WO2013136719A1 - Touch panel sensor of electrostatic capacitance type and method for producing same, and display device - Google Patents

Touch panel sensor of electrostatic capacitance type and method for producing same, and display device Download PDF

Info

Publication number
WO2013136719A1
WO2013136719A1 PCT/JP2013/001369 JP2013001369W WO2013136719A1 WO 2013136719 A1 WO2013136719 A1 WO 2013136719A1 JP 2013001369 W JP2013001369 W JP 2013001369W WO 2013136719 A1 WO2013136719 A1 WO 2013136719A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
touch panel
panel sensor
capacitive touch
extraction wiring
Prior art date
Application number
PCT/JP2013/001369
Other languages
French (fr)
Japanese (ja)
Inventor
保浩 檜林
吉隆 松原
宏希 後藤
港 浩一
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2013136719A1 publication Critical patent/WO2013136719A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a projected capacitive touch panel sensor, a manufacturing method thereof, and a display device equipped with the projected capacitive touch panel sensor.
  • the touch panel is a constituent element of an input device that allows the operator to touch a transparent surface on the display screen with a finger or a pen to detect a touched position and input data.
  • the touch panel has been used frequently in recent years because it enables direct and intuitive input rather than key input.
  • the touch panel is often combined with a display panel such as a liquid crystal to input and output information in an integrated manner.
  • Touch panel detection methods include a resistance film method, a capacitance method, an ultrasonic method, an optical method, and the like.
  • the resistance film method which was relatively superior in terms of manufacturing cost, has been the mainstream.
  • the resistive film type touch panel having a structure in which an air layer is provided between two transparent conductive films has low optical characteristics (transmittance), and it cannot be said that durability and operating temperature characteristics are sufficient. It has been sought.
  • capacitive touch panels without moving parts have high optical characteristics (transmittance) and are superior to resistive film systems in terms of durability and operating temperature characteristics. Development is progressing toward the target (see, for example, Patent Document 1 and Patent Document 2).
  • the capacitive touch panel can be roughly classified into a surface type (surface capacitive type) and a projected type (projected capacitive type).
  • the surface type is a large type of 10 type (25.4 cm size) or more, and the surface type is 6 for portable devices.
  • Projection molds are often used for small products below the mold.
  • a surface type with a simple electrode plate structure is likely to be large, but it is difficult to detect two or more contact points simultaneously.
  • a projection type with a complicated electrode plate structure is disadvantageous for an increase in size, but two or more contact points can be detected simultaneously.
  • the projected capacitive touch panel sensor generally includes a plurality of first transparent electrodes 23 formed along a first direction of a rectangular display region on the transparent substrate 10.
  • the outer peripheral portion of the rectangular display region The lead-out wiring 20 is provided.
  • a protective layer (not shown) is formed on the touch panel sensor so as to cover almost the entire surface other than the connection portion of the extraction wiring 20 as necessary.
  • a typical example of an electronic device using a projected capacitive touch panel is a smartphone or a slate PC.
  • the conventional method for manufacturing a projected capacitive touch panel sensor includes an extraction wiring formation step (S101), a jumper portion formation step (S102), an insulating layer formation step (S103), and a transparent It includes an electrode formation step (S104) and a protective film formation step (S105).
  • an extraction wiring 20 made of a metal film is formed on the transparent substrate 10 by sputtering.
  • a molybdenum (Mo) / aluminum (Al) / molybdenum film or the like is used as the metal film.
  • the sputtering method is a method of forming a pattern by performing a protective film formation, etching, and protective film peeling after sputtering a metal film on a substrate placed in a vacuum vessel using a magnetron sputtering apparatus. It can also handle fine patterns.
  • connection part (jumper part) 21 of the 1st transparent electrode using a transparent conductive material is formed by a sputtering method.
  • transparent conductive material indium tin oxide (ITO) obtained by adding several percent of tin oxide to indium oxide is generally used.
  • the insulating layer 22 is formed by using a photolithography method so as to cover the jumper portion 21 except for a part thereof.
  • the photolithographic method is a method in which a photosensitive resin composition is applied on the transparent substrate 10 and then irradiated with ultraviolet light through a photomask corresponding to a desired insulating pattern, whereby the exposed portion of the coating film is photocrosslinked. It is a method of forming a pattern by curing and baking after removing an unexposed portion of the coating film using a developer.
  • the first transparent electrode 23 and the second transparent electrode 24 are formed by sputtering using a transparent conductive material. At this time, the first transparent electrode 23 is formed so as to be electrically connected to the jumper portion 21 and the extraction wiring 20 along the first direction.
  • the second transparent electrode 24 is formed on the insulating layer 22 without interruption in the second direction, and is formed so as to be electrically connected to the extraction wiring 20.
  • FIG. 17 which is a plan view of the intersection of the first transparent electrode 23 and the second transparent electrode 24 and FIG. 18 which is a cross-sectional view of the intersection
  • the first transparent electrode 23 is formed along the first direction.
  • the plurality of first transparent electrodes 23 and the plurality of second transparent electrodes 24 formed along the second direction are separated by the insulating layer 22 and disposed without being electrically connected, thereby providing a capacitance value. It is configured so that the changed coordinates can be determined.
  • a protective film using a transparent resin composition or an inorganic film can be formed thereon.
  • the extraction wiring 20 As a method of forming the extraction wiring 20, the first transparent electrode 23, and the second transparent electrode 24, it is possible to form a high-definition pattern of 30 ⁇ m or less by using a sputtering method. Not only is it expensive, but there are many processes and high manufacturing costs.
  • a conductive paste in which conductive fine particles such as silver are dispersed in an organic binder is printed on a substrate using a screen printing plate having a pattern corresponding to the wiring, and then the organic binder is cured by baking. This is a method of forming a pattern by shrinking or disappearing.
  • the photosensitive conductive paste used in the photolithography method burns organic matter by baking at 500-600 ° C after applying, exposing and developing a paste in which inorganic metal fine particles are dispersed in an organic matter having photosensitivity and alkali developability. And a paste in which inorganic metal fine particles are dispersed in an organic substance having photosensitivity and alkali developability at 130 to 250 ° C. after coating, exposure and development. It is classified into a thermosetting photosensitive conductive paste that forms a conductive circuit pattern as a composite of an inorganic substance and an organic substance by baking and organically curing the organic substance.
  • thermosetting photosensitive conductive paste is sometimes used for a touch panel sensor that may be formed on a film having low heat resistance. (See, for example, Patent Document 5).
  • Patent Document 4 attempts to form a high-definition pattern by containing an ultraviolet absorber, but it is sufficient to form an industrially stable pattern in a pattern of 30 ⁇ m or less. Resolution is not obtained.
  • the extraction wiring is formed by a photolithography method using a photosensitive conductive paste containing metal fine particles
  • conduction failure occurs at the connection portion between the extraction wiring 20 and the transparent electrodes 23 and 24. That is, as shown in FIG. 19, a gap 29 is formed between the metal fine particles, for example, Ag fine particles, and the transparent substrate 10 at the end of the lead-out wiring 20, and the transparent electrodes 23 and 24 are not formed by this gap. There arises a problem in that the connection portion between the lead-out wiring 20 and the transparent electrodes 23 and 24 is disconnected.
  • thermosetting photosensitive conductive paste that forms a conductive circuit pattern with a composite of an inorganic material and an organic material, it is necessary to have sufficient electrical conductivity. Therefore, it is difficult to form a high-definition pattern.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a capacitive touch panel having a high-definition pattern of 30 ⁇ m or less and capable of being manufactured with good quality and low cost without occurrence of disconnection or peeling.
  • a sensor, a manufacturing method thereof, and a display device are provided.
  • a plurality of the first transparent electrodes are formed along the first direction so as to connect the jumper portions by the first transparent electrode or connect the first transparent electrode and the extraction wiring,
  • the extraction wiring may be formed by application by screen printing and exposure / development using a mask pattern.
  • the metal fine particles may have an average particle size of 0.05 ⁇ m or more and 3.00 ⁇ m or less.
  • the metal fine particles may be gold, silver, copper, palladium, or a mixture of at least two of these.
  • the conductor width of the extraction wiring may be 3 ⁇ m or more and 30 ⁇ m or less.
  • the connection portion between the first transparent electrode and / or the second transparent electrode and the extraction wiring, and the end of the first transparent electrode and / or the second transparent electrode are the conductive support and the extraction. You may form so that the edge part of wiring may be covered.
  • the overlapping width of the first transparent electrode and / or the second transparent electrode and the conductive support may be 1 ⁇ m or more.
  • the conductive support may be formed only in a connection region between the first transparent electrode and / or the second transparent electrode and the extraction wiring.
  • the connection region may be in a region where a decorative layer and an insulating layer are selectively formed on the outer peripheral portion of the display region on the transparent substrate.
  • a plurality of second transparent electrodes formed along the direction of the first transparent electrode, and the first transparent electrode and the second transparent electrode are overlapped between the first transparent electrode and the second transparent electrode.
  • An insulating layer and a lead-out line disposed on the outer periphery of the display area, and the first transparent electrode and the second transparent electrode are electrically connected to the connection end of the lead-out line.
  • An electrostatic capacity type touch panel sensor wherein the lead-out wiring is provided on a conductive support provided on an outer peripheral portion of the display region using a photosensitive conductive material containing metal fine particles.
  • a capacitive touch panel sensor is provided.
  • the metal fine particles may have an average particle size of 0.05 ⁇ m or more and 3.00 ⁇ m or less.
  • the metal fine particles may be gold, silver, copper, palladium, or a mixture of at least two of these.
  • the conductor width of the extraction wiring may be not less than 3 ⁇ m and not more than 30 ⁇ m.
  • the connecting portion between the first transparent electrode and / or the second transparent electrode and the extraction wiring is such that the end of the first transparent electrode and / or the second transparent electrode is the conductive support and the extraction You may form so that the edge part of wiring may be covered.
  • the overlapping width between the first transparent electrode and / or the second transparent electrode and the conductive support may be 1 ⁇ m or more.
  • the conductive support may be formed only in a connection region between the first transparent electrode and / or the second transparent electrode and the extraction wiring.
  • the connection region may be in a region where a decorative layer and an insulating layer are selectively formed on the outer periphery of the display region on the transparent substrate.
  • the conductive support may be made of the same material as the first transparent electrode or the second transparent electrode.
  • a capacitive touch panel sensor that has a high-definition pattern of 30 ⁇ m or less and has good quality and is free from disconnection or peeling. Further, by using the manufacturing method, it is possible to provide a touch panel sensor with good quality and low cost. Furthermore, a display device including the touch panel sensor can be provided.
  • the capacitive touch panel sensor of this invention it is a top view of the example which formed the decoration layer in the outer peripheral part of a display area.
  • the capacitive touch panel sensor of this invention it is sectional drawing of the example which formed the decoration layer in the outer peripheral part of a display area.
  • FIG. 6B is a cross-sectional view taken along line 6b-6b of FIG. 6A showing a lead-out wiring forming step in an embodiment of the method of manufacturing the capacitive touch panel sensor according to the present invention. It is a top view which shows the transparent electrode formation process in one Embodiment of the manufacturing method of the capacitive touch panel sensor which concerns on this invention.
  • FIG. 18 is a sectional view taken along line 13-13 in FIG. It is a figure which shows typically the disconnection of the connection part of the transparent electrode and extraction wiring of the conventional capacitive touch panel sensor.
  • capacitive touch panel sensor a manufacturing method thereof, and a display device according to the present invention will be described in detail with reference to the drawings.
  • the capacitive touch panel sensor, the manufacturing method thereof, and the display device according to the present invention are not limited to the following configurations as long as they do not exceed the gist thereof.
  • the projected capacitive touch panel sensor of this embodiment includes a transparent substrate 10, a first transparent electrode 23 and a second transparent electrode 24 provided on the transparent substrate 10, an insulating layer 22, The conductive support 25 and the extraction wiring 20 are included.
  • a plurality of first transparent electrodes 23 are formed along a first direction of a rectangular display region on the transparent substrate 10 and along a second direction intersecting the first direction.
  • a plurality of second transparent electrodes 24 are formed in the display area.
  • the first transparent electrode and the second transparent electrode are disposed in the overlapping region (intersection position) between the first transparent electrode and the second transparent electrode.
  • An insulating layer 22 is formed between the electrodes.
  • a conductive support 25 is disposed on the outer periphery of the display area. On the conductive support 25, an extraction wiring 20 is formed.
  • a protective layer (not shown) is formed to protect each element formed on the transparent substrate 10 from corrosion and scratches caused by contact.
  • This protective layer is formed so as to cover almost the entire surface of the transparent substrate 10 other than the connection portion of the extraction wiring 20 connected to a control circuit (not shown).
  • the manufacturing method of the capacitive touch panel sensor according to the present invention includes a jumper part forming step (S1), a conductive support forming step (S2), and an insulating layer forming step (S3), as shown in FIG. And an extraction wiring formation process (S4), a transparent electrode formation process (S5), and a protective film formation process (S6).
  • the jumper portion forming step (S1) is a step of forming a plurality of jumper portions 21 in the display area on the transparent substrate 10, as shown in FIG.
  • These jumper portions 21 are made of a transparent conductive material at a position where the first transparent electrodes 23, 23 are connected to each other based on the formation positions of the first transparent electrodes 23, 23 adjacent in the first direction in the display area. Formed using.
  • a sputtering method As a method for forming the jumper portion 21, it is preferable to use a sputtering method. Specifically, ITO sputtering is performed while heating at 170 ° C. by DC magnetron sputtering. Subsequently, a general positive resist (for example, SZP series manufactured by AZ Electronic Materials) is spin-coated for an etching protective film, and then prebaked on a 105 ° C. hot plate. Thereafter, proximity exposure is performed using a photomask having a desired pattern reversed, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate.
  • a sputtering method Specifically, ITO sputtering is performed while heating at 170 ° C. by DC magnetron sputtering. Subsequently, a general positive resist (for example, SZP series manufactured by AZ Electronic Materials) is spin-coated for an etching protective film, and then preb
  • the transparent substrate 10 is a transparent substrate having a flat plate shape.
  • the transparent substrate 10 used for the projected capacitive touch panel sensor includes a film type using a resin film such as polyethylene terephthalate (PET), and a glass type using alkali-free glass, soda lime glass, or the like.
  • PET polyethylene terephthalate
  • the film type has the advantage of low manufacturing costs and is difficult to break, but the glass type is a mobile electronic device such as a smartphone due to the inferior transparency and the high resistance of the transparent electrode on the film, making it impossible to reduce the electrode part. Often used in equipment.
  • a touch panel sensor When a touch panel sensor is formed on a cover glass, aluminosilicate glass (for example, “Gollila (Corning)”, “Dragonrail (Asahi Glass))” or chemically strengthened from the viewpoint of strength and scratch resistance. It is preferable to use a special glass plate such as soda lime glass.
  • Transparent conductive material As the transparent conductive material used for the conductive support 25 formed under the connection portion (jumper portion) 21 of the first transparent electrode and the lead-out wiring 20, particularly if it can be disposed on the surface of the transparent substrate 10.
  • inorganic conductive materials such as ITO and zinc oxide (ZnO) can be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
  • the thickness of the transparent electrode and conductive support 25 (hereinafter referred to as conductor thickness) is preferably 0.02 ⁇ m or more and 0.1 ⁇ m or less. When the conductor thickness is less than 0.02 ⁇ m, sufficient electrical characteristics cannot be obtained, and when it exceeds 0.1 ⁇ m, the visibility of the touch panel is affected.
  • the conductive support forming step (S2) is a step of forming the conductive support 25 on the outer peripheral portion of the display area as shown in FIG.
  • the conductive support 25 is disposed between the transparent substrate 10 and the extraction wiring 20 by using a transparent conductive material, thereby improving the adhesion of the extraction wiring 20 and preventing poor conduction. It is formed.
  • the conductive support 25 can be formed at the same time as the jumper portion 21 without increasing the process and material costs. By forming the conductive support 25 under the lead-out wiring 20, it is considered that the adhesion with the transparent substrate 10 is improved due to the anchoring effect.
  • the conductive support 25 As a method for forming the conductive support 25, it is preferable to use a sputtering method in the same manner as the method for forming the jumper portion 21 described above. Since the method for forming the conductive support 25 using the sputtering method is the same as the method for forming the jumper portion 21, description thereof is omitted. Since the conductive support 25 is disposed between the transparent substrate 10 and the extraction wiring 20 using a transparent conductive material in order to improve the adhesion of the extraction wiring 20 and prevent conduction failure, in principle, the arrangement of the extraction wiring is performed. It is arranged on the outer periphery of the display area.
  • the decorative layer 26 or the decorative layer 26 and an insulating layer (not shown) are provided on the outer peripheral portion of the display region, the decorative layer 26, Or since the adhesion between the extraction wiring 20 is improved by the decorative layer 26 and the insulating layer (not shown) thereon, the conductive support 25 is provided only in the connection region between the transparent electrodes 23 and 24 and the extraction wiring 20. It may be formed.
  • the decorative layer 26 can be formed using, for example, a carbon-based resist. Moreover, an insulating layer may be further formed on the decorative layer.
  • the conductive material of the conductive support 25 is not limited to a transparent conductive material, and a known conductive material can be suitably used.
  • the width of the conductive support 25 is preferably 10 ⁇ m or more and 40 ⁇ m or less. When the width of the conductive support 25 is less than 10 ⁇ m, it may be difficult to stably obtain a pattern of less than 10 ⁇ m for the etching method. In addition, if the width of the conductive support 25 exceeds 40 ⁇ m, a distance that does not interfere with an electrical signal with an adjacent wiring is required. Therefore, if the width of the conductive support 25 is widened, high definition may not be supported.
  • the width of the conductive support 25 and the width of the extraction wiring 20 are the same or the width of the conductive support 25 is wider.
  • FIG. 6B shows a mode in which the width d 1 of the conductive support 25 is wider than the width d 2 of the lead-out wiring 20. If a distance (about 5 ⁇ m) at which the electrical signal does not interfere with the adjacent wiring is provided, the wider the conductive support 25 is, the less affected by the positional deviation due to the alignment accuracy.
  • the insulating layer forming step (S3) is a step of forming the insulating layer 22 on the jumper portion 21, as shown in FIG.
  • the insulating layer 22 can be formed using a known material conventionally used for the insulating layer, and examples thereof include inorganic films such as SiO 2 and SiNx, and organic materials such as transparent resins. Since inorganic films are formed of SiO 2 or SiNx by a CVD method, a sputtering method, or the like, there is a problem that the manufacturing cost becomes high, such as an increase in energy consumption or an increase in the number of steps. Formation by photolithography using an organic material is preferably used.
  • a transparent resin composition (for example, NN901 manufactured by JSR) used for the insulating layer is applied by spin coating, and prebaking is performed on a hot plate at 80 ° C. Thereafter, proximity exposure is performed using a photomask corresponding to a desired pattern, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate. Thereafter, post-baking is performed at 230 ° C., whereby the insulating layer 22 is formed.
  • the extraction wiring forming step (S4) is a step of forming the extraction wiring 20 on the conductive support 25 using a photosensitive conductive material containing metal fine particles, as shown in FIG. 6A.
  • a method for forming the extraction wiring 20 there are a screen printing method, an etching method, a gravure offset method, a photolithography method, and the like, but the photolithography method is preferable from the viewpoint of manufacturing cost and high definition.
  • the extraction wiring 20 having a pattern of 30 ⁇ m or less required for a touch panel sensor such as a smartphone has been simplified. It can be formed in a process.
  • the extraction wiring 20 having low resistance and excellent conductivity can be manufactured in a simplified process.
  • Printing is performed using screen printing (stainless steel 500 mesh) of a photosensitive conductive material containing fine metal particles, and pre-baking is performed as necessary to evaporate the organic solvent.
  • pre-baking a hot air circulation oven, a hot plate, or an IR oven can be used.
  • Pattern exposure is performed through a photomask corresponding to a desired extraction wiring pattern.
  • a normal high-pressure mercury lamp may be used as the exposure light source.
  • the exposure amount is preferably about 10 to 200 mJ / cm 2 from the viewpoint of tact time.
  • Development is performed following exposure. Development is carried out at 24 ° C. for 10 to 90 seconds using an alkaline aqueous solution containing sodium carbonate.
  • An arbitrary extraction wiring pattern can be obtained by performing heat treatment after development.
  • the heat treatment is performed at 230 ° C. for 30 minutes using a heat drying oven. Due to the curing shrinkage of the resin due to the heat treatment, the silver powders are brought into contact with each other to have sufficient conductivity and to improve resistance to chemicals and the like.
  • the width (conductor width) of the lead-out wiring 20 is preferably 3 ⁇ m or more and 30 ⁇ m or less. If the conductor width is less than 3 ⁇ m, it is likely to be affected by the electrical signal of the adjacent wiring, causing a crosstalk or delay of the electrical signal. On the other hand, if the conductor width exceeds 30 ⁇ m, it is not possible to obtain a sufficient effect for the demand for downsizing of mobile electronic devices.
  • Extract wiring thickness The film thickness of the extraction wiring 20 is preferably 2.5 ⁇ m or more and 5 ⁇ m or less. If the thickness of the extraction wiring 20 is less than 2.5 ⁇ m, a sufficient resistance value (conducting characteristic) may not be obtained. On the other hand, if the thickness of the extraction wiring 20 exceeds 5 ⁇ m, the bottom may not be cured at the time of photolithography, and the adhesion may be deteriorated.
  • the photosensitive conductive material used for the lead-out wiring contains at least metal fine particles, a photopolymerization initiator, a polymerizable polyfunctional monomer, an alkali-soluble resin, and a solvent, and may contain other additives as necessary. it can.
  • the photosensitive conductive material is prepared by blending metal fine particles, a photopolymerization initiator, a polymerizable polyfunctional monomer, an alkali-soluble resin, a solvent, and other additives with a predetermined composition, stirring with a stirrer, and then using a three-roll mill. It is obtained by kneading.
  • Metal fine particles Gold, silver, copper, palladium, or the like can be used as the metal fine particles used for the photosensitive conductive material. These materials may be used alone or in combination of two or more. Among these, it is preferable to use silver in terms of cost, resistance value, and stability.
  • the average particle diameter of metal fine particles is preferably 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the concealability by the metal fine particles is high, so that light does not reach the bottom during exposure, and pattern formation becomes difficult.
  • the average particle diameter exceeds 3 ⁇ m, the linearity and pattern accuracy in the fine pattern are lowered, which is not preferable.
  • the shape of the silver powder as the metal fine particles includes flakes, needles, and spheres, but spherical silver powder is preferable from the viewpoint of screen printability and light scattering during exposure.
  • the amount of metal fine particles (silver powder) used is preferably 65 to 85% by mass, more preferably 70 to 80% by mass, based on the total solid content of the photosensitive conductive paste. If the addition amount of metal fine particles (silver powder) is 65% by mass or less, sufficient resistivity cannot be obtained as a wiring, and if it is 85% by mass or more, ultraviolet light does not reach the bottom during exposure and pattern formation is difficult. It becomes.
  • Photopolymerization initiator examples include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, Acetophenone compounds such as -hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, Benzoin compounds such as benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl Benzophenone compounds such as 4′-methyldiphen
  • a sensitizer for the photopolymerization initiator can be used in combination.
  • Such sensitizers include ⁇ -acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl, 9,10-phenanthrenequinone, camphorquinone, ethylanthraquinone, 4,4′-diethylisophthalo Compounds such as phenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate Ethyl acetate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, N, N-dimethylparatoluidine
  • polymerizable polyfunctional monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, ⁇ -carboxyl Ethyl (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, 1,6-hexanediol diglycidyl ether di (meth) acrylate, bis Enol A diglycid
  • Acrylic acid esters and methacrylic acid esters methylolated melamine (meth) acrylic acid esters, epoxy (meth) acrylates, urethane acrylates and other acrylic acid esters and methacrylic acid esters, (meth) acrylic acid, styrene, vinyl acetate , Hydroxyethyl vinyl ether, ethylene glycol divinyl ether, pentaerythritol trivinyl ether, (meth) acrylamide, N-hydroxymethyl (meth) Examples include acrylamide, N-vinylformamide, acrylonitrile and the like.
  • the polyfunctional urethane acrylate which has the (meth) acryloyl group obtained by making polyfunctional isocyanate react with the (meth) acrylate which has a hydroxyl group is arbitrary and is not particularly limited.
  • one type of polyfunctional urethane acrylate may be used alone, or two or more types may be used in combination. These can be used alone or in admixture of two or more.
  • the alkali-soluble resin is a linear polymer having a carboxyl group, and a polybasic carboxylic acid or a reaction product of a reaction product of (meth) acrylic copolymer resin or epoxy resin and (meth) acrylic acid or its anhydride.
  • Examples thereof include an epoxy-modified acrylate resin obtained by reacting with an anhydride.
  • the (meth) acrylic copolymer resin is a copolymer resin containing at least a (meth) acrylic monomer in its constituent components, and the (meth) acrylic monomer includes (meth) acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, allyl acrylate, benzyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, glycidyl acrylate, aminoethyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl Methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, allyl methacrylate, Jill methacrylate, cyclohexyl me
  • a compound having an unsaturated bond such as styrene or cyclohexylmaleimide can be used.
  • the epoxy resin used for the epoxy-modified acrylate resin phenol novolak, cresol novolak, those having bisphenol A or bisphenol F skeleton and the like are used.
  • solvent examples include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, ethyl carbitol acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol
  • organic solvents such as monomethyl ether and petroleum solvents, and these can be used alone or in combination.
  • the addition amount of the organic solvent is preferably in the range of 5 to 20% by mass based on the total amount of the photosensitive conductive paste.
  • a storage stabilizer in addition to the said component, in order to stabilize the time-dependent viscosity of the photosensitive electrically conductive paste, a storage stabilizer can be contained.
  • storage stabilizers include quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid, and organic acids such as methyl ether, t-butylpyrocatechol, triethylphosphine, and triphenylphosphine. Examples thereof include phosphine and phosphite.
  • the storage stabilizer can be contained in an amount of 0.1 to 10% by mass based on the total amount of the photosensitive conductive paste.
  • a radical scavenger can be used for the photosensitive conductive material.
  • a radical scavenger has the effect of deactivating active radicals. By adding it to a photosensitive conductive material, it is possible to suppress the curing reaction in the unexposed areas caused by light scattering by silver powder. The dimensional accuracy of the wiring can be improved.
  • radical scavenger examples include hydroquinone derivatives such as hydroquinone, methylhydroquinone, methoquinone and 4-methoxynaphthol, quinone derivatives such as 1,4-benzoquinone, 2,6-dichloroquinone, p-xyloquinone and naphthoquinone, Irganox 245, Irganox 259 Hindered phenols such as Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1098 (above, manufactured by BASF), Adekastab AO-30, Adekastab AO-330 (above, made by ADEKA), TINUVIN123, TINUVIN144, TINUVIN144, 70 Manufactured by BASF), ADK STAB LA-77, ADK STAB LA-57 STAB LA-67, ADK STAB LA-87 (or more, ADEKA Corporation) have hindered amines
  • the addition amount of the radical scavenger can be in the range of 0.01 to 0.1% by mass based on the total solid content of the photosensitive conductive paste. If the added amount of the radical scavenger is 0.01% by mass or less, the effect of improving the dimensional accuracy of the conductor pattern cannot be obtained, and if it is 0.1% by mass or more, pattern peeling due to insufficient crosslinking density or discoloration during thermosetting occurs. To do.
  • a surfactant can be included as the photosensitive conductive material.
  • surfactant polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate monoethanolamine, lauryl sulfate
  • Anionic surfactants such as triethanolamine, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate; Oxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene
  • Nonionic surfactants such as alkyl
  • the first transparent electrode 23 is formed along the first direction, and a plurality of second electrodes are formed along the second direction orthogonal to the first direction.
  • the 1st transparent electrode 23 is provided so that it may connect with the jumper parts 21 and 21 or the extraction wiring 20.
  • FIG. The second transparent electrode 24 is provided so as to connect the second transparent electrode 24 and the extraction wiring 20.
  • a conductive support 25 is provided between the extraction wiring 20 and the transparent substrate 10 at the connection portion between the first transparent electrode 23 and / or the second transparent electrode 24 and the extraction wiring 20. Therefore, an overlapping portion 28 between the conductive support 25 and the first transparent electrode 23 and / or the second transparent electrode 24 is formed. By forming the overlapping portion 28 as described above, disconnection between the first transparent electrode 23 and / or the second transparent electrode 24 and the extraction wiring 20 can be prevented.
  • the overlap width is preferably 1 ⁇ m or more in order to obtain sufficient conduction.
  • a sputtering method ITO sputtering is performed while heating at 170 ° C. by DC magnetron sputtering.
  • a general positive resist for example, SZP series manufactured by AZ Electronic Materials
  • proximity exposure is performed using a photomask having a desired pattern reversed, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate.
  • the ITO film-formed transparent substrate on which the positive resist is patterned is subjected to ITO etching with an oxalic acid aqueous solution, followed by positive resist stripping using an aqueous alkali solution containing sodium hydroxide and sodium carbonate, and the first transparent electrode 23 and the first transparent electrode 23 Two transparent electrodes 24 are formed.
  • the transparent conductive material used for the first transparent electrode 23 and the second transparent electrode 24 is not particularly limited as long as it can be disposed on the surface of the transparent substrate 10, but ITO, zinc oxide ( An inorganic conductive material such as ZnO) can be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
  • the protective film forming step (S6) is a step of forming a protective layer (not shown) for protecting each element formed on the transparent substrate 10 from corrosion and scratches caused by contact.
  • This protective layer is formed so as to cover almost the entire surface of the transparent substrate 10 other than the connection portion of the extraction wiring 20 connected to a control circuit (not shown).
  • the protective film can be formed using the same material as the insulating layer 22.
  • a transparent resin composition for example, NN901 manufactured by JSR used for the protective film is applied by spin coating, and prebaking is performed on a hot plate at 80 ° C.
  • a decorative layer can be provided between the transparent substrate and the extraction wiring on the outer peripheral portion of the display area.
  • connection portion between the transparent electrode and the lead-out wiring is not particularly limited, and can be an appropriate shape depending on the arrangement of the lead-out wiring, the presence or absence of a decorative layer, and the like.
  • the connection portion of the second transparent electrode 24 with the extraction wiring 20 can be shaped to match the width of the extraction wiring.
  • the width of the two transparent electrodes 24 may be directly used as the shape of the end portion of the connection portion.
  • 9A and 9B show a case where the decorative layer 26 is formed and the conductive support 25 is formed only for connection, but the shape of the transparent electrode is shown in FIG. 9A even when the decorative layer 26 is not provided. , B can be the same.
  • the display device of this embodiment is equipped with the above-described capacitance type touch panel sensor.
  • the above-described capacitive touch panel sensor and a display panel such as a liquid crystal panel or an organic EL panel can be combined.
  • FIG. 10 shows an example of a display device having a configuration in which the capacitive touch panel sensor not provided with the decorative layer shown in FIG. 7 and a liquid crystal panel are combined.
  • a capacitive touch panel sensor 31 of FIG. 7 is mounted above the liquid crystal panel 30, and a cover glass provided with a decorative layer is further provided as a front plate 32 above the capacitive touch panel sensor 31.
  • FIG. 11 shows an example of a display device having a configuration in which the capacitive touch panel sensor provided with the decoration layer shown in FIG. 4A and a liquid crystal panel are combined.
  • the liquid crystal panel includes, for example, an array substrate 302 in which active elements (thin film transistors and TFTs) are formed for each pixel on a glass substrate, and a color filter substrate 301 in which a color filter and a uniform transparent electrode are formed on a glass substrate as a counter substrate. Are disposed opposite to each other with the liquid crystal 304 interposed therebetween, and a polarizing plate 303 is further provided. If it is a display apparatus of this embodiment, since the above-mentioned capacitive touch panel sensor is mounted, a display apparatus having good touch panel sensor quality can be provided.
  • an acrylic resin solution was prepared by adding 1-methoxy-2-propylacetate to the resin solution so that the solid content was 30% by mass to obtain an alkali-soluble resin.
  • the weight average molecular weight of the acrylic resin was about 20,000.
  • photosensitive conductive material 1 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 1.
  • Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts
  • Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts
  • Polymerizable polyfunctional Monomer R-684 manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
  • photosensitive conductive material 2 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 2.
  • Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts
  • Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
  • photosensitive conductive material 3 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 3.
  • Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts
  • Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts
  • Polymerizable polyfunctional Monomer R-684 manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
  • photosensitive conductive material 4 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 4.
  • Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts
  • Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts
  • Polymerizable polyfunctional Monomer R-684 manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
  • photosensitive conductive material 5 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 5.
  • Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts
  • Polymerizable polyfunctional Monomer R-684 manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
  • photosensitive conductive material 6 A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 ⁇ m filter to prepare photosensitive conductive material 6.
  • Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts
  • Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
  • ⁇ Development adhesion test> In order to confirm the adhesion of the touch panel sensor manufactured according to the present invention with fine wires, a development adhesion test was performed. A touch panel sensor in which an extraction wiring was formed using a photomask having a line and space (L / S) of 10 ⁇ m / 20 ⁇ m, 15 ⁇ m / 20 ⁇ m, 20 ⁇ m / 20 ⁇ m, 25 ⁇ m / 20 ⁇ m, and 30 ⁇ m / 20 ⁇ m was manufactured.
  • L / S line and space
  • ⁇ High temperature and high humidity test> In order to confirm the adhesion after environmental load of the touch panel sensor manufactured according to the present invention, a high temperature and high humidity test was performed. A touch panel sensor in which an extraction wiring was formed using a photomask having a line and space (L / S) size of 30 ⁇ m / 30 ⁇ m was produced. After the touch panel sensor was put in a high-temperature and high-humidity tank at 60 ° C. and 90% RH for 200 hours, an adhesion test by a cross cut method was performed. As an adhesion test method, a test method according to JIS K 5600-5-6 (1999) was performed except that the cut was made only in the direction perpendicular to the wiring. As a judgment criterion, a case where wiring peeling does not occur is indicated by ⁇ , and a case where wiring peeling occurs is indicated by ⁇ .
  • Example 1 ITO sputtering was performed on a glass substrate while heating at 170 ° C. by a DC magnetron sputtering method. Subsequently, SZP manufactured by AZ Electronic Materials Co., Ltd. was spin-coated so as to have a film thickness of 1.0 ⁇ m as an etching protective film, and then prebaked on a 105 ° C. hot plate. Then, proximity exposure was performed using the photomask which reversed the desired 1st transparent electrode pattern, and it developed with the aqueous alkali solution containing sodium hydroxide and sodium carbonate.
  • the ITO film-formed glass substrate on which the positive resist is patterned is subjected to ITO etching with an oxalic acid aqueous solution, and then the positive resist is stripped using an alkaline aqueous solution containing sodium hydroxide and sodium carbonate to thereby make a jumper portion 21 of the first transparent electrode.
  • the conductive support 25 was formed with a film thickness of 0.03 ⁇ m.
  • the photosensitive conductive material 1 was printed on the glass substrate by a screen printing method so that the finished film thickness was 4.0 ⁇ m, and then prebaked in a hot air circulation oven.
  • the glass substrate is subjected to proximity exposure through a photomask on which a lead-out wiring pattern is formed, developed with an aqueous alkali solution containing sodium hydroxide and sodium carbonate, and then subjected to heat treatment, whereby a conductive support is obtained.
  • An extraction wiring 20 was formed on 25.
  • the width of the conductive support formed at this time is 12.3 ⁇ m, and the conductor width of the extraction wiring is 12.3 ⁇ m. It was.
  • the overlapping width of the transparent electrode and the conductive support was 50 ⁇ m.
  • Example 4 As shown in FIG. 4A and FIG. 4B, a mixture having the following composition is stirred and mixed uniformly at the periphery of the glass substrate, and then filtered through a 5 ⁇ m filter to form a carbon resist having a pigment concentration of 47%.
  • the decorative layer 25 (frame part) was formed with a film thickness of 1.5 ⁇ m.
  • Multifunctional polymerizable monomer (“OADPH80A (Molecular weight 764)” manufactured by Osaka Organic Industry Co., Ltd.) 10 parts Photoinitiator (“Irgacure OXE02” manufactured by BASF) 0.3 parts Sensitizer 4,4'-bis (diethylamino) Benzophenone (“EAB-F” manufactured by Hodogaya Chemical Co., Ltd.) 1.5 parts Cyclohexanone 140 parts Propylene glycol monomethyl ether acetate 140 parts Additive (“ADEKA Polyether G-400" manufactured by ADEKA Corporation) 5 parts
  • an insulating layer was provided on the decorative layer with NN901 manufactured by JSR.
  • a touch panel sensor having a conductive support 25 in the connection region between the transparent electrode and the extraction wiring 20 on the insulating layer and below the extraction wiring 20 was manufactured.
  • the continuity test and the high-temperature and high-humidity test were satisfactory.
  • the width of the conductive support formed at this time was 25.0 ⁇ m, and the conductor width of the extraction wiring was 20.1 ⁇ m.
  • the overlapping width between the transparent electrode and the conductive support was 60 ⁇ m.
  • ITO sputtering was performed on a glass substrate while heating at 170 ° C. by a DC magnetron sputtering method. Subsequently, SZP manufactured by AZ Electronic Materials Co., Ltd. was spin-coated so as to have a film thickness of 1.0 ⁇ m as an etching protective film, and then prebaked on a 105 ° C. hot plate. Then, proximity exposure was performed using the photomask which reversed the desired 1st transparent electrode pattern, and it developed with the aqueous alkali solution containing sodium hydroxide and sodium carbonate.
  • the ITO film-formed glass substrate on which the positive resist is patterned is subjected to ITO etching with an oxalic acid aqueous solution, and then the positive resist is stripped using an alkaline aqueous solution containing sodium hydroxide and sodium carbonate to thereby make a jumper portion 21 of the first transparent electrode.
  • the photosensitive conductive material 1 was printed on the glass substrate by a screen printing method so that the finished film thickness was 4.0 ⁇ m, and then prebaked in a hot air circulation oven.
  • the formation of the conductive support 25 under the extraction wiring 20 can prevent the occurrence of poor conduction and peeling due to the high temperature and high humidity test.
  • the average particle diameter of the silver powder is less than 0.05 ⁇ m as in Example 8
  • peeling occurs in the fine line
  • the fine line is blurred. Therefore, the average particle diameter is preferably 0.05 to 3 ⁇ m.
  • the overlapping portion was 1. It is preferably 0 ⁇ m or more.
  • the lead-out wiring 20 using a photosensitive conductive material containing metal fine particles on the conductive support 25, it has a high-definition pattern of 30 ⁇ m or less and has good quality with no disconnection or peeling. It is possible to provide a capacitive touch panel sensor that can be manufactured at low cost.

Abstract

A method for producing a touch panel sensor of an electrostatic capacitance type, characterized by comprising: a jumper parts (21) formation step of forming multiple jumper parts (21) in a display region on a transparent substrate (10) along a first direction; a conductive support formation step of forming a conductive support (25) in an outer peripheral part of the display region; an insulating layer formation step of forming an insulating layer on the jumper parts (21); a takeoff wiring line formation step of forming a takeoff wiring line on the conductive support (25) using a photosensitive conductive material containing metal microparticles; and a transparent electrode formation step of forming multiple first transparent electrodes (23) along the first direction in such a manner that the jumper parts (21) can be connected to one another through the first transparent electrodes (23) or the first transparent electrodes (23) can be connected to the takeoff wiring line (20) through the first transparent electrodes (23), and also forming multiple second transparent electrodes (24) along a second direction that is perpendicular to the first direction in such a manner that the second transparent electrodes (24) can be connected to the takeoff wiring line (20).

Description

静電容量方式タッチパネルセンサー、及びその製造方法、並びに表示装置Capacitive touch panel sensor, manufacturing method thereof, and display device
 本発明は、投影型静電容量方式タッチパネルセンサー、及びその製造方法、並びにその投影型静電容量方式タッチパネルセンサーを搭載した表示装置に関するものである。 The present invention relates to a projected capacitive touch panel sensor, a manufacturing method thereof, and a display device equipped with the projected capacitive touch panel sensor.
 タッチパネルは、表示画面上の透明な面を操作者が指またはペンでタッチすることにより、接触した位置を検出してデータ入力できる入力装置の構成要素となるものである。このように、上記タッチパネルは、キー入力より直接的、かつ直感的な入力を可能とすることから、近年、多用されるようになってきた。特に上記タッチパネルを液晶等の表示パネルと組み合わせて、情報の入出力を一体で行うことが多い。 The touch panel is a constituent element of an input device that allows the operator to touch a transparent surface on the display screen with a finger or a pen to detect a touched position and input data. Thus, the touch panel has been used frequently in recent years because it enables direct and intuitive input rather than key input. In particular, the touch panel is often combined with a display panel such as a liquid crystal to input and output information in an integrated manner.
 タッチパネルの検出方式には、抵抗膜方式、静電容量方式、超音波方式、光学方式等があり、これまでは、製造コストの点で比較的優れていた抵抗膜方式が主流であった。しかし、2枚の透明導電膜の間に空気層を設ける構造を有する抵抗膜方式タッチパネルは、光学特性(透過率)が低く、耐久性や動作温度特性においても充分とは言えないため、改良が求められてきた。 Touch panel detection methods include a resistance film method, a capacitance method, an ultrasonic method, an optical method, and the like. Until now, the resistance film method, which was relatively superior in terms of manufacturing cost, has been the mainstream. However, the resistive film type touch panel having a structure in which an air layer is provided between two transparent conductive films has low optical characteristics (transmittance), and it cannot be said that durability and operating temperature characteristics are sufficient. It has been sought.
 一方、可動部分を有しない静電容量方式タッチパネルは、光学特性(透過率)が高く、耐久性や動作温度特性においても抵抗膜方式より優れているため、特に車載用等の高信頼性用途に向けて開発が進んでいる(例えば、特許文献1及び特許文献2参照)。上記静電容量式タッチパネルは、表面型(surface capacitive type)と投影型(projected capacitive type)に大別でき、10型(25.4cmサイズ)以上の大型品に表面型が、携帯機器向けの6型以下の小型品に投影型が使われる場合が多い。電極板の構造が単純な表面型は、大型化し易いが、2点以上の接触点を同時に検知することは困難である。一方、電極板の構造が複雑な投影型は、大型化には不利であるが、2点以上の接触点を同時に検知することが可能である。 On the other hand, capacitive touch panels without moving parts have high optical characteristics (transmittance) and are superior to resistive film systems in terms of durability and operating temperature characteristics. Development is progressing toward the target (see, for example, Patent Document 1 and Patent Document 2). The capacitive touch panel can be roughly classified into a surface type (surface capacitive type) and a projected type (projected capacitive type). The surface type is a large type of 10 type (25.4 cm size) or more, and the surface type is 6 for portable devices. Projection molds are often used for small products below the mold. A surface type with a simple electrode plate structure is likely to be large, but it is difficult to detect two or more contact points simultaneously. On the other hand, a projection type with a complicated electrode plate structure is disadvantageous for an increase in size, but two or more contact points can be detected simultaneously.
 投影型静電容量方式タッチパネルセンサーは、一般的に、図16に示すように、透明基板10上の矩形状の表示領域の第一の方向に沿って形成された複数の第一透明電極23と、透明基板10上に第一の方向と交差する第二の方向に沿って形成された複数の第二透明電極24と、第一透明電極23と第二透明電極24の電気的接触を防ぐために、その交差位置に形成される絶縁層22と、第一透明電極23及び第二透明電極24と外部接続端子(図示せず)とを電気的に接続するために矩形状の表示領域の外周部に配置された取出配線20を備えている。また、タッチパネルセンサー上には、必要に応じて、取出配線20の接続部位以外のほぼ全面を覆うように保護層(図示せず)が形成される。このように保護層が形成されることにより、第一透明電極23、第二透明電極24、及び取出配線20を腐食や接触による傷から守ることができる。 As shown in FIG. 16, the projected capacitive touch panel sensor generally includes a plurality of first transparent electrodes 23 formed along a first direction of a rectangular display region on the transparent substrate 10. In order to prevent electrical contact between the plurality of second transparent electrodes 24 formed on the transparent substrate 10 along the second direction intersecting the first direction, and the first transparent electrode 23 and the second transparent electrode 24 In order to electrically connect the insulating layer 22 formed at the intersection, the first transparent electrode 23 and the second transparent electrode 24, and an external connection terminal (not shown), the outer peripheral portion of the rectangular display region The lead-out wiring 20 is provided. In addition, a protective layer (not shown) is formed on the touch panel sensor so as to cover almost the entire surface other than the connection portion of the extraction wiring 20 as necessary. Thus, by forming a protective layer, the 1st transparent electrode 23, the 2nd transparent electrode 24, and the extraction wiring 20 can be protected from the damage | wound by corrosion or a contact.
 投影型静電容量式タッチパネルを用いた電子機器として、スマートフォンやスレートPCが代表的である。これら電子機器に対する要求として小型化・高精細化があり、部材として用いられるディスプレイやタッチパネルセンサーにも小型化・高精細化が求められている。
 従来の投影型静電容量方式タッチパネルセンサーの製造方法について説明する。図12に示すように、従来の投影型静電容量方式タッチパネルセンサーの製造方法は、取出配線形成工程(S101)と、ジャンパー部形成工程(S102)と、絶縁層形成工程(S103)と、透明電極形成工程(S104)と、保護膜形成工程(S105)とを含む。
A typical example of an electronic device using a projected capacitive touch panel is a smartphone or a slate PC. There is a demand for these electronic devices to be downsized and high definition, and display and touch panel sensors used as members are also required to be downsized and high definition.
A method for manufacturing a conventional projected capacitive touch panel sensor will be described. As shown in FIG. 12, the conventional method for manufacturing a projected capacitive touch panel sensor includes an extraction wiring formation step (S101), a jumper portion formation step (S102), an insulating layer formation step (S103), and a transparent It includes an electrode formation step (S104) and a protective film formation step (S105).
 まず、図13に示すように、透明基板10上にスパッタ法を用いて金属膜による取出配線20を形成する。上記金属膜として一般的に、モリブデン(Mo)/アルミニウム(Al)/モリブデン膜等が用いられる。スパッタ法とは、真空容器内に投入した基板にマグネトロンスパッタ装置を用いて金属膜をスパッタ後、保護膜形成、エッチング、保護膜剥離を行うことによりパターンを形成する方法であり、30μm以下の高精細パターンにも対応可能である。 First, as shown in FIG. 13, an extraction wiring 20 made of a metal film is formed on the transparent substrate 10 by sputtering. In general, a molybdenum (Mo) / aluminum (Al) / molybdenum film or the like is used as the metal film. The sputtering method is a method of forming a pattern by performing a protective film formation, etching, and protective film peeling after sputtering a metal film on a substrate placed in a vacuum vessel using a magnetron sputtering apparatus. It can also handle fine patterns.
 取出配線20の形成後、図14に示すように、透明導電材料を用いた第一透明電極の接続部(ジャンパー部)21をスパッタ法により形成する。上記透明導電材料としては、酸化インジウムに数%の酸化スズを添加した酸化インジウムスズ(ITO)が一般的に用いられる。
 続いて、図15に示すように、ジャンパー部21の一部を除いて覆うようにフォトリソグラフィ法を用いて、絶縁層22を形成する。上記フォトリソグラフィ法とは、透明基板10上に感光性樹脂組成物を塗布後、所望する絶縁パターンに対応するフォトマスクを介して、紫外光を照射することにより塗膜の露光部分を光架橋により硬化し、現像液を用いて塗膜の未露光部分を除去した後に焼成することによりパターンを形成する方法である。
After forming the extraction wiring 20, as shown in FIG. 14, the connection part (jumper part) 21 of the 1st transparent electrode using a transparent conductive material is formed by a sputtering method. As the transparent conductive material, indium tin oxide (ITO) obtained by adding several percent of tin oxide to indium oxide is generally used.
Subsequently, as illustrated in FIG. 15, the insulating layer 22 is formed by using a photolithography method so as to cover the jumper portion 21 except for a part thereof. The photolithographic method is a method in which a photosensitive resin composition is applied on the transparent substrate 10 and then irradiated with ultraviolet light through a photomask corresponding to a desired insulating pattern, whereby the exposed portion of the coating film is photocrosslinked. It is a method of forming a pattern by curing and baking after removing an unexposed portion of the coating film using a developer.
 絶縁層22の形成後、図16に示すように、透明導電材料を用いて、第一透明電極23及び第二透明電極24をスパッタ法により形成する。この時、第一透明電極23は、第一の方向に沿ってジャンパー部21及び取出配線20と電気的に接続されるように形成する。一方、第二透明電極24は、第二の方向に沿って、絶縁層22上にもパターンが途切れることなく形成され、取出配線20と電気的に接続されるように形成する。ここで、第一透明電極23と第二透明電極24との交差部分の平面図である図17、及び交差部分の断面図である図18に示すように、第一の方向に沿って形成された複数の第一透明電極23と第二の方向に沿って形成された複数の第二透明電極24は絶縁層22で隔てられ、電気的に接続することなく配置することにより、静電容量値の変化した座標を判断できるように構成されている。透明電極及び配線保護のために、透明樹脂組成物や無機膜を用いた保護膜をこれらの上に形成することも可能である。 After the formation of the insulating layer 22, as shown in FIG. 16, the first transparent electrode 23 and the second transparent electrode 24 are formed by sputtering using a transparent conductive material. At this time, the first transparent electrode 23 is formed so as to be electrically connected to the jumper portion 21 and the extraction wiring 20 along the first direction. On the other hand, the second transparent electrode 24 is formed on the insulating layer 22 without interruption in the second direction, and is formed so as to be electrically connected to the extraction wiring 20. Here, as shown in FIG. 17 which is a plan view of the intersection of the first transparent electrode 23 and the second transparent electrode 24 and FIG. 18 which is a cross-sectional view of the intersection, the first transparent electrode 23 is formed along the first direction. The plurality of first transparent electrodes 23 and the plurality of second transparent electrodes 24 formed along the second direction are separated by the insulating layer 22 and disposed without being electrically connected, thereby providing a capacitance value. It is configured so that the changed coordinates can be determined. In order to protect the transparent electrode and the wiring, a protective film using a transparent resin composition or an inorganic film can be formed thereon.
 取出配線20や第一透明電極23及び第二透明電極24の形成方法として、スパッタ法を用いることによって、30μm以下の高精細パターンを形成することが可能ではあるが、スパッタ法は設備投資費用が高いだけでなく、工程が多く製造コストが高いことが課題となっている。
 取出配線を安価に形成する方法として、スクリーン印刷法がある。スクリーン印刷法は、銀等の導電性微粒子を有機バインダーに分散させた導電性ペーストを、配線に対応するパターンを備えたスクリーン印刷版を用いて基板上に印刷し、その後焼成により有機バインダーを硬化収縮もしくは消失させることによりパターンを形成する方法である。
As a method of forming the extraction wiring 20, the first transparent electrode 23, and the second transparent electrode 24, it is possible to form a high-definition pattern of 30 μm or less by using a sputtering method. Not only is it expensive, but there are many processes and high manufacturing costs.
There is a screen printing method as a method for forming the extraction wiring at a low cost. In the screen printing method, a conductive paste in which conductive fine particles such as silver are dispersed in an organic binder is printed on a substrate using a screen printing plate having a pattern corresponding to the wiring, and then the organic binder is cured by baking. This is a method of forming a pattern by shrinking or disappearing.
 しかしながら、スクリーン印刷法による取出配線の形成において、高精細化を行うことが困難であり、工業的に安定したパターン形成には70μmが限界とされている。
 そこで、スパッタ法より安価で、且つ、スクリーン印刷法よりも高精細な取出配線パターンを得る方法として、フォトリソグラフィ法を用いる技術が開示されている(例えば、特許文献3及び特許文献4参照)。
However, it is difficult to achieve high definition in the formation of the extraction wiring by the screen printing method, and 70 μm is the limit for industrially stable pattern formation.
Therefore, a technique using a photolithography method has been disclosed as a method for obtaining a lead-out wiring pattern that is cheaper than the sputtering method and higher in definition than the screen printing method (see, for example, Patent Document 3 and Patent Document 4).
 フォトリソグラフィ法に用いられる感光性導電ペーストは、感光性及びアルカリ現像性を持つ有機物中に無機金属微粒子を分散させたペーストを塗布・露光・現像後に500~600℃で焼成することによって有機物を焼失させて無機物のみとして導電回路パターンを形成する焼成型感光性導電ペーストと、感光性及びアルカリ現像性を持つ有機物中に無機金属微粒子を分散させたペーストを塗布・露光・現像後に130~250℃で焼成して有機物を熱硬化させることにより無機物と有機物の複合体として導電回路パターンを形成する熱硬化型感光性導電ペーストに分類される。 The photosensitive conductive paste used in the photolithography method burns organic matter by baking at 500-600 ° C after applying, exposing and developing a paste in which inorganic metal fine particles are dispersed in an organic matter having photosensitivity and alkali developability. And a paste in which inorganic metal fine particles are dispersed in an organic substance having photosensitivity and alkali developability at 130 to 250 ° C. after coating, exposure and development. It is classified into a thermosetting photosensitive conductive paste that forms a conductive circuit pattern as a composite of an inorganic substance and an organic substance by baking and organically curing the organic substance.
 従来、プラズマディスプレイパネル(PDP)用配線には焼成型感光性導電ペーストが用いられてきたが、耐熱性の低いフィルム上に形成することもあるタッチパネルセンサー向けには熱硬化型感光性導電ペーストが用いられるようになっている(例えば、特許文献5参照)。 Conventionally, a baking type photosensitive conductive paste has been used for a plasma display panel (PDP) wiring. However, a thermosetting photosensitive conductive paste is sometimes used for a touch panel sensor that may be formed on a film having low heat resistance. (See, for example, Patent Document 5).
 しかしながら、従来の感光性導電ペーストでは、感光性導電ペースト中に含まれる金属微粒子によって、露光時の紫外光が散乱することにより解像性が低下したり、塗膜内部まで紫外光が透過しないために取出配線パターンに剥れが発生したりする問題がある。
 これらの問題を解決するため、特許文献4においては、紫外線吸収剤を含有させることにより高精細パターンの形成を試みているが、30μm以下のパターンにおいて工業的に安定したパターン形成するには十分な解像性が得られていない。
However, in the conventional photosensitive conductive paste, the metal fine particles contained in the photosensitive conductive paste cause the ultraviolet light at the time of exposure to scatter, resulting in a decrease in resolution or the penetration of ultraviolet light into the coating film. However, there is a problem that peeling occurs in the extraction wiring pattern.
In order to solve these problems, Patent Document 4 attempts to form a high-definition pattern by containing an ultraviolet absorber, but it is sufficient to form an industrially stable pattern in a pattern of 30 μm or less. Resolution is not obtained.
 また、金属微粒子を含む感光性導電ペーストによるフォトリソグラフィ法で取出配線を形成する際に、取出配線20と透明電極23,24との接続部において、導通不良が発生するという問題がある。すなわち、図19に示されるように、取出配線20の端部において、金属微粒子、例えばAg微粒子と透明基板10との間に間隙29が生じ、この間隙により、透明電極23,24が未成膜となる部分が生じ、取出配線20と透明電極23,24との接続部の断線が生じる問題がある。 Also, when the extraction wiring is formed by a photolithography method using a photosensitive conductive paste containing metal fine particles, there is a problem that conduction failure occurs at the connection portion between the extraction wiring 20 and the transparent electrodes 23 and 24. That is, as shown in FIG. 19, a gap 29 is formed between the metal fine particles, for example, Ag fine particles, and the transparent substrate 10 at the end of the lead-out wiring 20, and the transparent electrodes 23 and 24 are not formed by this gap. There arises a problem in that the connection portion between the lead-out wiring 20 and the transparent electrodes 23 and 24 is disconnected.
 さらに、無機物と有機物の複合体で導電回路パターン形成を行う熱硬化型感光性導電ペーストにおいては、十分な導電性を有する必要があるために無機金属粉末の含有量を熱焼成型感光性導電ペーストよりも多く含有しなければならないことから、高精細パターン形成は困難であった。 Furthermore, in a thermosetting photosensitive conductive paste that forms a conductive circuit pattern with a composite of an inorganic material and an organic material, it is necessary to have sufficient electrical conductivity. Therefore, it is difficult to form a high-definition pattern.
特開昭63-174120号公報JP 63-174120 A 特開2006-23904号公報JP 2006-23904 A 特許第4374653号公報Japanese Patent No. 4374653 特許第3239723号公報Japanese Patent No. 3329723 特許第4034555号公報Japanese Patent No. 4034555
 本発明は係る状況に鑑みてなされたものであり、その目的は、30μm以下の高精細パターンを有し、断線や剥れの発生しない良好な品質且つ低コストで製造可能な静電容量方式タッチパネルセンサー、及びその製造方法、並びに表示装置を提供することである。 SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and an object of the present invention is to provide a capacitive touch panel having a high-definition pattern of 30 μm or less and capable of being manufactured with good quality and low cost without occurrence of disconnection or peeling. A sensor, a manufacturing method thereof, and a display device are provided.
(1)本発明の一態様によれば、透明基板上の表示領域に、第一の方向に沿って、ジャンパー部を複数形成するジャンパー部形成工程と、
 前記表示領域の外周部に導電支持体を形成する導電支持体形成工程と、
 前記ジャンパー部上に絶縁層を形成する絶縁層形成工程と、
 金属微粒子を含む感光性導電材料を用いて、前記導電支持体上に取出配線を形成する取出配線形成工程と、
 第一透明電極により前記ジャンパー部同士を接続するか、又は前記第一透明電極と前記取出配線とを接続するように、複数の前記第一透明電極を第一の方向に沿って形成すると共に、第一の方向に直交する第二の方向に沿って第二透明電極と前記取出配線とを接続するように複数の前記第二透明電極を形成する透明電極形成工程とを含むことを特徴とする静電容量方式タッチパネルセンサーの製造方法が提供される。
(1) According to one aspect of the present invention, a jumper portion forming step of forming a plurality of jumper portions along the first direction in the display region on the transparent substrate;
A conductive support forming step of forming a conductive support on the outer periphery of the display area;
An insulating layer forming step of forming an insulating layer on the jumper portion;
Using a photosensitive conductive material containing metal fine particles, an extraction wiring forming step of forming an extraction wiring on the conductive support;
A plurality of the first transparent electrodes are formed along the first direction so as to connect the jumper portions by the first transparent electrode or connect the first transparent electrode and the extraction wiring, A transparent electrode forming step of forming a plurality of the second transparent electrodes so as to connect the second transparent electrode and the extraction wiring along a second direction orthogonal to the first direction. A method for manufacturing a capacitive touch panel sensor is provided.
(2)前記取出配線形成工程において、前記取出配線を、スクリーン印刷による塗布及びマスクパターンを用いた露光・現像により形成してよい。
(3)前記金属微粒子の平均粒子径が0.05μm以上3.00μm以下としてよい。
(4)前記金属微粒子が金、銀、銅、パラジウム、又はこれらのうちの少なくとも二以上の混合物であってよい。
(5)前記取出配線形成工程において、前記取出配線の導体幅を、3μm以上30μm以下で形成してよい。
(2) In the extraction wiring formation step, the extraction wiring may be formed by application by screen printing and exposure / development using a mask pattern.
(3) The metal fine particles may have an average particle size of 0.05 μm or more and 3.00 μm or less.
(4) The metal fine particles may be gold, silver, copper, palladium, or a mixture of at least two of these.
(5) In the extraction wiring formation step, the conductor width of the extraction wiring may be 3 μm or more and 30 μm or less.
(6)前記ジャンパー部形成工程と前記導電支持体形成工程とを同時に行ってよい。
(7)前記第一透明電極及び/又は前記第二透明電極と前記取出配線との接続部を、前記第一透明電極及び/又は前記第二透明電極の端部が前記導電支持体及び前記取出配線の端部を覆うように形成してよい。
(8)前記第一透明電極及び/又は前記第二透明電極と前記導電支持体との重なり幅が、1μm以上であってよい。
(6) You may perform the said jumper part formation process and the said electroconductive support body formation process simultaneously.
(7) The connection portion between the first transparent electrode and / or the second transparent electrode and the extraction wiring, and the end of the first transparent electrode and / or the second transparent electrode are the conductive support and the extraction. You may form so that the edge part of wiring may be covered.
(8) The overlapping width of the first transparent electrode and / or the second transparent electrode and the conductive support may be 1 μm or more.
(9)前記導電支持体は、前記第一透明電極及び/又は前記第二透明電極と前記取出配線との接続領域においてのみ形成してよい。
(10)前記接続領域は、前記透明基板上の表示領域の外周部に形成される加飾層及び選択的に絶縁層が形成されている領域内にあってよい。
(11)本発明の他の態様によれば、上記記載の静電容量方式タッチパネルセンサーの製造方法で製造されたことを特徴とする静電容量方式タッチパネルセンサーが提供される。
(9) The conductive support may be formed only in a connection region between the first transparent electrode and / or the second transparent electrode and the extraction wiring.
(10) The connection region may be in a region where a decorative layer and an insulating layer are selectively formed on the outer peripheral portion of the display region on the transparent substrate.
(11) According to another aspect of the present invention, there is provided a capacitive touch panel sensor manufactured by the above-described capacitive touch panel sensor manufacturing method.
(12)本発明の他の態様によれば、透明基板上に、第一の方向に沿って形成された複数の第一透明電極と、前記透明基板上に第一の方向と交差する第二の方向に沿って形成された複数の第二透明電極と、前記第一透明電極と前記第二透明電極との重畳領域に、前記第一透明電極及び前記第二透明電極に挟まれて形成される絶縁層と、表示領域の外周部に配置された取出配線とを具備し、前記第一透明電極及び前記第二透明電極と前記取出配線の接続端部とが電気的に接続されている静電容量方式タッチパネルセンサーであって、前記表示領域の外周部に設けられた導電支持体上に、金属微粒子を含む感光性導電材料を用いて前記取出配線が設けられたことを特徴とする静電容量方式タッチパネルセンサーが提供される。 (12) According to another aspect of the present invention, a plurality of first transparent electrodes formed along a first direction on a transparent substrate, and a second crossing the first direction on the transparent substrate. A plurality of second transparent electrodes formed along the direction of the first transparent electrode, and the first transparent electrode and the second transparent electrode are overlapped between the first transparent electrode and the second transparent electrode. An insulating layer and a lead-out line disposed on the outer periphery of the display area, and the first transparent electrode and the second transparent electrode are electrically connected to the connection end of the lead-out line. An electrostatic capacity type touch panel sensor, wherein the lead-out wiring is provided on a conductive support provided on an outer peripheral portion of the display region using a photosensitive conductive material containing metal fine particles. A capacitive touch panel sensor is provided.
(13)前記金属微粒子は平均粒子径0.05μm以上3.00μm以下であってよい。
(14)前記金属微粒子は、金、銀、銅、パラジウム、又はこれらのうちの少なくとも二以上の混合物であってよい。
(15)前記取出配線の導体幅が、3μm以上30μm以下であってよい。
(16)前記第一透明電極及び/又は前記第二透明電極と前記取出配線との接続部は、前記第一透明電極及び/又は前記第二透明電極の端部が前記導電支持体及び前記取出配線の端部を覆うように形成してよい。
(13) The metal fine particles may have an average particle size of 0.05 μm or more and 3.00 μm or less.
(14) The metal fine particles may be gold, silver, copper, palladium, or a mixture of at least two of these.
(15) The conductor width of the extraction wiring may be not less than 3 μm and not more than 30 μm.
(16) The connecting portion between the first transparent electrode and / or the second transparent electrode and the extraction wiring is such that the end of the first transparent electrode and / or the second transparent electrode is the conductive support and the extraction You may form so that the edge part of wiring may be covered.
(17)前記第一透明電極及び/又は前記第二透明電極と前記導電支持体との重なり幅が、1μm以上であってよい。
(18)前記導電支持体は、前記第一透明電極及び/又は前記第二透明電極と前記取出配線との接続領域においてのみ形成してよい。
(19)前記接続領域は、前記透明基板上の表示領域の外周部に形成される加飾層及び選択的に絶縁層が形成されている領域内にあってよい。
(20)前記導電支持体は、前記第一透明電極又は前記第二透明電極と同じ材料で設けてよい。
(21)本発明のさらに他の態様によれば、上記記載の静電容量方式タッチパネルセンサーを搭載したことを特徴とする表示装置が提供される。
(17) The overlapping width between the first transparent electrode and / or the second transparent electrode and the conductive support may be 1 μm or more.
(18) The conductive support may be formed only in a connection region between the first transparent electrode and / or the second transparent electrode and the extraction wiring.
(19) The connection region may be in a region where a decorative layer and an insulating layer are selectively formed on the outer periphery of the display region on the transparent substrate.
(20) The conductive support may be made of the same material as the first transparent electrode or the second transparent electrode.
(21) According to still another aspect of the present invention, there is provided a display device characterized by mounting the above-described capacitive touch panel sensor.
 本発明によれば、30μm以下の高精細パターンを有し、断線や剥れの発生しない良好な品質且つ安価な静電容量方式タッチパネルセンサーの製造方法を提供することができる。また、その製造方法を用いることにより、良好な品質且つ安価なタッチパネルセンサーを提供することができる。さらには、そのタッチパネルセンサーを搭載した表示装置を提供することができる。 According to the present invention, it is possible to provide a capacitive touch panel sensor that has a high-definition pattern of 30 μm or less and has good quality and is free from disconnection or peeling. Further, by using the manufacturing method, it is possible to provide a touch panel sensor with good quality and low cost. Furthermore, a display device including the touch panel sensor can be provided.
本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態における工程フロー図である。It is a process flow figure in one embodiment of a manufacturing method of a capacitive touch panel sensor concerning the present invention. 本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態におけるジャンパー部形成工程を示す平面図である。It is a top view which shows the jumper part formation process in one Embodiment of the manufacturing method of the capacitive touch panel sensor which concerns on this invention. 本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態における導電支持体形成工程を示す平面図である。It is a top view which shows the electroconductive support body formation process in one Embodiment of the manufacturing method of the capacitive touch panel sensor which concerns on this invention. 本発明の静電容量方式タッチパネルセンサーにおいて、表示領域の外周部において、加飾層を形成した例の平面図である。In the capacitive touch panel sensor of this invention, it is a top view of the example which formed the decoration layer in the outer peripheral part of a display area. 本発明の静電容量方式タッチパネルセンサーにおいて、表示領域の外周部において、加飾層を形成した例の断面図である。In the capacitive touch panel sensor of this invention, it is sectional drawing of the example which formed the decoration layer in the outer peripheral part of a display area. 本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態における絶縁層形成工程を示す平面図である。It is a top view which shows the insulating layer formation process in one Embodiment of the manufacturing method of the capacitive touch panel sensor which concerns on this invention. 本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態における取出配線形成工程を示す平面図である。It is a top view which shows the extraction wiring formation process in one Embodiment of the manufacturing method of the capacitive touch panel sensor which concerns on this invention. 本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態における取出配線形成工程を示す図6Aの6b-6b線に沿う断面図である。FIG. 6B is a cross-sectional view taken along line 6b-6b of FIG. 6A showing a lead-out wiring forming step in an embodiment of the method of manufacturing the capacitive touch panel sensor according to the present invention. 本発明に係る静電容量方式タッチパネルセンサーの製造方法の一実施形態における透明電極形成工程を示す平面図である。It is a top view which shows the transparent electrode formation process in one Embodiment of the manufacturing method of the capacitive touch panel sensor which concerns on this invention. 本発明に係る静電容量方式タッチパネルセンサーの透明電極と取出配線の接続部を示す断面図である。It is sectional drawing which shows the connection part of the transparent electrode and extraction wiring of the capacitive touch panel sensor which concerns on this invention. 本発明に係る静電容量方式タッチパネルセンサーの透明電極の端部の一実施態様を示す平面図である。It is a top view which shows one embodiment of the edge part of the transparent electrode of the capacitive touch panel sensor which concerns on this invention. 本発明に係る静電容量方式タッチパネルセンサーの透明電極の端部の一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the edge part of the transparent electrode of the capacitive touch panel sensor which concerns on this invention. 本発明の静電容量方式タッチパネルセンサーを搭載した表示装置の一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the display apparatus carrying the capacitive touch panel sensor of this invention. 本発明の静電容量方式タッチパネルセンサーを搭載した表示装置の一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the display apparatus carrying the capacitive touch panel sensor of this invention. 従来の静電容量方式タッチパネルセンサーの製造方法における工程フロー図である。It is a process flow figure in the manufacturing method of the conventional capacitive touch panel sensor. 従来の静電容量方式タッチパネルセンサーの製造方法における取出配線形成工程を示す平面図である。It is a top view which shows the extraction wiring formation process in the manufacturing method of the conventional electrostatic capacitance type touch panel sensor. 従来の静電容量方式タッチパネルセンサーの製造方法におけるジャンパー部形成工程を示す平面図である。It is a top view which shows the jumper part formation process in the manufacturing method of the conventional capacitive touch panel sensor. 従来の静電容量方式タッチパネルセンサーの製造方法における絶縁層形成工程を示す平面図である。It is a top view which shows the insulating layer formation process in the manufacturing method of the conventional capacitive touch panel sensor. 従来の静電容量方式タッチパネルセンサーの製造方法における第一透明電極及び第二透明電極形成工程を示す平面図である。It is a top view which shows the 1st transparent electrode and 2nd transparent electrode formation process in the manufacturing method of the conventional capacitive touch panel sensor. 従来の静電容量方式タッチパネルセンサーの製造方法における第一透明電極と第二透明電極との交差部分を示す平面図である。It is a top view which shows the cross | intersection part of the 1st transparent electrode and 2nd transparent electrode in the manufacturing method of the conventional capacitive touch panel sensor. 図17における13-13線に沿う断面図である。FIG. 18 is a sectional view taken along line 13-13 in FIG. 従来の静電容量方式タッチパネルセンサーの透明電極と取出配線の接続部の断線を模式的に示す図である。It is a figure which shows typically the disconnection of the connection part of the transparent electrode and extraction wiring of the conventional capacitive touch panel sensor.
 以下、本発明に係る静電容量方式タッチパネルセンサー及びその製造方法、並びに表示装置の一実施形態について、図面を参照して詳細に説明する。なお、本発明に係る静電容量方式タッチパネルセンサー及びその製造方法、並びに表示装置は、その要旨を超えない限り以下の構成に限定されるものではない。 Hereinafter, an embodiment of a capacitive touch panel sensor, a manufacturing method thereof, and a display device according to the present invention will be described in detail with reference to the drawings. The capacitive touch panel sensor, the manufacturing method thereof, and the display device according to the present invention are not limited to the following configurations as long as they do not exceed the gist thereof.
(静電容量方式タッチパネルセンサー)
 本実施形態の投影型静電容量方式タッチパネルセンサーは、図7に示すように、透明基板10と、透明基板10上に設けられた第一透明電極23及び第二透明電極24、絶縁層22、導電支持体25、及び取出配線20とを有する。
(Capacitive touch panel sensor)
As shown in FIG. 7, the projected capacitive touch panel sensor of this embodiment includes a transparent substrate 10, a first transparent electrode 23 and a second transparent electrode 24 provided on the transparent substrate 10, an insulating layer 22, The conductive support 25 and the extraction wiring 20 are included.
 具体的には、透明基板10上の矩形状の表示領域の第一の方向に沿って複数の第一透明電極23が形成されていると共に、第一の方向と交差する第二の方向に沿って上記表示領域に複数の第二透明電極24が形成されている。また、第一透明電極23と第二透明電極24との電気的接触を防ぐために、第一透明電極と第二透明電極との重畳領域(交差位置)には、第一透明電極及び第二透明電極に挟まれて絶縁層22が形成されている。さらに、第一透明電極23及び第二透明電極24と外部接続端子(図示せず)とを電気的に接続するために上記表示領域の外周部に導電支持体25が配設されている。この導電支持体25上には、取出配線20が形成されている。 Specifically, a plurality of first transparent electrodes 23 are formed along a first direction of a rectangular display region on the transparent substrate 10 and along a second direction intersecting the first direction. A plurality of second transparent electrodes 24 are formed in the display area. In addition, in order to prevent electrical contact between the first transparent electrode 23 and the second transparent electrode 24, the first transparent electrode and the second transparent electrode are disposed in the overlapping region (intersection position) between the first transparent electrode and the second transparent electrode. An insulating layer 22 is formed between the electrodes. Furthermore, in order to electrically connect the first transparent electrode 23 and the second transparent electrode 24 and an external connection terminal (not shown), a conductive support 25 is disposed on the outer periphery of the display area. On the conductive support 25, an extraction wiring 20 is formed.
 また、本実施形態の投影型静電容量方式タッチパネルセンサーには、腐食や接触による傷から透明基板10上に形成された各要素を守るための保護層(図示せず)が形成されている。この保護層は、図示しない制御回路に接続される取出配線20の接続部位以外の透明基板10上のほぼ全面を覆うように形成される。 In the projected capacitive touch panel sensor of the present embodiment, a protective layer (not shown) is formed to protect each element formed on the transparent substrate 10 from corrosion and scratches caused by contact. This protective layer is formed so as to cover almost the entire surface of the transparent substrate 10 other than the connection portion of the extraction wiring 20 connected to a control circuit (not shown).
(静電容量方式タッチパネルセンサーの製造方法)
 また、本発明に係る静電容量方式タッチパネルセンサーの製造方法は、図1に示すように、ジャンパー部形成工程(S1)と、導電支持体形成工程(S2)と、絶縁層形成工程(S3)と、取出配線形成工程(S4)と、透明電極形成工程(S5)と、保護膜形成工程(S6)とを含む。
(Capacitive touch panel sensor manufacturing method)
Moreover, the manufacturing method of the capacitive touch panel sensor according to the present invention includes a jumper part forming step (S1), a conductive support forming step (S2), and an insulating layer forming step (S3), as shown in FIG. And an extraction wiring formation process (S4), a transparent electrode formation process (S5), and a protective film formation process (S6).
<ジャンパー部形成工程>
 ジャンパー部形成工程(S1)は、図2に示すように、透明基板10上の表示領域にジャンパー部21を複数形成する工程である。これらのジャンパー部21は、上記表示領域における第一の方向に隣接する第一透明電極23,23の形成位置に基づいて、第一透明電極23,23同士を接続する位置に、透明導電材料を用いて形成される。
<Jumper formation process>
The jumper portion forming step (S1) is a step of forming a plurality of jumper portions 21 in the display area on the transparent substrate 10, as shown in FIG. These jumper portions 21 are made of a transparent conductive material at a position where the first transparent electrodes 23, 23 are connected to each other based on the formation positions of the first transparent electrodes 23, 23 adjacent in the first direction in the display area. Formed using.
 ジャンパー部21の形成方法としては、スパッタ法を用いることが好ましい。具体的には、DCマグネトロンスパッタ方式にて、170℃で加熱しながらITOスパッタを実施する。続いて、エッチング保護膜用として一般的なポジレジスト(例えば、AZエレクトロニックマテリアルズ社製SZPシリーズ)をスピンコートした後、105℃のホットプレートにてプリベークを実施する。その後、所望するパターンを反転させたフォトマスクを用いてプロキシミティ露光を行い、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施する。ポジレジストがパターニングされたITO成膜透明基板を、シュウ酸水溶液によるITOエッチング後、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液を用いたポジレジスト剥離を実施することにより図2に示す透明導電材料パターンを形成する。 As a method for forming the jumper portion 21, it is preferable to use a sputtering method. Specifically, ITO sputtering is performed while heating at 170 ° C. by DC magnetron sputtering. Subsequently, a general positive resist (for example, SZP series manufactured by AZ Electronic Materials) is spin-coated for an etching protective film, and then prebaked on a 105 ° C. hot plate. Thereafter, proximity exposure is performed using a photomask having a desired pattern reversed, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate. The transparent conductive material pattern shown in FIG. 2 is obtained by performing positive resist stripping using an alkaline aqueous solution containing sodium hydroxide and sodium carbonate on an ITO film-formed transparent substrate patterned with a positive resist after ITO etching with an oxalic acid aqueous solution. Form.
[透明基板]
 ここで、透明基板10は平板形状をなす透明の基板である。投影型静電容量式タッチパネルセンサーに用いる透明基板10としては、ポリエチレンテレフタレート(PET)等の樹脂製のフィルムを用いるフィルム式と、無アルカリガラスやソーダライムガラス等を用いるガラス式がある。フィルム式は製造コストが安く割れにくい利点があるが、透明性が劣ることや、フィルム上の透明電極の抵抗値が高いために電極部を小さくできないこと等から、ガラス式がスマートフォン等のモバイル電子機器に多く使用されている。なお、ガラス式を用いる場合には、損傷防止等のために表示部の最表面に用いられるカバーガラス上にタッチパネルセンサーを形成しても良い。カバーガラス上にタッチパネルセンサーを形成する場合、強度や耐傷性の観点からアルミノ珪酸ガラス(例えば、商品名「Gollira(コーニング社製)」、「Dragontrail(旭硝子社製)」)や化学的に強化されたソーダライムガラス等の特殊ガラス板を用いることが好ましい。
[Transparent substrate]
Here, the transparent substrate 10 is a transparent substrate having a flat plate shape. The transparent substrate 10 used for the projected capacitive touch panel sensor includes a film type using a resin film such as polyethylene terephthalate (PET), and a glass type using alkali-free glass, soda lime glass, or the like. The film type has the advantage of low manufacturing costs and is difficult to break, but the glass type is a mobile electronic device such as a smartphone due to the inferior transparency and the high resistance of the transparent electrode on the film, making it impossible to reduce the electrode part. Often used in equipment. In addition, when using a glass type, you may form a touch-panel sensor on the cover glass used for the outermost surface of a display part for damage prevention etc. When a touch panel sensor is formed on a cover glass, aluminosilicate glass (for example, “Gollila (Corning)”, “Dragonrail (Asahi Glass))” or chemically strengthened from the viewpoint of strength and scratch resistance. It is preferable to use a special glass plate such as soda lime glass.
[透明導電材料]
 第一透明電極の接続部(ジャンパー部)21、及び取出配線20の下に形成される導電支持体25に用いる透明導電材料として、透明基板10表面に配設することができるものであれば特に限定されるものではないが、ITO、酸化亜鉛(ZnO)等の無機導電材料を用いることができる。これらの材料は、1種のみで用いてもよく、2種以上を併用してもよい。中でも、透明性と抵抗値の点でITOを用いることが好ましい。上記透明電極や導電支持体25の厚み(以下、導体厚と呼ぶ。)としては、0.02μm以上0.1μm以下が好ましい。導体厚が0.02μm未満であると十分な電気特性が得られず、0.1μmを超えると、タッチパネルの視認性に影響を及ぼすためである。
[Transparent conductive material]
As the transparent conductive material used for the conductive support 25 formed under the connection portion (jumper portion) 21 of the first transparent electrode and the lead-out wiring 20, particularly if it can be disposed on the surface of the transparent substrate 10. Although not limited, inorganic conductive materials such as ITO and zinc oxide (ZnO) can be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value. The thickness of the transparent electrode and conductive support 25 (hereinafter referred to as conductor thickness) is preferably 0.02 μm or more and 0.1 μm or less. When the conductor thickness is less than 0.02 μm, sufficient electrical characteristics cannot be obtained, and when it exceeds 0.1 μm, the visibility of the touch panel is affected.
<導電支持体形成工程>
 導電支持体形成工程(S2)は、図3に示すように、上記表示領域の外周部に導電支持体25を形成する工程である。
 導電支持体25は、ジャンパー部21と同様に、透明導電材料を用いて透明基板10と取出配線20との間に配置することにより取出配線20の密着性の向上及び導通不良の防止のために形成される。導電支持体25の形成は、ジャンパー部21と同時に行うことにより、工程や材料コストを増やすことなく形成が可能である。取出配線20の下に導電支持体25を形成することによりアンカリング効果により透明基板10と密着性が向上すると考えられる。そのため、従来の透明基板10上に取出配線20を形成する場合よりも高精細パターンの形成が可能である。また、取出配線として用いる感光性導電材料の金属微粒子と透明基板とに存在する間隙の影響を受けずに電気的接続が可能となるため、導通不良を防止することができる。
<Conductive support forming process>
The conductive support forming step (S2) is a step of forming the conductive support 25 on the outer peripheral portion of the display area as shown in FIG.
Similarly to the jumper portion 21, the conductive support 25 is disposed between the transparent substrate 10 and the extraction wiring 20 by using a transparent conductive material, thereby improving the adhesion of the extraction wiring 20 and preventing poor conduction. It is formed. The conductive support 25 can be formed at the same time as the jumper portion 21 without increasing the process and material costs. By forming the conductive support 25 under the lead-out wiring 20, it is considered that the adhesion with the transparent substrate 10 is improved due to the anchoring effect. Therefore, it is possible to form a high-definition pattern compared to the case where the extraction wiring 20 is formed on the conventional transparent substrate 10. In addition, since electrical connection is possible without being affected by the gap between the metal fine particles of the photosensitive conductive material used as the lead-out wiring and the transparent substrate, poor conduction can be prevented.
 導電支持体25の形成方法としては、上述のジャンパー部21の形成方法と同様に、スパッタ法を用いることが好ましい。スパッタ法を用いた導電支持体25の形成方法については、上記ジャンパー部21の形成方法と同様なので、説明を省略する。
 導電支持体25は、取出配線20の密着性の向上及び導通不良の防止のために、透明導電材料を用いて透明基板10と取出配線20との間に配置するため、原則として取出配線の配置される表示領域の外周部に配置される。
As a method for forming the conductive support 25, it is preferable to use a sputtering method in the same manner as the method for forming the jumper portion 21 described above. Since the method for forming the conductive support 25 using the sputtering method is the same as the method for forming the jumper portion 21, description thereof is omitted.
Since the conductive support 25 is disposed between the transparent substrate 10 and the extraction wiring 20 using a transparent conductive material in order to improve the adhesion of the extraction wiring 20 and prevent conduction failure, in principle, the arrangement of the extraction wiring is performed. It is arranged on the outer periphery of the display area.
 ただし、図4A及び4Bに示されるように、表示領域の外周部に、加飾層26、あるいは加飾層26とその上に絶縁層(図示しない)を設ける場合には、加飾層26、あるいは加飾層26とその上の絶縁層(図示しない)によって、取出配線20との密着性は改善されるため、透明電極23、24と取出配線20の接続領域にのみ、導電支持体25を形成してもよい。 However, as shown in FIGS. 4A and 4B, when the decorative layer 26 or the decorative layer 26 and an insulating layer (not shown) are provided on the outer peripheral portion of the display region, the decorative layer 26, Or since the adhesion between the extraction wiring 20 is improved by the decorative layer 26 and the insulating layer (not shown) thereon, the conductive support 25 is provided only in the connection region between the transparent electrodes 23 and 24 and the extraction wiring 20. It may be formed.
 加飾層26は、例えば、カーボン系レジストを使用して形成することができる。また、加飾層の上に、さらに絶縁層を形成する場合がある。
 また、ジャンパー部21と導電支持体25が別工程で形成される場合には、導電支持体25の導電材料は、透明導電材料に限定されず、公知の導電材料を好適に用いることができる。
The decorative layer 26 can be formed using, for example, a carbon-based resist. Moreover, an insulating layer may be further formed on the decorative layer.
When the jumper portion 21 and the conductive support 25 are formed in separate steps, the conductive material of the conductive support 25 is not limited to a transparent conductive material, and a known conductive material can be suitably used.
[導電支持体の幅]
 導電支持体25の幅は、10μm以上40μm以下が好ましい。導電支持体25の幅が10μm未満であると、エッチング方式について、10μm未満のパターンを安定して得ることが難しくなることがある。また、導電支持体25の幅が40μmを超えると、隣接する配線との電気信号の干渉しない距離が必要なため、導電支持体25の幅を広くすると高精細化対応できなくなることがある。
[Width of conductive support]
The width of the conductive support 25 is preferably 10 μm or more and 40 μm or less. When the width of the conductive support 25 is less than 10 μm, it may be difficult to stably obtain a pattern of less than 10 μm for the etching method. In addition, if the width of the conductive support 25 exceeds 40 μm, a distance that does not interfere with an electrical signal with an adjacent wiring is required. Therefore, if the width of the conductive support 25 is widened, high definition may not be supported.
 導電支持体25の幅と取出配線20の幅とは、同じか導電支持体25の幅のほうが広い方が好ましい。図6Bでは、導電支持体25の幅d1が取出配線20の幅d2よりも広い態様を示している。なお、隣接する配線と電気信号が干渉しない距離(5μm程度)をあけておけば、導電支持体25が広いほどアライメント精度による位置ズレの影響を受けにくくなる。 It is preferable that the width of the conductive support 25 and the width of the extraction wiring 20 are the same or the width of the conductive support 25 is wider. FIG. 6B shows a mode in which the width d 1 of the conductive support 25 is wider than the width d 2 of the lead-out wiring 20. If a distance (about 5 μm) at which the electrical signal does not interfere with the adjacent wiring is provided, the wider the conductive support 25 is, the less affected by the positional deviation due to the alignment accuracy.
<絶縁層形成工程>
 絶縁層形成工程(S3)は、図5に示すように、ジャンパー部21上に絶縁層22を形成する工程である。
 絶縁層22は、従来絶縁層に用いられていた公知の材料を用いて形成でき、例えば、SiO2、SiNx等の無機系膜や透明樹脂等の有機系材料が挙げられる。無機系膜は、SiO2やSiNxをCVD法やスパッタ法等により形成するために、エネルギー消費量が増加したり、工程数が増加したりする等、製造コストが高くなる課題があることから、有機系材料を用いたフォトリソグラフィ法による形成が好んで用いられる。絶縁層に用いる透明樹脂組成物(例えば、JSR社製NN901)をスピンコートにより塗布し、80℃のホットプレートにてプリベークを実施する。その後、所望するパターンに対応するフォトマスクを用いてプロキシミティ露光を行い、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施する。その後、230℃でポストベークを実施することにより、絶縁層22が形成される。
<Insulating layer formation process>
The insulating layer forming step (S3) is a step of forming the insulating layer 22 on the jumper portion 21, as shown in FIG.
The insulating layer 22 can be formed using a known material conventionally used for the insulating layer, and examples thereof include inorganic films such as SiO 2 and SiNx, and organic materials such as transparent resins. Since inorganic films are formed of SiO 2 or SiNx by a CVD method, a sputtering method, or the like, there is a problem that the manufacturing cost becomes high, such as an increase in energy consumption or an increase in the number of steps. Formation by photolithography using an organic material is preferably used. A transparent resin composition (for example, NN901 manufactured by JSR) used for the insulating layer is applied by spin coating, and prebaking is performed on a hot plate at 80 ° C. Thereafter, proximity exposure is performed using a photomask corresponding to a desired pattern, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate. Thereafter, post-baking is performed at 230 ° C., whereby the insulating layer 22 is formed.
<取出配線形成工程>
 取出配線形成工程(S4)は、図6Aに示すように、導電支持体25上に金属微粒子を含む感光性導電材料を用いて取出配線20を形成する工程である。
 取出配線20の形成方法としては、スクリーン印刷法やエッチング法、グラビアオフセット法、フォトリソグラフィ法等があるが、製造コストや高精細化の観点から、フォトリソグラフィ法が好ましい。
<Extract wiring formation process>
The extraction wiring forming step (S4) is a step of forming the extraction wiring 20 on the conductive support 25 using a photosensitive conductive material containing metal fine particles, as shown in FIG. 6A.
As a method for forming the extraction wiring 20, there are a screen printing method, an etching method, a gravure offset method, a photolithography method, and the like, but the photolithography method is preferable from the viewpoint of manufacturing cost and high definition.
 このように、従来のスパッタ法から、金属微粒子を含む感光性導電ペーストによるフォトリソグラフィ法に置き換えることにより、スマートフォン等のタッチパネルセンサーに要求される30μm以下のパターンを持つ取出配線20を簡素化された工程で形成することができる。特に、金属微粒子を含む感光性導電ペーストによるフォトリソグラフィ法で取出配線20を形成することにより、低抵抗で導電性に優れた取出配線20を簡素化された工程で製造することができる。このとき、従来発生していた、透明電極23,24との接続部における導通不良の問題、すなわち、取出配線20の端部において、金属微粒子と透明基板10との間に間隙が生じ、この間隙により、透明電極23,24が未成膜となってしまう部分が生じてしまい、導通不良が発生してしまう問題があったが、本発明者らは鋭意検討の結果、本発明の製造方法を用いることでこの問題を解決できることを見出した。 Thus, by replacing the conventional sputtering method with a photolithography method using a photosensitive conductive paste containing metal fine particles, the extraction wiring 20 having a pattern of 30 μm or less required for a touch panel sensor such as a smartphone has been simplified. It can be formed in a process. In particular, by forming the extraction wiring 20 by a photolithography method using a photosensitive conductive paste containing metal fine particles, the extraction wiring 20 having low resistance and excellent conductivity can be manufactured in a simplified process. At this time, a problem of poor conduction at the connection portion with the transparent electrodes 23 and 24, which has occurred in the past, that is, a gap is generated between the metal fine particles and the transparent substrate 10 at the end of the extraction wiring 20, and this gap As a result, there is a problem that the transparent electrodes 23 and 24 are not formed into a film and a conduction failure occurs. However, as a result of intensive studies, the present inventors use the manufacturing method of the present invention. It was found that this problem can be solved.
 ここで、フォトリソグラフィ法を用いた取出配線20の形成方法について説明する。金属微粒子を含む感光性導電材料のスクリーン印刷(ステンレス製500メッシュ)を用いて印刷を行い、有機溶剤を蒸発させるために必要に応じてプリベークを実施する。プリベークには、熱風循環式オーブンやホットプレート、IRオーブンを用いることができる。所望する取出配線パターンに対応するフォトマスクを介して、パターン露光を行う。露光光源として、通常の高圧水銀灯を用いればよい。露光量としては、タクトタイムの観点から、10~200mJ/cm2程度が好ましい。露光に続いて現像を行う。現像液には、炭酸ナトリウムを含むアルカリ性水溶液を用いて24℃で10~90秒間現像を実施する。現像後、加熱処理を行うことにより任意の取出配線パターンが得られる。加熱処理は、熱乾燥オーブンを用いて230℃にて30分行う。加熱処理による樹脂の硬化収縮により、銀粉同士が接触して十分な導電性を有するとともに薬品等に対する耐性も向上する。 Here, a method of forming the extraction wiring 20 using the photolithography method will be described. Printing is performed using screen printing (stainless steel 500 mesh) of a photosensitive conductive material containing fine metal particles, and pre-baking is performed as necessary to evaporate the organic solvent. For pre-baking, a hot air circulation oven, a hot plate, or an IR oven can be used. Pattern exposure is performed through a photomask corresponding to a desired extraction wiring pattern. A normal high-pressure mercury lamp may be used as the exposure light source. The exposure amount is preferably about 10 to 200 mJ / cm 2 from the viewpoint of tact time. Development is performed following exposure. Development is carried out at 24 ° C. for 10 to 90 seconds using an alkaline aqueous solution containing sodium carbonate. An arbitrary extraction wiring pattern can be obtained by performing heat treatment after development. The heat treatment is performed at 230 ° C. for 30 minutes using a heat drying oven. Due to the curing shrinkage of the resin due to the heat treatment, the silver powders are brought into contact with each other to have sufficient conductivity and to improve resistance to chemicals and the like.
[取出配線の導体幅]
 取出配線20の幅(導体幅)としては、3μm以上30μm以下であることが好ましい。導体幅が3μm未満であると、隣接する配線の電気信号の影響を受けやすくなり、電気信号の混線や遅延の原因となる。一方、導体幅が30μmを超えるものであるとモバイル電子機器の小型化要求に対して十分な効果を得ることができない。
[取出配線の膜厚]
 取出配線20の膜厚は、2.5μm以上5μm以下が好ましい。取出配線20の膜厚が2.5μm未満であると、十分な抵抗値(導通特性)が得られなくなることがある。また、取出配線20の膜厚が5μmを超えると、フォトリソグラフィ時に底部まで硬化せず、密着性が悪くなることがある。
[Conductor width of lead-out wiring]
The width (conductor width) of the lead-out wiring 20 is preferably 3 μm or more and 30 μm or less. If the conductor width is less than 3 μm, it is likely to be affected by the electrical signal of the adjacent wiring, causing a crosstalk or delay of the electrical signal. On the other hand, if the conductor width exceeds 30 μm, it is not possible to obtain a sufficient effect for the demand for downsizing of mobile electronic devices.
[Extract wiring thickness]
The film thickness of the extraction wiring 20 is preferably 2.5 μm or more and 5 μm or less. If the thickness of the extraction wiring 20 is less than 2.5 μm, a sufficient resistance value (conducting characteristic) may not be obtained. On the other hand, if the thickness of the extraction wiring 20 exceeds 5 μm, the bottom may not be cured at the time of photolithography, and the adhesion may be deteriorated.
<感光性導電材料>
 上記取出配線に用いられる感光性導電材料は、少なくとも金属微粒子、光重合開始剤、重合性多官能モノマー、アルカリ可溶性樹脂、溶剤を含有しており、必要に応じてその他の添加剤を含むことができる。
[感光性導電材料の調製]
 上記感光性導電材料は、金属微粒子、光重合開始剤、重合性多官能モノマー、アルカリ可溶性樹脂、溶剤、及びその他の添加剤を所定の組成で配合して攪拌機にて攪拌後、3本ロールミルにより混練することにより得られる。
[金属微粒子]
 感光性導電材料に用いられる金属微粒子として、金、銀、銅、パラジウム等を用いることができる。これら材料は1種のみで用いてもよく、2種以上を併用してもよい。この中でも、コスト、抵抗値及び安定性の点で銀を用いることが好ましい。
<Photosensitive conductive material>
The photosensitive conductive material used for the lead-out wiring contains at least metal fine particles, a photopolymerization initiator, a polymerizable polyfunctional monomer, an alkali-soluble resin, and a solvent, and may contain other additives as necessary. it can.
[Preparation of photosensitive conductive material]
The photosensitive conductive material is prepared by blending metal fine particles, a photopolymerization initiator, a polymerizable polyfunctional monomer, an alkali-soluble resin, a solvent, and other additives with a predetermined composition, stirring with a stirrer, and then using a three-roll mill. It is obtained by kneading.
[Metal fine particles]
Gold, silver, copper, palladium, or the like can be used as the metal fine particles used for the photosensitive conductive material. These materials may be used alone or in combination of two or more. Among these, it is preferable to use silver in terms of cost, resistance value, and stability.
[金属微粒子の平均粒子径]
 上記金属微粒子に関して、平均粒子径は0.05μm以上3μm以下であることが好ましい。平均粒子径が0.05μm未満の場合、金属微粒子による隠蔽性が高いために露光時に光が底部まで届かずにパターン形成が困難となる。一方、平均粒子径が3μmを超える場合、微細パターンにおける直線性やパターン精度が低下するため好ましくない。また、金属微粒子としての銀粉の形状は、フレーク状、針状、球状などがあるが、スクリーン印刷性や露光時の光散乱の観点から球状の銀粉が好ましい。金属微粒子(銀粉)の使用量として、感光性導電ペーストの全固形分量を基準として、65~85質量%が好ましく、70~80質量%がより好ましい。金属微粒子(銀粉)の添加量が65質量%以下であると、配線として十分な抵抗率が得られず、85質量%以上であると、露光時に紫外光が底部まで届かずにパターン形成が困難となる。
[Average particle diameter of metal fine particles]
Regarding the metal fine particles, the average particle diameter is preferably 0.05 μm or more and 3 μm or less. When the average particle size is less than 0.05 μm, the concealability by the metal fine particles is high, so that light does not reach the bottom during exposure, and pattern formation becomes difficult. On the other hand, when the average particle diameter exceeds 3 μm, the linearity and pattern accuracy in the fine pattern are lowered, which is not preferable. The shape of the silver powder as the metal fine particles includes flakes, needles, and spheres, but spherical silver powder is preferable from the viewpoint of screen printability and light scattering during exposure. The amount of metal fine particles (silver powder) used is preferably 65 to 85% by mass, more preferably 70 to 80% by mass, based on the total solid content of the photosensitive conductive paste. If the addition amount of metal fine particles (silver powder) is 65% by mass or less, sufficient resistivity cannot be obtained as a wiring, and if it is 85% by mass or more, ultraviolet light does not reach the bottom during exposure and pattern formation is difficult. It becomes.
[光重合開始剤]
 上記光重合開始剤としては、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系化合物、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系化合物、チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物、2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリル-s-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系化合物、1,2-オクタンジオン,1-〔4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)〕、O-(アセチル)-N-(1-フェニル-2-オキソ-2-(4’-メトキシ-ナフチル)エチリデン)ヒドロキシルアミン等のオキシムエステル系化合物、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィン系化合物、9,10-フェナンスレンキノン、カンファーキノン、エチルアントラキノン等のキノン系化合物、ボレート系化合物、カルバゾール系化合物、イミダゾール系化合物、チタノセン系化合物等が用いられる。これらの光重合開始剤は1種または2種以上混合して用いることができる。光重合開始剤の使用量は、感光性導電材料の全固形分量を基準として0.5~50質量%が好ましく、1~20質量%がより好ましい。
[Photopolymerization initiator]
Examples of the photopolymerization initiator include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, Acetophenone compounds such as -hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, Benzoin compounds such as benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl Benzophenone compounds such as 4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2, Thioxanthone compounds such as 4-diisopropylthioxanthone and 2,4-diethylthioxanthone, 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- ( p-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2-piphenyl-4,6- Bis (trichloromethyl) -s-triazine, 2-piperonyl-4, -Bis (trichloromethyl) -s-triazine, 2,4-bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphth-1-yl) -4,6-bis (trichloromethyl) -s -Triazine, 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-trichloromethyl- (piperonyl) -6-triazine, 2,4- Triazine compounds such as trichloromethyl (4'-methoxystyryl) -6-triazine, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], O- (acetyl ) -N- (1-phenyl-2-oxo-2- (4′-methoxy-naphthyl) ethylidene) hydroxylamine and other oxime ester compounds such as bis (2,4,6) Phosphine compounds such as trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide, quinone compounds such as 9,10-phenanthrenequinone, camphorquinone and ethylanthraquinone, borate compounds, carbazole compounds Compounds, imidazole compounds, titanocene compounds and the like are used. These photopolymerization initiators can be used alone or in combination. The amount of the photopolymerization initiator used is preferably 0.5 to 50% by mass, more preferably 1 to 20% by mass based on the total solid content of the photosensitive conductive material.
 さらに、上記光重合開始剤に対する増感剤を併用することもできる。かかる増感剤としては、α-アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等の化合物、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸2-ジメチルアミノエチル、4-ジメチルアミノ安息香酸2-エチルヘキシル、N,N-ジメチルパラトルイジン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(エチルメチルアミノ)ベンゾフェノン等のアミン系化合物が挙げられる。これらの増感剤は、1種または2種以上混合して用いることができる。増感剤の使用量は、光重合開始剤と増感剤の合計量を基準として0.5~50質量%が好ましく、1~30質量%がより好ましい。 Furthermore, a sensitizer for the photopolymerization initiator can be used in combination. Such sensitizers include α-acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl, 9,10-phenanthrenequinone, camphorquinone, ethylanthraquinone, 4,4′-diethylisophthalo Compounds such as phenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate Ethyl acetate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, N, N-dimethylparatoluidine, 4,4′-bis (dimethylamino) benzophenone, 4 , 4'- Scan (diethylamino) benzophenone, 4,4'-bis (ethylmethylamino) amine compounds such as benzophenone. These sensitizers can be used alone or in combination. The amount of the sensitizer used is preferably 0.5 to 50% by mass, more preferably 1 to 30% by mass based on the total amount of the photopolymerization initiator and the sensitizer.
[重合性多官能モノマー]
 上記重合性多官能モノマー及びオリゴマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、エステルアクリレート、メラミン(メタ)アクリレート等の各種アクリル酸エステル及びメタクリル酸エステル、メチロール化メラミンの(メタ)アクリル酸エステル、エポキシ(メタ)アクリレート、ウレタンアクリレート等の各種アクリル酸エステル及びメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ビニルホルムアミド、アクリロニトリル等が挙げられる。また、水酸基を有する(メタ)アクリレートに多官能イソシアネートを反応させて得られる(メタ)アクリロイル基を有する多官能ウレタンアクリレートを用いることが好ましい。なお、水酸基を有する(メタ)アクリレートと多官能イソシアネートとの組み合わせは任意であり、特に限定されるものではない。また、1種の多官能ウレタンアクリレートを単独で用いても良いし、2種以上を組み合わせて用いることもできる。これらは、単独でまたは2種類以上混合して用いることができる。
[Polymerizable polyfunctional monomer]
Examples of the polymerizable polyfunctional monomer and oligomer include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, β-carboxyl Ethyl (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, 1,6-hexanediol diglycidyl ether di (meth) acrylate, bis Enol A diglycidyl ether di (meth) acrylate, neopentyl glycol diglycidyl ether di (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecanyl (meth) acrylate, ester acrylate, melamine (meth) acrylate, etc. Acrylic acid esters and methacrylic acid esters, methylolated melamine (meth) acrylic acid esters, epoxy (meth) acrylates, urethane acrylates and other acrylic acid esters and methacrylic acid esters, (meth) acrylic acid, styrene, vinyl acetate , Hydroxyethyl vinyl ether, ethylene glycol divinyl ether, pentaerythritol trivinyl ether, (meth) acrylamide, N-hydroxymethyl (meth) Examples include acrylamide, N-vinylformamide, acrylonitrile and the like. Moreover, it is preferable to use the polyfunctional urethane acrylate which has the (meth) acryloyl group obtained by making polyfunctional isocyanate react with the (meth) acrylate which has a hydroxyl group. The combination of the (meth) acrylate having a hydroxyl group and the polyfunctional isocyanate is arbitrary and is not particularly limited. Moreover, one type of polyfunctional urethane acrylate may be used alone, or two or more types may be used in combination. These can be used alone or in admixture of two or more.
[アルカリ可溶性樹脂]
 上記アルカリ可溶性樹脂とは、カルボキシル基を有する線状高分子であり、(メタ)アクリル共重合樹脂やエポキシ樹脂と(メタ)アクリル酸またはその無水物の反応物にさらに多塩基性カルボン酸またはその無水物とを反応させて得られたエポキシ変性アクリレート樹脂等が挙げられる。
[Alkali-soluble resin]
The alkali-soluble resin is a linear polymer having a carboxyl group, and a polybasic carboxylic acid or a reaction product of a reaction product of (meth) acrylic copolymer resin or epoxy resin and (meth) acrylic acid or its anhydride. Examples thereof include an epoxy-modified acrylate resin obtained by reacting with an anhydride.
 上記(メタ)アクリル共重合樹脂としては、その構成成分に少なくとも(メタ)アクリルモノマーを含有する共重合樹脂であり、(メタ)アクリルモノマーとしては、(メタ)アクリル酸、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、アリルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、グリシジルアクリレート、アミノエチルアクリレート、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、アリルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンテニルアクリレート、グリシジルメタクリレート、アミノエチルメタクリレート等が挙げられる。(メタ)アクリルモノマー以外の構成成分として、スチレンやシクロヘキシルマレイミド等の不飽和結合を有する化合物を用いることも可能である。
 エポキシ変性アクリレート樹脂に用いられるエポキシ樹脂としては、フェノールノボラックやクレゾールノボラック、ビスフェノールAやビスフェノールF骨格を持つもの等が用いられる。
The (meth) acrylic copolymer resin is a copolymer resin containing at least a (meth) acrylic monomer in its constituent components, and the (meth) acrylic monomer includes (meth) acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, allyl acrylate, benzyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, glycidyl acrylate, aminoethyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl Methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, allyl methacrylate, Jill methacrylate, cyclohexyl methacrylate, dicyclopentanyl methacrylate, dicyclopentenyl acrylate, glycidyl methacrylate, aminoethyl methacrylate, and the like. As a constituent component other than the (meth) acrylic monomer, a compound having an unsaturated bond such as styrene or cyclohexylmaleimide can be used.
As the epoxy resin used for the epoxy-modified acrylate resin, phenol novolak, cresol novolak, those having bisphenol A or bisphenol F skeleton and the like are used.
[溶剤]
 上記溶剤としては、シクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、エチルカルビトールアセテート、1-メトキシ-2-プロピルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、キシレン、エチルセロソルブ、メチル-nアミルケトン、プロピレングリコールモノメチルエーテル、石油系溶剤等の有機溶剤が挙げられ、これらを単独でもしくは混合して用いることができる。有機溶剤の添加量として、感光性導電ペースト全量を基準として、5~20質量%の範囲で添加することが好ましい。
[solvent]
Examples of the solvent include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, ethyl carbitol acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol Examples thereof include organic solvents such as monomethyl ether and petroleum solvents, and these can be used alone or in combination. The addition amount of the organic solvent is preferably in the range of 5 to 20% by mass based on the total amount of the photosensitive conductive paste.
[その他の添加剤]
―貯蔵安定剤―
 上記その他の添加剤としては、上記成分の他、感光性導電ペーストの経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えばベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸及びそのメチルエーテル、t-ブチルピロカテコール、トリエチルホスフィン、トリフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤は、感光性導電ペースト全量を基準として、0.1~10質量%の量で含有させることができる。
[Other additives]
―Storage stabilizer―
As said other additive, in addition to the said component, in order to stabilize the time-dependent viscosity of the photosensitive electrically conductive paste, a storage stabilizer can be contained. Examples of storage stabilizers include quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid, and organic acids such as methyl ether, t-butylpyrocatechol, triethylphosphine, and triphenylphosphine. Examples thereof include phosphine and phosphite. The storage stabilizer can be contained in an amount of 0.1 to 10% by mass based on the total amount of the photosensitive conductive paste.
-ラジカル補足剤-
 上記感光性導電材料にはラジカル補足剤を使用することができる。ラジカル捕捉剤とは、活性ラジカルを失活させる作用をもつものであり、感光性導電材料に添加することにより銀粉による光散乱によって発生する未露光部分での硬化反応を抑えることが可能となり、取出配線の寸法精度の向上が可能となる。ラジカル捕捉剤の種類としては、ハイドロキノン、メチルハイドロキノン、メトキノン、4-メトキシナフトール等のハイドロキノン誘導体や1,4-ベンゾキノン、2,6-ジクロロキノン、p-キシロキノン、ナフトキノン等のキノン誘導体、Irganox245、Irganox259、Irganox1010、Irganox1035、Irganox1076、Irganox1098(以上、BASF社製)、アデカスタブAO-30、アデカスタブAO-330(以上、ADEKA社製)等のヒンダードフェノール類、TINUVIN123、TINUVIN144、TINUVIN152、TINUVIN765、TINUVIN770DF(以上、BASF社製)、アデカスタブLA-77、アデカスタブLA-57、アデカスタブLA-67、アデカスタブLA-87(以上、ADEKA社製)等のヒンダードアミン類等があり、これらを単独もしくは2種類以上用いることができる。ラジカル捕捉剤の添加量としては、感光性導電ペーストの全固形分量を基準として0.01~0.1質量%の範囲で添加することができる。ラジカル捕捉剤の添加量が0.01質量%以下であると導体パターンの寸法精度向上効果が得られず、0.1質量%以上となると架橋密度不足によるパターンハガレや熱硬化時の変色が発生する。
-Radical scavenger-
A radical scavenger can be used for the photosensitive conductive material. A radical scavenger has the effect of deactivating active radicals. By adding it to a photosensitive conductive material, it is possible to suppress the curing reaction in the unexposed areas caused by light scattering by silver powder. The dimensional accuracy of the wiring can be improved. Examples of the radical scavenger include hydroquinone derivatives such as hydroquinone, methylhydroquinone, methoquinone and 4-methoxynaphthol, quinone derivatives such as 1,4-benzoquinone, 2,6-dichloroquinone, p-xyloquinone and naphthoquinone, Irganox 245, Irganox 259 Hindered phenols such as Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1098 (above, manufactured by BASF), Adekastab AO-30, Adekastab AO-330 (above, made by ADEKA), TINUVIN123, TINUVIN144, TINUVIN144, 70 Manufactured by BASF), ADK STAB LA-77, ADK STAB LA-57 STAB LA-67, ADK STAB LA-87 (or more, ADEKA Corporation) have hindered amines such as, can be used alone or two or more kinds. The addition amount of the radical scavenger can be in the range of 0.01 to 0.1% by mass based on the total solid content of the photosensitive conductive paste. If the added amount of the radical scavenger is 0.01% by mass or less, the effect of improving the dimensional accuracy of the conductor pattern cannot be obtained, and if it is 0.1% by mass or more, pattern peeling due to insufficient crosslinking density or discoloration during thermosetting occurs. To do.
-界面活性剤-
 また、感光性導電材料として界面活性剤を含むことができる。界面活性剤として、ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン-アクリル酸共重合体のアルカリ塩、アルキルナフタリンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン-アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステルなどのアニオン性界面活性剤;ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレートなどのノニオン性界面活性剤;アルキル4級アンモニウム塩やそれらのエチレンオキサイド付加物などのカオチン性界面活性剤;アルキルジメチルアミノ酢酸ベタインなどのアルキルベタイン、アルキルイミダゾリンなどの両性界面活性剤が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。
-Surfactant-
Further, a surfactant can be included as the photosensitive conductive material. As surfactant, polyoxyethylene alkyl ether sulfate, sodium dodecylbenzenesulfonate, alkali salt of styrene-acrylic acid copolymer, sodium alkylnaphthalenesulfonate, sodium alkyldiphenyletherdisulfonate, lauryl sulfate monoethanolamine, lauryl sulfate Anionic surfactants such as triethanolamine, ammonium lauryl sulfate, monoethanolamine stearate, sodium stearate, sodium lauryl sulfate, monoethanolamine of styrene-acrylic acid copolymer, polyoxyethylene alkyl ether phosphate; Oxyethylene oleyl ether, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Nonionic surfactants such as alkyl ether phosphates, polyoxyethylene sorbitan monostearate and polyethylene glycol monolaurate; chaotic surfactants such as alkyl quaternary ammonium salts and their ethylene oxide adducts; alkyldimethylamino Examples include amphoteric surfactants such as alkylbetaines such as betaine acetate and alkylimidazolines, and these can be used alone or in admixture of two or more.
<透明電極形成工程>
 透明電極形成工程(S5)は、図7に示すように、第一透明電極23を第一の方向に沿って形成すると共に、第一の方向に直交する第二の方向に沿って複数の第二透明電極24を形成する工程である。ここで、第一透明電極23は、ジャンパー部21,21同士、又は取出配線20と接続するように設けられる。また、第二透明電極24は、第二透明電極24と取出配線20とを接続するように設けられる。
<Transparent electrode formation process>
In the transparent electrode forming step (S5), as shown in FIG. 7, the first transparent electrode 23 is formed along the first direction, and a plurality of second electrodes are formed along the second direction orthogonal to the first direction. This is a step of forming the two transparent electrodes 24. Here, the 1st transparent electrode 23 is provided so that it may connect with the jumper parts 21 and 21 or the extraction wiring 20. FIG. The second transparent electrode 24 is provided so as to connect the second transparent electrode 24 and the extraction wiring 20.
 この際、図8に示されるように、第一透明電極23及び/又は第二透明電極24と取出配線20との接続部において、取出配線20と透明基板10の間に導電支持体25が設けられているため、導電支持体25と、第一透明電極23及び/又は第二透明電極24との重なり部28が形成される。このような重なり部28の形成によって、第一透明電極23及び/又は第二透明電極24と取出配線20との断線を防止することができる。 At this time, as shown in FIG. 8, a conductive support 25 is provided between the extraction wiring 20 and the transparent substrate 10 at the connection portion between the first transparent electrode 23 and / or the second transparent electrode 24 and the extraction wiring 20. Therefore, an overlapping portion 28 between the conductive support 25 and the first transparent electrode 23 and / or the second transparent electrode 24 is formed. By forming the overlapping portion 28 as described above, disconnection between the first transparent electrode 23 and / or the second transparent electrode 24 and the extraction wiring 20 can be prevented.
 重なり幅は、十分な導通を取るため、1μm以上が好ましい。
 第一透明電極23、及び第二透明電極24の形成方法としては、スパッタ法を用いることが好ましい。DCマグネトロンスパッタ方式にて、170℃で加熱しながらITOスパッタを実施する。続いて、エッチング保護膜用として一般的なポジレジスト(例えば、AZエレクトロニックマテリアルズ社製SZPシリーズ)をスピンコートした後、105℃のホットプレートにてプリベークを実施する。その後、所望するパターンを反転させたフォトマスクを用いてプロキシミティ露光を行い、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施する。ポジレジストがパターニングされたITO成膜透明基板を、シュウ酸水溶液によるITOエッチング後、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液を用いたポジレジスト剥離を実施することにより第一透明電極23、及び第二透明電極24が形成される。
The overlap width is preferably 1 μm or more in order to obtain sufficient conduction.
As a method of forming the first transparent electrode 23 and the second transparent electrode 24, it is preferable to use a sputtering method. ITO sputtering is performed while heating at 170 ° C. by DC magnetron sputtering. Subsequently, a general positive resist (for example, SZP series manufactured by AZ Electronic Materials) is spin-coated for an etching protective film, and then prebaked on a 105 ° C. hot plate. Thereafter, proximity exposure is performed using a photomask having a desired pattern reversed, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate. The ITO film-formed transparent substrate on which the positive resist is patterned is subjected to ITO etching with an oxalic acid aqueous solution, followed by positive resist stripping using an aqueous alkali solution containing sodium hydroxide and sodium carbonate, and the first transparent electrode 23 and the first transparent electrode 23 Two transparent electrodes 24 are formed.
[透明電極の材料]
 第一透明電極23、及び第二透明電極24に用いる透明導電材料としては、透明基板10表面に配設することができるものであれば、特に限定されるものではないが、ITO、酸化亜鉛(ZnO)等の無機導電材料を用いることができる。これら材料は1種のみで用いてもよく、2種以上を併用してもよい。中でも、透明性と抵抗値の点でITOを用いることが好ましい。
[Transparent electrode material]
The transparent conductive material used for the first transparent electrode 23 and the second transparent electrode 24 is not particularly limited as long as it can be disposed on the surface of the transparent substrate 10, but ITO, zinc oxide ( An inorganic conductive material such as ZnO) can be used. These materials may be used alone or in combination of two or more. Among these, it is preferable to use ITO in terms of transparency and resistance value.
<保護膜形成工程>
 保護膜形成工程(S6)は、腐食や接触による傷から透明基板10上に形成された各要素を守るための保護層(図示せず)を形成する工程である。この保護層は、図示しない制御回路に接続される取出配線20の接続部位以外の透明基板10上のほぼ全面を覆うように形成される。
 上記保護膜は、絶縁層22と同じ材料を用いて形成できる。保護膜に用いる透明樹脂組成物(例えば、JSR社製NN901)をスピンコートにより塗布し、80℃のホットプレートにてプリベークを実施する。その後、所望するパターンを有するフォトマスクを用いてプロキシミティ露光を行い、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施する。その後、230℃でポストベークを実施することにより、保護膜が形成される。
 本発明においては、必要に応じ、表示領域の外周部に、透明基板と取出配線との間に加飾層を設けることもできる。
<Protective film formation process>
The protective film forming step (S6) is a step of forming a protective layer (not shown) for protecting each element formed on the transparent substrate 10 from corrosion and scratches caused by contact. This protective layer is formed so as to cover almost the entire surface of the transparent substrate 10 other than the connection portion of the extraction wiring 20 connected to a control circuit (not shown).
The protective film can be formed using the same material as the insulating layer 22. A transparent resin composition (for example, NN901 manufactured by JSR) used for the protective film is applied by spin coating, and prebaking is performed on a hot plate at 80 ° C. Thereafter, proximity exposure is performed using a photomask having a desired pattern, and development is performed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate. Thereafter, post-baking is performed at 230 ° C. to form a protective film.
In the present invention, if necessary, a decorative layer can be provided between the transparent substrate and the extraction wiring on the outer peripheral portion of the display area.
<透明電極の接続部の形状>
 透明電極と取出配線との接続部の形状は、特に限定されるものではなく、取出配線の配置、加飾層の有無等に応じてよって、適宜な形状とすることができる。例えば、図4Aに示されるように、第二透明電極24の取出配線20との接続部を取出配線の幅に合わせた形状にすることもできるが、例えば、図9Aに示されるように、第二透明電極24の幅をそのまま接続部における端部の形状としてもよい。図9A,Bでは、加飾層26が形成され、導電支持体25が接続のみに形成された場合が示されているが、加飾層26が無い場合においても、透明電極の形状を図9A,Bと同様のものとすることができる。
<Shape of connection part of transparent electrode>
The shape of the connection portion between the transparent electrode and the lead-out wiring is not particularly limited, and can be an appropriate shape depending on the arrangement of the lead-out wiring, the presence or absence of a decorative layer, and the like. For example, as shown in FIG. 4A, the connection portion of the second transparent electrode 24 with the extraction wiring 20 can be shaped to match the width of the extraction wiring. For example, as shown in FIG. The width of the two transparent electrodes 24 may be directly used as the shape of the end portion of the connection portion. 9A and 9B show a case where the decorative layer 26 is formed and the conductive support 25 is formed only for connection, but the shape of the transparent electrode is shown in FIG. 9A even when the decorative layer 26 is not provided. , B can be the same.
(表示装置)
 本実施形態の表示装置は、上述の静電容量方式タッチパネルセンサーを搭載する。例えば、上述の静電容量方式タッチパネルセンサーと、液晶パネルや有機ELパネル等の表示パネルとを組み合わせた構成とすることができる。
 図7に示した加飾層が設けられていない静電容量方式タッチパネルセンサーと液晶パネルを組み合わせた構成の表示装置の例を、図10に示す。
 液晶パネル30の上方に、図7の静電容量方式タッチパネルセンサー31が搭載され、さらにその上方に、加飾層が設けられたカバーガラスが前面板32として設けられる。
 また、図4Aに示した加飾層が設けられた静電容量方式タッチパネルセンサーと液晶パネルを組み合わせた構成の表示装置の例を、図11に示す。
(Display device)
The display device of this embodiment is equipped with the above-described capacitance type touch panel sensor. For example, the above-described capacitive touch panel sensor and a display panel such as a liquid crystal panel or an organic EL panel can be combined.
FIG. 10 shows an example of a display device having a configuration in which the capacitive touch panel sensor not provided with the decorative layer shown in FIG. 7 and a liquid crystal panel are combined.
A capacitive touch panel sensor 31 of FIG. 7 is mounted above the liquid crystal panel 30, and a cover glass provided with a decorative layer is further provided as a front plate 32 above the capacitive touch panel sensor 31.
FIG. 11 shows an example of a display device having a configuration in which the capacitive touch panel sensor provided with the decoration layer shown in FIG. 4A and a liquid crystal panel are combined.
 液晶パネル30の上方に、図4Aの加飾層が設けられた静電容量方式タッチパネルセンサー33が搭載される。
 液晶パネルは、例えば、ガラス基板上に画素ごとにアクティブ素子(薄膜トランジスタ、TFT)を形成したアレイ基板302と、対向基板としてガラス基板上にカラーフィルタと一様な透明電極を形成したカラーフィルタ基板301とが、間に液晶304を挟んで対向して配置され、さらに、偏光板303が設けられる。
 本実施形態の表示装置であれば、上述の静電容量方式タッチパネルセンサーを搭載しているので、良好なタッチパネルセンサー品質を備えた表示装置を提供することができる。
Above the liquid crystal panel 30, the capacitive touch panel sensor 33 provided with the decoration layer of FIG. 4A is mounted.
The liquid crystal panel includes, for example, an array substrate 302 in which active elements (thin film transistors and TFTs) are formed for each pixel on a glass substrate, and a color filter substrate 301 in which a color filter and a uniform transparent electrode are formed on a glass substrate as a counter substrate. Are disposed opposite to each other with the liquid crystal 304 interposed therebetween, and a polarizing plate 303 is further provided.
If it is a display apparatus of this embodiment, since the above-mentioned capacitive touch panel sensor is mounted, a display apparatus having good touch panel sensor quality can be provided.
 以下、実施例により本発明を具体的に説明するが、本発明の趣旨を逸脱しない範囲においてこれに限定されるものではない。
[アルカリ可溶性樹脂の合成]
 反応容器に1-メトキシ-2-プロピルアセテート800部を入れ、容器に窒素ガスを注入しながら加熱して、下記モノマー及び熱重合開始剤の混合物を滴下して重合反応を行った。
・スチレン                          40部
・メタクリル酸                        60部
・メチルメタクリレート                    55部
・ベンジルメタクリレート                   45部
・アゾビスイソブチロニトリル                 10部
・1,4-ジメチルメルカプトベンゼン              3部
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited thereto without departing from the spirit of the present invention.
[Synthesis of alkali-soluble resin]
A reaction vessel was charged with 800 parts of 1-methoxy-2-propyl acetate, heated while injecting nitrogen gas into the vessel, and a mixture of the following monomer and thermal polymerization initiator was added dropwise to carry out a polymerization reaction.
・ Styrene 40 parts ・ Methacrylic acid 60 parts ・ Methyl methacrylate 55 parts ・ Benzyl methacrylate 45 parts ・ Azobisisobutyronitrile 10 parts ・ 1,4-dimethylmercaptobenzene 3 parts
 滴下後十分に加熱した後、アゾビスイソブチロニトリル2部を1-メトキシ-2-プロピルアセテート50部で溶解させたものを添加し、さらに反応を続けてアクリル樹脂の溶液を得た。
 この樹脂溶液に固形分が30質量%になるように1-メトキシ-2-プロピルアセテートを添加してアクリル樹脂溶液を調製し、アルカリ可溶性樹脂とした。アクリル樹脂の質量平均分子量は、約20,000であった。
After dripping, the mixture was heated sufficiently, and then 2 parts of azobisisobutyronitrile dissolved in 50 parts of 1-methoxy-2-propylacetate was added, and the reaction was continued to obtain an acrylic resin solution.
An acrylic resin solution was prepared by adding 1-methoxy-2-propylacetate to the resin solution so that the solid content was 30% by mass to obtain an alkali-soluble resin. The weight average molecular weight of the acrylic resin was about 20,000.
[感光性導電材料1の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料1を調製した。
・銀粉(平均粒子径:d50=1.2μm)          130部
・光重合開始剤 イルガキュア379(BASF社製)       3部
・増感剤 DETX-S(日本化薬社製)             2部
・重合性多官能モノマー R-684(日本化薬社製)      16部
・アルカリ可溶性樹脂                   38.7部
・ラジカル捕捉剤 メチルハイドロキノン           0.1部
・有機溶剤 1-メトキシ-2-プロピルアセテート        8部
・界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
[Preparation of photosensitive conductive material 1]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 1.
Silver powder (average particle size: d50 = 1.2 μm) 130 parts Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
[感光性導電材料2の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料2を調製した。
・銀粉(平均粒子径:d50=2.6μm)          130部
・光重合開始剤 イルガキュア379(BASF社製)       3部
・増感剤 DETX-S(日本化薬社製)             2部
・重合性多官能モノマー R-684(日本化薬社製)      16部
・アルカリ可溶性樹脂                   38.7部
・ラジカル捕捉剤 メチルハイドロキノン           0.1部
・有機溶剤 1-メトキシ-2-プロピルアセテート        8部
・界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
[Preparation of photosensitive conductive material 2]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 2.
Silver powder (average particle size: d50 = 2.6 μm) 130 parts Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
[感光性導電材料3の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料3を調製した。
・銀粉(平均粒子径:d50=0.04μm)         130部
・光重合開始剤 イルガキュア379(BASF社製)       3部
・増感剤 DETX-S(日本化薬社製)             2部
・重合性多官能モノマー R-684(日本化薬社製)      16部
・アルカリ可溶性樹脂                   38.7部
・ラジカル捕捉剤 メチルハイドロキノン           0.1部
・有機溶剤 1-メトキシ-2-プロピルアセテート        8部
・界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
[Preparation of photosensitive conductive material 3]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 3.
Silver powder (average particle size: d50 = 0.04 μm) 130 parts Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
[感光性導電材料4の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料4を調製した。
・銀粉(平均粒子径:d50=4.0μm)          130部
・光重合開始剤 イルガキュア379(BASF社製)       3部
・増感剤 DETX-S(日本化薬社製)             2部
・重合性多官能モノマー R-684(日本化薬社製)      16部
・アルカリ可溶性樹脂                   38.7部
・ラジカル捕捉剤 メチルハイドロキノン           0.1部
・有機溶剤 1-メトキシ-2-プロピルアセテート        8部
・界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
[Preparation of photosensitive conductive material 4]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 4.
Silver powder (average particle size: d50 = 4.0 μm) 130 parts Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
[感光性導電材料5の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料5を調製した。
・銀粉(平均粒子径:d50=0.5μm)          130部
・光重合開始剤 イルガキュア379(BASF社製)       3部
・増感剤 DETX-S(日本化薬社製)             2部
・重合性多官能モノマー R-684(日本化薬社製)      16部
・アルカリ可溶性樹脂                   38.7部
・ラジカル捕捉剤 メチルハイドロキノン           0.1部
・有機溶剤 1-メトキシ-2-プロピルアセテート        8部
・界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
[Preparation of photosensitive conductive material 5]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 5.
Silver powder (average particle size: d50 = 0.5 μm) 130 parts Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
[感光性導電材料6の調製]
 下記組成の混合物を均一に攪拌混合した後、3本ロールを用いて分散後、5μmのフィルターで濾過して感光性導電材料6を調製した。
・銀粉(平均粒子径:d50=1.9μm)          130部
・光重合開始剤 イルガキュア379(BASF社製)       3部
・増感剤 DETX-S(日本化薬社製)             2部
・重合性多官能モノマー R-684(日本化薬社製)      16部
・アルカリ可溶性樹脂                   38.7部
・ラジカル捕捉剤 メチルハイドロキノン           0.1部
・有機溶剤 1-メトキシ-2-プロピルアセテート        8部
・界面活性剤 アデカネートB-940(ADEKA社製)   0.2部
[Preparation of photosensitive conductive material 6]
A mixture having the following composition was stirred and mixed uniformly, dispersed using three rolls, and then filtered through a 5 μm filter to prepare photosensitive conductive material 6.
Silver powder (average particle size: d50 = 1.9 μm) 130 parts Photopolymerization initiator Irgacure 379 (manufactured by BASF) 3 parts Sensitizer DETX-S (manufactured by Nippon Kayaku Co., Ltd.) 2 parts Polymerizable polyfunctional Monomer R-684 (manufactured by Nippon Kayaku Co., Ltd.) 16 parts, alkali-soluble resin 38.7 parts, radical scavenger methyl hydroquinone 0.1 part, organic solvent 1-methoxy-2-propyl acetate 8 parts, surfactant Adecanate B -940 (made by ADEKA) 0.2 parts
[投影型静電容量方式タッチパネルセンサーの評価]
〈通電試験〉
 本発明により製造されるタッチパネルセンサーが、電気回路として問題ないか確認するために通電試験を実施した。ラインアンドスペース(L/S)が30μm/30μmの寸法のフォトマスクを用いて取出配線を形成したタッチパネルセンサーを作製した。タッチパネルセンサーの取出配線の外部回路の接続部と第一透明電極及び第二透明電極の間をテスター(オーム電機製デジタルマルチテスターMCD-007)を用いて導通確認を実施した。判定基準として、導通が確認されたものを○、導通不良が発生したものを×とした。
[Evaluation of projected capacitive touch panel sensor]
<Energization test>
In order to confirm whether the touch panel sensor manufactured by the present invention has no problem as an electric circuit, an energization test was performed. A touch panel sensor in which an extraction wiring was formed using a photomask having a line and space (L / S) size of 30 μm / 30 μm was produced. Conductivity was confirmed between the connection part of the external circuit of the extraction wiring of the touch panel sensor and the first transparent electrode and the second transparent electrode by using a tester (Digital Multi Tester MCD-007 manufactured by Ohm Electric Co., Ltd.). As a judgment criterion, a case where conduction was confirmed was rated as ◯, and a case where poor conduction occurred was marked as x.
〈現像密着性試験〉
 本発明により製造されるタッチパネルセンサーの細線での密着性を確認するため、現像密着性試験を実施した。ラインアンドスペース(L/S)が10μm/20μm、15μm/20μm、20μm/20μm、25μm/20μm、30μm/20μmの寸法のフォトマスクを用いて取出配線を形成したタッチパネルセンサーを作製した。現像密着性評価として、パターンが残るものを○、現像によりパターンが剥れてしまうものを×、線太りによりライン間が繋がってしまうものを「ツブレ」とした。
<Development adhesion test>
In order to confirm the adhesion of the touch panel sensor manufactured according to the present invention with fine wires, a development adhesion test was performed. A touch panel sensor in which an extraction wiring was formed using a photomask having a line and space (L / S) of 10 μm / 20 μm, 15 μm / 20 μm, 20 μm / 20 μm, 25 μm / 20 μm, and 30 μm / 20 μm was manufactured. For evaluation of the development adhesion, “○” indicates that the pattern remains, “×” indicates that the pattern peels off due to development, and “sludge” indicates that the lines are connected due to line thickening.
〈高温高湿試験〉
 本発明により製造されるタッチパネルセンサーの環境負荷後の密着性を確認するため、高温高湿試験を実施した。ラインアンドスペース(L/S)が30μm/30μmの寸法のフォトマスクを用いて取出配線を形成したタッチパネルセンサーを作製した。タッチパネルセンサーを60℃、90%RHの高温高湿槽に200時間投入後にクロスカット法による付着性試験を実施した。付着性試験方法として、切込みを配線と垂直方向にのみに入れること以外はJIS K 5600-5-6(1999)に準拠した試験方法で実施した。判定基準として配線剥れが発生しないものを○、配線剥れが発生するものを×とした。
<High temperature and high humidity test>
In order to confirm the adhesion after environmental load of the touch panel sensor manufactured according to the present invention, a high temperature and high humidity test was performed. A touch panel sensor in which an extraction wiring was formed using a photomask having a line and space (L / S) size of 30 μm / 30 μm was produced. After the touch panel sensor was put in a high-temperature and high-humidity tank at 60 ° C. and 90% RH for 200 hours, an adhesion test by a cross cut method was performed. As an adhesion test method, a test method according to JIS K 5600-5-6 (1999) was performed except that the cut was made only in the direction perpendicular to the wiring. As a judgment criterion, a case where wiring peeling does not occur is indicated by ○, and a case where wiring peeling occurs is indicated by ×.
(実施例1)
 ガラス基板上に、DCマグネトロンスパッタ方式にて170℃で加熱しながらITOスパッタを実施した。続いて、エッチング保護膜用としてAZエレクトロニックマテリアルズ社製SZPを1.0μmの膜厚となるようにスピンコートした後、105℃のホットプレートにてプリベークを実施した。その後、所望する第一透明電極パターンを反転させたフォトマスクを用いてプロキシミティ露光を行い、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施した。ポジレジストがパターニングされたITO成膜ガラス基板を、シュウ酸水溶液によるITOエッチング後、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液を用いたポジレジスト剥離を実施することにより第一透明電極のジャンパー部21及び導電支持体25を膜厚0.03μmにて形成した。上記ガラス基板上に、スクリーン印刷法にて仕上り膜厚が4.0μmとなるように感光性導電材料1を印刷後、熱風循環式オーブンでプリベークを実施した。上記ガラス基板を、取出配線パターンの形成されたフォトマスクを介して、プロキシミティ露光後、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施した後に熱処理を実施することにより、導電支持体25上に取出配線20を形成した。その後、絶縁層及び透明電極を形成することによりタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20のまでパターン形成が可能であり、この時形成した導電支持体の幅は12.3μmであり、取出配線の導体幅は12.3μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。
(Example 1)
ITO sputtering was performed on a glass substrate while heating at 170 ° C. by a DC magnetron sputtering method. Subsequently, SZP manufactured by AZ Electronic Materials Co., Ltd. was spin-coated so as to have a film thickness of 1.0 μm as an etching protective film, and then prebaked on a 105 ° C. hot plate. Then, proximity exposure was performed using the photomask which reversed the desired 1st transparent electrode pattern, and it developed with the aqueous alkali solution containing sodium hydroxide and sodium carbonate. The ITO film-formed glass substrate on which the positive resist is patterned is subjected to ITO etching with an oxalic acid aqueous solution, and then the positive resist is stripped using an alkaline aqueous solution containing sodium hydroxide and sodium carbonate to thereby make a jumper portion 21 of the first transparent electrode. The conductive support 25 was formed with a film thickness of 0.03 μm. The photosensitive conductive material 1 was printed on the glass substrate by a screen printing method so that the finished film thickness was 4.0 μm, and then prebaked in a hot air circulation oven. The glass substrate is subjected to proximity exposure through a photomask on which a lead-out wiring pattern is formed, developed with an aqueous alkali solution containing sodium hydroxide and sodium carbonate, and then subjected to heat treatment, whereby a conductive support is obtained. An extraction wiring 20 was formed on 25. Then, the touch panel sensor was produced by forming an insulating layer and a transparent electrode. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 10/20. The width of the conductive support formed at this time is 12.3 μm, and the conductor width of the extraction wiring is 12.3 μm. It was. The overlapping width of the transparent electrode and the conductive support was 50 μm.
(実施例2)
 感光性導電材料2を用いる以外は実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であり、この時形成した導電支持体の幅は15.0μmであり、取出配線の導体幅は13.5μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。
(Example 2)
A touch panel sensor having a conductive support 25 under the lead-out wiring 20 was produced in the same manner as in Example 1 except that the photosensitive conductive material 2 was used. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 10/20, the width of the conductive support formed at this time was 15.0 μm, and the conductor width of the extraction wiring was 13.5 μm. . The overlapping width of the transparent electrode and the conductive support was 50 μm.
(実施例3)
 透明電極及び導電支持体を形成する透明導電材料として酸化亜鉛(ZnO)を用いる以外は実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であり、この時形成した導電支持体の幅は28.5μmであり、取出配線の導体幅は28.5μmであった。また、透明電極と導電支持体の重なり幅は10μmであった。
(Example 3)
A touch panel sensor having a conductive support 25 under the lead-out wiring 20 was produced in the same manner as in Example 1 except that zinc oxide (ZnO) was used as a transparent conductive material for forming the transparent electrode and the conductive support. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 10/20, the width of the conductive support formed at this time was 28.5 μm, and the conductor width of the extraction wiring was 28.5 μm. . The overlapping width of the transparent electrode and the conductive support was 10 μm.
(実施例4)
 図4A及び図4Bに示されるように、ガラス基板上の周縁部に、下記組成の混合物を均一になるように攪拌混合した後、5μmのフィルターで濾過して顔料濃度47%のカーボン系レジストを作成し、加飾層25(額縁部)を膜厚1.5μmで形成した。
(Example 4)
As shown in FIG. 4A and FIG. 4B, a mixture having the following composition is stirred and mixed uniformly at the periphery of the glass substrate, and then filtered through a 5 μm filter to form a carbon resist having a pigment concentration of 47%. The decorative layer 25 (frame part) was formed with a film thickness of 1.5 μm.
 [カーボン系レジストの調整]
 カーボンブラック分散体(御国色素(株)製「TPBK-234C」)
                              161部
 フルオレン骨格を有するエポキシアクリレートの酸無水物重縮合物のプロピレングリコールモノメチルエーテルアセテート溶液(樹脂固形分濃度=56.1質量%、新日鐵化学(株)製V259ME)        40部
[Adjustment of carbon resist]
Carbon black dispersion (“TPBK-234C” manufactured by Mikuni Dye Co., Ltd.)
161 parts Propylene glycol monomethyl ether acetate solution of acid anhydride polycondensate of epoxy acrylate having a fluorene skeleton (resin solid content concentration = 56.1% by mass, V259ME manufactured by Nippon Steel Chemical Co., Ltd.) 40 parts
 多官能重合性モノマー(大阪有機工業(株)製「UADPH80A(分子量764)」)                        10部
 光開始剤(BASF製「イルガキュアOXE02」)     0.3部
 増感剤4,4’-ビス(ジエチルアミノ)ベンゾフェノン(保土ヶ谷化学工業(株)製「EAB-F」)                1.5部
 シクロヘキサノン                     140部
 プロピレングリコールモノメチルエーテルアセテート     140部
 添加剤((株)ADEKA製「アデカポリエーテルG-400」) 5部
Multifunctional polymerizable monomer ("OADPH80A (Molecular weight 764)" manufactured by Osaka Organic Industry Co., Ltd.) 10 parts Photoinitiator ("Irgacure OXE02" manufactured by BASF) 0.3 parts Sensitizer 4,4'-bis (diethylamino) Benzophenone ("EAB-F" manufactured by Hodogaya Chemical Co., Ltd.) 1.5 parts Cyclohexanone 140 parts Propylene glycol monomethyl ether acetate 140 parts Additive ("ADEKA Polyether G-400" manufactured by ADEKA Corporation) 5 parts
 次に、JSR社製NN901で加飾層上に、絶縁層を設けた。
 次に、実施例1と同様にして、絶縁層上であって、取出配線20の下の、透明電極と取出配線20との接続領域に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であった。この時形成した導電支持体の幅は25.0μmであり、取出配線の導体幅は20.1μmであった。また、透明電極と導電支持体の重なり幅は60μmであった。
Next, an insulating layer was provided on the decorative layer with NN901 manufactured by JSR.
Next, in the same manner as in Example 1, a touch panel sensor having a conductive support 25 in the connection region between the transparent electrode and the extraction wiring 20 on the insulating layer and below the extraction wiring 20 was manufactured. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesiveness, it was possible to form a pattern up to L / S = 10/20. The width of the conductive support formed at this time was 25.0 μm, and the conductor width of the extraction wiring was 20.1 μm. The overlapping width between the transparent electrode and the conductive support was 60 μm.
(実施例5)
 実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であり、この時形成した導電支持体の幅は15.0μmであり、取出配線の導体幅は8.5μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。
(Example 5)
Similarly to Example 1, a touch panel sensor having a conductive support 25 under the extraction wiring 20 was produced. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 10/20, the width of the conductive support formed at this time was 15.0 μm, and the conductor width of the extraction wiring was 8.5 μm. . The overlapping width of the transparent electrode and the conductive support was 50 μm.
(実施例6)
 感光性導電材料1の代わりに、感光性導電材料5を用いる以外は実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であり、この時形成した導電支持体の幅は15.0μmであり、取出配線の導体幅は10.5μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。
(Example 6)
In the same manner as in Example 1 except that the photosensitive conductive material 5 was used instead of the photosensitive conductive material 1, a touch panel sensor having a conductive support 25 under the extraction wiring 20 was produced. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern could be formed up to L / S = 10/20, and the width of the conductive support formed at this time was 15.0 μm, and the conductor width of the extraction wiring was 10.5 μm. . The overlapping width of the transparent electrode and the conductive support was 50 μm.
(実施例7)
 感光性導電材料1の代わりに、感光性導電材料6を用いる以外は実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であり、この時形成した導電支持体の幅は15.0μmであり、取出配線の導体幅は15.0μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。
(Example 7)
In the same manner as in Example 1 except that the photosensitive conductive material 6 was used instead of the photosensitive conductive material 1, a touch panel sensor having a conductive support 25 under the extraction wiring 20 was produced. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern could be formed up to L / S = 10/20, and the width of the conductive support formed at this time was 15.0 μm, and the conductor width of the extraction wiring was 15.0 μm. . The overlapping width of the transparent electrode and the conductive support was 50 μm.
(実施例8)
 感光性導電材料3(銀粉の平均粒子径:d50=0.04μm)を用いる以外は実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=15/20までパターン形成が可能であり、この時形成した導電支持体の幅は15.0μmであり、取出配線の導体幅は15.2μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。L/S=10/20のパターンにおいては剥れが発生した。
(Example 8)
A touch panel sensor having a conductive support 25 under the lead-out wiring 20 was prepared in the same manner as in Example 1 except that the photosensitive conductive material 3 (average particle diameter of silver powder: d50 = 0.04 μm) was used. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 15/20, the width of the conductive support formed at this time was 15.0 μm, and the conductor width of the lead-out wiring was 15.2 μm. . The overlapping width of the transparent electrode and the conductive support was 50 μm. Peeling occurred in the pattern of L / S = 10/20.
(実施例9)
 感光性導電材料4(銀粉の平均粒子径:d50=4.0μm)を用いる以外は実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=15/20までパターン形成が可能であり、この時形成した導電支持体の幅は25.0μmであり、取出配線の導体幅は19.4μmであった。また、透明電極と導電支持体の重なり幅は50μmであった。L/S=10/20のパターンにおいてはツブレが発生した。
Example 9
A touch panel sensor having a conductive support 25 under the extraction wiring 20 was produced in the same manner as in Example 1 except that the photosensitive conductive material 4 (average particle diameter of silver powder: d50 = 4.0 μm) was used. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 15/20, the width of the conductive support formed at this time was 25.0 μm, and the conductor width of the extraction wiring was 19.4 μm. . The overlapping width of the transparent electrode and the conductive support was 50 μm. In the pattern of L / S = 10/20, a blur occurred.
(実施例10)
 実施例1と同様に、取出配線20の下に導電支持体25を持つタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は問題ない結果であった。また、現像密着性として、L/S=10/20までパターン形成が可能であり、この時形成した導電支持体の幅は28.5μmであり、取出配線の導体幅は28.5μmであった。また、透明電極と導電支持体の重なり幅は0.8μmであった。
(Example 10)
Similarly to Example 1, a touch panel sensor having a conductive support 25 under the extraction wiring 20 was produced. At this time, the continuity test and the high-temperature and high-humidity test were satisfactory. Further, as the development adhesion, a pattern can be formed up to L / S = 10/20, the width of the conductive support formed at this time was 28.5 μm, and the conductor width of the extraction wiring was 28.5 μm. . The overlapping width between the transparent electrode and the conductive support was 0.8 μm.
(比較例1)
 ガラス基板上に、DCマグネトロンスパッタ方式にて170℃で加熱しながらITOスパッタを実施した。続いて、エッチング保護膜用としてAZエレクトロニックマテリアルズ社製SZPを1.0μmの膜厚となるようにスピンコートした後、105℃のホットプレートにてプリベークを実施した。その後、所望する第一透明電極パターンを反転させたフォトマスクを用いてプロキシミティ露光を行い、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施した。ポジレジストがパターニングされたITO成膜ガラス基板を、シュウ酸水溶液によるITOエッチング後、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液を用いたポジレジスト剥離を実施することにより第一透明電極のジャンパー部21を膜厚0.03μmにて形成した。上記ガラス基板上に、スクリーン印刷法にて仕上り膜厚が4.0μmとなるように感光性導電材料1を印刷後、熱風循環式オーブンでプリベークを実施した。上記ガラス基板を、取出配線パターンの形成されたフォトマスクを介して、プロキシミティ露光後、水酸化ナトリウム、炭酸ナトリウムを含むアルカリ水溶液にて現像を実施した後に熱処理を実施することにより、取出配線20を形成した。その後、絶縁層及び透明電極を形成することによりタッチパネルセンサーを作製した。この時、導通試験及び高温高湿試験は判定基準を満たさない結果であった。また、現像密着性として、L/S=20/20までパターン形成が可能であり、この時形成した取出配線の導体幅は22.6μmであった。
 このようにして作製されたタッチパネルセンサーの評価結果を表1に示す。
(Comparative Example 1)
ITO sputtering was performed on a glass substrate while heating at 170 ° C. by a DC magnetron sputtering method. Subsequently, SZP manufactured by AZ Electronic Materials Co., Ltd. was spin-coated so as to have a film thickness of 1.0 μm as an etching protective film, and then prebaked on a 105 ° C. hot plate. Then, proximity exposure was performed using the photomask which reversed the desired 1st transparent electrode pattern, and it developed with the aqueous alkali solution containing sodium hydroxide and sodium carbonate. The ITO film-formed glass substrate on which the positive resist is patterned is subjected to ITO etching with an oxalic acid aqueous solution, and then the positive resist is stripped using an alkaline aqueous solution containing sodium hydroxide and sodium carbonate to thereby make a jumper portion 21 of the first transparent electrode. Was formed with a film thickness of 0.03 μm. The photosensitive conductive material 1 was printed on the glass substrate by a screen printing method so that the finished film thickness was 4.0 μm, and then prebaked in a hot air circulation oven. The above-mentioned glass substrate is subjected to proximity exposure through a photomask on which an extraction wiring pattern is formed, developed with an alkaline aqueous solution containing sodium hydroxide and sodium carbonate, and then subjected to heat treatment, whereby extraction wiring 20 is obtained. Formed. Then, the touch panel sensor was produced by forming an insulating layer and a transparent electrode. At this time, the continuity test and the high temperature and high humidity test were results that did not satisfy the criteria. Further, as the development adhesion, a pattern could be formed up to L / S = 20/20, and the conductor width of the extraction wiring formed at this time was 22.6 μm.
Table 1 shows the evaluation results of the touch panel sensor thus produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記実施例1~7によれば、取出配線20の下に導電支持体25を形成することにより導通不良及び高温高湿試験による剥れの発生を防ぐことができることを確認した。また、実施例8のように、銀粉の平均粒子径が0.05μm未満であると細線で剥れが生じ、実施例9のように、平均粒子径が3μmを超えると細線でツブレが発生するため、平均粒子径は0.05~3μmであることが好ましい。また、実施例10のように、透明電極と導電支持体の重なり幅が1.0μm未満であっても、特に不具合は生じなかったが、長期的に破断を防ぐためには、重なり部が1.0μm以上であることが好ましい。上記結果より、導電支持体25上に金属微粒子を含む感光性導電材料を用いて取出配線20を形成することにより30μm以下の高精細パターンを有し、断線や剥れの発生しない良好な品質且つ安価で製造可能な静電容量方式タッチパネルセンサーを提供することが可能となる。 According to the above Examples 1 to 7, it was confirmed that the formation of the conductive support 25 under the extraction wiring 20 can prevent the occurrence of poor conduction and peeling due to the high temperature and high humidity test. Further, if the average particle diameter of the silver powder is less than 0.05 μm as in Example 8, peeling occurs in the fine line, and if the average particle diameter exceeds 3 μm as in Example 9, the fine line is blurred. Therefore, the average particle diameter is preferably 0.05 to 3 μm. Further, as in Example 10, there was no particular problem even when the overlapping width of the transparent electrode and the conductive support was less than 1.0 μm, but in order to prevent breakage in the long term, the overlapping portion was 1. It is preferably 0 μm or more. From the above results, by forming the lead-out wiring 20 using a photosensitive conductive material containing metal fine particles on the conductive support 25, it has a high-definition pattern of 30 μm or less and has good quality with no disconnection or peeling. It is possible to provide a capacitive touch panel sensor that can be manufactured at low cost.
 10 透明基板
 20 取出配線
 21 ジャンパー部
 22 絶縁層
 23 第一透明電極
 24 第二透明電極
 25 導電支持体
 26 加飾層
 30 液晶パネル
 31 加飾層が設けられていない静電容量方式タッチパネルセンサー
 32 前面板
 33 加飾層が設けられた静電容量方式タッチパネルセンサー
 301 カラーフィルタ基板
 302 アレイ基板
 303 偏光板
 304 液晶
DESCRIPTION OF SYMBOLS 10 Transparent substrate 20 Extraction wiring 21 Jumper part 22 Insulating layer 23 1st transparent electrode 24 2nd transparent electrode 25 Conductive support body 26 Decorating layer 30 Liquid crystal panel 31 Capacitance type touch panel sensor in which the decorating layer is not provided 32 Front Face plate 33 Capacitive touch panel sensor provided with a decoration layer 301 Color filter substrate 302 Array substrate 303 Polarizing plate 304 Liquid crystal

Claims (21)

  1.  透明基板上の表示領域に、第一の方向に沿って、ジャンパー部を複数形成するジャンパー部形成工程と、
     前記表示領域の外周部に導電支持体を形成する導電支持体形成工程と、
     前記ジャンパー部上に絶縁層を形成する絶縁層形成工程と、
     金属微粒子を含む感光性導電材料を用いて、前記導電支持体上に取出配線を形成する取出配線形成工程と、
     第一透明電極により前記ジャンパー部同士を接続するか、又は前記第一透明電極と前記取出配線とを接続するように、複数の前記第一透明電極を第一の方向に沿って形成すると共に、第一の方向に直交する第二の方向に沿って第二透明電極と前記取出配線とを接続するように複数の前記第二透明電極を形成する透明電極形成工程とを含むことを特徴とする静電容量方式タッチパネルセンサーの製造方法。
    A jumper part forming step of forming a plurality of jumper parts along the first direction in the display area on the transparent substrate;
    A conductive support forming step of forming a conductive support on the outer periphery of the display area;
    An insulating layer forming step of forming an insulating layer on the jumper portion;
    Using a photosensitive conductive material containing metal fine particles, an extraction wiring forming step of forming an extraction wiring on the conductive support;
    A plurality of the first transparent electrodes are formed along the first direction so as to connect the jumper portions by the first transparent electrode or connect the first transparent electrode and the extraction wiring, A transparent electrode forming step of forming a plurality of the second transparent electrodes so as to connect the second transparent electrode and the extraction wiring along a second direction orthogonal to the first direction. A method for manufacturing a capacitive touch panel sensor.
  2.  前記取出配線形成工程において、前記取出配線を、スクリーン印刷による塗布及びマスクパターンを用いた露光・現像により形成することを特徴とする請求項1に記載の静電容量方式タッチパネルセンサーの製造方法。 The method for manufacturing a capacitive touch panel sensor according to claim 1, wherein, in the extraction wiring forming step, the extraction wiring is formed by application by screen printing and exposure / development using a mask pattern.
  3.  前記金属微粒子の平均粒子径が0.05μm以上3.00μm以下であることを特徴とする請求項1又は2に記載の静電容量方式タッチパネルセンサーの製造方法。 The method for producing a capacitive touch panel sensor according to claim 1 or 2, wherein an average particle size of the metal fine particles is 0.05 µm or more and 3.00 µm or less.
  4.  前記金属微粒子が金、銀、銅、パラジウム、又はこれらのうちの少なくとも二以上の混合物であることを特徴とする請求項1~3のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法。 The capacitive touch panel sensor according to any one of claims 1 to 3, wherein the metal fine particles are gold, silver, copper, palladium, or a mixture of at least two of these. Method.
  5.  前記取出配線形成工程において、前記取出配線の導体幅を、3μm以上30μm以下で形成することを特徴とする請求項1~4のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法。 The method for manufacturing a capacitive touch panel sensor according to any one of claims 1 to 4, wherein, in the extraction wiring formation step, a conductor width of the extraction wiring is formed in a range of 3 µm to 30 µm.
  6.  前記ジャンパー部形成工程と前記導電支持体形成工程とを同時に行うことを特徴とする請求項1~5のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法。 6. The method of manufacturing a capacitive touch panel sensor according to claim 1, wherein the jumper part forming step and the conductive support forming step are performed simultaneously.
  7.  前記第一透明電極及び/又は前記第二透明電極と前記取出配線との接続部を、前記第一透明電極及び/又は前記第二透明電極の端部が前記導電支持体及び前記取出配線の端部を覆うように形成することを特徴とする請求項1~6のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法。 The connecting portion between the first transparent electrode and / or the second transparent electrode and the extraction wiring, and the end of the first transparent electrode and / or the second transparent electrode is the end of the conductive support and the extraction wiring. 7. The method of manufacturing a capacitive touch panel sensor according to claim 1, wherein the method is formed so as to cover a portion.
  8.  前記第一透明電極及び/又は前記第二透明電極と前記導電支持体との重なり幅が、1μm以上であることを特徴とする請求項1~7のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法。 The electrostatic capacity method according to any one of claims 1 to 7, wherein an overlap width of the first transparent electrode and / or the second transparent electrode and the conductive support is 1 µm or more. Manufacturing method of touch panel sensor.
  9.  前記導電支持体は、前記第一透明電極及び/又は前記第二透明電極と、前記取出配線との接続領域においてのみ形成することを特徴とする請求項1~8のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法。 The conductive support is formed only in a connection region between the first transparent electrode and / or the second transparent electrode and the extraction wiring, according to any one of claims 1 to 8. A method for manufacturing a capacitive touch panel sensor.
  10.  前記接続領域は、前記透明基板上の表示領域の外周部に形成される加飾層及び選択的に絶縁層が形成されている領域内にあることを特徴とする請求項9に記載の静電容量方式タッチパネルセンサーの製造方法。 The electrostatic connection according to claim 9, wherein the connection region is in a region where a decorative layer formed on an outer peripheral portion of a display region on the transparent substrate and an insulating layer are selectively formed. Manufacturing method of capacitive touch panel sensor.
  11.  請求項1~10のいずれか一項に記載の静電容量方式タッチパネルセンサーの製造方法で製造されたことを特徴とする静電容量方式タッチパネルセンサー。 A capacitive touch panel sensor manufactured by the method for manufacturing a capacitive touch panel sensor according to any one of claims 1 to 10.
  12.  透明基板上に、第一の方向に沿って形成された複数の第一透明電極と、
     前記透明基板上に第一の方向と交差する第二の方向に沿って形成された複数の第二透明電極と、
     前記第一透明電極と前記第二透明電極との重畳領域に、前記第一透明電極及び前記第二透明電極に挟まれて形成される絶縁層と、
     表示領域の外周部に配置された取出配線とを具備し、
     前記第一透明電極及び前記第二透明電極と前記取出配線の接続端部とが電気的に接続されている静電容量方式タッチパネルセンサーであって、
     前記表示領域の外周部に設けられた導電支持体上に、金属微粒子を含む感光性導電材料を用いて前記取出配線が設けられたことを特徴とする静電容量方式タッチパネルセンサー。
    A plurality of first transparent electrodes formed along a first direction on the transparent substrate;
    A plurality of second transparent electrodes formed along a second direction intersecting the first direction on the transparent substrate;
    In the overlapping region of the first transparent electrode and the second transparent electrode, an insulating layer sandwiched between the first transparent electrode and the second transparent electrode,
    A lead-out wiring arranged on the outer periphery of the display area,
    The capacitive touch panel sensor in which the first transparent electrode and the second transparent electrode and the connection end of the extraction wiring are electrically connected,
    A capacitive touch panel sensor, wherein the extraction wiring is provided on a conductive support provided on an outer peripheral portion of the display area using a photosensitive conductive material including metal fine particles.
  13.  前記金属微粒子は平均粒子径0.05μm以上3.00μm以下であることを特徴とする請求項12に記載の静電容量方式タッチパネルセンサー。 13. The capacitive touch panel sensor according to claim 12, wherein the metal fine particles have an average particle diameter of 0.05 μm or more and 3.00 μm or less.
  14.  前記金属微粒子は、金、銀、銅、パラジウム、又はこれらのうちの少なくとも二以上の混合物であることを特徴とする請求項12又は13に記載の静電容量方式タッチパネルセンサー。 14. The capacitive touch panel sensor according to claim 12 or 13, wherein the metal fine particles are gold, silver, copper, palladium, or a mixture of at least two of these.
  15.  前記取出配線の導体幅が、3μm以上30μm以下であることを特徴とする請求項12~14のいずれか一項に記載の静電容量方式タッチパネルセンサー。 15. The capacitive touch panel sensor according to claim 12, wherein a conductor width of the lead-out wiring is 3 μm or more and 30 μm or less.
  16.  前記第一透明電極及び/又は前記第二透明電極と前記取出配線との接続部は、前記第一透明電極及び/又は前記第二透明電極の端部が前記導電支持体及び前記取出配線の端部を覆うように形成されていることを特徴とする請求項12~15のいずれか一項に記載の静電容量方式タッチパネルセンサー。 The connection portion between the first transparent electrode and / or the second transparent electrode and the extraction wiring is such that an end of the first transparent electrode and / or the second transparent electrode is an end of the conductive support and the extraction wiring. The capacitive touch panel sensor according to any one of claims 12 to 15, wherein the capacitive touch panel sensor is formed so as to cover a portion.
  17.  前記第一透明電極及び/又は前記第二透明電極と前記導電支持体との重なり幅が、1μm以上であることを特徴とする請求項12~16のいずれか一項に記載の静電容量方式タッチパネルセンサー。 The electrostatic capacity method according to any one of claims 12 to 16, wherein an overlap width between the first transparent electrode and / or the second transparent electrode and the conductive support is 1 μm or more. Touch panel sensor.
  18.  前記導電支持体は、前記第一透明電極及び/又は前記第二透明電極と、前記取出配線との接続領域においてのみ形成することを特徴とする請求項12~17のいずれか一項に記載の静電容量方式タッチパネルセンサー。 The conductive support is formed only in a connection region between the first transparent electrode and / or the second transparent electrode and the extraction wiring, according to any one of claims 12 to 17. Capacitive touch panel sensor.
  19.  前記接続領域は、前記透明基板上の表示領域の外周部に形成される加飾層及び選択的に絶縁層が形成されている領域内にあることを特徴とする請求項18に記載の静電容量方式タッチパネルセンサー。 The electrostatic connection according to claim 18, wherein the connection region is in a region where a decorative layer and a selectively insulating layer are selectively formed on an outer peripheral portion of the display region on the transparent substrate. Capacitive touch panel sensor.
  20.  前記導電支持体は、前記第一透明電極又は前記第二透明電極と同じ材料で設けられたことを特徴とする請求項12~19のいずれか一項に記載の静電容量方式タッチパネルセンサー。 The capacitive touch panel sensor according to any one of claims 12 to 19, wherein the conductive support is formed of the same material as the first transparent electrode or the second transparent electrode.
  21.  請求項11~20のいずれか一項に記載の静電容量方式タッチパネルセンサーを搭載したことを特徴とする表示装置。 A display device comprising the capacitive touch panel sensor according to any one of claims 11 to 20.
PCT/JP2013/001369 2012-03-12 2013-03-05 Touch panel sensor of electrostatic capacitance type and method for producing same, and display device WO2013136719A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012054852 2012-03-12
JP2012-054852 2012-03-12
JP2012113315 2012-05-17
JP2012-113315 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013136719A1 true WO2013136719A1 (en) 2013-09-19

Family

ID=49160655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001369 WO2013136719A1 (en) 2012-03-12 2013-03-05 Touch panel sensor of electrostatic capacitance type and method for producing same, and display device

Country Status (2)

Country Link
TW (1) TW201405394A (en)
WO (1) WO2013136719A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045325A1 (en) * 2013-09-27 2015-04-02 デクセリアルズ株式会社 Capacitive curved touch panel and method for fabrication thereof
JP2016532174A (en) * 2013-09-29 2016-10-13 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160670A (en) * 2009-01-08 2010-07-22 Seiko Epson Corp Method for manufacturing touch panel, touch panel, display and electronic apparatus
JP2011086122A (en) * 2009-10-15 2011-04-28 Dainippon Printing Co Ltd Capacitance type touch panel sensor and method of manufacturing the touch panel sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160670A (en) * 2009-01-08 2010-07-22 Seiko Epson Corp Method for manufacturing touch panel, touch panel, display and electronic apparatus
JP2011086122A (en) * 2009-10-15 2011-04-28 Dainippon Printing Co Ltd Capacitance type touch panel sensor and method of manufacturing the touch panel sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045325A1 (en) * 2013-09-27 2015-04-02 デクセリアルズ株式会社 Capacitive curved touch panel and method for fabrication thereof
JP2015069267A (en) * 2013-09-27 2015-04-13 デクセリアルズ株式会社 Capacitive curved touch panel and method for fabrication thereof
JP2016532174A (en) * 2013-09-29 2016-10-13 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Touch panel

Also Published As

Publication number Publication date
TW201405394A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
JP5257558B1 (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
WO2013038624A1 (en) Method for producing capacitive touch panel sensor substrate, capacitive touch panel sensor substrate, and display device
JP2014085771A (en) Capacitance type touch panel sensor substrate and method for manufacturing the same and display device
CN107850842B (en) Transfer film, electrode protection film for capacitive input device, laminate, method for manufacturing laminate, and capacitive input device
JP4839525B2 (en) Photosensitive resin composition and color filter for liquid crystal display
TWI614660B (en) Transparent conductive film and touch panel therewith and display device
WO2017057584A1 (en) Composition for electrode protective film of capacitive input device, electrode protective film for capacitive input device, transfer film, laminate, capacitive input device, and image display device
JP4648530B2 (en) Photosensitive resin composition and color filter for liquid crystal display
JP2014044501A (en) Manufacturing method of on-cell capacitive touch panel substrate, on-cell capacitive touch panel substrate, and display device
JP6205925B2 (en) Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate
JP2017090812A (en) Electrostatic capacitance type touch panel integrated liquid crystal display panel, color filter substrate, and method for manufacturing the electrostatic capacitance type touch panel integrated liquid crystal display panel
JP2012185699A (en) Electronic input device and method for manufacturing the same, and liquid crystal display device using the same
JP2011150115A (en) Color filter substrate and method for manufacturing the same
JP2013101861A (en) Photosensitive conductive paste, conductive circuit pattern, touch panel sensor, and display device
WO2013136719A1 (en) Touch panel sensor of electrostatic capacitance type and method for producing same, and display device
JP5957923B2 (en) Liquid crystal display with touch panel
JP2014130417A (en) Front plate for touch panel, integrated-type sensor substrate equipped with the same and display device
JP2016061878A (en) Liquid crystal display panel
KR20080076563A (en) Photosensitive resin composition for spacer having conductivity property
JP5478157B2 (en) Substrate for liquid crystal display device and liquid crystal display device
JP2013214271A (en) Capacitance type touch panel substrate, method for manufacturing the same, and display device
JP2015203745A (en) Columnar object-formed substrate for electronic element
JP2013222031A (en) Photosensitive conductive resin composition, conductive circuit pattern, touch panel sensor substrate and display device
JP6375847B2 (en) Touch panel sensor and manufacturing method thereof, touch panel sensor substrate
KR20130067357A (en) A black photosensitive resin composition for touch panel and touch panel containing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP