bonding the laminate with the body with a rubber roll or the like.
2.多層光記録媒体
 本実施形態に係る多層光記録媒体は、上記単位積層体が、基板の一方の面に複数積層され、さらに、基板から最も遠位側に積層された単位積層体にカバー層が形成されてなる積層構造体を備えるものである。具体的には、多層光記録媒体20は、図2に示されるように、上記の単位積層体の複数、すなわち、単位積層体11-1、単位積層体11-2、・・・、単位積層体11-(n-1)、単位積層体11-nが、基板12の一方の面に複数積層され、さらに、基板12から最も遠位側(図1では上側)に積層された単位積層体11-nにカバー層13が積層されてなる積層構造体14を、基本構造として備える。図2に示されるように、積層構造体14がそのまま多層光記録媒体20を構成する場合もあれば、例えば、この積層構造体14の一方の面に印刷層が形成されるなどによって、多層光記録媒体20が得られる場合もある。あるいは、後述するように、積層構造体14を構成する部材(単位積層体、カバー層など)に対して切断加工を施すことによって、多層光記録媒体20が得られる場合もある。
2. Multilayer optical recording medium In the multilayer optical recording medium according to the present embodiment, a plurality of the above unit laminates are laminated on one surface of the substrate, and a cover layer is provided on the unit laminate laminated most distally from the substrate. A laminated structure formed is provided. Specifically, as shown in FIG. 2, the multilayer optical recording medium 20 includes a plurality of unit laminates, that is, a unit laminate 11-1, a unit laminate 11-2,. A plurality of unit laminate bodies 11- (n-1) and unit laminate bodies 11-n are laminated on one surface of the substrate 12, and further laminated on the most distal side (upper side in FIG. 1) from the substrate 12. A laminated structure 14 in which a cover layer 13 is laminated on 11-n is provided as a basic structure. As shown in FIG. 2, in some cases, the multilayer structure 14 directly constitutes the multilayer optical recording medium 20, or for example, by forming a printing layer on one surface of the multilayer structure 14, the multilayer optical The recording medium 20 may be obtained. Alternatively, as will be described later, the multilayer optical recording medium 20 may be obtained by cutting the members (unit laminate, cover layer, etc.) constituting the laminated structure 14.
 なお、図2に示される積層構造体14は、これが備える単位積層体11-1から単位積層体11-nはいずれも光記録層1および粘着剤層2からなるが、これに限定されない。単位積層体は前述のような様々な構成を取りうるものであり、積層構造体14に、異なる構成を備える単位積層体が含まれていてもよい。例えば、単位積層体11-1から単位積層体11-nが、光記録層1および粘着剤層2からなる構成を備える単位積層体と、支持層および光記録層1および粘着剤層2からなる構成を備える単位積層体であり、これらが積層しているものであってもよく、積層する順序は、目的とする積層構造体に応じて適宜選択すればよい。 In the laminated structure 14 shown in FIG. 2, each of the unit laminated body 11-1 to the unit laminated body 11-n included in the laminated structure 14 includes the optical recording layer 1 and the pressure-sensitive adhesive layer 2, but is not limited thereto. The unit laminate can take various configurations as described above, and the laminate structure 14 may include unit laminates having different configurations. For example, the unit laminate body 11-1 to the unit laminate body 11-n are composed of a unit laminate body having a configuration composed of the optical recording layer 1 and the pressure-sensitive adhesive layer 2, and a support layer, the optical recording layer 1 and the pressure-sensitive adhesive layer 2. It is a unit laminated body provided with a structure, and these may be laminated | stacked, and what is necessary is just to select the order which laminates | stacks suitably according to the target laminated structure.
(1)基板
 本実施形態に係る多層光記録媒体20が備える基板12の具体的な形状や組成は、目的とする多層光記録媒体20に応じて適宜設定されるべきものである。例えば、材質としてポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリオレフィン類の樹脂系材料が挙げられる。また、厚さが数十~数百μmであって主面側から見たときの形状が、主面の中心部に厚さ方向の貫通孔を有するドーナッツ形状を有しているいわゆる光ディスク形状が挙げられる。
(1) Substrate The specific shape and composition of the substrate 12 included in the multilayer optical recording medium 20 according to the present embodiment should be appropriately set according to the target multilayer optical recording medium 20. Examples of the material include polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and polyolefin resin materials. Further, there is a so-called optical disc shape having a donut shape having a through hole in the thickness direction at the center of the main surface when viewed from the main surface side with a thickness of several tens to several hundred μm. Can be mentioned.
 基板12は一種類の部材から構成されていてもよいし、複数の部材から構成されていてもよい。例えば、上記の樹脂系材料からなるシート状の部材が複数貼り合わされたものであってもよい。 The substrate 12 may be composed of one type of member or a plurality of members. For example, a plurality of sheet-like members made of the above resin materials may be bonded together.
(2)カバー層
 本実施形態に係る多層光記録媒体20が備えるカバー層13を構成する材料は特に制限されず、従来、光記録媒体のカバー層の中から適宜選択して用いることができる。その材質として、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリオレフィン類のプラスチックフィルム(以下、プラスチックフィルムという)が例示される。このプラスチックフィルムの厚さは、特に制限はないが、通常20~600μm程度、好ましくは20~150μmである。なお、プラスチックフィルムは、無延伸のもの、延伸処理後応力緩和処理がなされたものなど、内部に残留する応力が少ないものであることが、カバー層13に付与した外力と、積層構造体14の一部として積層された状態にあるカバー層13が有する内部応力の主面内方向成分との相関が高まり、好ましい。
(2) Cover layer The material which comprises the cover layer 13 with which the multilayer optical recording medium 20 which concerns on this embodiment is equipped is not restrict | limited, Conventionally, it can select from the cover layer of an optical recording medium suitably, and can be used. Examples of the material include polymethyl methacrylate, polycarbonate, polyethylene terephthalate, and polyolefin plastic films (hereinafter referred to as plastic films). The thickness of the plastic film is not particularly limited, but is usually about 20 to 600 μm, preferably 20 to 150 μm. It should be noted that the plastic film is a non-stretched film or a film that has undergone a stress relaxation process after the stretching process, such that the stress remaining in the interior is small, and the external force applied to the cover layer 13 and the laminated structure 14 The correlation with the in-plane direction component of the internal stress of the cover layer 13 in a state of being laminated as a part is preferable, which is preferable.
 カバー層13は、一種類の部材から構成されていてもよいし、複数の部材から構成されていてもよい。例えば、上記のプラスチックフィルムが複数枚積層されたものであってもよい。あるいは、カバー層13における単位積層体11に対向する側の面に粘着剤層が設けられていてもよく、前述の硬質層を備えていてもよい。なお、図2(a)に示される積層構造体14では、カバー層13はそのような粘着剤層を備えずに、単位積層体11の粘着剤層2側の面に積層されている場合について示している。図2(b)に示されるようにカバー層13に粘着剤層15が積層されている場合には、粘着剤層15の保管安定性等の観点から、積層構造体14の一部として積層されるまでは、カバー層13と粘着剤層15との積層体における粘着剤層15側の面に剥離材が貼付されていてもよい。 The cover layer 13 may be composed of one type of member or a plurality of members. For example, a plurality of the above plastic films may be laminated. Or the adhesive layer may be provided in the surface on the side facing the unit laminated body 11 in the cover layer 13, and the above-mentioned hard layer may be provided. In the laminated structure 14 shown in FIG. 2A, the cover layer 13 is not provided with such an adhesive layer and is laminated on the surface of the unit laminate 11 on the adhesive layer 2 side. Show. When the pressure-sensitive adhesive layer 15 is laminated on the cover layer 13 as shown in FIG. 2B, it is laminated as a part of the laminated structure 14 from the viewpoint of storage stability of the pressure-sensitive adhesive layer 15. Until that time, a release material may be attached to the surface of the laminate of the cover layer 13 and the pressure-sensitive adhesive layer 15 on the pressure-sensitive adhesive layer 15 side.
 なお、図2(a)に示される積層構造体14では、最下層となる単位積層体11-1が、粘着剤層15を介して、その光記録層1側の面を対向させるように基板12に積層されている。本実施形態に係る積層構造体14の単位積層体11-1と基板12との関係はこれに限定されない。例えば、図2(b)に示されるように、基板12に対して、単位積層体11-1が、その粘着剤層2側の面を対向させるように基板12に積層され、単位積層体11-1は自らの構成要素の一つである粘着剤層2に基づく粘着力によって基板12に対して固定されていてもよい。この場合は、基板12から最も遠位側に積層された単位積層体11-nには、粘着剤層15を介してカバー層13が積層されている。 In the laminated structure 14 shown in FIG. 2 (a), the unit laminated body 11-1 as the lowermost layer is placed on the substrate so that the surface on the optical recording layer 1 side faces the adhesive layer 15 therebetween. 12 are laminated. The relationship between the unit laminated body 11-1 and the substrate 12 of the laminated structure 14 according to the present embodiment is not limited to this. For example, as shown in FIG. 2B, the unit laminate 11-1 is laminated on the substrate 12 so that the surface on the pressure-sensitive adhesive layer 2 side faces the substrate 12, and the unit laminate 11 -1 may be fixed to the substrate 12 by an adhesive force based on the adhesive layer 2 which is one of its constituent elements. In this case, the cover layer 13 is laminated on the unit laminated body 11-n laminated on the most distal side from the substrate 12 via the adhesive layer 15.
3.多層光記録媒体の製造方法
 本実施形態に係る多層光記録媒体の製造方法は、基板12上に、単位積層体11を複数枚積層し、最後にカバー層13を積層する方法を基本的なプロセス(以下、「順次積層プロセス」という。)とし、この点では従来技術に係る多層光記録媒体の製造方法と共通する。
3. Multilayer Optical Recording Medium Manufacturing Method A multilayer optical recording medium manufacturing method according to this embodiment is a basic process in which a plurality of unit laminates 11 are laminated on a substrate 12 and finally a cover layer 13 is laminated. (Hereinafter referred to as “sequential stacking process”), and in this respect, is common to the method for manufacturing a multilayer optical recording medium according to the prior art.
 しかしながら、従来、この順次積層プロセスによって多層光記録媒体を製造すると、得られる多層光記録媒体またはその製造過程の積層構造体の主面方向の残留応力に起因して、多層光記録媒体またはその製造過程の積層構造体が反ってしまう場合があった。 However, conventionally, when a multilayer optical recording medium is produced by this sequential lamination process, the multilayer optical recording medium or the production thereof is caused by the residual stress in the main surface direction of the obtained multilayer optical recording medium or the laminated structure in the production process. The laminated structure in the process sometimes warps.
 この反りの問題を解決するために、本実施形態に係る多層光記録媒体の製造方法は順次積層プロセスにおいて、次に説明する積層工程を備えることとしている。 In order to solve the problem of warping, the multilayer optical recording medium manufacturing method according to this embodiment includes a stacking process described below in a sequential stacking process.
 本実施形態に係る製造方法を説明するにあたり、ここで、図3を用いて用語の定義を行う。
 図3は、基板12とその一方の面に積層された3つの単位積層体11-1、11-2および11-3とからなる構造体に、4つ目の単位積層体11-4を積層する工程の途中の状態を概念的に示した断面図である。
In describing the manufacturing method according to the present embodiment, terms are defined here with reference to FIG.
FIG. 3 shows a fourth unit laminate 11-4 laminated on a structure composed of a substrate 12 and three unit laminates 11-1, 11-2 and 11-3 laminated on one surface thereof. It is sectional drawing which showed the state in the middle of the process to do notionally.
(被着構造体)
 本実施形態において、基板12と少なくとも一つの単位積層体11とを備える構造体を被着構造体31といい、図3では、基板12と単位積層体11-1、11-2および11-3とからなる構造体が被着構造体31となる。また、被着構造体31における基板12から最も遠位側にある単位積層体11を被着積層体32といい、図3では単位積層体11-3が被着積層体32となる。
 また、被着構造体31はその被着積層体32側の面に剥離材(図示せず)が積層されていてもよい。この場合には、被着構造体31からその剥離材を剥離して被着積層体32の一方の面32aを表出させ、その面32aと付設層状体33の一方の面33bとを貼合することによって、付設層状体33を被着構造体31に貼付することができる。このように被着構造体31が剥離材を有することで、被着積層体32の一方の面32aを保護することができる。
(Adhering structure)
In the present embodiment, a structure including the substrate 12 and at least one unit laminate 11 is referred to as an adherend structure 31, and in FIG. 3, the substrate 12 and the unit laminates 11-1, 11-2, and 11-3 The structure consisting of the above becomes the adherend structure 31. In addition, the unit laminated body 11 located on the most distal side from the substrate 12 in the adherend structure 31 is referred to as an adherent laminate 32. In FIG.
In addition, the adherend structure 31 may have a release material (not shown) laminated on the surface on the adherend laminate 32 side. In this case, the release material is peeled off from the adherend structure 31 to expose one surface 32a of the adherend laminate 32, and the surface 32a and one surface 33b of the attached layered body 33 are bonded together. By doing so, the attached layered body 33 can be attached to the adherend structure 31. As described above, since the adherend structure 31 includes the release material, the one surface 32a of the adherend laminate 32 can be protected.
(付設層状体)
 被着積層体32に積層される単位積層体を付設層状体33といい、図3では単位積層体11-4が付設層状体33となる。
 図示はしていないが、付設層状体33は被着積層体32に積層されるべき層状体であるから、付設層状体33がカバー層となる場合もある。さらに、カバー層(粘着剤層を備える場合もあることは前述のとおりである。)に少なくとも一つの単位積層体が積層してなるものであってもよい。また、付設層状体33は単位積層体が複数積層されたものでもよい。この場合に、積層される複数の単位積層体は、同一であってもよいし、互いに異なっていてもよい。
(Attached layered body)
The unit laminated body laminated on the adherend laminated body 32 is called an attached layered body 33, and the unit laminated body 11-4 becomes the attached layered body 33 in FIG.
Although not shown, since the attached layered body 33 is a layered body to be laminated on the adherend laminated body 32, the attached layered body 33 may be a cover layer. Further, at least one unit laminated body may be laminated on a cover layer (which may include an adhesive layer as described above). Further, the attached layered body 33 may be formed by stacking a plurality of unit laminated bodies. In this case, the plurality of unit laminates to be laminated may be the same or different from each other.
 付設層状体33の形状は特に限定されない。図3に示されるように基板12に対応した形状であってもよいし、図4や図5に示されるように長尺の形状を有してもよい。付設層状体33が長尺である場合には、付設層状体33を被着積層体32に積層した後、基板12に対応した形状に切断加工すればよい。 The shape of the attached layered body 33 is not particularly limited. The shape may correspond to the substrate 12 as shown in FIG. 3, or may have a long shape as shown in FIG. 4 or FIG. When the attached layered body 33 is long, the attached layered body 33 may be cut into a shape corresponding to the substrate 12 after being laminated on the adherend laminate 32.
 なお、図3においては、単位積層体11-1~11-4は、いずれも光記録層1および粘着剤層2からなるが、単位積層体は前述のような様々な構成を取りうるものであり、これに限定されない。 In FIG. 3, each of the unit laminate bodies 11-1 to 11-4 includes the optical recording layer 1 and the pressure-sensitive adhesive layer 2. However, the unit laminate body can take various configurations as described above. Yes, it is not limited to this.
 また、付設層状体33は、付設層状体33の少なくとも一方の面に剥離材(図3では剥離材34、35)が積層されていてもよい。このように付設層状体33が剥離材を有することで、付設層状体33の取り扱い性が向上し、その汚染や、被着積層体32に対して積層した後に付設層状体33が剥離する可能性を低減させることができる。この場合には、積層工程において被着積層体32に対向する側の面に近位な剥離材(図3では剥離材34)を剥離して、単位積層体11-4における被着積層体32に対向する側の面33bを表出させ、その面33bと被着積層体32における基板12と反対側の面32aとを貼合することによって、付設層状体33を被着積層体32に貼付することができる。 Further, the attached layered body 33 may be formed by laminating release materials (release materials 34 and 35 in FIG. 3) on at least one surface of the attached layered body 33. Thus, the attachment layered body 33 has the release material, so that the handleability of the attachment layered body 33 is improved, and the contamination or the attachment layered body 33 may peel off after being laminated on the adherend laminate 32. Can be reduced. In this case, in the laminating step, the release material (release material 34 in FIG. 3) proximal to the surface facing the adherend laminate 32 is peeled off, and the adherent laminate 32 in the unit laminate 11-4. The surface 33b on the side opposite to the substrate is exposed, and the surface 33b and the surface 32a on the opposite side of the substrate 12 in the adherend laminate 32 are bonded together, thereby attaching the attached layered body 33 to the adherend laminate 32. can do.
 本実施形態に係る多層光記録媒体の製造方法は、基板12と少なくとも一つの前記単位積層体11とを備える被着構造体31における基板12から最も遠位側にある単位積層体11(図3においては、単位積層体11-3)である被着積層体32側の面(すなわち被着積層体32における基板12に対向する側と反対側の面32a)に、単位積層体11およびカバー層13ならびにこれらの積層体からなる群から選ばれる付設層状体33(図3においては、単位積層体11-4)を、被着構造体31上に積層するとともに、被着構造体31に積層された付設層状体33が引張応力を有する状態にする積層工程を備える。 In the method for manufacturing a multilayer optical recording medium according to the present embodiment, the unit laminated body 11 (FIG. 3) located on the most distal side from the substrate 12 in the adherend structure 31 including the substrate 12 and at least one unit laminated body 11. In this case, the unit laminate 11 and the cover layer are formed on the surface on the adherend laminate 32 side (that is, the surface 32a opposite to the side facing the substrate 12 in the adherend laminate 32) which is the unit laminate 11-3). 13 and an attached layered body 33 (in FIG. 3, the unit laminated body 11-4) selected from the group consisting of these laminated bodies are laminated on the adherend structure 31 and are laminated on the adherend structure 31. And a step of laminating the attached layered body 33 to have a tensile stress.
(積層工程)
 本実施形態に係る積層工程では、被着構造体31における被着積層体32側の面に、付設層状体33を積層するとともに、被着構造体31に積層された付設層状体33が引張応力を有する状態とする。
 かかる状態とすべく、積層工程は、当該積層工程を構成するサブ工程として、付設層状体33を被着構造体31に貼付する貼付工程、付設層状体33へ外力の付与する印加工程、および印加工程によって付設層状体33に外力が付与される方向を制御する方向制御工程とを備え、これらの工程の開始の時期の相対的な関係はこれらの工程の具体的な内容に応じて変化する。以下、印加工程および方向制御工程について詳しく説明する。
(Lamination process)
In the lamination process according to the present embodiment, the attachment layered body 33 is laminated on the surface of the adherend structure 31 on the adhesion laminate 32 side, and the attachment layered body 33 laminated on the attachment structure 31 is subjected to tensile stress. It is in the state which has.
In order to achieve such a state, the laminating step includes, as sub-steps constituting the laminating step, an attaching step of attaching the attached layered body 33 to the adherend structure 31, an applying step of applying an external force to the attached layered body 33, and application And a direction control step for controlling the direction in which an external force is applied to the attached layered body 33 in accordance with the steps, and the relative relationship between the start times of these steps varies depending on the specific contents of these steps. Hereinafter, the application process and the direction control process will be described in detail.
(1)貼付工程
 貼付工程は、付設層状体33を被着構造体31に貼付する工程である。具体的な貼付方法は任意であり、張力を付与しながら貼付するなど、貼付工程と印加工程とが重複するように実施されてもよい。また、付設層状体33が長尺である場合には、貼付工程は、長尺の付設層状体を一定方向に搬送し、前記被着構造体31に貼付することが好ましい。
(2)印加工程
 印加工程は上記のように付設層状体33への外力の付与を含み、該印加工程の実施により、付設層状体33が次に説明する応力間角度についての条件を満たす引張応力を有する状態となるように積層することで、得られる多層光記録媒体20またはその製造過程の積層構造体14の主面方向の残留応力に起因して、多層光記録媒体20またはその製造過程の積層構造体14が反ってしまうことを効果的に防止できる。
(1) Affixing process The affixing process is a process of affixing the attached layered body 33 to the adherend structure 31. The specific sticking method is arbitrary and may be carried out so that the sticking step and the applying step overlap, such as sticking while applying tension. Further, when the attached layered body 33 is long, it is preferable that the attaching step transports the long attached layered body in a certain direction and sticks it to the adherend structure 31.
(2) Application process The application process includes the application of an external force to the attached layered body 33 as described above, and the execution of the application process causes the attached layered body 33 to satisfy a tensile stress condition that satisfies the stress angle described below. The multilayer optical recording medium 20 or the manufacturing process thereof is caused by the residual stress in the main surface direction of the obtained multilayer optical recording medium 20 or the multilayer structure 14 in the manufacturing process thereof. It is possible to effectively prevent the laminated structure 14 from warping.
(応力間角度についての条件)
 被着構造体31に積層された状態にある付設層状体33における、印加工程により付与された外力に起因する引張応力の主面内成分の方向である第1の方向(本実施形態において、単に「第1の方向」という。)の、被着積層体32が有する引張応力の主面内成分の方向である第2の方向(本実施形態において、単に「第2の方向」という。)に対する応力間角度Rが、0°超120°以内である。以下、この応力間角度が満たす条件を「条件1」ともいう。
(Conditions regarding the stress angle)
In the attached layered body 33 in a state of being laminated on the adherend structure 31, a first direction (in this embodiment, simply the direction of the principal in-plane component of the tensile stress resulting from the external force applied by the applying step) (Referred to as “first direction”) in the second direction (in the present embodiment, simply referred to as “second direction”), which is the direction of the principal in-plane component of the tensile stress of the adherend laminate 32. The stress-to-stress angle R is greater than 0 ° and within 120 °. Hereinafter, the condition that the stress angle satisfies is also referred to as “condition 1”.
 このように条件1を満たすように、応力間角度を制御することにより、積層構造体に残留する応力の集中を低下させることができ、積層構造体の主面方向の残留応力に起因して、多層光記録媒体またはその製造過程の積層構造体が反ってしまうことを効果的に防止できる。 In this way, by controlling the stress angle so as to satisfy the condition 1, the concentration of stress remaining in the laminated structure can be reduced, and due to the residual stress in the main surface direction of the laminated structure, It is possible to effectively prevent the multilayer optical recording medium or the laminated structure in the manufacturing process from warping.
 条件を満たすように印加工程により外力を付与することによって、反りの発生が低減された光記録媒体20を製造することが実現される。 By applying an external force in the application process so as to satisfy the conditions, it is possible to manufacture the optical recording medium 20 in which the occurrence of warpage is reduced.
 なお、後述するように、引張応力に係る外力の付与方法によっては、第1の方向および第2の方向は、付設層状体33に付与される外力の方向ベクトルとして(力を加えた向きも含めて)定義できる場合がある。この場合には、条件1における応力間角度Rは、付設層状体33が付与された外力の方向ベクトル(第1の方向)と、被着構造体31における前記基板から最も遠位側にある前記単位積層体である被着積層体32が付与された外力の方向ベクトル(第2の方向)のなす角度により定義される。 As will be described later, depending on the method of applying an external force related to the tensile stress, the first direction and the second direction may be the direction vector of the external force applied to the attached layered body 33 (including the direction in which the force is applied). May be defined). In this case, the inter-stress angle R in the condition 1 is the direction vector (first direction) of the external force to which the attached layered body 33 is applied, and the most distal side of the adherend structure 31 from the substrate. It is defined by the angle formed by the direction vector (second direction) of the external force applied to the adherend laminate 32 that is a unit laminate.
 多層光記録媒体20またはその製造過程の積層構造体14の主面方向の残留応力の大きさは、X線回折、超音波による音弾性法、機械加工などにより応力を緩和してその際発生するひずみを測定する方法など、従来公知の手段を用いることにより、測定することができる。なお、本実施形態においては、実際に残留応力を測定しなくとも、各積層工程において付与された外力による積層構造体14の主面方向の残留応力に起因して、多層光記録媒体20が反ってしまうことが明らかであるため、本実施形態に係る製造方法により製造された多層光記録媒体20の反り量を測定することで、残留応力の集中が低下していると判断することができる。 The magnitude of the residual stress in the main surface direction of the multilayer optical recording medium 20 or the laminated structure 14 in the manufacturing process thereof is generated when the stress is relaxed by X-ray diffraction, an acoustoelastic method using ultrasonic waves, machining, or the like. It can be measured by using a conventionally known means such as a method for measuring strain. In the present embodiment, the multilayer optical recording medium 20 is warped due to the residual stress in the main surface direction of the laminated structure 14 due to the external force applied in each lamination step without actually measuring the residual stress. Therefore, by measuring the amount of warpage of the multilayer optical recording medium 20 manufactured by the manufacturing method according to this embodiment, it can be determined that the concentration of the residual stress is reduced.
 条件1は、被着構造体31に積層された状態にある付設層状体33についての条件であるから、付設層状体33を被着構造体31に貼付する貼付工程の実施時期と、印加工程として被着構造体31に外力を付与する時期との関係は任意である。すなわち、印加工程による被着構造体31の外力の付与は、被着構造体31に付設層状体33が貼付される貼付工程の実施前、貼付途中および貼付された後のいずれであってもよいし、これらのタイミングの複数または全てにおいて外力が付与されてもよい。 Condition 1 is a condition for the attached layered body 33 in a state of being laminated on the adherend structure 31, and therefore, as an application time and an application step of attaching the attached layered body 33 to the adherend structure 31. The relationship with the time when the external force is applied to the adherend structure 31 is arbitrary. That is, the application of the external force of the adherend structure 31 by the applying process may be performed before, during or after the attaching step of attaching the attached layered body 33 to the adherent structure 31. However, an external force may be applied at a plurality or all of these timings.
 印加工程において付与される外力の種類は特に限定されないが、付設層状体33が主面内方向に引張応力を有するようにするのであるから、付設層状体33に対して張力および押圧力の少なくとも一方からなる外力を付与することが好ましく、印加工程において付与される外力は、張力および押圧力の両方であることがより好ましい。具体的には、貼付工程の実施前または実施中に付設層状体33に加える張力、貼付工程の実施中または実施後に付設層状体33に加える押圧力(具体的には、押圧しながらその押圧部を付設層状体33の主面内方向に移動させること)などが例示される。
 また、印加工程は、付設層状体33における被着積層体32に対向する面33aと反対側の面側33bに対して、外力付与部材により付設層状体33が主面内方向に引張応力を有する状態となるように、付設層状体33へ外力を付与する工程であることが好ましい。
The type of external force applied in the applying step is not particularly limited. However, since the attached layered body 33 has a tensile stress in the main surface direction, at least one of a tension and a pressing force with respect to the attached layered body 33 is required. It is preferable to apply an external force consisting of the above, and it is more preferable that the external force applied in the applying step is both tension and pressing force. Specifically, the tension applied to the attached layered body 33 before or during the pasting process, the pressing force applied to the attached layered body 33 during or after the pasting process (specifically, the pressing portion while pressing) Is moved in the main surface direction of the attached layered body 33).
Further, in the application step, the attached layered body 33 has a tensile stress in the main surface inward direction by the external force applying member with respect to the surface 33b opposite to the surface 33a facing the adherend laminated body 32 in the attached layered body 33. It is preferable to be a step of applying an external force to the attached layered body 33 so as to be in a state.
 外力の大きさも本発明の効果が得られる限り、特に限定されないが、外力は主面内方向の張力換算(以下同じ。)で0.02kgf/m以上とすることが好ましく、0.04kgf/m以上とすることがより好ましい。外力が過度に高い場合には付設層状体33が有する引張応力が過度に高くなって、付設層状体33が積層された状態を維持することができなくなる場合もある。したがって、外力は400kgf/m以下とすることが好ましく、320kgf/m以下とすることがより好ましい。 The magnitude of the external force is not particularly limited as long as the effect of the present invention can be obtained, but the external force is preferably 0.02 kgf / m or more in terms of tension in the main surface direction (hereinafter the same), and 0.04 kgf / m. More preferably. When the external force is excessively high, the tensile stress of the attached layered body 33 becomes excessively high, and the attached layered body 33 may not be maintained in a laminated state. Therefore, the external force is preferably 400 kgf / m or less, and more preferably 320 kgf / m or less.
 張力について具体例を示せば、付設層状体33におけるその主面内方向の少なくとも一方向の両端部を保持して、これらの保持部分をその方向に離間させることによって、付設層状体33に張力を付与する方法が挙げられる。この保持方法は任意であり、引張力の付与開始時期と積層作業の開始時期との関係で適宜設定される。例えば、付設層状体33の両端部をクリップのような保持手段を用いて保持し、これらの保持手段を離間させることにより、貼付工程の実施前に張力を付与してもよい。あるいは、貼付工程の実施中に張力を付与してもよい。具体的には、付設層状体33の一方の端部に相当する部分を被着構造体31に貼付し、被着構造体31を保持手段の一方とし、他方の端部をクリップなどの他の保持手段を用いて保持しながら、被着構造体31に貼付された部分から離間するような張力を付与しつつ、付設層状体33における貼付されていない残りの部分を被着構造体31に貼付してもよい。 If a specific example is shown about tension | tensile_strength, it will hold | maintain the tension | tensile_strength to the attachment layered body 33 by hold | maintaining the both ends of the at least one direction of the main surface direction in the attachment layered body 33, and separating these holding parts in the direction. The method of giving is mentioned. This holding method is arbitrary, and is appropriately set depending on the relationship between the start time of applying the tensile force and the start time of the laminating operation. For example, both ends of the attached layered body 33 may be held using holding means such as a clip, and the holding means may be separated to apply tension before the pasting step. Or you may provide tension | tensile_strength during implementation of a sticking process. Specifically, a portion corresponding to one end of the attached layered body 33 is affixed to the adherent structure 31, the adherent structure 31 is one of the holding means, and the other end is another clip or the like. While holding using the holding means, applying the tension away from the portion attached to the adherend structure 31, the remaining portion not attached in the attached layered body 33 is attached to the adherent structure 31. May be.
 押圧力についても具体例を示せば、外力付与部材として、加圧ロールのような筒状体を用いて、付設層状体33を押圧することで、押圧力を付与する方法が挙げられる。すなわち、貼付工程の実施中および/または実施後に押圧力を付与する方法としては、付設層状体33における被着積層体32に対向する面33aと反対側の面33b(後述するようにその面33bに剥離材が貼付されている場合には、その剥離材における面33bに対向する側と反対側の面)を、筒状体(ロール)にて主面の法線方向に加圧するとともに、筒状体(ロール)を回転させながら、移動させる。その結果、付設層状体33には、筒状体(ロール)の移動方向前方向きの力が外力(押圧力)として付与される。 A specific example of the pressing force includes a method of applying a pressing force by pressing the attached layered body 33 using a cylindrical body such as a pressure roll as an external force applying member. That is, as a method of applying a pressing force during and / or after the pasting step, a surface 33b of the attached layered body 33 opposite to the surface 33a facing the adherend laminate 32 (the surface 33b as will be described later). When a release material is affixed to the surface of the release material, the surface opposite to the surface 33b of the release material is pressed in the normal direction of the main surface with a cylindrical body (roll), and the cylinder Move the roll (roll) while rotating it. As a result, a force directed forward in the moving direction of the cylindrical body (roll) is applied to the attached layered body 33 as an external force (pressing force).
 特に、基板12の形状が、前述のように、一般的な光ディスク基板のような形状である場合には、筒状体(ロール)を回転させながら移動させると、基板12の端部近傍では、筒状体(ロール)に接する付設層状体33の面積が小さくなるため、付設層状体33に付与される外力が大きくなりやすい。このとき、基板12の端部近傍は相対的に高い引張応力を有するようになる。 In particular, when the shape of the substrate 12 is a shape like a general optical disk substrate as described above, when the cylindrical body (roll) is moved while rotating, in the vicinity of the end portion of the substrate 12, Since the area of the attached layered body 33 in contact with the cylindrical body (roll) is reduced, the external force applied to the attached layered body 33 tends to increase. At this time, the vicinity of the end portion of the substrate 12 has a relatively high tensile stress.
(3)方向制御工程
 方向制御工程は、第1の方向と第2の方向とがなす応力間角度Rが条件1を満たすように付設層状体33および被着構造体31の少なくとも一方の位置を設定する工程であり、条件1が実現される限り、具体的な方法は特に限定されない。また、方向制御工程を実施する時期と積層工程を構成する他の工程(貼付工程および印加工程)を開始する時期との関係も任意である。
(3) Direction control step In the direction control step, the position of at least one of the attached layered body 33 and the adherend structure 31 is set so that the stress angle R between the first direction and the second direction satisfies the condition 1. As long as Condition 1 is realized, the specific method is not particularly limited. Further, the relationship between the timing of performing the direction control process and the timing of starting other processes (the pasting process and the application process) constituting the stacking process is also arbitrary.
 例えば、被着構造体31がその主面の法線方向を回転軸として回転可能であって、方向制御工程として被着構造体31を回転させてから貼付工程を実施する方法が、好ましい一例として挙げられる。 For example, a preferred example is a method in which the adherend structure 31 is rotatable with the normal direction of the main surface as a rotation axis, and the attaching step is performed after the adherend structure 31 is rotated as the direction control step. Can be mentioned.
 図4(a)および(b)を用いて具体的に説明すれば、図4(a)に示されるように、被着構造体31の主面の法線方向36(図4(a)では上下方向)を回転軸として、基板12を固定する基台41とともに被着構造体31を回転させて、前述の条件1を満たすように第2の方向38を制御し、方向制御工程を行う。なお、37は第1の方向、38は第2の方向を表わす。こうして方向制御工程を実施した後、図4(b)に示されるように、前記付設層状体33を前記被着構造体31に貼付する貼付工程および前記付設層状体33に外力を付与する印加工程を行う。具体的には、第1の方向37に張力が付与された状態にある(すなわち、印加工程の実施された状態にある)付設層状体33を被着構造体31に貼付する(貼付工程)。このようにすることで、第1の方向37と第2の方向38とが条件1を満たす状態になる。 If it demonstrates concretely using Fig.4 (a) and (b), as FIG.4 (a) shows, in the normal line direction 36 (FIG.4 (a)) of the main surface of the to-be-adhered structure 31 By rotating the adherend structure 31 together with the base 41 that fixes the substrate 12 around the vertical axis), the second direction 38 is controlled so as to satisfy the above-described condition 1, and the direction control step is performed. 37 represents the first direction and 38 represents the second direction. After performing the direction control step in this way, as shown in FIG. 4B, an attaching step of attaching the attached layered body 33 to the adherend structure 31 and an applying step of applying an external force to the attached layered body 33 I do. Specifically, the attached layered body 33 in a state in which tension is applied in the first direction 37 (that is, in a state where the application process is performed) is pasted to the adherend structure 31 (pasting process). By doing so, the first direction 37 and the second direction 38 satisfy the condition 1.
 図4(a)では、印加工程は貼付工程の前に実施されているが、これに限定されない。印加工程として付設層状体33に外力付与を開始するタイミングは、方向制御工程の実施により被着構造体31を回転させた後であればいずれのタイミング(すなわち、貼付工程の実施前、実施中および実施後のいずれか)でもよい。例えば、図4(c)に示されるように、印加工程が、加圧ロール42を用いて加圧することにより外力を付与する工程である場合には、貼付工程を実施した後に印加工程が実施される。 In FIG. 4A, the application process is performed before the pasting process, but is not limited thereto. The timing of starting the application of external force to the attached layered body 33 as the application process is any timing (that is, before the pasting process, during the implementation, and after the adherend structure 31 is rotated by the direction control process). Any after implementation). For example, as shown in FIG. 4C, when the application process is a process of applying an external force by applying pressure using the pressure roll 42, the application process is performed after the pasting process. The
 方向制御工程の好ましい他の具体例として、付設層状体33が、被着構造体31の主面の法線方向を回転軸として回転可能であって、方向制御工程として付設層状体33を回転させてから、貼付工程を実施する方法も挙げられる。具体的には、図5(a)に示すように、外力を付与する方向を第1の方向37とすると、付設層状体33を被着構造体31の主面の法線方向(図5では上下方向)を回転軸として回転させることによって、第1の方向37を制御し、方向制御工程を行う。こうして、図5(b)に示されるように、第1の方向37と第2の方向38とが条件1を満たす状態にしてから、付設層状体33を被着構造体31に貼付する。この場合には、図5(b)に示すようにあらかじめ第1の方向37に張力が付与された付設層状体33を貼付してもよいし、図5(c)に示すように、付設層状体33を、加圧ロール42を用いて加圧しながら移動させることで、付設層状体33に対して押圧を付与してもよい。
 なお、図4および5では、長尺の付設層状体33の厚さと被着積層体32の厚さとが異なっているが、現実には同等の厚さである。また、図4および5では、被着構造体31における単位積層体11および被着構造体31は、基板12に対応した形状になっているが、これに限らず、後述の切断工程で説明するように、基板12に対応していない形状であってもよい。
As another preferred specific example of the direction control step, the attached layered body 33 can be rotated with the normal direction of the main surface of the adherend structure 31 as the rotation axis, and the attached layered body 33 is rotated as the direction control step. In addition, a method of performing the pasting process is also included. Specifically, as shown in FIG. 5A, when the direction in which the external force is applied is the first direction 37, the attached layered body 33 is arranged in the normal direction of the main surface of the adherend structure 31 (in FIG. 5). The first direction 37 is controlled by rotating about the vertical direction) as the rotation axis, and the direction control step is performed. Thus, as shown in FIG. 5 (b), the attached layered body 33 is attached to the adherend structure 31 after the first direction 37 and the second direction 38 satisfy the condition 1. In this case, as shown in FIG. 5 (b), the attached layered body 33 to which tension is previously applied in the first direction 37 may be pasted, or as shown in FIG. A pressure may be applied to the attached layered body 33 by moving the body 33 while applying pressure using the pressure roll 42.
4 and 5, the thickness of the elongated attachment layered body 33 and the thickness of the adherend laminated body 32 are different from each other, but in reality, they are the same thickness. 4 and 5, the unit laminate body 11 and the adherend structure 31 in the adherend structure 31 have shapes corresponding to the substrate 12, but the present invention is not limited to this, and will be described in a cutting process described later. As such, the shape may not correspond to the substrate 12.
 方向制御工程において、より具体的に、条件1を満たすように応力間角度Rを設定する方法の具体例について以下に説明する。 In the direction control step, a specific example of a method for setting the stress-interval angle R so as to satisfy the condition 1 will be described below.
(設定方法1)
 本実施形態に係る積層構造体14における積層された単位積層体11およびカバー層13(本実施形態において「付設層状体」と総称する。)のそれぞれが、次の関係を満たすように応力間角度Rを設定する。すなわち、設定方法1は、付設層状体が積層される位置および積層数を考慮し、応力間角度Rを設定する方法である。
(Setting method 1)
Inter-stress angle so that each of the laminated unit laminated body 11 and the cover layer 13 (collectively referred to as “attached layered body” in the present embodiment) in the laminated structure 14 according to the present embodiment satisfies the following relationship. Set R. That is, the setting method 1 is a method of setting the stress angle R in consideration of the position where the attached layered body is stacked and the number of stacked layers.
 被着構造体31に対してi番目に積層された付設層状体i(ただし、iは2からnの整数、nは積層構造体14における付設層状体の総数)が有している引張応力の主面内成分の方向である第1の方向の、その付設層状体iに最も近位な付設層状体のうち基板12に対向する側に積層されている付設層状体(i-1)が有している引張応力の主面内成分の方向である第2の方向に対する応力間角度Rが下記式(I)を満たす:
  R=360°×m/n   (I)
 ただし、mは1以上の整数である。
Tensile stress of the attached layered body i (where i is an integer from 2 to n and n is the total number of attached layered bodies in the laminated structure 14) laminated i-th to the adherend structure 31. There is an attached layered body (i-1) laminated on the side facing the substrate 12 in the attached layered body closest to the attached layered body i in the first direction which is the direction of the main surface component. The stress angle R 1 with respect to the second direction, which is the direction of the main in-plane component of the tensile stress, satisfies the following formula (I):
R 1 = 360 ° × m / n (I)
However, m is an integer greater than or equal to 1.
 このように設定することで、付設層状体iが有する引張応力の主面内成分の方向である第1の方向は重なりあうこと無く、分散する。これにより、積層構造体14に残留する引張応力の集中を低下させることができ、積層構造体の主面方向の残留応力に起因して、多層光記録媒体またはその製造過程の積層構造体が反ってしまうことを効果的に防止できる。なお、図2(a)に示される積層構造体14のように、基板12と基板12に最も近位の付設層状体11-1との間に積層される層状体全体が粘着剤層15である場合には、応力間角度Rは設定されない。 By setting in this way, the first direction which is the direction of the principal in-plane component of the tensile stress of the attached layered body i is dispersed without overlapping. Thereby, the concentration of the tensile stress remaining in the multilayer structure 14 can be reduced, and the multilayer optical recording medium or the multilayer structure in the manufacturing process thereof is warped due to the residual stress in the main surface direction of the multilayer structure. Can be effectively prevented. As shown in the laminated structure 14 shown in FIG. 2A, the entire layered body laminated between the substrate 12 and the attached layered body 11-1 closest to the substrate 12 is an adhesive layer 15. in some cases, the stress between the angle R 1 is not set.
(設定方法2)
 単位積層体11が硬質層を有する場合には、単位積層体11が有する引張応力は、その硬質層が有する引張応力に大きく依存する。また、カバー層13や光記録層1も高い引張応力を有している場合が多い。すなわち、単位積層体11が硬質層を有する場合には、設定方法2により応力間角度Rを設定する。
(Setting method 2)
When the unit laminated body 11 has a hard layer, the tensile stress that the unit laminated body 11 has greatly depends on the tensile stress that the hard layer has. Also, the cover layer 13 and the optical recording layer 1 often have high tensile stress. That is, when the unit laminate 11 has a hard layer, the stress angle R is set by the setting method 2.
 そこで、積層構造体14におけるカバー層13、光記録層および硬質層の厚さの総和をAとし、第1の付設層状体が備えるカバー層、光記録層、および硬質層の総厚さをBとし、第1の付設層状体に最も近位に配置される第2の付設層状体が備えるカバー層、光記録層、および硬質層の総厚さをBとしたときに、第1の付設層状体が有している引張応力の主面内方向である第1の方向の、第2の付設層状体が有している引張応力の主面内方向である第2の方向に対する応力間角度Rが下記式(II)を満たすように、積層工程において応力間角度Rを設定すればよい:
  R=180°×[(B+B)/A]/2   (II)
Therefore, the total thickness of the cover layer 13, the optical recording layer, and the hard layer in the laminated structure 14 is A, and the total thickness of the cover layer, the optical recording layer, and the hard layer included in the first attached layered body is B. 1, and the second attached cover layer layered mass is provided which is disposed most proximal to the first attached layered body, an optical recording layer, and the total thickness of the hard layer is taken as B 2, first Between stress in the first direction, which is the in-plane direction of the tensile stress possessed by the attached layered body, with respect to the second direction, which is the in-plane direction of the tensile stress, possessed by the second attached layered body as the angle R 2 satisfies the following formula (II), it may be set to stress between angle R in the lamination step:
R 2 = 180 ° × [(B 1 + B 2 ) / A] / 2 (II)
 この場合には、付設層状体のそれぞれが有する硬質層の厚さの影響を考慮しているため、反りが発生する可能性がより低減された積層構造体14が得られる。 In this case, since the influence of the thickness of the hard layer included in each of the attached layered bodies is considered, the laminated structure 14 in which the possibility of warping is further reduced can be obtained.
 なお、上記の第1の付設層状体と第2の付設層状体との関係を、被着積層体32と付設層状体33とに適用すれば、付設層状体33の積層工程を経て得られる、積層された付設層状体33と被着構造体31との積層体における残留応力を少なくすることができるため、好ましい。 In addition, if the relationship between the first attached layered body and the second attached layered body is applied to the adherend laminated body 32 and the attached layered body 33, the layered body 33 can be obtained through the stacking step. This is preferable because the residual stress in the laminated body of the laminated attached layered body 33 and the adherend structure 31 can be reduced.
(4)付設層状体の切断工程
 付設層状体33を基板12に対応した形状を有するように切断加工する切断工程について説明する。該切断工程の実施時期と、上記の積層工程の実施時期との関係は任意である。以下、これらの実施時期が異なるいくつかの態様について例示する。
(4) Cutting process of attached layered body A cutting process of cutting the attached layered body 33 so as to have a shape corresponding to the substrate 12 will be described. The relationship between the time for carrying out the cutting step and the time for carrying out the laminating step is arbitrary. In the following, some embodiments with different implementation times will be exemplified.
(4-1)切断工程後に積層工程を行う場合
 本実施形態においては、図8に示されるように、付設層状体33をあらかじめ基板12に対応した形状に切断加工し、所望の形状を有する付設層状体60を作成し(切断工程)、次いで、図4(c)に示されるように、得られた所望の形状を有する付設層状体60を被着積層体32に積層してもよい(積層工程)。この場合には、積層工程を実施することにより、多層光記録媒体20を完成させることができる場合もある。
(4-1) In the case where the lamination process is performed after the cutting process In this embodiment, as shown in FIG. 8, the attachment layered body 33 is cut into a shape corresponding to the substrate 12 in advance, and an attachment having a desired shape is performed. The layered body 60 may be created (cutting step), and then the attached layered body 60 having a desired shape obtained may be stacked on the adherend stack 32 as shown in FIG. Process). In this case, the multilayer optical recording medium 20 may be completed by performing the lamination process.
 ここで、図8についてやや詳しく説明する。図8は、あらかじめ基板に対応した形状に切断加工された付設層状体60の具体例を概念的に示す断面図である。図8(a)には、基板2に対応した形状を有するようにあらかじめ切断加工された付設層状体60の複数が、長尺の剥離材35の一方の面に設けられている。(図8(a)では光記録層1側の面に長尺の剥離材35に貼付されてなるものである。一方、図8(b)には、図8(a)の場合と同様にあらかじめ切断加工された付設層状体60の複数が、長尺の剥離材34の一方の面に設けられている。(図8(b)では粘着剤層2側の面に長尺の剥離材34が貼付されてなるものである。付設層状体60における長尺の剥離材34,35側と反対側の面には、別の剥離材が貼付されていてもよいし、貼付されていなくてもよい。別の剥離材が貼付される場合には、その形状は任意であり、長尺の剥離材34,35のように長尺であってもよいし、付設層状体60に対応した形状の剥離材が貼付されていてもよい。このような付設層状体60を用いることにより、本実施形態に係る積層工程の生産性を高めることが実現される。なお、図8に示される付設層状体60は、一般的な光ディスク形状に対応して、主面の中心部に厚さ方向の貫通孔を有するドーナッツ形状を有している。 Here, FIG. 8 will be described in some detail. FIG. 8 is a cross-sectional view conceptually showing a specific example of the attached layered body 60 that has been cut into a shape corresponding to the substrate in advance. In FIG. 8A, a plurality of attached layered bodies 60 cut in advance so as to have a shape corresponding to the substrate 2 are provided on one surface of the long release material 35. (In FIG. 8 (a), it is affixed to a long release material 35 on the surface of the optical recording layer 1. On the other hand, FIG. 8 (b) is similar to FIG. 8 (a). A plurality of attached layered bodies 60 cut in advance are provided on one surface of the long release material 34. (In FIG. 8B, the long release material 34 is provided on the surface on the pressure-sensitive adhesive layer 2 side. A separate release material may or may not be attached to the surface opposite to the long release material 34, 35 side of the attached layered body 60. In the case where another release material is affixed, the shape thereof is arbitrary, and may be long like the long release materials 34 and 35, or a shape corresponding to the attached layered body 60. A release material may be affixed, and by using such an attached layered body 60, the productivity of the laminating process according to the present embodiment is increased. 8 has a donut shape having a through-hole in the thickness direction at the center of the main surface corresponding to a general optical disk shape. Yes.
(4-2)積層工程後に切断工程を行う場合
 また、本実施形態においては、図4(b)、図5などに示されるように、基板12に対応した形状を有していない状態の付設層状体33を被着積層体32に積層(積層工程)した後に、前記被着構造体31に積層された付設層状体33を基板12に対応した形状に切断加工する切断工程を実施してもよい。
(4-2) When the cutting process is performed after the stacking process In the present embodiment, as shown in FIG. 4B, FIG. After laminating the layered body 33 on the adherend laminate 32 (laminating step), a cutting step of cutting the attached layered body 33 laminated on the adherend structure 31 into a shape corresponding to the substrate 12 may be performed. Good.
 このとき、被着積層体32はすでに基板12に対応した形状を有していて、付設層状体33のみが切断加工の加工対象となってもよいし、付設層状体33と被着積層体32とが切断加工の加工対象となっていてもよい。後者の場合、切断工程において、付設層状体33と被着積層体32とが同時に基板12に対応した形状に切断加工される。 At this time, the adherend laminate 32 already has a shape corresponding to the substrate 12, and only the attached layered body 33 may be a cutting target, or the attached layered body 33 and the adherend laminate 32. And may be an object to be cut. In the latter case, in the cutting step, the attached layered body 33 and the adherend laminate 32 are simultaneously cut into a shape corresponding to the substrate 12.
 付設層状体33と被着積層体32とが同時に切断加工される場合において、被着積層体32と基板12との間にも単位積層体が存在する場合(具体例としては、図3に示されるように、被着積層体32をなす単位積層体11-3の下層に単位積層体11-1および11-2が存在する場合)には、これらの単位積層体(図3における単位積層体11-1および11-2)も同時に切断加工されてもよい。このとき、付設層状体33がカバー層13を含むものである場合には、カバー層13も同時に切断加工されてもよい。このように、積層工程後に切断工程を実施することで、1回の切断加工によって、付設層状体33、被着構造体31、単位積層体11およびカバー層13を同時に切断加工することができる。 In the case where the attachment layered body 33 and the adherend laminate 32 are simultaneously cut, there is a unit laminate between the adherend laminate 32 and the substrate 12 (specific examples are shown in FIG. 3). As shown in FIG. 3, when the unit laminate bodies 11-1 and 11-2 are present in the lower layer of the unit laminate body 11-3 forming the adherend laminate 32, these unit laminate bodies (unit laminate bodies in FIG. 11-1 and 11-2) may also be cut simultaneously. At this time, when the attached layered body 33 includes the cover layer 13, the cover layer 13 may be cut at the same time. As described above, by performing the cutting process after the stacking process, the attached layered body 33, the adherend structure 31, the unit stacked body 11, and the cover layer 13 can be simultaneously cut by a single cutting process.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。図6は、実施例1に係る多層光記録媒体を上面側(基台の基板が載置されている面側)からみた概略平面図であり、各積層工程における第1の方向および第2の方向が示されている。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like. FIG. 6 is a schematic plan view of the multilayer optical recording medium according to Example 1 as viewed from the upper surface side (the surface side on which the base substrate is placed), and shows the first direction and the second direction in each stacking step. Directions are shown.
〔実施例1〕
(1)光記録層の形成
 ポリメチルメタクリレート100質量部、フォトクロミック材料である1,3,3-トリメチルインドリノ-6'-ニトロベンゾピリロスピラン10質量部、酢酸エチル500質量部およびトルエン490質量部を混合し、固形分濃度10質量%の塗工液を調製した。
 第1の剥離材としての厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡社製 PET50A4100)の片面に、上記塗工液をグラビアコート法にて塗布し、90℃で1分間乾燥して、厚さ2μmの光記録層を形成した。
[Example 1]
(1) Formation of optical recording layer 100 parts by weight of polymethyl methacrylate, 10 parts by weight of 1,3,3-trimethylindolino-6′-nitrobenzopyrospirane as a photochromic material, 500 parts by weight of ethyl acetate and 490 parts by weight of toluene Parts were mixed to prepare a coating solution having a solid content of 10% by mass.
On one side of a 50 μm-thick polyethylene terephthalate film (PET50A4100 manufactured by Toyobo Co., Ltd.) as the first release material, the coating solution is applied by a gravure coating method, dried at 90 ° C. for 1 minute, and 2 μm thick An optical recording layer was formed.
(2)粘着剤層の形成
 n-ブチルアクリレート重合体(BA;Mw=50万)30質量部を酢酸エチル100質量部に溶解させ、固形分濃度30質量%の塗工液を調製した。
 第2の剥離材としての厚さ38μmのポリエチレンテレフタレートフィルム(東レ株式会社社製PET38T-100)の片面にシリコーン剥離層を設けてなる剥離材の剥離面に、上記塗工液をナイフコーターにて塗布し、90℃で1分間加熱乾燥して、厚さ8μmの粘着剤層を形成した。
(2) Formation of pressure-sensitive adhesive layer 30 parts by mass of an n-butyl acrylate polymer (BA; Mw = 500,000) was dissolved in 100 parts by mass of ethyl acetate to prepare a coating liquid having a solid content concentration of 30% by mass.
The above coating solution was applied to the release surface of the release material in which a silicone release layer was provided on one side of a 38 μm thick polyethylene terephthalate film (PET38T-100 manufactured by Toray Industries, Inc.) as the second release material using a knife coater. This was applied and dried by heating at 90 ° C. for 1 minute to form an adhesive layer having a thickness of 8 μm.
(3)付設層状体の作製
 上記(2)で形成した粘着剤層面と、上記(1)で形成した光記録層面とを合わせ、2本のゴムロールで圧着することにより、第1の剥離材、光記録層、粘着剤層および第2の剥離材がこの順で積層されてなる単位積層体を備える長尺の付設層状体を作製した。
(3) Production of attached layered body The first release material is obtained by combining the pressure-sensitive adhesive layer surface formed in (2) above and the optical recording layer surface formed in (1) above, and pressing with two rubber rolls. A long attached layered body including a unit laminated body in which the optical recording layer, the pressure-sensitive adhesive layer, and the second release material are laminated in this order was produced.
(4)被着構造体の作製
 5インチ光ディスク形状の厚さが1mmのポリカーボネート製の基板(帝人化成社製)を、その一方の面が上向きに露出するように、鉛直方向を回転軸とする回転機構を有する基台の上にチャッキングした。基板の露出する面に、上記(2)の塗工液と同じ材料を用いて、塗布・乾燥により、厚さ40μmの粘着剤層を設けた。そして、上記(3)で得られた長尺の付設層状体一定方向に搬送し、第1の剥離材を剥離して光記録層の一方の面を表出させた。ついで、基板上の粘着剤層の基板と反対側の表出する面と光記録層の面とが貼合するように、付設層状体を基板に貼付し、付設層状体の基板と反対側の面を、ゴムロールで押圧(主面内方向の張力換算で5kgf/m)しながら、その面内方向の一方に移動させることで、付設層状体を基板に積層した。こうして、基板と、粘着剤層と、単位積層体とがこの順で積層された構造を有する被着構造体を得た。なお、この時点では、この被着構造体における基板から最も遠位な面には第2の剥離材が貼付されていた。続いて、被着積層体が5インチ光ディスク形状よりやや大きな形状を有するように、長尺の付設層状体を裁断した。   
(4) Fabrication of adherend structure A polycarbonate substrate (manufactured by Teijin Kasei Co., Ltd.) having a 5-inch optical disk shape and a thickness of 1 mm is used with the vertical direction as the rotation axis so that one surface of the substrate is exposed upward. It was chucked on a base having a rotating mechanism. A pressure-sensitive adhesive layer having a thickness of 40 μm was provided on the exposed surface of the substrate by coating and drying using the same material as the coating liquid of (2) above. Then, the long attached layered body obtained in (3) was conveyed in a fixed direction, and the first release material was peeled off to expose one surface of the optical recording layer. Next, the attached layered body is attached to the substrate so that the surface of the pressure-sensitive adhesive layer on the substrate opposite to the substrate and the surface of the optical recording layer are bonded, and the side of the attached layered body opposite to the substrate is attached. The attached layered body was laminated on the substrate by moving the surface to one side in the in-plane direction while pressing the surface with a rubber roll (5 kgf / m in terms of tension in the main surface direction). In this way, an adherend structure having a structure in which the substrate, the pressure-sensitive adhesive layer, and the unit laminate were laminated in this order was obtained. At this time, the second release material was pasted on the surface of the adherend structure most distal to the substrate. Subsequently, the long attached layered body was cut so that the adherend laminate had a shape slightly larger than the shape of the 5-inch optical disk.
(5)第1の積層工程
 なお、実施例1においては、上述の設定方法1における上記式(I)を用いて設定した応力間角度を設定した。得た被着構造体が設置されている基台を、応力間角度Rを45°とするために、上面側から見て反時計回りに45°回転させた。すなわち、第2の方向38を制御した。次に、被着構造体の最上面に貼付されている第2の剥離材を剥離して粘着剤層の一方の面を表出させた。一方、上記のとおり製造した長尺の付設層状体を一定方向に搬送し、第1の剥離材を剥離して光記録層の一方の面を表出させた。そして、被着構造体の粘着剤層が表出している面と、付設層状体の記録層が表出している面とを貼合して、被着構造体に付設層状体を貼付した。続いて、この付設層状体における第2の剥離材側の面をゴムロールで押圧しながら、その面内方向の一方に移動させることで、付設層状体と被着構造体とを圧着して、被着構造体に付設層状体が積層した積層体を得た。ここで、上記のゴムロールの移動方向は、前述(2)と同一とした。
 その結果、この第1の積層工程によって付設層状体が付与された外力に基づき有する引張応力の主面内方向である第1の方向(図6において37-1)は、この積層工程における被着積層体が有する引張応力の主面内方向である第2の方向(図6において38-1)に対して、上面側(基台の基板が載置されている面側)からみて時計回りに45°の角度となった。こうして、この積層工程に係る付設層状体の被着積層体に対する応力間角度Rを45°(上面からみて時計回り方向を正とする。)とした。続いて、得られた積層体が、5インチ光ディスク形状よりやや大きな形状を有するように、長尺の付設層状体を裁断した。
(5) 1st lamination process In Example 1, the angle between stress set using the said formula (I) in the above-mentioned setting method 1 was set up. The base on which the obtained adherend structure was installed was rotated 45 ° counterclockwise as viewed from the upper surface side in order to set the inter-stress angle R to 45 °. That is, the second direction 38 was controlled. Next, the second release material attached to the uppermost surface of the adherend structure was peeled to expose one surface of the pressure-sensitive adhesive layer. On the other hand, the long attached layered body produced as described above was conveyed in a certain direction, and the first release material was peeled off to expose one surface of the optical recording layer. And the surface which the adhesive layer of the adherence structure has exposed, and the surface which the recording layer of the attachment layered body exposes were bonded together, and the attachment layered body was stuck to the attachment structure. Subsequently, the surface of the attached layered body on the second release material side is pressed with a rubber roll and moved in one of the in-plane directions, thereby pressure-bonding the attached layered body and the adherend structure, A laminated body in which the attached layered body was laminated on the wearing structure was obtained. Here, the moving direction of the rubber roll was the same as that described in (2) above.
As a result, the first direction (37-1 in FIG. 6), which is the main in-plane direction of the tensile stress based on the external force applied by the first laminating step, is applied in this laminating step. With respect to the second direction (38-1 in FIG. 6), which is the in-plane direction of the tensile stress of the laminate, clockwise from the upper surface side (the surface side on which the base substrate is placed). The angle was 45 °. In this way, the stress-to-stress angle R of the attached layered body related to this lamination step with respect to the adherend laminated body was set to 45 ° (the clockwise direction as viewed from above is positive). Subsequently, the long attached layered body was cut so that the obtained laminate had a shape slightly larger than the shape of the 5-inch optical disk.
 以上説明した基台の回転(方向制御工程)、付設層状体と被着構造体との貼付(貼付工程)、および付設層状体の圧着(印加工程)からなる一連の工程を第1の積層工程という。 A series of steps including the rotation of the base described above (direction control step), the attachment between the attached layered body and the adherend structure (attachment step), and the pressure bonding of the attached layered body (application step) are the first lamination step. That's it.
(6)第2から第6の積層工程
 第1の積層工程の実施により、基板上には、粘着剤層、2層の単位積層体がこの順番で配置されてなる積層体が得られた。なお、この積層体の基板から最も遠位な面には第2の剥離材が貼付されていた。ついで、応力間角度Rを45°とするために、基台を上面側から見て反時計回りに45°回転させた後、この積層体を被着構造体とし、被着構造体に貼付されている第2の剥離材を剥離し、第1の積層工程と同様にして、長尺の付設層状体を一定方向に搬送し、付設層状体に貼付されている第1の剥離材を剥離して、付設層状体を被着構造体に貼付し、さらにロール押圧による圧着を行った。この一連の工程を第2の積層工程といい、引き続き行われる積層工程を、第3の積層工程、第4の積層工程、のようにいう。なお、いずれの積層工程についても、完了後、長尺の付設層状体を裁断した。
(6) Second to Sixth Laminating Steps By performing the first laminating step, a laminated body in which the pressure-sensitive adhesive layer and the two unit laminated bodies are arranged in this order on the substrate was obtained. In addition, the 2nd peeling material was affixed on the most distal surface from the board | substrate of this laminated body. Next, in order to set the stress-to-stress angle R to 45 °, the base is rotated 45 ° counterclockwise when viewed from the upper surface side, and this laminated body is used as an adherend structure, which is attached to the adherend structure. The second release material is peeled off, and the long attached layered body is transported in a certain direction in the same manner as in the first laminating step, and the first release material attached to the attached layered body is peeled off. Then, the attached layered body was affixed to the adherend structure, and further crimped by roll pressing. This series of steps is referred to as a second lamination step, and the subsequent lamination steps are referred to as a third lamination step and a fourth lamination step. In any of the lamination steps, the long attached layered body was cut after completion.
 第2の積層工程の結果、上面側から見て、第2の積層工程に係る付設層状体が付与された外力に基づき有する引張応力の主面内方向である第1の方向(図6において37-2)と第2の積層工程に係る被着積層体が有する引張応力の主面内方向である第2の方向(図6において38-2)との応力間角度Rは45°となった。 As a result of the second lamination step, as viewed from the upper surface side, a first direction (37 in FIG. -2) and the stress-to-stress angle R between the second direction (38-2 in FIG. 6), which is the main in-plane direction of the tensile stress of the deposited laminate according to the second lamination step, was 45 °. .
 第2の積層工程と同様にして、第3の積層工程から第6の積層工程を続けて実施した。その結果、上面側から見て、第1の積層工程において積層した単位積層体が有する引張応力の主面内方向(図6において37-1)の、第5の積層工程に係る付設層状体が付与された外力に基づき有する引張応力の主面内方向である第1の方向(図6において37-5)に対する角度は180°となった。また、基板に最も近位な単位積層体が有する引張応力の主面内方向(図6において37-1)に対する、第6の積層工程に係る付設層状体が付与された外力に基づき有する引張応力の主面内方向である第1の方向(図6において37-6)の角度は270°となった。なお、図6において、第4の積層工程から第7の積層工程に係る第1の方向(37-4から37-7)は、見やすさの観点から、その向きについては示していない(矢印を省略している)が、それぞれ、38-1,37-1から37-3に示される第1の方向と方向は平行で向きが反対である。 In the same manner as the second lamination step, the third to sixth lamination steps were continuously performed. As a result, when viewed from the upper surface side, the auxiliary layered body related to the fifth stacking process in the principal plane in-plane direction of tensile stress (37-1 in FIG. 6) of the unit stack stacked in the first stacking process is obtained. The angle with respect to the first direction (37-5 in FIG. 6), which is the in-plane direction of the tensile stress based on the applied external force, was 180 °. Further, the tensile stress that the unit laminate body closest to the substrate has based on the external force applied by the auxiliary layered body related to the sixth lamination step with respect to the principal surface in-plane direction (37-1 in FIG. 6). The angle in the first direction (37-6 in FIG. 6), which is the in-plane direction, is 270 °. In FIG. 6, the direction of the first direction (37-4 to 37-7) related to the fourth to seventh lamination steps is not shown from the viewpoint of visibility (arrows are shown). However, the first direction and the direction shown in 38-1, 37-1 to 37-3 are parallel and opposite to each other.
(7)第7の積層工程
 第6の積層工程により得られた被着構造体(基板、粘着剤層および7層の単位積層体が積層されてなり、基板から最も遠位な側の面にさらに第2の剥離材が貼付されている。)から第2の剥離材を剥離し、第6の積層工程において積層した単位積層体の粘着剤層の面を表出させた。一方、厚さ78μmのポリカーボネートフィルムであって一方の面にコロナ処理が施されたもの(帝人株式会社製、ピュアエース)であるプラスチックフィルムからなるカバー層を付設層状体として用意した。被着積層体を上面側から見て時計と反対回りに45°回転させた後、被着構造体の粘着剤層における表出している面と、カバー層におけるコロナ処理された面とが貼合するように、被着構造体にカバー層を貼付した。その際、カバー層には特段の張力を付与しなかった。以下、第1の積層工程と同様のロール加圧による圧着を行った。その結果、基板に最も近位な単位積層体が有する引張応力の主面内方向(図6において38-1)の、カバー層が付与された外力に基づき有する引張応力の主面内方向である第1の方向(図6において37-7)に対する角度は-45°となった。
(7) Seventh laminating step The adherend structure obtained by the sixth laminating step (the substrate, the pressure-sensitive adhesive layer, and the seven-layer unit laminate are laminated, on the surface farthest from the substrate) Further, the second release material was affixed to the second release material, and the surface of the pressure-sensitive adhesive layer of the unit laminate laminated in the sixth lamination step was exposed. On the other hand, a cover layer made of a plastic film, which is a polycarbonate film having a thickness of 78 μm and having one surface subjected to corona treatment (Pure Ace, manufactured by Teijin Limited), was prepared as an attached layered body. After rotating the adherend laminate 45 ° counterclockwise when viewed from the upper surface side, the exposed surface of the adhesive layer of the adherend structure is bonded to the corona-treated surface of the cover layer As described above, a cover layer was attached to the adherend structure. At that time, no special tension was applied to the cover layer. Hereinafter, pressure bonding by roll pressurization similar to the first laminating step was performed. As a result, the principal stress in-plane direction (38-1 in FIG. 6) of the tensile stress possessed by the unit laminate closest to the substrate is the principal stress in-plane direction based on the external force applied to the cover layer. The angle with respect to the first direction (37-7 in FIG. 6) was −45 °.
(8)切断工程
 以上説明した工程の実施により、基板、粘着剤層、7層の単位積層体、およびカバー層がこの順に積層されてなる積層構造体が得られた。この積層構造体に対して、抜き加工を行い、5インチ光ディスク形状に切断加工した。
その結果、7層の単位積層体、およびカバー層の外径が一括で切断加工され、多層光記録媒体が得られた。
(8) Cutting step By performing the steps described above, a laminated structure in which the substrate, the pressure-sensitive adhesive layer, the seven-layer unit laminated body, and the cover layer are laminated in this order was obtained. This laminated structure was punched and cut into a 5-inch optical disk shape.
As a result, the outer diameters of the 7-layer unit laminate and the cover layer were collectively cut to obtain a multilayer optical recording medium.
 この多層光記録媒体は、積層構造体における単位積層体およびカバー層の総数nが8であり、それぞれの第1の方向の第2の方向に対する応力間角度Rは45°であることから、前述の式(I)を満たしていた。 In this multilayer optical recording medium, the total number n of unit laminated bodies and cover layers in the laminated structure is 8, and the inter-stress angle R of the first direction with respect to the second direction is 45 °. The following formula (I) was satisfied.
〔実施例2〕
(1)光記録層の形成
 ポリメチルメタクリレート100質量部、フォトクロミック材料である1,3,3-トリメチルインドリノ-6'-ニトロベンゾピリロスピラン10質量部、酢酸エチル500質量部およびトルエン490質量部を混合し、固形分濃度10質量%の塗工液を調製した。
 第1の剥離材としての、厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡社製 PET50A4100)の片面に、上記塗工液をグラビアコート法にて塗布し、90℃で1分間乾燥して、厚さ2μmの光記録層を形成した。
[Example 2]
(1) Formation of optical recording layer 100 parts by weight of polymethyl methacrylate, 10 parts by weight of 1,3,3-trimethylindolino-6′-nitrobenzopyrospirane as a photochromic material, 500 parts by weight of ethyl acetate and 490 parts by weight of toluene Parts were mixed to prepare a coating solution having a solid content of 10% by mass.
The coating solution is applied to one side of a 50 μm-thick polyethylene terephthalate film (PET50A4100 manufactured by Toyobo Co., Ltd.) as a first release material, dried at 90 ° C. for 1 minute, and a thickness of 2 μm. The optical recording layer was formed.
(2)粘着剤層の形成
 n-ブチルアクリレート重合体(BA;Mw=50万)30質量部を酢酸エチル100質量部に溶解させ、固形分濃度30質量%の塗工液を調製した。
 第2の剥離材としての、厚さ38μmのポリエチレンテレフタレートフィルム(東レ株式会社社製PET38T-100)の片面にシリコーン剥離層を設けてなる剥離材の剥離面に、上記塗工液をナイフコーターにて塗布し、90℃で1分間加熱乾燥して、厚さ8μmの粘着剤層を形成した。
(2) Formation of pressure-sensitive adhesive layer 30 parts by mass of an n-butyl acrylate polymer (BA; Mw = 500,000) was dissolved in 100 parts by mass of ethyl acetate to prepare a coating liquid having a solid content concentration of 30% by mass.
As a second release material, a 38 μm-thick polyethylene terephthalate film (PET38T-100 manufactured by Toray Industries, Inc.) is provided on the release surface of the release material provided with a silicone release layer. And then dried by heating at 90 ° C. for 1 minute to form an adhesive layer having a thickness of 8 μm.
(3)エネルギー線硬化型粘接着剤用塗工液の形成
 アクリル酸n-ブチル/アクリル酸共重合体(組成重量比80/20)を固形分濃度で30重量%含む酢酸エチル溶液に、2-メタクリロキシエチルイソシアネートを、上記共重合体中のアクリル酸成分100当量に対し、30当量になるように添加し、窒素雰囲気下で48時間反応させて、エネルギー硬化性官能基であるメタクリロイル基の平均側鎖導入率が9.2モル%、重量平均分子量が約85万であるエネルギー硬化型共重合体の溶液(A)を得た。
(3) Formation of coating solution for energy ray curable adhesives In an ethyl acetate solution containing 30% by weight of solid content concentration of n-butyl acrylate / acrylic acid copolymer (composition weight ratio 80/20), 2-Methacryloxyethyl isocyanate is added to 100 equivalents of the acrylic acid component in the copolymer so as to be 30 equivalents, and reacted for 48 hours in a nitrogen atmosphere to give methacryloyl groups that are energy-curable functional groups. An energy curable copolymer solution (A) having an average side chain introduction rate of 9.2 mol% and a weight average molecular weight of about 850,000 was obtained.
 このエネルギー硬化型共重合体溶液(A)の固形分100重量部に対し、光重合開始剤としてオリゴ(2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパン)(Lamberti spa社製、商品名「ESCURE KIP150」)3.0重量部と、架橋剤としてイソシアネート系架橋剤(東洋インキ製造社製、商品名「オリバインBPS-8515」)1.0重量部とを加え、エネルギー線硬化型粘接着剤の塗工液を調製した。 Oligo (2-hydroxy-2-methyl-1- [4- (1-propenyl) phenyl] propane) (photopolymerization initiator) (100 parts by weight of the solid content of the energy curable copolymer solution (A)) Add 3.0 parts by weight of Lamberti spa, trade name “ESCURE KIP150” and 1.0 part by weight of isocyanate-based cross-linking agent (trade name “Olivein BPS-8515”, manufactured by Toyo Ink Co., Ltd.) Then, a coating solution of an energy ray curable adhesive was prepared.
(4)単位積層体の作製
 上記(1)で形成した光記録層面に、上記(3)で調製した塗工液をナイフコーターにて塗布し、90℃で1分間加熱乾燥して、エネルギー線硬化型粘接着剤からなる層(本明細書において、「未硬化層」ともいう。)形成した。未硬化層の厚さは20μmであった。
 次に、この未硬化層の光記録層と反対側の露出する面に、上記(1)で調製した光記録層のための塗工液をナイフコーターにて塗布し、90℃で1分間乾燥して、厚さ2μmの光記録層を形成した。
 続いて、こうして得られた光記録層面と、上記(2)で形成した粘着剤層面とを合わせ、2本のゴムロールで圧着することにより、光記録層と粘着剤層とが積層されてなる単位積層体を備える長尺の積層体を作製した。
 こうして作製した積層体に対して、その第1の剥離材側から、高圧水銀ランプ(アイグラフィックス社製高圧水銀ランプ)を用いて500mJ/cmの光量の紫外線を照射し、未硬化層を硬化させて、図7に示されるような、第1の剥離材51、光記録層52、支持層53、光記録層54、粘着剤層55および第2の剥離材56がこの順に積層されてなる付設層状体50を得た。
(4) Production of unit laminate The coating liquid prepared in (3) above was applied to the surface of the optical recording layer formed in (1) above with a knife coater, dried by heating at 90 ° C. for 1 minute, and energy rays. A layer made of a curable adhesive (also referred to as “uncured layer” in this specification) was formed. The thickness of the uncured layer was 20 μm.
Next, the coating solution for the optical recording layer prepared in (1) above was applied to the exposed surface of the uncured layer opposite to the optical recording layer with a knife coater, and dried at 90 ° C. for 1 minute. Thus, an optical recording layer having a thickness of 2 μm was formed.
Subsequently, the optical recording layer surface thus obtained and the pressure-sensitive adhesive layer surface formed in the above (2) are combined and bonded with two rubber rolls, whereby the optical recording layer and the pressure-sensitive adhesive layer are laminated. A long laminate including the laminate was produced.
The laminated body thus produced is irradiated with UV light of 500 mJ / cm 2 from the first release material side using a high pressure mercury lamp (high pressure mercury lamp manufactured by Eye Graphics Co., Ltd.). After curing, a first release material 51, an optical recording layer 52, a support layer 53, an optical recording layer 54, an adhesive layer 55, and a second release material 56 are laminated in this order as shown in FIG. An attached layered body 50 was obtained.
(5)応力間角度の設定
 上記の方法により製造された付設層状体において、また、本実施例では、厚さ78μmのポリカーボネートフィルムであって一方の面にコロナ処理が施されたもの(帝人株式会社社製、ピュアエース)であるプラスチックフィルムからなるカバー層を用いた。したがって、これらの5つの付設層状体およびカバー層の全てに含まれる硬質層の厚さの総和は、198μm(=(2+20+2)×5+78)であった。また、これらの付設層状体を用いて製造される積層構造体に含まれる各付設層状体の硬質層の総厚さは、付設層状体が単位積層体からなる場合には24μm(=2+20+2)であり、付設層状体がカバー層からなる場合には78μmであった。
(5) Setting of stress angle In the attached layered body manufactured by the above method, in this example, a polycarbonate film having a thickness of 78 μm and having one surface subjected to corona treatment (Teijin Stock A cover layer made of a plastic film (Pure Ace) was used. Therefore, the total thickness of the hard layers contained in all of these five attached layered bodies and the cover layer was 198 μm (= (2 + 20 + 2) × 5 + 78). In addition, the total thickness of the hard layers of each attached layered body included in the laminated structure manufactured using these attached layered bodies is 24 μm (= 2 + 20 + 2) when the attached layered body is made of a unit laminated body. Yes, when the attached layered body was composed of a cover layer, the thickness was 78 μm.
 したがって、第2から第5の単位積層体については、上述の設定方法2における上記式(II)を用いて、それぞれの下層に積層される第1から第4のいずれかの単位積層体との応力間角度を設定した結果、第2から第5の単位積層体までの応力間角度は21.8°となった。(=(180×(24+24)/2/198))同様に、カバー層と第5の単位積層体との応力間角度は46.4°=(180×(78+24)/2/198)となった。 Therefore, for the second to fifth unit laminate bodies, the above formula (II) in the setting method 2 described above is used, and any one of the first to fourth unit laminate bodies laminated in each lower layer is used. As a result of setting the inter-stress angle, the inter-stress angle from the second to fifth unit laminates was 21.8 °. (= (180 × (24 + 24) / 2/198)) Similarly, the stress angle between the cover layer and the fifth unit laminate is 46.4 ° = (180 × (78 + 24) / 2/198). It was.
(6)積層構造体の作製
 上記(5)にて設定した応力間角度を使用し、実施例1と同様に、基台の回転角度を設定しながら、第2から第6の積層工程を行って積層構造体を作製し、最後に切断工程を行って、多層光記録媒体を作製した。
(6) Production of Laminated Structure Using the stress angle set in (5) above, the second to sixth laminating steps are performed while setting the rotation angle of the base in the same manner as in Example 1. A multilayer structure was manufactured, and finally a cutting process was performed to manufacture a multilayer optical recording medium.
〔実施例3〕
(1)被着構造体の作製
 5インチ光ディスク形状の厚さが1mmのポリカーボネート製の基板(帝人化成社製)を、その一方の面が上向きに露出するように、鉛直方向を回転軸とする回転機構を有する基台の上にチャッキングした。実施例1において作製した長尺の付設層状体から、第2の剥離材を剥離して粘着剤層の一方の面を表出させ、その面を基板に貼付し、付設層状体の基板と反対側の面を、ゴムロールで押圧(主面内方向の張力換算で5kgf/m)しながらその面内方向の一方に移動させることで、付設層状体を基板に積層した。こうして、基板と被着積層体としての付設層状体とがこの順で積層された被着構造体を得た。なお、この被着構造体における基板から最も遠位な面の第1の剥離材を剥離した。続いて、被着積層体が5インチ光ディスク形状よりやや大きな形状を有するように、長尺の付設層状体を裁断した。
Example 3
(1) Production of Adhering Structure A 5-inch optical disk-shaped polycarbonate substrate (manufactured by Teijin Kasei Co., Ltd.) whose vertical axis is the rotation axis so that one surface of the substrate is exposed upward. It was chucked on a base having a rotating mechanism. From the long attached layered body produced in Example 1, the second release material is peeled to expose one surface of the pressure-sensitive adhesive layer, and this surface is attached to the substrate, opposite to the substrate of the attached layered body. The attached layered body was laminated on the substrate by moving the side surface to one side in the in-plane direction while pressing with a rubber roll (5 kgf / m in terms of tension in the main-plane direction). In this way, an adherent structure in which the substrate and the attached layered body as the adherent laminate were laminated in this order was obtained. In addition, the 1st peeling material of the surface farthest from the board | substrate in this adherend structure was peeled. Subsequently, the long attached layered body was cut so that the adherend laminate had a shape slightly larger than the shape of the 5-inch optical disk.
(2)第1の積層工程
 続いて、実施例1と同様に、上記で得られた被着構造体が設置されている基台を、応力間角度Rを45°とするために、反時計回りに45°回転させた。次に、上記のとおり製造した長尺の付設層状体を一定方向に搬送し、第2の剥離材を剥離して粘着剤層の一方の面を表出させた。そして、被着構造体の光記録層が表出している面と、付設層状体の粘着剤層が表出している面とを貼合して、被着構造体に付設層状体を貼付した。続いて、この付設層状体における第1の剥離材側の面をゴムロールで押圧しながら、その面内方向の一方に移動させることで、付設層状体と被着構造体とを圧着して、被着構造体に付設層状体が積層した積層体を得た。ここで、上記のゴムロールの移動方向は、前述の被着積層体を作製する際のゴムロールの移動方向と同一とした。この第1の積層工程の実施により、基板上には、2層の単位積層体がこの順番で配置されてなる積層体が得られた。
 次いで、この被着構造体における基板から最も遠位な面の第1の剥離材を剥離した。続いて、切断後の付設層状体がディスク形状より大きな形状を有するように、長尺の付設層状体を裁断した。
(2) First Laminating Step Subsequently, in the same manner as in Example 1, the base on which the adherend structure obtained above was installed was counterclockwise in order to set the stress angle R to 45 °. Rotated around 45 °. Next, the long attached layered body produced as described above was conveyed in a certain direction, and the second release material was peeled off to expose one surface of the pressure-sensitive adhesive layer. And the surface which the optical recording layer of the adherence structure has exposed, and the surface which the adhesive layer of the attachment layered body exposes were bonded together, and the attachment layered body was stuck to the attachment structure. Subsequently, the surface of the attached layered body on the side of the first release material is pressed with a rubber roll and moved in one of the in-plane directions, thereby pressure-bonding the attached layered body and the adherend structure, A laminated body in which the attached layered body was laminated on the wearing structure was obtained. Here, the moving direction of the rubber roll was the same as the moving direction of the rubber roll when the above-mentioned adherend laminate was produced. By performing the first stacking step, a stack including two unit stacks arranged in this order on the substrate was obtained.
Next, the first release material on the surface farthest from the substrate in the adherend structure was peeled off. Subsequently, the long attached layered body was cut so that the attached layered body after cutting had a shape larger than the disk shape.
(3)第2の積層工程から第6の積層工程
 次いで、上記第1の積層工程と同様にして、第2の積層工程から第6の積層工程および各積層工程後の長尺の付設層状体を裁断した。
(3) From the second laminating step to the sixth laminating step Next, in the same manner as the first laminating step, the long laminated layered body after the second laminating step to the sixth laminating step and each laminating step Was cut.
(4)第7の積層工程
 前述の粘着剤層の塗工液と同じ材料を用いて、第2の剥離材の剥離面に、上記塗工液をナイフコーターにて塗布し、90℃で1分間加熱乾燥して、厚さ40μmの粘着剤層を形成した。一方、厚さ78μmのポリカーボネートフィルムであって一方の面にコロナ処理が施されたプラスチックフィルム(帝人株式会社製、ピュアエース)からなるカバー層を用意した。上記の粘着剤層と第2の剥離材とからなる積層体の粘着剤層側の面と、用意したカバー層のコロナ処理が施された面とを貼付した。続いて、この貼付により得られた積層体を2本のゴムロールで圧着することにより、粘着剤層およびカバー層からなる付設層状体に第2の剥離材が貼付された積層体を得た。
 次いで、上記第6の積層工程により得られた被着構造体(基板および7層の単位積層体が積層されてなり、基板から最も遠位な側の面に第1の剥離材が貼付されている。)から第1の剥離材を剥離し、第6の積層工程において積層した単位積層体の光記録層側の面を表出させた。続いて、被着積層体を上面側から見て時計と反対回りに45°回転させた。
 その後、上記のカバー層を備える付設積層体に貼付されていた第2の剥離材を剥離し、表出した付設積層体の粘着剤層側の面と被着構造体の基板から最も遠位な面とが貼合するように、被着構造体に付設層状体を貼付した。その際、カバー層を備える付設積層体には特段の張力を付与しなかった。以下、第1の積層工程と同様に、被着構造体に積層した付設積層体のカバー層側の面に対して行った。
(4) Seventh lamination step Using the same material as the coating liquid for the pressure-sensitive adhesive layer described above, the coating liquid is applied to the release surface of the second release material with a knife coater, and 1 at 90 ° C. A pressure-sensitive adhesive layer having a thickness of 40 μm was formed by heating and drying for 30 minutes. On the other hand, a cover layer made of a plastic film (manufactured by Teijin Ltd., Pure Ace), which was a polycarbonate film having a thickness of 78 μm and was subjected to corona treatment on one surface, was prepared. The surface on the pressure-sensitive adhesive layer side of the laminate composed of the pressure-sensitive adhesive layer and the second release material and the surface of the prepared cover layer on which the corona treatment was applied were pasted. Then, the laminated body obtained by this sticking was crimped | bonded by two rubber rolls, and the laminated body by which the 2nd peeling material was stuck to the attachment layered body which consists of an adhesive layer and a cover layer was obtained.
Next, the adherend structure obtained by the sixth lamination step (the substrate and the seven-layer unit laminate are laminated, and the first release material is attached to the surface farthest from the substrate) The first release material was peeled off, and the optical recording layer side surface of the unit laminate laminated in the sixth lamination step was exposed. Subsequently, the adherend laminate was rotated 45 ° counterclockwise as viewed from the upper surface side.
Thereafter, the second release material attached to the attached laminated body having the cover layer is peeled off, and the surface of the attached laminated body on the pressure-sensitive adhesive layer side that is exposed and the substrate of the adherend structure are the most distal. The attached layered body was pasted on the adherend structure so that the surfaces were pasted together. At that time, no special tension was applied to the attached laminate including the cover layer. Thereafter, similarly to the first laminating step, it was performed on the surface on the cover layer side of the attached laminated body laminated on the adherend structure.
(5)切断工程
 上記の工程の実施により、基板、7層の単位積層体、粘着剤層およびカバー層がこの順に積層されてなる積層構造体が得られた。この積層構造体に対して、抜き加工を行い、5インチ光ディスク形状に切断加工し、多層光記録媒体を得た。
 以上の製造方法により作製された多層光記録媒体も、実施例1の多層光記録媒体と同様に、設定方法1における上記式(I)を用いて設定した応力間角度を使用した。すなわち、積層構造体における単位積層体およびカバー層の総数nが8であり、それぞれの間の応力間角度Rは45°であった。
(5) Cutting step A laminated structure in which the substrate, the seven-layer unit laminate, the pressure-sensitive adhesive layer, and the cover layer are laminated in this order was obtained by performing the above steps. This laminated structure was punched and cut into a 5-inch optical disk shape to obtain a multilayer optical recording medium.
Similarly to the multilayer optical recording medium of Example 1, the multilayer optical recording medium manufactured by the above manufacturing method also used the stress angle set using the above formula (I) in the setting method 1. That is, the total number n of unit laminated bodies and cover layers in the laminated structure was 8, and the stress-to-stress angle R 1 between them was 45 °.
〔実施例4〕
 切断工程を積層工程の前に行ったこと以外は、実施例2と同様に多層光記録媒体を製造した。具体的には、付設層状体の第1の剥離材を剥離し、露出した光記録層側から抜き加工を行い、光記録層、支持層、および光記録層のみを5インチ光ディスク形状に切断加工した。これにより、5インチ光ディスク形状を有するようにあらかじめ切断加工された付設層状体(光記録層、支持層および光記録層がこの順に積層した構造を有する。)が、第2の剥離材の一方の面に設けられている付設層状体を得た。得られた付設層状体を用いて、実施例2と同様の応力間角度で積層工程を実施し、積層構造体を作製し、多層光記録媒体を作製した。
Example 4
A multilayer optical recording medium was produced in the same manner as in Example 2 except that the cutting step was performed before the lamination step. Specifically, the first release material of the attached layered body is peeled off, and a punching process is performed from the exposed optical recording layer side, and only the optical recording layer, the support layer, and the optical recording layer are cut into a 5-inch optical disk shape. did. Accordingly, the attached layered body (having a structure in which the optical recording layer, the support layer, and the optical recording layer are laminated in this order) cut in advance so as to have a 5-inch optical disc shape is one of the second release materials. An attached layered body provided on the surface was obtained. Using the attached layered body obtained, a lamination process was performed at the same stress angle as in Example 2, to produce a laminated structure, and to produce a multilayer optical recording medium.
〔比較例1〕
 応力間角度の設定を行わず、すべてを同じ応力間角度で積層工程を行った以外は、実施例1と同じ製造方法を実施することにより多層光記録媒体を製造した。すなわち、応力間角度Rは0°であった。
[Comparative Example 1]
A multilayer optical recording medium was manufactured by carrying out the same manufacturing method as in Example 1 except that the laminating step was performed at the same stress angle without setting the stress angle. That is, the inter-stress angle R was 0 °.
(試験例1)反りの評価
 実施例の多層光記録媒体、および比較例の多層光記録媒体を膜厚測定器(Cores社製 Core9930a)にてディスクのチルトを確認した。ラジアルチルトが±6°、タンジェンシャルチルトが±3°を満たしていれば反りが発生していないと判定し、満たさなければ反りが発生していると判定した。
(Test Example 1) Evaluation of Warpage The tilt of the disk of the multilayer optical recording medium of the example and the multilayer optical recording medium of the comparative example was confirmed with a film thickness measuring device (Core 9930a manufactured by Cores). If the radial tilt satisfies ± 6 ° and the tangential tilt satisfies ± 3 °, it is determined that no warpage has occurred, and if not, it is determined that warpage has occurred.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、反りの少ない多層光記録媒体を生産することに有用である。 The present invention is useful for producing a multilayer optical recording medium with little warpage.
 1、52、54…光記録層
 2、55…粘着剤層
 3、51…第1の剥離材
 4、56…第2の剥離材
 11、11-1、11-2、11-3、11-(n-1)、11-n、50…単位積層体
 12…基板
 13…カバー層
 14…積層構造体
 15…粘着剤層
 20…多層光記録媒体
 31…被着構造体
 32…被着積層体
 32a…被着積層体32における基板12と反対側の面
 33…付設層状体
 33a…単位積層体11-4における被着積層体32に対向する側の面
 33b…単位積層体11-4における面33aと反対側の面
 34、35…剥離材
 36…被着構造体31の主面の法線方向
 37、37-1、37-2、37-3、37-4、37-5、37-6、37-7…第1の方向
 38、38-1、38-2…第2の方向
 41…基台
 42…加圧ロール
 53…支持層
 60…あらかじめ基板に対応した形状に切断加工された付設層状体
DESCRIPTION OF SYMBOLS 1, 52, 54 ... Optical recording layer 2, 55 ... Adhesive layer 3, 51 ... 1st release material 4, 56 ... 2nd release material 11, 11-1, 11-2, 11-3, 11- (N-1), 11-n, 50 ... unit laminated body 12 ... substrate 13 ... cover layer 14 ... laminated structure 15 ... adhesive layer 20 ... multilayer optical recording medium 31 ... adherent structure 32 ... adherent laminate 32a: Surface on the opposite side of the substrate 12 in the laminated substrate 32 33: Attached layered body 33a: Surface on the side opposite to the laminated substrate 32 in the unit laminated body 11-4 33b: Surface in the unit laminated body 11-4 Surface opposite to 33a 34, 35 ... release material 36 ... normal direction of main surface of adherend structure 31 37, 37-1, 37-2, 37-3, 37-4, 37-5, 37- 6, 37-7: first direction 38, 38-1, 38-2 ... second direction 41 ... base 42 ... pressurization Lumpur 53 ... supporting layer 60 ... cut processed attached layered body in a shape corresponding to the previously substrate

Claims (11)

  1.  少なくとも粘着剤層と光記録層とを備える単位積層体が、基板の一方の面に複数積層され、さらに、前記基板から最も遠位側に積層された前記単位積層体にカバー層が形成されてなる積層構造体を備える多層光記録媒体の製造方法であって、
     前記基板と少なくとも一つの前記単位積層体とを備える被着構造体における前記基板から最も遠位側にある前記単位積層体である被着積層体側の面に、前記単位積層体および前記カバー層ならびにこれらの積層体からなる群から選ばれる付設層状体を積層するとともに、前記被着構造体に積層された前記付設層状体が引張応力を有する状態とする積層工程を備え、
     当該積層工程は、前記付設層状体を前記被着構造体に貼付する貼付工程、前記付設層状体に外力を付与する印加工程および当該印加工程によって前記付設層状体に外力が付与される方向を制御する方向制御工程を備え、
     前記方向制御工程は、前記被着構造体に積層された前記付設層状体における前記外力に起因する引張応力の主面内成分の方向である第1の方向の、前記被着積層体が有する引張応力の主面内成分の方向である第2の方向に対する応力間角度Rが、0°超120°以内となるように、外力が前記付設層状体に付与される方向を制御する工程であることを特徴とする多層光記録媒体の製造方法。
    A plurality of unit laminates each including at least an adhesive layer and an optical recording layer are laminated on one surface of the substrate, and a cover layer is formed on the unit laminate laminated most distally from the substrate. A method for producing a multilayer optical recording medium comprising a laminated structure comprising:
    In the adherend structure comprising the substrate and at least one unit laminate, the unit laminate, the cover layer, and the unit laminate on the surface of the adherend laminate that is the unit laminate located farthest from the substrate, Laminating an attachment layered body selected from the group consisting of these laminates, and including a lamination step in which the attachment layered body laminated on the adherend structure has a tensile stress,
    The laminating step controls an attaching step of attaching the attached layered body to the adherend structure, an applying step of applying an external force to the attached layered body, and a direction in which an external force is applied to the attached layered body by the applying step. A direction control process to
    In the direction control step, the tension of the adherence laminated body in the first direction, which is the direction of the principal in-plane component of the tensile stress caused by the external force in the attached layered body laminated on the adherent structure, is provided. It is a step of controlling the direction in which an external force is applied to the attached layered body so that the stress-to-stress angle R with respect to the second direction, which is the direction of the stress in-plane component, is greater than 0 ° and within 120 °. A method for producing a multilayer optical recording medium.
  2.  前記印加工程は、前記貼付工程の実施前、実施中および実施後の少なくともいずれかにおいて、前記付設層状体に対して張力および押圧力の少なくとも一方からなる外力を付与する工程である請求項1に記載の製造方法。 The application step is a step of applying an external force consisting of at least one of a tension and a pressing force to the attached layered body before, during and after the pasting step. The manufacturing method as described.
  3.  前記印加工程は、前記付設層状体における前記被着積層体に対向する面と反対側の面側に、外力付与部材により前記付設層状体が主面内方向に引張応力を有する状態となるように、外力を付与する工程である請求項2に記載の製造方法。 The applying step is such that the attached layered body has a tensile stress in the main surface inward direction by an external force imparting member on the surface of the attached layered body opposite to the surface facing the adherend laminate. The manufacturing method according to claim 2, which is a step of applying an external force.
  4.  前記被着構造体はその主面の法線方向を回転軸として回転可能であって、前記方向制御工程として前記被着構造体を回転させてから、前記貼付工程を実施する請求項1から3のいずれか一項に記載の製造方法。 The said adherence structure is rotatable about the normal direction of the main surface as a rotation axis, and after the said adherence structure is rotated as the direction control step, the attaching step is performed. The manufacturing method as described in any one of these.
  5.  前記付設層状体は、前記被着構造体の主面の法線方向を回転軸として回転可能であって、前記方向制御工程として前記付設層状体を回転させてから、前記貼付工程を実施する請求項1から4のいずれか一項に記載の製造方法。 The attached layered body is rotatable about a normal line direction of a main surface of the adherend structure as a rotation axis, and the attaching step is performed after the attached layered body is rotated as the direction control step. Item 5. The production method according to any one of Items 1 to 4.
  6.  前記単位積層体は、ガラス転移温度Tgが25℃以上の層である硬質層を備える請求項1から5のいずれか一項に記載の製造方法。 The said unit laminated body is a manufacturing method as described in any one of Claim 1 to 5 provided with the hard layer which is a layer whose glass transition temperature Tg is 25 degreeC or more.
  7.  前記付設層状体の少なくとも一方の面には剥離材が積層され、前記付設層状体から前記剥離材を剥離して前記付設層状体の一方の面を表出させ、その面と前記被着積層体における前記基板と反対側の面とを貼合することによって、前記付設層状体を前記被着構造体に貼付する請求項1から6のいずれか一項に記載の製造方法。 A release material is laminated on at least one surface of the attached layered body, the release material is peeled from the attached layered body to expose one surface of the attached layered body, and the surface and the adherend laminated body The manufacturing method as described in any one of Claim 1 to 6 which affixes the said attachment layered body to the said to-be-adhered structure body by bonding the surface on the opposite side to the said board | substrate in.
  8.  前記被着構造体はその被着積層体側の面には剥離材が積層され、前記被着構造体から前記剥離材を剥離して前記被着積層体の一方の面を表出させ、その面と前記付設層状体の一方の面とを貼合することによって、前記付設層状体を前記被着構造体に貼付する請求項1から7のいずれか一項に記載の製造方法。 The adherent structure has a release material laminated on a surface on the adherend laminate side, the release material is peeled from the adherend structure to expose one surface of the adherend laminate, and the surface The manufacturing method as described in any one of Claim 1 to 7 which affixes the said attachment layered body to the said to-be-adhered structure body by bonding to the one side of the said attachment layered body.
  9.  前記基板に対応した形状を有するようにあらかじめ切断加工された前記付設層状体を、前記積層工程において前記被着構造体に積層する請求項1から8のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the attached layered body cut in advance so as to have a shape corresponding to the substrate is stacked on the adherend structure in the stacking step.
  10.  前記付設層状体を、前記基板に対応した形状を有するように切断加工する切断工程を有する請求項1から8のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, further comprising a cutting step of cutting the attached layered body so as to have a shape corresponding to the substrate.
  11.  前記貼付工程は、長尺の付設層状体を一定方向に搬送し、前記被着構造体に貼付する貼付工程である請求項1から9のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 9, wherein the pasting step is a pasting step in which a long attached layered body is transported in a certain direction and pasted on the adherend structure.
PCT/JP2013/053968 2012-03-30 2013-02-19 Method for producing multilayer optical recording medium WO2013145941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012080148A JP2015118717A (en) 2012-03-30 2012-03-30 Manufacturing method of multilayer optical recording medium
JP2012-080148 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145941A1 true WO2013145941A1 (en) 2013-10-03

Family

ID=49259223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053968 WO2013145941A1 (en) 2012-03-30 2013-02-19 Method for producing multilayer optical recording medium

Country Status (3)

Country Link
JP (1) JP2015118717A (en)
TW (1) TW201351404A (en)
WO (1) WO2013145941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211062A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Optical information recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073416B2 (en) 2015-04-24 2018-09-11 Lg Display Co., Ltd. Method for producing a holographic optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157588A (en) * 2001-11-22 2003-05-30 Sony Corp Production apparatus for optical disk and production method for optical disk
JP2005259192A (en) * 2004-03-09 2005-09-22 Lintec Corp Adhesive sheet for optical recording medium, multilayer structured body for optical recording medium and multilayer optical recording medium
JP2008108381A (en) * 2006-10-26 2008-05-08 Lintec Corp Multilayer structure for optical recording medium, its manufacturing method and multilayer optical recording medium
JP2010211897A (en) * 2009-03-12 2010-09-24 Fujifilm Corp Multilayer optical recording medium and method for manufacturing the same, and manufacturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157588A (en) * 2001-11-22 2003-05-30 Sony Corp Production apparatus for optical disk and production method for optical disk
JP2005259192A (en) * 2004-03-09 2005-09-22 Lintec Corp Adhesive sheet for optical recording medium, multilayer structured body for optical recording medium and multilayer optical recording medium
JP2008108381A (en) * 2006-10-26 2008-05-08 Lintec Corp Multilayer structure for optical recording medium, its manufacturing method and multilayer optical recording medium
JP2010211897A (en) * 2009-03-12 2010-09-24 Fujifilm Corp Multilayer optical recording medium and method for manufacturing the same, and manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211062A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Optical information recording medium

Also Published As

Publication number Publication date
JP2015118717A (en) 2015-06-25
TW201351404A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
JP4704133B2 (en) Photocurable transfer sheet, optical information recording medium, and method for producing the same
US8741414B2 (en) Sheet for producing a multilayer optical recording medium and multilayer optical recording medium
KR20050065338A (en) Pressure sensitive adhesive sheet, a multilayer structured article for photorecording media having the sheet and multilayer photorecording medium having the article
JP4621191B2 (en) Multilayer structure for optical recording medium, method for producing the same, and multilayer optical recording medium
JP2007291339A (en) Photocurable transfer sheet, method for forming concavo-convex pattern using the same, method for producing optical information-recording medium, and optical information-recording medium
JP4479907B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP2005259192A (en) Adhesive sheet for optical recording medium, multilayer structured body for optical recording medium and multilayer optical recording medium
JP4674224B2 (en) Sheet material for multilayer optical recording medium, multilayer structure for optical recording medium, and multilayer optical recording medium
JPWO2009154289A1 (en) Sheet for multilayer optical recording medium and multilayer optical recording medium using the same
WO2013145941A1 (en) Method for producing multilayer optical recording medium
WO2005114663A1 (en) Sheet for production of optical recording medium
JP4711998B2 (en) Sheet material for multilayer optical recording medium, multilayer structure for optical recording medium, multilayer optical recording medium, and method for producing sheet material for multilayer optical recording medium
JP4764055B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP5356709B2 (en) Sheet for multilayer optical recording medium, multilayer structure for optical recording medium, and multilayer optical recording medium
JP4764158B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP2005182971A (en) Photocuring resin composition for optical information recording medium, photocuring transfer sheet, and optical information recording medium
JP4658858B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP5265223B2 (en) Sheet for multilayer optical recording medium, multilayer structure for optical recording medium, and multilayer optical recording medium
JP5619201B2 (en) Multilayer optical recording medium manufacturing sheet and multilayer optical recording medium
JP2007012224A (en) Optical information recording medium
JP4656991B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP2008282467A (en) Photocurable transfer sheet, method of manufacturing optical information recording medium using the same, and optical information recording medium
JP5016292B2 (en) Photocurable transfer sheet, method for producing optical information recording medium using the same, and optical information recording medium
JP2006344286A (en) Photocuring transfer disk sheet suitable for manufacture of optical information recording medium, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767372

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13767372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: DE