WO2013137051A1 - Electric vehicle driving force control device and control method - Google Patents

Electric vehicle driving force control device and control method Download PDF

Info

Publication number
WO2013137051A1
WO2013137051A1 PCT/JP2013/055911 JP2013055911W WO2013137051A1 WO 2013137051 A1 WO2013137051 A1 WO 2013137051A1 JP 2013055911 W JP2013055911 W JP 2013055911W WO 2013137051 A1 WO2013137051 A1 WO 2013137051A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
way clutch
frictional engagement
torque
driving force
Prior art date
Application number
PCT/JP2013/055911
Other languages
French (fr)
Japanese (ja)
Inventor
弘毅 松井
広樹 下山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013137051A1 publication Critical patent/WO2013137051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to driving force control of an electric vehicle including a hybrid drive electric vehicle.
  • JP2008-290242A issued by the Japan Patent Office regarding the driving force control of a hybrid-driven electric vehicle is proposing to prevent the occurrence of torque shock during so-called coast driving without stepping on the driver or accelerator pedal.
  • the target hybrid drive electric vehicle has a power train in which a propeller shaft is connected to an electric motor via a one-way clutch and a frictional engagement element such as a brake.
  • the drive wheel is rotationally driven by the propeller shaft.
  • An internal combustion engine is connected to the electric motor via a clutch.
  • the prior art controls the rotational speed on the electric motor side to a value lower than the rotational speed on the propeller shaft side when the accelerator pedal is released, and puts the clutch in the slip mode in that state.
  • the slip mode means a state in which torque transmission is performed in a state where the clutch can slip.
  • This conventional technology has a favorable effect for preventing the shock of re-engagement of the one-way clutch during coasting.
  • the rotation speed on the electric motor side increases, and the one-way clutch starts torque transmission by exceeding the rotation speed on the propeller shaft side.
  • the rotational speed of the electric motor is rapidly increased in accordance with the depression of the accelerator pedal, a shock is generated along with the torque transmission of the one-way clutch.
  • the prior art controls the rotational speed of the electric motor to a value lower than the rotational speed of the propeller shaft, which is incompatible with the acceleration demand due to depression of the accelerator pedal. Also, this control is not useful for preventing a shock when the one-way clutch starts torque transmission during acceleration.
  • Acceleration shock can be reduced by slowing the increase in the electric motor speed with the accelerator pedal depressed. However, in that case, it is inevitable that the acceleration response from the depression of the accelerator pedal to the acceleration of the vehicle becomes worse.
  • an object of the present invention is to increase the acceleration response to depression of the accelerator pedal while absorbing a shock during acceleration.
  • the present invention provides an electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that rotates according to the driving amount of the electric motor, and a driving force between the electric motor and the driving wheel.
  • a one-way clutch that is interposed in the transmission path and transmits torque from the electric motor to the driving wheel, while blocking torque transmission from the driving wheel to the electric motor, and a driving force transmission path, and transmits torque in the engaged state.
  • a driving force control device for an electric vehicle including a frictional engagement element having a slip operation mode capable of transmitting to each other while allowing mutual slip.
  • the driving force control device controls the electric motor so that the operation of the electric motor is accelerated when the accelerator pedal is depressed with the one-way clutch blocking torque transmission from the driving wheel to the electric motor.
  • a programmable controller is provided that is programmed to control the frictional engagement element such that the frictional engagement element maintains the slip mode of operation until the clutch begins to transmit torque from the electric motor to the drive wheels.
  • FIG. 1 is a schematic configuration diagram of a driving force control apparatus for a hybrid electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a driving force control routine executed by the controller according to the embodiment of the present invention.
  • FIG. 3A and 3B are diagrams showing the characteristics of the map of the increment ⁇ stored in the controller and the map of the required time.
  • FIG. 4A to 4E are timing charts showing the execution results of the driving force control routine.
  • FIG. 5A and 5B are diagrams for explaining the execution effect of the driving force control routine.
  • FIG. 1 the driving force control apparatus according to the embodiment of the present invention is applied to a rear-wheel drive type hybrid drive electric vehicle 20.
  • the hybrid drive electric vehicle 20 travels with four wheels including a right front wheel FR, a left front wheel FL, a right rear wheel RR, and a left rear wheel RL.
  • the right rear wheel RR and the left rear wheel RL constitute drive wheels.
  • the right rear wheel RR and the left rear wheel RL which are drive wheels, are coupled to the propeller shaft 14 via the differential 11.
  • the propeller shaft 14 is connected to the electric motor / generator 1 via the automatic transmission 4.
  • An internal combustion engine 6 is connected to the electric motor / generator 1 via a clutch 5.
  • the clutch 5 operates between the engagement position and the release position according to the hydraulic pressure supplied from the hydraulic unit 9. At the fastening position, torque is transmitted bi-directionally between the electric motor / generator 1 and the internal combustion engine 6 to rotate them integrally. In the open position, the electric motor / generator 1 and the internal combustion engine 6 are freely rotated relative to each other.
  • the automatic transmission 4 is composed of a planetary gear type stepped automatic transmission, and includes frictional engagement elements 3A and 3B and a one-way clutch 10 therein.
  • the frictional engagement elements 3A and 3B are constituted by, for example, a low brake provided in the automatic transmission 4.
  • the frictional engagement elements 3A and 3B are operated by the hydraulic pressure supplied from the hydraulic unit 8, and in an engaged state, the output shaft 1A of the electric motor 1 and the propeller shaft 14 are coupled to rotate integrally.
  • the slip operation mode capable of slipping relative to each other, relative rotation of the output shaft 1A of the electric motor 1 and the propeller shaft 14 is permitted under the frictional resistance according to the hydraulic pressure supplied from the hydraulic unit 8.
  • the clutch 5 also has a slip operation mode.
  • the clutch 5 in the slip operation mode allows relative rotation between the internal combustion engine 6 and the electric motor / generator 1 under a frictional resistance corresponding to the hydraulic pressure supplied from the hydraulic unit 9.
  • the one-way clutch 10 transmits torque from the output shaft 1A to the propeller shaft 14, but does not transmit torque from the propeller shaft 14 to the output shaft 1A.
  • the torque means a positive torque. That is, when the rotational speed of the output shaft 1A of the electric motor / generator 1 exceeds the product of the gear ratio between the propeller shaft 14 and the automatic transmission 4, torque is transmitted to the propeller shaft 14 to cause the propeller shaft 14 to move to the electric motor. / Rotated by the power of the generator 1. On the other hand, when the product of the rotational speed of the propeller shaft 14 and the gear ratio of the automatic transmission 4 exceeds the rotational speed of the output shaft 1A, the propeller shaft 14 is idled so that torque is not transmitted to the output shaft 1A.
  • An inverter 7 is connected to the electric motor / generator 1.
  • the electric motor / generator 1 is rotated by electric power supplied from a battery (not shown) via an inverter 7. In addition, it receives the torque of the internal combustion engine 6 input through the clutch 5 in the engaged state, generates electric power, and charges the battery.
  • the operation and power generation of the electric motor / generator 1 are controlled by an input signal from the controller 12 to the inverter 7.
  • the engagement state or slip state of the friction engagement elements 3A and 3B is controlled by an input signal from the controller 12 to the hydraulic unit 8.
  • the engagement state or slip state of the clutch 5 is controlled by an input signal from the controller 12 to the hydraulic unit 9.
  • the operation of the internal combustion engine 6 is also controlled by an input signal from the controller 12.
  • controller 12 also performs the shift control of the automatic transmission 4, the shift control itself is not directly related to the present invention, and thus the description thereof is omitted.
  • the controller 12 that performs the above control is constituted by a microcomputer including a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O interface input / output interface
  • one controller 12 controls all of the hydraulic units 8 and 9, the operation of the internal combustion engine 6, and the operation of the electric motor / generator 1. It is also possible to carry out with different controllers depending on the object.
  • the controller 12 includes an accelerator opening sensor 13 that detects an accelerator opening corresponding to the amount of depression of an accelerator pedal included in the hybrid drive electric vehicle 20, a speed sensor 15 that detects an input rotation speed of the automatic transmission 4, and an automatic A speed sensor 16 for detecting the output rotation speed of the transmission 4 is connected by a signal circuit.
  • the controller 12 when the driver depresses the accelerator pedal from the coast driving with the accelerator pedal released, the controller 12 is as follows. Drive force control is performed.
  • the frictional engagement elements 3A and 3B are maintained at slippable hydraulic pressure.
  • the internal combustion engine 6 is stopped and the clutch 5 is released.
  • the product of the rotational speed of the propeller shaft 14 rotated by the input torque from the drive wheels RR and RL via the frictional engagement elements 3A and 3B and the gear ratio of the automatic transmission 4 is the output shaft of the electric motor / generator 1. Since the rotational speed of 1A is exceeded, the one-way clutch 10 blocks torque transmission from the propeller shaft 14 to the electric motor / generator 1, and the propeller shaft 10 rotates freely without resistance. This state is referred to as a torque cutoff state of the one-way clutch 10.
  • the controller 12 increases the rotational speed of the electric motor / generator 1.
  • the rotational speed of the electric motor / generator 1 increases and exceeds the product of the rotational speed of the propeller shaft 14 and the gear ratio of the automatic transmission 4, the one-way clutch 10 transmits torque from the electric motor / generator 1 to the propeller shaft 14.
  • This state is called a torque transmission state of the one-way clutch.
  • FIG. 1 The driving force control routine executed by the controller 12 for the above control will be described with reference to FIG.
  • the controller 12 repeatedly executes this routine while the hybrid drive electric vehicle 20 is traveling. That is, the controller 12 starts the next routine execution as soon as the routine reaches a return.
  • step S1 the controller 12 determines whether or not the automatic transmission 4 satisfies the control conditions. Specifically, it is determined that the control condition is satisfied when all of the following conditions (1) to (3) are satisfied.
  • condition (1) for example, when the hybrid drive electric vehicle 20 is provided with the manual (M) mode, traveling in the manual (M) mode is excluded from the control target.
  • the manual (M) mode a brake that disables the one-way clutch 10 is applied to apply the engine brake. Since this driving force control routine is premised on the operation of the one-way clutch 10, traveling in the manual (M) mode is excluded from the control target.
  • Condition (3) means that the slip amount of the frictional engagement elements 3A and 3B is small.
  • the threshold A is a value close to zero.
  • the determination of the condition (3) can be made based on the detection speed of the speed sensors 15 and 16 and the gear ratio.
  • the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B is a predetermined coasting that is lower than that during normal traveling in which torque is transmitted from the electric motor / generator 1 to the propeller shaft 14. The pressure is maintained. In other words, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B is limited.
  • step S1 determines whether or not the accelerator pedal is depressed in step S2. This determination is made based on an input signal from the accelerator opening sensor 13.
  • step S3 is executed only when the determination in step S1 is affirmative. Since the determination in step S3 is the reverse of the determination condition (3) in step S1, the determination when step S3 is executed first is always negative.
  • step S3 determines whether the slip rotation speed of the frictional engagement elements 3A and 3B is less than the threshold value A. If the determination in step S3 is negative, that is, if the slip rotation speed of the frictional engagement elements 3A and 3B is less than the threshold value A, the controller 12 controls the one-way clutch 10 by controlling the rotation speed of the electric motor / generator 1 in step S4. The input rotation speed is increased at an increase rate R1. And determination of step S3 is performed again. In this manner, the controller 12 increases the rotation speed of the electric motor / generator 1 input to the one-way clutch 10 at the increase rate R1 until the determination in step S3 is positively changed. Note that the positive determination in step S3 means that the one-way clutch 10 has started transmitting torque from the output shaft 1A of the electric motor / generator 1 to the propeller shaft 14.
  • step S3 the controller 12 controls the rotational speed of the electric motor / generator 1 in step S5 to change the input rotational speed of the one-way clutch 10 to the in-gear rotational speed plus the increment ⁇ based on the rate of increase R2.
  • the increase rate R2 is set to a value larger than R1.
  • the in-gear rotation speed refers to the input rotation speed of the one-way clutch 10 in a state where the automatic transmission 4 operates without slipping of the frictional engagement elements 3A and 3B. In other words, it means the rotational speed of the output shaft 1A when the value of the rotational speed of the output shaft 1A ⁇ (rotational speed of the propeller shaft ⁇ gear ratio) is zero.
  • the controller 12 obtains the increment ⁇ by referring to the characteristic map shown in the figure stored in advance in the ROM based on the accelerator opening detected by the accelerator opening sensor 13. In this map, the increment ⁇ takes a larger value as the accelerator opening is larger.
  • the controller 12 releases the restriction applied to the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A, 3B, and the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A, 3B. Raise.
  • the controller 12 determines whether or not a predetermined time has elapsed from the start of slipping of the frictional engagement elements 3A and 3B and whether or not the predetermined time has elapsed since the clutch 5 is in a synchronized state. This determination has the following meaning.
  • the frictional engagement elements 3A and 3B are supplied hydraulic pressure from the hydraulic unit 8.
  • the one-way clutch 10 does not slip because it rotates relatively without resistance.
  • the frictional engagement elements 3A and 3B slip when the rotational speed of the output shaft 1A of the electric motor / generator 1 exceeds the value of (the rotational speed of the propeller shaft 14 ⁇ the gear ratio) and the one-way clutch 10 starts torque transmission. start. Therefore, the elapsed time from the start of slipping of the frictional engagement elements 3A and 3B corresponds to the elapsed time from the time when the determination in step S3 turns positive.
  • the elapsed time after the clutch 5 is in a synchronized state is not a problem when the hybrid drive electric vehicle 20 is running using the power of both the electric motor / generator 1 and the internal combustion engine 6.
  • the frictional engagement elements 3A and 3B be in the engaged state until the output of the electric motor / generator 1 is stabilized. . Therefore, whether or not a predetermined time has elapsed since the clutch 5 is in a synchronized state is included in the determination in step S7.
  • the controller 12 determines each time based on the accelerator opening. According to this map, the predetermined time is set longer as the accelerator opening is larger. It is assumed that the internal combustion engine 6 is started and the synchronous operation control with the electric motor / generator 1 is performed in a separate routine.
  • step S7 the controller 12 repeats the processes in steps S5 and S6.
  • step S7 If the determination in step S7 is positive, the controller 12 controls the inverter 7 in step S8 so that the output rotation speed of the electric motor / generator 1 is set to zero and the slip rotation speed of the frictional engagement elements 3A and 3B becomes zero. Reduce.
  • the controller 12 determines whether or not the slip rotation speeds of the frictional engagement elements 3A and 3B are within a predetermined range. Specifically, it is determined whether or not the value of the rotational speed of the output shaft 1A ⁇ (the rotational speed of the propeller shaft x the gear ratio) is equal to or less than the threshold value B.
  • the threshold value B used here is set to a value larger than the threshold value A used in steps S1 and S3.
  • step S9 If the determination at step S9 is negative, the process at step S8 and the determination at step S9 are repeated.
  • the controller 12 switches the control target of the electric motor / generator 1 from the rotational speed to the torque in step S10. . Thereafter, the controller 12 controls the output torque of the electric motor / generator 1 to the target torque in the HEV traveling mode.
  • step S11 the controller 12 further increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B so that the transmission torque of the frictional engagement elements 3A and 3B reaches the target torque.
  • step S12 the controller 12 determines whether or not the slip rotation of the frictional engagement elements 3A and 3B has become substantially zero. Specifically, it is determined whether or not the value of the rotational speed of output shaft 1A ⁇ (the rotational speed of propeller shaft 14 ⁇ the gear ratio) is equal to or less than threshold value C.
  • the threshold value C used here is smaller than the threshold value B used in step S9, and is close to the threshold value A.
  • step S12 While the determination in step S12 is negative, the controller 12 repeatedly executes the processes in steps S10 and S11. If the determination in step S12 is positive, the controller 12 sets the frictional engagement elements 3A and 3B in the fully engaged state via the hydraulic unit 8 in step S13, and ends the routine.
  • step S1 the determination in step S1 is affirmative.
  • step S2 determines positive, and the determination in step S3 also becomes positive. Therefore, the controller 12 determines in FIG. As shown in 4C, the rotational speed of the output shaft 1A of the electric motor / generator 1 is increased at an increase rate R1.
  • the rotational speed of the output shaft 1A catches up with the value of (the rotational speed of the propeller shaft 14 ⁇ the gear ratio), and the one-way clutch 10 starts torque transmission from the output shaft 1A to the propeller shaft 15.
  • the determination in step S3 turns positive.
  • the controller 12 increases the rotational speed of the output shaft 1A of the electric motor / generator 1 to the in-gear rotational speed plus the increment ⁇ at the rate of increase R2.
  • the shock when the one-way clutch 10 starts torque transmission at time t2 is absorbed by the slip rotation of the frictional engagement elements 3A and 3B in the slip mode. Therefore, even if the value of the rate of increase R1 is set large, the shock when the one-way clutch 10 starts torque transmission does not give the driver or passenger a sense of incongruity.
  • step S7 the determination in step S7 is positively changed.
  • step S8 the controller 12 decreases the rotation speed of the electric motor / generator 1 in a direction to reduce the slip rotation of the frictional engagement elements 3A and 3B. This process is repeatedly executed until the slip rotation speed of the frictional engagement elements 3A and 3B becomes the threshold value B or less in step S9.
  • step S9 If the determination in step S9 is positive, the controller 12 switches the control target of the electric motor / generator 1 from the rotational speed to the torque in step S10. Further, in step S13, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B is increased toward the engaged state.
  • step S12 the slip rotation speed of the frictional engagement elements 3A and 3B becomes equal to or lower than the threshold value C, and the slip rotation converges to a substantially zero state.
  • step S13 the controller 12 further increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B, and sets the frictional engagement elements 3A and 3B to the fully engaged state at time t5.
  • FIG. By executing the driving force control routine of No. 2, the rotational speed of the output shaft 1A of the electric motor / generator 1 is increased immediately after the accelerator pedal is depressed under a large increase rate R1, so that the one-way clutch 10 can be engaged in a short time. Torque transmission can be started. At this time, since the frictional engagement elements 3A and 3B are in the slip operation mode, the shock accompanying the start of torque transmission of the one-way clutch 10 is absorbed by the slip of the frictional engagement elements 3A and 3B and is not transmitted to the driver or the passenger.
  • the output rotational speed of the electric motor / generator 1 is increased to the in-gear rotational speed plus the increment ⁇ at the rate of increase R2, and the electric motor / generator 1 is rotated under the slip rotation of the frictional engagement elements 3A, 3B.
  • Drive torque is transmitted to drive wheels RR and RL.
  • the controller 12 reduces the rotational speed of the output shaft 1A of the electric motor / generator 1 to converge the slip rotation of the friction engagement elements 3A and 3B toward zero, and after the convergence, the friction engagement elements 3A and 3B Is in a completely fastened state.
  • the broken line indicates the speed change characteristic when the one-way clutch 10 is in a torque transmission state and in an in-gear state in which there is no slip inside the automatic transmission 4.
  • the intersection of the INPUT axis and the broken line is the rotation speed of the output shaft 1A of the electric motor / generator 1, and the intersection of the OUTPUT axis and the broken line is the output rotation speed of the automatic transmission 4 or the rotation of the propeller shaft 14 in the in-gear state.
  • the ratio of the distance between each vertical axis and the origin, that is, the vertical axis at the left end of the figure represents the gear ratio.
  • the low brake (L / B) of the automatic transmission 4 constitutes the friction engagement elements 3A and 3B.
  • the controller 12 reduces the rotational speed of the output shaft 1A by controlling the electric motor / generator 1 with the input rotational speed.
  • the rotational speed shown in the dotted line in the drawing should be the low brake (L / B) position of the automatic transmission 4, but the one-way clutch 10 transmits the torque. Therefore, only the rotational speed of the output shaft 1A is lowered, and the rotational speed at the low brake (L / B) position is not changed.
  • this driving force control routine it is possible to obtain a high acceleration response while absorbing the shock accompanying the start of torque transmission of the one-way clutch 10 when the accelerator pedal is depressed from coasting.
  • the frictional engagement elements 3A and 3B are held in the slip mode for a predetermined time by controlling the rotational speed of the electric motor / generator 1. The Therefore, the increase in the input rotational speed of the automatic transmission 4 is suppressed, and the stable slip state of the frictional engagement elements 3A and 3B can be maintained. Furthermore, since the predetermined time is set according to the accelerator opening, when the accelerator opening is large, the slip operation mode of the frictional engagement elements 3A and 3B is maintained longer to suppress the shock due to torque fluctuation and the accelerator opening. When the degree is small, the heat generation amount of the frictional engagement elements 3A and 3B can be suppressed by shortening the slip mode period.
  • the rotational speed of the electric motor / generator 1 is decreased to converge the slip rotation of the frictional engagement elements 3A and 3B, and then the frictional engagement elements 3A and 3B are engaged. Therefore, it is possible to prevent a shock due to the inertia change of the output shaft 1A.
  • the switching from the rotational speed control to the torque control of the electric motor / generator 1 is performed before the frictional engagement elements 3A and 3B are engaged, the torque step accompanying the change is absorbed by the slip rotation of the frictional engagement elements 3A and 3B. Shocks due to torque steps can be prevented.
  • the rate of increase R1 of the electric motor / generator 1 before starting the torque transmission of the one-way clutch 10 is set to a value larger than the rate of increase R2 in the torque transmission state of the one-way clutch 10. Therefore, the torque transmission start of the one-way clutch 10 can be accelerated with respect to the depression of the accelerator pedal. As a result, since the one-way clutch 10 starts torque transmission before the input torque increases, a favorable effect can be obtained in reducing the engagement shock. Starting torque transmission to the one-way clutch 10 at an early stage has a favorable effect for improving acceleration response.
  • the slip rotation speeds of the frictional engagement elements 3A and 3B in the slip mode are set according to the accelerator opening. Specifically, when the accelerator opening is large, the slip rotation speed is set large, and when the accelerator opening is small, the slip rotation speed is set small. As a result, when the accelerator opening is large, the torque fluctuation absorption capacity is increased to enhance the shock suppression function, while when the accelerator opening is small, the heat generation amount of the frictional engagement elements 3A and 3B can be suppressed.
  • the present invention can be applied to an electric vehicle that does not have an internal combustion engine and travels using only an electric motor.
  • the frictional engagement elements 3A and 3B are built in the automatic transmission 4, but separately from the frictional engagement element in the automatic transmission 4, between the electric motor / generator 1 and the automatic transmission 4, Alternatively, an independent friction engagement element may be interposed between the automatic transmission 4 and the propeller shaft 14.
  • the one-way clutch 10 may be interposed between the electric motor / generator 1 and the automatic transmission 4 or between the automatic transmission 4 and the propeller shaft 14 without being installed in the automatic transmission 4.
  • the driving force control apparatus and control method for an electric vehicle according to the present invention reduces the shock in acceleration from coasting without impairing the acceleration performance. Therefore, the present invention provides a favorable effect for improving riding comfort of an electric vehicle or a hybrid drive electric vehicle having an electric motor as a driving power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This electric vehicle transmits power of an electric motor / generator to the drive wheels through a one-way clutch and a frictional engagement element having a slip operation mode. If the acceleration pedal is depressed from coasting travel, during which the one-way clutch is in a state in which torque is not transmitted, the acceleration response is improved by accelerating the electric motor / generator. Meanwhile, until the one-way clutch assumes a torque transmission state, by maintaining the frictional engagement element in the slip operation mode, the frictional engagement element absorbs the shock accompanying the start of torque transmission of the one-way clutch during acceleration of the electric motor / generator.

Description

電動車両の駆動力制御装置及び制御方法Driving force control device and control method for electric vehicle
 この発明は、ハイブリッド駆動電気自動車を含む電動車両の駆動力制御に関する。 The present invention relates to driving force control of an electric vehicle including a hybrid drive electric vehicle.
 ハイブリッド駆動電気自動車の駆動力制御に関して、日本国特許庁が発行したJP2008-290242Aはドライバかアクセルペダルを踏まない、いわゆるコースト走行時におけるトルクショックの発生防止に関する提案を行なっている。 JP2008-290242A issued by the Japan Patent Office regarding the driving force control of a hybrid-driven electric vehicle is proposing to prevent the occurrence of torque shock during so-called coast driving without stepping on the driver or accelerator pedal.
 対象となるハイブリッド駆動電気自動車は、ワンウェイクラッチとブレーキなどの摩擦締結要素とを介して電動モータにプロペラシャフトを接続したパワートレーンを備えている。駆動輪はプロペラシャフトに回転駆動される。電動モータには内燃エンジンがクラッチを介して接続される。 The target hybrid drive electric vehicle has a power train in which a propeller shaft is connected to an electric motor via a one-way clutch and a frictional engagement element such as a brake. The drive wheel is rotationally driven by the propeller shaft. An internal combustion engine is connected to the electric motor via a clutch.
 車両の運転中にドライバが踏んでいたアクセルペダルから足を離すと、電動モータの回転速度が低下し、駆動輪に結合したプロペラシャフトの回転速度が、電動モータの回転速度を上回る。この状態では、ワンウェイクラッチは電動モータからプロペラシャフトへのトルク伝達を遮断し、プロペラシャフトを自由回転させるので、プロペラシャフトの回転トルクが電動モータへ入力されることはない。この走行状態をコースト走行状態と称する。 ∙ If you take your foot off the accelerator pedal that the driver was stepping on while driving the vehicle, the rotation speed of the electric motor will decrease, and the rotation speed of the propeller shaft coupled to the drive wheels will exceed the rotation speed of the electric motor. In this state, the one-way clutch interrupts torque transmission from the electric motor to the propeller shaft and freely rotates the propeller shaft, so that the rotational torque of the propeller shaft is not input to the electric motor. This traveling state is referred to as a coast traveling state.
 コースト走行状態が続くと、電動モータの回転速度はアイドリング相当の回転速度に維持される一方で、プロペラシャフトの回転速度は徐々に低下する。その結果、電動モータ側の回転速度がプロペラシャフト側の回転速度を上回ると、ワンウェイクラッチがトルク伝達を開始するが、トルク伝達開始に伴ってショックをもたらす可能性がある。 When the coasting state continues, the rotation speed of the electric motor is maintained at a rotation speed equivalent to idling, while the rotation speed of the propeller shaft gradually decreases. As a result, when the rotation speed on the electric motor side exceeds the rotation speed on the propeller shaft side, the one-way clutch starts torque transmission, but there is a possibility that a shock will be caused as torque transmission starts.
 従来技術はこのショックを防止するために、アクセルペダルが解放されると、電動モータ側の回転速度をプロペラシャフト側の回転速度より低い値へと制御し、その状態でクラッチをスリップモードにすることを提案している。ここで、スリップモードとはクラッチがスリップ可能な状態でトルク伝達を行なう状態を意味する。クラッチがスリップモードで稼働している場合には、プロペラシャフトの回転速度の低下によりワンウェイクラッチが再びトルク伝達を開始するのに伴うトルクショックはクラッチのスリップによって吸収され、ショックは車体に伝わらない。 In order to prevent this shock, the prior art controls the rotational speed on the electric motor side to a value lower than the rotational speed on the propeller shaft side when the accelerator pedal is released, and puts the clutch in the slip mode in that state. Has proposed. Here, the slip mode means a state in which torque transmission is performed in a state where the clutch can slip. When the clutch is operating in the slip mode, the torque shock caused by the one-way clutch starting to transmit torque again due to the decrease in the rotation speed of the propeller shaft is absorbed by the slip of the clutch, and the shock is not transmitted to the vehicle body.
 この従来技術はコースト走行中のワンウェイクラッチの再締結のショック防止に好ましい効果をもたらす。 This conventional technology has a favorable effect for preventing the shock of re-engagement of the one-way clutch during coasting.
 コースト走行状態からドライバがアクセルペダルを踏むと、電動モータ側の回転速度が上昇し、プロペラシャフト側の回転速度を上回ることでワンウェイクラッチがトルク伝達を開始する。このとき、アクセルペダルの踏み込みに合わせて電動モータの回転速度を急上昇させると、ワンウェイクラッチのトルク伝達に伴ってショックが発生する。従来技術は、電動モータの回転速度をプロペラシャフトの回転速度より低い値へと制御するが、これはアクセルペダルの踏み込みによる加速要求とは相容れない。またこの制御は、加速時にワンウェイクラッチがトルク伝達を開始する際のショックを防止するのには役立たない。 When the driver depresses the accelerator pedal from the coasting state, the rotation speed on the electric motor side increases, and the one-way clutch starts torque transmission by exceeding the rotation speed on the propeller shaft side. At this time, if the rotational speed of the electric motor is rapidly increased in accordance with the depression of the accelerator pedal, a shock is generated along with the torque transmission of the one-way clutch. The prior art controls the rotational speed of the electric motor to a value lower than the rotational speed of the propeller shaft, which is incompatible with the acceleration demand due to depression of the accelerator pedal. Also, this control is not useful for preventing a shock when the one-way clutch starts torque transmission during acceleration.
 加速時のショックは、アクセルペダルの踏み込みに対する電動モータの回転速度の上昇を緩やかにすれば小さくできる。しかし、その場合には、アクセルペダルの踏み込みから車両の加速に至る加速レスポンスが悪くなることは避けられない。 Acceleration shock can be reduced by slowing the increase in the electric motor speed with the accelerator pedal depressed. However, in that case, it is inevitable that the acceleration response from the depression of the accelerator pedal to the acceleration of the vehicle becomes worse.
 この発明の目的は、したがって、加速時のショックを吸収しつつ、アクセルペダルの踏み込みに対する加速レスポンスを高めることである。 Therefore, an object of the present invention is to increase the acceleration response to depression of the accelerator pedal while absorbing a shock during acceleration.
 以上の目的を達成するために、この発明は、 電動モータと、ドライバの加速要求を検出するアクセルペダルと、電動モータの駆動量により回転する駆動輪と、電動モータと駆動輪の間の駆動力伝達経路に介装され、電動モータから駆動輪へのトルクを伝達する一方、駆動輪から電動モータへのトルク伝達を遮断するワンウェイクラッチと、駆動力伝達経路に介装され、締結状態でトルクを互いに伝達する一方、互いのスリップが可能なスリップ動作モードを有する摩擦締結要素とを備えた電動車両、のための駆動力制御装置を提供する。 In order to achieve the above object, the present invention provides an electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that rotates according to the driving amount of the electric motor, and a driving force between the electric motor and the driving wheel. A one-way clutch that is interposed in the transmission path and transmits torque from the electric motor to the driving wheel, while blocking torque transmission from the driving wheel to the electric motor, and a driving force transmission path, and transmits torque in the engaged state. Provided is a driving force control device for an electric vehicle including a frictional engagement element having a slip operation mode capable of transmitting to each other while allowing mutual slip.
 駆動力制御装置は、ワンウェイクラッチが駆動輪から電動モータへのトルク伝達を遮断している状態でアクセルペダルが踏み込まれた場合に、電動モータの運転が加速するように電動モータを制御し、ワンウェイクラッチが電動モータから駆動輪へのトルク伝達を開始するまで摩擦締結要素がスリップ動作モードを保つように摩擦締結要素を制御する、ようプログラムされたプログラマブルコントローラを備えている。 The driving force control device controls the electric motor so that the operation of the electric motor is accelerated when the accelerator pedal is depressed with the one-way clutch blocking torque transmission from the driving wheel to the electric motor. A programmable controller is provided that is programmed to control the frictional engagement element such that the frictional engagement element maintains the slip mode of operation until the clutch begins to transmit torque from the electric motor to the drive wheels.
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。 DETAILED DESCRIPTION Details and other features and advantages of the present invention are described in the following description of the specification and shown in the accompanying drawings.
FIG.1は、この発明の実施形態によるハイブリッド駆動電気自動車の駆動力制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a driving force control apparatus for a hybrid electric vehicle according to an embodiment of the present invention. FIG.2は、この発明の実施形態によるコントローラが実行する駆動力制御ルーチンを示すフローチャートである。FIG. 2 is a flowchart showing a driving force control routine executed by the controller according to the embodiment of the present invention. FIGS.3Aと3Bは、コントローラが格納する増分αのマップと所要時間のマップの特性とを示すダイアグラムである。FIG. 3A and 3B are diagrams showing the characteristics of the map of the increment α stored in the controller and the map of the required time. FIGS.4A-4Eは、駆動力制御ルーチンの実行結果を示すタイミングチャートである。FIG. 4A to 4E are timing charts showing the execution results of the driving force control routine. FIGS.5Aと5Bは、駆動力制御ルーチンの実行効果を説明するダイアグラムである。FIG. 5A and 5B are diagrams for explaining the execution effect of the driving force control routine.
 FIG.1を参照すると、この発明の実施形態による駆動力制御装置は後輪駆動型のハイブリッド駆動電気自動車20に適用される。ハイブリッド駆動電気自動車20は右前輪FR,左前輪FL,右後輪RR,及び左後輪RLからなる4輪により走行する。このうち、右後輪RRと左後輪RLとが駆動輪を構成する。 FIG. Referring to FIG. 1, the driving force control apparatus according to the embodiment of the present invention is applied to a rear-wheel drive type hybrid drive electric vehicle 20. The hybrid drive electric vehicle 20 travels with four wheels including a right front wheel FR, a left front wheel FL, a right rear wheel RR, and a left rear wheel RL. Among these, the right rear wheel RR and the left rear wheel RL constitute drive wheels.
 駆動輪である右後輪RRと左後輪RLはディファレンシャル11を介してプロペラシャフト14に結合される。プロペラシャフト14は自動変速機4を介して電動モータ/ジェネレータ1に接続される。電動モータ/ジェネレータ1にはクラッチ5を介して内燃エンジン6が接続される。 The right rear wheel RR and the left rear wheel RL, which are drive wheels, are coupled to the propeller shaft 14 via the differential 11. The propeller shaft 14 is connected to the electric motor / generator 1 via the automatic transmission 4. An internal combustion engine 6 is connected to the electric motor / generator 1 via a clutch 5.
 クラッチ5は油圧ユニット9から供給される油圧に応じて、締結位置と解放位置の間で動作する。締結位置では電動モータ/ジェネレータ1と内燃エンジン6との間で双方向にトルクを伝達し、これらを一体回転させる。開放位置では電動モータ/ジェネレータ1と内燃エンジン6とを自由に相対回転させる。 The clutch 5 operates between the engagement position and the release position according to the hydraulic pressure supplied from the hydraulic unit 9. At the fastening position, torque is transmitted bi-directionally between the electric motor / generator 1 and the internal combustion engine 6 to rotate them integrally. In the open position, the electric motor / generator 1 and the internal combustion engine 6 are freely rotated relative to each other.
 自動変速機4は遊星歯車式の有段自動変速機で構成され、内部に摩擦締結要素3A,3Bとワンウェイクラッチ10とを備える。摩擦締結要素3A,3Bは例えば、自動変速機4が備えるローブレーキで構成される。摩擦締結要素3A,3Bは油圧ユニット8から供給される油圧により作動し、互いに締結した締結状態では、電動モータ1の出力軸1Aとプロペラシャフト14とを結合して一体回転させる。一方、互いにスリップ可能なスリップ動作モードでは、油圧ユニット8から供給される油圧に応じた摩擦抵抗のもとで電動モータ1の出力軸1Aとプロペラシャフト14の相対回転を許容する。 The automatic transmission 4 is composed of a planetary gear type stepped automatic transmission, and includes frictional engagement elements 3A and 3B and a one-way clutch 10 therein. The frictional engagement elements 3A and 3B are constituted by, for example, a low brake provided in the automatic transmission 4. The frictional engagement elements 3A and 3B are operated by the hydraulic pressure supplied from the hydraulic unit 8, and in an engaged state, the output shaft 1A of the electric motor 1 and the propeller shaft 14 are coupled to rotate integrally. On the other hand, in the slip operation mode capable of slipping relative to each other, relative rotation of the output shaft 1A of the electric motor 1 and the propeller shaft 14 is permitted under the frictional resistance according to the hydraulic pressure supplied from the hydraulic unit 8.
 クラッチ5にもスリップ動作モードが存在する。スリップ動作モードのクラッチ5は油圧ユニット9から供給される油圧に応じた摩擦抵抗のもとで内燃エンジン6と電動モータ/ジェネレータ1との相対回転を許容する。 The clutch 5 also has a slip operation mode. The clutch 5 in the slip operation mode allows relative rotation between the internal combustion engine 6 and the electric motor / generator 1 under a frictional resistance corresponding to the hydraulic pressure supplied from the hydraulic unit 9.
 ワンウェイクラッチ10は出力軸1Aからプロペラシャフト14へトルクを伝達する一方、プロペラシャフト14から出力軸1Aへのトルク伝達を行なわない。ここで、トルクは正のトルクを意味する。つまり、電動モータ/ジェネレータ1の出力軸1Aの回転速度が、プロペラシャフト14と自動変速機4のギヤ比の積を上回る場合には、プロペラシャフト14にトルクを伝達してプロペラシャフト14を電動モータ/ジェネレータ1の動力で回転駆動する。一方、プロペラシャフト14の回転速度と自動変速機4のギヤ比の積が出力軸1Aの回転速度を上回る場合には、プロペラシャフト14を空転させ、出力軸1Aにトルクが伝達されないようにする。 The one-way clutch 10 transmits torque from the output shaft 1A to the propeller shaft 14, but does not transmit torque from the propeller shaft 14 to the output shaft 1A. Here, the torque means a positive torque. That is, when the rotational speed of the output shaft 1A of the electric motor / generator 1 exceeds the product of the gear ratio between the propeller shaft 14 and the automatic transmission 4, torque is transmitted to the propeller shaft 14 to cause the propeller shaft 14 to move to the electric motor. / Rotated by the power of the generator 1. On the other hand, when the product of the rotational speed of the propeller shaft 14 and the gear ratio of the automatic transmission 4 exceeds the rotational speed of the output shaft 1A, the propeller shaft 14 is idled so that torque is not transmitted to the output shaft 1A.
 電動モータ/ジェネレータ1にはインバータ7が接続される。電動モータ/ジェネレータ1は図示されないバッテリからインバータ7を介して供給される電力により回転する。また、締結状態のクラッチ5を介して入力される内燃エンジン6のトルクを受けて発電を行ない、バッテリへの充電を行なう。 An inverter 7 is connected to the electric motor / generator 1. The electric motor / generator 1 is rotated by electric power supplied from a battery (not shown) via an inverter 7. In addition, it receives the torque of the internal combustion engine 6 input through the clutch 5 in the engaged state, generates electric power, and charges the battery.
 電動モータ/ジェネレータ1の運転及び発電は、コントローラ12からインバータ7への入力信号により制御される。摩擦締結要素3A,3Bの締結状態あるいはスリップ状態は、コントローラ12から油圧ユニット8への入力信号により制御される。クラッチ5の締結状態あるいはスリップ状態は、コントローラ12から油圧ユニット9への入力信号により制御される。内燃エンジン6の運転もコントローラ12からの入力信号により制御される。 The operation and power generation of the electric motor / generator 1 are controlled by an input signal from the controller 12 to the inverter 7. The engagement state or slip state of the friction engagement elements 3A and 3B is controlled by an input signal from the controller 12 to the hydraulic unit 8. The engagement state or slip state of the clutch 5 is controlled by an input signal from the controller 12 to the hydraulic unit 9. The operation of the internal combustion engine 6 is also controlled by an input signal from the controller 12.
 さらに、コントローラ12は自動変速機4の変速制御も行なうが、変速制御自体はこの発明と直接の関係がないので、説明を省略する。 Furthermore, although the controller 12 also performs the shift control of the automatic transmission 4, the shift control itself is not directly related to the present invention, and thus the description thereof is omitted.
 以上の制御を行なうコントローラ12は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。この実施形態では説明の都合上、1個のコントローラ12が油圧ユニット8と9,内燃エンジン6の運転、及び電動モータ/ジェネレータ1の運転のすべてを制御することにしているが、これらを制御の対象に応じて異なるコントローラで行なうことも可能である。 The controller 12 that performs the above control is constituted by a microcomputer including a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). In this embodiment, for the sake of explanation, one controller 12 controls all of the hydraulic units 8 and 9, the operation of the internal combustion engine 6, and the operation of the electric motor / generator 1. It is also possible to carry out with different controllers depending on the object.
 コントローラ12には、ハイブリッド駆動電気自動車20が備えるアクセルペダルの踏み込み量に相当するアクセル開度を検出するアクセル開度センサ13と、自動変速機4の入力回転速度を検出する速度センサ15と、自動変速機4の出力回転速度を検出する速度センサ16とが信号回路で接続される。 The controller 12 includes an accelerator opening sensor 13 that detects an accelerator opening corresponding to the amount of depression of an accelerator pedal included in the hybrid drive electric vehicle 20, a speed sensor 15 that detects an input rotation speed of the automatic transmission 4, and an automatic A speed sensor 16 for detecting the output rotation speed of the transmission 4 is connected by a signal circuit.
 以上のように構成された駆動力制御装置を備えるハイブリッド駆動電気自動車20において、ドライバがアクセルペダルを解放してのコースト走行から、ドライバがアクセルペダルを踏み込んだ場合に、コントローラ12は次のような駆動力制御を行なう。 In the hybrid drive electric vehicle 20 including the driving force control device configured as described above, when the driver depresses the accelerator pedal from the coast driving with the accelerator pedal released, the controller 12 is as follows. Drive force control is performed.
 なお、コースト走行中は摩擦締結要素3A,3Bはスリップ可能な油圧に維持される。内燃エンジン6は停止状態で、クラッチ5は解放されている。また、摩擦締結要素3A,3Bを介した駆動輪RR,RLからの入力トルクで回転するプロペラシャフト14の回転速度と自動変速機4のギヤ比との積が、電動モータ/ジェネレータ1の出力軸1Aの回転速度を上回るため、ワンウェイクラッチ10がプロペラシャフト14から電動モータ/ジェネレータ1へのトルク伝達を遮断し、プロペラシャフト10は抵抗なく自由回転する。この状態をワンウェイクラッチ10のトルク遮断状態と称する。 It should be noted that during coasting, the frictional engagement elements 3A and 3B are maintained at slippable hydraulic pressure. The internal combustion engine 6 is stopped and the clutch 5 is released. Further, the product of the rotational speed of the propeller shaft 14 rotated by the input torque from the drive wheels RR and RL via the frictional engagement elements 3A and 3B and the gear ratio of the automatic transmission 4 is the output shaft of the electric motor / generator 1. Since the rotational speed of 1A is exceeded, the one-way clutch 10 blocks torque transmission from the propeller shaft 14 to the electric motor / generator 1, and the propeller shaft 10 rotates freely without resistance. This state is referred to as a torque cutoff state of the one-way clutch 10.
 この状態から、ドライバがアクセルペダルを踏み込むと、コントローラ12は電動モータ/ジェネレータ1の回転速度を上昇させる。電動モータ/ジェネレータ1の回転速度が上昇して、プロペラシャフト14の回転速度と自動変速機4のギヤ比の積を上回ると、ワンウェイクラッチ10が電動モータ/ジェネレータ1からプロペラシャフト14へのトルク伝達を開始する。この状態をワンウェイクラッチのトルク伝達状態と称する。 From this state, when the driver depresses the accelerator pedal, the controller 12 increases the rotational speed of the electric motor / generator 1. When the rotational speed of the electric motor / generator 1 increases and exceeds the product of the rotational speed of the propeller shaft 14 and the gear ratio of the automatic transmission 4, the one-way clutch 10 transmits torque from the electric motor / generator 1 to the propeller shaft 14. To start. This state is called a torque transmission state of the one-way clutch.
 トルク遮断状態からトルク伝達状態への移行は瞬時に行なわれる。そのため移行に伴ってトルクショックが発生する。このとき、摩擦締結要素3A,3Bはスリップ動作モードにあるため、トルクショックは摩擦締結要素3A,3B間のスリップによって吸収される。ワンウェイクラッチ10がトルク伝達状態となったことを確認した後、コントローラ12は摩擦締結要素3A,3Bを締結状態にする。 移行 The transition from the torque cutoff state to the torque transmission state is instantaneous. Therefore, a torque shock occurs with the transition. At this time, since the frictional engagement elements 3A and 3B are in the slip operation mode, the torque shock is absorbed by the slip between the frictional engagement elements 3A and 3B. After confirming that the one-way clutch 10 is in the torque transmission state, the controller 12 places the frictional engagement elements 3A and 3B in the engaged state.
 FIG.2を参照して、以上の制御のために、コントローラ12が実行する駆動力制御ルーチンを説明する。コントローラ12はこのルーチンをハイブリッド駆動電気自動車20の走行中に繰り返し実行する。すなわち、コントローラ12はルーチンがリターンに達すると直ちに次回のルーチン実行を開始する。 FIG. The driving force control routine executed by the controller 12 for the above control will be described with reference to FIG. The controller 12 repeatedly executes this routine while the hybrid drive electric vehicle 20 is traveling. That is, the controller 12 starts the next routine execution as soon as the routine reaches a return.
 ステップS1でコントローラ12は自動変速機4が制御条件を満たしているかどうかを判定する。具体的には、下記の条件(1)-(3)のすべてが成立する場合に制御条件を満たしていると判定する。 In step S1, the controller 12 determines whether or not the automatic transmission 4 satisfies the control conditions. Specifically, it is determined that the control condition is satisfied when all of the following conditions (1) to (3) are satisfied.
(1)自動変速機4がドライブ(D)レンジにある。
(2)自動変速機4は変速動作中でない。
(3)摩擦締結要素3A,3Bのスリップ回転速度=出力軸1Aの回転速度-(プロペラシャフト14の回転速度xギア比)、の値がしきい値A未満である。
(1) The automatic transmission 4 is in the drive (D) range.
(2) The automatic transmission 4 is not in a shifting operation.
(3) The slip rotational speed of the frictional engagement elements 3A and 3B = the rotational speed of the output shaft 1A− (the rotational speed of the propeller shaft 14 × the gear ratio) is less than the threshold value A.
 これらの条件はハイブリッド駆動電気自動車20がドライブ(D)レンジで安定した走行中であるかどうかを判定するものである。条件(1)では、例えばハイブリッド駆動電気自動車20がマニュアル(M)モードを備えている場合に、マニュアル(M)モードでの走行が制御の対象から除外される。マニュアル(M)モードではエンジンブレーキを効かすために、ワンウェイクラッチ10を無効化するブレーキを適用する。この駆動力制御ルーチンはワンウェイクラッチ10の動作を前提としているので、マニュアル(M)モードでの走行を制御の対象から除外するのである。 These conditions are used to determine whether or not the hybrid electric vehicle 20 is traveling stably in the drive (D) range. In the condition (1), for example, when the hybrid drive electric vehicle 20 is provided with the manual (M) mode, traveling in the manual (M) mode is excluded from the control target. In the manual (M) mode, a brake that disables the one-way clutch 10 is applied to apply the engine brake. Since this driving force control routine is premised on the operation of the one-way clutch 10, traveling in the manual (M) mode is excluded from the control target.
 条件(3)は摩擦締結要素3A,3Bのスリップ量が少ないことを意味する。ここでしきい値Aはゼロに近い値とする。条件(3)の判定は、速度センサ15と16の検出速度とギア比に基づき行なうことができる。なお、コースト走行中において、油圧ユニット8から摩擦締結要素3A,3Bに供給される油圧は、電動モータ/ジェネレータ1からプロペラシャフト14へトルクが伝達される通常走行時と比べて低い所定のコースト走行用圧力に保持される。言い換えれば、油圧ユニット8から摩擦締結要素3A,3Bに供給される油圧に制限が加えられている。 Condition (3) means that the slip amount of the frictional engagement elements 3A and 3B is small. Here, the threshold A is a value close to zero. The determination of the condition (3) can be made based on the detection speed of the speed sensors 15 and 16 and the gear ratio. During coasting, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B is a predetermined coasting that is lower than that during normal traveling in which torque is transmitted from the electric motor / generator 1 to the propeller shaft 14. The pressure is maintained. In other words, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B is limited.
 ステップS1の判定が否定的な場合は、コントローラ12は直ちにルーチンを終了する。ステップS1の判定が肯定的な場合は、コントローラ12はステップS2において、アクセルペダルが踏まれているかどうかを判定する。この判定はアクセル開度センサ13からの入力信号に基づき行なう。 If the determination in step S1 is negative, the controller 12 immediately ends the routine. If the determination in step S1 is affirmative, the controller 12 determines whether or not the accelerator pedal is depressed in step S2. This determination is made based on an input signal from the accelerator opening sensor 13.
 アクセルペダルが踏まれていなければ、コースト走行を継続すべく、コントローラ12は直ちにルーチンを終了する。アクセルペダルが踏まれている場合には、コントローラ12はステップS3で前述の摩擦締結要素3A,3Bのスリップ回転速度がしきい値A以上かどうかを判定する。ステップS3が実行されるのはステップS1の判定が肯定的な場合に限られる。ステップS3の判定はステップS1の判定の条件(3)の逆であることから、ステップS3が最初に実行される場合の判定は必ず否定的となる。 If the accelerator pedal is not depressed, the controller 12 immediately ends the routine in order to continue coasting. When the accelerator pedal is depressed, the controller 12 determines whether or not the slip rotation speeds of the friction engagement elements 3A and 3B described above are equal to or greater than the threshold value A in step S3. Step S3 is executed only when the determination in step S1 is affirmative. Since the determination in step S3 is the reverse of the determination condition (3) in step S1, the determination when step S3 is executed first is always negative.
 ステップS3の判定が否定的、すなわち摩擦締結要素3A,3Bのスリップ回転速度がしきい値A未満の場合は、コントローラ12はステップS4で、電動モータ/ジェネレータ1の回転速度制御により、ワンウェイクラッチ10の入力回転速度を上昇率R1で上昇させる。そして、再びステップS3の判定を行なう。このようにして、ステップS3の判定が肯定的に転じるまで、コントローラ12はワンウェイクラッチ10に入力する電動モータ/ジェネレータ1の回転速度を上昇率R1で上昇させる。なお、ステップS3の判定が肯定的に転じることは、ワンウェイクラッチ10が電動モータ/ジェネレータ1の出力軸1Aからプロペラシャフト14のトルク伝達を開始したことを意味する。 If the determination in step S3 is negative, that is, if the slip rotation speed of the frictional engagement elements 3A and 3B is less than the threshold value A, the controller 12 controls the one-way clutch 10 by controlling the rotation speed of the electric motor / generator 1 in step S4. The input rotation speed is increased at an increase rate R1. And determination of step S3 is performed again. In this manner, the controller 12 increases the rotation speed of the electric motor / generator 1 input to the one-way clutch 10 at the increase rate R1 until the determination in step S3 is positively changed. Note that the positive determination in step S3 means that the one-way clutch 10 has started transmitting torque from the output shaft 1A of the electric motor / generator 1 to the propeller shaft 14.
 ステップS3の判定が肯定的に転じると、コントローラ12はステップS5で電動モータ/ジェネレータ1の回転速度制御により、ワンウェイクラッチ10の入力回転速度をインギア回転速度プラス増分αへと上昇率R2のもとでさらに上昇させる。上昇率R2はR1より大きな値に設定される。ここで、インギア回転速度は自動変速機4が摩擦締結要素3A,3Bの滑りなしに作動している状態でのワンウェイクラッチ10の入力回転速度を言う。言い換えれば出力軸1Aの回転速度-(プロペラシャフト14の回転速度xギア比)の値がゼロの場合の出力軸1Aの回転速度を意味する。 If the determination in step S3 is positive, the controller 12 controls the rotational speed of the electric motor / generator 1 in step S5 to change the input rotational speed of the one-way clutch 10 to the in-gear rotational speed plus the increment α based on the rate of increase R2. To raise further. The increase rate R2 is set to a value larger than R1. Here, the in-gear rotation speed refers to the input rotation speed of the one-way clutch 10 in a state where the automatic transmission 4 operates without slipping of the frictional engagement elements 3A and 3B. In other words, it means the rotational speed of the output shaft 1A when the value of the rotational speed of the output shaft 1A− (rotational speed of the propeller shaft × gear ratio) is zero.
 FIG.3Aを参照すると、コントローラ12は増分αを、アクセル開度センサ13が検出したアクセル開度に基づき、あらかじめROMに格納された図に示す特性のマップを参照して求める。このマップにおいて、増分αはアクセル開度が大きいほど大きな値を取る。 FIG. Referring to 3A, the controller 12 obtains the increment α by referring to the characteristic map shown in the figure stored in advance in the ROM based on the accelerator opening detected by the accelerator opening sensor 13. In this map, the increment α takes a larger value as the accelerator opening is larger.
 次のステップS6で、コントローラ12は油圧ユニット8から摩擦締結要素3A,3Bに供給される油圧に加えられている制限を解除し、油圧ユニット8から摩擦締結要素3A,3Bに供給される油圧を上昇させる。 In the next step S6, the controller 12 releases the restriction applied to the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A, 3B, and the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A, 3B. Raise.
 次のステップS7で、コントローラ12は摩擦締結要素3A,3Bのスリップ開始から所定時間が経過し、かつクラッチ5が同期状態となってから所定時間が経過したかどうかを判定する。この判定は次の意味を持つ。 In the next step S7, the controller 12 determines whether or not a predetermined time has elapsed from the start of slipping of the frictional engagement elements 3A and 3B and whether or not the predetermined time has elapsed since the clutch 5 is in a synchronized state. This determination has the following meaning.
 すなわち、(プロペラシャフト14の回転速度xギア比)の値が、電動モータ/ジェネレータ1の出力軸1Aの回転速度を上回っている状態では、摩擦締結要素3A,3Bは油圧ユニット8からの供給油圧が制限されていても、ワンウェイクラッチ10が抵抗なく相対回転するため、スリップしない。摩擦締結要素3A,3Bは、電動モータ/ジェネレータ1の出力軸1Aの回転速度が(プロペラシャフト14の回転速度xギア比)の値を上回り、ワンウェイクラッチ10がトルク伝達を開始することでスリップし始める。したがって、摩擦締結要素3A,3Bのスリップ開始からの経過時間はステップS3の判定が肯定的に転じた時点からの経過時間に相当する。 That is, when the value of (rotational speed x gear ratio of propeller shaft 14) exceeds the rotational speed of the output shaft 1A of the electric motor / generator 1, the frictional engagement elements 3A and 3B are supplied hydraulic pressure from the hydraulic unit 8. However, the one-way clutch 10 does not slip because it rotates relatively without resistance. The frictional engagement elements 3A and 3B slip when the rotational speed of the output shaft 1A of the electric motor / generator 1 exceeds the value of (the rotational speed of the propeller shaft 14 × the gear ratio) and the one-way clutch 10 starts torque transmission. start. Therefore, the elapsed time from the start of slipping of the frictional engagement elements 3A and 3B corresponds to the elapsed time from the time when the determination in step S3 turns positive.
 また、クラッチ5が同期状態となってからの経過時間に関しては、ハイブリッド駆動電気自動車20が電動モータ/ジェネレータ1と内燃エンジン6の双方の動力を用いて走行している場合には問題とならない。一方、停止していた内燃エンジン6を電動モータ/ジェネレータ1のトルクで始動した直後は、電動モータ/ジェネレータ1の出力が安定するまで、摩擦締結要素3A,3Bを締結状態とすることは好ましくない。そのため、クラッチ5が同期状態となってから所定時間経過したかどうかをステップS7の判定に含めている。所定時間はあらかじめROMに格納された、FIG.3Bに示す特性を有するマップから、コントローラ12がアクセル開度に基づきその都度決定する。このマップによれば、所定時間はアクセル開度が大きいほど長く設定される。なお、内燃エンジン6の始動や電動モータ/ジェネレータ1との同期運転制御は別ルーチンで行なわれるものとする。 Further, the elapsed time after the clutch 5 is in a synchronized state is not a problem when the hybrid drive electric vehicle 20 is running using the power of both the electric motor / generator 1 and the internal combustion engine 6. On the other hand, immediately after the stopped internal combustion engine 6 is started with the torque of the electric motor / generator 1, it is not preferable that the frictional engagement elements 3A and 3B be in the engaged state until the output of the electric motor / generator 1 is stabilized. . Therefore, whether or not a predetermined time has elapsed since the clutch 5 is in a synchronized state is included in the determination in step S7. For a predetermined time, the FIG. From the map having the characteristics shown in 3B, the controller 12 determines each time based on the accelerator opening. According to this map, the predetermined time is set longer as the accelerator opening is larger. It is assumed that the internal combustion engine 6 is started and the synchronous operation control with the electric motor / generator 1 is performed in a separate routine.
 ステップS7の判定が否定的であるかぎり、コントローラ12はステップS5とS6の処理を繰り返す。 As long as the determination in step S7 is negative, the controller 12 repeats the processes in steps S5 and S6.
 ステップS7の判定が肯定的に転じると、コントローラ12はステップS8でインバータ7の制御により、電動モータ/ジェネレータ1の出力回転速度を、摩擦締結要素3A,3Bのスリップ回転速度がゼロになるように低下させる。 If the determination in step S7 is positive, the controller 12 controls the inverter 7 in step S8 so that the output rotation speed of the electric motor / generator 1 is set to zero and the slip rotation speed of the frictional engagement elements 3A and 3B becomes zero. Reduce.
 次のステップS9でコントローラ12は、摩擦締結要素3A,3Bのスリップ回転速度が所定範囲にあるかどうかを判定する。具体的には、出力軸1Aの回転速度-(プロペラシャフト14の回転速度xギア比)の値がしきい値B以下であるかどうかを判定する。ここで用いるしきい値Bは、ステップS1及びS3で用いるしきい値Aより大きな値に設定される。 In the next step S9, the controller 12 determines whether or not the slip rotation speeds of the frictional engagement elements 3A and 3B are within a predetermined range. Specifically, it is determined whether or not the value of the rotational speed of the output shaft 1A− (the rotational speed of the propeller shaft x the gear ratio) is equal to or less than the threshold value B. The threshold value B used here is set to a value larger than the threshold value A used in steps S1 and S3.
 さて、ステップS9の判定が否定的な場合には、ステップS8の処理とステップS9の判定を繰り返す。ステップS9の判定が肯定的に転じると、すなわち摩擦締結要素3A,3Bのスリップ回転が所定範囲に収束すると、コントローラ12はステップS10で電動モータ/ジェネレータ1の制御対象を回転速度からトルクへと切り換える。以後、コントローラ12は、電動モータ/ジェネレータ1の出力トルクをHEV走行モードにおける目標トルクへと制御する。 If the determination at step S9 is negative, the process at step S8 and the determination at step S9 are repeated. When the determination in step S9 turns positive, that is, when the slip rotation of the frictional engagement elements 3A and 3B converges to a predetermined range, the controller 12 switches the control target of the electric motor / generator 1 from the rotational speed to the torque in step S10. . Thereafter, the controller 12 controls the output torque of the electric motor / generator 1 to the target torque in the HEV traveling mode.
 そして、ステップS11で、コントローラ12は摩擦締結要素3A,3Bの伝達トルクが目標トルクに達するようにさらに油圧ユニット8から摩擦締結要素3A,3Bへの供給油圧を上昇させる。 In step S11, the controller 12 further increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B so that the transmission torque of the frictional engagement elements 3A and 3B reaches the target torque.
 ステップS12で、コントローラ12は摩擦締結要素3A,3Bのスリップ回転が実質的にゼロになったかどうかを判定する。具体的には出力軸1Aの回転速度-(プロペラシャフト14の回転速度xギア比)の値がしきい値C以下であるかどうかを判定する。ここで用いるしきい値CはステップS9で用いるしきい値Bより小さな値であり、しきい値Aに近い値とする。 In step S12, the controller 12 determines whether or not the slip rotation of the frictional engagement elements 3A and 3B has become substantially zero. Specifically, it is determined whether or not the value of the rotational speed of output shaft 1A− (the rotational speed of propeller shaft 14 × the gear ratio) is equal to or less than threshold value C. The threshold value C used here is smaller than the threshold value B used in step S9, and is close to the threshold value A.
 ステップS12の判定が否定的な間は、コントローラ12はステップS10とS11の処理を繰り返し実行する。ステップS12の判定が肯定的に転じると、コントローラ12はステップS13で油圧ユニット8を介して摩擦締結要素3A,3Bを完全締結状態にして、ルーチンを終了する。 While the determination in step S12 is negative, the controller 12 repeatedly executes the processes in steps S10 and S11. If the determination in step S12 is positive, the controller 12 sets the frictional engagement elements 3A and 3B in the fully engaged state via the hydraulic unit 8 in step S13, and ends the routine.
 FIGS.4A-4Eを参照して、以上の駆動力制御ルーチンの実行結果を説明する。 Fig. The execution results of the above driving force control routine will be described with reference to 4A-4E.
 ハイブリッド駆動電気自動車20がコースト走行している場合には、FIG.4Cに示すように、(プロペラシャフト14の回転速度xギア比)の値が電動モータ/ジェネレータ1の出力軸1Aの回転速度を上回っている。この状態では、ワンウェイクラッチ10がプロペラシャフト14と出力軸1Aとを自由に相対回転させている。この場合には、摩擦締結要素3A,3Bがスリップモードであっても、摩擦締結要素3A,3Bの入力回転速度と出力回転速度は等しく、摩擦締結要素3A,3Bはスリップしていない。したがって、ステップS1の判定は肯定的となる。 When the hybrid drive electric vehicle 20 is coasting, FIG. As shown in 4C, the value of (rotational speed of the propeller shaft x gear ratio) exceeds the rotational speed of the output shaft 1A of the electric motor / generator 1. In this state, the one-way clutch 10 freely rotates the propeller shaft 14 and the output shaft 1A relative to each other. In this case, even if the frictional engagement elements 3A and 3B are in the slip mode, the input rotational speed and the output rotational speed of the frictional engagement elements 3A and 3B are equal, and the frictional engagement elements 3A and 3B are not slipping. Therefore, the determination in step S1 is affirmative.
 この状態で時刻t1にアクセルペダルが踏み込まれると、ステップS2の判定が肯定的に転じ、ステップS3の判定も肯定的となるため、コントローラ12はステップS4で、FIG.4Cに示すように、電動モータ/ジェネレータ1の出力軸1Aの回転速度を上昇率R1のもとで上昇させる。 In this state, if the accelerator pedal is depressed at time t1, the determination in step S2 turns positive, and the determination in step S3 also becomes positive. Therefore, the controller 12 determines in FIG. As shown in 4C, the rotational speed of the output shaft 1A of the electric motor / generator 1 is increased at an increase rate R1.
 時刻t2になると、出力軸1Aの回転速度が(プロペラシャフト14の回転速度xギア比)の値に追いつき、ワンウェイクラッチ10が出力軸1Aからプロペラシャフト15へのトルク伝達を開始する。その結果、ステップS3の判定が肯定的に転じる。コントローラ12は以後、電動モータ/ジェネレータ1の出力軸1Aの回転速度を、インギア回転速度プラス増分αへと上昇率R2のもとで上昇させる。時刻t2においてワンウェイクラッチ10がトルク伝達を開始する際のショックはスリップモードにある摩擦締結要素3A,3Bのスリップ回転により吸収される。したがって、上昇率R1の値を大きく設定しても、ワンウェイクラッチ10がトルク伝達を開始する際のショックがドライバや同乗者に違和感を与えることはない。 At time t2, the rotational speed of the output shaft 1A catches up with the value of (the rotational speed of the propeller shaft 14 × the gear ratio), and the one-way clutch 10 starts torque transmission from the output shaft 1A to the propeller shaft 15. As a result, the determination in step S3 turns positive. Thereafter, the controller 12 increases the rotational speed of the output shaft 1A of the electric motor / generator 1 to the in-gear rotational speed plus the increment α at the rate of increase R2. The shock when the one-way clutch 10 starts torque transmission at time t2 is absorbed by the slip rotation of the frictional engagement elements 3A and 3B in the slip mode. Therefore, even if the value of the rate of increase R1 is set large, the shock when the one-way clutch 10 starts torque transmission does not give the driver or passenger a sense of incongruity.
 時刻t2以降は、出力軸1Aからプロペラシャフト14へのトルク伝達が行なわれ、摩擦締結要素3A,3Bがスリップ回転する。コントローラ12は電動モータ/ジェネレータ1の出力軸1Aの回転速度の上昇に対応してステップS6で油圧ユニット8から摩擦締結要素3A,3Bへ供給される油圧を上昇させる。その結果、FIG.4Cに示すように、電動モータ/ジェネレータ1の出力軸1Aの回転速度と、プロペラシャフト14の回転速度は、増分αに相当する一定の差を保ちつつ、それぞれなだらかに上昇する。この状態では、自動変速機4へ入力する回転トルクを摩擦締結要素3A,3Bがスリップ状態でプロペラシャフト14へと出力することで駆動輪RR,RLを駆動する。 After time t2, torque is transmitted from the output shaft 1A to the propeller shaft 14, and the frictional engagement elements 3A and 3B rotate in a slip manner. In response to the increase in the rotational speed of the output shaft 1A of the electric motor / generator 1, the controller 12 increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B in step S6. As a result, FIG. As shown in 4C, the rotational speed of the output shaft 1A of the electric motor / generator 1 and the rotational speed of the propeller shaft 14 increase gently while maintaining a certain difference corresponding to the increment α. In this state, the rotational torque input to the automatic transmission 4 is output to the propeller shaft 14 while the frictional engagement elements 3A and 3B are slipping to drive the drive wheels RR and RL.
 時刻t1からの経過時間と、クラッチ5が同期状態となってからの経過時間がともに所定時間に達する時刻t3において、ステップS7の判定が肯定的に転じる。コントローラ12はステップS8で、摩擦締結要素3A,3Bのスリップ回転を小さくする方向へと、電動モータ/ジェネレータ1の回転速度を低下させる。この処理は、ステップS9で摩擦締結要素3A,3Bのスリップ回転速度がしきい値B以下となるまで繰り返し実行される。 At time t3 when both the elapsed time from time t1 and the elapsed time since the clutch 5 is in the synchronized state reach the predetermined time, the determination in step S7 is positively changed. In step S8, the controller 12 decreases the rotation speed of the electric motor / generator 1 in a direction to reduce the slip rotation of the frictional engagement elements 3A and 3B. This process is repeatedly executed until the slip rotation speed of the frictional engagement elements 3A and 3B becomes the threshold value B or less in step S9.
 ステップS9の判定が肯定的に転じると、コントローラ12はステップS10で電動モータ/ジェネレータ1の制御の対象を回転速度からトルクに切り換える。さらにステップS13で油圧ユニット8から摩擦締結要素3A,3Bへ供給される油圧を締結状態に向けて上昇させる。 If the determination in step S9 is positive, the controller 12 switches the control target of the electric motor / generator 1 from the rotational speed to the torque in step S10. Further, in step S13, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B is increased toward the engaged state.
 時刻t4にステップS12で、摩擦締結要素3A,3Bのスリップ回転速度かしきい値C以下になり、スリップ回転は事実上ゼロの状態に収束する。コントローラ12はステップS13で油圧ユニット8から摩擦締結要素3A,3Bへ供給される油圧をさらに上昇させ、時刻t5に摩擦締結要素3A,3Bを完全締結状態とする。 At time t4, in step S12, the slip rotation speed of the frictional engagement elements 3A and 3B becomes equal to or lower than the threshold value C, and the slip rotation converges to a substantially zero state. In step S13, the controller 12 further increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement elements 3A and 3B, and sets the frictional engagement elements 3A and 3B to the fully engaged state at time t5.
 以上のように、FIG.2の駆動力制御ルーチンの実行により、アクセルペダルの踏み込み後直ちに大きな上昇率R1のもとで電動モータ/ジェネレータ1の出力軸1Aの回転速度を上昇させるので、短時間のうちにワンウェイクラッチ10にトルク伝達を開始させることができる。この時、摩擦締結要素3A,3Bはスリップ動作モードのため、ワンウェイクラッチ10のトルク伝達開始に伴うショックは摩擦締結要素3A,3Bのスリップによって吸収され、ドライバやパッセンジャには伝わらない。その後は、電動モータ/ジェネレータ1の出力回転速度を上昇率R2のもとでインギア回転速度プラス増分αまで上昇させ、摩擦締結要素3A,3Bのスリップ回転のもとで、電動モータ/ジェネレータ1の駆動トルクを駆動輪RR,RLへと伝達する。 As described above, FIG. By executing the driving force control routine of No. 2, the rotational speed of the output shaft 1A of the electric motor / generator 1 is increased immediately after the accelerator pedal is depressed under a large increase rate R1, so that the one-way clutch 10 can be engaged in a short time. Torque transmission can be started. At this time, since the frictional engagement elements 3A and 3B are in the slip operation mode, the shock accompanying the start of torque transmission of the one-way clutch 10 is absorbed by the slip of the frictional engagement elements 3A and 3B and is not transmitted to the driver or the passenger. Thereafter, the output rotational speed of the electric motor / generator 1 is increased to the in-gear rotational speed plus the increment α at the rate of increase R2, and the electric motor / generator 1 is rotated under the slip rotation of the frictional engagement elements 3A, 3B. Drive torque is transmitted to drive wheels RR and RL.
 その後は、コントローラ12は電動モータ/ジェネレータ1の出力軸1Aの回転速度を低下させることで、摩擦締結要素3A,3Bのスリップ回転をゼロに向けて収束させ、収束後に、摩擦締結要素3A,3Bを完全締結状態とする。 Thereafter, the controller 12 reduces the rotational speed of the output shaft 1A of the electric motor / generator 1 to converge the slip rotation of the friction engagement elements 3A and 3B toward zero, and after the convergence, the friction engagement elements 3A and 3B Is in a completely fastened state.
 FIGS.5Aと5Bを参照して、この駆動力制御ルーチンの実行がもたらす作用を共線図を用いて説明する。破線はワンウェイクラッチ10がトルク伝達状態で、かつ自動変速機4内部に滑りがないインギア状態での変速特性を示す。INPUTの軸と破線との交点が電動モータ/ジェネレータ1の出力軸1Aの回転速度を、OUTPUTの軸と破線との交点がインギア状態における自動変速機4の出力回転速度、ないしはプロペラシャフト14の回転速度に相当する。各縦軸と原点、即ち図の左端の縦軸との距離の比が変速比を表す。ここでは、自動変速機4のローブレーキ(L/B)が摩擦締結要素3A,3Bを構成する。 Fig. With reference to FIGS. 5A and 5B, the operation brought about by the execution of the driving force control routine will be described using a nomograph. The broken line indicates the speed change characteristic when the one-way clutch 10 is in a torque transmission state and in an in-gear state in which there is no slip inside the automatic transmission 4. The intersection of the INPUT axis and the broken line is the rotation speed of the output shaft 1A of the electric motor / generator 1, and the intersection of the OUTPUT axis and the broken line is the output rotation speed of the automatic transmission 4 or the rotation of the propeller shaft 14 in the in-gear state. Corresponds to speed. The ratio of the distance between each vertical axis and the origin, that is, the vertical axis at the left end of the figure represents the gear ratio. Here, the low brake (L / B) of the automatic transmission 4 constitutes the friction engagement elements 3A and 3B.
 コースト走行においては、FIG.5Aに示すように、コントローラ12が入力回転速度を電動モータ/ジェネレータ1の制御により出力軸1Aの回転速度を低下させる。このとき、ワンウェイクラッチ10がトルク伝達状態であれは、自動変速機4のローブレーキ(L/B)位置では図の点線に示す回転速度となるはずである、しかし、ワンウェイクラッチ10はトルクを伝達していないため、出力軸1Aの回転速度が低下するのみで、ローブレーキ(L/B)位置の回転速度は変化しない。 In coast driving, the FIG. As shown in 5A, the controller 12 reduces the rotational speed of the output shaft 1A by controlling the electric motor / generator 1 with the input rotational speed. At this time, if the one-way clutch 10 is in the torque transmission state, the rotational speed shown in the dotted line in the drawing should be the low brake (L / B) position of the automatic transmission 4, but the one-way clutch 10 transmits the torque. Therefore, only the rotational speed of the output shaft 1A is lowered, and the rotational speed at the low brake (L / B) position is not changed.
 コースト走行からアクセルペダルが踏み込まれると、FIG.4Bに示すように、電動モータ/ジェネレータ1の制御により出力軸1Aの回転速度が上昇する。これに伴いワンウェイクラッチ10がトルク伝達を開始する。自動変速機4がインギア状態であれば、図のOUTPUT位置に相当するプロペラシャフト14の回転速度も急変し、これに伴いショックが発生する。しかしながら、この実施形態においては、摩擦締結要素3A,3Bを構成するローブレーキ(L/B)のスリップにより図のOUTPUT位置に相当するプロペラシャフト14の回転速度を変化させない。結果として、ドライバやパッセンジャーはショックを感じない。なお、ローブレーキ(L/B)を徐々に締結することで、図のOUTPUT位置に相当するプロペラシャフト14の回転速度が上昇する。 When the accelerator pedal is depressed from coasting, the FIG. As shown in 4B, the rotational speed of the output shaft 1A is increased by the control of the electric motor / generator 1. Along with this, the one-way clutch 10 starts torque transmission. If the automatic transmission 4 is in the in-gear state, the rotational speed of the propeller shaft 14 corresponding to the OUTPUT position in the figure also changes suddenly, and a shock is generated accordingly. However, in this embodiment, the rotational speed of the propeller shaft 14 corresponding to the OUTPUT position in the figure is not changed by the slip of the low brake (L / B) constituting the friction engagement elements 3A and 3B. As a result, drivers and passengers do not feel shocked. Note that by gradually engaging the low brake (L / B), the rotational speed of the propeller shaft 14 corresponding to the OUTPUT position in the figure increases.
 以上のように、この駆動力制御ルーチンの実行により、コースト走行からのアクセルペダルの踏み込みに対して、ワンウェイクラッチ10のトルク伝達開始に伴うショックを吸収しつつ、高い加速レスポンスを得ることができる。 As described above, by executing this driving force control routine, it is possible to obtain a high acceleration response while absorbing the shock accompanying the start of torque transmission of the one-way clutch 10 when the accelerator pedal is depressed from coasting.
 また、この駆動力制御ルーチンによれば、ワンウェイクラッチ10がトルク伝達状態となった後、電動モータ/ジェネレータ1の回転数制御により所定時間に渡って摩擦締結要素3A,3Bがスリップモードに保持される。そのため、自動変速機4の入力回転速度の吹き上がりが抑制され、摩擦締結要素3A,3Bの安定したスリップ状態を維持することができる。さらに、所定時間をアクセル開度に応じて設定するので、アクセル開度が大きい場合は、摩擦締結要素3A,3Bのスリップ動作モードを長めに維持してトルク変動によるショックの抑制を図り、アクセル開度が小さい場合は、スリップモードの期間を短くして摩擦締結要素3A,3Bの発熱量を抑制することができる。 Further, according to this driving force control routine, after the one-way clutch 10 enters the torque transmission state, the frictional engagement elements 3A and 3B are held in the slip mode for a predetermined time by controlling the rotational speed of the electric motor / generator 1. The Therefore, the increase in the input rotational speed of the automatic transmission 4 is suppressed, and the stable slip state of the frictional engagement elements 3A and 3B can be maintained. Furthermore, since the predetermined time is set according to the accelerator opening, when the accelerator opening is large, the slip operation mode of the frictional engagement elements 3A and 3B is maintained longer to suppress the shock due to torque fluctuation and the accelerator opening. When the degree is small, the heat generation amount of the frictional engagement elements 3A and 3B can be suppressed by shortening the slip mode period.
 さらに、この駆動力制御ルーチンにおいては、電動モータ/ジェネレータ1の回転速度を低下させて、摩擦締結要素3A,3Bのスリップ回転を収束させた後に、摩擦締結要素3A,3Bを締結している。そのため、出力軸1Aのイナーシャ変化によるショックを防止できる。また、摩擦締結要素3A,3Bの締結前に電動モータ/ジェネレータ1の回転速度制御からトルク制御への切り換えを行なうので、切り換えに伴うトルク段差が摩擦締結要素3A,3Bのスリップ回転により吸収され、トルク段差によるショックを防止できる。 Furthermore, in this driving force control routine, the rotational speed of the electric motor / generator 1 is decreased to converge the slip rotation of the frictional engagement elements 3A and 3B, and then the frictional engagement elements 3A and 3B are engaged. Therefore, it is possible to prevent a shock due to the inertia change of the output shaft 1A. In addition, since the switching from the rotational speed control to the torque control of the electric motor / generator 1 is performed before the frictional engagement elements 3A and 3B are engaged, the torque step accompanying the change is absorbed by the slip rotation of the frictional engagement elements 3A and 3B. Shocks due to torque steps can be prevented.
 この駆動力制御ルーチンでは、ワンウェイクラッチ10のトルク伝達開始前の電動モータ/ジェネレータ1の回転速度の上昇率R1をワンウェイクラッチ10のトルク伝達状態における上昇率R2より大きな値に設定している。そのため、アクセルペダルの踏み込みに対してワンウェイクラッチ10のトルク伝達開始を早めることができる。その結果、入力トルクが増大する前にワンウェイクラッチ10がトルク伝達を開始するので、係合ショックを低減する上で好ましい効果が得られる。早期にワンウェイクラッチ10にトルク伝達を開始させることは、加速レスポンスの向上にも好ましい効果をもたらす。 In this driving force control routine, the rate of increase R1 of the electric motor / generator 1 before starting the torque transmission of the one-way clutch 10 is set to a value larger than the rate of increase R2 in the torque transmission state of the one-way clutch 10. Therefore, the torque transmission start of the one-way clutch 10 can be accelerated with respect to the depression of the accelerator pedal. As a result, since the one-way clutch 10 starts torque transmission before the input torque increases, a favorable effect can be obtained in reducing the engagement shock. Starting torque transmission to the one-way clutch 10 at an early stage has a favorable effect for improving acceleration response.
 さらに、この駆動力制御ルーチンでは、スリップモードにおける摩擦締結要素3A,3Bのスリップ回転速度を、アクセル開度に応じて設定している。具体的には、アクセル開度の大きい場合は、スリップ回転速度を大きく設定し、アクセル開度が小さい場合にはスリップ回転速度を小さく設定している。その結果、アクセル開度の大きい場合はトルク変動の吸収容量を増やしてショックの抑制機能を高める一方、アクセル開度の小さい場合は摩擦締結要素3A,3Bの発熱量を抑えることができる。 Furthermore, in this driving force control routine, the slip rotation speeds of the frictional engagement elements 3A and 3B in the slip mode are set according to the accelerator opening. Specifically, when the accelerator opening is large, the slip rotation speed is set large, and when the accelerator opening is small, the slip rotation speed is set small. As a result, when the accelerator opening is large, the torque fluctuation absorption capacity is increased to enhance the shock suppression function, while when the accelerator opening is small, the heat generation amount of the frictional engagement elements 3A and 3B can be suppressed.
 以上の説明に関して2012年3月13日を出願日とする日本国における特願2012-56149号、の内容をここに引用により合体する。 Regarding the above description, the contents of Japanese Patent Application No. 2012-56149 in Japan, whose application date is March 13, 2012, are incorporated herein by reference.
 以上、この発明を特定の実施形態を通じて説明してきたが、この発明は上記の実施形態に限定されるものではない。当業者にとっては、クレームの技術範囲で上記の実施形態にさまざまな修正あるいは変更を加えることが可能である。 As mentioned above, although this invention has been described through specific embodiments, this invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to the above-described embodiments within the technical scope of the claims.
 例えば、上記の実施形態はハイブリッド駆動電気自動車を対象としているが、この発明は内燃エンジンを有さず、電動モータのみの動力で走行する電動車両にも適用可能である。 For example, although the above-described embodiment is directed to a hybrid drive electric vehicle, the present invention can be applied to an electric vehicle that does not have an internal combustion engine and travels using only an electric motor.
 上記の実施形態では、摩擦締結要素3A,3Bを自動変速機4に内蔵しているが、自動変速機4内の摩擦締結要素とは別に、電動モータ/ジェネレータ1と自動変速機4の間、または自動変速機4とプロペラシャフト14の間に、独立した摩擦締結要素を介装しても良い。 In the above embodiment, the frictional engagement elements 3A and 3B are built in the automatic transmission 4, but separately from the frictional engagement element in the automatic transmission 4, between the electric motor / generator 1 and the automatic transmission 4, Alternatively, an independent friction engagement element may be interposed between the automatic transmission 4 and the propeller shaft 14.
 ワンウェイクラッチ10を、自動変速機4に内装せずに、電動モータ/ジェネレータ1と自動変速機4の間、または自動変速機4とプロペラシャフト14の間に介装しても良い。 The one-way clutch 10 may be interposed between the electric motor / generator 1 and the automatic transmission 4 or between the automatic transmission 4 and the propeller shaft 14 without being installed in the automatic transmission 4.
 以上のように、この発明による電動車両の駆動力制御装置及び制御方法はコースト走行からの加速におけるショックを加速性能を損なわずに低減する。したがって、この発明により走行用動力源に電動モータを有する電気自動車やハイブリッド駆動電動車両の乗り心地の改善に好ましい効果が得られる。 As described above, the driving force control apparatus and control method for an electric vehicle according to the present invention reduces the shock in acceleration from coasting without impairing the acceleration performance. Therefore, the present invention provides a favorable effect for improving riding comfort of an electric vehicle or a hybrid drive electric vehicle having an electric motor as a driving power source.
 この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。 The exclusive properties or features included in the embodiments of the present invention are claimed as follows.

Claims (8)

  1.  電動モータと、ドライバの加速要求を検出するアクセルペダルと、電動モータの駆動量により回転する駆動輪と、電動モータと駆動輪の間の駆動力伝達経路に介装され、電動モータから駆動輪へのトルクを伝達する一方、駆動輪から電動モータへのトルク伝達を遮断するワンウェイクラッチと、駆動力伝達経路に介装され、締結状態でトルクを互いに伝達する一方、互いのスリップが可能なスリップ動作モードを有する摩擦締結要素とを備えた電動車両、のための駆動力制御装置において:
     次のようにプログラムされたプログラマブルコントローラ:
     ワンウェイクラッチが駆動輪から電動モータへのトルク伝達を遮断している状態でアクセルペダルが踏み込まれた場合に、電動モータの運転が加速するように電動モータを制御し;
     ワンウェイクラッチが電動モータから駆動輪へのトルク伝達を開始するまで摩擦締結要素がスリップ動作モードを保つように摩擦締結要素を制御する、
     を備えた電動車両の駆動力制御装置。
    An electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that rotates according to the driving amount of the electric motor, and a driving force transmission path between the electric motor and the driving wheel are interposed between the electric motor and the driving wheel. A one-way clutch that cuts off torque transmission from the drive wheels to the electric motor and a drive force transmission path that transmits torque to each other while transmitting torque to each other in the engaged state, while allowing slippage between each other In a driving force control device for an electric vehicle with a frictional engagement element having a mode:
    Programmable controller programmed as follows:
    Controlling the electric motor so that the operation of the electric motor is accelerated when the accelerator pedal is depressed with the one-way clutch blocking torque transmission from the drive wheel to the electric motor;
    Controlling the frictional engagement element so that the frictional engagement element remains in the slip operation mode until the one-way clutch begins to transmit torque from the electric motor to the drive wheel,
    A driving force control device for an electric vehicle comprising:
  2.  コントローラは、ワンウェイクラッチがトルク伝達状態にあるかどうかを判定し、ワンウェイクラッチがトルク伝達状態にある判定した後に、締結状態となるように摩擦締結要素を制御するよう、さらにプログラムされる請求項1に記載の電動車両の駆動力制御装置。 The controller is further programmed to determine whether the one-way clutch is in a torque transmission state and to control the frictional engagement element to be in an engaged state after determining that the one-way clutch is in a torque transmission state. A driving force control device for an electric vehicle according to claim 1.
  3.  コントローラは、ワンウェイクラッチがトルク伝達状態にあると判定した後、所定期間に渡ってスリップ動作プモードを保持するように摩擦締結要素を制御するようさらにプログラムされる、請求項2に記載の電動車両の駆動力制御装置。 The electric vehicle according to claim 2, wherein the controller is further programmed to control the frictional engagement element to maintain the slip operation mode for a predetermined period of time after determining that the one-way clutch is in a torque transmission state. Driving force control device.
  4.  前記所定期間は、アクセルペダルの踏み込み量に応じて設定される、請求項3に記載の電動車両の駆動力制御装置。 The driving force control device for an electric vehicle according to claim 3, wherein the predetermined period is set according to an amount of depression of an accelerator pedal.
  5.  コントローラは、ワンウェイクラッチがトルク伝達状態にあると判定した後、電動モータの回転速度を低下させて、摩擦締結要素のスリップ回転を所定スリップ回転速度へと収束させた後に、摩擦締結要素を締結状態とするようさらにプログラムされる、請求項2から4のいずれかに記載の電動車両の駆動力制御装置。 After determining that the one-way clutch is in a torque transmission state, the controller reduces the rotational speed of the electric motor to converge the slip rotation of the friction engagement element to a predetermined slip rotation speed, and then engages the friction engagement element. The driving force control device for an electric vehicle according to any one of claims 2 to 4, further programmed to be
  6.  コントローラは、ワンウェイクラッチのトルク遮断状態における電動モータの加速度が、ワンウェイクラッチのトルク伝達状態における電動モータの加速度より大きな値となるように、電動モータを制御するようさらにプログラムされる、請求項1から5のいずれかに記載の電動車両の駆動力制御装置。 The controller is further programmed to control the electric motor such that the acceleration of the electric motor in the torque cutoff state of the one-way clutch is greater than the acceleration of the electric motor in the torque transmission state of the one-way clutch. The driving force control apparatus for an electric vehicle according to any one of claims 5 to 6.
  7.  コントローラは、スリップ動作モードにおける摩擦締結要素のスリップ回転速度を、アクセルペダルの踏み込み量に応じて設定するさらにプログラムされる、請求項1から6のいずれかに記載の電動車両の駆動力制御装置。 7. The driving force control apparatus for an electric vehicle according to claim 1, wherein the controller is further programmed to set a slip rotation speed of the frictional engagement element in the slip operation mode in accordance with an accelerator pedal depression amount.
  8.  電動モータと、ドライバの加速要求を検出するアクセルペダルと、電動モータの駆動量により回転する駆動輪と、電動モータと駆動輪の間の駆動力伝達経路に介装され、電動モータから駆動輪へのトルクを伝達する一方、駆動輪から電動モータへのトルク伝達を遮断するワンウェイクラッチと、駆動力伝達経路に介装され、締結状態でトルクを互いに伝達する一方、互いのスリップが可能なスリップ動作モードを有する摩擦締結要素とを備えた電動車両、のための駆動力制御方法において、
     ワンウェイクラッチが駆動輪から電動モータへのトルク伝達を遮断している状態でアクセルペダルが踏み込まれた場合に、電動モータの運転が加速するように電動モータを制御し;
     ワンウェイクラッチが電動モータから駆動輪へのトルク伝達を開始するまで摩擦締結要素がスリップ動作モードを保つように摩擦締結要素を制御する、
     電動車両の駆動力制御方法。
    An electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that rotates according to the driving amount of the electric motor, and a driving force transmission path between the electric motor and the driving wheel are interposed between the electric motor and the driving wheel. A one-way clutch that cuts off torque transmission from the drive wheels to the electric motor and a drive force transmission path that transmits torque to each other while transmitting torque to each other in the engaged state, while allowing slippage between each other In a driving force control method for an electric vehicle comprising a frictional engagement element having a mode,
    Controlling the electric motor so that the operation of the electric motor is accelerated when the accelerator pedal is depressed with the one-way clutch blocking torque transmission from the drive wheel to the electric motor;
    Controlling the frictional engagement element so that the frictional engagement element remains in the slip operation mode until the one-way clutch begins to transmit torque from the electric motor to the drive wheel,
    A driving force control method for an electric vehicle.
PCT/JP2013/055911 2012-03-13 2013-03-05 Electric vehicle driving force control device and control method WO2013137051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012056149A JP2015109715A (en) 2012-03-13 2012-03-13 Driving force control device and control method for electric vehicle
JP2012-056149 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013137051A1 true WO2013137051A1 (en) 2013-09-19

Family

ID=49160964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055911 WO2013137051A1 (en) 2012-03-13 2013-03-05 Electric vehicle driving force control device and control method

Country Status (2)

Country Link
JP (1) JP2015109715A (en)
WO (1) WO2013137051A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210609A (en) * 2007-03-19 2007-08-23 Toyota Motor Corp Controller and control method for vehicle
JP2008081099A (en) * 2006-08-29 2008-04-10 Nissan Motor Co Ltd Controller for hybrid car
JP2008290492A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Coast traveling control device for hybrid vehicle
JP2009214640A (en) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd Control device for hybrid car
WO2010134402A1 (en) * 2009-05-22 2010-11-25 日産自動車株式会社 Device and method for controlling electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081099A (en) * 2006-08-29 2008-04-10 Nissan Motor Co Ltd Controller for hybrid car
JP2007210609A (en) * 2007-03-19 2007-08-23 Toyota Motor Corp Controller and control method for vehicle
JP2008290492A (en) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd Coast traveling control device for hybrid vehicle
JP2009214640A (en) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd Control device for hybrid car
WO2010134402A1 (en) * 2009-05-22 2010-11-25 日産自動車株式会社 Device and method for controlling electric vehicle

Also Published As

Publication number Publication date
JP2015109715A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
EP1970240B1 (en) Engine start control system for hybrid vehicle
JP5045431B2 (en) Engine start control device for hybrid vehicle
JP5904271B2 (en) Engine start control device and start control method for hybrid drive electric vehicle
JP6130367B2 (en) Vehicle control device
WO2009109826A1 (en) Control apparatus and method for controlling a hybrid vehicle
US9199637B1 (en) Engine autostop control system and method for hybrid powertrain
JP5377623B2 (en) How to control the overrun mode of a car
JP6075355B2 (en) Automobile
JP2008195143A (en) Cooperative regenerative braking control device of hybrid vehicle
JP4257608B2 (en) Hybrid vehicle drive device and control method thereof
JP6114631B2 (en) Vehicle control device
JP6991437B2 (en) Leisure vehicle
JP7263801B2 (en) Hybrid vehicle control device
JP6187497B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE
JP5218161B2 (en) Control device for hybrid vehicle
US11613248B2 (en) Control apparatus for hybrid vehicle
WO2013137051A1 (en) Electric vehicle driving force control device and control method
JP2010168007A (en) Driving control device
JP4180559B2 (en) Automatic engine stop device for vehicle
JP2012218689A (en) Vehicle controller
JP6614052B2 (en) Automobile
JP2021062757A (en) Drive control device for hybrid vehicle
JP5538034B2 (en) Vehicle driving force control device
JP6740763B2 (en) Automobile
JP7388304B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP