JP2015109715A - Driving force control device and control method for electric vehicle - Google Patents

Driving force control device and control method for electric vehicle Download PDF

Info

Publication number
JP2015109715A
JP2015109715A JP2012056149A JP2012056149A JP2015109715A JP 2015109715 A JP2015109715 A JP 2015109715A JP 2012056149 A JP2012056149 A JP 2012056149A JP 2012056149 A JP2012056149 A JP 2012056149A JP 2015109715 A JP2015109715 A JP 2015109715A
Authority
JP
Japan
Prior art keywords
electric motor
way clutch
driving force
engagement element
force control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012056149A
Other languages
Japanese (ja)
Inventor
弘毅 松井
Hiroki Matsui
弘毅 松井
広樹 下山
Hiroki Shimoyama
広樹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012056149A priority Critical patent/JP2015109715A/en
Priority to PCT/JP2013/055911 priority patent/WO2013137051A1/en
Publication of JP2015109715A publication Critical patent/JP2015109715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance acceleration responsiveness while absorbing engagement shock of a one-way clutch accompanying acceleration of an electric vehicle from a coast travel state.SOLUTION: An electric vehicle: transmits power of an electric motor/generator 1 to driving wheels RR and RL through a friction fastening element 3 having a one-way clutch and a slip mode; when an accelerator pedal is pedaled from a coast travel state where the one-way clutch is disengaged, accelerates the electric motor/generator 1 to improve acceleration responsiveness; and maintains the friction fastening element 3 in the slip mode until the one-way clutch is engaged so as to make the friction fastening element 3 absorb shock accompanying the engagement of the one-way clutch when accelerating the electric motor/generator 1.

Description

この発明は、ハイブリッド駆動電気自動車を含む電動車両の駆動力制御に関する。   The present invention relates to driving force control of an electric vehicle including a hybrid drive electric vehicle.

ハイブリッド駆動電気自動車の駆動力制御に関して、特許文献1はドライバかアクセルペダルを踏まない、いわゆるコースト走行時におけるトルクショックの発生防止に関する提案を行なっている。   Regarding driving force control of a hybrid electric vehicle, Patent Document 1 proposes a method for preventing the occurrence of torque shock during so-called coasting where the driver or accelerator pedal is not depressed.

対象となるハイブリッド駆動電気自動車は、ワンウェイクラッチと摩擦締結要素とを介して電動モータにプロペラシャフトを接続したパワートレーンを備えている。駆動輪はプロペラシャフトにより回転駆動される。さらに、内燃エンジンと電動モータとがクラッチを介して接続される。   The target hybrid drive electric vehicle includes a power train in which a propeller shaft is connected to an electric motor via a one-way clutch and a frictional engagement element. The drive wheel is driven to rotate by a propeller shaft. Furthermore, the internal combustion engine and the electric motor are connected via a clutch.

車両の運転中にドライバが踏んでいたアクセルペダルから足を離すと、電動モータの回転速度が低下し、駆動輪に結合したプロペラシャフト側の回転速度が、電動モータ側の回転速度を上回る。この状態では、ワンウェイクラッチは開放され、プロペラシャフトは自由回転するので、プロペラシャフトの回転トルクが電動モータへ入力されることはない。この走行状態をコースト走行状態と称する。   When the driver removes his or her foot from the accelerator pedal, the rotational speed of the electric motor decreases, and the rotational speed on the side of the propeller shaft coupled to the drive wheels exceeds the rotational speed on the side of the electric motor. In this state, the one-way clutch is released and the propeller shaft rotates freely, so that the rotation torque of the propeller shaft is not input to the electric motor. This traveling state is referred to as a coast traveling state.

コースト走行状態が続くと、電動モータの回転速度はアイドリング相当の回転速度に維持される一方で、プロペラシャフトの回転速度は徐々に低下する。その結果、電動モータ側の回転速度がプロペラシャフト側の回転速度を上回ると、ワンウェイクラッチが係合し、その際にショックをもたらす可能性がある。   When the coasting state continues, the rotation speed of the electric motor is maintained at a rotation speed equivalent to idling, while the rotation speed of the propeller shaft gradually decreases. As a result, if the rotation speed on the electric motor side exceeds the rotation speed on the propeller shaft side, the one-way clutch may be engaged, and a shock may be caused at that time.

特許文献1の従来技術はこのショックを防止するために、アクセルペダルが解放されると、電動モータ側の回転速度をプロペラシャフト側の回転速度より低い値へと制御し、その状態でクラッチをスリップモードにすることを提案している。ここで、スリップモードとはクラッチがスリップ可能な状態でトルク伝達を行なう状態を言う。クラッチがスリップモードで可動している場合には、プロペラシャフトの回転速度の低下によりワンウェイクラッチが再び係合しても、係合に伴うトルクショックはクラッチのスリップによって吸収され、ショックは車体に伝わらない。   In order to prevent this shock, the prior art of Patent Document 1 controls the rotational speed on the electric motor side to a value lower than the rotational speed on the propeller shaft side when the accelerator pedal is released, and slips the clutch in that state. Proposed to be in mode. Here, the slip mode refers to a state in which torque is transmitted in a state where the clutch can slip. When the clutch is operating in the slip mode, even if the one-way clutch is engaged again due to a decrease in the rotation speed of the propeller shaft, the torque shock accompanying the engagement is absorbed by the clutch slip and the shock is transmitted to the vehicle body. Absent.

特許文献1の従来技術はコースト走行中のワンウェイクラッチの再締結のショック防止に好ましい効果をもたらす。   The prior art of Patent Document 1 has a favorable effect for preventing the shock of re-engagement of the one-way clutch during coasting.

特開平2008−290242号公報JP 2008-290242 A

一方、コースト走行状態からドライバがアクセルペダルを踏むと、電動モータ側の回転速度が上昇し、プロペラシャフト側の回転速度を上回ることでワンウェイクラッチが係合する。このとき、アクセルペダルの踏み込みに合わせて電動モータの回転速度を急上昇させると、ワンウェイクラッチの係合に伴ってショックが発生する。特許文献1の従来技術は、電動モータの回転速度をプロペラシャフトの回転速度より低い値へと制御するので、アクセルペダルの踏み込みによる加速要求とは相容れず、加速時のワンウェイクラッチの係合ショックを防止することはできない。   On the other hand, when the driver depresses the accelerator pedal from the coasting state, the rotational speed on the electric motor side increases, and the one-way clutch is engaged by exceeding the rotational speed on the propeller shaft side. At this time, if the rotational speed of the electric motor is rapidly increased in accordance with the depression of the accelerator pedal, a shock is generated with the engagement of the one-way clutch. The prior art of Patent Document 1 controls the rotation speed of the electric motor to a value lower than the rotation speed of the propeller shaft, so that it is incompatible with the acceleration request due to depression of the accelerator pedal, and the engagement shock of the one-way clutch during acceleration. Cannot be prevented.

このショックは、アクセルペダルの踏み込みに対する電動モータの回転速度の上昇を緩やかにすれば小さくできる。しかし、その場合には、アクセルペダルの踏み込みから車両の加速に至る加速レスポンスが悪くなることは避けられない。   This shock can be reduced by moderately increasing the rotational speed of the electric motor with respect to the depression of the accelerator pedal. However, in that case, it is inevitable that the acceleration response from the depression of the accelerator pedal to the acceleration of the vehicle becomes worse.

この発明の目的は、したがって、加速時のショックを吸収しつつ、アクセルペダルの踏み込みに対する加速レスポンスを高めることである。   Accordingly, an object of the present invention is to increase an acceleration response to depression of an accelerator pedal while absorbing a shock during acceleration.

以上の目的を達成するために、この発明は、電動モータと、運転者の加速要求を検出するアクセルペダルと、電動モータの駆動力で回転する駆動輪と、電動モータと駆動輪との間の駆動力伝達経路に介装され、電動モータから駆動輪へトルクを伝達し、駆動輪から電動モータへのトルクの伝達を遮断するワンウェイクラッチと、電動モータと駆動輪との間に介装された、スリップモードを有する摩擦締結要素と、を備える電動車両、のための駆動力制御装置を提供する。   In order to achieve the above object, the present invention provides an electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that is rotated by the driving force of the electric motor, and an electric motor and a driving wheel. A one-way clutch that is interposed in the driving force transmission path, transmits torque from the electric motor to the driving wheel, and blocks transmission of torque from the driving wheel to the electric motor, and is interposed between the electric motor and the driving wheel. A driving force control device for an electric vehicle including a frictional engagement element having a slip mode is provided.

駆動力制御装置は、ワンウェイクラッチの非係合状態でアクセルペダルが踏まれた場合に、電動モータを加速する加速手段と、ワンウェイクラッチの係合が完了するまで摩擦締結要素をスリップモードに保持する保持手段と、を備えている。   When the accelerator pedal is stepped on when the one-way clutch is not engaged, the driving force control device holds the acceleration means for accelerating the electric motor and the friction engagement element in the slip mode until the engagement of the one-way clutch is completed. Holding means.

ワンウェイクラッチの非係合状態、すなわち例えばアクセルペダルが踏まれていないコースト走行状態、からアクセルペダルが踏まれた場合に、加速手段が電動モータを加速する。電動モータの回転速度は応答良く上昇し、ワンウェイクラッチのモータ側の回転速度が駆動輪側の回転速度を上回ることでワンウェイクラッチが係合する。このとき、保持手段は摩擦締結要素をスリップモードに保持し、ワンウェイクラッチの係合に伴うショックを摩擦締結要素のスリップに吸収させる。結果として、ワンウェイクラッチの係合に伴うショックを抑えつつ、電動モータによる車両の加速レスポンスを向上させることができる。   The acceleration means accelerates the electric motor when the accelerator pedal is stepped on from a non-engaged state of the one-way clutch, that is, for example, a coasting state where the accelerator pedal is not stepped on. The rotation speed of the electric motor increases with good response, and the one-way clutch is engaged when the rotation speed on the motor side of the one-way clutch exceeds the rotation speed on the drive wheel side. At this time, the holding means holds the frictional engagement element in the slip mode and absorbs the shock accompanying the engagement of the one-way clutch in the slip of the frictional engagement element. As a result, the acceleration response of the vehicle by the electric motor can be improved while suppressing the shock accompanying the engagement of the one-way clutch.

この発明の実施形態によるハイブリッド駆動電気自動車の駆動力制御装置の概略構成図である。1 is a schematic configuration diagram of a driving force control device for a hybrid electric vehicle according to an embodiment of the present invention. この発明の実施形態によるコントローラが実行する駆動力制御ルーチンを示すフローチャートである。It is a flowchart which shows the driving force control routine which the controller by embodiment of this invention performs. コントローラが格納する増分αと所要時間のマップの特性を示すダイアグラムである。It is a diagram which shows the characteristic of the map of the increment (alpha) which a controller stores, and required time. 駆動力制御ルーチンの実行結果を示すタイミングチャートである。It is a timing chart which shows the execution result of a driving force control routine. 駆動力制御ルーチンの実行がもたらす効果を説明するダイアグラムである。It is a diagram explaining the effect which execution of a driving force control routine brings.

図1を参照すると、この発明の実施形態による駆動力制御装置は後輪駆動型のハイブリッド駆動電気自動車20に適用される。ハイブリッド駆動電気自動車20は右前輪FR,左前輪FL,右後輪RR,及び左後輪RLからなる4輪を用いて走行する。このうち、右後輪RRと左後輪RLとが駆動輪を構成する。   Referring to FIG. 1, the driving force control apparatus according to the embodiment of the present invention is applied to a rear-wheel drive type hybrid drive electric vehicle 20. The hybrid drive electric vehicle 20 travels using four wheels including a right front wheel FR, a left front wheel FL, a right rear wheel RR, and a left rear wheel RL. Among these, the right rear wheel RR and the left rear wheel RL constitute drive wheels.

駆動輪である右後輪RRと左後輪RLはディファレンシャル11を介してプロペラシャフト14に結合される。プロペラシャフト14は自動変速機4を介して電動モータ/ジェネレータ1に接続される。電動モータ/ジェネレータ1にはクラッチ5を介して内燃エンジン6が接続される。   The right rear wheel RR and the left rear wheel RL, which are drive wheels, are coupled to the propeller shaft 14 via the differential 11. The propeller shaft 14 is connected to the electric motor / generator 1 via the automatic transmission 4. An internal combustion engine 6 is connected to the electric motor / generator 1 via a clutch 5.

クラッチ5は油圧ユニット9から供給される油圧に応じて、締結位置と解放位置の間で動作する。締結位置では電動モータ/ジェネレータ1と内燃エンジン6との間で双方向にトルクを伝達し、これらを一体回転させる。開放位置では電動モータ/ジェネレータ1と内燃エンジン6とを自由に相対回転させる。   The clutch 5 operates between the engagement position and the release position according to the hydraulic pressure supplied from the hydraulic unit 9. At the fastening position, torque is transmitted bi-directionally between the electric motor / generator 1 and the internal combustion engine 6 to rotate them integrally. In the open position, the electric motor / generator 1 and the internal combustion engine 6 are freely rotated relative to each other.

自動変速機4は遊星歯車式の有段自動変速機で構成され、内部に摩擦締結要素3とワンウェイクラッチとを備える。摩擦締結要素3は例えば、自動変速機4が備えるローブレーキで構成される。摩擦締結要素3は油圧ユニット8から供給される油圧により作動し、締結状態では、電動モータ1の出力軸1Aとプロペラシャフト14とを結合して一体回転させる。開放状態では、電動モータ1の出力軸1Aとプロペラシャフト14とを抵抗なく相対回転させる。   The automatic transmission 4 is a planetary gear type stepped automatic transmission, and includes a frictional engagement element 3 and a one-way clutch. The frictional engagement element 3 is constituted by, for example, a low brake provided in the automatic transmission 4. The frictional engagement element 3 is operated by the hydraulic pressure supplied from the hydraulic unit 8, and in the engaged state, the output shaft 1A of the electric motor 1 and the propeller shaft 14 are coupled to rotate integrally. In the open state, the output shaft 1A of the electric motor 1 and the propeller shaft 14 are relatively rotated without resistance.

なお、クラッチ5と摩擦締結要素3はいずれもスリップモードを有する。スリップモードのクラッチ5は油圧ユニット9から供給される油圧に応じた摩擦抵抗のもとで内燃エンジン6と電動モータ/ジェネレータ1との相対回転を許容する。スリップモードの摩擦締結要素3は、油圧ユニット8から供給される油圧に応じた摩擦抵抗のもとで出力軸1Aとプロペラシャフト14との相対回転を許容する。   Note that both the clutch 5 and the frictional engagement element 3 have a slip mode. The slip mode clutch 5 allows relative rotation between the internal combustion engine 6 and the electric motor / generator 1 under a frictional resistance corresponding to the hydraulic pressure supplied from the hydraulic unit 9. The frictional engagement element 3 in the slip mode allows relative rotation between the output shaft 1A and the propeller shaft 14 under a frictional resistance corresponding to the hydraulic pressure supplied from the hydraulic unit 8.

ワンウェイクラッチは出力軸1Aからプロペラシャフト14へトルクを伝達する一方、プロペラシャフト14から出力軸1Aへはトルクの伝達を行なわない。ここで、トルクは正のトルクを意味する。つまり、電動モータ/ジェネレータ1の出力軸1Aの回転速度が、プロペラシャフト14と自動変速機4のギヤ比の積を上回る場合には、プロペラシャフト14にトルクを伝達してプロペラシャフト14を電動モータ/ジェネレータ1の動力で回転駆動する。一方、プロペラシャフト14の回転速度と自動変速機4のギヤ比の積が出力軸1Aの回転速度を上回る場合には、プロペラシャフト14を空転させ、出力軸1Aにトルクが伝達されないようにする。   The one-way clutch transmits torque from the output shaft 1A to the propeller shaft 14, but does not transmit torque from the propeller shaft 14 to the output shaft 1A. Here, the torque means a positive torque. That is, when the rotational speed of the output shaft 1A of the electric motor / generator 1 exceeds the product of the gear ratio between the propeller shaft 14 and the automatic transmission 4, torque is transmitted to the propeller shaft 14 to cause the propeller shaft 14 to move to the electric motor. / Rotated by the power of the generator 1. On the other hand, when the product of the rotational speed of the propeller shaft 14 and the gear ratio of the automatic transmission 4 exceeds the rotational speed of the output shaft 1A, the propeller shaft 14 is idled so that torque is not transmitted to the output shaft 1A.

電動モータ/ジェネレータ1にはインバータ7が接続される。電動モータ/ジェネレータ1は図示されないバッテリからインバータ7を介して供給される電力により回転する。また、締結状態のクラッチ5を介して入力される内燃エンジン6のトルクを受けて発電を行ない、バッテリへの充電を行なう。   An inverter 7 is connected to the electric motor / generator 1. The electric motor / generator 1 is rotated by electric power supplied from a battery (not shown) via an inverter 7. In addition, it receives the torque of the internal combustion engine 6 input through the clutch 5 in the engaged state, generates electric power, and charges the battery.

電動モータ/ジェネレータ1の運転及び発電は、コントローラ12からインバータ7への入力信号により制御される。摩擦締結要素3の締結、スリップ、解放の3つのモードの切り換えは、コントローラ12から油圧ユニット8への入力信号により行なわれる。クラッチ5の締結、スリップ、解放の3つのモードの切り換えは、コントローラ12から油圧ユニット9への入力信号により行なわれる。内燃エンジン6の運転もコントローラ12からの入力信号により制御される。   The operation and power generation of the electric motor / generator 1 are controlled by an input signal from the controller 12 to the inverter 7. Switching between the three modes of fastening, slipping and releasing of the frictional engagement element 3 is performed by an input signal from the controller 12 to the hydraulic unit 8. Switching between the three modes of engagement, slip, and release of the clutch 5 is performed by an input signal from the controller 12 to the hydraulic unit 9. The operation of the internal combustion engine 6 is also controlled by an input signal from the controller 12.

さらに、コントローラ12は自動変速機4の変速制御も行なうが、変速制御自体はこの発明と直接の関係がないので、説明を省略する。   Further, the controller 12 also performs the shift control of the automatic transmission 4. However, the shift control itself is not directly related to the present invention, so that the description is omitted.

以上の制御を行なうコントローラ12は中央演算装置 (CPU)、読み出し専用メモリ (ROM) 、ランダムアクセスメモリ (RAM) 及び入出力インタフェース (I/O インタフェース) を備えたマイクロコンピュータで構成される。この実施形態では説明の都合上、1個のコントローラ12が油圧ユニット8と9,内燃エンジン6の運転、及び電動モータ/ジェネレータ1の運転のすべてを制御することにしているが、これらを制御の対象に応じて異なるコントローラで行なうことも可能である。   The controller 12 that performs the above control is composed of a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). In this embodiment, for the sake of explanation, one controller 12 controls all of the hydraulic units 8 and 9, the operation of the internal combustion engine 6, and the operation of the electric motor / generator 1. It is also possible to carry out with different controllers depending on the object.

コントローラ12には、ハイブリッド駆動電気自動車20が備えるアクセルペダルの踏み込み量に相当するアクセル開度を検出するアクセル開度センサ13と、自動変速機4の入力回転速度を検出する速度センサ15と、自動変速機4の出力回転速度を検出する速度センサ16とが信号回路で接続される。   The controller 12 includes an accelerator opening sensor 13 that detects an accelerator opening corresponding to the amount of depression of an accelerator pedal included in the hybrid drive electric vehicle 20, a speed sensor 15 that detects an input rotation speed of the automatic transmission 4, and an automatic A speed sensor 16 for detecting the output rotation speed of the transmission 4 is connected by a signal circuit.

以上のように構成された駆動力制御装置を備えるハイブリッド駆動電気自動車20において、ドライバがアクセルペダルを解放してのコースト走行から、ドライバがアクセルペダルを踏み込んだ場合に、コントローラ12は次のような駆動力制御を行なう。   In the hybrid drive electric vehicle 20 including the driving force control device configured as described above, when the driver depresses the accelerator pedal from the coast driving with the accelerator pedal released, the controller 12 is as follows. Drive force control is performed.

なお、コースト走行中は摩擦締結要素3はスリップ可能な油圧に維持される。また、内燃エンジン6が停止しているため、クラッチ5は解放されている。また、摩擦締結要素3を介した駆動輪RR,RLからの入力トルクで回転するプロペラシャフト14の回転速度と自動変速機4のギヤ比の積が、電動モータ/ジェネレータ1の出力軸1Aの回転速度を上回るため、ワンウェイクラッチはプロペラシャフト14を空転させている。   During coasting, the frictional engagement element 3 is maintained at a slippery hydraulic pressure. Further, since the internal combustion engine 6 is stopped, the clutch 5 is released. Further, the product of the rotational speed of the propeller shaft 14 rotated by the input torque from the drive wheels RR and RL via the frictional engagement element 3 and the gear ratio of the automatic transmission 4 is the rotation of the output shaft 1A of the electric motor / generator 1. In order to exceed the speed, the one-way clutch idles the propeller shaft 14.

この状態から、ドライバがアクセルペダルを踏み込むと、コントローラ12は電動モータ/ジェネレータ1の回転速度を上昇させる。電動モータ/ジェネレータ1の回転速度が上昇して、プロペラシャフト14の回転速度と自動変速機4のギヤ比の積を上回ると、ワンウェイクラッチが係合する。ここで係合とは、電動モータ/ジェネレータ1からプロペラシャフト14へ正のトルクが伝達される状態を意味する。   When the driver depresses the accelerator pedal from this state, the controller 12 increases the rotational speed of the electric motor / generator 1. When the rotational speed of the electric motor / generator 1 increases and exceeds the product of the rotational speed of the propeller shaft 14 and the gear ratio of the automatic transmission 4, the one-way clutch is engaged. Here, the engagement means a state in which positive torque is transmitted from the electric motor / generator 1 to the propeller shaft 14.

係合に伴うショックは摩擦締結要素3のスリップにより吸収する。ワンウェイクラッチが係合したことを確認した後、コントローラ12は摩擦締結要素3を締結モードにする。   The shock accompanying the engagement is absorbed by the slip of the frictional engagement element 3. After confirming that the one-way clutch is engaged, the controller 12 puts the frictional engagement element 3 into the engagement mode.

図2を参照して、以上の制御のために、コントローラ12が実行する駆動力制御ルーチンを説明する。コントローラ12はこのルーチンをハイブリッド駆動電気自動車20のコースト走行中に繰り返し実行する。すなわち、コントローラ12はルーチンがリターンに達すると直ちに次回のルーチン実行を開始する。   A driving force control routine executed by the controller 12 for the above control will be described with reference to FIG. The controller 12 repeatedly executes this routine during coasting of the hybrid drive electric vehicle 20. That is, the controller 12 starts the next routine execution as soon as the routine reaches a return.

ステップS1でコントローラ12は自動変速機4が制御条件を満たしているかどうかを判定する。具体的には、下記の条件(1)−(3)のすべてが成立する場合に制御条件を満たしていると判定する。
(1)自動変速機4がドライブ(D)レンジにある。
(2)自動変速機4は変速動作中でない。
(3)摩擦締結要素3のスリップ回転速度=出力軸1Aの回転速度−プロペラシャフト14の回転速度 x ギア比、の値がしきい値A未満である。
In step S1, the controller 12 determines whether or not the automatic transmission 4 satisfies the control conditions. Specifically, it is determined that the control condition is satisfied when all of the following conditions (1) to (3) are satisfied.
(1) The automatic transmission 4 is in the drive (D) range.
(2) The automatic transmission 4 is not in a shifting operation.
(3) The value of the slip rotation speed of the frictional engagement element 3 = the rotation speed of the output shaft 1A−the rotation speed of the propeller shaft × the gear ratio is less than the threshold value A.

これらの条件はハイブリッド駆動電気自動車20がドライブ(D)レンジで安定した走行中であるかどうかを判定するものである。条件(1)では、例えばハイブリッド駆動電気自動車20がマニュアル(M)モードを備えている場合に、マニュアル(M)モードでの走行が制御の対象から除外される。マニュアル(M)モードではエンジンブレーキを効かすために、ワンウェイクラッチを無効化するブレーキを適用する。この駆動力制御ルーチンはワンウェイクラッチの動作を前提としているので、マニュアル(M)モードでの走行を制御の対象から除外するのである。   These conditions are used to determine whether the hybrid electric vehicle 20 is traveling stably in the drive (D) range. In the condition (1), for example, when the hybrid drive electric vehicle 20 has a manual (M) mode, traveling in the manual (M) mode is excluded from the control target. In the manual (M) mode, a brake that disables the one-way clutch is applied to apply the engine brake. Since this driving force control routine is premised on the operation of the one-way clutch, traveling in the manual (M) mode is excluded from the control target.

条件(3)は摩擦締結要素3のスリップ量が少ないことを意味する。ここでしきい値Aはゼロに近い値とする。条件(3)の判定は、速度センサ15と16の検出速度とギア比に基づき行なうことができる。なお、コースト走行中において、油圧ユニット8から摩擦締結要素3に供給される油圧は、電動モータ/ジェネレータ1からプロペラシャフト14へトルクが伝達される通常走行時と比べて低い所定のコースト走行用圧力に保持される。言い換えれば、油圧ユニット8から摩擦締結要素3に供給される油圧に制限が加えられている。   Condition (3) means that the slip amount of the frictional engagement element 3 is small. Here, the threshold A is a value close to zero. The determination of the condition (3) can be made based on the detection speed of the speed sensors 15 and 16 and the gear ratio. During coasting, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3 is a predetermined coasting pressure lower than that during normal traveling when torque is transmitted from the electric motor / generator 1 to the propeller shaft 14. Retained. In other words, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3 is limited.

ステップS1の判定が否定的な場合は、コントローラ12は直ちにルーチンを終了する。ステップS1の判定が肯定的な場合は、コントローラ12はステップS2において、アクセルペダルが踏まれているかどうかを判定する。この判定はアクセル開度センサ13からの入力信号に基づき行なう。   If the determination in step S1 is negative, the controller 12 immediately ends the routine. If the determination in step S1 is affirmative, the controller 12 determines whether or not the accelerator pedal is depressed in step S2. This determination is made based on an input signal from the accelerator opening sensor 13.

アクセルペダルが踏まれていなければ、コースト走行を継続すべく、コントローラ12は直ちにルーチンを終了する。アクセルペダルが踏まれている場合には、コントローラ12はステップS3で前述の摩擦締結要素3のスリップ回転速度がしきい値A以上かどうかを判定する。ステップS3が実行されるのはステップS1の判定が肯定的な場合に限られる。ステップS3の判定はステップS1の判定の条件(3)の逆であることから、ステップS3が最初に実行される場合の判定は必ず否定的となる。   If the accelerator pedal is not depressed, the controller 12 immediately ends the routine to continue coasting. When the accelerator pedal is depressed, the controller 12 determines whether or not the slip rotation speed of the friction engagement element 3 is equal to or higher than the threshold value A in step S3. Step S3 is executed only when the determination in step S1 is affirmative. Since the determination in step S3 is the reverse of the determination condition (3) in step S1, the determination when step S3 is executed first is always negative.

ステップS3の判定が否定的、すなわち摩擦締結要素3のスリップ回転速度がしきい値A未満の場合は、コントローラ12はステップS4で、電動モータ/ジェネレータ1の回転速度制御により、ワンウェイクラッチの入力回転速度を上昇率R1で上昇させる。そして、再びステップS3の判定を行なう。このようにして、ステップS3の判定が肯定的に転じるまで、コントローラ12はワンウェイクラッチの入力回転速度を上昇率R1で上昇させる。なお、ステップS3の判定が肯定的に転じることは、ワンウェイクラッチの空回りが停止し、ワンウェイクラッチが係合して電動モータ/ジェネレータ1の出力軸1Aからプロペラシャフト14へトルクが伝達される状態になったことを意味する。   If the determination in step S3 is negative, that is, if the slip rotation speed of the frictional engagement element 3 is less than the threshold value A, the controller 12 performs input rotation of the one-way clutch in step S4 by controlling the rotation speed of the electric motor / generator 1. The speed is increased at an increase rate R1. And determination of step S3 is performed again. In this way, the controller 12 increases the input rotation speed of the one-way clutch at the increase rate R1 until the determination in step S3 turns positive. The positive determination in step S3 means that the idle rotation of the one-way clutch is stopped, the one-way clutch is engaged, and torque is transmitted from the output shaft 1A of the electric motor / generator 1 to the propeller shaft 14. Means that

ステップS3の判定が肯定的に転じると、コントローラ12はステップS5で電動モータ/ジェネレータ1の回転速度制御により、ワンウェイクラッチの入力回転速度をインギア回転速度プラス増分αへと上昇率R2のもとでさらに上昇させる。上昇率R2はR1より大きな値に設定される。ここで、インギア回転速度は自動変速機4が摩擦締結要素3の滑りなしに作動している状態でのワンウェイクラッチの入力回転速度を言う。言い換えれば出力軸1Aの回転速度−プロペラシャフト14の回転速度 x ギア比の値がゼロの場合の出力軸1Aの回転速度を意味する。   If the determination in step S3 is positive, the controller 12 controls the rotation speed of the electric motor / generator 1 in step S5 to change the input rotation speed of the one-way clutch to the in-gear rotation speed plus the increment α at the rate of increase R2. Raise further. The increase rate R2 is set to a value larger than R1. Here, the in-gear rotation speed refers to the input rotation speed of the one-way clutch in a state where the automatic transmission 4 operates without the frictional engagement element 3 slipping. In other words, it means the rotational speed of the output shaft 1A when the value of the rotational speed of the output shaft 1A−the rotational speed of the propeller shaft × the gear ratio is zero.

図3の(a)を参照すると、コントローラ12は増分αを、アクセル開度センサ13が検出したアクセル開度に基づき、あらかじめROMに格納された図に示す特性のマップを参照して求める。このマップにおいて、増分αはアクセル開度が大きいほど大きな値を取る。   Referring to (a) of FIG. 3, the controller 12 obtains the increment α with reference to the characteristic map shown in the figure stored in advance in the ROM based on the accelerator opening detected by the accelerator opening sensor 13. In this map, the increment α takes a larger value as the accelerator opening is larger.

次のステップS6で、コントローラ12は油圧ユニット8から摩擦締結要素3に供給される油圧に加えられている制限を解除し、油圧ユニット8から摩擦締結要素3に供給される油圧を上昇させる。   In the next step S6, the controller 12 releases the restriction applied to the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3, and increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3.

次のステップS7で、コントローラ12は摩擦締結要素3のスリップ開始から所定時間が経過し、かつクラッチ5が同期状態となってから所定時間が経過したかどうかを判定する。この判定は次の意味を持つ。   In the next step S7, the controller 12 determines whether or not a predetermined time has elapsed from the start of slipping of the frictional engagement element 3 and whether or not the predetermined time has elapsed since the clutch 5 is in a synchronized state. This determination has the following meaning.

すなわち、プロペラシャフト14の回転速度 x ギア比の値が、電動モータ/ジェネレータ1の出力軸1Aの回転速度を上回っている状態では、摩擦締結要素3は油圧ユニット8からの供給油圧が制限されていても、ワンウェイクラッチが抵抗なく相対回転するため、スリップしない。摩擦締結要素3は、電動モータ/ジェネレータ1の出力軸1Aの回転速度がプロペラシャフト14の回転速度 x ギア比を上回り、ワンウェイクラッチがトルク伝達を開始することでスリップし始める。したがって、摩擦締結要素3のスリップ開始からの経過時間はステップS3の判定が肯定的に転じた時点からの経過時間に相当する。   In other words, when the value of the rotation speed x gear ratio of the propeller shaft 14 exceeds the rotation speed of the output shaft 1A of the electric motor / generator 1, the hydraulic pressure supplied from the hydraulic unit 8 to the friction engagement element 3 is limited. Even so, the one-way clutch does not slip because it rotates without resistance. The frictional engagement element 3 starts to slip when the rotational speed of the output shaft 1A of the electric motor / generator 1 exceeds the rotational speed x gear ratio of the propeller shaft 14 and the one-way clutch starts torque transmission. Therefore, the elapsed time from the start of slipping of the frictional engagement element 3 corresponds to the elapsed time from the time when the determination in step S3 turns positive.

また、クラッチ5が同期状態となってからの経過時間に関しては、ハイブリッド駆動電気自動車20が電動モータ/ジェネレータ1と内燃エンジン6の双方の動力を用いて走行している場合には問題とならない。一方、停止していた内燃エンジン6を電動モータ/ジェネレータ1のトルクで始動した直後は、電動モータ/ジェネレータ1の出力が安定するまで、摩擦締結要素3を締結状態とすることは好ましくない。そのため、クラッチ5が同期状態となってから所定時間経過したかどうかをステップS7の判定に含めている。所定時間はあらかじめROMに格納された、図3の(b)に示す特性を有するマップから、コントローラ12がアクセル開度に基づきその都度決定する。このマップによれば、所定時間はアクセル開度が大きいほど長く設定される。なお、内燃エンジン6の始動や電動モータ/ジェネレータ1との同期運転制御は別ルーチンで行なわれるものとする。   Further, the elapsed time since the clutch 5 is in a synchronized state is not a problem when the hybrid drive electric vehicle 20 is running using the power of both the electric motor / generator 1 and the internal combustion engine 6. On the other hand, immediately after starting the stopped internal combustion engine 6 with the torque of the electric motor / generator 1, it is not preferable to put the friction engagement element 3 in the engaged state until the output of the electric motor / generator 1 is stabilized. Therefore, whether or not a predetermined time has elapsed since the clutch 5 is in a synchronized state is included in the determination in step S7. The predetermined time is determined each time by the controller 12 based on the accelerator opening from a map having the characteristics shown in FIG. According to this map, the predetermined time is set longer as the accelerator opening is larger. It is assumed that the internal combustion engine 6 is started and the synchronous operation control with the electric motor / generator 1 is performed in a separate routine.

ステップS7の判定が否定的であるかぎり、コントローラ12はステップS5とS6の処理を繰り返す。   As long as the determination in step S7 is negative, the controller 12 repeats the processes in steps S5 and S6.

ステップS7の判定が肯定的に転じると、コントローラ12はステップS8でインバータ7の制御により、電動モータ/ジェネレータ1の出力回転速度を、摩擦締結要素3のスリップ回転速度がゼロになるように低下させる。   If the determination in step S7 is positive, the controller 12 controls the inverter 7 in step S8 to reduce the output rotation speed of the electric motor / generator 1 so that the slip rotation speed of the frictional engagement element 3 becomes zero. .

次のステップS9でコントローラ12は、摩擦締結要素3のスリップ回転速度が所定範囲にあるかどうかを判定する。具体的には、出力軸1Aの回転速度−プロペラシャフト14の回転速度 x ギア比の値がしきい値B以下であるかどうかを判定する。ここで用いるしきい値Bは、ステップS1及びS3で用いるしきい値Aより大きな値に設定される。   In the next step S9, the controller 12 determines whether or not the slip rotation speed of the frictional engagement element 3 is within a predetermined range. Specifically, it is determined whether or not the value of the rotational speed of the output shaft 1A−the rotational speed of the propeller shaft × the gear ratio is equal to or less than the threshold value B. The threshold value B used here is set to a value larger than the threshold value A used in steps S1 and S3.

さて、ステップS9の判定が否定的な場合には、ステップS8の処理とステップS9の判定を繰り返す。ステップS9の判定が肯定的に転じると、すなわち摩擦締結要素3のスリップ回転が所定範囲に収束すると、コントローラ12はステップS10で電動モータ/ジェネレータ1の制御対象を回転速度からトルクへと切り換える。以後、コントローラ12は、電動モータ/ジェネレータ1の出力トルクをHEV走行モードにおける目標トルクへと制御する。   When the determination at step S9 is negative, the process at step S8 and the determination at step S9 are repeated. When the determination in step S9 turns positive, that is, when the slip rotation of the frictional engagement element 3 converges to a predetermined range, the controller 12 switches the control target of the electric motor / generator 1 from the rotational speed to the torque in step S10. Thereafter, the controller 12 controls the output torque of the electric motor / generator 1 to the target torque in the HEV traveling mode.

そして、ステップS11で、コントローラ12は摩擦締結要素3の伝達トルクが目標トルクに達するようにさらに油圧ユニット8から摩擦締結要素3への供給油圧を上昇させる。   In step S11, the controller 12 further increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3 so that the transmission torque of the frictional engagement element 3 reaches the target torque.

ステップS12で、コントローラ12は摩擦締結要素3のスリップ回転が実質的にゼロになったかどうかを判定する。具体的には出力軸1Aの回転速度−プロペラシャフト14の回転速度 x ギア比の値がしきい値C以下であるかどうかを判定する。ここで用いるしきい値CはステップS9で用いるしきい値Bより小さな値であり、しきい値Aに近い値とする。   In step S12, the controller 12 determines whether or not the slip rotation of the frictional engagement element 3 has become substantially zero. Specifically, it is determined whether or not the value of the rotational speed of the output shaft 1A−the rotational speed of the propeller shaft x the gear ratio is equal to or less than the threshold value C. The threshold value C used here is smaller than the threshold value B used in step S9, and is close to the threshold value A.

ステップS12の判定が否定的な間は、コントローラ12はステップS10とS11の処理を繰り返し実行する。ステップS12の判定が肯定的に転じると、コントローラ12はステップS13で油圧ユニット8を介して摩擦締結要素3を完全締結状態にして、ルーチンを終了する。   While the determination in step S12 is negative, the controller 12 repeatedly executes the processes in steps S10 and S11. If the determination in step S12 is positive, the controller 12 sets the frictional engagement element 3 to the complete engagement state via the hydraulic unit 8 in step S13, and ends the routine.

図4を参照して、以上のルーチンの実行結果を説明する。   The execution results of the above routine will be described with reference to FIG.

ハイブリッド駆動電気自動車20がコースト走行している場合には、図の(c)に示すように、プロペラシャフト14の回転速度 x ギア比が電動モータ/ジェネレータ1の出力軸1Aの回転速度を上回っている。この状態では、ワンウェイクラッチがプロペラシャフト14と出力軸1Aとを自由に相対回転させている。この場合には、摩擦締結要素3がスリップモードであっても、摩擦締結要素3の入力回転速度と出力回転速度は等しく、摩擦締結要素3はスリップしていない。したがって、ステップS1の判定は肯定的となる。   When the hybrid drive electric vehicle 20 is coasting, the rotation speed x gear ratio of the propeller shaft 14 exceeds the rotation speed of the output shaft 1A of the electric motor / generator 1 as shown in FIG. Yes. In this state, the one-way clutch freely rotates the propeller shaft 14 and the output shaft 1A relatively. In this case, even if the friction engagement element 3 is in the slip mode, the input rotation speed and the output rotation speed of the friction engagement element 3 are equal, and the friction engagement element 3 is not slipping. Therefore, the determination in step S1 is affirmative.

この状態で時刻t1にアクセルペダルが踏み込まれると、ステップS2の判定が肯定的に転じ、ステップS3の判定も肯定的となるため、コントローラ12はステップS4で、図の(c)に示すように、電動モータ/ジェネレータ1の出力軸1Aの回転速度を上昇率R1のもとで上昇させる。   If the accelerator pedal is depressed at time t1 in this state, the determination in step S2 turns affirmatively and the determination in step S3 also becomes affirmative. Therefore, the controller 12 in step S4, as shown in FIG. Then, the rotational speed of the output shaft 1A of the electric motor / generator 1 is increased at the rate of increase R1.

時刻t2になると、出力軸1Aの回転速度がプロペラシャフト14の回転速度 x ギア比に追いつき、ワンウェイクラッチが係合する。その結果、ステップS3の判定が肯定的に転じる。コントローラ12は以後、電動モータ/ジェネレータ1の出力軸1Aの回転速度を、インギア回転速度プラス増分αへと上昇率R2のもとで上昇させる。時刻t2においてワンウェイクラッチが係合する際のショックはスリップモードにある摩擦締結要素3のスリップ回転により吸収される。したがって、上昇率R1の値を大きく設定しても、ワンウェイクラッチが係合する際のショックがドライバや同乗者に違和感を与えることはない。   At time t2, the rotational speed of the output shaft 1A catches up with the rotational speed x gear ratio of the propeller shaft 14, and the one-way clutch is engaged. As a result, the determination in step S3 turns positive. Thereafter, the controller 12 increases the rotational speed of the output shaft 1A of the electric motor / generator 1 to the in-gear rotational speed plus the increment α at the rate of increase R2. The shock when the one-way clutch is engaged at time t2 is absorbed by the slip rotation of the frictional engagement element 3 in the slip mode. Therefore, even if the value of the increase rate R1 is set to be large, the shock when the one-way clutch is engaged does not give the driver or passenger a sense of incongruity.

時刻t2以降は、出力軸1Aからプロペラシャフト14へのトルク伝達が開始され、摩擦締結要素3がスリップ回転を開始する。コントローラ12は電動モータ/ジェネレータ1の出力軸1Aの回転速度の上昇に対応してステップS6で油圧ユニット8から摩擦締結要素3へ供給される油圧を上昇させる。その結果、図の(c)に示すように、電動モータ/ジェネレータ1の出力軸1Aの回転速度と、プロペラシャフト14の回転速度は、増分αに相当する一定の差を保ちつつ、それぞれなだらかに上昇する。この状態では、自動変速機4へ入力する回転トルクを摩擦締結要素3がスリップモードでプロペラシャフト14へと出力することで駆動輪RR,RLを駆動する。   After time t2, torque transmission from the output shaft 1A to the propeller shaft 14 is started, and the frictional engagement element 3 starts slip rotation. In response to the increase in the rotational speed of the output shaft 1A of the electric motor / generator 1, the controller 12 increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3 in step S6. As a result, as shown in (c) of the figure, the rotational speed of the output shaft 1A of the electric motor / generator 1 and the rotational speed of the propeller shaft 14 are respectively gentle while maintaining a constant difference corresponding to the increment α. To rise. In this state, the frictional engagement element 3 outputs the rotational torque input to the automatic transmission 4 to the propeller shaft 14 in the slip mode, thereby driving the drive wheels RR and RL.

時刻t1からの経過時間と、クラッチ5が同期状態となってからの経過時間がともに所定時間に達する時刻t3において、ステップS7の判定が肯定的に転じる。コントローラ12はステップS8で、摩擦締結要素3のスリップ回転を小さくする方向へと、電動モータ/ジェネレータ1の回転速度を低下させる。この処理は、ステップS9で摩擦締結要素3のスリップ回転速度がしきい値B以下となるまで繰り返し実行される。   At time t3 when the elapsed time from time t1 and the elapsed time after the clutch 5 is in the synchronized state reach the predetermined time, the determination in step S7 is positively changed. In step S8, the controller 12 decreases the rotational speed of the electric motor / generator 1 in a direction to reduce the slip rotation of the frictional engagement element 3. This process is repeatedly executed until the slip rotation speed of the frictional engagement element 3 becomes the threshold value B or less in step S9.

時刻t3にステップS9の判定が肯定的に転じると、コントローラ12はステップS10で電動モータ/ジェネレータ1の制御の対象を回転速度からトルクに切り換える。さらにステップS13で油圧ユニット8から摩擦締結要素3へ供給される油圧を締結状態に向けて上昇させる。   When the determination in step S9 is positive at time t3, the controller 12 switches the control target of the electric motor / generator 1 from the rotational speed to the torque in step S10. In step S13, the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3 is increased toward the engaged state.

時刻t4にステップS12で、摩擦締結要素3のスリップ回転速度かしきい値C以下になり、スリップ回転は事実状ゼロの状態に収束する。コントローラ12はステップS13で油圧ユニット8から摩擦締結要素3へ供給される油圧をさらに上昇させ、時刻t5に摩擦締結要素3を完全締結状態とする。   At time t4, in step S12, the slip rotation speed of the frictional engagement element 3 becomes equal to or less than the threshold value C, and the slip rotation converges to a virtually zero state. In step S13, the controller 12 further increases the hydraulic pressure supplied from the hydraulic unit 8 to the frictional engagement element 3, and puts the frictional engagement element 3 in the fully engaged state at time t5.

以上のように、図2の駆動力制御ルーチンの実行により、アクセルペダルの踏み込み後直ちに大きな上昇率R1のもとで電動モータ/ジェネレータ1の出力軸1Aの回転速度を上昇させるので、短時間のうちにワンウェイクラッチを係合させることができる。この時、摩擦締結要素3はスリップ可能な状態のため、ワンウェイクラッチの係合に伴うショックは摩擦締結要素3のスリップによって吸収され、ドライバや同乗者には伝わらない。その後は、電動モータ/ジェネレータ1の出力回転速度を上昇率R2のもとでインギア回転速度プラス増分αまで上昇させ、摩擦締結要素3のスリップ回転のもとで、電動モータ/ジェネレータ1の駆動トルクを駆動輪RR,RLへと伝達する。   As described above, by executing the driving force control routine of FIG. 2, the rotational speed of the output shaft 1A of the electric motor / generator 1 is increased under a large increase rate R1 immediately after the accelerator pedal is depressed. The one-way clutch can be engaged inside. At this time, since the frictional engagement element 3 is in a slippable state, the shock accompanying the engagement of the one-way clutch is absorbed by the slip of the frictional engagement element 3 and is not transmitted to the driver or passengers. Thereafter, the output rotational speed of the electric motor / generator 1 is increased to the in-gear rotational speed plus the increment α at the rate of increase R2, and the driving torque of the electric motor / generator 1 is generated under the slip rotation of the frictional engagement element 3. Is transmitted to the drive wheels RR and RL.

その後は、コントローラ12は電動モータ/ジェネレータ1の出力軸1Aの回転速度を低下させることで、摩擦締結要素3のスリップ回転をゼロに向けて収束させ、収束後に、摩擦締結要素3を完全締結状態とする。   After that, the controller 12 reduces the rotational speed of the output shaft 1A of the electric motor / generator 1 to converge the slip rotation of the friction engagement element 3 toward zero, and after the convergence, the friction engagement element 3 is completely engaged. And

図5を参照して、共線図を用いてこの駆動力制御ルーチンがもたらす作用を説明する。破線はワンウェイクラッチが係合状態で、かつ自動変速機4内部に滑りがないインギア状態での変速特性を示す。INPUTの軸と破線との交点が電動モータ/ジェネレータ1の出力軸1Aの回転速度を、OUTPUTの軸と破線との交点がインギア状態における自動変速機4の出力回転速度、ないしはプロペラシャフト14の回転速度に相当する。各縦軸と原点、即ち図の左端の縦軸との距離の比が変速比を表す。ここでは、自動変速機4のローブレーキ(L/B)が摩擦締結要素3を構成する。   With reference to FIG. 5, the operation provided by this driving force control routine will be described using a nomograph. A broken line indicates a shift characteristic in an in-gear state where the one-way clutch is engaged and the automatic transmission 4 is not slipped. The intersection of the INPUT axis and the broken line is the rotation speed of the output shaft 1A of the electric motor / generator 1, and the intersection of the OUTPUT axis and the broken line is the output rotation speed of the automatic transmission 4 or the rotation of the propeller shaft 14 in the in-gear state. Corresponds to speed. The ratio of the distance between each vertical axis and the origin, that is, the vertical axis at the left end of the figure represents the gear ratio. Here, the low brake (L / B) of the automatic transmission 4 constitutes the friction engagement element 3.

コースト走行においては、図の(a)に示すように、コントローラ12が入力回転速度を電動モータ/ジェネレータ1の制御により出力軸1Aの回転速度を低下させる。このとき、ワンウェイクラッチが係合状態であれは、自動変速機4のローブレーキ(L/B)位置では図の点線に示す回転速度となるはずである、しかし、ワンウェイクラッチは非係合状態であるため、出力軸1Aの回転速度が低下するのみで、ローブレーキ(L/B)位置の回転速度は変化しない。   In coasting, the controller 12 decreases the rotational speed of the output shaft 1A by controlling the electric motor / generator 1 as shown in FIG. At this time, if the one-way clutch is in the engaged state, the rotational speed shown in the dotted line in the figure should be the low brake (L / B) position of the automatic transmission 4, but the one-way clutch is in the non-engaged state. Therefore, only the rotational speed of the output shaft 1A is lowered, and the rotational speed at the low brake (L / B) position is not changed.

コースト走行からアクセルペダルが踏み込まれると、図の(b)に示すように、電動モータ/ジェネレータ1の制御により出力軸1Aの回転速度が上昇する。これに伴いワンウェイクラッチが係合する。自動変速機4がインギア状態であれば、図のOUTPUT位置に相当するプロペラシャフト14の回転速度も急変し、これに伴いショックが発生する。しかしながら、この実施形態においては、摩擦締結要素3を構成するローブレーキ(L/B)のスリップにより図のOUTPUT位置に相当するプロペラシャフト14の回転速度を変化させない。結果として、ドライバや搭乗者はショックを感じない。なお、ローブレーキ(L/B)を徐々に締結することで、図のOUTPUT位置に相当するプロペラシャフト14の回転速度が上昇する。   When the accelerator pedal is depressed from coasting, the rotation speed of the output shaft 1A is increased by the control of the electric motor / generator 1 as shown in FIG. Accordingly, the one-way clutch is engaged. If the automatic transmission 4 is in the in-gear state, the rotational speed of the propeller shaft 14 corresponding to the OUTPUT position in the figure also changes suddenly, and a shock is generated accordingly. However, in this embodiment, the rotation speed of the propeller shaft 14 corresponding to the OUTPUT position in the figure is not changed by the slip of the low brake (L / B) constituting the friction engagement element 3. As a result, drivers and passengers do not feel shocked. Note that by gradually engaging the low brake (L / B), the rotational speed of the propeller shaft 14 corresponding to the OUTPUT position in the figure increases.

以上のように、この駆動力制御ルーチンの実行により、コースト走行からのアクセルペダルの踏み込みに対して、ワンウェイクラッチの係合によるショックを吸収しつつ、高い加速レスポンスを得ることができる。   As described above, by executing this driving force control routine, it is possible to obtain a high acceleration response while absorbing the shock caused by the engagement of the one-way clutch when the accelerator pedal is depressed from coasting.

また、この駆動力制御ルーチンによれば、ワンウェイクラッチの係合が完了した後、電動モータ/ジェネレータ1の回転数制御により所定時間に渡って摩擦締結要素3がスリップモードに保持される。そのため、自動変速機4の入力回転速度の吹き上がりが抑制され、摩擦締結要素3の安定したスリップ状態を維持することができる。さらに、所定時間をアクセル開度に応じて設定するので、アクセル開度が大きい場合は、スリップモードを長めに維持してトルク変動によるショックの抑制を図り、アクセル開度が小さい場合は、スリップモードの期間を短くして摩擦締結要素3の発熱量を抑制することができる。   Further, according to this driving force control routine, after the engagement of the one-way clutch is completed, the frictional engagement element 3 is held in the slip mode for a predetermined time by controlling the rotational speed of the electric motor / generator 1. Therefore, the rising of the input rotational speed of the automatic transmission 4 is suppressed, and the stable slip state of the frictional engagement element 3 can be maintained. Furthermore, since the predetermined time is set according to the accelerator opening, when the accelerator opening is large, the slip mode is maintained longer to suppress shock due to torque fluctuation, and when the accelerator opening is small, the slip mode is set. This period can be shortened to suppress the amount of heat generated by the frictional engagement element 3.

さらに、この駆動力制御ルーチンにおいては、電動モータ/ジェネレータ1の回転速度を低下させて、摩擦締結要素3のスリップ回転を収束させた後に、摩擦締結要素3を締結させている。そのため、出力軸1Aのイナーシャ変化によるショックを防止できる。また、摩擦締結要素3の締結前に電動モータ/ジェネレータ1の回転速度制御からトルク制御への切り換えを行なうので、切り換えに伴うトルク段差が摩擦締結要素3のスリップ回転により吸収され、トルク段差によるショックを防止できる。   Furthermore, in this driving force control routine, the rotational speed of the electric motor / generator 1 is reduced to converge the slip rotation of the frictional engagement element 3, and then the frictional engagement element 3 is engaged. Therefore, it is possible to prevent a shock due to the inertia change of the output shaft 1A. Further, since the switching from the rotational speed control to the torque control of the electric motor / generator 1 is performed before the frictional engagement element 3 is engaged, the torque step due to the switching is absorbed by the slip rotation of the frictional engagement element 3, and the shock due to the torque step is absorbed. Can be prevented.

この駆動力制御ルーチンでは、ワンウェイクラッチの係合前の電動モータ/ジェネレータ1の回転速度の上昇率R1をワンウェイクラッチの係合後の上昇率R2より大きな値に設定している。そのため、アクセルペダルの踏み込みに対してワンウェイクラッチの係合を早めることができる。その結果、入力トルクが増大する前にワンウェイクラッチを係合するので、係合ショックを低減する上で好ましい効果が得られる。早期にワンウェイクラッチを係合させることは、加速レスポンスの向上にも好ましい効果をもたらす。   In this driving force control routine, the rate of increase R1 of the electric motor / generator 1 before engagement of the one-way clutch is set to a value larger than the rate of increase R2 after engagement of the one-way clutch. Therefore, the engagement of the one-way clutch can be accelerated with respect to the depression of the accelerator pedal. As a result, since the one-way clutch is engaged before the input torque increases, a favorable effect can be obtained in reducing the engagement shock. Engaging the one-way clutch at an early stage brings about a favorable effect for improving the acceleration response.

さらに、この駆動力制御ルーチンでは、スリップモードにおける摩擦締結要素3のスリップ回転速度を、アクセル開度に応じて設定している。具体的には、アクセル開度の大きい場合は、スリップ回転速度を大きく設定し、アクセル開度が小さい場合にはスリップ回転速度を小さく設定している。その結果、アクセル開度の大きい場合はトルク変動の吸収容量を増やしてショックの抑制機能を高める一方、アクセル開度の小さい場合は摩擦締結要素3の発熱量を抑えることができる。   Further, in this driving force control routine, the slip rotation speed of the frictional engagement element 3 in the slip mode is set according to the accelerator opening. Specifically, when the accelerator opening is large, the slip rotation speed is set large, and when the accelerator opening is small, the slip rotation speed is set small. As a result, when the accelerator opening is large, the torque fluctuation absorption capacity is increased to enhance the shock suppression function, while when the accelerator opening is small, the heat generation amount of the frictional engagement element 3 can be suppressed.

以上のように、この発明を特定の実施形態を通じて説明して来たが、この発明は上記の実施形態に限定されるものではない。当業者にとっては、特許請求の範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。   As described above, the present invention has been described through specific embodiments. However, the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.

例えば、上記の実施形態はハイブリッド駆動電気自動車を対象としているが、この発明は内燃エンジンを有さず、電動モータのみの動力で走行する電動車両にも適用可能である。   For example, although the above-described embodiment is directed to a hybrid drive electric vehicle, the present invention can be applied to an electric vehicle that does not have an internal combustion engine and travels with the power of only an electric motor.

上記の実施形態では、摩擦締結要素3を自動変速機4に内蔵しているが、自動変速機4内の摩擦締結要素とは別に、電動モータ/ジェネレータ1と自動変速機4の間、または自動変速機4とプロペラシャフト14の間に、独立した摩擦締結要素を介装しても良い。   In the above embodiment, the frictional engagement element 3 is built in the automatic transmission 4, but separately from the frictional engagement element in the automatic transmission 4, between the electric motor / generator 1 and the automatic transmission 4 or automatically. An independent frictional engagement element may be interposed between the transmission 4 and the propeller shaft 14.

ワンウェイクラッチ2も、自動変速機4に内装せずに、電動モータ/ジェネレータ1と自動変速機4の間、または自動変速機4とプロペラシャフト14の間に介装しても良い。   The one-way clutch 2 may also be interposed between the electric motor / generator 1 and the automatic transmission 4 or between the automatic transmission 4 and the propeller shaft 14 without being incorporated in the automatic transmission 4.

1 電動モータ/ジェネレータ
1A 出力軸
3 摩擦締結要素
4 自動変速機
5 クラッチ
6 内燃エンジン
7 インバータ
8,9 油圧ユニット
11 ディファレンシャル
12 コントローラ
13 アクセル開度センサ
14 プロペラシャフト
15,16 速度センサ
20 ハイブリッド駆動電気自動車
DESCRIPTION OF SYMBOLS 1 Electric motor / generator 1A Output shaft 3 Friction fastening element 4 Automatic transmission 5 Clutch 6 Internal combustion engine 7 Inverter 8, 9 Hydraulic unit 11 Differential 12 Controller 13 Accelerator opening sensor 14 Propeller shaft 15, 16 Speed sensor 20 Hybrid drive electric vehicle

Claims (8)

電動モータと、運転者の加速要求を検出するアクセルペダルと、電動モータの駆動力で回転する駆動輪と、電動モータと駆動輪との間の駆動力伝達経路に介装され、電動モータから駆動輪へトルクを伝達し、駆動輪から電動モータへのトルクの伝達を遮断するワンウェイクラッチと、電動モータと駆動輪との間に介装された、スリップモードを有する摩擦締結要素と、を備える電動車両の駆動力制御装置において、
ワンウェイクラッチの非係合状態でアクセルペダルが踏まれた場合に、電動モータを加速する加速手段と、
ワンウェイクラッチの係合が完了するまで摩擦締結要素をスリップモードに保持する保持手段と、
を備えることを特徴とする電動車両の駆動力制御装置。
An electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that rotates with the driving force of the electric motor, and a driving force transmission path between the electric motor and the driving wheel, are driven from the electric motor. An electric motor comprising: a one-way clutch that transmits torque to a wheel and interrupts transmission of torque from the drive wheel to the electric motor; and a frictional engagement element having a slip mode interposed between the electric motor and the drive wheel. In a vehicle driving force control device,
Accelerating means for accelerating the electric motor when the accelerator pedal is depressed with the one-way clutch disengaged;
Holding means for holding the frictional engagement element in the slip mode until the engagement of the one-way clutch is completed;
A driving force control device for an electric vehicle, comprising:
ワンウェイクラッチの係合が完了した後に、摩擦締結要素を締結させる締結手段をさらに備える、請求項1に記載の電動車両の駆動力制御装置。   The driving force control device for an electric vehicle according to claim 1, further comprising a fastening unit that fastens the frictional fastening element after the engagement of the one-way clutch is completed. 前記保持手段は、ワンウェイクラッチの係合が完了した後、所定期間に渡って摩擦締結要素をスリップモードに保持するよう構成される、請求項2に記載の電動車両の駆動力制御装置。   The driving force control apparatus for an electric vehicle according to claim 2, wherein the holding means is configured to hold the frictional engagement element in a slip mode for a predetermined period after the engagement of the one-way clutch is completed. 前記所定期間は、アクセルペダルの踏み込み量に応じて設定される、請求項3に記載の電動車両の駆動力制御装置。   The driving force control device for an electric vehicle according to claim 3, wherein the predetermined period is set according to a depression amount of an accelerator pedal. 前記締結手段は、電動モータの回転速度を低下させて、摩擦締結要素のスリップ回転を収束させた後に、摩擦締結要素を締結させるよう構成される、請求項2から4のいずれかに記載の電動車両の駆動力制御装置。   5. The electric motor according to claim 2, wherein the fastening means is configured to fasten the frictional fastening element after reducing the rotational speed of the electric motor and converging the slip rotation of the frictional fastening element. 6. Vehicle driving force control device. 前記加速手段はワンウェイクラッチの係合前の電動モータの加速度を、ワンウェイクラッチの係合後の電動モータの加速度より大きな値に設定するよう構成される、請求項1から5のいずれかに記載の電動車両の駆動力制御装置。   The said acceleration means is comprised so that the acceleration of the electric motor before engagement of a one-way clutch may be set to a larger value than the acceleration of the electric motor after engagement of a one-way clutch. A driving force control device for an electric vehicle. 前記保持手段は、スリップモードにおける摩擦締結要素のスリップ回転速度を、アクセルペダルの踏み込み量に応じて設定するよう構成される請求項1から6のいずれかに記載の電動車両の駆動力制御装置。   The driving force control device for an electric vehicle according to any one of claims 1 to 6, wherein the holding means is configured to set a slip rotation speed of the frictional engagement element in a slip mode in accordance with a depression amount of an accelerator pedal. 電動モータと、運転者の加速要求を検出するアクセルペダルと、電動モータの駆動力で回転する駆動輪と、電動モータと駆動輪との間の駆動力伝達経路に介装され、電動モータから駆動輪へトルクを伝達し、駆動輪から電動モータへのトルクの伝達を遮断するワンウェイクラッチと、電動モータと駆動輪との間に介装された、スリップモードを有する摩擦締結要素と、を備える電動車両の駆動力制御方法において、
ワンウェイクラッチの非係合状態でアクセルペダルが踏まれた場合に、電動モータを加速し、
ワンウェイクラッチの係合が完了するまで摩擦締結要素をスリップモードに保持する、
ことを特徴とする電動車両の駆動力制御方法。
An electric motor, an accelerator pedal that detects a driver's acceleration request, a driving wheel that rotates with the driving force of the electric motor, and a driving force transmission path between the electric motor and the driving wheel, are driven from the electric motor. An electric motor comprising: a one-way clutch that transmits torque to a wheel and interrupts transmission of torque from the drive wheel to the electric motor; and a frictional engagement element having a slip mode interposed between the electric motor and the drive wheel. In the vehicle driving force control method,
When the accelerator pedal is depressed with the one-way clutch disengaged, the electric motor is accelerated,
Holding the frictional engagement element in slip mode until engagement of the one-way clutch is complete,
A driving force control method for an electric vehicle.
JP2012056149A 2012-03-13 2012-03-13 Driving force control device and control method for electric vehicle Pending JP2015109715A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012056149A JP2015109715A (en) 2012-03-13 2012-03-13 Driving force control device and control method for electric vehicle
PCT/JP2013/055911 WO2013137051A1 (en) 2012-03-13 2013-03-05 Electric vehicle driving force control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056149A JP2015109715A (en) 2012-03-13 2012-03-13 Driving force control device and control method for electric vehicle

Publications (1)

Publication Number Publication Date
JP2015109715A true JP2015109715A (en) 2015-06-11

Family

ID=49160964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056149A Pending JP2015109715A (en) 2012-03-13 2012-03-13 Driving force control device and control method for electric vehicle

Country Status (2)

Country Link
JP (1) JP2015109715A (en)
WO (1) WO2013137051A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081099A (en) * 2006-08-29 2008-04-10 Nissan Motor Co Ltd Controller for hybrid car
JP2007210609A (en) * 2007-03-19 2007-08-23 Toyota Motor Corp Controller and control method for vehicle
JP4956789B2 (en) * 2007-05-22 2012-06-20 日産自動車株式会社 Inertial travel control device for hybrid vehicle
JP5262197B2 (en) * 2008-03-10 2013-08-14 日産自動車株式会社 Control device for hybrid vehicle
JP5477030B2 (en) * 2009-05-22 2014-04-23 日産自動車株式会社 Control device for electric vehicle

Also Published As

Publication number Publication date
WO2013137051A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
EP1970240B1 (en) Engine start control system for hybrid vehicle
JP5521340B2 (en) Control device for hybrid vehicle
JP6156243B2 (en) Control device for hybrid vehicle
US9227620B2 (en) Engine start control device and engine start control method for hybrid electric vehicle
US9199637B1 (en) Engine autostop control system and method for hybrid powertrain
JP5928576B2 (en) Control device for hybrid vehicle
JP6369549B2 (en) Vehicle control apparatus and vehicle control method
JP6075355B2 (en) Automobile
JP6130367B2 (en) Vehicle control device
JP2016211495A (en) Restart control device for internal combustion engine
JP2008290492A (en) Coast traveling control device for hybrid vehicle
JP4257608B2 (en) Hybrid vehicle drive device and control method thereof
JP2009214580A (en) Hybrid vehicle and control method therefor
JP2013244838A (en) Vehicle automatic operation system
JP7263801B2 (en) Hybrid vehicle control device
JP6350318B2 (en) Electronic control unit
JP6060757B2 (en) Vehicle control device
JP2010168007A (en) Driving control device
JP2012218689A (en) Vehicle controller
JP2015109715A (en) Driving force control device and control method for electric vehicle
JP5924242B2 (en) Idle stop control device and idle stop control method
JP2021062757A (en) Drive control device for hybrid vehicle
JP6614052B2 (en) Automobile
JP2020118274A (en) Control device of automatic transmission
JP2012091583A (en) Hybrid vehicle control device