JPH10241725A - Alkali secondary battery - Google Patents

Alkali secondary battery

Info

Publication number
JPH10241725A
JPH10241725A JP9046547A JP4654797A JPH10241725A JP H10241725 A JPH10241725 A JP H10241725A JP 9046547 A JP9046547 A JP 9046547A JP 4654797 A JP4654797 A JP 4654797A JP H10241725 A JPH10241725 A JP H10241725A
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
active material
separator
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9046547A
Other languages
Japanese (ja)
Inventor
Nobutake Ooi
伸剛 大井
Hirofumi Sako
洋文 佐古
Hiroshi Sato
博 佐藤
Hiroshi Sai
浩 斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9046547A priority Critical patent/JPH10241725A/en
Publication of JPH10241725A publication Critical patent/JPH10241725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To surely avoid short circuits between positive and negative electrodes caused on a positive electrode burr by facing at least part of the edge part of a negative plate to a separator with the adjoining separator between at a distance in a lamination direction. SOLUTION: Positive plates 2 is obtained by filling slurry, wherein a positive electrode active material composed of powder having a main component of nickel hydroxide and a binder agent are dispersed into a nickel three-dimensional porous body and roll-forming into a given thickness, and cutting into a given shape. Negative electrode plates 3 are formed by applying active material layers 3b, composed of a hydrogen storage alloy, onto the obverse and reverse surfaces of holding base plates 3a composed of a punching metal, and both the end parts of the active layer 3b are formed by thin parts 3c thinner than the center parts. When an electrode body 5 is formed by interposing separators 4 between the negative electrodes 3 and the positive electrodes 2, having a width same as that of the negative electrodes 3, the end parts of the negative electrodes 3 face the separators 4 at a given distance from the adjoining separator 4. Moreover, the differences S1, between the thickness of the center parts of the negative electrode plates 3 and that of the thin parts 3c, and the width S2 of the thin parts 3c is preferably about 140μm or more and about 200μm or more respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
に関し、特に、電極板の内部短絡防止技術の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery, and more particularly to an improvement in a technique for preventing an internal short circuit in an electrode plate.

【0002】[0002]

【従来の技術】最近のエレクトロニクス技術の進歩は目
覚ましく、今後もますます加速する傾向にある。これに
伴い、電子機器のポータブル化やコードレス化が進むと
同時に、これらの機器の電源として、小型で軽量でかつ
高エネルギー密度の高性能二次電池の開発が強く望まれ
ている。そして、このような要求に応えるために開発が
なされている。
2. Description of the Related Art Recent advances in electronics technology have been remarkable and will continue to accelerate. Along with this, portable and cordless electronic devices have been developed, and at the same time, there has been a strong demand for the development of small, lightweight, high-energy-density, high-performance secondary batteries as power supplies for these devices. And it is developed to respond to such a demand.

【0003】ニッケル−水素化物蓄電池などのアルカリ
二次電池は、一般に、同じ幅を有する正極板と負極板と
がセパレータを介して巻回されて電極体をなし、この電
極体が電解液を含浸して外装缶に挿入された構成をして
いる。このようなアルカリ二次電池において、その正極
板は、通常、水酸化ニッケル等からなる活物質をスラリ
ー状とし、この活物質スラリーをニッケル3次元多孔
体、例えば、発泡ニッケル基体に充填し、乾燥,圧延
後、所定の大きさに切断して作製されるが、切断時にお
いて、電極両端部で活物質保持基体にバリが発生する。
In an alkaline secondary battery such as a nickel-hydride storage battery, a positive electrode plate and a negative electrode plate having the same width are generally wound around a separator to form an electrode body, and this electrode body is impregnated with an electrolyte. And inserted into the outer can. In such an alkaline secondary battery, the positive electrode plate is usually made into a slurry of an active material such as nickel hydroxide or the like, and the active material slurry is filled in a nickel three-dimensional porous body, for example, a foamed nickel base, and dried. After rolling, the substrate is cut into a predetermined size, and at the time of cutting, burrs are generated on the active material holding substrate at both ends of the electrode.

【0004】そして、大きく強度の強いバリが発生する
と、近接した薄膜のセパレータを貫通し正極板と対向す
る負極板とを電気的に接続して、電池の短絡不良を惹起
する。特に、このようなバリによる短絡不良は、電極の
巻き数を増やして高容量化を図るアルカリ二次電池の場
合には発生しやすい。それに対して、正極板作製時にこ
のバリを押し潰す等して、短絡不良を生じないようにす
ることも考えられるが、完全にバリをなくすことは不可
能に近い。
[0004] When a large and strong burr is generated, a short circuit failure of the battery is caused by electrically connecting the positive electrode plate and the opposite negative electrode plate through the adjacent thin film separator. In particular, such short-circuit failure due to burrs tends to occur in the case of an alkaline secondary battery in which the number of windings of the electrode is increased to increase the capacity. On the other hand, it is conceivable to crush the burrs at the time of manufacturing the positive electrode plate to prevent short-circuit failure, but it is almost impossible to completely eliminate burrs.

【0005】また、別な方法として、セパレータの厚み
を厚くし、正極板と負極板との距離を大きくすることに
よって、正極板バリによる短絡を防止することも考えら
れるが、これは、高容量化に向かない解決方法である。
さらに、この正極板のバリによる内部短絡の問題を解決
するために、特公昭53−32852には、図5に示す
ように正極板51の幅よりも負極板52の幅を狭くする
ことで正極両端部を負極板と対向させないようにした電
極構成について開示されている。
As another method, it is conceivable to increase the thickness of the separator and increase the distance between the positive electrode plate and the negative electrode plate to prevent short circuit due to the positive electrode plate burr. It is a solution that is not suitable for realization.
Further, in order to solve the problem of internal short circuit due to burrs of the positive electrode plate, Japanese Patent Publication No. 53-32852 discloses that the width of the negative electrode plate 52 is made narrower than the width of the positive electrode plate 51 as shown in FIG. An electrode configuration in which both ends are not opposed to the negative electrode plate is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記公
報の技術では、確かに、その正極板のバリによる内部短
絡という問題点については解決することができるが、正
極板の端部寄りは負極板と対向していないので、その部
分は電気化学的反応に寄与しない。そのため、正極板本
来の容量を引き出せず、電池容量が低下してしまうとい
った問題があり、電池の高容量化が求められている現在
の状況下ではあまりよい解決方法とは言えない。
However, the technique disclosed in the above-mentioned publication can certainly solve the problem of internal short circuit due to burrs on the positive electrode plate, but the edge of the positive electrode plate is close to the negative electrode plate. Since they are not opposed, they do not contribute to the electrochemical reaction. For this reason, there is a problem that the original capacity of the positive electrode plate cannot be extracted and the battery capacity is reduced, and this is not a very good solution under the current situation where a high capacity battery is required.

【0007】本発明は、このような課題に鑑みてなされ
たものであって、正極本来の性能を低下させることな
く、正極バリに起因した当該正極と負極との短絡発生を
確実に回避できるアルカリ二次電池を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of an alkali capable of reliably avoiding the occurrence of a short circuit between the positive electrode and the negative electrode due to the positive electrode burr without deteriorating the original performance of the positive electrode. It is intended to provide a secondary battery.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、第1保持基体に正極活物質が保持されて
なる正極板と、第2保持基体に負極活物質が保持されて
なる負極板とがセパレータを介して積層された構成の電
極体をアルカリ電解液を含浸させて外装缶に収納してな
るアルカリ二次電池において、前記負極板の縁部の少な
くとも一部は、隣接するセパレータから積層方向に距離
をおいてセパレータと対峙する構成とした。
In order to achieve the above object, the present invention provides a positive electrode plate having a positive electrode active material held on a first holding base, and a negative electrode active material held on a second holding base. In an alkaline secondary battery in which an electrode body having a configuration in which a negative electrode plate and a negative electrode plate are stacked via a separator is impregnated with an alkaline electrolyte and housed in an outer can, at least a part of an edge portion of the negative electrode plate is adjacent to the negative electrode plate. And a distance from the separator in the laminating direction to face the separator.

【0009】これによって、負極板のセパレータから積
層方向に距離をおいてセパレータと対峙する部分では、
正極板の端部のバリがセパレータを貫通したとしても、
負極板と短絡する可能性を回避できる。しかも、正極板
の電気化学反応に関与する全面が負極板と対向すること
になるので、正極板の容量低下はなく、正極板の性能は
十分に発揮される。
[0009] Thereby, in a portion facing the separator at a distance from the separator of the negative electrode plate in the laminating direction,
Even if burrs at the end of the positive electrode plate penetrate the separator,
The possibility of short circuit with the negative electrode plate can be avoided. In addition, since the entire surface of the positive electrode plate involved in the electrochemical reaction is opposed to the negative electrode plate, the capacity of the positive electrode plate does not decrease, and the performance of the positive electrode plate is sufficiently exhibited.

【0010】ここで、負極板の保持された活物質層は、
負極板の両端寄り部では、中央部よりも薄い薄部を形成
することで、合理的に上記特徴をもつ負極板を実現す
る。負極板中央部の厚みと、前記薄部の厚み差が140
μm以上であれば、バリをバイパスとした正極板と負極
板との短絡を防止する効果は向上する。さらに、先端か
ら200〜500μmの幅に及んで薄部を形成すれば、
一層短絡防止効果は向上する。
Here, the active material layer held on the negative electrode plate is
By forming a thinner portion thinner than the central portion at both ends of the negative electrode plate, a negative electrode plate having the above characteristics can be realized rationally. The thickness difference between the center of the negative electrode plate and the thickness of the thin portion is 140
If it is not less than μm, the effect of preventing a short circuit between the positive electrode plate and the negative electrode plate with the burr bypassed is improved. Furthermore, if a thin portion is formed over a width of 200 to 500 μm from the tip,
The short-circuit prevention effect is further improved.

【0011】また、前記薄部を、負極端方向に向けて次
第に薄くなるように形成することもできる。この場合、
負極板の中央部の表面と薄部の表面とのなす角をθとす
ると、(t−140)/500≦tanθ≦(t−14
0)/200を満たすように薄部を形成すれば、活物質
層の体積を確保しつつ、良好な短絡防止効果を得ること
ができる。
Further, the thin portion may be formed so as to gradually become thinner toward the negative electrode end. in this case,
Assuming that the angle between the surface of the central portion of the negative electrode plate and the surface of the thin portion is θ, (t−140) / 500 ≦ tan θ ≦ (t−14)
If the thin portion is formed so as to satisfy 0) / 200, a good short-circuit prevention effect can be obtained while securing the volume of the active material layer.

【0012】なお、tは第2保持基体に保持された負極
活物質の厚みμmを示す。
Here, t indicates the thickness μm of the negative electrode active material held on the second holding base.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施の形態1〕図1は、本実施の形態に係るアルカリ
二次電池の一例であるニッケル−水素化物蓄電池1(以
下「二次電池1」という。)の斜視図である。図1に示
すように二次電池1は、ニッケル活物質を含む正極板2
と水素吸蔵合金を含む正極板2と同等幅の負極板3とが
セパレータ4を介して積層され渦巻状に巻かれてなる円
柱状の電極体5と、これらを収容する円筒状の外装缶6
等から構成された電池であって電極体5にはアルカリ電
解液が含浸されている。
[Embodiment 1] FIG. 1 is a perspective view of a nickel-hydride storage battery 1 (hereinafter referred to as "secondary battery 1") which is an example of an alkaline secondary battery according to the present embodiment. As shown in FIG. 1, a secondary battery 1 includes a positive electrode plate 2 containing a nickel active material.
And a negative electrode plate 3 having the same width as the positive electrode plate 2 containing a hydrogen storage alloy are laminated via a separator 4 and spirally wound, and a columnar electrode body 5 is provided.
In this battery, the electrode body 5 is impregnated with an alkaline electrolyte.

【0014】外装缶6上端の円形の開口部には、ガスケ
ット7を介在させて、中央部が開口された封口板8が配
設され、この封口板8に正極端子9が装着されている。
この封口板8には弁板10、おさえ板11が載置され、
おさえ板はコイルスプリング12で押圧する構造となっ
ている。そして、弁板10、おさえ板11、コイルスプ
リング12は、電池内圧が上昇したときに矢印A方向に
押圧されて、弁板部に間隙が生じ、内部のガスが大気中
に放出されるようになっている。
A sealing plate 8 having a central portion opened is disposed in a circular opening at the upper end of the outer can 6 with a gasket 7 interposed therebetween, and a positive electrode terminal 9 is mounted on the sealing plate 8.
A valve plate 10 and a holding plate 11 are placed on the sealing plate 8,
The holding plate is configured to be pressed by the coil spring 12. Then, the valve plate 10, the holding plate 11, and the coil spring 12 are pressed in the direction of arrow A when the internal pressure of the battery rises, so that a gap is formed in the valve plate portion, and the gas inside is released to the atmosphere. Has become.

【0015】負極板3は、負極集電体14により外装缶
6の底辺部に電気的に接続され、外装缶6が負極端子を
兼ねており、正極端子9は、正極集電体15および封口
板8を介して正極板2と電気的に接続されている。電池
の理論容量は正極板2によって規定されており、負極板
3の容量はそれより大きく設定されている。
The negative electrode plate 3 is electrically connected to the bottom of the outer can 6 by a negative electrode current collector 14, and the outer can 6 also serves as a negative electrode terminal. It is electrically connected to the positive electrode plate 2 via the plate 8. The theoretical capacity of the battery is defined by the positive electrode plate 2, and the capacity of the negative electrode plate 3 is set to be larger than that.

【0016】図2は、電極体5の垂直断面図であって、
これを用いて電極体5について詳細に説明する。正極板
2は、水酸化ニッケルを主成分とする粉末からなる正極
活物質と、結着剤とを分散させたスラリーをニッケル3
次元多孔体に充填し、所定の厚さに圧延成形した後、所
定の形状に切断して作製する。
FIG. 2 is a vertical sectional view of the electrode body 5,
The electrode body 5 will be described in detail using this. The positive electrode plate 2 is formed by dispersing a slurry in which a positive electrode active material composed of a powder mainly composed of nickel hydroxide and a binder are dispersed in nickel 3
A three-dimensional porous body is filled, roll-formed to a predetermined thickness, and then cut into a predetermined shape.

【0017】電極体5に用いられる負極板3は、パンチ
ングメタルからなる保持基体3aの表裏面に負極活物質
である水素吸蔵合金が塗着された活物質層3bが形成さ
れたものであって、この活物質層3bは、その両端部に
中央部よりも薄い薄部3cが形成されている。負極板3
は、保持基体に活物質と結着剤からなるペーストを塗布
し、それを負極板3と同じ形状のコーティング金型を通
過させ余分な活物質を脱落し、所定の厚さに圧延するこ
とによって上記の形状に成形する。
The negative electrode plate 3 used for the electrode body 5 is formed by forming an active material layer 3b on the front and back surfaces of a holding base 3a made of punched metal and coated with a hydrogen storage alloy as a negative electrode active material. The active material layer 3b has thin portions 3c formed at both ends thereof which are thinner than the central portion. Negative electrode plate 3
Is to apply a paste composed of an active material and a binder to the holding base, pass the paste through a coating mold having the same shape as the negative electrode plate 3 to drop off the excess active material, and roll it to a predetermined thickness. Mold into the above shape.

【0018】また、この他に、従来と同様に作製した負
極板の端部を削り取って作製することもできる。そし
て、この負極板3と同等の幅を有する正極板2とがセパ
レータ4を介在させて、対向して電極体5を形成する。
この電極体5では、負極板3の端部に、上記薄部3cが
形成されているので、負極板の端部は、隣接セパレータ
から積層方向に所定の距離を置いてセパレータと対峙す
る構造となっている。
Alternatively, the negative electrode plate may be manufactured by scraping off the end of the negative electrode plate manufactured in the same manner as the conventional one. Then, the negative electrode plate 3 and the positive electrode plate 2 having the same width as the negative electrode plate 3 are opposed to each other with the separator 4 interposed therebetween to form the electrode body 5.
In the electrode body 5, since the thin portion 3c is formed at the end of the negative electrode plate 3, the end of the negative electrode plate faces the separator at a predetermined distance from the adjacent separator in the stacking direction. Has become.

【0019】上記構造の電極体5では、正極板作製時に
端部にバリが発生し、このバリがセパレータを貫通した
としても、負極板と短絡することは回避される。また、
正極板2の電気化学反応に関与する全面が負極板3と対
向しているので、正極板2の容量の低下は殆ど生じな
い。また、充放電サイクル時に正極から発生する酸素ガ
スによって、ニッケル3次元多孔体の繊維が突出するこ
とでバリが発生することも考えられるが、二次電池1で
は、このような充放電サイクル時に発生するバリによる
短絡が発生する可能性も低減する。
In the electrode body 5 having the above-described structure, burrs are generated at the ends when the positive electrode plate is manufactured, and even if the burrs penetrate the separator, short-circuiting with the negative electrode plate is avoided. Also,
Since the entire surface of the positive electrode plate 2 involved in the electrochemical reaction is opposed to the negative electrode plate 3, the capacity of the positive electrode plate 2 hardly decreases. In addition, it is conceivable that burrs may be generated due to the projection of the fibers of the nickel three-dimensional porous body due to the oxygen gas generated from the positive electrode during the charge / discharge cycle. The likelihood of short circuit due to burrs is reduced.

【0020】上記のセパレータ4と負極板3の端部での
距離は、薄部3cの厚み、用いるセパレータ4の厚み、
正極板2と負極板3がセパレータ4を挟持する圧力およ
び中央寄り部の活物質の厚み等を考慮して、正極板2端
部のバリによる負極板3との短絡が発生しないように規
定すればよい。実質的には、負極板の中央部の厚みと薄
部3cの厚みとの差S1によって決定され、S1が14
0μm以上になるように設定することが望ましい。
The distance between the separator 4 and the end of the negative electrode plate 3 is determined by the thickness of the thin portion 3c, the thickness of the separator 4 used,
In consideration of the pressure at which the positive electrode plate 2 and the negative electrode plate 3 sandwich the separator 4 and the thickness of the active material near the center, it is specified that a short circuit with the negative electrode plate 3 due to burrs at the ends of the positive electrode plate 2 does not occur. I just need. Practically, it is determined by the difference S1 between the thickness of the central portion of the negative electrode plate and the thickness of the thin portion 3c.
It is desirable to set it to be 0 μm or more.

【0021】薄部3cの幅S2は、正極板2と負極板3
との巻回ずれが生じても、それに影響されることなく短
絡防止効果を得ようとすれば、200μm以上に設定す
ることが望ましく、負極活物質量を確保する観点から5
00μm以下に規定することが望ましい。なお、負極板
3の製造上の安定性を考慮すれば、保持基体3aの両端
寄り部には活物質を塗着せず基体3aが露出する構造
(図3参照)にすることが望ましいと考えられる。この
ように保持基体が露出する形状であっても、当該露出部
分が正極板と対向するので、正極板は容量低下すること
なくその性能は十分に発揮される。
The width S2 of the thin portion 3c is determined by the difference between the positive electrode plate 2 and the negative electrode plate 3.
In order to obtain the short-circuit prevention effect without being affected by the winding deviation even when the winding deviation occurs, the thickness is preferably set to 200 μm or more.
It is desirable to define the thickness to be not more than 00 μm. In consideration of the production stability of the negative electrode plate 3, it is considered desirable to adopt a structure in which the base material 3 a is exposed without coating the active material on both end portions of the holding base material 3 a (see FIG. 3). . Even when the holding base is exposed in this manner, the exposed portion faces the positive electrode plate, so that the performance of the positive electrode plate is sufficiently exhibited without a decrease in capacity.

【0022】なお、正極板の方を前記負極板3と同じよ
うな形状に成形すれば、同様に負極板のバリ発生による
短絡を防止する効果を期待できるが、負極板のバリは活
物質に由来するものであるので、正極板のバリに比べて
機械的な強度が弱いと考えられ、負極板のバリがセパレ
ータを貫通し、正極板と短絡する可能性は極めて低いと
言える。従って、本実施形態のように負極板に薄部を形
成する方が、電池の内部短絡防止効果が大きい。
If the positive electrode plate is formed into a shape similar to that of the negative electrode plate 3, the effect of similarly preventing the short-circuit due to the generation of burrs on the negative electrode plate can be expected. Since it is derived, it is considered that the mechanical strength is lower than that of the burrs of the positive electrode plate, and it can be said that the possibility that the burrs of the negative electrode plate penetrate the separator and short-circuit with the positive electrode plate is extremely low. Therefore, the effect of preventing the internal short circuit of the battery is greater when the thin portion is formed on the negative electrode plate as in the present embodiment.

【0023】〔実施の形態2〕本実施の形態の二次電池
は、負極板30の活物質層30bの端部に形成された薄
部の形状を異にする以外は、電池の全体の構成は前記二
次電池1と同様である。図4に示すように薄部30c
は、中央寄りから縁端方向にかけて、次第に層の厚みが
薄くなるテーパ形状に形成されている。
[Second Embodiment] A secondary battery according to a second embodiment of the present invention has an overall structure except that the shape of a thin portion formed at the end of the active material layer 30b of the negative electrode plate 30 is different. Is the same as that of the secondary battery 1. As shown in FIG.
Is formed in a tapered shape in which the thickness of the layer gradually decreases from the center toward the edge.

【0024】このような負極板30は、実施の形態1の
負極板3の製法においてコーティング金型の形状だけ変
えれば作製することができる。このような形状の負極板
30とすることによっても、実施の形態1と同様の効果
を奏する。この場合、負極板の中央部の表面と薄部の表
面とのなす角をθとして、(t−140)/500≦t
anθ≦(t−140)/200を満たすように薄部3
0cを形成すれば、短絡防止効果は確実に発揮され、か
つ、薄部30cにおける負極活物質量もある程度確保で
きる。
Such a negative electrode plate 30 can be manufactured by changing only the shape of the coating mold in the method of manufacturing the negative electrode plate 3 of the first embodiment. Even with the negative electrode plate 30 having such a shape, the same effect as in the first embodiment can be obtained. In this case, assuming that the angle between the surface of the central portion of the negative electrode plate and the surface of the thin portion is θ, (t−140) / 500 ≦ t
thin part 3 to satisfy anθ ≦ (t−140) / 200
If 0c is formed, the effect of preventing short-circuiting is reliably exhibited, and the amount of the negative electrode active material in the thin portion 30c can be secured to some extent.

【0025】なお、前記式のtは第2保持基体に保持さ
れた負極活物質層30bの厚みμmを示す(図4を参
照)。この式における、数値140,500,200は
実施の形態1の活物質層の中央部の厚みと薄部との厚み
差の下限値140μm、薄部の幅の上限値であり500
μm、薄部の幅の下限値200μmと同じ意味をもって
いる。
Here, t in the above formula indicates the thickness μm of the negative electrode active material layer 30b held on the second holding base (see FIG. 4). Numerical values 140, 500, and 200 in this equation are the lower limit value 140 μm of the thickness difference between the central portion thickness and the thin portion of the active material layer of Embodiment 1, and the upper limit value 500 of the thin portion width.
μm, which has the same meaning as the lower limit of the thin portion width of 200 μm.

【0026】[0026]

【実施例】【Example】

〔実施例1〕 (正極板の作製)本実施例では、水酸化ニッケルを主成
分とする正極活物質をスポンジ状ニッケル多孔体に充填
し、乾燥、圧延して所定の寸法に切断して容量が100
0mAhとなる正極板を300個作製した。
[Example 1] (Preparation of positive electrode plate) In this example, a positive electrode active material containing nickel hydroxide as a main component was filled in a sponge-like porous nickel body, dried, rolled, cut into a predetermined size, and cut into a predetermined volume. Is 100
300 positive electrode plates with 0 mAh were produced.

【0027】なお、このようにして作製した正極板の端
部に発生したバリの長さは、最大のもので約200μm
であった。 (負極板の作製)水素吸蔵合金を主成分とする負極活物
質と結着剤を混練したスラリーをパンチングメタルの両
側より均一にコーティングして、コーティング金型によ
って余分な活物質を脱落し、さらに、乾燥、圧延により
所定の寸法に成形することによって、負極板の上下端部
で各々500μmの幅でパンチングメタルが露出し正極
板と対向するような負極板を300個作製した。前記活
物質層の厚みは230μmに設定した。
The length of the burr generated at the end of the positive electrode plate manufactured as described above was about 200 μm at the maximum.
Met. (Preparation of negative electrode plate) A slurry obtained by kneading a negative electrode active material mainly composed of a hydrogen storage alloy and a binder is uniformly coated on both sides of the punching metal, and an excess active material is dropped off by a coating mold. The negative electrode plate was formed into a predetermined size by drying, rolling, and 300 negative electrode plates were produced in such a manner that the punching metal was exposed at a width of 500 μm at each of the upper and lower ends of the negative electrode plate to face the positive electrode plate. The thickness of the active material layer was set to 230 μm.

【0028】(電池の組立)以上のようにして作製した
正極板と負極板とを厚み120μmのポリプロピレン製
のセパレータを介在させ、各電極板の端部に巻きずれが
生じないように、巻回して渦巻状の電極体を作製した。
この電極体を所定寸法の電池ケースに収納し、電解液と
しての水酸化カリウム水溶液を注入して開口部を封入す
ることによって、円筒型の二次電池を300個作製し
た。
(Assembly of Battery) The positive electrode plate and the negative electrode plate manufactured as described above were wound with a separator made of polypropylene having a thickness of 120 μm interposed therebetween so that the ends of each electrode plate did not slip off. Thus, a spiral electrode body was produced.
The electrode body was housed in a battery case having a predetermined size, and an aqueous potassium hydroxide solution as an electrolytic solution was injected and the opening was sealed, whereby 300 cylindrical secondary batteries were manufactured.

【0029】〔実施例2〕本実施例は、実施の形態2に
基づいて負極板の中央部での活物質層の厚みを230μ
m、前記テーパ角θを30°に設定して負極板を作製
し、これを用いて実施例1と同様にして二次電池を30
0個作製した。 〔比較例1〕正極板(容量1000mAh)同等の幅の
負極板を用いて、実施例1と同様に二次電池を作製し
た。
Example 2 In this example, the thickness of the active material layer at the center of the negative electrode plate was set to 230 μm based on the second embodiment.
m, the taper angle θ was set to 30 ° to prepare a negative electrode plate, and a secondary battery was prepared using the negative electrode plate in the same manner as in Example 1.
0 were produced. Comparative Example 1 A secondary battery was manufactured in the same manner as in Example 1, except that a negative electrode plate having a width equivalent to that of the positive electrode plate (capacity: 1000 mAh) was used.

【0030】〔比較例2〕正極板(容量1000mA
h)よりも幅が400μm狭い負極板を、正極端部から
200μm埋没するように積層し巻回して、実施例1と
同様に二次電池を300個作製した。 〔実験〕実施例1,実施例2,比較例1および比較例2
電池を各300個用いて、以下の短絡試験を行い、短絡
不良発生率を評価し、次いで、電池容量を測定した。
Comparative Example 2 Positive electrode plate (capacity: 1000 mA)
h) A negative electrode plate having a width of 400 μm narrower than that of h) was laminated and wound so as to be buried 200 μm from the end of the positive electrode, and 300 secondary batteries were produced as in Example 1. [Experiment] Example 1, Example 2, Comparative Example 1 and Comparative Example 2
The following short-circuit test was performed on each of the 300 batteries to evaluate the short-circuit defect occurrence rate, and then the battery capacity was measured.

【0031】(短絡試験)各電池を0.1Cで1時間充
電し、10分間放置後、電池電圧を測定し、電圧0.5
V以下のものをショートしたものとみなして、短絡不良
発生率を算出した。 (電池容量測定)短絡不良を発生していない正常な電池
について、次の条件で電池容量を測定した。
(Short-circuit test) Each battery was charged at 0.1 C for 1 hour, left for 10 minutes, and then measured for battery voltage.
The short-circuit defect occurrence rate was calculated assuming that a voltage of V or less was short-circuited. (Battery Capacity Measurement) The battery capacity of a normal battery having no short circuit failure was measured under the following conditions.

【0032】 充電:100mA×16h,休止:1時間 放電:200mA,終止電圧:1.0V 以上の実験の結果を表1に示した。Charge: 100 mA × 16 h, rest: 1 hour Discharge: 200 mA, final voltage: 1.0 V The results of the above experiments are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】これに示すように実施例1および実施例2
では、短絡不良の発生率はゼロであるとともに、電池容
量においても比較例1と同等の値を示し、電池容量の低
下は殆ど認められなかった。この実験において、電極の
膜厚を変化させた場合でも、同様の効果を確認した。な
お、上記実施の形態では渦巻状の電極体を用いた円筒形
のものについて言及したが、本発明はこれに限定され
ず、電極とセパレータとを交互に積層した直方体状の電
極体を備えた角形のものでも同様に実施可能である。
As shown, the first embodiment and the second embodiment
In addition, the occurrence rate of short-circuit failure was zero, and the battery capacity showed the same value as that of Comparative Example 1, with almost no decrease in battery capacity. In this experiment, the same effect was confirmed even when the thickness of the electrode was changed. In the above embodiment, a cylindrical electrode body using a spiral electrode body has been described. However, the present invention is not limited to this, and includes a rectangular parallelepiped electrode body in which electrodes and separators are alternately stacked. A rectangular shape can be similarly implemented.

【0035】また、上記実施の形態では、負極板の両端
部全体に薄部を形成したが、片方だけあるいは一部だけ
に薄部を設けても、その部分については同様の効果を奏
する。さらに、ニッケル−水素蓄電池についてのみ説明
したが、その他のアルカリ二次電池に関しても同様に実
施可能である。
Further, in the above-described embodiment, the thin portions are formed on the entire both ends of the negative electrode plate. However, even if the thin portions are provided only on one side or only on a part thereof, the same effect is exerted on those portions. Further, only the nickel-hydrogen storage battery has been described, but the present invention can be similarly applied to other alkaline secondary batteries.

【0036】[0036]

【発明の効果】以上述べてきたように、本発明によれ
ば、第1保持基体に正極活物質が保持されてなる正極板
と、第2保持基体に負極活物質が保持されてなる負極板
とがセパレータを介して積層された構成の電極体をアル
カリ電解液を含浸させて外装缶に収納してなるアルカリ
二次電池において、前記負極板の縁部の少なくとも一部
は、セパレータから積層方向に距離をおいて正極板と対
向しているので、正極板端部のバリをバイパスとして生
じる、隣接する負極板と正極板との短絡は回避され、し
かも、それを電池容量を低下させることなく実現するこ
とができる。
As described above, according to the present invention, a positive electrode plate having a positive electrode active material held on a first holding base and a negative electrode plate having a negative electrode active material held on a second holding substrate In an alkaline secondary battery in which an electrode body having a configuration in which an electrode body is stacked via a separator is impregnated with an alkaline electrolyte and housed in an outer can, at least a part of the edge of the negative electrode plate is stacked in the stacking direction from the separator. The positive electrode is opposed to the positive electrode at a distance, so that a short circuit between the adjacent negative electrode and positive electrode, which occurs as a burr at the end of the positive electrode as a bypass, is avoided, and without reducing the battery capacity. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態に係るアルカリ二次電池全体の構成
を示す斜視図である。
FIG. 1 is a perspective view illustrating a configuration of an entire alkaline secondary battery according to an embodiment.

【図2】前記アルカリ二次電池の電極体の断面図であ
る。
FIG. 2 is a sectional view of an electrode body of the alkaline secondary battery.

【図3】別な構造の電極体の断面図である。FIG. 3 is a sectional view of an electrode body having another structure.

【図4】別な実施の形態に係る電極体の断面図である。FIG. 4 is a cross-sectional view of an electrode body according to another embodiment.

【図5】従来の電極体の構造を示す断面図である。FIG. 5 is a cross-sectional view showing a structure of a conventional electrode body.

【符号の説明】[Explanation of symbols]

1 アルカリ二次電池 2 正極板 3 負極板 3a 保持基体 3b 活物質層 3c 薄部 4 セパレータ 5 電極体 DESCRIPTION OF SYMBOLS 1 Alkaline secondary battery 2 Positive electrode plate 3 Negative electrode plate 3a Holding base 3b Active material layer 3c Thin part 4 Separator 5 Electrode body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎 浩 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Sai 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1保持基体に正極活物質が保持されて
なる正極板と、第2保持基体に負極活物質が保持されて
なる負極板とがセパレータを介して積層された構成の電
極体をアルカリ電解液を含浸させて外装缶に収納してな
るアルカリ二次電池において、 前記負極板の縁部の少なくとも一部は、隣接セパレータ
との間に積層方向に距離をおいて当該セパレータと対峙
していることを特徴とするアルカリ二次電池。
1. An electrode body having a structure in which a positive electrode plate in which a positive electrode active material is held on a first holding substrate and a negative electrode plate in which a negative electrode active material is held on a second holding substrate are interposed via a separator. In an alkaline secondary battery impregnated with an alkaline electrolyte and housed in an outer can, at least a part of the edge of the negative electrode plate faces the separator at a distance in the stacking direction between the separator and an adjacent separator. An alkaline secondary battery characterized by:
【請求項2】 前記負極板の保持された活物質層の両端
部には、中央部よりも薄い薄部が形成され、この薄部が
セパレータとの間で距離をおいてセパレータと対峙して
いることを特徴とする請求項1記載のアルカリ二次電
池。
2. A thin part thinner than a central part is formed at both ends of the active material layer held by the negative electrode plate, and the thin part faces the separator at a distance from the separator. The alkaline secondary battery according to claim 1, wherein
【請求項3】 前記薄部は、中央部から端方向に向けて
次第に薄くなるように形成されていることを特徴とする
請求項2記載のアルカリ二次電池。
3. The alkaline secondary battery according to claim 2, wherein the thin portion is formed so as to become gradually thinner from a central portion toward an end.
【請求項4】 前記負極板の活物質層は、中央部の厚み
と薄部の厚みとの差が140μm以上であることを特徴
とする請求項2記載のアルカリ二次電池。
4. The alkaline secondary battery according to claim 2, wherein the difference between the thickness of the central portion and the thickness of the thin portion of the active material layer of the negative electrode plate is 140 μm or more.
【請求項5】 前記負極板の活物質層には、縁端から2
00〜500μmの幅に及んで前記薄部が形成されてい
ることを特徴とする請求項2〜4何れかに記載のアルカ
リ二次電池。
5. The active material layer of the negative electrode plate has two edges from the edge.
The alkaline secondary battery according to claim 2, wherein the thin portion is formed over a width of 00 to 500 μm.
【請求項6】 前記負極板の活物質層は、その中央部の
表面と薄部の表面とのなす角をθとすると、(t−14
0)/500≦tanθ≦(t−140)/200(t
は第2保持基体に保持された負極活物質の厚みμmを示
す)を満たすことを特徴とする請求項3記載のアルカリ
二次電池。
6. The active material layer of the negative electrode plate has an angle θ between the surface at the center and the surface of the thin portion as (t−14).
0) / 500 ≦ tan θ ≦ (t−140) / 200 (t
Indicates the thickness of the negative electrode active material held by the second holding base).
JP9046547A 1997-02-28 1997-02-28 Alkali secondary battery Pending JPH10241725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9046547A JPH10241725A (en) 1997-02-28 1997-02-28 Alkali secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9046547A JPH10241725A (en) 1997-02-28 1997-02-28 Alkali secondary battery

Publications (1)

Publication Number Publication Date
JPH10241725A true JPH10241725A (en) 1998-09-11

Family

ID=12750348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9046547A Pending JPH10241725A (en) 1997-02-28 1997-02-28 Alkali secondary battery

Country Status (1)

Country Link
JP (1) JPH10241725A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313068A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Electrode plate unit and cell
JP2005277064A (en) * 2004-03-24 2005-10-06 Tdk Corp Electrode and method for manufacturing the same and method for manufacturing electrochemical device and electrochemical device
CN1319193C (en) * 2001-09-28 2007-05-30 松下电器产业株式会社 Alkaline accumulator and its producing method
JP2007250537A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
JP2009170284A (en) * 2008-01-17 2009-07-30 Panasonic Corp Secondary battery
JP5201757B1 (en) * 2012-09-13 2013-06-05 太陽誘電株式会社 Electrochemical devices
WO2013137385A1 (en) * 2012-03-14 2013-09-19 日産自動車株式会社 Electrode, method for producing same, and device for producing same
WO2015015663A1 (en) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 Secondary battery
JP2016170909A (en) * 2015-03-11 2016-09-23 日立マクセル株式会社 Flat battery
WO2017077698A1 (en) * 2015-11-06 2017-05-11 三洋電機株式会社 Electrode plate for power storage device and power storage device
US11637326B2 (en) 2018-12-26 2023-04-25 Toyota Jidosha Kabushiki Kaisha Laminate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313068A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Electrode plate unit and cell
CN1319193C (en) * 2001-09-28 2007-05-30 松下电器产业株式会社 Alkaline accumulator and its producing method
JP2005277064A (en) * 2004-03-24 2005-10-06 Tdk Corp Electrode and method for manufacturing the same and method for manufacturing electrochemical device and electrochemical device
JP2007250537A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
JP2009170284A (en) * 2008-01-17 2009-07-30 Panasonic Corp Secondary battery
WO2013137385A1 (en) * 2012-03-14 2013-09-19 日産自動車株式会社 Electrode, method for producing same, and device for producing same
JP5201757B1 (en) * 2012-09-13 2013-06-05 太陽誘電株式会社 Electrochemical devices
JP2014075374A (en) * 2012-09-13 2014-04-24 Taiyo Yuden Co Ltd Electrochemical device
WO2015015663A1 (en) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 Secondary battery
CN105474454A (en) * 2013-07-31 2016-04-06 Nec能源元器件株式会社 Secondary battery
JPWO2015015663A1 (en) * 2013-07-31 2017-03-02 Necエナジーデバイス株式会社 Secondary battery
US10270121B2 (en) 2013-07-31 2019-04-23 Nec Energy Devices, Ltd. Secondary battery
JP2016170909A (en) * 2015-03-11 2016-09-23 日立マクセル株式会社 Flat battery
WO2017077698A1 (en) * 2015-11-06 2017-05-11 三洋電機株式会社 Electrode plate for power storage device and power storage device
CN108352494A (en) * 2015-11-06 2018-07-31 三洋电机株式会社 Electrode plate for electricity storage device and electrical storage device
JPWO2017077698A1 (en) * 2015-11-06 2018-09-13 三洋電機株式会社 Electrode plate for power storage device and power storage device
US10497985B2 (en) 2015-11-06 2019-12-03 Sanyo Electric Co., Ltd. Electrode plate for power storage devices and power storage device
US11637326B2 (en) 2018-12-26 2023-04-25 Toyota Jidosha Kabushiki Kaisha Laminate

Similar Documents

Publication Publication Date Title
JP4020781B2 (en) Coin battery
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP4293501B2 (en) Electrochemical devices
US11742548B2 (en) Electrical storage device and electrical storage module
JPH10270068A (en) Rectangular battery and its manufacture
JP2002118036A (en) Electricity storage electronic component and composite electrode body
JP4538694B2 (en) Electrode wound type battery
JPH10241725A (en) Alkali secondary battery
JP2005310577A (en) Coin type secondary battery
JP2020102311A (en) Wound type battery and manufacturing method of wound type battery
JP3510990B2 (en) Lithium polymer battery
JP2005310578A (en) Coin type secondary battery
JP3533903B2 (en) Non-cylindrical battery and method of manufacturing the same
CN108075192B (en) Polar plate of alkaline secondary battery and alkaline secondary battery
US11652242B2 (en) Solid-state battery electrolyte layers
JPH0574496A (en) Secondary battery
JP2006278266A (en) Battery with flat wound electrode body and manufacturing method of battery
US11431030B2 (en) Solid state battery and solid state battery manufacturing method
JPH1167276A (en) Nonaqueous electrolyte secondary battery
JP4162570B2 (en) Secondary battery
JPH11111274A (en) Lead-acid battery
JP3350359B2 (en) Manufacturing method of positive electrode plate for alkaline storage battery
JPH10284138A (en) Electric charge storing part compounded battery
JP3134867B2 (en) Non-aqueous electrolyte secondary battery
JP2697565B2 (en) Prismatic battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726