WO2013137385A1 - Electrode, method for producing same, and device for producing same - Google Patents

Electrode, method for producing same, and device for producing same Download PDF

Info

Publication number
WO2013137385A1
WO2013137385A1 PCT/JP2013/057177 JP2013057177W WO2013137385A1 WO 2013137385 A1 WO2013137385 A1 WO 2013137385A1 JP 2013057177 W JP2013057177 W JP 2013057177W WO 2013137385 A1 WO2013137385 A1 WO 2013137385A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
material layer
thin
region
Prior art date
Application number
PCT/JP2013/057177
Other languages
French (fr)
Japanese (ja)
Inventor
重男 木村
平野 晋一
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013137385A1 publication Critical patent/WO2013137385A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode used for, for example, a lithium ion battery, a manufacturing method thereof, and a manufacturing apparatus.
  • JP2006-175415A discloses a technique for covering a terminal of a positive electrode and sticking a tape member functioning as a spacer in order to prevent an internal short circuit between a positive electrode and a negative electrode of a lithium ion battery.
  • the active material layer is not formed but the electrode surface is exposed and the region extending in the width direction is formed at regular intervals.
  • An electrode terminal is joined to the exposed electrode surface by ultrasonic welding or the like, and the tape member extends in the width direction of the belt-like electrode across the electrode terminal surface, the exposed electrode surface and the region of the edge portion of the active material layer. Is pasted.
  • an uncoated region where no active material layer is applied is formed at one or both ends in the width direction, and the uncoated region is used as a tab for connecting electrode terminals.
  • a tape member functioning as a spacer is disposed by pasting or the like across the tab and the edge portion of the active material layer.
  • An object of the present invention is to provide an electrode suitable for performing an operation of arranging a tape member that functions as a spacer in succession to the application of an active material layer, and a method and an apparatus for manufacturing the electrode.
  • the electrode manufactured by the manufacturing apparatus has an uncoated region in which the active material extending in the longitudinal direction is not applied to at least one end in the width direction of the strip-shaped electrode raw material, and the active material is continuous in the longitudinal direction in the remaining width direction. And the active material layer applied to the surface.
  • a spacer member made of an insulating material is disposed in the longitudinal direction on the electrode so as to straddle the boundary portion between the uncoated region and the active material layer and cover a part of each.
  • the manufacturing apparatus applies the active material to the electrode material so that the thickness of the active material layer in the region where the spacer member is disposed is thin with a step with respect to the thickness of the active material layer in the other region.
  • a coating section is provided. Further, the manufacturing apparatus includes a spacer arrangement portion that arranges a spacer so as to cover at least a part of the thin part of the applied active material layer and a part of the uncoated region.
  • FIG. 1 is a schematic configuration diagram illustrating a first example of an electrode manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the die coater.
  • FIG. 3 is a perspective view of a shim used in the die coater.
  • FIG. 4 is a front view showing a slit of the die coater.
  • FIG. 5 is a cross-sectional view of an electrode fabric provided with an active material layer that has been applied and dried.
  • FIG. 6 is a front view showing a slit of a die coater showing a specific example of a shim shape.
  • FIG. 7 is a perspective view showing another specific example of a shim shape.
  • FIG. 8 is a front view showing an example of a slit of the die coater.
  • FIG. 1 is a schematic configuration diagram illustrating a first example of an electrode manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the die coater.
  • FIG. 9 is a front view showing the sticking roller.
  • FIG. 10 is a cross-sectional view of the original electrode fabric in a state where a protective tape is applied.
  • FIG. 11 is a perspective view showing a winding state of the strip electrode.
  • FIG. 12 is a schematic configuration diagram illustrating an electrode manufacturing apparatus according to a second example of the first embodiment.
  • FIG. 13 is a schematic block diagram which shows the manufacturing apparatus of the electrode of 2nd Embodiment of this invention.
  • FIG. 14 is a front view showing a slit shape of a die coater for applying an insulating material.
  • FIG. 15 is a cross-sectional view of an electrode material having a coated active material layer.
  • FIG. 16 is a cross-sectional view of an electrode raw fabric coated with an active material layer and a protective layer.
  • FIG. 1 is a schematic configuration diagram illustrating a first example of an electrode manufacturing apparatus according to the first embodiment.
  • an electrode manufacturing apparatus includes an electrode raw fabric 1 between an unwinding portion 2 and a winding portion 10 of an electrode raw fabric 1 (electrode band, electrode sheet, or electrode foil) made of metal foil.
  • Two coating parts 3 and 5 which apply an active material on both sides, and two drying parts 4 and 6 which dry the applied active material layer 12 on each side of electrode raw fabric 1 are provided.
  • the electrode manufacturing apparatus also includes an affixing unit 7 that affixes protective tape 13 as a spacer on both sides of the active material layer 12 and a press unit 8 that roll-presses the active material layer 12.
  • the slit part 9 which divides the obtained strip electrode into two strip electrodes is added.
  • two coating parts 3 and 5 and two drying parts 4 and 6 are arranged so that the active material layer 12 is formed on both surfaces of the electrode raw fabric 1.
  • the unwinding part 2 is a part to which the electrode raw material 1 made of a metal foil wound in a reel shape is attached.
  • the unwinding electrode raw material 1 for positive electrode or negative electrode is unwound and applied to the coating part 3 (front surface coating part). ), Drying unit 4 (front surface drying unit), back surface coating unit 5, and back surface drying unit 6.
  • the coating unit 3 applies an active material to the unrolled electrode raw material 1 with a die coater to form an active material layer 12 on the surface of the electrode raw material 1.
  • a region where the active material layer 12 is not applied is provided as an uncoated region 11 in the longitudinal direction of the electrode original fabric 1.
  • the uncoated region 11 is used as an electrode tab. For this reason, the active material layer 12 is formed in the area
  • the applied active material layer 12 is formed in a thick portion 12A having a normal film thickness in the central region. However, in a predetermined width from both ends in the width direction of the electrode fabric 1, there are thin portions 12B having a thickness smaller than the thickness of the thick portion 12A along the longitudinal direction.
  • the drying unit 4 back surface drying unit 6) volatilizes and drys the diluted solvent contained in the applied active material layer 12.
  • the pasting part 7 covers all or part of the thin part 12B at both ends in the width direction of the active material layer 12 that has been applied and dried, and covers a part of the uncoated region 11 that continues to the outside in the width direction of the thin part 12B.
  • the protective tape 13 that functions as a spacer is pasted.
  • the pressing unit 8 increases the packing density of the active material layer 12 and makes it uniform by passing the electrode raw material 1 in which the active material layer 12 is formed and the protective tape 13 is attached to both end regions between the rolling rolls. Complete the strip electrode.
  • the coating unit 3 includes a backup roller 21 around which the electrode fabric 1 is wound, and a die coater 20 that applies a coating solution to the electrode fabric 1 that passes over the backup roller 21.
  • the width direction of the electrode raw fabric 1 is referred to as the “width direction” of the coating portion 3. Therefore, the direction substantially parallel to the axis of the backup roller 21 around which the electrode fabric 1 is wound is the width direction.
  • the coating unit 3 includes one or a plurality of guide rollers 22 in addition to the backup roller 21, and the electrode fabric 1 is wound with tension. Due to the rotation of the rollers 22, the electrode raw material 1 wound up in a roll shape is continuously fed out to the coating unit 3 at a predetermined speed, and is conveyed to the drying unit 4.
  • the die coater 20 causes a coating liquid supplied from a coating liquid tank (not shown) to flow out from the slit 24 opened in the beak-shaped nozzle 23 and is applied to the electrode fabric 1 on the backup roller 21.
  • the slit 24 of the nozzle 23 of the die coater 20 is long in the width direction of the electrode original fabric 1, and the opening width of the slit 24 defines a prescribed width in which the coating liquid is applied to the electrode raw fabric 1.
  • the slit 24 of the nozzle 23 of the die coater 20 has a first shim 25 with a coating width set to be thin (for example, 0.3 mm) and a coating applied from the shim 25. It is formed by overlapping a second shim 26 having a narrow work width (for example, 4 mm narrow on both sides) and a slightly thick thickness (for example, 0.5 mm). That is, the first shim 25 and the second shim 26 are overlapped in this order on the nozzle forming surface of one die head 20A, and the nozzle forming surface of the other die head 20B is further overlapped and fixed by fastening bolts (not shown). As a result, as shown in FIG. 4, slits 24 are formed which are thin in both end regions in the width direction and thick in the central region excluding both end regions.
  • the width and thickness of the thin portion 12B and the thick portion 12A of the active material layer 12 can be arbitrarily changed. Thereby, it is not necessary to exchange a dedicated shim for each type of electrode, and the equipment cost can be reduced. Further, since the die coater 20 is formed by overlapping simple flat shims 25 and 26, the shape of the slit 24 can be formed with high accuracy, and the coating accuracy when the die coater 20 is used can be improved.
  • the electrode slurry is supplied to the die coater 20 and coating on the electrode raw material 1 is started.
  • the active material layer 12 applied to the electrode raw fabric 1 from the die coater 20 has a normal film thickness (thick portion 12A) in the central region.
  • step coating step coating
  • both ends in the width direction of the active material layer 12 have a thickness dimension smaller than a normal film thickness (thick portion 12A) applied to the central region, The thin portion 12B is formed.
  • the thickness of the thin portion 12B is, for example, 30 ⁇ m or more in a width dimension of 2 to 10 mm and 40 ⁇ m or less smaller than the normal film thickness applied to the central region.
  • the applied active material layer 12 is transported to the pasting unit 7 after being dried by the drying units 4 and 6.
  • the back surface coating unit 5 applies the same step coating to the other surface (back surface) of the electrode raw fabric 1 using the same coating die coater as the coating unit 3.
  • the back surface drying unit 6 dries the active material layer 12 on the back surface.
  • the electrode raw fabric 1 having the active material layer 12 formed on both sides includes the active material layer 12 coated with a step as shown in FIG. 5, and a thick portion 12A having a normal film thickness in the central region. And the thin portion 12B having a thickness smaller than the thickness of the central region is provided at both ends in the width direction.
  • the end faces of the first and second shims 25, 26 are provided as shown in FIG. It may be slopes 25A, 26A.
  • coated active material layer 12 may become an acute angle.
  • a heating device is disposed in the vicinity of the corners of the thick part 12A and the thin part 12B of the active material layer 12 immediately after being applied, and the corners are dried and cured by a drying furnace. It may be cured prior to.
  • the shim provided in the die coater 20 is not limited to the above-described configuration, and may be configured as shown in FIG.
  • the stepped shim 27 has a shape in which the first shim 25 and the second shim 26 described above are integrated, and a thick portion 27 ⁇ / b> A that protrudes from both ends, and an inner side from the thick portion 27 ⁇ / b> A. And a thin-walled portion 27 ⁇ / b> B extending integrally with each other.
  • the thick part 27A sets the coating width of the width dimension including both the thin parts 12B of the active material layer 12, and the thin part 27B sets the thin part 12B and the thick part 12A of the active material layer 12 To do.
  • the stepped shim 27 can be formed by forming the thin portion 27B by cutting the shim material without thermally deforming it.
  • the width and thickness of the thin wall portion 12B and the thick wall portion 12A can be arbitrarily changed by simply replacing the shim. And it is not necessary to exchange die head 20A, 20B for every kind of electrode, and equipment cost can be reduced.
  • the shape of the slit 24 of the die coater 20 may be formed by making the tip lip shape of one die head 20B into a stepped shape as shown in FIG. 8 without using a shim as described above.
  • the die head 20B can be formed into a stepped shape by machining such as grinding.
  • the affixing unit 7 continuously affixes the protective tape 13 that functions as a spacer.
  • the protective tape 13 covers at least a part of the thin part 12B at both ends in the width direction of the coated and dried active material layer 12 and also covers a part of the uncoated region 11 connected to the outer side in the width direction of the thin part 12B.
  • a total of four protective tapes 13 are affixed, one on each side of one side of the electrode fabric 1 and one on each side of the other side.
  • the protective tape 13 has a width dimension of, for example, about 10 mm, preferably 7 mm, and has a thickness dimension of, for example, 20 ⁇ m to 80 ⁇ m, preferably 30 ⁇ m.
  • the material of the protective tape 13 may be any material that has excellent insulating properties, such as polyimide, polyester, polyvinylidene fluoride, and the like.
  • the affixing portion 7 follows the displacement in the width direction of the electrode fabric 1 and follows the protective tape 13 to stably affix.
  • an EPC device edge position control, abbreviation for Edge Position Control), which is a registered trademark of Nireco
  • a barrel-shaped crown roll is used as the sticking roller 30.
  • the crown-shaped (barrel-shaped) sticking roll 30 always concentrates tension on the center of the roll 30 from its shape. Accordingly, the traveling of the protective tape 13 is stabilized, the positional deviation of the protective tape 13 can be prevented, and the protective tape 13 can be always stuck at the target position.
  • FIG. 10 shows a state in which the protective tape 13 is pasted at the pasting unit 7.
  • the thickness of the protective tape 13 is thin, for example, 30 ⁇ m, and is smaller than the dimension of the step between the thin portion 12B and the thick portion 12A of the active material layer 12.
  • the step size between the thick portion 12A and the thin portion 12B is 70 to 90 ⁇ m.
  • the protective tape 13 having a thickness of 30 ⁇ m is sufficiently accommodated within the step size. For this reason, the protective tape 13 is affixed, without the surface of the protective tape 13 rising from the surface of the active material layer 12 which comprises the thick part 12A.
  • the thick portion 12A is compressed by 40 ⁇ m by the downstream press portion 8 and the step size is reduced to 30 to 50 ⁇ m, for example, the active material layer whose surface of the protective tape 13 constitutes the thick portion 12A It is possible to prevent swelling from the 12 surfaces.
  • the dimension of the step is not large and the protective tape 13 and the thin portion 12B are pressed by the rolling roll by compressing the thick portion 12A by compression at the press portion 8.
  • the surface of the protective tape 13 and the surface of the thick portion 12A are formed on the same surface by thinning the thin portion 12B. Therefore, the surface of the protective tape 13 can be prevented from rising from the surface of the active material layer 12 constituting the thick portion 12A.
  • the electrode fabric 1 with the protective tape 13 attached is conveyed to the press unit 8 and passes between the rolling rolls of the press unit 8. Thereby, the packing density of the active material layer 12 is increased and uniformized, and the electrode raw fabric 1 becomes a strip electrode.
  • the strip electrode is divided at the central portion in the width direction.
  • the divided strip-shaped electrode is cut into a predetermined length in the next step, so that an electrode plate can be formed by itself.
  • the pair of left and right portions (or the left and right portions) of the strip electrode divided by the slit portion 9 is wound around the winding roller 31 of the winding portion 10.
  • FIG. 12 shows that in the electrode manufacturing apparatus of the second example, the affixing part 7 is arranged downstream of the pressing part 8.
  • Other configurations are the same as those in the first example.
  • the electrode material 1 coated with the active material layer 12 in the coating parts 3 and 5 and dried in the drying parts 4 and 6 passes between the rolling rolls of the press part 8 and forms the thick part 12A. 12 is compressed and the packing density is increased and uniformized.
  • the affixing unit 7 continuously affixes the protective tape 13 that functions as a spacer.
  • the protective tape 13 covers at least a part of the unpressed thin part 12B of the electrode raw fabric 1 including the pressed active material layer 12 and a part of the uncoated region 11 connected to the outer side in the width direction of the thin part 12B. . Since the thin-walled portion 12B to which the protective tape 13 is applied has not been compressed by the press portion 8, the size of the step with respect to the thick-walled portion 12A compressed by the press portion 8 is reduced. For this reason, the dimension of the level
  • the thickness of the protective tape 13 is 30 ⁇ m and the active material layer 12 of the thick portion 12A is compressed from 123 ⁇ m to 80 ⁇ m by the press portion 8, it is formed by the coating portions 3 and 5.
  • the thickness dimension of the thin part 12B is 50 ⁇ m or less, the surface of the protective tape 13 can be prevented from rising from the surface of the thick part 12A.
  • the uncoated regions 11 where the active material extending in the longitudinal direction is not applied are provided at both ends in the width direction of the strip-shaped electrode raw fabric 1.
  • the uncoated region 11 where the active material extending in the longitudinal direction is not applied may be provided at one end portion in the width direction of the strip-shaped electrode raw fabric 1.
  • the electrode raw fabric 1 may be formed so that the uncoated area
  • region 11 may be provided in the width direction center part.
  • the electrode extends in the longitudinal direction at least at one end in the width direction of the strip-shaped electrode raw fabric 1 and is not coated with an active material, and the remainder in the width direction (that is, other than the uncoated area 11) Active material layer 12 in which the active material is continuously applied in the longitudinal direction.
  • the protective tape 13 as a spacer member which consists of an insulating material which straddled the boundary part of the uncoated area
  • the coating parts 3 and 5 of a manufacturing apparatus implement a coating process, the thickness of the active material layer 12 of the area
  • the active material is applied to the electrode fabric 1 so that the thickness of the active material layer 12 in this region becomes thin with a level difference.
  • the affixing unit 7 of the manufacturing apparatus performs a spacer arrangement process as a spacer arrangement unit and covers at least a part of the thin part 12B of the applied active material layer 12 and a part of the uncoated region 11 to form a spacer. Arrange the members.
  • the thickness of the active material layer 12 in the region where the spacer member adjacent to the uncoated region 11 of the active material layer 12 is arranged is different from the thickness of the thin portion 12B with respect to the thickness of the active material layer 12 in other regions. Become. For this reason, even if the protective tape 13 as a spacer is affixed, the thickness of both ends in the width direction of the electrode can be made equal to or less than that of the central portion, so that both ends in the width direction do not rise, Can be continuously wound. As a result, the protective tape 13 can be attached in-line, and the electrode manufacturing process can be simplified.
  • the coating units 3 and 5 apply the electrode slurry containing the active material to the electrode raw fabric 1 by the die coater 20 having a slit.
  • the slit has an opening dimension thinner at both ends in the width direction of the slit than at the center. For this reason, the active material layer 12 provided with the thin part 12B and the thick part 12A in the electrode raw fabric 1 can be formed continuously.
  • the shape of the slit of the die coater 20 was configured to face the opening of the shim 27 sandwiched between the die heads 20A and 20B. Only by replacing the shim 27, the width and thickness of the thin portion 12B and the thick portion 12A can be arbitrarily changed. There is no need to replace the die heads 20A and 20B for each type of electrode, and the equipment cost can be reduced.
  • the shim is a first shim 25 that sets a boundary region with the uncoated region 11 of the thin portion 12B of the active material layer 12, and the upper surface of the thin portion 12B and other regions that overlap the first shim 25 And a second shim 26 for setting the width of the active material layer 12. For this reason, by changing the combination of the first and second shims 25 and 26, the width and thickness of the thin portion 12B and the thick portion 12A can be arbitrarily changed. Therefore, it is not necessary to replace a dedicated shim for each type of electrode, and the equipment cost can be reduced. Further, since the shim is formed by overlapping simple flat shims 25 and 26, the shape can be formed with high accuracy, and the coating accuracy when used in the die heads 20A and 20B can be improved.
  • the end surfaces of the first and second shims 25, 26 are formed by the slopes 25A, 26A.
  • the corners of the thick part 12A and the thin part 12B of the applied active material layer 12 may be acute.
  • a heating device is disposed in the vicinity of the corners of the thick part 12A and the thin part 12B of the active material layer 12 immediately after being applied, and the corners are dried by a drying furnace. It may be cured prior to curing.
  • the spacer arrangement portion 7 covers at least a part of the dried active material layer 12 or the thin part 12B of the dried and pressed active material layer 12 and a part of the uncoated region 11 to form a spacer.
  • the protective tape 13 as a member is affixed. For this reason, the protective tape 13 as a spacer member is continuously pasted in-line continuously to at least a part of the thin portion 12B of the active material layer 12 of the electrode fabric 1 being conveyed and a part of the uncoated region 11. be able to.
  • the spacer arrangement portion 7 includes a guide roller 30 that presses the protective tape 13 against at least a part of the thin portion 12B of the active material layer 12 and a part of the uncoated region 11, and the guide roller 30 is a crown. Provided with a shaped surface. For this reason, the tension of the protective tape 13 can always be concentrated on the central portion of the roll 30 by the crown shape, and the traveling of the protective tape 13 can be stabilized. Therefore, the position shift of the protective tape 13 as a spacer can be prevented, and the protective tape 13 can be adhered to the target position with high accuracy.
  • FIG. 13 to 16 show a second embodiment of an electrode to which the present invention is applied, a method for manufacturing the electrode, and a manufacturing apparatus.
  • FIG. 13 is a schematic configuration diagram of an electrode manufacturing apparatus.
  • coats the insulating material which functions as a spacer to the upper surface of the thin part of an active material layer is added to 1st Embodiment.
  • the same devices as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the electrode manufacturing apparatus is insulated by providing the coating portions 3 ⁇ / b> A and 5 ⁇ / b> A adjacent to the downstream of the die coater 20 to which the active material is applied, instead of being provided with the attaching portion of the protective tape 13.
  • a die coater 28 for applying the material 14 is provided.
  • Other configurations are the same as those of the first embodiment.
  • each slit 28 ⁇ / b> B has a thin portion 12 ⁇ / b> B of the active material layer 12 applied to the electrode fabric 1 by the preceding die coater 20 and an uncoated region 11 that continues to the outside in the width direction of the thin portion 12 ⁇ / b> B.
  • An opening is formed in a width region facing a part of the substrate.
  • the insulating material 14 is quantitatively supplied to the die coater 28 with high accuracy by a dispenser (liquid quantitative discharge device) or the like, and the thin portion 12B of the active material layer 12 and a part of the outer region in the width direction of the thin portion 12B (FIG. 15). In addition, it is applied wet-on-wet to a specified thickness.
  • the insulating material 14 is polyimide, polyester, polyvinylidene fluoride, or the like, and may be a resin material mixed with a filler such as alumina or talc in order to increase the insulating effect. Since the insulating material 14 has a composition different from that of the electrode slurry made of the active material, it does not mix with the active material even when applied wet-on-wet, and the protective layer made of the active material layer 12 and the insulating material 14. It exists separately.
  • FIG. 16 shows a state where the active material layer 12 and the protective layer made of the insulating material 14 are applied.
  • the electrode fabric 1 coated with the active material layer 12 and the insulating material 14 is dried by the drying unit 4 and then protected by the back surface coating unit 5 in the same manner as the active material layer 12 and the insulating material 14. A layer is applied. Then, the electrode raw material 1 coated with the active material layer 12 and the insulating material 14 is dried by the back surface drying unit 6, density-adjusted by the press unit 8, separated by the slit unit 9, and separated by the winding unit 10. It is wound up.
  • the protective layer can be more easily formed by applying the protective layer made of the insulating material 14 serving as a spacer to the thin portion 12B formed by the step and a part of the uncoated region 11.
  • the second die coater 28 is an insulation serving as a spacer member so as to cover at least a part of the thin part 12B of the active material layer 12 applied to the electrode fabric 1 and a part of the uncoated region 11.
  • the material 14 is applied.
  • insulating material 14 used as a spacer member can be arranged continuously, and equipment can be formed more inexpensively.
  • the insulating material 14 has a composition different from that of the electrode slurry made of the active material, it does not mix with the active material even when applied wet-on-wet, and is separated into the active material layer 12 and the protective layer. Can exist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The objective of the present invention is to provide: an electrode favorable for implementing the task of disposing a tape member functioning as a spacer following applying an active material layer; a method for producing same; and a device for producing same. The present invention is provided with an uncoated region at which the active material is not applied extending in the lengthwise direction to at least one end in the widthwise direction of a band-shaped electrode starting material; and a coated section at which the active material is applied to the electrode starting material in a manner so that the thickness of the active material layer, at which the tape member functioning as a spacer is disposed and that is the active material layer resulting from the active material being continuously applied in the lengthwise direction to the remainder in the widthwise direction, is thin, having a level difference with respect to the active material layer of other regions.

Description

電極及びその製造方法並びに製造装置Electrode, manufacturing method thereof, and manufacturing apparatus
 本発明は、例えば、リチウムイオン電池等に用いる電極及びその製造方法並びに製造装置に関するものである。 The present invention relates to an electrode used for, for example, a lithium ion battery, a manufacturing method thereof, and a manufacturing apparatus.
 JP2006-175415Aは、リチウムイオン電池の正極電極と負極電極との内部短絡を防止するために、正極電極の端子を覆って、スペーサとして機能するテープ部材を貼付ける技術を開示する。 JP2006-175415A discloses a technique for covering a terminal of a positive electrode and sticking a tape member functioning as a spacer in order to prevent an internal short circuit between a positive electrode and a negative electrode of a lithium ion battery.
 この関連技術において、表面に活物質層が長手方向に塗布された帯状電極に、活物質層が形成されずに電極表面が露出して幅方向に延びる領域が、一定間隔毎に形成される。そして、露出した電極表面には超音波溶接等により電極端子が接合され、この電極端子表面や露出した電極表面と活物質層の縁部分の領域とに跨って、帯状電極の幅方向にテープ部材が貼り付けられる。 In this related technique, on the belt-like electrode having the active material layer applied in the longitudinal direction on the surface, the active material layer is not formed but the electrode surface is exposed and the region extending in the width direction is formed at regular intervals. An electrode terminal is joined to the exposed electrode surface by ultrasonic welding or the like, and the tape member extends in the width direction of the belt-like electrode across the electrode terminal surface, the exposed electrode surface and the region of the edge portion of the active material layer. Is pasted.
 また、あるタイプの帯状電極においては、幅方向の一端若しくは両端に活物質層を塗布しない未塗工領域が形成され、その未塗工領域は、電極端子を接続するタブとして使用される。このような帯状電極においては、正極電極と負極電極との内部短絡を防止するために、タブと活物質層の縁部分とに跨って、スペーサとして機能するテープ部材が貼付け等により配設される。 Also, in a certain type of strip electrode, an uncoated region where no active material layer is applied is formed at one or both ends in the width direction, and the uncoated region is used as a tab for connecting electrode terminals. In such a strip electrode, in order to prevent an internal short circuit between the positive electrode and the negative electrode, a tape member functioning as a spacer is disposed by pasting or the like across the tab and the edge portion of the active material layer. .
 しかしながら、未塗工領域と活物質層の縁領域とに跨って、スペーサとして機能するテープ部材が帯状電極の長手方向に連続して配設されると、テープ部材が活物質層に重なる部分が局部的に厚くなり、得られた帯状電極を一様に巻取ることが難しい。このため、帯状電極への活物質層の塗布後に連続させて、テープ部材の配設作業が実施できず、帯状電極の生産性が向上できない。 However, when the tape member functioning as a spacer is continuously disposed in the longitudinal direction of the strip electrode across the uncoated region and the edge region of the active material layer, the portion where the tape member overlaps the active material layer is It becomes thick locally and it is difficult to wind up the obtained strip electrode uniformly. For this reason, the arrangement | positioning operation | work of a tape member cannot be implemented continuously after application | coating of the active material layer to a strip | belt-shaped electrode, and productivity of a strip | belt-shaped electrode cannot be improved.
 本発明は、活物質層の塗布に連続させてスペーサとして機能するテープ部材の配設作業を実施するに好適な電極、及び、その電極の製造方法並びに製造装置を提供することを目的とする。 An object of the present invention is to provide an electrode suitable for performing an operation of arranging a tape member that functions as a spacer in succession to the application of an active material layer, and a method and an apparatus for manufacturing the electrode.
 製造装置が製造する電極は、帯状の電極原反の幅方向の少なくとも一端部に長手方向に延びる活物質を塗布しない未塗工領域と、幅方向の残部に前記活物質が長手方向に連続的に塗布された前記活物質層と、を備える。そして、電極には、未塗工領域と活物質層との境界部分を跨いで両者のそれぞれの一部を覆った、絶縁材よりなるスペーサ部材が長手方向に配置される。そして、製造装置は、スペーサ部材が配置される領域の活物質層の厚みが、その他の領域の活物質層の厚みに対して段差をもって薄肉となるように、電極原反に活物質を塗布する塗工部を備える。また、製造装置は、塗布された活物質層の薄肉部の少なくとも一部と未塗工領域の一部とを覆ってスペーサを配置するスペーサ配置部を備える。 The electrode manufactured by the manufacturing apparatus has an uncoated region in which the active material extending in the longitudinal direction is not applied to at least one end in the width direction of the strip-shaped electrode raw material, and the active material is continuous in the longitudinal direction in the remaining width direction. And the active material layer applied to the surface. A spacer member made of an insulating material is disposed in the longitudinal direction on the electrode so as to straddle the boundary portion between the uncoated region and the active material layer and cover a part of each. Then, the manufacturing apparatus applies the active material to the electrode material so that the thickness of the active material layer in the region where the spacer member is disposed is thin with a step with respect to the thickness of the active material layer in the other region. A coating section is provided. Further, the manufacturing apparatus includes a spacer arrangement portion that arranges a spacer so as to cover at least a part of the thin part of the applied active material layer and a part of the uncoated region.
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、本発明の第1実施形態の電極の製造装置の第1例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a first example of an electrode manufacturing apparatus according to a first embodiment of the present invention. 図2は、ダイコータの斜視図である。FIG. 2 is a perspective view of the die coater. 図3は、ダイコータに使用するシムの斜視図である。FIG. 3 is a perspective view of a shim used in the die coater. 図4は、ダイコータのスリットを示す正面図である。FIG. 4 is a front view showing a slit of the die coater. 図5は、塗布され乾燥された活物質層を備える電極原反の断面図である。FIG. 5 is a cross-sectional view of an electrode fabric provided with an active material layer that has been applied and dried. 図6は、シム形状の具体例を示すダイコータのスリットを示す正面図である。FIG. 6 is a front view showing a slit of a die coater showing a specific example of a shim shape. 図7は、シム形状の別の具体例を示す斜視図である。FIG. 7 is a perspective view showing another specific example of a shim shape. 図8は、ダイコータのスリットの一例を示す正面図である。FIG. 8 is a front view showing an example of a slit of the die coater. 図9は、貼付けローラを示す正面図である。FIG. 9 is a front view showing the sticking roller. 図10は、保護テープを貼付けた状態の電極原反の断面図である。FIG. 10 is a cross-sectional view of the original electrode fabric in a state where a protective tape is applied. 図11は、帯状電極の巻取り状態を示す斜視図である。FIG. 11 is a perspective view showing a winding state of the strip electrode. 図12は、第1実施形態の第2例の電極の製造装置を示す概略構成図である。FIG. 12 is a schematic configuration diagram illustrating an electrode manufacturing apparatus according to a second example of the first embodiment. 図13は、本発明の第2実施形態の電極の製造装置を示す概略構成図である。FIG. 13: is a schematic block diagram which shows the manufacturing apparatus of the electrode of 2nd Embodiment of this invention. 図14は、絶縁材を塗布するダイコータのスリット形状を示す正面図である。FIG. 14 is a front view showing a slit shape of a die coater for applying an insulating material. 図15は、塗布された活物質層を備える電極原反の断面図である。FIG. 15 is a cross-sectional view of an electrode material having a coated active material layer. 図16は、活物質層と保護層とが塗布された電極原反の断面図である。FIG. 16 is a cross-sectional view of an electrode raw fabric coated with an active material layer and a protective layer.
 以下、電極の製造方法および製造装置を各実施形態に基づいて説明する。 Hereinafter, an electrode manufacturing method and a manufacturing apparatus will be described based on each embodiment.
 <第1実施形態>
 図1は、第1実施形態の電極の製造装置の第1例を示す概略構成図である。図1において、電極の製造装置は、金属箔からなる電極原反1(電極バンド、電極シート、又は、電極箔)の巻き出し部2と巻取り部10との間に、電極原反1の両面に活物質を塗布する2つの塗工部3,5と、塗布された活物質層12を電極原反1のそれぞれの面で乾燥する2つの乾燥部4,6と、を備える。また、電極の製造装置は、活物質層12の両側にスペーサとしての保護テープ13を貼付ける貼付け部7と、活物質層12をロールプレスするプレス部8と、を備える。プレス部8と巻取り部10との間には、得られた帯状電極を2つの帯状電極に分割するスリット部9が追加されている。図1では、電極原反1の両面に活物質層12を形成するように、2つの塗工部3,5と2つの乾燥部4,6が配置されている。
<First Embodiment>
FIG. 1 is a schematic configuration diagram illustrating a first example of an electrode manufacturing apparatus according to the first embodiment. In FIG. 1, an electrode manufacturing apparatus includes an electrode raw fabric 1 between an unwinding portion 2 and a winding portion 10 of an electrode raw fabric 1 (electrode band, electrode sheet, or electrode foil) made of metal foil. Two coating parts 3 and 5 which apply an active material on both sides, and two drying parts 4 and 6 which dry the applied active material layer 12 on each side of electrode raw fabric 1 are provided. The electrode manufacturing apparatus also includes an affixing unit 7 that affixes protective tape 13 as a spacer on both sides of the active material layer 12 and a press unit 8 that roll-presses the active material layer 12. Between the press part 8 and the winding part 10, the slit part 9 which divides the obtained strip electrode into two strip electrodes is added. In FIG. 1, two coating parts 3 and 5 and two drying parts 4 and 6 are arranged so that the active material layer 12 is formed on both surfaces of the electrode raw fabric 1.
 巻き出し部2は、リール状に巻かれた金属箔からなる電極原反1を取り付ける部分であり、正極用または負極用の電極原反1を巻き出して、塗工部3(前面塗工部)、乾燥部4(前面乾燥部)、裏面塗工部5、裏面乾燥部6に供給する。 The unwinding part 2 is a part to which the electrode raw material 1 made of a metal foil wound in a reel shape is attached. The unwinding electrode raw material 1 for positive electrode or negative electrode is unwound and applied to the coating part 3 (front surface coating part). ), Drying unit 4 (front surface drying unit), back surface coating unit 5, and back surface drying unit 6.
 塗工部3(裏面塗工部5)は、巻き出された電極原反1にダイコータにより活物質を塗布して、電極原反1の表面に活物質層12を形成する。電極原反1の幅方向の両端において、例えば、端面から10mmの幅において、活物質層12が塗布されない領域が、未塗工領域11として、電極原反1の長手方向に設けられる。なお、幅方向と長手方向は互いに垂直である。未塗工領域11は、電極タブとして使用される。このため、活物質層12は、電極原反1の幅方向両端の未塗工領域11を除く領域に形成される。また、後述するように、塗布される活物質層12は、その中央領域では通常の膜厚を有する厚肉部12Aに形成される。しかし、電極原反1の幅方向両端から所定の幅においては、厚肉部12Aの膜厚よりも薄い厚さ寸法の薄肉部12Bが長手方向に沿って存在する。乾燥部4(裏面乾燥部6)は、塗布された活物質層12に含まれる希釈溶媒を揮発乾燥させる。 The coating unit 3 (back coating unit 5) applies an active material to the unrolled electrode raw material 1 with a die coater to form an active material layer 12 on the surface of the electrode raw material 1. At both ends in the width direction of the electrode original fabric 1, for example, in a width of 10 mm from the end face, a region where the active material layer 12 is not applied is provided as an uncoated region 11 in the longitudinal direction of the electrode original fabric 1. Note that the width direction and the longitudinal direction are perpendicular to each other. The uncoated region 11 is used as an electrode tab. For this reason, the active material layer 12 is formed in the area | region except the uncoated area | region 11 of the width direction both ends of the electrode raw fabric 1. FIG. Further, as will be described later, the applied active material layer 12 is formed in a thick portion 12A having a normal film thickness in the central region. However, in a predetermined width from both ends in the width direction of the electrode fabric 1, there are thin portions 12B having a thickness smaller than the thickness of the thick portion 12A along the longitudinal direction. The drying unit 4 (back surface drying unit 6) volatilizes and drys the diluted solvent contained in the applied active material layer 12.
 貼付け部7は、塗布され乾燥された活物質層12の幅方向両端の薄肉部12Bの全部又は一部を覆うと共に薄肉部12Bの幅方向外側に連なる未塗工領域11の一部を覆って、スペーサとして機能する保護テープ13を貼付ける。 The pasting part 7 covers all or part of the thin part 12B at both ends in the width direction of the active material layer 12 that has been applied and dried, and covers a part of the uncoated region 11 that continues to the outside in the width direction of the thin part 12B. The protective tape 13 that functions as a spacer is pasted.
 プレス部8は、圧延ロール間に、活物質層12が形成され保護テープ13が両端領域に貼付けられた電極原反1を通過させることにより、活物質層12の充填密度を高めるとともに均一化して、帯状電極を完成する。 The pressing unit 8 increases the packing density of the active material layer 12 and makes it uniform by passing the electrode raw material 1 in which the active material layer 12 is formed and the protective tape 13 is attached to both end regions between the rolling rolls. Complete the strip electrode.
 ここで、塗工部3及び裏面塗工部5の構成を説明する。なお、塗工部3及び裏面塗工部5は、同様に構成されているため、塗工部3について説明することで、裏面塗工部5の説明を省略する。塗工部3は、図1に示すように、電極原反1が巻回されたバックアップローラ21と、該バックアップローラ21上を通過する電極原反1に塗液を塗り付けるダイコータ20と、を備える。以下、電極原反1の幅方向を、塗工部3の『幅方向』と記載する。従って、電極原反1が巻き付けられたバックアップローラ21の軸と略平行な方向は、幅方向となる。 Here, the structure of the coating part 3 and the back surface coating part 5 is demonstrated. In addition, since the coating part 3 and the back surface coating part 5 are comprised similarly, description of the back surface coating part 5 is abbreviate | omitted by demonstrating the coating part 3. FIG. As shown in FIG. 1, the coating unit 3 includes a backup roller 21 around which the electrode fabric 1 is wound, and a die coater 20 that applies a coating solution to the electrode fabric 1 that passes over the backup roller 21. . Hereinafter, the width direction of the electrode raw fabric 1 is referred to as the “width direction” of the coating portion 3. Therefore, the direction substantially parallel to the axis of the backup roller 21 around which the electrode fabric 1 is wound is the width direction.
 塗工部3は、バックアップローラ21以外に、単数又は複数のガイドローラ22を備え、電極原反1がテンションを有して巻回される。これらのローラ22の回転により、ロール状に巻き取られた電極原反1が所定の速度で連続的に塗工部3に繰り出され、また、乾燥部4まで搬送される。 The coating unit 3 includes one or a plurality of guide rollers 22 in addition to the backup roller 21, and the electrode fabric 1 is wound with tension. Due to the rotation of the rollers 22, the electrode raw material 1 wound up in a roll shape is continuously fed out to the coating unit 3 at a predetermined speed, and is conveyed to the drying unit 4.
 ダイコータ20は、図示しない塗液タンクから供給される塗液を、くちばし状のノズル23に開口されたスリット24から流出させて、バックアップローラ21上の電極原反1に塗り付ける。ダイコータ20のノズル23のスリット24は、電極原反1の幅方向に長尺であって、スリット24の開口幅は電極原反1に対して塗液が塗布される規定幅を定める。 The die coater 20 causes a coating liquid supplied from a coating liquid tank (not shown) to flow out from the slit 24 opened in the beak-shaped nozzle 23 and is applied to the electrode fabric 1 on the backup roller 21. The slit 24 of the nozzle 23 of the die coater 20 is long in the width direction of the electrode original fabric 1, and the opening width of the slit 24 defines a prescribed width in which the coating liquid is applied to the electrode raw fabric 1.
 ダイコータ20のノズル23のスリット24は、図2-図4に示すように、塗工幅を設定して厚さ寸法が薄い(例えば、0.3mm)第1シム25と、このシム25より塗工幅が狭く(例えば、両側で各4mm狭い)、厚さ寸法がやや厚い(例えば、0.5mm)第2シム26とを重ね合せて形成されている。即ち、一方のダイヘッド20Aのノズル形成面に、第1シム25、第2シム26の順に重ね、さらに他方のダイヘッド20Bのノズル形成面を重ね合わせて、図示しない固定用ボルトにより締め込み固定する。これにより、図4に示すように、幅方向の両端領域で薄く、両端領域を除く中央領域で厚くなったスリット24が形成される。 As shown in FIG. 2 to FIG. 4, the slit 24 of the nozzle 23 of the die coater 20 has a first shim 25 with a coating width set to be thin (for example, 0.3 mm) and a coating applied from the shim 25. It is formed by overlapping a second shim 26 having a narrow work width (for example, 4 mm narrow on both sides) and a slightly thick thickness (for example, 0.5 mm). That is, the first shim 25 and the second shim 26 are overlapped in this order on the nozzle forming surface of one die head 20A, and the nozzle forming surface of the other die head 20B is further overlapped and fixed by fastening bolts (not shown). As a result, as shown in FIG. 4, slits 24 are formed which are thin in both end regions in the width direction and thick in the central region excluding both end regions.
 このため、第1、2シム25,26の組合せを変更することにより、活物質層12の薄肉部12Bと厚肉部12Aの幅及び厚さを任意に変更することができる。これにより、電極の品種毎に専用のシムと交換する必要がなく、設備費を低減できる。また、ダイコータ20は、単純な平板状のシム25,26を重ねて形成したものであるため、スリット24の形状を高精度に形成でき、ダイコータ20の使用時における塗工精度を向上できる。 Therefore, by changing the combination of the first and second shims 25 and 26, the width and thickness of the thin portion 12B and the thick portion 12A of the active material layer 12 can be arbitrarily changed. Thereby, it is not necessary to exchange a dedicated shim for each type of electrode, and the equipment cost can be reduced. Further, since the die coater 20 is formed by overlapping simple flat shims 25 and 26, the shape of the slit 24 can be formed with high accuracy, and the coating accuracy when the die coater 20 is used can be improved.
 塗工用ダイコータ20が塗工機のダイコータ取付け位置に設置され、乾燥部4,6が乾燥条件温度まで上昇した後に、ダイコータ20に電極スラリーが供給されて電極原反1に対して塗布が開始する。ダイコータ20から電極原反1に塗布される活物質層12は、その中央領域では、通常の膜厚(厚肉部12A)を有する。しかし、段差塗工(段状塗工)の実施によって、活物質層12の幅方向両端は、中央領域に塗布される通常の膜厚(厚肉部12A)より薄い厚さ寸法を有し、薄肉部12Bとなる。薄肉部12Bの厚みは、例えば、2~10mmの幅寸法において、30μm以上であり且つ中央領域に塗布される通常の膜厚より40μm以上小さい。塗布された活物質層12は、乾燥部4,6で乾燥された後に貼付け部7に搬送される。なお、詳細構造は図示しないが、裏面塗工部5は、電極原反1の他方の面(裏面)に、塗工部3と同様の塗工用のダイコータを用いて同様に段差塗工を実施し、裏面乾燥部6は、裏面の活物質層12を乾燥する。 After the coating die coater 20 has been installed at the die coater mounting position of the coating machine and the drying units 4 and 6 have risen to the drying condition temperature, the electrode slurry is supplied to the die coater 20 and coating on the electrode raw material 1 is started. To do. The active material layer 12 applied to the electrode raw fabric 1 from the die coater 20 has a normal film thickness (thick portion 12A) in the central region. However, by performing step coating (step coating), both ends in the width direction of the active material layer 12 have a thickness dimension smaller than a normal film thickness (thick portion 12A) applied to the central region, The thin portion 12B is formed. The thickness of the thin portion 12B is, for example, 30 μm or more in a width dimension of 2 to 10 mm and 40 μm or less smaller than the normal film thickness applied to the central region. The applied active material layer 12 is transported to the pasting unit 7 after being dried by the drying units 4 and 6. Although the detailed structure is not shown in the drawing, the back surface coating unit 5 applies the same step coating to the other surface (back surface) of the electrode raw fabric 1 using the same coating die coater as the coating unit 3. In practice, the back surface drying unit 6 dries the active material layer 12 on the back surface.
 以上により、両面に活物質層12が形成された電極原反1は、図5に示すように、段差塗工された活物質層12を備え、中央領域では通常の膜厚の厚肉部12Aを備え、その幅方向両端では中央領域の膜厚より薄い厚さ寸法の薄肉部12Bを備える。 As described above, the electrode raw fabric 1 having the active material layer 12 formed on both sides includes the active material layer 12 coated with a step as shown in FIG. 5, and a thick portion 12A having a normal film thickness in the central region. And the thin portion 12B having a thickness smaller than the thickness of the central region is provided at both ends in the width direction.
 なお、段差塗工される活物質層12の厚肉部12A及び薄肉部12Bの角部において、垂れを防止するために、図6に示すように、第1,2シム25,26の端面が斜面25A,26Aであってよい。これにより、塗布された活物質層12の厚肉部12A及び薄肉部12Bの角部が鋭角となり得る。また、同様の目的のために、塗布された直後の活物質層12の厚肉部12A及び薄肉部12Bの角部に近接させて加熱装置を配置して、当該角部を乾燥炉による乾燥硬化に先行して硬化させてもよい。 In order to prevent dripping at the corners of the thick portion 12A and the thin portion 12B of the active material layer 12 to be step-coated, the end faces of the first and second shims 25, 26 are provided as shown in FIG. It may be slopes 25A, 26A. Thereby, the corner | angular part of the thick part 12A and the thin part 12B of the apply | coated active material layer 12 may become an acute angle. For the same purpose, a heating device is disposed in the vicinity of the corners of the thick part 12A and the thin part 12B of the active material layer 12 immediately after being applied, and the corners are dried and cured by a drying furnace. It may be cured prior to.
 ダイコータ20に設けるシムは、上記した構成に限定されるものでなく、例えば、図7に示すように構成してもよい。図7においては、段付きシム27は、上記した第1シム25と第2シム26とを一体化した形状を有し、両端に突出して形成した厚肉部分27Aと、厚肉部分27Aから内側に延びる薄肉部分27Bとを一体に備える。そして、厚肉部分27Aは、活物質層12の両薄肉部12Bを含む幅寸法の塗工幅を設定し、薄肉部分27Bは、活物質層12の薄肉部12Bと厚肉部12Aとを設定する。段付きシム27は、シム素材を熱変形させることなく削ることにより薄肉部分27Bを形成して作成できる。シムを交換するのみで、薄肉部12Bと厚肉部12Aとの幅及び厚さを任意に変更することができる。そして、電極の品種毎にダイヘッド20A,20Bを交換する必要がなく、設備費を低減できる。 The shim provided in the die coater 20 is not limited to the above-described configuration, and may be configured as shown in FIG. In FIG. 7, the stepped shim 27 has a shape in which the first shim 25 and the second shim 26 described above are integrated, and a thick portion 27 </ b> A that protrudes from both ends, and an inner side from the thick portion 27 </ b> A. And a thin-walled portion 27 </ b> B extending integrally with each other. And the thick part 27A sets the coating width of the width dimension including both the thin parts 12B of the active material layer 12, and the thin part 27B sets the thin part 12B and the thick part 12A of the active material layer 12 To do. The stepped shim 27 can be formed by forming the thin portion 27B by cutting the shim material without thermally deforming it. The width and thickness of the thin wall portion 12B and the thick wall portion 12A can be arbitrarily changed by simply replacing the shim. And it is not necessary to exchange die head 20A, 20B for every kind of electrode, and equipment cost can be reduced.
 また、ダイコータ20のスリット24の形状を上記のようにシムを用いることなく、図8に示すように、一方のダイヘッド20Bの先端リップ形状を段付き形状とすることにより形成してもよい。この場合には、ダイヘッド20Bを研削等の機械加工により段付き形状に形成できる。 Further, the shape of the slit 24 of the die coater 20 may be formed by making the tip lip shape of one die head 20B into a stepped shape as shown in FIG. 8 without using a shim as described above. In this case, the die head 20B can be formed into a stepped shape by machining such as grinding.
 貼付け部7は、スペーサとして機能する保護テープ13を連続的に貼付ける。保護テープ13は、塗布され乾燥された活物質層12の幅方向両端の薄肉部12Bの少なくとも一部を覆うと共に、薄肉部12Bの幅方向外側に連なる未塗工領域11の一部を覆う。保護テープ13は、電極原反1の一方の面の両側にそれぞれ一本づつ、他方の面の両側にそれぞれ一本づつの合計4個貼付けられる。 The affixing unit 7 continuously affixes the protective tape 13 that functions as a spacer. The protective tape 13 covers at least a part of the thin part 12B at both ends in the width direction of the coated and dried active material layer 12 and also covers a part of the uncoated region 11 connected to the outer side in the width direction of the thin part 12B. A total of four protective tapes 13 are affixed, one on each side of one side of the electrode fabric 1 and one on each side of the other side.
 保護テープ13は、例えば、10mm前後、好ましくは7mmの幅寸法を有し、例えば、20μm~80μm、好ましくは30μmの厚さ寸法を有する。保護テープ13の材料は、ポリイミド、ポリエステル、ポリフッ化ビニリデン、等、絶縁性に優れる材料であれば良い。 The protective tape 13 has a width dimension of, for example, about 10 mm, preferably 7 mm, and has a thickness dimension of, for example, 20 μm to 80 μm, preferably 30 μm. The material of the protective tape 13 may be any material that has excellent insulating properties, such as polyimide, polyester, polyvinylidene fluoride, and the like.
 また、貼付け部7は、電極原反1の幅方向のずれに追従させて、保護テープ13を追従させて、安定的に貼付ける。貼付け部7の追従装置として、例えば、EPC装置(エッジ・ポジション・コントロール、Edge・Position・Controlの略称。ニレコの登録商標である)が使用される。また、貼付けローラ30として、図9に示すように、樽状のクラウンロールが使用される。クラウン状(樽形)の貼付けロール30は、その形状から、常にロール30の中央部にテンションを集中する。従って、保護テープ13の走行が安定し、保護テープ13の位置ずれの防止を図ることができ、常に狙いの位置に保護テープ13を貼ることができる。 Also, the affixing portion 7 follows the displacement in the width direction of the electrode fabric 1 and follows the protective tape 13 to stably affix. For example, an EPC device (edge position control, abbreviation for Edge Position Control), which is a registered trademark of Nireco) is used as the follow-up device of the pasting unit 7. Moreover, as shown in FIG. 9, a barrel-shaped crown roll is used as the sticking roller 30. The crown-shaped (barrel-shaped) sticking roll 30 always concentrates tension on the center of the roll 30 from its shape. Accordingly, the traveling of the protective tape 13 is stabilized, the positional deviation of the protective tape 13 can be prevented, and the protective tape 13 can be always stuck at the target position.
 図10は、貼付け部7で保護テープ13が貼付けられた状態を示す。保護テープ13の厚さは、薄肉で、例えば、30μmであり、活物質層12の薄肉部12Bと厚肉部12Aの段差の寸法と比較して小さい。例えば、薄肉部12Bの厚さ寸法が30~50μmであり、厚肉部12Aの厚さ寸法が120μmである場合には、厚肉部12Aと薄肉部12Bとの段差の寸法は、70~90μmとなり、30μmの厚みの保護テープ13は、段差の寸法内に充分収まる。このため、保護テープ13の表面が厚肉部12Aを構成する活物質層12の表面より盛り上がることなく、保護テープ13が貼付けられる。また、下流のプレス部8により厚肉部12Aが、例えば、40μmだけ圧縮されて段差の寸法が30~50μmに縮まったとしても、保護テープ13の表面が厚肉部12Aを構成する活物質層12の表面より盛り上がることを防止できる。 FIG. 10 shows a state in which the protective tape 13 is pasted at the pasting unit 7. The thickness of the protective tape 13 is thin, for example, 30 μm, and is smaller than the dimension of the step between the thin portion 12B and the thick portion 12A of the active material layer 12. For example, when the thickness of the thin portion 12B is 30 to 50 μm and the thickness of the thick portion 12A is 120 μm, the step size between the thick portion 12A and the thin portion 12B is 70 to 90 μm. Thus, the protective tape 13 having a thickness of 30 μm is sufficiently accommodated within the step size. For this reason, the protective tape 13 is affixed, without the surface of the protective tape 13 rising from the surface of the active material layer 12 which comprises the thick part 12A. Further, even if the thick portion 12A is compressed by 40 μm by the downstream press portion 8 and the step size is reduced to 30 to 50 μm, for example, the active material layer whose surface of the protective tape 13 constitutes the thick portion 12A It is possible to prevent swelling from the 12 surfaces.
 また、段差の寸法が大きくなく、プレス部8での圧縮により、厚肉部12Aが圧縮されることにより、保護テープ13と薄肉部12Bとが圧延ロールによりプレスされる場合も考えられる。この場合には、薄肉部12Bが薄くなることにより、保護テープ13の表面と厚肉部12Aの表面とが同一面に形成される。従って、保護テープ13の表面が厚肉部12Aを構成する活物質層12の表面より盛り上がることを防止できる。 In addition, there may be a case where the dimension of the step is not large and the protective tape 13 and the thin portion 12B are pressed by the rolling roll by compressing the thick portion 12A by compression at the press portion 8. In this case, the surface of the protective tape 13 and the surface of the thick portion 12A are formed on the same surface by thinning the thin portion 12B. Therefore, the surface of the protective tape 13 can be prevented from rising from the surface of the active material layer 12 constituting the thick portion 12A.
 保護テープ13が貼付けられた電極原反1は、プレス部8に搬送され、プレス部8の圧延ロール間を通過する。これにより、活物質層12の充填密度が高められるとともに均一化されて、電極原反1は帯状電極となる。次いで、スリット部9を通過することにより、帯状電極は、幅方向の中央部で分割される。分割された帯状電極は、次工程により所定長さに切断されることにより、それ自体で電極板を形成することができる。スリット部9で分割された帯状電極は、図11に示すように、左右の部分の一対(若しくは左右の部分それぞれ)が、巻取り部10の巻取りローラ31に巻取られる。 The electrode fabric 1 with the protective tape 13 attached is conveyed to the press unit 8 and passes between the rolling rolls of the press unit 8. Thereby, the packing density of the active material layer 12 is increased and uniformized, and the electrode raw fabric 1 becomes a strip electrode. Next, by passing through the slit portion 9, the strip electrode is divided at the central portion in the width direction. The divided strip-shaped electrode is cut into a predetermined length in the next step, so that an electrode plate can be formed by itself. As shown in FIG. 11, the pair of left and right portions (or the left and right portions) of the strip electrode divided by the slit portion 9 is wound around the winding roller 31 of the winding portion 10.
 図12は、第2例の電極の製造装置では、プレス部8の下流に貼付け部7が配列される。その他の構成は第1例と同様である。 FIG. 12 shows that in the electrode manufacturing apparatus of the second example, the affixing part 7 is arranged downstream of the pressing part 8. Other configurations are the same as those in the first example.
 塗工部3,5で活物質層12が塗布され乾燥部4,6で乾燥された電極原反1は、プレス部8の圧延ロール間を通過し、厚肉部12Aを構成する活物質層12が圧縮され充填密度が高められるとともに均一化される。 The electrode material 1 coated with the active material layer 12 in the coating parts 3 and 5 and dried in the drying parts 4 and 6 passes between the rolling rolls of the press part 8 and forms the thick part 12A. 12 is compressed and the packing density is increased and uniformized.
 貼付け部7は、スペーサとして機能する保護テープ13を連続的に貼付ける。保護テープ13は、プレスされた活物質層12を備える電極原反1のプレスされない薄肉部12Bの少なくとも一部と、薄肉部12Bの幅方向外側に連なる未塗工領域11の一部とを覆う。保護テープ13を貼付ける薄肉部12Bは、プレス部8での圧縮を受けていないので、プレス部8により圧縮を受けた厚肉部12Aに対する段差の寸法が小さくなる。このため、プレス部8での圧縮後の段差の寸法が、貼付ける保護テープ13の厚さ寸法より、大きくなるように設定される。例えば、保護テープ13の厚さ寸法が30μmであり、プレス部8で厚肉部12Aの活物質層12が、123μmから80μmへと、圧縮される場合には、塗工部3,5で形成する薄肉部12Bの厚さ寸法を50μm以下とすることにより、保護テープ13の表面が厚肉部12Aの表面より盛り上がることを防止できる。 The affixing unit 7 continuously affixes the protective tape 13 that functions as a spacer. The protective tape 13 covers at least a part of the unpressed thin part 12B of the electrode raw fabric 1 including the pressed active material layer 12 and a part of the uncoated region 11 connected to the outer side in the width direction of the thin part 12B. . Since the thin-walled portion 12B to which the protective tape 13 is applied has not been compressed by the press portion 8, the size of the step with respect to the thick-walled portion 12A compressed by the press portion 8 is reduced. For this reason, the dimension of the level | step difference after compression in the press part 8 is set so that it may become larger than the thickness dimension of the protective tape 13 to paste. For example, when the thickness of the protective tape 13 is 30 μm and the active material layer 12 of the thick portion 12A is compressed from 123 μm to 80 μm by the press portion 8, it is formed by the coating portions 3 and 5. By making the thickness dimension of the thin part 12B to be 50 μm or less, the surface of the protective tape 13 can be prevented from rising from the surface of the thick part 12A.
 なお、上記実施形態において、長手方向に延びる活物質を塗布しない未塗工領域11は、帯状の電極原反1の幅方向の両端部に設けられる。しかし、長手方向に延びる活物質を塗布しない未塗工領域11は、帯状の電極原反1の幅方向の一端部に設けられてもよい。また、幅方向の端部に加えて、幅方向中央部に未塗工領域11を備えるように電極原反1が形成されてもよい。 In the above embodiment, the uncoated regions 11 where the active material extending in the longitudinal direction is not applied are provided at both ends in the width direction of the strip-shaped electrode raw fabric 1. However, the uncoated region 11 where the active material extending in the longitudinal direction is not applied may be provided at one end portion in the width direction of the strip-shaped electrode raw fabric 1. Moreover, in addition to the edge part of the width direction, the electrode raw fabric 1 may be formed so that the uncoated area | region 11 may be provided in the width direction center part.
 本実施形態においては、以下に記載する効果を奏することができる。 In the present embodiment, the following effects can be achieved.
 (a)電極は、帯状の電極原反1の幅方向の少なくとも一端部に長手方向に延びて活物質を塗工しない未塗工領域11と、幅方向の残部(即ち未塗工領域11以外の部分)に活物質が長手方向に連続的に塗布された活物質層12と、を備える。そして、電極には、未塗工領域11と活物質層12との境界部分を跨いで両者のそれぞれの一部を覆った、絶縁材よりなるスペーサ部材としての保護テープ13が長手方向に配置される。このような電極の製造装置及び製造方法が提供される。そして、製造装置の塗工部3,5は、塗工工程を実施し、活物質層12の未塗工領域11に隣接するスペーサ部材が配置される領域の活物質層12の厚みを、その他の領域の活物質層12の厚みに対して段差をもって薄肉となるように、電極原反1に活物質を塗布する。また、製造装置の貼付け部7は、スペーサ配置部としてスペーサ配置工程を実施し、塗布された活物質層12の薄肉部12Bの少なくとも一部と未塗工領域11の一部とを覆ってスペーサ部材を配置する。 (A) The electrode extends in the longitudinal direction at least at one end in the width direction of the strip-shaped electrode raw fabric 1 and is not coated with an active material, and the remainder in the width direction (that is, other than the uncoated area 11) Active material layer 12 in which the active material is continuously applied in the longitudinal direction. And the protective tape 13 as a spacer member which consists of an insulating material which straddled the boundary part of the uncoated area | region 11 and the active material layer 12, and covered each part of both was arrange | positioned at the longitudinal direction at the electrode. The An apparatus and method for manufacturing such an electrode are provided. And the coating parts 3 and 5 of a manufacturing apparatus implement a coating process, the thickness of the active material layer 12 of the area | region where the spacer member adjacent to the uncoated area | region 11 of the active material layer 12 is arrange | positioned, and others The active material is applied to the electrode fabric 1 so that the thickness of the active material layer 12 in this region becomes thin with a level difference. Further, the affixing unit 7 of the manufacturing apparatus performs a spacer arrangement process as a spacer arrangement unit and covers at least a part of the thin part 12B of the applied active material layer 12 and a part of the uncoated region 11 to form a spacer. Arrange the members.
 即ち、活物質層12の未塗工領域11に隣接するスペーサ部材が配置される領域の活物質層12の厚みは、その他の領域の活物質層12の厚みに対して段差をもって薄肉部12Bとなる。このため、スペーサとしての保護テープ13を貼り付けても、電極の幅方向の両端の厚みを中央部に比較して同等以下にすることができるため、幅方向の両端が盛り上がることがなく、電極を連続して巻き取ることができる。結果として、保護テープ13をインラインで貼り付けることができ、電極の製造工程を簡略化できる。 That is, the thickness of the active material layer 12 in the region where the spacer member adjacent to the uncoated region 11 of the active material layer 12 is arranged is different from the thickness of the thin portion 12B with respect to the thickness of the active material layer 12 in other regions. Become. For this reason, even if the protective tape 13 as a spacer is affixed, the thickness of both ends in the width direction of the electrode can be made equal to or less than that of the central portion, so that both ends in the width direction do not rise, Can be continuously wound. As a result, the protective tape 13 can be attached in-line, and the electrode manufacturing process can be simplified.
 (b)塗工部3,5は、スリットを有するダイコータ20により、活物質を含む電極スラリーを電極原反1に塗布する。スリットは、スリットの幅方向の両端部で、中央部よりもスリットの開口寸法が薄くなる。このため、電極原反1に薄肉部12Bと厚肉部12Aとを備える活物質層12を連続して形成することができる。 (B) The coating units 3 and 5 apply the electrode slurry containing the active material to the electrode raw fabric 1 by the die coater 20 having a slit. The slit has an opening dimension thinner at both ends in the width direction of the slit than at the center. For this reason, the active material layer 12 provided with the thin part 12B and the thick part 12A in the electrode raw fabric 1 can be formed continuously.
 (c)ダイコータ20のスリットの形状は、ダイヘッド20A,20Bに挟んだシム27の開口に臨む形状により構成した。シム27を交換するのみで、薄肉部12Bと厚肉部12Aとの幅及び厚さを任意に変更することができる。電極の品種毎にダイヘッド20A,20Bを交換する必要がなく、設備費を低減できる。 (C) The shape of the slit of the die coater 20 was configured to face the opening of the shim 27 sandwiched between the die heads 20A and 20B. Only by replacing the shim 27, the width and thickness of the thin portion 12B and the thick portion 12A can be arbitrarily changed. There is no need to replace the die heads 20A and 20B for each type of electrode, and the equipment cost can be reduced.
 (d)シムは、活物質層12の薄肉部12Bの未塗工領域11との境界領域を設定する第1シム25と、第1シム25に重ねられて薄肉部12Bの上面及びその他の領域の活物質層12の幅を設定する第2シム26とを備える。このため、第1と第2シム25,26の組合せを変更することにより薄肉部12Bと厚肉部12Aとの幅及び厚さを任意に変更できる。従って、電極の品種毎に専用のシムと交換する必要がなく、設備費を低減できる。また、シムは、単純な平板状のシム25,26を重ねて形成されているため、形状を高精度に形成でき、ダイヘッド20A,20Bでの使用時における塗工精度を向上できる。 (D) The shim is a first shim 25 that sets a boundary region with the uncoated region 11 of the thin portion 12B of the active material layer 12, and the upper surface of the thin portion 12B and other regions that overlap the first shim 25 And a second shim 26 for setting the width of the active material layer 12. For this reason, by changing the combination of the first and second shims 25 and 26, the width and thickness of the thin portion 12B and the thick portion 12A can be arbitrarily changed. Therefore, it is not necessary to replace a dedicated shim for each type of electrode, and the equipment cost can be reduced. Further, since the shim is formed by overlapping simple flat shims 25 and 26, the shape can be formed with high accuracy, and the coating accuracy when used in the die heads 20A and 20B can be improved.
 また、段差塗工される活物質層12の厚肉部12A及び薄肉部12Bの角部の垂れを防止するために、第1と第2シム25,26の端面が斜面25A,26Aにより形成されて、塗布された活物質層12の厚肉部12A及び薄肉部12Bの角部が鋭角になり得る。また、同様の目的のために、塗布された直後の活物質層12の厚肉部12A及び薄肉部12Bの角部に近接させて加熱装置を配置して、当該角部が、乾燥炉による乾燥硬化に先行して硬化されてもよい。 Further, in order to prevent sagging of the corners of the thick portion 12A and the thin portion 12B of the active material layer 12 to be step-coated, the end surfaces of the first and second shims 25, 26 are formed by the slopes 25A, 26A. Thus, the corners of the thick part 12A and the thin part 12B of the applied active material layer 12 may be acute. For the same purpose, a heating device is disposed in the vicinity of the corners of the thick part 12A and the thin part 12B of the active material layer 12 immediately after being applied, and the corners are dried by a drying furnace. It may be cured prior to curing.
 (e)スペーサ配置部7は、乾燥された活物質層12若しくは乾燥され且つプレスされた活物質層12の薄肉部12Bの少なくとも一部と未塗工領域11の一部とを覆って、スペーサ部材としての保護テープ13を貼付ける。このため、スペーサ部材としての保護テープ13を搬送されている電極原反1の活物質層12の薄肉部12Bの少なくとも一部と未塗工領域11の一部とにインラインで連続して貼付けることができる。 (E) The spacer arrangement portion 7 covers at least a part of the dried active material layer 12 or the thin part 12B of the dried and pressed active material layer 12 and a part of the uncoated region 11 to form a spacer. The protective tape 13 as a member is affixed. For this reason, the protective tape 13 as a spacer member is continuously pasted in-line continuously to at least a part of the thin portion 12B of the active material layer 12 of the electrode fabric 1 being conveyed and a part of the uncoated region 11. be able to.
 (f)スペーサ配置部7は、保護テープ13を活物質層12の薄肉部12Bの少なくとも一部と未塗工領域11の一部とに押付けるガイドローラ30を備え、当該ガイドローラ30はクラウン状の表面を備える。このため、クラウン形状によって常にロール30の中央部に保護テープ13のテンションを集中させることができ、保護テープ13の走行を安定できる。従って、スペーサとしての保護テープ13の位置ずれを防止することができ、狙い位置に高精度に保護テープ13を貼付けることができる。 (F) The spacer arrangement portion 7 includes a guide roller 30 that presses the protective tape 13 against at least a part of the thin portion 12B of the active material layer 12 and a part of the uncoated region 11, and the guide roller 30 is a crown. Provided with a shaped surface. For this reason, the tension of the protective tape 13 can always be concentrated on the central portion of the roll 30 by the crown shape, and the traveling of the protective tape 13 can be stabilized. Therefore, the position shift of the protective tape 13 as a spacer can be prevented, and the protective tape 13 can be adhered to the target position with high accuracy.
 <第2実施形態>
 図13-図16は、本発明を適用した電極及びその製造方法並びに製造装置の第2実施形態を示す。図13は、電極の製造装置の概略構成図である。本実施形態においては、スペーサとして機能する絶縁材を活物質層の薄肉部の上面に塗布する構成を第1実施形態に追加したものである。なお、第1実施形態と同一装置には同一符号を付してその説明を省略ないし簡略化する。
<Second Embodiment>
13 to 16 show a second embodiment of an electrode to which the present invention is applied, a method for manufacturing the electrode, and a manufacturing apparatus. FIG. 13 is a schematic configuration diagram of an electrode manufacturing apparatus. In this embodiment, the structure which apply | coats the insulating material which functions as a spacer to the upper surface of the thin part of an active material layer is added to 1st Embodiment. The same devices as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
 図13において、本実施形態の電極の製造装置は、保護テープ13の貼り付け部を備えることに代えて、塗工部3A,5Aに、活物質を塗布するダイコータ20の下流に隣接させて絶縁材14を塗布するダイコータ28を備える。その他の構成は第1実施形態と同様である。 In FIG. 13, the electrode manufacturing apparatus according to the present embodiment is insulated by providing the coating portions 3 </ b> A and 5 </ b> A adjacent to the downstream of the die coater 20 to which the active material is applied, instead of being provided with the attaching portion of the protective tape 13. A die coater 28 for applying the material 14 is provided. Other configurations are the same as those of the first embodiment.
 塗工部3A,5Aに設ける絶縁材14を塗布するダイコータ28は、そのノズル28Aのスリット28Bが電極原反1の幅方向の両側に2カ所設けられる。それぞれのスリット28Bは、図14に示すように、先行するダイコータ20により電極原反1に塗布されている活物質層12の薄肉部12Bと薄肉部12Bの幅方向外側に連なる未塗工領域11の一部とに対面する幅領域に開口させて形成する。そして、絶縁材14は、デイスペンサ(液体定量吐出装置)等によりダイコータ28に精度良く定量供給されて、活物質層12の薄肉部12Bと薄肉部12Bの幅方向外側領域の一部(図15)とに、ウェット・オン・ウェットで塗布されて、規定の厚みとなる。 In the die coater 28 for applying the insulating material 14 provided in the coating parts 3A and 5A, two slits 28B of the nozzle 28A are provided on both sides in the width direction of the electrode fabric 1. As shown in FIG. 14, each slit 28 </ b> B has a thin portion 12 </ b> B of the active material layer 12 applied to the electrode fabric 1 by the preceding die coater 20 and an uncoated region 11 that continues to the outside in the width direction of the thin portion 12 </ b> B. An opening is formed in a width region facing a part of the substrate. The insulating material 14 is quantitatively supplied to the die coater 28 with high accuracy by a dispenser (liquid quantitative discharge device) or the like, and the thin portion 12B of the active material layer 12 and a part of the outer region in the width direction of the thin portion 12B (FIG. 15). In addition, it is applied wet-on-wet to a specified thickness.
 絶縁材14は、ポリイミド、ポリエステル、ポリフッ化ビニリデン等であり、また、絶縁効果を増加させるために、アルミナやタルク等の充填材を混ぜ合わせた樹脂材でもよい。絶縁材14は、活物質からなる電極スラリーとは組成が異なるため、ウェット・オン・ウェットで塗布しても、活物質と交じり合うことはなく、活物質層12と絶縁材14からなる保護層に分離して存在する。図16は、活物質層12と絶縁材14からなる保護層とが塗布された状態を示す。 The insulating material 14 is polyimide, polyester, polyvinylidene fluoride, or the like, and may be a resin material mixed with a filler such as alumina or talc in order to increase the insulating effect. Since the insulating material 14 has a composition different from that of the electrode slurry made of the active material, it does not mix with the active material even when applied wet-on-wet, and the protective layer made of the active material layer 12 and the insulating material 14. It exists separately. FIG. 16 shows a state where the active material layer 12 and the protective layer made of the insulating material 14 are applied.
 活物質層12と絶縁材14とが塗布された電極原反1は、乾燥部4により乾燥され、次いで、裏面塗工部5により、同様に、活物質層12と、絶縁材14よりなる保護層とが塗布される。そして、活物質層12と絶縁材14とが塗布された電極原反1は、裏面乾燥部6により乾燥されて、プレス部8により密度調整され、スリット部9により分離されて巻取り部10により巻取られる。 The electrode fabric 1 coated with the active material layer 12 and the insulating material 14 is dried by the drying unit 4 and then protected by the back surface coating unit 5 in the same manner as the active material layer 12 and the insulating material 14. A layer is applied. Then, the electrode raw material 1 coated with the active material layer 12 and the insulating material 14 is dried by the back surface drying unit 6, density-adjusted by the press unit 8, separated by the slit unit 9, and separated by the winding unit 10. It is wound up.
 このように、段差により形成した薄肉部12Bと未塗工領域11の一部とにスペーサとなる絶縁材14からなる保護層の塗布を行なうことで、更に、簡便に保護層を形成できる。 Thus, the protective layer can be more easily formed by applying the protective layer made of the insulating material 14 serving as a spacer to the thin portion 12B formed by the step and a part of the uncoated region 11.
 本実施形態においては、第1実施形態における効果(a)~(f)に加えて以下に記載した効果を奏することができる。 In this embodiment, in addition to the effects (a) to (f) in the first embodiment, the following effects can be achieved.
 (g)第2のダイコータ28は、電極原反1に塗布された活物質層12の薄肉部12Bの少なくとも一部と未塗工領域11の一部とを覆うように、スペーサ部材となる絶縁材14を塗布する。このため、第2のダイコータ28を追加するのみで、スペーサ部材となる絶縁材14を連続して配置することができ、設備をより安価に形成することができる。また、絶縁材14は、活物質からなる電極スラリーとは組成が異なるため、ウェット・オン・ウェットで塗布しても、活物質と交じり合うことはなく、活物質層12と保護層に分離して存在することができる。 (G) The second die coater 28 is an insulation serving as a spacer member so as to cover at least a part of the thin part 12B of the active material layer 12 applied to the electrode fabric 1 and a part of the uncoated region 11. The material 14 is applied. For this reason, only by adding the 2nd die coater 28, insulating material 14 used as a spacer member can be arranged continuously, and equipment can be formed more inexpensively. Further, since the insulating material 14 has a composition different from that of the electrode slurry made of the active material, it does not mix with the active material even when applied wet-on-wet, and is separated into the active material layer 12 and the protective layer. Can exist.
 本発明は、以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。 The present invention is not limited to the embodiments described above, and various modifications and changes can be made within the scope of the technical idea, and it is obvious that these are also included in the technical scope of the present invention. .
 2012年3月14日に出願された日本国特許出願2012-57715の全内容は引用により本明細書に組み込まれる。 The entire contents of Japanese Patent Application 2012-57715 filed on March 14, 2012 are incorporated herein by reference.

Claims (12)

  1.  帯状の電極原反の幅方向の少なくとも一端部に長手方向に延びて活物質を塗布しない未塗工領域と、幅方向の残部に前記活物質が長手方向に連続的に塗布された活物質層と、前記未塗工領域と前記活物質層との境界部分を跨いで両者のそれぞれの一部を覆った、絶縁材よりなるスペーサ部材とを長手方向に配置した電極の製造装置において、
     前記活物質層の前記未塗工領域に隣接する前記スペーサ部材が配置される領域の厚みを、その他の領域の前記活物質層の厚みに対して段差をもって薄肉となるように、前記電極原反に前記活物質を塗布する塗工部と、
     塗布された前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆って前記スペーサ部材を配置するスペーサ配置部と、を備える電極の製造装置。
    An uncoated region extending in the longitudinal direction to at least one end portion in the width direction of the strip-shaped electrode raw material and not coated with the active material, and an active material layer in which the active material is continuously coated in the longitudinal direction on the remaining portion in the width direction And an electrode manufacturing apparatus in which a spacer member made of an insulating material is disposed in the longitudinal direction, covering a part of both of the uncoated region and the active material layer, and covering each part of both.
    The thickness of the region where the spacer member adjacent to the uncoated region of the active material layer is thin with a step with respect to the thickness of the active material layer in the other region. A coating part for applying the active material to
    An apparatus for manufacturing an electrode, comprising: a spacer placement portion that covers at least a part of a thin part of the applied active material layer and a part of the uncoated region, and places the spacer member.
  2.  前記塗工部は、スリットを有するダイコータにより、前記活物質を含む電極スラリーを前記電極原反に塗布し、
     前記スリットは、前記スリットの幅方向の両端部で、中央部よりも前記スリットの開口寸法が薄くなる請求項1に記載の電極の製造装置。
    The coating portion is coated with the electrode slurry containing the active material on the electrode raw material by a die coater having a slit,
    The electrode manufacturing apparatus according to claim 1, wherein the slit has an opening dimension of the slit that is thinner at both ends in the width direction of the slit than at the center.
  3.  前記ダイコータの前記スリットの形状は、前記ダイヘッドに挟んだシムの前記開口に臨む形状により構成した請求項2に記載の電極の製造装置。 3. The electrode manufacturing apparatus according to claim 2, wherein the shape of the slit of the die coater is configured to face the opening of the shim sandwiched between the die heads.
  4.  前記シムは、前記活物質層の薄肉部と前記未塗工領域との境界領域を設定する第1シムと、第1シムに重ねられて前記薄肉部の上面及び前記その他の領域の前記活物質層の幅を設定する第2シムと、を備える請求項3に記載の電極の製造装置。 The shim includes a first shim that sets a boundary region between the thin portion of the active material layer and the uncoated region, and the active material on the upper surface of the thin portion and the other regions that overlaps the first shim. The electrode manufacturing apparatus according to claim 3, further comprising: a second shim that sets the width of the layer.
  5.  前記スペーサ配置部は、乾燥された前記活物質層若しくは乾燥され且つプレスされた前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆って、前記スペーサ部材としての保護テープを貼付ける請求項1から請求項4のいずれか一つに記載の電極の製造装置。 The spacer arrangement portion covers at least a part of the dried active material layer or a thin part of the dried and pressed active material layer and a part of the uncoated region, and serves as the spacer member. The electrode manufacturing apparatus according to claim 1, wherein a protective tape is attached.
  6.  前記スペーサ配置部は、前記保護テープを前記活物質層の薄肉部の少なくとも一部と未塗工領域の一部とに押付けるガイドローラを備え、当該ガイドローラはクラウン状の表面を備える請求項5に記載の電極の製造装置。 The spacer arrangement part includes a guide roller that presses the protective tape against at least a part of a thin part of the active material layer and a part of an uncoated region, and the guide roller has a crown-shaped surface. 5. The electrode manufacturing apparatus according to 5.
  7.  前記電極原反に塗布された前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆うように、前記スペーサ部材となる前記絶縁材を塗布する第2のダイコータを備える請求項2から請求項4のいずれか一つに記載の電極の製造装置。 A second die coater for applying the insulating material to be the spacer member so as to cover at least a part of the thin portion of the active material layer applied to the electrode material and a part of the uncoated region; The electrode manufacturing apparatus according to any one of claims 2 to 4, further comprising:
  8.  帯状の電極原反の幅方向の少なくとも一端部に長手方向に延びる活物質を塗布しない未塗工領域と、幅方向の残部に前記活物質が長手方向に連続的に塗布された活物質層と、前記未塗工領域と前記活物質層との境界部分を跨いで両者のそれぞれの一部を覆った、絶縁材よりなるスペーサ部材とを長手方向に配置した電極の製造方法において、
     前記活物質層の前記未塗工領域に隣接する前記スペーサ部材が配置される領域の厚みを、その他の領域の前記活物質層の厚みに対して段差をもって薄肉となるように、前記電極原反に前記活物質を塗布する塗工工程と、
     塗布された前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆って前記スペーサ部材を配置するスペーサ配置工程と、を備える電極の製造方法。
    An uncoated region in which the active material extending in the longitudinal direction is not applied to at least one end in the width direction of the strip-shaped electrode raw material, and an active material layer in which the active material is continuously applied in the longitudinal direction to the remaining portion in the width direction In the method of manufacturing an electrode in which a spacer member made of an insulating material is disposed in the longitudinal direction, covering a part of both of the uncoated region and the active material layer and covering each part of both,
    The thickness of the region where the spacer member adjacent to the uncoated region of the active material layer is thin with a step with respect to the thickness of the active material layer in the other region. A coating step of applying the active material to
    And a spacer arrangement step of arranging the spacer member so as to cover at least a part of the thin part of the applied active material layer and a part of the uncoated region.
  9.  前記塗工工程は、スリットを有するダイコータにより、前記活物質を含む電極スラリーを前記電極原反に塗布することを含み、
     前記スリットは、前記スリットの幅方向の両端部で、中央部よりも前記スリットの開口寸法が薄くなる請求項8に記載の電極の製造方法。
    The coating step includes applying an electrode slurry containing the active material to the electrode raw fabric by a die coater having a slit,
    The method of manufacturing an electrode according to claim 8, wherein the slit has an opening dimension that is thinner at both ends in the width direction of the slit than at the center.
  10.  前記スペーサ配置工程は、乾燥された前記活物質層若しくは乾燥され且つプレスされた前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆って、前記スペーサとしての保護テープを貼付けることを含む請求項8または請求項9に記載の電極の製造方法。 The spacer disposing step covers at least a part of the thin portion of the dried active material layer or the dried and pressed active material layer and a part of the uncoated region, and protects the spacer. The manufacturing method of the electrode of Claim 8 or Claim 9 including sticking a tape.
  11.  前記スペーサ配置工程は、前記電極原反に塗布された前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆うように、第2のダイコータによって前記絶縁材を塗布することを含む請求項8または請求項9に記載の電極の製造方法。 In the spacer arrangement step, the insulating material is applied by a second die coater so as to cover at least a part of the thin part of the active material layer applied to the electrode material and a part of the uncoated region. The manufacturing method of the electrode of Claim 8 or Claim 9 including doing.
  12.  帯状の電極原反の幅方向の少なくとも一端部に長手方向に延びる活物質を塗布しない未塗工領域と、幅方向の残部に前記活物質が長手方向に連続的に塗布された活物質層と、前記未塗工領域と前記活物質層との境界部分を跨いで両者のそれぞれの一部を覆った、絶縁材よりなるスペーサ部材とを長手方向に配置した電極であって、
     前記活物質層の前記未塗工領域に隣接する前記スペーサ部材が配置される領域の厚みを、その他の領域の前記活物質層の厚みに対して段差をもって薄肉となるように、前記電極原反に前記活物質を塗布し、
     塗布された前記活物質層の薄肉部の少なくとも一部と前記未塗工領域の一部とを覆って前記スペーサ部材を配置した電極。
    An uncoated region in which the active material extending in the longitudinal direction is not applied to at least one end portion in the width direction of the strip-shaped electrode raw material, and an active material layer in which the active material is continuously applied in the longitudinal direction to the remaining portion in the width direction An electrode in which a spacer member made of an insulating material is disposed in the longitudinal direction and covers a part of each of the uncoated region and the active material layer across a boundary portion;
    The thickness of the region where the spacer member adjacent to the uncoated region of the active material layer is thin with a step with respect to the thickness of the active material layer in the other region. The active material is applied to
    An electrode in which the spacer member is disposed so as to cover at least part of the thin part of the applied active material layer and part of the uncoated region.
PCT/JP2013/057177 2012-03-14 2013-03-14 Electrode, method for producing same, and device for producing same WO2013137385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012057715A JP2015109135A (en) 2012-03-14 2012-03-14 Electrode, manufacturing method thereof and manufacturing device
JP2012-057715 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013137385A1 true WO2013137385A1 (en) 2013-09-19

Family

ID=49161288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057177 WO2013137385A1 (en) 2012-03-14 2013-03-14 Electrode, method for producing same, and device for producing same

Country Status (2)

Country Link
JP (1) JP2015109135A (en)
WO (1) WO2013137385A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063612A1 (en) * 2014-10-21 2016-04-28 Necエナジーデバイス株式会社 Method and apparatus for manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2016110707A (en) * 2014-12-02 2016-06-20 トヨタ自動車株式会社 Coating device
JP2017004608A (en) * 2015-06-04 2017-01-05 株式会社Gsユアサ Electrode plate, storage battery, method for manufacturing electrode plate, and position measuring method
CN108480138A (en) * 2018-05-29 2018-09-04 安徽力信能源科技有限责任公司 It is a kind of to be coated with uniform extrusion coating machine die head gasket and die head
US10355303B2 (en) 2015-08-27 2019-07-16 Samsung Sdi Co., Ltd. Electrode assembly, manufacturing method thereof, and rechargeable battery
CN114192346A (en) * 2021-11-10 2022-03-18 湖北亿纬动力有限公司 Coating gasket and coating die head
DE102022205657A1 (en) 2022-06-02 2023-12-07 Volkswagen Aktiengesellschaft Method for producing an electrode for a lithium-ion battery cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102105541B1 (en) * 2015-11-25 2020-04-29 주식회사 엘지화학 Taping Apparatus for Preventing Crack of Electrode
KR101719694B1 (en) * 2016-01-18 2017-03-24 (주)피엔티 Apparatus for coating insulation material on edge of electrode active material layer and method for manufacturing electrode of secondary battery using the same
CN108780877A (en) * 2016-03-11 2018-11-09 Nec能源元器件株式会社 The manufacturing method of electrochemical appliance and electrode for electrochemical device
KR102509516B1 (en) * 2019-05-03 2023-03-13 주식회사 엘지에너지솔루션 Electrode assembly and manufacturing method thereof
US20230086194A1 (en) * 2020-03-06 2023-03-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241725A (en) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd Alkali secondary battery
JP2002042789A (en) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd Method and device for manufacturing electrode for battery
JP2004303622A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005235414A (en) * 2004-02-17 2005-09-02 Sanyo Electric Co Ltd Battery equipped with spirally wound electrode group and its manufacturing method
JP2009038016A (en) * 2007-07-09 2009-02-19 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010108678A (en) * 2008-10-29 2010-05-13 Panasonic Corp Electrode plate for nonaqueous secondary battery, and method and device for manufacturing the same
WO2011043587A2 (en) * 2009-10-07 2011-04-14 에스케이이노베이션 주식회사 Electrode assembly for a battery and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241725A (en) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd Alkali secondary battery
JP2002042789A (en) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd Method and device for manufacturing electrode for battery
JP2004303622A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005235414A (en) * 2004-02-17 2005-09-02 Sanyo Electric Co Ltd Battery equipped with spirally wound electrode group and its manufacturing method
JP2009038016A (en) * 2007-07-09 2009-02-19 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010108678A (en) * 2008-10-29 2010-05-13 Panasonic Corp Electrode plate for nonaqueous secondary battery, and method and device for manufacturing the same
WO2011043587A2 (en) * 2009-10-07 2011-04-14 에스케이이노베이션 주식회사 Electrode assembly for a battery and method for manufacturing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078271B (en) * 2014-10-21 2020-01-03 远景Aesc能源元器件有限公司 Method and apparatus for manufacturing electrode for secondary battery, and secondary battery
US10468662B2 (en) 2014-10-21 2019-11-05 Envision Aesc Energy Devices Ltd. Production method and production apparatus of electrode for secondary battery, electrode for secondary battery, and secondary battery
WO2016063612A1 (en) * 2014-10-21 2016-04-28 Necエナジーデバイス株式会社 Method and apparatus for manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
CN107078271A (en) * 2014-10-21 2017-08-18 Nec 能源元器件株式会社 Manufacture method and manufacture device for the electrode of secondary cell, electrode and secondary cell for secondary cell
JPWO2016063612A1 (en) * 2014-10-21 2017-09-14 Necエナジーデバイス株式会社 Secondary battery electrode manufacturing method and manufacturing apparatus, secondary battery electrode and secondary battery
EP3211695A4 (en) * 2014-10-21 2018-05-02 NEC Energy Devices, Inc. Method and apparatus for manufacturing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2016110707A (en) * 2014-12-02 2016-06-20 トヨタ自動車株式会社 Coating device
JP2017004608A (en) * 2015-06-04 2017-01-05 株式会社Gsユアサ Electrode plate, storage battery, method for manufacturing electrode plate, and position measuring method
US10355303B2 (en) 2015-08-27 2019-07-16 Samsung Sdi Co., Ltd. Electrode assembly, manufacturing method thereof, and rechargeable battery
EP3136466B1 (en) * 2015-08-27 2024-02-14 Samsung SDI Co., Ltd. Manufacture method of electrode assembly
CN108480138A (en) * 2018-05-29 2018-09-04 安徽力信能源科技有限责任公司 It is a kind of to be coated with uniform extrusion coating machine die head gasket and die head
CN114192346A (en) * 2021-11-10 2022-03-18 湖北亿纬动力有限公司 Coating gasket and coating die head
CN114192346B (en) * 2021-11-10 2023-10-31 湖北亿纬动力有限公司 Coating gasket and coating die head
DE102022205657A1 (en) 2022-06-02 2023-12-07 Volkswagen Aktiengesellschaft Method for producing an electrode for a lithium-ion battery cell

Also Published As

Publication number Publication date
JP2015109135A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2013137385A1 (en) Electrode, method for producing same, and device for producing same
JP6337773B2 (en) Roll member, coating device, separator manufacturing device, and secondary battery manufacturing device
JP6115380B2 (en) Strip electrode manufacturing method and strip electrode cutting apparatus
WO2007148593A1 (en) Reel
CN106025367A (en) All-in-one machine for rolling, laminating and lithium-supplementing
JP5057726B2 (en) Method and apparatus for manufacturing electrode plate for lithium secondary battery
JP6156070B2 (en) Battery electrode manufacturing equipment
JP2014065021A (en) Coating apparatus
US9225004B2 (en) Method for producing electrode plate
JP2002068540A (en) Winding member
JP4719903B2 (en) Coating method and coating apparatus for coating agent
KR20140016811A (en) Electrode, apparatus and method for manufacturing of thereof
JP2018198161A (en) Coating device
JP2017004717A (en) Manufacturing method of power storage device, and press device for electrode sheet for power storage device
WO2014106364A1 (en) Sealed packaging method and improved construction of sealing machine for implementing the method
WO2007148594A1 (en) Reel
JP2005044539A (en) Manufacturing method of secondary battery electrode and roll press device
TW201233455A (en) Web coating device
US8914978B2 (en) Application roller and manufacturing method of application roller
JP5900219B2 (en) Electrode manufacturing method, power storage device, and secondary battery
JP2020011168A (en) Die head and coating device
CN105845897B (en) Split calendering split composite lithium supplementing device
JP2008264765A (en) Coating die, non-contact die coating apparatus and coating method
JP4458570B2 (en) Die head
KR102485873B1 (en) Method of manufacturing copper foil film and apparatus for using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP