WO2013145844A1 - 熱源システム及びその制御装置並びにその制御方法 - Google Patents

熱源システム及びその制御装置並びにその制御方法 Download PDF

Info

Publication number
WO2013145844A1
WO2013145844A1 PCT/JP2013/052153 JP2013052153W WO2013145844A1 WO 2013145844 A1 WO2013145844 A1 WO 2013145844A1 JP 2013052153 W JP2013052153 W JP 2013052153W WO 2013145844 A1 WO2013145844 A1 WO 2013145844A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
power consumption
power
demand
source system
Prior art date
Application number
PCT/JP2013/052153
Other languages
English (en)
French (fr)
Inventor
智 二階堂
上田 憲治
和島 一喜
長谷川 泰士
良枝 栂野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020147020839A priority Critical patent/KR20140108576A/ko
Priority to US14/376,594 priority patent/US20140374497A1/en
Priority to CN201380010891.2A priority patent/CN104126098A/zh
Priority to DE112013001841.1T priority patent/DE112013001841T5/de
Publication of WO2013145844A1 publication Critical patent/WO2013145844A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat source system, a control device therefor, a control method therefor, a power adjustment network system, and a heat source machine control device.
  • Patent Document 1 in the demand control of a plurality of outdoor units connected to the same power line, when the current value of the power line exceeds the current limit value, the operating frequency of the compressor of one outdoor unit A method for lowering is disclosed.
  • the present invention provides a heat source system and its control device, its control method, power adjustment network system, and heat source device control device capable of suppressing the power consumption of the system to be equal to or lower than contract power when a refrigerator is used as a heat source.
  • the purpose is to provide.
  • a first aspect of the present invention is a control device applied to a heat source system including at least one heat source unit that heats or cools heat source water according to a set temperature and supplies the heated or cooled heat source water to a load device.
  • the power monitoring means for monitoring the power consumption of the heat source system, and when the power consumption of the heat source system exceeds a first power threshold set to a value lower than contract power,
  • a control device for a heat source system comprising demand limiting means for limiting demand by increasing or decreasing the set temperature in a direction in which power consumption decreases.
  • the set temperature is set in a direction in which the power consumption of the heat source machine is reduced by the demand limiting unit. Raised or lowered.
  • the necessary refrigeration capacity is also reduced by reducing the difference between the inflow temperature of the heat source water and the water supply temperature. As a result, the power consumption of the heat source device can be suppressed.
  • the heat source device is originally controlled based on the refrigerating capacity (heat source water outlet temperature of the heat source device), the device control is smoothly performed by controlling the set temperature of the heat source water as described above. Can be done.
  • the demand limiting unit is configured such that when the power consumption of the heat source system becomes less than the second power threshold set to be equal to or lower than the first power threshold, the power consumption of the heat source machine
  • the set temperature may be decreased or increased in a direction in which the temperature increases, and when the current set temperature reaches a preset reference set temperature, the set temperature may be maintained.
  • the set temperature decreases or decreases in the direction in which the power consumption of the heat source unit increases. Raised. Thereby, the temperature of the heat source water can be brought close to the reference set temperature.
  • the demand limiting unit is configured to set the set temperature so that the set temperature does not become less than a preset lower limit value.
  • the set temperature may be raised so that the set temperature does not exceed a preset upper limit value.
  • the control device of the heat source system may include demand limit stop means for stopping demand limit by the demand limit means.
  • the demand restriction when it is not desired to implement the demand restriction, the demand restriction can be stopped by operating the demand restriction stopping means.
  • the control device of the heat source system includes an electric water supply unit that adjusts the flow rate of the heat source water sent from the external device to the heat source unit, and the demand limiting unit is configured such that the power consumption of the heat source system is the first power threshold value. It is good also as hold
  • the demand limiting means holds the rotation speed of the water supply means, so that the rotation speed of the water supply means increases. It becomes possible to prevent an increase in power consumption.
  • the demand limiting unit is configured to set a third power threshold that is set such that power consumption of the heat source system is higher than the first power threshold and lower than the contract power. When it exceeds, it is good also as stopping the operation
  • the power consumption of the heat source system exceeds the third power threshold, the operation of the predetermined heat source machine is stopped, so before the power consumption of the heat source system exceeds the contract power, The power consumption of the heat source system can be quickly reduced.
  • the demand limiting unit performs control to reduce power consumption of the electric device included in the load device during a period in which power consumption of the heat source system exceeds the first power threshold. It is good.
  • the power consumption of the electric device included in the load device is reduced by the demand control means. Can be further reduced.
  • the control device of the heat source system includes power predicting means for predicting future power consumption from the behavior of power consumption of the heat source system in a predetermined period in the past, and the demand limiting means has a predicted power consumption after a predetermined period from the present time.
  • the demand limitation may be started when the first power threshold is exceeded.
  • the future power output is predicted from the power consumption behavior of the heat source system in the past predetermined period by the power prediction means.
  • the demand limiting means limits the demand when the predicted power consumption after a predetermined period from the present time exceeds the first power threshold. Thereby, demand restriction can be performed in advance, and it is possible to prevent the power consumption of the heat source system from reaching the contract power.
  • a second aspect of the present invention is a control method applied to a heat source system including at least one heat source unit that heats or cools heat source water according to a set temperature and supplies the heated or cooled heat source water to a load device.
  • the power consumption of the heat source system is monitored, and when the power consumption of the heat source system exceeds a first power threshold set to a value lower than the contract power, the power consumption of the heat source machine decreases.
  • This is a control method of a heat source system that performs demand limitation by increasing or decreasing the set temperature in the direction to be performed.
  • a third aspect of the present invention is a heat source system including the control device for the heat source system.
  • a heat source system comprising at least one heat source unit that heats or cools the heat source water according to a set temperature and supplies the heated or cooled heat source water to a load device
  • the heat source system comprising: A heat source machine control means for controlling the corresponding heat source machine, and a system control means for giving a control command to each of the heat source machine control means, the system control means comprising: Power monitoring means for monitoring power consumption of the heat source system, and when the power consumption of the heat source system exceeds a first power threshold set to a value lower than contract power, demand restriction is imposed on each of the heat source device control means.
  • a notification means for notifying a start command wherein the heat source machine control means increases the set temperature in a direction in which power consumption decreases when the demand limit start command is notified.
  • the other is a heat source system comprising demand limit means for performing a demand limit by lowering.
  • a fifth aspect of the present invention includes the plurality of heat source systems and a central monitoring device connected to a control device of each of the heat source systems via a communication medium, and the control device of each of the heat source systems from the central control device. Is a power adjustment network system in which the first power threshold is notified.
  • a control device for a heat source unit that heats or cools the heat source water in accordance with a set temperature and supplies the heated or cooled heat source water to a load device, wherein the power consumption of the heat source unit is reduced.
  • the power monitoring means for monitoring and the power consumption of the heat source unit exceed a first power threshold set to a value lower than the contract power
  • the set temperature is set in a direction in which the power consumption of the heat source unit decreases.
  • It is a control device of a heat source machine comprising demand limiting means for limiting demand by raising or lowering.
  • FIG. 1 is a diagram schematically showing the configuration of a heat source system 1 according to the first embodiment of the present invention.
  • the heat source system 1 includes a load device 3, heat source devices 2 a, 2 b, 2 c, and a system control device 20.
  • FIG. 1 illustrates the case where three heat source units are installed, the number of installed heat source units can be arbitrarily determined.
  • the load device 3 is, for example, an air conditioning facility, a hot water supply facility, a factory facility, or the like.
  • the heat source devices 2a, 2b, and 2c cool or heat the heat source water based on the set temperature set by the system control device 20, and supply the heat source water after cooling or after heating to the load device 3.
  • the heat source water may be a liquid medium other than water.
  • an air conditioning facility that performs a cooling operation is assumed as the load device 3, the water that is the heat source water is cooled in the heat source devices 2 a, 2 b, and 2 c, and the cooled cold water is used as the load device 3.
  • the case of supplying to will be described as an example.
  • Cold water pumps (water supply means) 4a, 4b, and 4c for pumping the heat source water are installed on the upstream side of the heat source devices 2a, 2b, and 2c as viewed from the cold water flow.
  • the cold water from the return header 6 is sent to the heat source devices 2a, 2b, and 2c.
  • Each of the chilled water pumps 4a, 4b, and 4c is driven by an inverter motor (not shown), and thereby the variable flow rate is controlled by making the rotation speed variable.
  • the cold water collected in the supply header 5 is supplied to the load device 3.
  • the cold water that has been subjected to air conditioning by the load device 3 and raised in temperature is sent to the return header 6.
  • the cold water is branched at the return header 6 and sent to the heat source units 2a, 2b, and 2c.
  • a bypass pipe 7 is provided between the supply header 5 and the return header 6.
  • the amount of cold water supplied to the load device 3 can be adjusted by adjusting the opening degree of the bypass valve 8 provided in the bypass pipe 7.
  • FIG. 2 shows a schematic configuration when a turbo refrigerator is applied as a configuration example of the heat source units 2a, 2b, and 2c.
  • the heat source units 2a, 2b, and 2c may be unified with the same type of heat source unit, or several types of heat source units may be mixed.
  • the heat source unit 2a includes a turbo compressor 31 that compresses the refrigerant, a condenser 32 that condenses the high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 31, and a liquid refrigerant condensed by the condenser 32.
  • a subcooler 33 that provides cooling, a high-pressure expansion valve 34 that expands liquid refrigerant from the subcooler 33, and an intermediate cooler that is connected to the high-pressure expansion valve 34 and to the intermediate stage of the turbo compressor 31 and the low-pressure expansion valve 35.
  • 37 and an evaporator 36 for evaporating the liquid refrigerant expanded by the low-pressure expansion valve 35.
  • the turbo compressor 31 is a centrifugal two-stage compressor, and is driven by an electric motor 39 whose rotational speed is controlled by an inverter 38.
  • the output of the inverter 38 is controlled by the heat source machine control device 10a.
  • the turbo compressor 31 may be a fixed speed compressor having a constant rotation speed.
  • An inlet guide vane (hereinafter referred to as “IGV”) 40 for controlling the flow rate of the intake refrigerant is provided at the refrigerant intake port of the turbo compressor 31 so that the capacity of the heat source unit 2a can be controlled.
  • the condenser 32 is provided with a pressure sensor 51 for measuring the condensed refrigerant pressure Pc.
  • the output of the pressure sensor 51 is transmitted to the heat source machine control device 10a.
  • the subcooler 33 is provided on the downstream side of the refrigerant flow of the condenser 32 so as to supercool the condensed refrigerant.
  • a temperature sensor 52 for measuring the refrigerant temperature Ts after supercooling is provided.
  • the condenser 32 and the subcooler 33 are inserted with a cooling heat transfer tube 41 for cooling them.
  • the cooling water flow rate F2 is measured by a flow meter 54, the cooling water outlet temperature Tcout is measured by a temperature sensor 55, and the cooling water inlet temperature Tcin is measured by a temperature sensor 56.
  • the cooling water is led to the condenser 32 and the subcooler 33 again after being exhausted to the outside in a cooling tower (not shown).
  • the intermediate cooler 37 is provided with a pressure sensor 57 for measuring the intermediate pressure Pm.
  • the evaporator 36 is provided with a pressure sensor 58 for measuring the evaporation pressure Pe.
  • Cold water having a rated temperature (for example, 7 ° C.) is obtained by absorbing heat in the evaporator 36.
  • the evaporator 36 is inserted with a cold water heat transfer tube 42 for cooling the cold water supplied to the external load 3 (see FIG. 1).
  • the cold water flow rate F1 is measured by a flow meter 59, the cold water outlet temperature Tout is measured by a temperature sensor 60, and the cold water inlet temperature Tin is measured by a temperature sensor 61.
  • a hot gas bypass pipe 43 is provided between the vapor phase portion of the condenser 32 and the vapor phase portion of the evaporator 36.
  • a hot gas bypass valve 44 for controlling the flow rate of the refrigerant flowing in the hot gas bypass pipe 43 is provided. By adjusting the hot gas bypass flow rate by the hot gas bypass valve 44, it is possible to control the capacity of a very small region that is not sufficiently controlled by the IGV 40.
  • the condenser 32 and the subcooler 33 are provided and heat is exchanged between the cooling water cooled by exhausting heat to the outside in the cooling tower and the refrigerant is described.
  • an air heat exchanger may be arranged instead of the condenser 32 and the subcooler 33, and heat may be exchanged between the outside air and the refrigerant in the air heat exchanger.
  • FIG. 3 is a diagram schematically showing the configuration of the control system of the heat source system 1 shown in FIG.
  • the heat source device control devices 10a, 10b, and 10c which are control devices for the heat source devices 2a, 2b, and 2c, are connected to the system control device 20 via the communication medium 21, and are bidirectional. Communication is possible.
  • the system control device 20 is a control device that controls the entire heat source system.
  • the system control device 20 is a demand limiting function that restricts demand so that the power consumption of the entire system does not exceed the contract power, and the heat source that is activated for the required load of the load device 3. It has a unit control function for controlling the number of units 2a, 2b, and 2c.
  • the system control device 20 and the heat source device control devices 10a, 10b, and 10c are computers, for example, a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory), an auxiliary storage device, and an external device.
  • a communication device that exchanges information by performing communication is provided.
  • the auxiliary storage device is a computer-readable recording medium, such as a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, or a semiconductor memory.
  • Various programs are stored in the auxiliary storage device, and various processes are realized by the CPU reading and executing the program from the auxiliary storage device to the main storage device.
  • FIG. 4 is a functional block diagram showing main elements related to the demand limiting function among the functions provided in the system control apparatus 20.
  • the system control device 20 includes a storage unit 22, a power monitoring unit 23, and a demand limiting unit 24 as main components.
  • the storage unit 22 stores a first power threshold set to a value lower than the contract power, a second power threshold set to a value lower than the first power threshold, and a reference set temperature (for example, 5 ° C.). .
  • the reference set temperature is a set temperature that serves as a reference for the cold water supply temperature supplied from the heat source devices 2a, 2b, and 2c to the load device 3.
  • the power monitoring unit 23 monitors the power consumption of the heat source system (hereinafter referred to as “system power consumption”). For example, the system power consumption is monitored by attaching a multimeter to the main power supply system of the heat source system and inputting the measured value to the system controller 20.
  • the demand restriction unit 24 performs demand restriction so that the system power consumption monitored by the power monitoring unit 23 does not exceed the contract power. For example, when the system power consumption exceeds the first power threshold stored in the storage unit 22, the demand restriction unit 24 performs demand restriction by increasing the set temperature of the water supply temperature. As described above, when the system power consumption exceeds the first power threshold, the set temperature, which is the target value of the water supply temperature, is changed in a direction in which the power consumption decreases. Thereby, the head differential pressure
  • the demand restriction unit 24 lowers the set temperature when the system power consumption becomes less than the second power threshold stored in the storage unit 22. Thereby, the water supply temperature of the cold water supplied to the load apparatus 3 can be brought close to the reference set temperature.
  • demand limitation of the heat source system 1 when the system power consumption exceeds the first power threshold at time t1 in FIG. 5, the demand control unit 24 of the system control device 20 increases the set temperature at a predetermined rate.
  • the changed set temperature is transmitted from the system control device 20 to the heat source device control devices 10a, 10b, and 10c, and the heat source devices 2a, 2b, and 2c are controlled based on the changed set temperature.
  • the system power consumption gradually decreases (see time t1 to time t2 in FIG. 5).
  • the demand control unit 24 of the system control device 20 decreases the set temperature at a predetermined rate.
  • the changed set temperature is transmitted from the system control device 20 to each heat source device control device 2a, 2b, 2c, and each heat source device 2a, 2b, 2c is controlled based on the changed set temperature.
  • the demand control unit 24 of the system control device 20 Increases the set temperature at a predetermined rate.
  • the system power consumption gradually decreases, and when it becomes less than the second power threshold at time t4, the demand control unit 24 of the system control device 20 decreases the set temperature at a predetermined rate.
  • the set temperature reaches the reference set temperature, the reference set temperature is maintained.
  • the set temperature is gradually increased and decreased at a predetermined rate, but the method for increasing and decreasing the set temperature is not limited to this example. For example, it may be gradually raised and lowered step by step.
  • FIG. 5 illustrates the case where the first power threshold and the second power threshold are set to different values, but the first power threshold and the second power threshold are set to the same value. Also good.
  • the system power consumption is monitored, and when the system power consumption exceeds the first power threshold, Increase the set temperature of cold water.
  • voltage of the compressor in each heat source machine can be made small, and the power consumption of a heat source machine can be suppressed.
  • the system power consumption can be reduced, and the system power consumption can be prevented from exceeding the contract power.
  • the power consumption of the heat source unit is effectively reduced. It can be reduced.
  • the load-power consumption characteristic at is a curve indicated by a thin line.
  • the operating point is changed because the head differential pressure of the compressor decreases.
  • the load-power consumption characteristic is a curve indicated by a thick line. That is, by reducing the head differential pressure, it is possible to move the load-power consumption characteristic in a direction in which the power consumption decreases.
  • the load factor when the set temperature is increased from 5 ° C. to 7 ° C., the load factor also changes. That is, when the set temperature (cold water outlet temperature) is changed to 7 ° C. when the load factor is 100% and the cold water outlet temperature is 5 ° C., the load factor decreases from 100% to 60%. Thereby, as shown in FIG. 6, power consumption can be further reduced. In this way, by changing the set temperature of the cold water, both the power consumption reduction effect due to the compressor head differential pressure and the power consumption reduction effect due to the load factor reduction can be obtained, effectively reducing the power consumption. Can be reduced.
  • the demand limiting unit 24 decreases the set temperature when the system power consumption exceeds the first power threshold, and increases the set temperature when the system power consumption is less than the second power threshold.
  • a demand limit stop unit 25 for stopping the demand limit may be provided, and the demand limit may not be performed when the demand limit stop unit 25 is operating.
  • the demand restriction stop and stop cancellation by the demand restriction stop unit 25 may be set based on, for example, input information input from an operator.
  • the system control device 20 performs the demand restriction by increasing the set temperature of the cold water.
  • the load device 3 may have a shortage of heat.
  • the shortage of heat may be resolved by increasing the cold water flow rate.
  • the rotation speed of the chilled water pump is held during a period when the demand is limited, and an increase in power consumption in the chilled water pump is avoided.
  • the demand control unit of the system control device 20 issues a frequency command for the chilled water pump in a period in which the system power consumption exceeds the first power threshold and is less than the second power threshold. Hold.
  • the demand control unit of the system control device 20 issues a frequency command for the chilled water pump in a period in which the system power consumption exceeds the first power threshold and is less than the second power threshold. Hold.
  • the demand control unit 24 may restart the heat source machine that has been forcibly stopped when the system power consumption becomes less than the second power threshold.
  • the demand limiting unit 24 of the system control device 20 performs the demand according to any of the first to third embodiments described above. It differs from the heat source system which concerns on each above-mentioned embodiment by the point which performs control which reduces the motive power of the various electric equipment (illustration omitted) with which the load apparatus 3 is provided while restrict
  • the load device 3 is an air conditioner
  • the amount of air blown indoors is made variable by changing the rotational speed of the fan.
  • the demand control part 24 reduces the frequency of the electric equipment in the load apparatus 3 while changing the preset temperature in a heat source machine. To further reduce system power consumption. Thereby, system power consumption can be reduced rapidly and possibility that system power consumption will exceed contract power can be reduced.
  • the power prediction unit 26 is provided in the system control device. As shown in FIG. 11, the power prediction unit 26 predicts future power consumption from the behavior of power consumption of the heat source system in the past predetermined period T1 from the present time.
  • the demand restriction unit 24 starts demand restriction when the predicted power consumption after a predetermined period T2 from the present time exceeds the first power threshold.
  • the predetermined period T1 is a period that can be arbitrarily determined, and is set to about 30 minutes to 1 hour, for example.
  • the predetermined period T2 is set to a time longer than at least a time delay from when the demand restriction is started until the system power consumption starts to decrease.
  • the future system power consumption is predicted from the behavior of the past system power consumption, and it is determined whether to start demand restriction based on the predicted system power consumption. It is possible to effectively avoid exceeding.
  • a known prediction technique can be adopted, and for example, future power is predicted from the rate of change of system power consumption in a past fixed period.
  • the system controller 20 controls the demand of each heat source unit in an integrated manner.
  • a demand limiting function is provided for each heat source unit controller 10a, 10b, 10c. It is also possible to limit demand on a heat source unit basis.
  • the first power threshold, the second power threshold, and the like as described above are set based on, for example, the limit power of each heat source unit that is apportioned from the contract power of the entire system, and the consumption of each heat source unit.
  • the demand restriction as described above is performed based on the relationship between the power, the first power threshold, and the second power threshold.
  • the power consumption of each heat source device can be detected by attaching a multimeter to the power supply system of each heat source device. Thus, it becomes possible to suppress power consumption also by providing the demand limiting function provided in the system control device 20 in each heat source device control device.
  • power consumption may be monitored in the system control device 20. That is, the system control device 20 monitors the system power consumption, and when the system power consumption exceeds the first power threshold, notifies each heat source device control device of a demand restriction start command for starting demand restriction. It is also good. As described above, the system control device 20 may compare each threshold value with the system power consumption, and may notify the heat source device control device of the comparison result to perform demand restriction. When the demand restriction is performed for each heat source unit, the change rate of the set temperature may be different between the heat source units.
  • the power adjustment network system includes system control devices 20a, 20b, and 20c for a plurality of heat source systems according to any of the above-described embodiments, and a system control device 20a for each heat source system. , 20b, 20c and a central monitoring device 50 connected via a communication medium 51.
  • the central monitoring device 50 acquires the respective system power consumption and the like from the system control devices 20a, 20b, and 20c of each heat source system, determines the first power threshold based on these information and the contract power, and this first The power threshold value is transmitted to each system control device 20.
  • the central monitoring device 50 has a heat source system in which the demand limit is performed or the demand limit is likely to start, and there is a margin before the demand limit is started, in other words, the system power consumption and the first power threshold value.
  • the first power threshold value of the former heat source system is increased and the first power threshold value of the latter heat source system is decreased. In this way, by adjusting the first power threshold value of each heat source system by comparing the system power consumption between the heat source systems, flexible power adjustment can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷凍機を熱源として用いる場合において、システムの消費電力を契約電力以下に抑制することを目的とする。システム制御装置(20)は、熱源システムの消費電力をモニタする電力監視部(23)と、デマンド制限部(24)とを備える。デマンド制限部(24)は、熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、熱源機の消費電力が低下する方向に設定温度を上昇または下降させることによりデマンド制限を行う。

Description

熱源システム及びその制御装置並びにその制御方法
 本発明は、熱源システム及びその制御装置並びにその制御方法、電力調整ネットワークシステム、及び熱源機の制御装置に関するものである。
 従来、空調システムにおいて、消費電力が電力会社との契約電力を超えないように、デマンド制御を行うことが提案されている。
 例えば、特許文献1には、同一電源ラインに接続された複数の室外機のデマンド制御において、電源ラインの電流値が電流制限値を超えた場合に、1台の室外機の圧縮機の運転周波数を低下させる方法が開示されている。
特開平10-339529号公報
 近年、ビルなどに導入される大型の空調設備として、ターボ冷凍機を熱源として用いるものが知られている。このように熱源としてターボ冷凍機等を用いる大型の空調設備においても、システム全体として契約電力が締結される場合があり、システムの消費電力が契約電力を超えないように制御することが必要とされる。
 本発明は、冷凍機を熱源として用いる場合において、システムの消費電力を契約電力以下に抑制することのできる熱源システム及びその制御装置並びにその制御方法、電力調整ネットワークシステム、及び熱源機の制御装置を提供することを目的とする。
 本発明の第1態様は、設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する少なくとも1台の熱源機を備える熱源システムに適用される制御装置であって、前記熱源システムの消費電力をモニタする電力監視手段と、前記熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、前記熱源機の消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行うデマンド制限手段とを具備する熱源システムの制御装置である。
 本態様によれば、熱源システムの消費電力が契約電力よりも低い値に設定された第1電力閾値を超えた場合に、デマンド制限手段によって、熱源機の消費電力が低下する方向に設定温度が上昇または下降させられる。これにより、熱源機の冷却水出口温度と熱源水送水温度との温度差(=蒸発器と凝縮機の冷媒圧力差)が小さくなり、圧縮機のヘッド差圧を小さくすることができる。更に、熱源水の流入温度と送水温度の差が小さくなる事で必要冷凍能力も減少する。この結果、熱源機の消費電力を抑制することができる。また、熱源機は、本来、冷凍能力(熱源機の熱源水出口温度)に基づいて制御されていることから、上記のように、熱源水の設定温度を制御することにより、機器制御を円滑に行うことが可能となる。
 上記熱源システムの制御装置において、前記デマンド制限手段は、前記熱源システムの消費電力が、前記第1電力閾値以下に設定された前記第2電力閾値未満となった場合に、前記熱源機の消費電力が増加する方向に前記設定温度を下降または上昇させ、現在の設定温度が予め設定されている基準設定温度に達した場合にその設定温度を維持することとしてもよい。
 このような構成によれば、熱源システムの消費電力が第1電力閾値以下に設定された第2電力閾値未満になった場合には、熱源機の消費電力が増加する方向に設定温度が下降または上昇させられる。これにより、熱源水の温度を基準設定温度に近づけることが可能となる。
 上記熱源システムの制御装置において、前記デマンド制限手段は、前記熱源機が前記熱源水の加熱を行っている場合には、前記設定温度が予め設定されている下限値未満とならないように前記設定温度を下降させ、前記熱源機が前記熱源水の冷却を行っている場合には、前記設定温度が予め設定されている上限値を超えないように前記設定温度を上昇させることとしてもよい。
 このような構成によれば、設定温度に制限値を設け、デマンド制限手段によって設定温度が変更される場合に、設定温度が制限値に達した場合には、その制限値を維持するような制御が行われる。これにより、負荷装置へ送出される熱源水温度が制限値を超えることを防止することが可能となる。
 上記熱源システムの制御装置は、前記デマンド制限手段によるデマンド制限を停止させるデマンド制限停止手段を備えることとしてもよい。
 このような構成によれば、デマンド制限を実施したくない場合には、デマンド制限停止手段を作動させることにより、デマンド制限を停止させることができる。
 上記熱源システムの制御装置は、前記外部装置から前記熱源機に送られる熱源水の流量を調節する電動の送水手段を備え、前記デマンド制限手段は、前記熱源システムの消費電力が前記第1電力閾値を超えている期間において、前記送水手段の回転数をホールドさせることとしてもよい。
 このような構成によれば、熱源システムの消費電力が第1電力閾値を超えている期間において、デマンド制限手段が、送水手段の回転数をホールドさせるので、送水手段の回転数が上昇することによる電力消費増加を防止することが可能となる。
 上記熱源システムの制御装置において、前記デマンド制限手段は、前記熱源システムの消費電力が、前記第1電力閾値よりも高い値であり、前記契約電力よりも低い値に設定された第3電力閾値を超えた場合に、所定の前記熱源機の運転を停止させることとしてもよい。
 このような構成によれば、熱源システムの消費電力が第3電力閾値を超えた場合には、所定の熱源機の運転が停止されるので、熱源システムの消費電力が契約電力を超える前に、熱源システムの消費電力を速やかに低下させることが可能となる。
 上記熱源システムの制御装置において、前記デマンド制限手段は、前記熱源システムの消費電力が前記第1電力閾値を超えている期間において、前記負荷装置が備える電動機器の消費電力を低下させる制御を行うこととしてもよい。
 このような構成によれば、熱源システムの消費電力が第1電力閾値を超えている期間において、デマンド制御手段により、負荷装置が備える電動機器の消費電力が低下させられるので、熱源システムの消費電力を更に低下させることが可能となる。
 上記熱源システムの制御装置は、過去の所定期間における熱源システムの消費電力の挙動から将来の消費電力を予測する電力予測手段を備え、前記デマンド制限手段は、現在から所定期間後における予測消費電力が前記第1電力閾値を超える場合に、前記デマンド制限を開始することとしてもよい。
 このような構成によれば、電力予測手段により、過去の所定期間における熱源システムの消費電力の挙動から将来の消費出力が予測される。デマンド制限手段は、現在から所定期間後における予測消費電力が第1電力閾値を超える場合に、デマンド制限を行う。これにより、事前にデマンド制限を行うことができ、熱源システムの消費電力が契約電力に達することを回避することが可能となる。
 本発明の第2態様は、設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する少なくとも1台の熱源機を備える熱源システムに適用される制御方法であって、前記熱源システムの消費電力をモニタし、前記熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、前記熱源機の消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行う熱源システムの制御方法である。
 本発明の第3態様は、上記熱源システムの制御装置を備える熱源システムである。
 本発明の第4態様は、設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する少なくとも1台の熱源機を備える熱源システムであって、前記熱源機に対応してそれぞれ設けられ、対応する前記熱源機を制御する熱源機制御手段と、各前記熱源機制御手段に対して制御指令を与えるシステム制御手段とを備え、前記システム制御手段は、前記熱源システムの消費電力をモニタする電力監視手段と、前記熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、各前記熱源機制御手段にデマンド制限開始指令を通知する通知手段とを備え、前記熱源機制御手段は、前記デマンド制限開始指令が通知された場合に、消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行うデマンド制限手段を備える熱源システムである。
 本発明の第5態様は、上記複数の熱源システムと、各前記熱源システムの制御装置と通信媒体を介して接続される中央監視装置とを備え、前記中央制御装置から各前記熱源システムの制御装置に対して前記第1電力閾値が通知される電力調整ネットワークシステムである。
 本発明の第6態様は、設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する熱源機の制御装置であって、前記熱源機の消費電力をモニタする電力監視手段と、前記熱源機の消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、前記熱源機の消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行うデマンド制限手段とを具備する熱源機の制御装置である。
 本発明によれば、熱源システムの消費電力が契約電力を超えないように制御することができるという効果を奏する。
本発明の第1実施形態に係る熱源システムの全体構成を概略的に示した図である。 図1に示された熱源機の一構成例を示した図である。 本発明の第1実施形態に係る熱源システムの制御系の構成を概略的に示した図である。 図3に示したシステム制御装置が備える機能のうち、熱源機のデマンド制御機能に関する主な要素について示した機能ブロック図である。 本発明の第1実施形態に係る熱源システムのデマンド制御について説明するための図である。 本発明の第1実施形態に係る熱源システムにおける効果を説明するための図である。 本発明の第1実施形態に係る熱源システムにおけるデマンド制限機能の他の態様を示した図である。 本発明の第2実施形態に係る熱源システムのデマンド制限について説明するための図である。 本発明の第3実施形態に係る熱源システムのデマンド制限について説明するための図である。 本発明の第5実施形態に係るシステム制御装置が備える機能のうち、熱源機のデマンド制御機能に関する主な要素について示した機能ブロック図である。 図10の電力予測部により行われる消費電力予測について説明するための図である。 本発明の一実施形態に係る電力調整ネットワークシステムの概略構成について説明した図である。
〔第1実施形態〕
 以下、本発明の第1実施形態に係る熱源システム及びその制御装置並びにその制御方法について、図面を参照して説明する。
 図1は、本発明の第1実施形態に係る熱源システム1の構成を概略的に示した図である。熱源システム1は、負荷装置3と、熱源機2a、2b、2cと、システム制御装置20とを備えている。図1では、3台の熱源機が設置されている場合について例示しているが、熱源機の設置台数については任意に決定することができる。
 負荷装置3は、例えば、空調設備、給湯設備、工場設備等である。熱源機2a、2b、2cは、システム制御装置20によって設定される設定温度に基づいて熱源水を冷却または加熱し、冷却後または加熱後の熱源水を負荷装置3へ供給する。ここで、熱源水は水以外の液媒体であってもよい。
 なお、本実施形態では、説明の便宜上、負荷装置3として冷房運転を行う空調設備を想定し、熱源機2a、2b、2cにおいて熱源水である水を冷却し、冷却後の冷水を負荷装置3へ供給する場合を例に挙げて説明する。
 冷水流れからみた各熱源機2a、2b、2cの上流側には、それぞれ、熱源水を圧送する冷水ポンプ(送水手段)4a、4b、4cが設置されている。これら冷水ポンプ4a、4b、4cによって、リターンヘッダ6からの冷水が各熱源機2a、2b、2cへと送られる。各冷水ポンプ4a、4b、4cは、インバータモータ(図示略)によって駆動されるようになっており、これにより、回転数を可変とすることで可変流量制御される。
 サプライヘッダ5には、各熱源機2a、2b、2cにおいて得られた冷水が集められるようになっている。サプライヘッダ5に集められた冷水は、負荷装置3に供給される。負荷装置3にて空調に供されて昇温した冷水は、リターンヘッダ6に送られる。冷水は、リターンヘッダ6において分岐され、各熱源機2a、2b、2cに送られる。
 また、サプライヘッダ5とリターンヘッダ6との間にはバイパス配管7が設けられている。バイパス配管7に設けられたバイパス弁8の開度を調整することにより、負荷装置3へ供給する冷水量を調整することができる。
 図2には、熱源機2a、2b、2cの一構成例としてターボ冷凍機を適用した場合の概略構成が示されている。同図では、理解の容易のため、3台並列に設けられた熱源機のうち、一つの熱源機2aのみが示されている。なお、図2に示した構成は一例であり、例えば、ターボ冷凍機に代えて、スクリュー冷凍機を採用することとしてもよい。また、熱源機2a、2b、2cは同一種類の熱源機で統一されていてもよいし、数種類の熱源機が混在していてもよい。
 熱源機2aは、冷媒を圧縮するターボ圧縮機31と、ターボ圧縮機31によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器32と、凝縮器32にて凝縮された液冷媒に対して過冷却を与えるサブクーラ33と、サブクーラ33からの液冷媒を膨張させる高圧膨張弁34と、高圧膨張弁34に接続されるとともにターボ圧縮機31の中間段および低圧膨張弁35に接続される中間冷却器37と、低圧膨張弁35によって膨張させられた液冷媒を蒸発させる蒸発器36とを備えている。
 ターボ圧縮機31は、遠心式の2段圧縮機であり、インバータ38によって回転数制御された電動モータ39によって駆動されている。インバータ38は、熱源機制御装置10aによってその出力が制御されている。なお、ターボ圧縮機31は、回転数一定の固定速の圧縮機であってもよい。ターボ圧縮機31の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)40が設けられており、熱源機2aの容量制御が可能となっている。
 凝縮器32には、凝縮冷媒圧力Pcを計測するための圧力センサ51が設けられている。圧力センサ51の出力は、熱源機制御装置10aに送信される。
 サブクーラ33は、凝縮器32の冷媒流れ下流側に、凝縮された冷媒に対して過冷却を与えるように設けられている。サブクーラ33の冷媒流れ下流側直後には、過冷却後の冷媒温度Tsを計測する温度センサ52が設けられている。
 凝縮器32及びサブクーラ33には、これらを冷却するための冷却伝熱管41が挿通されている。冷却水流量F2は流量計54により、冷却水出口温度Tcoutは温度センサ55により、冷却水入口温度Tcinは温度センサ56により計測されるようになっている。冷却水は、図示しない冷却塔において外部へと排熱された後に、再び凝縮器32及びサブクーラ33へと導かれるようになっている。
 中間冷却器37には、中間圧力Pmを計測するための圧力センサ57が設けられている。蒸発器36には、蒸発圧力Peを計測するための圧力センサ58が設けられている。蒸発器36において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。蒸発器36には、外部負荷3(図1参照)へ供給される冷水を冷却するための冷水伝熱管42が挿通されている。冷水流量F1は流量計59により、冷水出口温度Toutは温度センサ60により、冷水入口温度Tinは温度センサ61により計測されるようになっている。
 凝縮器32の気相部と蒸発器36の気相部との間には、ホットガスバイパス管43が設けられている。そして、ホットガスバイパス管43内を流れる冷媒の流量を制御するためのホットガスバイパス弁44が設けられている。ホットガスバイパス弁44によってホットガスバイパス流量を調整することにより、IGV40では制御が十分でない非常に小さな領域の容量制御が可能となっている。
 また、図2に示した熱源機2aでは、凝縮器32及びサブクーラ33を設け、冷却塔において外部へと排熱することにより冷やされた冷却水と冷媒との間で熱交換を行う場合について述べたが、例えば、凝縮器32及びサブクーラ33に代えて空気熱交換器を配置し、空気熱交換器において外気と冷媒との間で熱交換を行うような構成としてもよい。
 図3は、図1に示した熱源システム1の制御系の構成を概略的に示した図である。図3に示すように、各熱源機2a、2b、2cの制御装置である熱源機制御装置10a、10b、10cは、システム制御装置20と通信媒体21を介して接続されており、双方向の通信が可能な構成とされている。システム制御装置20は、熱源システム全体を制御する制御装置であり、システム全体の消費電力が契約電力を超えないようにデマンド制限するデマンド制限機能や、負荷装置3の要求負荷に対して起動させる熱源機2a、2b、2cの台数制御を行う台数制御機能等を有している。
 システム制御装置20、熱源機制御装置10a、10b、10cは、例えば、コンピュータであり、CPU(中央演算処理装置)、RAM(Random Access Memory)等の主記憶装置、補助記憶装置、外部の機器と通信を行うことにより情報の授受を行う通信装置などを備えている。
 補助記憶装置は、コンピュータ読取可能な記録媒体であり、例えば、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。この補助記憶装置には、各種プログラムが格納されており、CPUが補助記憶装置から主記憶装置にプログラムを読み出し、実行することにより種々の処理を実現させる。
 図4は、システム制御装置20が備える機能のうち、デマンド制限機能に関する主な要素について示した機能ブロック図である。
 図4に示されるように、システム制御装置20は、記憶部22、電力監視部23、デマンド制限部24を主な構成として備えている。
 記憶部22には、契約電力よりも低い値に設定された第1電力閾値、第1電力閾値以下に設定された第2電力閾値、及び基準設定温度(例えば、5℃)が格納されている。基準設定温度とは、熱源機2a、2b、2cから負荷装置3へ供給される冷水送水温度の基準となる設定温度である。
 電力監視部23は、熱源システムの消費電力(以下「システム消費電力」という。)をモニタしている。例えば、熱源システムの主電源系統にマルチメータを取り付け、この計測値をシステム制御装置20へ入力することで、システム消費電力をモニタする。
 デマンド制限部24は、電力監視部23によってモニタリングされているシステム消費電力が契約電力を超えないようにデマンド制限を行う。例えば、デマンド制限部24は、システム消費電力が、記憶部22に格納されている第1電力閾値を超えた場合に、送水温度の設定温度を上昇させることによりデマンド制限を行う。このように、システム消費電力が第1電力閾値を超えた場合には、送水温度の目標値である設定温度を消費電力が低下する方向に変更する。これにより、圧縮機31のヘッド差圧を小さくすることができ、圧縮機31における動力を低減することができる。この結果、熱源機2a、2b、2cの消費電力を抑制することができる。
 また、デマンド制限部24は、デマンド制限を行っている場合に、システム消費電力が記憶部22に格納されている第2電力閾値未満となると、設定温度を下降させる。これにより、負荷装置3へ供給される冷水の送水温度を基準設定温度に近づけることができる。
 次に、上記構成からなる本実施形態に係る熱源システム1のデマンド制限について、図5を用いて説明する。
 例えば、図5における時刻t1において、システム消費電力が第1電力閾値を超えると、システム制御装置20のデマンド制御部24が設定温度を所定のレートで上昇させる。変更後の設定温度は、システム制御装置20から各熱源機制御装置10a、10b、10cに送信され、各熱源機2a、2b、2cが変更後の設定温度に基づいて制御されることとなる。これにより、多少の遅延の後、システム消費電力は徐々に減少する方向に推移する(図5の時刻t1から時刻t2参照)。そして、時刻t2において、システム消費電力が第2電力閾値未満となると、システム制御装置20のデマンド制御部24は、設定温度を所定のレートで下降させる。変更後の設定温度は、上記と同様に、システム制御装置20から各熱源機制御装置2a、2b、2cに送信され、各熱源機2a、2b、2cが変更後の設定温度に基づいて制御される。
 設定温度が下降されたことにより、各熱源機2a、2b、2cの消費電力が増加し、時刻t3において、システム消費電力が再び第1電力閾値を超えると、システム制御装置20のデマンド制御部24は設定温度を所定のレートで上昇させる。この結果、システム消費電力は徐々に低下し、時刻t4において、第2電力閾値未満となると、システム制御装置20のデマンド制御部24は、設定温度を所定のレートで低下させる。そして、設定温度が基準設定温度に達すると、基準設定温度を維持する。
 なお、図5では、設定温度を所定のレートで徐々に上昇、下降させていたが、設定温度の上昇のさせ方、下降のさせ方はこの例に限定されない。例えば、ステップ的に徐々に上昇、下降させてもよい。
また、図5では、第1電力閾値と第2電力閾値とが異なる値に設定されている場合を例示しているが、第1電力閾値と第2電力閾値とが同じ値に設定されていてもよい。
 以上、説明したように、本実施形態に係る熱源システム及びその制御装置並びにその制御方法によれば、システム消費電力をモニタリングし、システム消費電力が第1電力閾値を超えた場合に、熱源機における冷水の設定温度を上昇させる。これにより、各熱源機における圧縮機のヘッド差圧を小さくすることができ、熱源機の消費電力を抑制することができる。この結果、システム消費電力を低下させることができ、システム消費電力が契約電力を超えることを回避することが可能となる。
 特に、上記のように、各熱源機の消費電力低減を実現させる手段として、冷水の設定温度を上昇させる方法を採用することにより、図6に示すように、熱源機の消費電力を効果的に低減させることが可能となる。
 例えば、図6に示すように、横軸に負荷率、縦軸に熱源機の消費電力をとると、設計運転点(例えば、冷却水出口温度Tcout=37℃,冷水出口温度Tout=5℃)における負荷-消費電力特性は細線で示される曲線となる。これに対し、冷水の設定温度を7℃に上昇させた場合(冷却水出口温度Tcout=37℃,冷水出口温度Tout=7℃)、圧縮機のヘッド差圧が減少することから運転点が変更され、負荷-消費電力特性は太線で示される曲線となる。すなわち、ヘッド差圧が低減されることにより、負荷-消費電力特性を消費電力が低下する方向に移動させることが可能となる。
 更に、設定温度を5℃から7℃に上昇させると、負荷率も変化する。すなわち、負荷率100%で冷水出口温度が5℃の場合に、設定温度(冷水出口温度)が7℃に変更となると、負荷率は100%から60%へ減少する。これにより、図6に示すように、消費電力を更に低減させることができる。
 このように、冷水の設定温度を変化させることにより、圧縮機のヘッド差圧による消費電力低減効果と、負荷率低下による消費電力低減効果との両方を得ることができ、消費電力を効果的に低減させることができる。
 なお、上記説明では、熱源水である冷水を冷却して負荷装置3に供給する場合について述べたが、熱源機2a、2b、2cにおいて加熱して温水を負荷装置3に供給する場合においては、デマンド制限部24は、システム消費電力が第1電力閾値を超えた場合に、設定温度を下降させ、システム消費電力が第2電力閾値未満の場合に、設定温度を上昇させる。このようにすることで、同様の効果を得ることができる。
〔他の態様1〕
 熱源システム1の運用として、消費電力が契約電力を超えないように制御することよりも、負荷装置3に対して所定温度以下の冷水を供給することの方が優先される場合もある。例えば、デパートなどでは、冷水温度が上がり過ぎてしまうと室内温度が上昇してしまい、顧客に不快感を与えてしまう。このような場合を想定して、デマンド制限を行う際の設定温度の上限値を記憶部22に予め格納しておき、設定温度が上限値に達した場合には、設定温度を上限値で維持するような態様を採ることとしてもよい。このように、上限値を設定しておくことで、冷水温度が上限値以上に上昇することを回避することができる。
 なお、熱源機において加熱を行う場合には、設定温度の下限値を設定しておき、設定温度が下限値以下となることを回避する。
〔他の態様2〕
 また、図7に示すように、デマンド制限を停止するためのデマンド制限停止部25を設け、デマンド制限停止部25が作動している場合には、デマンド制限を行わないようにしてもよい。デマンド制限停止部25によるデマンド制限の停止、停止解除は、例えば、オペレータから入力される入力情報に基づいて設定されるようにしてもよい。
〔第2実施形態〕
 次に、本発明の第2実施形態に係る熱源システム及びその制御装置並びにその制御方法について、図面を参照して説明する。
 上述した実施形態では、システム制御装置20が冷水の設定温度を上昇させることによりデマンド制限を行っていた。このように、冷水の設定温度を上昇させると、負荷装置3において熱量が不足するおそれがあり、この場合、冷水流量を増加させることにより熱量不足を解消する可能性がある。負荷装置3側において冷水流量を増加させる操作がなされると、各熱源機2a、2b、2cに対応して設けられた冷水ポンプの回転数が増加することとなり、冷水の設定温度によるデマンド制限が効果的に作用しなくなってしまう。
 そこで、本実施形態においては、デマンド制限を行っている期間において、冷水ポンプの回転数をホールドさせ、冷水ポンプにおける消費電力増加を回避することとしている。
 具体的には、システム制御装置20のデマンド制御部は、図8に示すように、システム消費電力が第1電力閾値を超えてから第2電力閾値未満となる期間において、冷水ポンプの周波数指令をホールドさせる。これにより、負荷装置3側で冷水の流量が増加されることに起因する冷水ポンプ4a、4b,4cの動力増加を回避することができ、設定温度の変更によるデマンド制限をシステム消費電力に効果的に反映させることができる。
〔第3実施形態〕
 次に、本発明の第3実施形態に係る熱源システム及びその制御装置並びにその制御方法について、図面を参照して説明する。
 上述した第1または第2実施形態に係るデマンド制限を行った場合であっても、最終的にシステム消費電力が契約電力を超えてしまう可能性がある。このような場合に対応するために、本実施形態では、図9に示すように、第1電力閾値よりも大きく、契約電力よりも小さい値に設定された第3電力閾値を記憶部22に更に格納しておき、システム消費電力が第3電力閾値を超えた場合に、デマンド制御部24が運転中の熱源機を1台強制停止させる。
 これにより、デマンド制限部24が設定温度を上昇させるデマンド制限を行っているにもかかわらず、システム消費電力が増加し続けるような場合であっても、契約電力に達する前に1台の熱源機の運転を強制的に停止させるので、システム消費電力を急激に低下させ、システム消費電力が契約電力を超えることを防止することができる。
 また、この場合、デマンド制御部24は、システム消費電力が第2電力閾値未満となった場合に、強制的に停止させた熱源機を再起動させることとしてもよい。
〔第4実施形態〕
 次に、本発明の第4実施形態に係る熱源システム及びその制御装置並びにその制御方法について、図面を参照して説明する。
 本実施形態に係る熱源システムは、システム消費電力が第1電力閾値を超えた場合に、システム制御装置20のデマンド制限部24が、上述した第1から第3のいずれかの実施形態に係るデマンド制限を行うと共に、負荷装置3が備える各種電動機器(図示略)の動力を低減させる制御を行う点で上述の各実施形態に係る熱源システムとは異なる。
 例えば、負荷装置3が空調設備であった場合、室内における送風量はファンの回転数を変化させることにより可変とされる。このように、負荷装置3においてインバータ制御される電動機器が設けられていた場合に、デマンド制御部24は、熱源機における設定温度を変更するとともに、負荷装置3における電動機器の周波数を低減させることにより更なるシステム消費電力の抑制を図る。
 これにより、システム消費電力を速やかに低減させることができ、システム消費電力が契約電力を超える可能性を低減させることができる。
〔第5実施形態〕
 次に、本発明の第5実施形態に係る熱源システム及びその制御装置並びにその制御方法について、図面を参照して説明する。
 上述した第1から第4実施形態では、現在のシステム消費電力と各電力閾値とを比較することによりデマンド制限を行っていた。この場合、デマンド制限が開始されてからシステム消費電力が低下するまでにはある程度の時間が必要となるため、場合によってはデマンド制限を実施したとしてもシステム消費電力が契約電力を超えてしまう可能性がある。
 そこで、本実施形態では、図10に示すように、システム制御装置に電力予測部26を設けることとした。電力予測部26は、図11に示すように、現在から過去所定期間T1における熱源システムの消費電力の挙動から将来の消費電力を予測する。デマンド制限部24は、現在から所定期間T2後における予測消費電力が第1電力閾値を超える場合に、デマンド制限を開始させる。
 ここで、上記所定期間T1は、任意に決定できる期間であり、例えば、30分から1時間程度に設定される。また、上記所定期間T2は、少なくともデマンド制限を開始させてからシステム消費電力が低下し始めるまでの時間遅延よりも長い時間に設定されている。
 このように、過去のシステム消費電力の挙動から将来のシステム消費電力を予測し、この予測したシステム消費電力に基づいてデマンド制限を開始するか否かを決定するので、システム消費電力が契約電力を超えることを効果的に回避することが可能となる。
 電力予測部26による電力予測の方法については、公知の予測技術を採用することができ、例えば、過去一定期間におけるシステム消費電力の変化率から将来の電力を予測する。
 なお、上述した各実施形態においては、システム制御装置20が各熱源機のデマンド制限を統括して行う態様としていたが、これに代えて、デマンド制限機能を各熱源機制御装置10a、10b、10cに設け、熱源機単位でデマンド制限を行うこととしてもよい。
 この場合、上述したような第1電力閾値、第2電力閾値などは、例えば、システム全体としての契約電力から按分される個々の熱源機の制限電力に基づいて設定され、各熱源機それぞれの消費電力と第1電力閾値、第2電力閾値との関係に基づいて上述したようなデマンド制限が行われる。なお、各熱源機の消費電力は、各熱源機の電源系統にマルチメータを取り付けることにより検出可能である。
 このように、システム制御装置20が備えていたデマンド制限機能を各熱源機制御装置に設けることによっても消費電力を抑制することが可能となる。
 更に、上記の変形例として、消費電力のモニタをシステム制御装置20において行うこととしてもよい。すなわち、システム制御装置20がシステム消費電力をモニタし、このシステム消費電力が第1電力閾値を超えた場合に、各熱源機制御装置に対してデマンド制限を開始するデマンド制限開始指令を通知することとしても良い。このように、システム制御装置20において、各閾値とシステム消費電力との比較を行うこととし、この比較結果を各熱源機制御装置に通知することにより、デマンド制限を実施させることとしてもよい。
 なお、各熱源機単位でデマンド制限を行う場合には、熱源機間において、設定温度の変更レートが異なってもよい。
 次に、本発明の一実施形態に係る電力調整ネットワークシステムについて説明する。
 本実施形態に係る電力調整ネットワークシステムは、図12に示すように、上述したいずれかの実施形態に係る複数の熱源システムのシステム制御装置20a、20b、20cと、各熱源システムのシステム制御装置20a、20b,20cと通信媒体51を介して接続される中央監視装置50とを備えている。
 中央監視装置50は、各熱源システムのシステム制御装置20a、20b,20cからそれぞれのシステム消費電力等を取得し、これらの情報と契約電力とに基づいて第1電力閾値を決定し、この第1電力閾値を各システム制御装置20に対して送信する。例えば、中央監視装置50は、デマンド制限が行われている又はデマンド制限が開始されそうな熱源システムと、デマンド制限が開始されるまでに余裕がある、換言すると、システム消費電力と第1電力閾値との差が所定値以上ある熱源システムが存在した場合、前者の熱源システムの第1電力閾値を増加させ、後者の熱源システムの第1電力閾値を低下させる。このように、熱源システム間におけるシステム消費電力を比較することによって各熱源システムの第1電力閾値を調整することにより、柔軟な電力調整を行うことが可能となる。
1 熱源システム
2a、2b、2c 熱源機
3 負荷装置
4a、4b、4c 送水ポンプ
5 サプライヘッダ
6 リターンヘッダ
10a、10b、10c 熱源機制御装置
20 システム制御装置
21 通信媒体
22 記憶部
23 電力監視部
24 デマンド制限部
25 デマンド制限停止部
26 電力予測部
31 ターボ圧縮機
38 インバータ
50 中央監視装置

Claims (13)

  1.  設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する少なくとも1台の熱源機を備える熱源システムに適用される制御装置であって、
     前記熱源システムの消費電力をモニタする電力監視手段と、
     前記熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、前記熱源機の消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行うデマンド制限手段と
    を具備する熱源システムの制御装置。
  2.  前記デマンド制限手段は、前記熱源システムの消費電力が、前記第1電力閾値以下に設定された前記第2電力閾値未満となった場合に、前記熱源機の消費電力が増加する方向に前記設定温度を下降または上昇させ、現在の設定温度が予め設定されている基準設定温度に達した場合にその設定温度を維持する請求項1に記載の熱源システムの制御装置。
  3.  前記デマンド制限手段は、前記熱源機が前記熱源水の加熱を行っている場合には、前記設定温度が予め設定されている下限値未満とならないように前記設定温度を下降させ、前記熱源機が前記熱源水の冷却を行っている場合には、前記設定温度が予め設定されている上限値を超えないように前記設定温度を上昇させる請求項1または請求項2に記載の熱源システムの制御装置。
  4.  前記デマンド制限手段によるデマンド制限を停止させるデマンド制限停止手段を備える請求項1から請求項3のいずれかに記載の熱源システムの制御装置。
  5.  前記外部装置から前記熱源機に送られる熱源水の流量を調節する電動の送水手段を備え、
     前記デマンド制限手段は、前記熱源システムの消費電力が前記第1電力閾値を超えている期間において、前記送水手段の回転数をホールドさせる請求項1から請求項4のいずれかに記載の熱源システムの制御装置。
  6.  前記デマンド制限手段は、前記熱源システムの消費電力が、前記第1電力閾値よりも高い値であり、前記契約電力よりも低い値に設定された第3電力閾値を超えた場合に、所定の前記熱源機の運転を停止させる請求項1から請求項5のいずれかに記載の熱源システムの制御装置。
  7.  前記デマンド制限手段は、前記熱源システムの消費電力が前記第1電力閾値を超えている期間において、前記負荷装置が備える電動機器の消費電力を低下させる制御を行う請求項1から請求項6のいずれかに記載の熱源システムの制御装置。
  8.  過去の所定期間における熱源システムの消費電力の挙動から将来の消費電力を予測する電力予測手段を備え、
     前記デマンド制限手段は、現在から所定期間後における予測消費電力が前記第1電力閾値を超える場合に、前記デマンド制限を開始する請求項1から請求項7のいずれかに記載の熱源システムの制御装置。
  9.  設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する少なくとも1台の熱源機を備える熱源システムに適用される制御方法であって、
     前記熱源システムの消費電力をモニタし、
     前記熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、前記熱源機の消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行う熱源システムの制御方法。
  10.  請求項1から請求項8のいずれかに記載の熱源システムの制御装置を備える熱源システム。
  11.  設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する少なくとも1台の熱源機を備える熱源システムであって、
     前記熱源機に対応してそれぞれ設けられ、対応する前記熱源機を制御する熱源機制御手段と、
     各前記熱源機制御手段に対して制御指令を与えるシステム制御手段と
    を備え、
     前記システム制御手段は、前記熱源システムの消費電力をモニタする電力監視手段と、
     前記熱源システムの消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、各前記熱源機制御手段にデマンド制限開始指令を通知する通知手段と
    を備え、
     前記熱源機制御手段は、前記デマンド制限開始指令が通知された場合に、消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行うデマンド制限手段を備える熱源システム。
  12.  請求項10または請求項11に記載の複数の熱源システムと、
     各前記熱源システムの制御装置と通信媒体を介して接続される中央監視装置と
    を備え、
     前記中央制御装置から各前記熱源システムの制御装置に対して前記第1電力閾値が通知される電力調整ネットワークシステム。
  13.  設定温度に従って熱源水の加熱または冷却を行い、加熱後または冷却後の熱源水を負荷装置へ供給する熱源機の制御装置であって、
     前記熱源機の消費電力をモニタする電力監視手段と、
     前記熱源機の消費電力が、契約電力よりも低い値に設定された第1電力閾値を超えた場合に、前記熱源機の消費電力が低下する方向に前記設定温度を上昇または下降させることによりデマンド制限を行うデマンド制限手段と
    を具備する熱源機の制御装置。
PCT/JP2013/052153 2012-03-30 2013-01-31 熱源システム及びその制御装置並びにその制御方法 WO2013145844A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147020839A KR20140108576A (ko) 2012-03-30 2013-01-31 열원 시스템 및 그 제어 장치 및 그 제어 방법
US14/376,594 US20140374497A1 (en) 2012-03-30 2013-01-31 Heat source system, control device thereof, and control method thereof
CN201380010891.2A CN104126098A (zh) 2012-03-30 2013-01-31 热源***及其控制装置以及其控制方法
DE112013001841.1T DE112013001841T5 (de) 2012-03-30 2013-01-31 Wärmequellensystem, Steuervorrichtung dafür, und Steuerverfahren dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081013A JP5984456B2 (ja) 2012-03-30 2012-03-30 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
JP2012-081013 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145844A1 true WO2013145844A1 (ja) 2013-10-03

Family

ID=49259130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052153 WO2013145844A1 (ja) 2012-03-30 2013-01-31 熱源システム及びその制御装置並びにその制御方法

Country Status (6)

Country Link
US (1) US20140374497A1 (ja)
JP (1) JP5984456B2 (ja)
KR (1) KR20140108576A (ja)
CN (1) CN104126098A (ja)
DE (1) DE112013001841T5 (ja)
WO (1) WO2013145844A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776553A (zh) * 2014-01-13 2015-07-15 特灵国际有限公司 主动能量预算控制管理
CN106016447A (zh) * 2016-06-02 2016-10-12 珠海格力电器股份有限公司 供热管网调控方法和***

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447627B1 (ja) * 2012-09-26 2014-03-19 ダイキン工業株式会社 熱源システム制御装置
EP3194865B1 (en) * 2014-08-14 2021-04-07 Vigilent Corporation Method and apparatus for optimizing control variables to minimize power consumption of cooling systems
JP6482826B2 (ja) * 2014-11-12 2019-03-13 三菱重工サーマルシステムズ株式会社 熱源システム及びその制御装置並びに制御方法
JP6361074B2 (ja) * 2015-05-13 2018-07-25 三菱重工サーマルシステムズ株式会社 台数制御装置、エネルギー供給システム、台数制御方法及びプログラム
JP6824648B2 (ja) * 2016-07-04 2021-02-03 三菱重工サーマルシステムズ株式会社 熱源システム及び熱源システムの制御方法並びに熱源システムの制御プログラム
US10465935B2 (en) * 2017-10-20 2019-11-05 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6912402B2 (ja) * 2018-02-08 2021-08-04 東京瓦斯株式会社 空調システム
JP2024508646A (ja) * 2021-02-07 2024-02-28 オクトパス エナジー ヒーティング リミテッド ユーティリティ消費を管理するための方法及びシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197661A (ja) * 1999-11-01 2001-07-19 Kazuo Miwa 節電制御装置及び省エネルギーシステム
JP2003279112A (ja) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp 空気調和システム及び集中コントローラ
JP2003307331A (ja) * 2002-04-15 2003-10-31 Yamatake Corp 空調設備の運転制御装置
JP2009204188A (ja) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd 環境制御システム
JP2011002112A (ja) * 2009-06-16 2011-01-06 Shimizu Corp 空調熱源機運転ナビゲーションシステム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249043B1 (en) * 2000-03-10 2007-07-24 E.P.M., Inc. Computer program and method for reducing HVAC demand for energy
CN100398927C (zh) * 2002-11-26 2008-07-02 乐金电子(天津)电器有限公司 空调的电力控制装置及方法
US7209838B1 (en) * 2003-09-29 2007-04-24 Rockwell Automation Technologies, Inc. System and method for energy monitoring and management using a backplane
JP2005206014A (ja) * 2004-01-22 2005-08-04 Calsonic Kansei Corp 車両用空調装置の冷凍サイクルの制御方法及び制御装置
JP4729940B2 (ja) * 2005-02-23 2011-07-20 パナソニック電工株式会社 環境設備制御システム
KR100688202B1 (ko) * 2005-02-25 2007-03-02 엘지전자 주식회사 멀티 에어컨의 피크전력 제어 시스템 및 그 제어방법
EP1729223A3 (en) * 2005-06-01 2011-12-14 Sanyo Electric Co., Ltd. Demand control apparatus, electric power consumption prediction method, and program therefor
JP2007060848A (ja) * 2005-08-26 2007-03-08 Sanyo Electric Co Ltd 電力量制御装置および電力量制御方法ならびにプログラム
JP2008121451A (ja) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその制御方法
JP4151727B2 (ja) * 2006-12-22 2008-09-17 ダイキン工業株式会社 空調管理装置
KR100844326B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템 및 디맨드 제어방법
KR100844324B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템 및 디맨드 제어방법
KR100844325B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템
US8220721B2 (en) * 2007-03-01 2012-07-17 Flohr Daniel P Wireless interface circuits for wired thermostats and electrical service demand management
CN101539321B (zh) * 2008-03-19 2012-01-11 中华电信股份有限公司 应用于空调设备的电力控制***
JP5405076B2 (ja) * 2008-09-29 2014-02-05 三洋電機株式会社 空調冷凍システム
CN101782258B (zh) * 2009-01-19 2012-08-15 中华电信股份有限公司 空调节能方法
CN101833310B (zh) * 2009-03-09 2012-08-29 纵横资通能源股份有限公司 用电量管控***及方法
US9013059B2 (en) * 2009-07-30 2015-04-21 Lutron Electronics Co., Inc. Load control system having an energy savings mode
JP5404333B2 (ja) * 2009-11-13 2014-01-29 三菱重工業株式会社 熱源システム
US20120273581A1 (en) * 2009-11-18 2012-11-01 Kolk Richard A Controller For Automatic Control And Optimization Of Duty Cycled HVAC&R Equipment, And Systems And Methods Using Same
BR112012014622A2 (pt) * 2009-12-16 2019-05-14 Commonwealth Scientific And Industrial Research Organisation método de controle de sistema de aquecimento, ventilação e condicionamento de ar (hvac) de um edifício
JP5669402B2 (ja) * 2010-01-08 2015-02-12 三菱重工業株式会社 ヒートポンプ及びヒートポンプの熱媒流量演算方法
US8442694B2 (en) * 2010-07-23 2013-05-14 Lg Electronics Inc. Distribution of airflow in an HVAC system to optimize energy efficiency and temperature differentials
US8290628B2 (en) * 2010-07-23 2012-10-16 Lg Electronics Inc. Air conditioner and method for controlling the same
US8880226B2 (en) * 2011-05-17 2014-11-04 Honeywell International Inc. System and method to predict optimized energy consumption
US9122285B2 (en) * 2011-07-08 2015-09-01 Sharp Laboratories Of America, Inc. Virtual thermostat system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197661A (ja) * 1999-11-01 2001-07-19 Kazuo Miwa 節電制御装置及び省エネルギーシステム
JP2003279112A (ja) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp 空気調和システム及び集中コントローラ
JP2003307331A (ja) * 2002-04-15 2003-10-31 Yamatake Corp 空調設備の運転制御装置
JP2009204188A (ja) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd 環境制御システム
JP2011002112A (ja) * 2009-06-16 2011-01-06 Shimizu Corp 空調熱源機運転ナビゲーションシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776553A (zh) * 2014-01-13 2015-07-15 特灵国际有限公司 主动能量预算控制管理
CN106016447A (zh) * 2016-06-02 2016-10-12 珠海格力电器股份有限公司 供热管网调控方法和***
CN106016447B (zh) * 2016-06-02 2019-01-08 珠海格力电器股份有限公司 供热管网调控方法和***

Also Published As

Publication number Publication date
US20140374497A1 (en) 2014-12-25
JP5984456B2 (ja) 2016-09-06
KR20140108576A (ko) 2014-09-11
JP2013210149A (ja) 2013-10-10
DE112013001841T5 (de) 2014-12-31
CN104126098A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5984456B2 (ja) 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
JP5404333B2 (ja) 熱源システム
JP5984703B2 (ja) 熱源システム及び冷却水供給装置の制御装置並びに制御方法
JP5787792B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
JP5558400B2 (ja) 熱源システム及び熱源システムの台数制御方法
JP5495499B2 (ja) ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP6413713B2 (ja) 雪氷利用空調システム
US11137164B2 (en) Control systems and methods for heat pump systems
JP2007298235A (ja) 熱源システムおよびその制御方法
WO2016098626A1 (ja) 空気調和装置
JP2016166710A (ja) 空気調和システム
JP6855160B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
JP6509047B2 (ja) 空気調和装置
JP2014129912A (ja) 直膨コイルを使用した空気調和機
JP2019138626A (ja) 空気調和装置
JP2010261623A (ja) 空気調和装置
JP2013117360A (ja) 空気調和装置及び方法
JP2020153600A (ja) 冷凍サイクル装置
WO2016071951A1 (ja) 空気調和システム
JP2014139492A (ja) ヒートポンプ装置
JP2019007651A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147020839

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376594

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130018411

Country of ref document: DE

Ref document number: 112013001841

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770226

Country of ref document: EP

Kind code of ref document: A1