WO2013132954A1 - 接合方法、接合構造体およびその製造方法 - Google Patents

接合方法、接合構造体およびその製造方法 Download PDF

Info

Publication number
WO2013132954A1
WO2013132954A1 PCT/JP2013/053028 JP2013053028W WO2013132954A1 WO 2013132954 A1 WO2013132954 A1 WO 2013132954A1 JP 2013053028 W JP2013053028 W JP 2013053028W WO 2013132954 A1 WO2013132954 A1 WO 2013132954A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
joining
alloy
bonded
insert material
Prior art date
Application number
PCT/JP2013/053028
Other languages
English (en)
French (fr)
Inventor
中野公介
高岡英清
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020147017330A priority Critical patent/KR20140098815A/ko
Priority to CN201380012362.6A priority patent/CN104144764B/zh
Priority to JP2014503721A priority patent/JP5943066B2/ja
Publication of WO2013132954A1 publication Critical patent/WO2013132954A1/ja
Priority to US14/469,842 priority patent/US9333593B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3026Mn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1028Thin metal strips as connectors or conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a joining method for joining one joining object (first joining object) and the other joining object (second joining object), and a joining structure formed using the joining method, in detail.
  • a bonding method used for bonding an external electrode of a chip-type electronic component, which is a first bonding target, to a mounting electrode on a substrate, which is a second bonding target, and the like.
  • the present invention relates to a junction structure to be formed and a manufacturing method thereof.
  • a method of mounting by soldering the external electrode of the electronic component to a mounting electrode (land electrode) or the like on the substrate is widely used. ing.
  • Patent Document 1 discloses a joining method using the solder paste and a method for manufacturing an electronic device.
  • soldering when soldering is performed using the solder paste of Patent Document 1, a low melting point metal (for example, Sn) ball 51 and a high melting point metal (for example, Cu), as schematically shown in FIG.
  • the solder paste containing the ball 52 and the flux 53 is heated to react, and after soldering, as shown in FIG. 6B, a plurality of high melting point metal balls 52 are derived from the low melting point metal balls.
  • the low melting point metal and the high melting point metal derived from the high melting point metal ball are connected to each other through an intermetallic compound 54, and an object to be joined is connected and connected (soldered) by this connection body.
  • solder paste of Patent Document 1 an intermetallic compound of a high melting point metal (for example, Cu) and a low melting point metal (for example, Sn) is generated by heating the solder paste in the soldering process.
  • a high melting point metal for example, Cu
  • Sn low melting point metal
  • the diffusion rate is slow, so that Sn which is a low melting point metal remains.
  • the bonding strength at a high temperature is greatly reduced, and it may not be possible to use depending on the type of products to be bonded.
  • Sn remaining in the soldering process may melt and flow out in another soldering process, and there is a problem that reliability is low as a high-temperature solder used for temperature hierarchy connection.
  • solder in the manufacturing process of the semiconductor device is used.
  • Sn remaining in the attaching process may melt and flow out in the reflow soldering process.
  • a solder paste including a metal component composed of a first metal powder, a second metal powder having a melting point higher than that of the first metal powder, and a flux component,
  • the metal is Sn or an alloy containing Sn
  • the second metal Cu—Mn or Cu—Ni
  • the solder paste made of a metal or an alloy having a lattice constant difference of 50% or more, which is the difference between the lattice constant of the intermetallic compound first formed around the metal and the lattice constant of the second metal component (Patent Document) 2).
  • Patent Document 2 Cu—Mn or Cu—Ni is exemplified as the second metal.
  • Patent Document 2 proposes a bonding method and a bonding structure using the solder paste, and further a method for manufacturing an electronic device. And, according to the joining method using this solder paste, it is possible to significantly reduce the residual amount of Sn, to prevent the solder from flowing out during reflow, and to perform joining with excellent joining strength and joining reliability at high temperatures. It is supposed to be possible.
  • the present invention solves the above-described problems, and is a bonding method capable of obtaining a highly reliable bonded portion having no voids and being dense and excellent in heat resistance, and bonding reliability formed using the bonding method.
  • An object of the present invention is to provide a bonded structure having a high height and a method for producing the same.
  • the bonding method of the present invention is: A method of joining the first joining object and the second joining object using an insert material,
  • the first joining object and / or the second joining object has a first metal composed of Sn or an alloy containing Sn having a melting point lower than that of an alloy constituting the following insert material
  • the insert material is mainly composed of a second metal that is an alloy containing at least one selected from Ni, Mn, Al, and Cr and Cu
  • a heat treatment is performed in a state where the insert material is disposed between the first joining object and the second joining object, and the first joining object and / or the second joining object is provided.
  • the first joining object and the second joining object are joined by generating an intermetallic compound of the first metal having and the second metal constituting the insert material. Yes.
  • Examples of the first and second objects to be joined include an external electrode of a chip type electronic component and a mounting electrode on a substrate on which the chip type electronic component is mounted.
  • the case where one of the joining objects is “Cu wire plated with Sn or Sn alloy” is included.
  • the first metal composed of Sn or an alloy containing Sn is exemplified as a plating layer made of an alloy containing Sn or Sn formed on the surface of the electrode.
  • the plating layer made of the first metal is on the outermost surface of the first and / or second bonding object, but another layer (for example, It is also possible to form a noble metal layer.
  • the said insert material has the said alloy (2nd metal) as a main component, antioxidant films, such as Sn plating layer and Au plating layer, may be formed in the surface.
  • the first metal is preferably an alloy containing 70% by weight or more of Sn.
  • the first metal is an alloy containing Sn by weight of 70% by weight or more, the effect of the present invention that there is no void, high heat resistance, and excellent reliability can be obtained more reliably. It becomes possible to obtain.
  • the said 1st metal is an alloy containing 85 weight% or more of Sn.
  • the first metal is an alloy containing 85% by weight or more of Sn, it is possible to more reliably obtain a joint having higher heat resistance.
  • the second metal constituting the insert material is mainly composed of a Cu—Ni alloy or a Cu—Mn alloy.
  • the second metal constituting the insert material is mainly composed of a Cu—Ni alloy and / or a Cu—Mn alloy, it is possible to obtain a joint portion having particularly high heat resistance.
  • the Cu—Ni alloy preferably contains Ni in a range of 5 to 30% by weight, and the Cu—Mn alloy preferably contains Mn in a proportion of 5 to 30% by weight. .
  • the bonded structure of the present invention is characterized by being formed by the above-described bonding method of the present invention.
  • the method for manufacturing a bonded structure according to the present invention is characterized by using the bonding method according to the present invention.
  • the first joining object and the second joining object when joining the first joining object and the second joining object using an insert material, is Sn.
  • heat treatment is performed in a state where the insert material is located between the first and second bonding objects, and the first bonding object and / or the second bonding object.
  • the first joining object and the second joining object are obtained. Since they are joined, there are no gaps. , Excellent in heat resistance, it is possible to obtain a highly reliable junction.
  • the first and / or second joining object includes the first metal (Sn or Sn alloy), and the insert material is at least one selected from Ni, Mn, Al, and Cr, and Cu. Since the second metal, which is an alloy containing the main component, is the main component, rapid diffusion of the second metal (the Cu alloy) and the first metal (the low melting point metal) occurs in the heat treatment step. While an intermetallic compound having a high melting point is generated, most of the first metal becomes an intermetallic compound.
  • the first bonding target is an external electrode of an electronic component and the second bonding target is a mounting electrode for a substrate
  • the electronic components will not fall off at high temperatures. It is possible to obtain a joint with high joint reliability.
  • the first metal low melting point metal such as Sn or Sn alloy
  • the first metal in the first and / or second joining objects is melted.
  • the first metal and the second metal (Cu alloy) in the insert material are quickly diffused to generate an intermetallic compound.
  • the first metal which is a low melting point metal
  • the second metal further react, and if the composition ratio of the first metal and the second metal is in a desirable condition, the first metal All become intermetallic compounds, and the first metal does not exist in the joint.
  • the lattice constant difference between the second metal and the intermetallic compound generated at the interface between the first metal and the second metal is large (the lattice constant difference between the second metal and the intermetallic compound is large). 50% or more), the reaction is repeated while the intermetallic compound is peeled and dispersed in the molten first metal (Sn or Sn alloy), and the production of the intermetallic compound progresses dramatically, and the first time is reached in a short time.
  • the metal (Sn or Sn alloy) content can be sufficiently reduced. As a result, it is possible to perform bonding with high heat resistance.
  • Al and Cr constituting the second metal (Cu alloy) both have a first ionization energy lower than that of Cu, and these metals (Al and Cr) are dissolved in Cu. And Cr will be oxidized first. As a result, diffusion of unoxidized Cu into the molten first metal (Sn or Sn alloy) is promoted, and an intermetallic compound is generated with the first metal in a very short time. Therefore, the content of the first metal in the joint portion is reduced by that amount, the melting point of the joint portion is increased, and the heat resistance strength is improved.
  • the insert material containing the second metal can be supplied in a form having a small surface area such as a plate shape, it is included in the first and / or second joining objects.
  • Reaction with the first metal (Sn or Sn alloy) can be slowed. That is, when the insert material is plate-shaped, for example, the surface area of the second metal is sufficiently larger than when the second metal constituting the insert material is supplied in the form of a paste in the form of a powder having a large surface area.
  • the reaction with the first metal can be slowed down.
  • the self-alignment property is also improved by the surface tension of the liquid first metal.
  • the first and second objects to be bonded are reliably bonded via the bonding portion whose main component is an intermetallic compound having a high melting point.
  • a bonded structure having excellent strength can be provided.
  • the quantity of the 1st metal (Sn or Sn alloy) which the 1st and 2nd to-be-joined object has, and the 2nd metal (Ni, included in insert material) is preferably within a predetermined range.
  • the ratio of the first metal to the total amount of the second metal is desirably 70% by volume or less.
  • an external electrode (first object to be joined) of a chip-type electronic component (multilayer ceramic capacitor) in which external electrodes are disposed at both ends of the ceramic laminate is used for mounting on a glass epoxy substrate.
  • the case where it joins to an electrode (2nd joining object) via an insert material is demonstrated to an example.
  • first and second joining objects First, as a first object to be joined, as shown in FIG. 1, an external portion composed of Cu thick film electrodes formed at both ends of a ceramic laminate 10 in which internal electrodes 4 and ceramic layers 5 are alternately laminated. Formed on the surface of the electrode body 1 is a plating layer 2 of Sn or an alloy containing Sn (first metal having a lower melting point than the Cu alloy constituting the insert material) as shown in sample numbers 1 to 25 in Tables 1 and 2. A chip-type electronic component A provided with the external electrode 3 was prepared. Although not shown, Ni plating was formed between the Cu thick film electrode and the plating layer 2 made of Sn or an alloy containing Sn.
  • the plating layer 2 does not necessarily cover the entire surface of the external electrode body 1, and the external electrode body 1 is formed in such a manner that an intermetallic compound is formed by reacting with the following insert material C in the heat treatment step. As long as it is granted.
  • a first metal (as shown in sample numbers 1 to 25 in Tables 1 and 2) is formed on the surface of the Cu electrode film 11 formed on the main surface.
  • the plating layer 12 may be formed so as to cover the entire surface of the Cu electrode film 11 as shown in FIG. 2, that is, the upper surface and side surfaces of the Cu electrode film 11, and only the upper surface of the Cu electrode film 11. It may be formed only on a part of the upper surface.
  • the first metal (low melting point) for the plating layers 2 and 12 of the first object to be joined (external electrode of the chip-type electronic component) and the second object to be joined (electrode for mounting the glass epoxy substrate).
  • Sn-3Ag-0.5Cu, Sn, Sn-3.5Ag, Sn-0.75Cu, Sn-15Bi, Sn-0.7Cu-0.05Ni, Sn -5Sb, Sn-2Ag-0.5Cu-2Bi, Sn-30Bi, Sn-3.5Ag-0.5Bi-8In, Sn-9Zn, Sn-8Zn-3Bi were used.
  • Sn-3Ag-0.5Cu of sample number 1 is a low melting point metal material containing 3 wt% Ag and 0.5 wt% Cu, and the balance It shows that the alloy is Sn (Sn alloy).
  • a plate-like insert material made of a Cu alloy (second metal) as shown in Tables 1 and 2 was prepared as an insert material.
  • the second metal constituting the insert material as shown in Tables 1 and 2, Cu-5Ni, Cu-10Ni, Cu-15Ni, Cu-20Ni, Cu-30Ni, Cu-5Mn, Cu-10Mn, Cu-15Mn, Cu-20Mn, Cu-30Mn, Cu-12Mn-4Ni, Cu-10Mn-1P, Cu-10Al and Cu-10Cr alloys were used.
  • the second metal constituting the insert material usually, any one of Cu—Ni, Cu—Mn, Cu—Al, and Cu—Cr alloy is used, but Mn and Ni are simultaneously contained as in Sample No. 22.
  • a third component such as P (phosphorus) may be included.
  • insert materials of sample numbers 26 and 27 in Table 2 that do not have the requirements of the present invention were prepared as insert materials.
  • the insert material of sample number 26 is an insert material made of Cu
  • the insert material of sample number 27 is an insert material made of a Cu—Zn alloy.
  • each of the chip-type electronic components A in Tables 1 and 2 has an external electrode (first bonding target) 3 that is inserted into each of the insert materials C in Tables 1 and 2 through Tables 1 and 2. It mounted so that it might oppose the mounting electrode (2nd joining target object) 13 on each glass epoxy board
  • FIG. 4 shows a modified example of the joined structure D obtained as described above.
  • a part of the insert material C may remain, and an alloy containing Sn or Sn that constitutes the external electrode 3 (low melting point metal) Of the plating layer 2, the portion of the plating layer 2 that is not in contact with the insert material C may remain unreacted.
  • sample numbers 1 to 10 using insert materials that do not have the requirements of the present invention insert material made of Cu of sample number 26 and insert material made of Cu—Zn alloy of sample number 27.
  • insert material made of Cu of sample number 26 and insert material made of Cu—Zn alloy of sample number 27 The external electrode of the same chip type electronic component used in the above was joined to the mounting electrode on the glass epoxy substrate.
  • ⁇ Residual component evaluation About 7 mg of the intermetallic compound (reaction product) solidified after reflow is cut off and differentially measured under the conditions of measuring temperature 30 ° C to 300 ° C, heating rate 5 ° C / min, N 2 atmosphere, reference Al 2 O 3 Scanning calorimetry (DSC measurement) was performed. From the endothermic amount of the melting endothermic peak at the melting temperature of the first metal (low melting point metal) component of the obtained DSC chart, the amount of the remaining low melting point metal component is quantified to obtain the residual low melting point metal content (volume%). It was.
  • the flow-out failure rate of the obtained bonded structure was examined by the following method. First, the bonded structure was sealed with an epoxy resin, left in an environment with a relative humidity of 85%, and heated under reflow conditions with a peak temperature of 260 ° C. Then, the occurrence rate of the flow-out failure was examined with the bonding material remelted and flowing out as a failure. And the outflow defect occurrence rate was calculated
  • the case where the flow-out defect rate of the bonding material was 0% was evaluated as ⁇ (excellent), the case where it was larger than 0% and 50% or less was evaluated as ⁇ (good), and the case where it was larger than 50% was evaluated as ⁇ (impossible). Tables 1 and 2 show the outflow defect occurrence rate and the evaluation results together.
  • the bonding strength at 260 ° C. in the case of the comparative samples of sample numbers 26 and 27, the bonding strength was insufficient at 2 Nmm ⁇ 2 or less, whereas the present inventions of sample numbers 1 to 25 were used. It was confirmed that the sample according to the example had a strength of 20 Nmm ⁇ 2 or more and had practical strength.
  • the residual low melting point metal content in the case of the comparative samples of Sample Nos. 26 and 27, the residual low melting point metal content was larger than 50% by volume, whereas Sample No. 1 In all of the samples according to Examples 25 to 25 of the present invention, it was confirmed that the residual low melting point metal content was 50% by volume or less. Further, compared to the samples of Sample Nos. 24 and 25 using Cu—Al alloy or Cu—Cr alloy as the second metal constituting the insert material, Cu—Ni, Cu—Mn, Cu—Mn—Ni, Cu— It was confirmed that the samples Nos. 1 to 23 using the Mn—P alloy had a lower residual low melting point metal content.
  • the samples Nos. 1 to 4 and 6 to 9 using the Cu—Ni alloy or Cu—Mn alloy having the Ni amount or the Mn amount of 5 to 20% by weight have the Ni amount or the Mn amount of 30% by weight. %, The residual low melting point metal content was confirmed to be lower than that of the samples of Sample Nos. 5 and 10.
  • the residual low melting point metal is contained.
  • the rate was 0% by volume, which was confirmed to be particularly preferable.
  • the flow-out defect rate of the bonding material in the case of the samples of the comparative examples of sample numbers 26 and 27, the flow-out defect rate was 50% or more, whereas the examples of the present invention of sample numbers 1 to 25 were used. In all the samples, the flow-out defect rate was 50% or less.
  • the first metal low melting point metal
  • the second metal is an alloy having an amount of Ni or Mn of 5 to 20% by weight (sample number 1 to 4, 6 to 9, 11 to 17, 19 to 23)
  • the samples Nos. 1 to 25 having the requirements of the present invention have practical heat resistance regardless of the type of the first metal (low melting point metal).
  • the amount of Ni or Mn in the second metal is 30% by weight
  • other samples samples 1 to 4, 6 to 9, 11 to 25
  • the bonding strength at 260 ° C. tends to decrease slightly.
  • the first metal powder such as Sn and the second metal powder (Cu—Mn alloy) having a melting point higher than that of the first metal powder. Or a Cu—Ni alloy) and a solder paste containing a flux component, and a high-density bonding compared to bonding the first and second objects to be bonded that do not include the first metal such as Sn. Parts are obtained.
  • the first bonding target is an external electrode of a chip-type electronic component (multilayer ceramic capacitor), and the second bonding target is a mounting electrode for a glass epoxy substrate.
  • the types of the first and second joining objects are not limited to this.
  • the first and / or second object to be joined may be an external electrode of an electronic component having another configuration or an electrode formed on another substrate.
  • the present invention can also be applied to the case where “Cu wire plated with Sn or Sn alloy” is bonded to an electrode on a substrate or an external electrode of an electronic component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 空隙がなく緻密で、かつ、耐熱性の高い、信頼性に優れた接合部を得ることが可能な接合方法、および接合部の信頼性の高い接合構造体を提供する。 第1の接合対象物3と第2の接合対象物13とを、インサート材Cを用いて接合するにあたって、第1の接合対象物3および/または第2の接合対象物13が、SnまたはSnを含む合金から構成される第1金属を有し、第1の接合対象物と第2の接合対象物との間に、Ni、Mn、Al、およびCrから選ばれる少なくとも1種と、Cuとを含む合金である第2金属を主成分とするインサート材Dを配置して熱処理を行い、第1の接合対象物および/または第2の接合対象物が有する低融点金属と、インサート材に含まれる上記合金との金属間化合物を生成させることにより、第1の接合対象物と第2の接合対象物を接合する。

Description

接合方法、接合構造体およびその製造方法
 本発明は、一方の接合対象物(第1の接合対象物)と他方の接合対象物(第2の接合対象物)とを接合する接合方法およびそれを用いて形成される接合構造体、詳しくは、例えば、第1の接合対象物であるチップ型電子部品の外部電極を、第2の接合対象物である基板上の実装用電極に接合する際などに用いられる接合方法、それを用いて形成される接合構造体およびその製造方法に関する。
 表面実装型の電子部品を、基板などに実装する際の実装方法としては、電子部品の外部電極を基板上の実装用電極(ランド電極)などにはんだ付けすることにより実装する方法が広く用いられている。
 このようなはんだ付けによる実装に用いられるソルダペーストとして、例えば、(a)Cu、Al、Au、Agなどの高融点金属またはそれらを含む高融点合金からなる第2金属(または合金)ボールと、(b)SnまたはInからなる第1金属ボールの混合体を含むはんだペーストが提案されている(特許文献1参照)。
 また、この特許文献1には、該はんだペーストを用いた接合方法や、電子機器の製造方法が開示されている。
 ところで、この特許文献1のはんだペーストを用いてはんだ付けを行った場合、図6(a)に模式的に示すように、低融点金属(例えばSn)ボール51と、高融点金属(例えばCu)ボール52と、フラックス53とを含むはんだペーストが、加熱されて反応し、はんだ付け後に、図6(b)に示すように、複数個の高融点金属ボール52が、低融点金属ボールに由来する低融点金属と、高融点金属ボールに由来する高融点金属との間に形成される金属間化合物54を介して連結され、この連結体により接合対象物が接続・連結される(はんだ付けされる)ことになる。
 しかしながら、この特許文献1のはんだペーストの場合、はんだ付け工程ではんだペーストを加熱することにより、高融点金属(例えばCu)と低融点金属(例えばSn)との金属間化合物を生成させるようにしているが、Cu(高融点金属)とSn(低融点金属)との組み合わせでは、その拡散速度が遅いため、低融点金属であるSnが残留する。Snが残留したはんだペーストの場合、高温下での接合強度が大幅に低下して、接合すべき製品の種類によっては使用することができなくなる場合がある。また、はんだ付けの工程で残留したSnは、その後の別のはんだ付け工程で溶融して流れ出すおそれがあり、温度階層接続に用いられる高温はんだとしては信頼性が低いという問題点がある。
 すなわち、例えば半導体装置の製造工程において、はんだ付けを行う工程を経て半導体装置を製造した後、その半導体装置を、リフローはんだ付けの方法で基板に実装しようとした場合、半導体装置の製造工程におけるはんだ付けの工程で残留したSnが、リフローはんだ付けの工程で溶融して流れ出してしまうおそれがある。
 また、Snが残留しないように、低融点金属を完全に金属間化合物にするためには、はんだ付け工程において、高温かつ長時間の加熱が必要となるが、生産性との兼ね合いもあり、実用上不可能である。
 このような問題点を解決するために、第1金属粉末と、第1金属粉末よりも融点の高い第2金属粉末とからなる金属成分と、フラックス成分とを含むソルダペーストであって、第1金属をSnまたはSnを含む合金とし、第2金属(Cu-MnあるいはCu-Ni)を、上記第1金属と、310℃以上の融点を示す金属間化合物を生成し、かつ、第2金属粉末の周囲に最初に生成する金属間化合物の格子定数と第2金属成分の格子定数との差である格子定数差が50%以上である金属または合金としたソルダペーストが提案されている(特許文献2参照)。
 なお、この特許文献2では、第2金属として、Cu-MnあるいはCu-Niなどが例示されている。
 また、特許文献2には、上記ソルダペーストを用いた接合方法や接合構造、さらには電子機器の製造方法が提案されている。
 そして、このソルダペーストを用いた接合方法によれば、Snの残留量を大幅に減らして、リフロー時のはんだの流れ出しがなく、高温での接合強度や接合信頼性に優れた接合を行うことができるとされている。
 しかしながら、特許文献2のソルダペーストを用いた接合方法の場合、Cu-Mn、Cu-Niなどの第2金属と、SnあるいはSn合金などの第1金属の拡散反応が急速に生じるため、Snが液状を呈する時間が短く、速やかに溶融温度の高い金属間化合物が形成されてしまうため、場合によっては、接合部内に空隙が生じる可能性がある。そのため、さらに接合信頼性の高い接合を行うことが可能な接合方法が期待されている。
特開2002-254194号公報 国際公開第2011/027659号パンフレット
 本発明は、上記課題を解決するものであり、空隙がなく緻密で、耐熱性に優れた信頼性の高い接合部を得ることが可能な接合方法、それを用いて形成される、接合信頼性の高い接合構造体およびその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の接合方法は、
 第1の接合対象物と第2の接合対象物とを、インサート材を用いて接合する方法であって、
 前記第1の接合対象物および/または前記第2の接合対象物は、下記インサート材を構成する合金よりも融点の低いSnまたはSnを含む合金から構成される第1金属を有し、
 前記インサート材は、Ni、Mn、Al、およびCrから選ばれる少なくとも1種と、Cuとを含む合金である第2金属を主成分とし、
 前記第1の接合対象物と前記第2の接合対象物との間に、前記インサート材を配置した状態で熱処理を行い、前記第1の接合対象物および/または前記第2の接合対象物が有する前記第1金属と、前記インサート材を構成する前記第2金属との金属間化合物を生成させることにより、前記第1の接合対象物と前記第2の接合対象物を接合すること
 を特徴としている。
 なお、第1および第2の接合対象物としては、例えば、チップ型電子部品の外部電極と、チップ型電子部品が搭載される基板上の実装用電極である場合などが例示されるが、本願発明においては、一方の接合対象物が、例えば、「SnまたはSn合金がめっきされたCu線」である場合などを含むものである。
 また、本発明において、SnまたはSnを含む合金から構成される第1金属は、電極の表面に形成されたSnまたはSnを含む合金からなるめっき層として与えられる場合などが例示される。その場合、第1金属(SnまたはSnを含む合金)からなるめっき層は、第1および/または第2の接合対象物の最表面にあることが望ましいが、その表面にさらに他の層(例えば、貴金属層など)を形成することも可能である。
 また、上記インサート材は、上記合金(第2金属)を主たる成分とするものであるが、その表面にSnめっき層や、Auめっき層などの酸化防止膜が形成されていてもよい。
 本発明においては、前記第1金属(Snを含む合金)が、Snを70重量%以上含有する合金であることが好ましい。
 第1金属が、Snを70重量%以上含有する合金である場合、空隙がなく、かつ、耐熱性の高い、信頼性に優れた接合部を得ることができるという本発明の効果をより確実に得ることが可能になる。
 また、前記第1金属(Snを含む合金)が、Snを85重量%以上含有する合金であることが好ましい。
 第1金属が、Snを85重量%以上含有する合金である場合、さらに耐熱性の高い接合部を、より確実に得ることができる。
 また、本発明においては、前記インサート材を構成する第2金属が、Cu-Ni合金またはCu-Mn合金を主成分とするものであることが好ましい。
 インサート材を構成する第2金属が、Cu-Ni合金および/またはCu-Mn合金を主たる成分とするものである場合、特に耐熱性の高い接合部を得ることができる。
 また、前記Cu-Ni合金が、Niを5~30重量%の範囲で含有するものであり、前記Cu-Mn合金が、Mnを5~30重量%の割合で含有するものであることが好ましい。
 上記構成とすることにより、特に耐熱性の高い接合部をより確実に得ることができる。
 また、本発明の接合構造体は、上述の本発明の接合方法によって形成されたものであることを特徴としている。
 また、本発明の接合構造体の製造方法は、上記本発明の接合方法を用いることを特徴としている。
 本発明の接合方法は、第1の接合対象物と第2の接合対象物とを、インサート材を用いて接合するにあたって、第1の接合対象物および/または第2の接合対象物が、SnまたはSnを含む合金から構成される第1金属(低融点金属)を有し、インサート材が、Ni、Mn、Al、およびCrから選ばれる少なくとも1種と、Cuとを含む合金(第2金属)を主成分とし、第1の接合対象物と第2の接合対象物との間に、インサート材が位置する状態で熱処理を行い、第1の接合対象物および/または第2の接合対象物が有する第1金属(低融点金属)と、インサート材を構成する第2金属(上記Cu合金)との金属間化合物を生成させることにより、第1の接合対象物と第2の接合対象物を接合するようにしているので、空隙がなく、かつ、耐熱性に優れた、信頼性の高い接合部を得ることが可能になる。
 すなわち、第1および/または第2の接合対象物が、第1金属(SnまたはSn合金)を有し、インサート材が、Ni、Mn、Al、およびCrから選ばれる少なくとも1種と、Cuとを含む合金である第2金属を主成分としているので、熱処理の工程で、第2金属(上記Cu合金)と、上記第1金属(低融点金属)の急速拡散が生じ、接合部には、融点の高い金属間化合物が生成するとともに、第1金属のほとんどが金属間化合物になる。その結果、例えば、第1の接合対象物が電子部品の外部電極であり、第2の接合対象物が基板の実装用電極であるような場合において、電子部品が実装された後の段階で、複数回のリフローが実施された場合や、実装された電子部品(例えば、車載用電子部品)が、高温環境下で使用された場合にも、電子部品の脱落などを引き起こすことのない、高温での接合信頼性の高い接合部を得ることができる。
 なお、インサート材を用いて第1および第2の接合対象物を接合する場合、第1および第2の接合対象物間にインサート材を位置させた状態で熱処理を行う。このとき、温度が、第1金属(SnまたはSn合金などの低融点金属)の融点以上に達すると、第1および/または第2の接合対象物中の第1金属が溶融する。そして、第1金属と、インサート材中の第2金属(Cu合金)とが速やかに拡散して、金属間化合物を生成する。
 その後さらに加熱が続くと、低融点金属である第1金属と、第2金属とはさらに反応し、第1金属と、第2金属の組成比などが望ましい条件にある場合には、第1金属がすべて金属間化合物となり、第1金属は接合部に存在しなくなる。
 なお、本発明では、第1金属と第2金属との界面に生成する金属間化合物と、第2金属との間の格子定数差が大きい(第2金属と金属間化合物との格子定数差が50%以上)ため、溶融第1金属(SnまたはSn合金)中で金属間化合物が剥離、分散しながら反応を繰り返し、金属間化合物の生成が飛躍的に進行して短時間のうちに第1金属(SnまたはSn合金)の含有量を十分に低減させることが可能になる。
 その結果、耐熱強度の大きい接合を行うことが可能になる。
 なお、第2金属(Cu合金)を構成するAlおよびCrはいずれもCuより第1イオン化エネルギーが小さく、Cuにこれらの金属(AlおよびCr)が固溶しているため、Cuよりも、AlおよびCrが先に酸化されることになる。その結果、酸化されていないCuの、溶融した第1金属(SnまたはSn合金)への拡散が促進され、非常に短時間のうちに、第1金属との間で金属間化合物を生成する。したがって、その分だけ接合部における第1金属の含有量が低下し、接合部の融点が上昇して耐熱強度が向上する。
 また、本発明においては、第2金属(Cu合金)を含むインサート材を、板状などの表面積の小さい形態で供給することができるので、第1および/または第2の接合対象物に含まれる第1金属(SnまたはSn合金)との反応を、遅くすることができる。
 すなわち、インサート材を板状とした場合、例えば、インサート材を構成する第2金属を表面積の大きい粉末の形態として、ペースト状で供給するようにした場合に比べて、第2金属の表面積を十分に小さくすることが可能になり、第1金属との反応を遅くすることができる。その結果、第1金属(SnまたはSn合金)が液体で存在する時間を長くして、空隙がなく、緻密な接合部を形成することが可能になる。
 また、第1金属が液体である時間が長くなることから、液体状の第1金属の表面張力によってセルフアライメント性も向上する。
 また、本発明の接合構造体によれば、上述のように、第1および第2の接合対象物が、融点の高い金属間化合物を主たる成分とする接合部を介して確実に接合され、耐熱強度にも優れた接合構造体を提供することができる。
 なお、本発明の効果をより確実に得るためには、第1および第2の接合対象物が有する第1金属(SnまたはSn合金)の量と、インサート材に含まれる第2金属(Ni、Mn、Al、およびCrから選ばれる少なくとも1種と、Cuとを含む合金)の割合が所定の範囲にあることが好ましく、通常は、第1金属の量と第2金属の合計量に対する、第1金属の割合が、70体積%以下であることが望ましい。
本発明の接合方法を実施するのに供した、第1(または第2)の接合対象物であるチップ型電子部品を示す図である。 本発明の接合方法を実施するのに供した、第2(または第1)の接合対象物である、実装用電極を備えたガラスエポキシ基板を示す図である。 本発明の接合方法により第1の接合対象物と第2の接合対象物を接合する際の一工程を示す図である。 本発明の接合方法により第1の接合対象物と第2の接合対象物を接合してなる接合構造体を示す図である。 本発明の接合方法により第1の接合対象物と第2の接合対象物を接合してなる接合構造体の変形例を示す図である。 従来のはんだペーストを用いてはんだ付けを行う場合の、はんだの挙動を示す図であり、(a)は加熱前の状態を示す図、(b)ははんだ付け工程終了後の状態を示す図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。
 なお、この実施形態では、セラミック積層体の両端部に外部電極が配設されたチップ型電子部品(積層セラミックコンデンサ)の外部電極(第1の接合対象物)を、ガラスエポキシ基板上の実装用電極(第2の接合対象物)に、インサート材を介して接合する場合を例にとって説明する。
 [第1および第2の接合対象物の準備]
 まず、第1の接合対象物として、図1に示すように、内部電極4とセラミック層5とが交互に積層されたセラミック積層体10の両端部に形成された、Cu厚膜電極からなる外部電極本体1の表面に、表1および2の試料番号1~25に示すようなSnまたはSnを含む合金(インサート材を構成するCu合金よりも融点の低い第1金属)のめっき層2を形成してなる外部電極3を備えたチップ型電子部品Aを用意した。
 なお、図示していないが、Cu厚膜電極とSnまたはSnを含む合金のめっき層2との間には、Niめっきを形成した。
 また、めっき層2は、必ずしも外部電極本体1の全面を覆っていなくてもよく、熱処理工程で、下記のインサート材Cと反応して金属間化合物が形成されるような態様で外部電極本体1に付与されていればよい。
 また、第2の接合対象物として、図2に示すように、主面に形成されたCu電極膜11の表面に、表1および2の試料番号1~25に示すような、第1金属(SnまたはSnを含む合金)のめっき層12を形成してなる実装用電極13を備えた、ガラスエポキシ基板Bを用意した。なお、めっき層12は、図2に示すようなCu電極膜11の表面全体、すなわちCu電極膜11の上面および側面を覆うように形成されてもよく、Cu電極膜11の上面のみ、さらには上面の一部にのみ形成されていてもよい。
 この実施形態において、第1の接合対象物(チップ型電子部品の外部電極)および第2の接合対象物(ガラスエポキシ基板の実装用電極)のめっき層2および12用の第1金属(低融点金属)として、表1および2に示すように、Sn-3Ag-0.5Cu、Sn、Sn-3.5Ag、Sn-0.75Cu、Sn-15Bi、Sn-0.7Cu-0.05Ni、Sn-5Sb、Sn-2Ag-0.5Cu-2Bi、Sn-30Bi、Sn-3.5Ag-0.5Bi-8In、Sn-9Zn、Sn-8Zn-3Biを用いた。
 なお、上記第1金属の表記において、例えば、試料番号1の「Sn-3Ag-0.5Cu」は、低融点金属材料が、Agを3重量%、Cuを0.5重量%含有し、残部をSnとする合金(Sn合金)であることを示している。
 [インサート材の準備]
 さらに、インサート材として、表1および2に示すようなCu合金(第2金属)からなる板状のインサート材を用意した。
 なお、インサート材を構成する第2金属としては、表1および2に示すように、Cu-5Ni、Cu-10Ni、Cu-15Ni、Cu-20Ni、Cu-30Ni、Cu-5Mn、Cu-10Mn、Cu-15Mn、Cu-20Mn、Cu-30Mn、Cu-12Mn-4Ni、Cu-10Mn-1P、Cu-10Al、Cu-10Cr合金を用いた。
 インサート材を構成する第2金属としては、通常、Cu-Ni、Cu-Mn、Cu-Al、およびCu-Cr合金のいずれかが用いられるが、試料番号22のようにMnとNiを同時に含んでいてもよく、また、試料番号23のように、P(りん)などの第3成分を含んでいてもよい。
 また、比較のため、インサート材として、本発明の要件を備えていない表2の試料番号26および27のインサート材を用意した。
 なお、試料番号26のインサート材はCuからなるインサート材であり、また、試料番号27のインサート材は、Cu-Zn合金からなるインサート材である。
 [第1の接合対象物と第2の接合対象物との接合]
 表1および2の各チップ型電子部品Aを、図3に示すように、外部電極(第1の接合対象物)3が、表1および2の各インサート材Cを介して、表1および2の各ガラスエポキシ基板B上の実装用電極(第2の接合対象物)13に対向するように載置し、250℃、30分の条件でリフローした。
 これにより、図4に示すように、チップ型電子部品Aの外部電極(第1の接合対象物)3と、ガラスエポキシ基板Bの実装用電極(第2の接合対象物)13とが、金属間化合物(接合部)M12を介して接合された接合構造体Dを得た。
 なお、図5は、上述のようにして得られる接合構造体Dの変形例を示している。本発明の接合構造体においては、図5に示すように、インサート材Cの一部が残存していてもよく、また、外部電極3を構成する、SnまたはSnを含む合金(低融点金属)のめっき層2のうち、インサート材Cに接していない部分のめっき層2が、未反応のまま残っていてもよい。
 また、同様にして、本発明の要件を備えていないインサート材(試料番号26のCuからなるインサート材と、試料番号27のCu-Zn合金からなるインサート材)を用いて、試料番号1~10で用いたものと同じチップ型電子部品の外部電極を、ガラスエポキシ基板の実装用電極に接合した。
 [特性の評価]
 上述のようにして得た接合構造体を試料として、以下の方法で特性を評価した。
 ≪接合強度≫
 得られた接合構造体のシアー強度を、ボンディングテスタを用いて測定し、接合強度を評価した。
 シアー強度の測定は、横押し速度:0.1mm・s-1、室温および260℃の条件下で行った。
 そして、シアー強度が20Nmm-2以上のものを◎(優)、2Nmm-2以上20Nmm-2未満のものを○(良)、2Nmm-2未満のものを×(不可)と評価した。
 表1および2に、各試料について調べた、室温および260℃での、接合強度の値と評価結果を併せて示す。
 ≪残留成分評価≫
 リフロー後に凝固した、接合部の金属間化合物(反応生成物)を約7mg切り取り、測定温度30℃~300℃、昇温速度5℃/min、N2雰囲気、リファレンスAl23の条件で示差走査熱量測定(DSC測定)を行った。得られたDSCチャートの第1金属(低融点金属)成分の溶融温度における溶融吸熱ピークの吸熱量から、残留した低融点金属成分量を定量し、残留低融点金属含有率(体積%)を求めた。そして、残留低融点金属含有率が0体積%の場合を◎(優)、0体積%より大きく50体積%以下の場合を○(良)、50体積%より大きい場合を×(不可)と評価した。
 表1および2に、残留低融点金属含有率と評価結果を併せて示す。
 ≪流れ出し不良率≫
 得られた接合構造体の流れ出し不良率を以下の方法で調べた。
 まず、接合構造体をエポキシ樹脂で封止して相対湿度85%の環境に放置し、ピーク温度260℃のリフロー条件で加熱した。そして、接合材料が再溶融して流れ出したものを不良として、流れ出し不良の発生割合を調べた。そして、その結果から流れ出し不良発生率を求めた。
 接合材料の流れ出し不良率が0%の場合を◎(優)、0%より大きく50%以下の場合を○(良)、50%より大きい場合を×(不可)と評価した。
 表1および2に、流れ出し不良発生率と評価結果を併せて示す。
 ≪緻密性≫
 得られた接合構造体の断面を金属顕微鏡で観察し、接合部に存在する空隙の有無を確認した。一辺が50μm以上の空隙が存在しない場合を◎、存在する場合を×と評価した。
 表1および2に、緻密性評価結果を併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2に示すように、室温における接合強度については、試料番号1~25の本発明の要件を備えた試料(実施例)と、試料番号26,27の本発明の要件を備えていない比較例の試料ともに、20Nmm-2以上の接合強度を示し、実用強度を備えていることが確認された。
 一方、260℃における接合強度についてみると、試料番号26,27の比較例の試料の場合、2Nmm-2以下と接合強度が不十分であったのに対して、試料番号1~25の本発明の実施例にかかる試料では20Nmm-2以上を保持しており、実用強度を備えていることが確認された。
 また、残留低融点金属含有率(残留成分評価)については、試料番号26,27の比較例の試料の場合、残留低融点金属含有率が50体積%より大きかったのに対して、試料番号1~25の本発明の実施例にかかる試料の場合、いずれも残留低融点金属含有率が50体積%以下であることが確認された。
 また、インサート材を構成する第2金属としてCu-Al合金またはCu-Cr合金を用いた試料番号24,25の試料に比べて、Cu-Ni、Cu-Mn、Cu-Mn-Ni、Cu-Mn-P合金を用いた試料番号1~23の試料の方が残留低融点金属含有率が低いことが確認された。
 また、Ni量またはMn量が5~20重量%であるCu-Ni合金またはCu-Mn合金を用いた試料番号1~4、6~9の試料の方が、Ni量またはMn量が30重量%である試料番号5,10の試料に比べて残留低融点金属含有率が低いことが確認された。
 さらに、第1金属(低融点金属)としてSnまたはSnを85重量%以上含む合金を用いた場合(試料番号1~4,6~9,11~17,19~23)、残留低融点金属含有率が0体積%になり、特に好ましいことが確認された。
 また、接合材料の流れ出し不良率については、試料番号26,27の比較例の試料の場合、流れ出し不良率が50%以上であったのに対して、試料番号1~25の本発明の実施例にかかる試料では、流れ出し不良率がいずれも50%以下であった。
 特に第1金属(低融点金属)としてSnまたはSnを85重量%以上含む合金を用い、第2金属としてNi量またはMn量が5~20重量%である合金を用いた場合(試料番号1~4,6~9,11~17,19~23)、流れ出し不良率が0%と高い耐熱性を有していることが確認された。
 また、上述のように、本発明の要件を備えた試料番号1~25の試料においては、第1金属(低融点金属)の種類に関係なくいずれも実用性のある耐熱性を備えていることが確認されたが、第2金属のNi量またはMn量が30重量%である試料番号5,10の試料の場合、他の試料(1~4,6~9,11~25の試料)に比べて、260℃における接合強度が少し低下する傾向があることがわかった。
 なお、本発明の接合方法によれば、前述の特許文献2の接合方法のように、Snなどの第1金属粉末と、第1金属粉末よりも融点の高い第2金属粉末(Cu-Mn合金またはCu-Ni合金)と、フラックス成分とを含むソルダペーストを用いて、Snなどの第1金属を含まない第1および第2の接合対象物を接合する場合に比べて、緻密性の高い接合部が得られることが確認されている。
 なお、上記実施形態では、第1の接合対象物が、チップ型電子部品(積層セラミックコンデンサ)の外部電極であり、第2の接合対象物が、ガラスエポキシ基板の実装用電極である場合を例にとって説明したが、第1および第2の接合対象物の種類はこれに制約されるものではない。
 例えば、第1および/または第2の接合対象物が、他の構成を有する電子部品の外部電極や、他の基板に形成された電極であってもよい。
 また、本発明は、「SnまたはSn合金がめっきされたCu線」を基板上の電極や電子部品の外部電極に接合するような場合にも適用することが可能である。
 本発明は、さらにその他の点においても、上記実施形態に限定されるものではなく、第1金属および第2金属の組成などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
 1     外部電極本体
 2     外部電極を構成する第1金属(低融点金属)のめっき層
 3     外部電極(第1の接合対象物)
 10    セラミック積層体
 11    Cu電極膜
 12    実装用電極を構成する第1金属(低融点金属)のめっき層
 13    実装用電極(第2の接合対象物)
 A     チップ型電子部品
 B     ガラスエポキシ基板
 C     インサート材
 D     接合構造体
 M12   金属間化合物

Claims (7)

  1.  第1の接合対象物と第2の接合対象物とを、インサート材を用いて接合する方法であって、
     前記第1の接合対象物および/または前記第2の接合対象物は、下記インサート材を構成する合金よりも融点の低いSnまたはSnを含む合金から構成される第1金属を有し、
     前記インサート材は、Ni、Mn、Al、およびCrから選ばれる少なくとも1種と、Cuとを含む合金である第2金属を主成分とし、
     前記第1の接合対象物と前記第2の接合対象物との間に、前記インサート材を配置した状態で熱処理を行い、前記第1の接合対象物および/または前記第2の接合対象物が有する前記第1金属と、前記インサート材を構成する前記第2金属との金属間化合物を生成させることにより、前記第1の接合対象物と前記第2の接合対象物を接合すること
     を特徴とする接合方法。
  2.  前記第1金属が、Snを70重量%以上含有する合金であることを特徴とする請求項1記載の接合方法。
  3.  前記第1金属が、Snを85重量%以上含有する合金であることを特徴とする請求項1記載の接合方法。
  4.  前記第2金属が、Cu-Ni合金またはCu-Mn合金を主成分とするものであることを特徴とする請求項1記載の接合方法。
  5.  前記Cu-Ni合金が、Niを5~30重量%の範囲で含有するものであり、前記Cu-Mn合金が、Mnを5~30重量%の割合で含有するものであることを特徴とする請求項4記載の接合方法。
  6.  請求項1~5のいずれかに記載の接合方法によって形成されたものであることを特徴とする接合構造体。
  7.  請求項1~5のいずれかに記載の接合方法を用いることを特徴とする接合構造体の製造方法。
PCT/JP2013/053028 2012-03-05 2013-02-08 接合方法、接合構造体およびその製造方法 WO2013132954A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147017330A KR20140098815A (ko) 2012-03-05 2013-02-08 접합 방법, 접합 구조체 및 그 제조 방법
CN201380012362.6A CN104144764B (zh) 2012-03-05 2013-02-08 接合方法、接合结构体及其制造方法
JP2014503721A JP5943066B2 (ja) 2012-03-05 2013-02-08 接合方法および接合構造体の製造方法
US14/469,842 US9333593B2 (en) 2012-03-05 2014-08-27 Joining method, joint structure and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012048021 2012-03-05
JP2012-048021 2012-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/469,842 Continuation US9333593B2 (en) 2012-03-05 2014-08-27 Joining method, joint structure and method for producing the same

Publications (1)

Publication Number Publication Date
WO2013132954A1 true WO2013132954A1 (ja) 2013-09-12

Family

ID=49116438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053028 WO2013132954A1 (ja) 2012-03-05 2013-02-08 接合方法、接合構造体およびその製造方法

Country Status (6)

Country Link
US (1) US9333593B2 (ja)
JP (1) JP5943066B2 (ja)
KR (1) KR20140098815A (ja)
CN (1) CN104144764B (ja)
TW (1) TWI505899B (ja)
WO (1) WO2013132954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150279805A1 (en) * 2014-03-28 2015-10-01 Omkar G. Karhade Novel method and materials for warpage thermal and interconnect solutions
JP2016069231A (ja) * 2014-09-30 2016-05-09 株式会社村田製作所 ステンドグラスの製造方法、ステンドグラス接合用の金属ペースト
WO2016114028A1 (ja) * 2015-01-16 2016-07-21 株式会社村田製作所 導電性材料、それを用いた接続方法、および接続構造

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132942A1 (ja) * 2012-03-05 2013-09-12 株式会社村田製作所 接合方法、接合構造体およびその製造方法
JP6061276B2 (ja) * 2014-08-29 2017-01-18 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 金属層間のはんだ接合の形成方法
JP6311838B2 (ja) * 2015-05-29 2018-04-18 株式会社村田製作所 接合用部材および接合方法
CN105149769B (zh) * 2015-07-29 2018-05-01 武汉理工大学 叠层复合中间层的设计引入使镁合金与铝合金连接的方法
JP6332566B2 (ja) * 2015-09-15 2018-05-30 株式会社村田製作所 接合用部材、接合用部材の製造方法、および、接合方法
WO2017056842A1 (ja) 2015-09-28 2017-04-06 株式会社村田製作所 ヒートパイプ、放熱部品、ヒートパイプの製造方法
JP6369640B2 (ja) * 2015-11-05 2018-08-08 株式会社村田製作所 接合用部材、および、接合用部材の製造方法
KR102408016B1 (ko) * 2016-12-01 2022-06-13 가부시키가이샤 무라타 세이사쿠쇼 칩형 전자 부품
KR102524340B1 (ko) * 2018-02-22 2023-04-25 삼성디스플레이 주식회사 플렉서블 표시 장치 및 이의 제조 방법
US11581239B2 (en) * 2019-01-18 2023-02-14 Indium Corporation Lead-free solder paste as thermal interface material
CN113728406B (zh) * 2019-04-26 2023-05-23 株式会社村田制作所 电子部件和安装结构体
JP7451103B2 (ja) * 2019-07-31 2024-03-18 株式会社村田製作所 チップ型電子部品、電子部品の実装構造体および電子部品連

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332731A (ja) * 2002-05-09 2003-11-21 Murata Mfg Co Ltd Pbフリー半田付け物品
JP2004330247A (ja) * 2003-05-08 2004-11-25 Murata Mfg Co Ltd ニッケル粉末、及び導電性ペースト、並びに積層セラミック電子部品
JP2005288458A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 接合体、半導体装置、接合方法、及び半導体装置の製造方法
JP2007260695A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 接合材料、接合方法及び接合体
JP2008200728A (ja) * 2007-02-21 2008-09-04 Mitsubishi Materials Corp はんだ接合材及びその製造方法並びにこれを用いたパワーモジュール基板
JP2008238233A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 非鉛系の合金接合材、接合方法および接合体
JP2008302396A (ja) * 2007-06-08 2008-12-18 Murata Mfg Co Ltd ソルダペースト、および接合物品
JP2010179336A (ja) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc 接合体、半導体モジュール、及び接合体の製造方法
WO2011027659A1 (ja) * 2009-09-03 2011-03-10 株式会社村田製作所 ソルダペースト、それを用いた接合方法、および接合構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI248384B (en) 2000-06-12 2006-02-01 Hitachi Ltd Electronic device
JP4416373B2 (ja) * 2002-03-08 2010-02-17 株式会社日立製作所 電子機器
JP4271684B2 (ja) * 2003-10-24 2009-06-03 日鉱金属株式会社 ニッケル合金スパッタリングターゲット及びニッケル合金薄膜
JP4817418B2 (ja) * 2005-01-31 2011-11-16 オンセミコンダクター・トレーディング・リミテッド 回路装置の製造方法
JP4344707B2 (ja) * 2005-02-24 2009-10-14 株式会社ルネサステクノロジ 半導体装置およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332731A (ja) * 2002-05-09 2003-11-21 Murata Mfg Co Ltd Pbフリー半田付け物品
JP2004330247A (ja) * 2003-05-08 2004-11-25 Murata Mfg Co Ltd ニッケル粉末、及び導電性ペースト、並びに積層セラミック電子部品
JP2005288458A (ja) * 2004-03-31 2005-10-20 Toshiba Corp 接合体、半導体装置、接合方法、及び半導体装置の製造方法
JP2007260695A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 接合材料、接合方法及び接合体
JP2008200728A (ja) * 2007-02-21 2008-09-04 Mitsubishi Materials Corp はんだ接合材及びその製造方法並びにこれを用いたパワーモジュール基板
JP2008238233A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 非鉛系の合金接合材、接合方法および接合体
JP2008302396A (ja) * 2007-06-08 2008-12-18 Murata Mfg Co Ltd ソルダペースト、および接合物品
JP2010179336A (ja) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc 接合体、半導体モジュール、及び接合体の製造方法
WO2011027659A1 (ja) * 2009-09-03 2011-03-10 株式会社村田製作所 ソルダペースト、それを用いた接合方法、および接合構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150279805A1 (en) * 2014-03-28 2015-10-01 Omkar G. Karhade Novel method and materials for warpage thermal and interconnect solutions
US20170200621A1 (en) * 2014-03-28 2017-07-13 Intel Corporation Novel method and materials for warpage thermal and interconnect solutions
US10672626B2 (en) * 2014-03-28 2020-06-02 Intel Corporation Method and materials for warpage thermal and interconnect solutions
JP2016069231A (ja) * 2014-09-30 2016-05-09 株式会社村田製作所 ステンドグラスの製造方法、ステンドグラス接合用の金属ペースト
WO2016114028A1 (ja) * 2015-01-16 2016-07-21 株式会社村田製作所 導電性材料、それを用いた接続方法、および接続構造

Also Published As

Publication number Publication date
TWI505899B (zh) 2015-11-01
JPWO2013132954A1 (ja) 2015-07-30
US9333593B2 (en) 2016-05-10
CN104144764B (zh) 2016-12-14
TW201343310A (zh) 2013-11-01
CN104144764A (zh) 2014-11-12
US20140363221A1 (en) 2014-12-11
KR20140098815A (ko) 2014-08-08
JP5943066B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5943066B2 (ja) 接合方法および接合構造体の製造方法
KR101528515B1 (ko) 접합 방법, 접합 구조, 전자 장치, 전자 장치의 제조 방법 및 전자 부품
JP5943065B2 (ja) 接合方法、電子装置の製造方法、および電子部品
WO2013132942A1 (ja) 接合方法、接合構造体およびその製造方法
JP4753090B2 (ja) はんだペースト、及び電子装置
JP2014223678A5 (ja)
EP2799181B1 (en) Sn-Cu-Al-Ti BASED LEAD-FREE SOLDER ALLOY
JP6443568B2 (ja) 接合材、それを用いた接合方法及び接合構造
JP4722751B2 (ja) 粉末はんだ材料および接合材料
JP2018511482A (ja) 混成合金ソルダペースト
JP4959539B2 (ja) 積層はんだ材およびそれを用いたはんだ付方法ならびにはんだ接合部
JP5758242B2 (ja) 鉛フリー接合材料
JP6688417B2 (ja) はんだ接合方法
JP6543890B2 (ja) 高温はんだ合金
JP2017216308A (ja) はんだ接合体、はんだ接合体の製造方法
JP2008091801A (ja) 半導体装置およびその製造方法
WO2016157971A1 (ja) はんだペースト
JP2017148862A (ja) はんだペースト
WO2015083409A1 (ja) ビアホール充填用ペースト材料および多層基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147017330

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014503721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758281

Country of ref document: EP

Kind code of ref document: A1