WO2013132889A1 - プラズマcvd法により形成された化学蒸着膜 - Google Patents

プラズマcvd法により形成された化学蒸着膜 Download PDF

Info

Publication number
WO2013132889A1
WO2013132889A1 PCT/JP2013/050606 JP2013050606W WO2013132889A1 WO 2013132889 A1 WO2013132889 A1 WO 2013132889A1 JP 2013050606 W JP2013050606 W JP 2013050606W WO 2013132889 A1 WO2013132889 A1 WO 2013132889A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical vapor
vapor deposition
film
deposition film
layer
Prior art date
Application number
PCT/JP2013/050606
Other languages
English (en)
French (fr)
Inventor
高佳 藤元
雅充 山下
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to CN201380011749.XA priority Critical patent/CN104136657B/zh
Priority to US14/382,823 priority patent/US9281420B2/en
Priority to KR1020147024084A priority patent/KR102098226B1/ko
Publication of WO2013132889A1 publication Critical patent/WO2013132889A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a chemical vapor deposition film formed by a plasma CVD method, a laminate including the chemical vapor deposition film, a thin film solar cell, and a method for manufacturing the laminate.
  • a gas barrier film exhibiting high barrier properties is generally formed by a plasma CVD method with an organic layer and an inorganic layer, or a laminated structure of inorganic layers.
  • Patent Document 2 as a method for forming a barrier film having high adhesion and barrier properties on the surface of a substrate such as a plastic container by plasma CVD, silicon (Si) and carbon (C) are used as the first layer. It has been proposed to form an adhesion enhancing layer made of oxygen (O) and a barrier layer made of silicon oxide as the second layer.
  • the plastic film exhibits good adhesion to a single plastic substrate
  • the plastic film is formed on the surface on which a barrier film is formed, such as an organic EL element or a solar battery cell that is weak against moisture and oxygen. (Organic material) and metal (inorganic material) mixed, the adhesion to the exposed substrate is insufficient, and the film consisting only of silicon (Si), carbon (C) and oxygen (O),
  • a barrier film is easily broken because of its high density and lack of flexibility.
  • a first thin film is formed on an electronic device such as a plastic film or an organic EL by a plasma CVD method using a gas containing a hydrogen element and a gas containing a silicon element, and has a barrier function. It is described that a silicon-based thin film having high adhesion and barrier performance can be formed by forming a thin film on the first thin film. Specifically, a film is formed using hexamethyldisilazane (hereinafter sometimes referred to as HMDS), which is an organosilicon compound containing no oxygen atom, and a mixed gas of H 2 and Ar.
  • HMDS hexamethyldisilazane
  • this film has a problem that the adhesion to the transparent conductive film and the metal film present in the organic EL element, the solar cell and the like is not sufficient, and the barrier film is easily broken.
  • the substrate is irradiated with plasma before forming the barrier film to activate the surface.
  • the adhesion between the barrier film and the substrate by modifying.
  • the base material is significantly deteriorated (oxidation deterioration, etc.) and cannot be used.
  • the present invention has been made in view of such problems of the prior art, and has excellent adhesion to not only organic substances but also inorganic substances, and adhesion to both organic and inorganic substances.
  • An object of the present invention is to provide a gas barrier film having a high barrier property and a manufacturing method even for a substrate made of an organic material, a substrate made of an inorganic material, and a substrate made of a mixture of an organic material and an inorganic material.
  • the present inventors have determined that the first three layers are formed from the substrate side to the first thin film (adhesion layer), the second thin film (flexible layer), and the third thin film (barrier layer).
  • the gas barrier film with high adhesion and barrier properties can be formed by using different materials depending on the presence or absence of oxygen atoms in the organosilicon compound molecules when forming the structure and structure and forming each layer.
  • organic EL elements and solar cells that are prone to deterioration with respect to moisture and oxygen, especially organic materials (organic power generation layers, light emitting layers, plastic films (PET and PEN), etc.) and inorganic materials (surfaces) It has been found that a barrier film with good adhesion can be formed on a substrate in which a transparent conductive film, a metal electrode, an inorganic power generation layer, etc.) are mixed and exposed without damaging the substrate. It was completed a light.
  • the present invention provides a chemical vapor deposition film formed by a plasma CVD method that contains silicon atoms, oxygen atoms, carbon atoms, and hydrogen atoms, and the concentration of the oxygen atoms is 10 to 35 element%.
  • the present invention also provides a chemical vapor deposition film as described above; a second chemical vapor deposition film comprising silicon atoms and oxygen atoms of 0 element% or more and less than 10 element% and formed by plasma CVD; silicon atoms and 35 elements And a third chemical vapor deposition film formed by a plasma CVD method, and comprising a second chemical vapor deposition film and a third chemical vapor deposition on one surface of the chemical vapor deposition film.
  • the second chemical vapor deposition film preferably contains carbon atoms.
  • a substrate containing an inorganic substance is further provided, and the chemical vapor deposition film is formed on the substrate such that a surface of the chemical vapor deposition film on which the second chemical vapor deposition film and the third chemical vapor deposition film are not laminated is in contact with the inorganic substance. It is preferable that they are laminated.
  • the inorganic material includes Ag, Al, Mo, or any transparent electrode film selected from the group consisting of ZnO, ITO, BZO, AZO, and GZO.
  • this invention provides the organic electroluminescent element or thin film photovoltaic cell containing the said laminated body.
  • the present invention provides a first step of forming the chemical vapor deposition film on the base material by a plasma CVD method using a source gas composed of an organosilicon compound containing oxygen atoms, A second step of forming the second chemical vapor deposition film by a plasma CVD method using a source gas comprising an organosilicon compound and a compound containing H2 or a hydrogen atom; and the organic silicon compound on the chemical vapor deposition film. And a third step of forming the third chemical vapor deposition film by a plasma CVD method using a source gas comprising a compound containing oxygen and a compound containing O2 or oxygen atoms.
  • the said organosilicon compound containing an oxygen atom is hexamethyldisiloxane.
  • the present invention has excellent adhesion to not only organic matter but also inorganic matter, and has high adhesion to both organic matter and inorganic matter, a substrate made of organic matter, a substrate made of inorganic matter, Furthermore, a film structure and manufacturing method of a gas barrier film having a high barrier property even in a base material in which an organic substance and an inorganic substance are mixed are provided.
  • organic EL elements and solar cells that are prone to deterioration with respect to moisture and oxygen, especially organic materials (organic power generation layers, light emitting layers, plastic films (PET and PEN), etc.) and inorganic materials (transparent conductive films, metals, etc.)
  • a barrier film with good adhesion can be formed without damaging the base material on a base material in which an electrode, an inorganic power generation layer, etc.) are mixed and exposed.
  • FIG. 10 is a schematic side sectional view of the film forming apparatus 30.
  • FIG. It is the schematic which looked at the film formation apparatus 30 from the top.
  • FIG. It is a figure which shows the outline of a tape peeling test method.
  • FIG. shows typically the sample for barrier property evaluation in a calcium test.
  • the chemical vapor deposition film of the present invention is formed by a plasma CVD method and contains silicon atoms, oxygen atoms, carbon atoms and hydrogen atoms, and the concentration of oxygen atoms is 10 to 35 element%. By containing hydrogen atoms and further adjusting the oxygen atom concentration within the above range, excellent adhesion to both inorganic and organic substances in the substrate can be obtained when formed on the substrate. .
  • the concentration of oxygen atoms is preferably 10 to 25 element%, more preferably 10 to 20 element%, and still more preferably 10 to 15 element%.
  • the organic substance in the base material include polymer films such as PET films.
  • the inorganic material include Ag, Al, Mo, or transparent electrode films such as ZnO, ITO, BZO, AZO, and GZO.
  • the adhesiveness to the inorganic substance for example, in the case of Ag, it can be estimated that it is bonded and adhered in a state through an oxygen atom such as Ag—O—Si or Ag—O—O—Si—.
  • the reason why the adhesion deteriorates when the oxygen atom (O) concentration in the chemical vapor deposition film is 10 element% or less is considered to be that the adhesion decreases when the amount of O in the film decreases because the amount of bonding decreases.
  • the influence of an inorganic substance such as Ag having catalytic activity is considered, and it is considered that the oxygen atom concentration needs to be 10 element% or more.
  • the concentration of oxygen atoms is 35 element% or more, the film has too much oxygen and surface oxidation proceeds too much, damaging the film, resulting in performance degradation such as increased resistivity. The appearance also turns black.
  • the adhesion to organic matter for example, in the case of PET, it can be estimated that it is bonded and adhered via an OH group or COOH group present on the surface. OH groups and COOH groups are also present on the surface of an inorganic substance such as Ag.
  • an organic substance even if the amount is smaller than that of an inorganic substance such as Ag, the adhesion tends to be good. Such a difference is also considered to be because there is no catalytic activity in organic substances such as PET.
  • the concentration of oxygen atoms exceeds 35 element%, the film composition approaches SiO 2 , so that the film density increases and the film becomes inflexible, resulting in poor adhesion.
  • Such a film is considered to be because the compatibility with an organic substance such as PET having high expansion and contraction and high flexibility is deteriorated.
  • the oxygen atom is 10 to 35 element%
  • the silicon atom is 10 to 30 element%
  • the carbon atom is 10 to 30 element%
  • the hydrogen atom is 10 to 50 element, for example. %.
  • Nitrogen atoms may not be included. In the case of such a composition, the adhesiveness with respect to both an organic substance and an inorganic base material is excellent and preferable.
  • the thickness of the chemical vapor deposition film is, for example, 5 to 400 nm, preferably 5 to 200 nm.
  • the density of the chemical vapor deposition film is preferably 1.7 to 1.9 g / cm 3 , for example.
  • the concentration of oxygen atoms in the chemical vapor deposition film is determined by composition analysis (HFS) using Rutherford backscattering spectroscopy (RBS) and hydrogen forward scattering analysis. Can be determined.
  • FFS composition analysis
  • RBS Rutherford backscattering spectroscopy
  • HFS hydrogen forward scattering analysis
  • a sample is irradiated with fast ions (He + , H +, etc.), and the energy and yield of scattered ions are measured for a part of incident ions that have undergone elastic (Rutherford) scattering by nuclei in the sample. . Since the energy of the scattered ions varies depending on the mass and position (depth) of the target atom, the elemental composition of the sample in the depth direction can be obtained from the energy and yield of the scattered ions.
  • HFS by irradiating a sample with fast ions (He + ), hydrogen in the sample is scattered forward by elastic recoil, and the hydrogen depth is calculated from the energy and yield of the recoil hydrogen. Get the distribution.
  • the chemical vapor deposition film of the present invention can be formed by adjusting the concentration of oxygen atoms to 10 to 35 element% by adjusting the supply gas and plasma power (input power) in the plasma CVD method.
  • an organosilicon compound containing oxygen atoms is used as the source gas.
  • an organosilicon compound containing oxygen atoms is used.
  • Specific examples include HMDSO alone, HMDSO + Ar / H 2 , HMDSO + O 2 , HMDSO + HMDS, and HMDS + O 2 . Of these, HMDSO alone is preferable.
  • the laminate of the present invention includes the chemical vapor deposition film (hereinafter sometimes referred to as an adhesion layer), the second chemical vapor deposition film (hereinafter sometimes referred to as a flexible layer), and the third chemical vapor deposition.
  • a film hereinafter sometimes referred to as a barrier layer).
  • a second chemical vapor deposition film and a third chemical vapor deposition film are respectively formed on one surface of the chemical vapor deposition film by a plasma CVD method.
  • a flexible layer may be formed on the adhesive layer, a barrier layer may be further formed on the flexible layer, a barrier layer may be formed on the adhesive layer, and a flexible layer may be further formed on the barrier layer.
  • FIG. 1 schematically shows a laminate 10 according to an embodiment of the present invention, in which 2 is an adhesion layer, 4 is a flexible layer, and 6 is a barrier layer.
  • 2 is an adhesion layer
  • 4 is a flexible layer
  • 6 is a barrier layer.
  • Each layer contains silicon atoms.
  • the oxygen atom content is 10 to 35 element% in the adhesion layer as described above, 0 element% or more and less than 10 element% in the flexible layer, and more than 35 element% and less than 70 element% in the barrier layer.
  • the oxygen atom content can be measured by the above method.
  • the second chemical vapor deposition film may contain carbon atoms in addition to silicon atoms and oxygen atoms.
  • the composition of the second chemical vapor deposition film may be such that the oxygen atom is less than 10 element%, the silicon atom is, for example, 10 to 20 element%, and the carbon atom is, for example, 20 to 35 element%. Further, it may contain, for example, 30 to 55 element% of hydrogen atoms. Nitrogen atoms may contain, for example, 10 element% or less (about 0 to 10 element%).
  • the film thickness of the second chemical vapor deposition film is, for example, 5 to 1000 nm, preferably 5 to 500 nm.
  • the density of the second chemical vapor deposition layer is less than 1.7 g / cm 3 (e.g., less than 1.2 g / cm 3 or more 1.7 g / cm 3) is preferable.
  • oxygen atoms may be 60 to 70 element%, and silicon atoms may be 30 to 35 element%, for example. Further, it may contain a carbon atom. Further, it may contain, for example, 5 element% or less (about 0 to 5 element%) of hydrogen atoms. Nitrogen atoms may not be included.
  • the film thickness of the third chemical vapor deposition film is, for example, 5 to 1000 nm, preferably 5 to 500 nm.
  • the density of the third chemical vapor deposition film 1.9 g / cm 3 greater than (e.g. 1.9 g / cm 3 or less and less than 2.2 g / cm 3) is preferable.
  • Table 1 shows an example of the composition of each layer of the laminate of the present invention.
  • FIG. 2 schematically shows a laminate 20 according to another embodiment of the present invention.
  • Reference numeral 8 denotes an organic base material such as a plastic film
  • 9 denotes an inorganic base material such as Ag.
  • the adhesion layer 2, the flexible layer 4, and the barrier layer 6 are laminated in this order. Further, a plurality of flexible layers 4 and barrier layers 6 are alternately laminated on each of the n layers to form the sealing film 1.
  • n can be an integer from 1 to 10
  • the number of flexible layers / barrier layers is preferably 6/6, 7/7, 8/8, or the like.
  • Organic electroluminescent element or thin-film solar battery of the present invention includes the laminate. For this reason, it is excellent in adhesiveness and barrier property. Specifically, it is excellent in adhesiveness with a transparent conductive film or a metal film present in an organic EL element, a solar cell, etc., and the barrier film is hardly broken.
  • FIG. 3 schematically shows a cross section of a thin-film photovoltaic cell 50 according to an embodiment of the present invention.
  • 21 is a plastic substrate
  • 22 is an ITO electrode
  • 23 is a power generation layer (an organic power generation layer or an inorganic power generation layer).
  • 22 is an ITO electrode
  • 23 is a power generation layer (an organic power generation layer or an inorganic power generation layer).
  • 24 are Ag electrodes.
  • a sealing film 1 is laminated on the substrate containing organic and inorganic substances with an adhesion layer 2 interposed therebetween.
  • the manufacturing method of the laminated body of the present invention is a first method in which a chemical vapor deposition film is formed on a base material by a plasma CVD method using a source gas composed of an organosilicon compound containing oxygen atoms.
  • an organosilicon compound containing no oxygen atom it is preferable to use an organosilicon compound containing no oxygen atom. Further, hexamethyldisiloxane is preferred as the organosilicon compound containing oxygen atoms, and hexamethyldisilazane is preferred as the organosilicon compound not containing oxygen atoms.
  • FIG. 4 (side sectional view) and FIG. 5 (plan view) show the configuration of the film forming apparatus.
  • the film forming apparatus 30 includes a vacuum chamber as a film forming chamber 31, an exhaust system 45 including a rotary pump and a turbo molecular pump, a high frequency power source 36 for generating plasma, and a flange for introducing various gases. Yes.
  • the film forming chamber 31 is connected to an exhaust system 45, a film forming gas tank 46, an O 2 supply tank 47, an H 2 supply tank 48, and an Ar supply tank 49.
  • the exhaust system 45 is connected to the film forming chamber 31 via the flow rate control valve 41.
  • the film forming gas tank 46 is passed through the flow rate control valve 42, the O 2 supply tank 47 is passed through the flow rate control valve 43, and the H 2 supply tank 48 and the Ar supply tank 49 are passed through the flow rate control valve 44, respectively.
  • 31 is connected.
  • a loop antenna 33 is provided inside the film forming chamber 31.
  • the loop antenna 33 is a means for generating plasma and includes an insulating tube 34 and a conductive electrode 35.
  • Two insulating tubes 34 are arranged in parallel in the film forming chamber 31 so as to face each other.
  • the conductive electrodes 35 are inserted into the two insulating tubes 34 and pass through the mutually opposing side walls of the film forming chamber 31 so as to have a substantially U shape in plan view as shown in FIG. Connected to a high frequency power source 36.
  • the frequency of the high-frequency current is preferably 13.56 MHz.
  • the plasma to be used may be CCP, ICP, barrier discharge, hollow discharge, or the like.
  • the internal pressure of the film forming chamber 31 is preferably 9.9 ⁇ 10 ⁇ by the exhaust system 45. Depressurize until 5 Pa or less.
  • the source gas is introduced into the film forming chamber 31 by opening the flow rate control valves 42 to 44.
  • the source gas can be appropriately selected so that the chemical vapor deposition film contains silicon atoms, oxygen atoms, carbon atoms, and hydrogen atoms, and the concentration of the oxygen atoms is 10 to 35 element%.
  • Specific examples of the source gas include HMSO gas alone, HMDSO + Ar / H 2 , HMDSO + O 2 , HMDSO + HMDS, HMDS + O 2, and the like. Of these, HMDSO gas alone is preferable.
  • the gas introduction rate can be 3 sccm to 45 sccm.
  • a high frequency current is supplied from the high frequency power source 36 to the loop antenna 33 to generate plasma around the loop antenna 33.
  • the plasma power at this time can be 1 kW to 10 kW.
  • a surface reaction is performed on the surface of the substrate, and a chemical vapor deposition film is formed on the substrate 7. After a predetermined time has elapsed, the introduction of gas is stopped by closing the flow control valves 42 to 44.
  • a second chemical vapor deposition film (flexible layer) is formed in the same manner as described above.
  • the flow control valve 44 is opened and, for example, a mixed gas of H 2 gas and Ar gas is introduced into the film forming chamber 31.
  • a raw material gas such as HMDS gas is introduced by the flow rate control valve 42.
  • the introduction speed of each gas at this time can be 20 sccm to 40 sccm for the mixed gas of H 2 gas and Ar gas, and 3 sccm to 20 sccm for the HMDS gas.
  • a high frequency current is supplied from the high frequency power source 36 to the loop antenna 33 so that the plasma power becomes 0.1 kW to 10 kW, and plasma is generated around the loop antenna 33.
  • a surface reaction is performed on the surface of the substrate, and a flexible layer 4 is formed so as to cover the adhesion layer 2 as shown in FIG. After a predetermined time has elapsed, the introduction of gas is stopped by closing the flow rate control valves 42 and 44.
  • a third chemical vapor deposition film (barrier layer) is formed in the same manner as described above.
  • the flow rate control valve 43 is opened and, for example, O 2 gas is introduced into the film forming chamber 31.
  • a raw material gas such as HMDS gas is introduced by the flow rate control valve 42.
  • the introduction speed of each gas at this time can be, for example, 20 sccm to 1000 sccm for O 2 gas and 3 sccm to 20 sccm for HMDS gas.
  • a high frequency current is supplied from the high frequency power source 36 to the loop antenna 33 so that the plasma power becomes 0.1 kW to 8 kW, and plasma is generated around the loop antenna 33.
  • a barrier layer 6 (silicon oxide film) is formed so as to cover the flexible layer 4 as shown in FIG. After a predetermined time has elapsed, the introduction of gas is stopped by closing the flow control valves 42 and 43.
  • the adhesion layer 2 is laminated on the substrate, and on the flexible layer 4 containing silicon, a laminated body in which a silicon oxide film (barrier layer 6) is laminated is formed in seven stages.
  • the HMDSO gas or the like is used as the source gas, and the adhesion layer 2 is formed on the substrate by plasma CVD, and then the flexible layer 4 is formed on the adhesion layer 2 using the HMDS gas or the HMDSO gas. Can be formed on top.
  • the barrier layer 6 can be formed on the flexible layer 4 using HMDS gas, HMSO gas, or the like.
  • adherence layer, the flexible layer, and the barrier layer was shown here, after forming a barrier layer on an adhesion layer, you may form a flexible layer on a barrier layer.
  • a silicon nitride film may be stacked as an intermediate layer using NH 3 gas and SiH 4 gas.
  • the method of the present invention does not use an etching process or the like unlike the conventional method, it does not damage a substrate such as a solar battery cell.
  • the laminated body of the adhesion layer 2, the flexible layer 4, and the barrier layer 6 also has a function of protecting a substrate such as a solar battery cell from plasma energy as it is chemically vapor-grown on the substrate 7, Less damage to the device due to plasma energy.
  • the formation of the adhesion layer 2 and the formation of the flexible layer 4 and the barrier layer 6 are performed in the same chamber (deposition chamber 31), the device structure can be simplified.
  • Example 1 An Ag layer having a thickness of 200 nm was formed on part of the surface of the plastic film. This film was placed on the substrate fixing base in the film forming chamber so that the surface having the Ag layer was directed to the loop antenna side. Next, the internal pressure of the film formation chamber was reduced to 9.9 ⁇ 10 ⁇ 5 Pa or less by an exhaust system. After the pressure reduction in the film formation chamber was completed, HMDSO gas was introduced into the film formation chamber. The introduction speed of HMDSO gas was 3 sccm to 45 sccm.
  • a high-frequency current was passed from the high-frequency power source to the loop antenna.
  • the plasma power at this time was 1 kW to 10 kW.
  • a surface reaction was performed on the surface of the substrate, and an adhesion layer covering a plastic film having an Ag layer was formed.
  • the flow control valve was closed and the introduction of HMDSO gas was stopped.
  • a flexible layer was formed using a mixed gas of HMDS gas, H 2 gas, and Ar gas.
  • the introduction speed of the HMDS gas was 3 sccm to 20 sccm
  • the introduction speed of the mixed gas of H 2 gas and Ar gas was 20 sccm to 40 sccm
  • the plasma power was 0.1 kW to 10 kW.
  • a barrier layer was formed using HMDS gas and O 2 gas in the same manner as described above.
  • the introduction speed of HMDS gas was 3 sccm to 20 sccm
  • the introduction speed of O 2 gas was 20 sccm to 1000 sccm
  • the plasma power was 1 kW to 10 kW.
  • the formation process of the flexible layer and the barrier layer was repeated 7 times. As a result, as shown in FIG. 2, a laminate in which seven layers of a laminate in which a flexible layer and a barrier layer were laminated was formed on the adhesion layer.
  • the film thicknesses of one layer of the adhesion layer, the flexible layer, and the barrier layer were 128 nm, 180 nm, and 390 nm, respectively.
  • the concentration of each element in the obtained laminate was determined by Rutherford backscattering spectroscopy (RBS) and hydrogen forward scattering analysis (HFS).
  • RBS Rutherford backscattering spectroscopy
  • HFS hydrogen forward scattering analysis
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that the flexible layer and the barrier layer were formed using HMDSO gas (introduction rate: 3 sccm to 30 sccm). The thickness of each layer and the concentration of each element were the same as in Example 1.
  • Example 3 A laminate was obtained in the same manner as in Example 1, except that the flexible layer was formed using HMDSO gas (introduction rate: 3 sccm to 30 sccm). The thickness of each layer and the concentration of each element were the same as in Example 1.
  • Example 4 A laminate was obtained in the same manner as in Example 1, except that the barrier layer was formed using HMDSO gas (introduction rate: 3 sccm to 20 sccm). The thickness of each layer and the concentration of each element were the same as in Example 1.
  • Example 5 A laminate was obtained in the same manner as in Example 1 except that the adhesion layer was formed using O 2 gas (introduction rate 20 sccm to 1000 sccm) and HMDSO gas (introduction rate 3 sccm to 20 sccm).
  • the thickness of each layer was the same as in Example 1.
  • the oxygen element concentration of the adhesion layer was 25 element%
  • the silicon atom concentration was 15 element%
  • the hydrogen atom concentration was 40 element%
  • the carbon atom concentration was 20 element%.
  • Example 6 Example 1 is the same as Example 1 except that O 2 gas (introduction rate: 20 sccm to 1000 sccm) and HMDS gas (introduction rate: 3 sccm to 20 sccm) are used for the adhesion layer, and the plasma power is 0.1 kW to 0.5 kW. Thus, a laminate was obtained.
  • the thickness of each layer was the same as in Example 1.
  • the oxygen element concentration of the adhesion layer was 30 element%
  • the silicon atom concentration was 22 element%
  • the hydrogen atom concentration was 30 element%
  • the carbon atom concentration was 18 element%.
  • Example 7 Example 1 is the same as Example 1 except that O 2 gas (introduction rate: 20 sccm to 1000 sccm) and HMDS gas (introduction rate: 3 sccm to 20 sccm) are used for the adhesion layer, and the plasma power is 0.6 kW to 0.9 kW. Thus, a laminate was obtained.
  • the thickness of each layer was the same as in Example 1.
  • the oxygen element concentration of the adhesion layer was 35 element%
  • the silicon atom concentration was 22 element%
  • the hydrogen atom concentration was 28 element%
  • the carbon atom concentration was 15 element%.
  • Comparative Example 1 A laminate was obtained in the same manner as in Example 1 except that the adhesion layer was not formed. The thickness of each layer and the concentration of each element were the same as in Example 1.
  • Comparative Example 2 Instead of forming the adhesion layer, a laminate was obtained in the same manner as in Example 1 except that the substrate was subjected to O 2 plasma treatment before vapor deposition of the flexible layer. The thickness of each layer and the concentration of each element were the same as in Example 1.
  • Comparative Example 3 Instead of forming the adhesion layer, a laminate was obtained in the same manner as in Example 1 except that the substrate was subjected to Ar + H 2 plasma treatment before vapor deposition of the flexible layer. The thickness of each layer and the concentration of each element were the same as in Example 1.
  • Comparative Example 4 instead of forming the adhesion layer, a laminate was obtained in the same manner as in Example 1 except that the substrate was subjected to N 2 plasma treatment before vapor deposition of the flexible layer.
  • the thickness of each layer and the concentration of each element were the same as in Example 1.
  • Example 1 lamination was performed in the same manner as in Example 1 except that the adhesion layer used was O 2 gas (introduction rate 20 sccm to 1000 sccm) and HMDS gas (introduction rate 3 sccm to 20 sccm), and the plasma power was changed to 1 kW to 10 kW. Got the body.
  • the thickness of each layer was the same as in Example 1.
  • the oxygen element concentration of the adhesion layer was 64 element%
  • the silicon atom concentration was 32 element%
  • the hydrogen atom concentration was 4 element%.
  • FIG. 6 shows an outline of the tape peeling test method.
  • a Kapton tape 32 having an adhesive strength of 2.7 N / 10 mm is attached to the laminate 60 of the adhesion film and the sealing film formed on the substrate 31.
  • the Kapton tape is pulled at an angle of 90 degrees with respect to the substrate in the vertical direction upward at a pulling speed of 20 mm / min. In this case, the degree of peeling of the laminate 10 was observed.
  • This test was evaluated according to the following criteria with a Kapton tape attached to the laminate on the Ag layer of the substrate and the laminate on the surface of the plastic film. The results are shown in Table 2.
  • Barrier property evaluation method The barrier properties of the laminates of Examples 1 to 7 were evaluated.
  • the barrier property was evaluated by a Ca test.
  • the Ca test utilizes the fact that calcium (metal color) reacts with moisture that has passed through the gas barrier film to become calcium hydroxide (colorless and transparent). This is a method for calculating the water vapor permeability (g / m 2 / day).
  • the chemical formula for the color change is shown below.
  • 41 is a glass substrate
  • 42 is a Ca vapor deposition film
  • 70 is a film to be evaluated.
  • the results are 9.0 ⁇ 10 ⁇ 5 g / m 2 / day for the laminate of Example 1, 3.0 ⁇ 10 ⁇ 4 g / m 2 / day for the laminate of Example 2, and the laminate of Example 3. It was 2.0 ⁇ 10 ⁇ 4 g / m 2 / day for the body, and 1.8 ⁇ 10 ⁇ 4 g / m 2 / day for the laminate of Example 4. Also in the laminates of Examples 5 to 7, the barrier properties were all excellent.
  • the oxygen concentration can be in the range of 10 to 35 element%, and in this case, the adhesion is the highest.
  • the oxygen concentration needs to be in the range of 10 to 35 element%.
  • the barrier properties of the laminate including this adhesion layer were evaluated, and it was confirmed that high barrier properties were exhibited.
  • Organic EL elements and solar cells that are prone to deterioration with respect to moisture and oxygen, especially organic materials (organic power generation layers, light emitting layers, plastic films (PET and PEN), etc.) and inorganic materials (transparent conductive films, metal electrodes, A barrier film with good adhesion can be formed without damaging the base material on a base material in which an inorganic power generation layer or the like is mixed and exposed.
  • organic materials organic power generation layers, light emitting layers, plastic films (PET and PEN), etc.
  • inorganic materials transparent conductive films, metal electrodes,
  • a barrier film with good adhesion can be formed without damaging the base material on a base material in which an inorganic power generation layer or the like is mixed and exposed.
  • Sealing film (flexible layer + barrier layer) 2 Adhesion layer 4 Flexible layer 6 Barrier layer 7 Base material 8 Organic substance 9 Inorganic substance 10 Laminated body (Adhesion layer + flexible layer + barrier layer) 21 Plastic substrate 22 ITO film 23 Power generation layer (organic power generation layer or inorganic power generation layer) 26 Ag electrode 27 Sealing film 50 Thin film solar cell 31 Unit 32 Kapton tape 41 Glass substrate 42 Ca vapor deposition film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、有機物と無機物が混在する基材で、その両方の物質に対して密着性が高く、バリア性が高いガスバリア膜の膜構成と製造方法を提供することを目的としている。具体的には、ケイ素原子、酸素原子、炭素原子及び水素原子を含み、該酸素原子の濃度が10~35元素%である、プラズマCVD法により形成された化学蒸着膜、及び、この化学蒸着膜と;ケイ素原子と0元素%以上10元素%未満の酸素原子とを含み、プラズマCVD法により形成された第2化学蒸着膜と;ケイ素原子と35元素%超70元素%以下の酸素原子とを含み、プラズマCVD法により形成された第3化学蒸着膜と;を備え、化学蒸着膜の一方の面上に、第2化学蒸着膜と第3化学蒸着膜とが積層された積層体を提供する。

Description

プラズマCVD法により形成された化学蒸着膜
 本発明は、プラズマCVD法により形成された化学蒸着膜、それを含む積層体、薄膜太陽電池セル、及び積層体の製造方法に関する。
 近年、有機ELや液晶等を用いた表示デバイスについて、軽量化および薄膜化、さらにはフレキシブル化の観点から、プラスチック薄板又はプラスチックフィルムを基板として用いる方法が開発、提案されている。表示部の視認性を維持しつつ、かつ、基板表面上に形成した素子部の酸化劣化防止の観点から、酸素および水蒸気バリア性の非常に高いガスバリア性を有するガスバリア膜が求められている。また、太陽電池についても発電層や電極等の劣化を防ぎ、長寿命化の観点から、高いガスバリア性とフレキシブル性の両方を兼ね揃えたガスバリア膜が求められている。
 高いバリア性を示すガスバリア膜は、有機物層と無機物層、若しくは無機物層同士の積層構造でプラズマCVD法により形成する方法が一般的となっている。
 特許文献1には、プラズマCVD法により、プラスチック基材表面に、密着性及びバリア性の高いバリア膜を形成する方法として、第1層としてケイ素(Si)、炭素(C)及び酸素(O)からなる重合体被覆層、第2層としてSiOX(X=1.5~2.0)で表される酸化ケイ素化合物層を形成することが提案されている。また、特許文献2には、プラズマCVD法により、プラスチック容器などの基材表面に、密着性及びバリア性の高いバリア膜を形成する方法として、第1層としてケイ素(Si)、炭素(C)及び酸素(O)から成る密着性強化層、第2層としてケイ素酸化物から成るバリア層を形成することが提案されている。
 しかしながら、上記の膜は、プラスチック単一の基材に対しては良好な密着性を発揮するものの、水分や酸素に対して弱い有機EL素子や太陽電池セル等、バリア膜を形成する面にプラスチック(有機物)と金属(無機物)が混在、露出している基材に対しての密着性は不十分であり、かつケイ素(Si)、炭素(C)及び酸素(O)のみから成り立つ膜は、一般に密度が高くフレキシブル性にも欠けるためバリア膜の破断が生じやすいという問題があった。
 特許文献3には、プラスチックフィルムや有機EL等の電子デバイス上に、プラズマCVD法により、水素元素を含むガスとシリコン元素を含むガスとを用い第1薄膜を形成し、バリア機能を有する第2薄膜を、前記第1薄膜上に形成することで、高い密着性とバリア性能を有したシリコン系薄膜が形成できるようになると記載されている。具体的には、酸素原子を含有しない有機ケイ素化合物であるヘキサメチルジシラザン(以下、HMDSと称する場合がある)及びH2とArとの混合ガスを用いて膜を形成している。しかしながら、この膜では、特に有機EL素子や太陽電池等に存在する透明導電膜や金属膜との密着性が十分ではなく、バリア膜の破断が生じやすいという問題があった。
 さらに、よく知られた方法として、非特許文献1のp262の18行目~25行目に記載されているように、バリア膜を形成する前にプラズマを基材に照射し、表面を活性化、改質することによりバリア膜と基材の密着性を向上させる方法がある。しかしながら、有機EL素子や太陽電池等に対しては、基材の劣化(酸化劣化等)が顕著に生じ使用できない。
特開平05-345383号公報 特開2005-097678号公報 特開2007-262551号公報
表面技術 Vol.58(2007),No.5 p.260~p266
 本発明は、このような従来技術の問題点に鑑みてなされたものであり、有機物のみならず無機物に対しても優れた密着性を有し、有機物と無機物の両方の物質に対して密着性が高く、有機物からなる基材、無機物からなる基材、さらに有機物と無機物が混在する基材においてもバリア性が高いガスバリア膜の膜構成と製造方法を提供することを目的とする。
 本発明者らは、前記目的を達成するため鋭意検討した結果、はじめの3層を、基板側から第1薄膜(密着層)、第2薄膜(フレキシブル層)、第3薄膜(バリア層)の構造、構成にし、各層を形成する際の、有機ケイ素化合物分子中に含まれる酸素原子の有無で原料の使い分けを行い、所定の組み合わせとすることにより、密着性とバリア性の高いガスバリア膜を形成することができること、さらに、水分や酸素に対して劣化し易い有機EL素子や太陽電池セル等、特に表面に有機物(有機系発電層、発光層、プラスチックフィルム(PETやPEN)等)と無機物(透明導電膜、金属電極、無機系発電層等)が混在、露出している基材に対して、基材にダメージを与えること無く、密着性の良好なバリア膜が形成できることを見出し、本発明を完成した。
 すなわち、本発明は、ケイ素原子、酸素原子、炭素原子及び水素原子を含み、該酸素原子の濃度が10~35元素%である、プラズマCVD法により形成された化学蒸着膜を提供する。
 また、本発明は、上記の化学蒸着膜と;ケイ素原子と0元素%以上10元素%未満の酸素原子とを含み、プラズマCVD法により形成された第2化学蒸着膜と;ケイ素原子と35元素%超70元素%以下の酸素原子とを含み、プラズマCVD法により形成された第3化学蒸着膜と;を備え、化学蒸着膜の一方の面上に、第2化学蒸着膜と第3化学蒸着膜とが積層された積層体を提供する。
 本発明の積層体は、上記第2化学蒸着膜と第3化学蒸着膜とが交互に複数層形成されていることが好ましい。
 また、上記第2化学蒸着膜は炭素原子を含んでいることが好ましい。
 無機物を含む基材をさらに備え、上記化学蒸着膜の第2化学蒸着膜と第3化学蒸着膜とが積層されていない面が上記無機物に接するように、上記化学蒸着膜が上記基材上に積層されていることが好ましい。
 また、好ましくは、上記無機物はAg、Al、Mo、又は、ZnO、ITO、BZO、AZOならびにGZOからなる群から選択された何れかの透明電極膜を含んでいる。
 さらに、本発明は、上記積層体を含む、有機エレクトロルミネセンス素子または薄膜太陽電池セルを提供する。
 さらにまた、本発明は、上記基材上に、酸素原子を含有する有機ケイ素化合物からなる原料ガスを用いてプラズマCVD法により上記化学蒸着膜を形成する第1工程と、上記化学蒸着膜上に、有機ケイ素化合物とH2若しくは水素原子を含有する化合物とからなる原料ガスを用いてプラズマCVD法により、上記第2化学蒸着膜を形成する第2工程と、上記化学蒸着膜上に、有機ケイ素化合物とO2若しくは酸素原子を含有する化合物とからなる原料ガスを用いてプラズマCVD法により、上記第3化学蒸着膜を形成する第3工程と、を含む、上記積層体の製造方法を提供する。
 本発明の積層体の製造方法では、上記酸素原子を含有する有機ケイ素化合物がヘキサメチルジシロキサンであることが好ましい。
 本発明によれば、有機物のみならず無機物に対しても優れた密着性を有し、有機物と無機物の両方の物質に対して密着性が高く、有機物からなる基材、無機物からなる基材、さらに有機物と無機物が混在する基材においてもバリア性が高いガスバリア膜の膜構成と製造方法が提供される。特に、水分や酸素に対して劣化し易い有機EL素子や太陽電池セル等、特に表面に有機物(有機系発電層、発光層、プラスチックフィルム(PETやPEN)等)と無機物(透明導電膜、金属電極、無機系発電層等)が混在、露出している基材に対して、基材にダメージを与えること無く、密着性の良好なバリア膜を形成できる。
本発明の一実施形態に係る積層体10を概略的に示す図である。 本発明の他の一実施形態に係る積層体20を概略的に示す図である。 本発明の一実施形態に係る薄膜太陽電池セル50の断面を概略的に示す図である。 膜形成装置30の側面断面の概略図である。 膜形成装置30を上から見た概略図である。 テープ剥離試験方法の概略を示す図である。 カルシウムテストにおけるバリア性評価用サンプルを模式的に示す図である。
 (1)化学蒸着膜(密着層)
 本発明の化学蒸着膜は、プラズマCVD法により形成され、ケイ素原子、酸素原子、炭素原子及び水素原子を含み、酸素原子の濃度が10~35元素%である。水素原子を含有させ、さらに酸素原子濃度を上記範囲とすることにより、基材上に形成された場合に、基材における無機物と有機物の両物質に対して、優れた密着性を得ることができる。上記酸素原子の濃度は、10~25元素%であることが好ましく、10~20元素%であることがより好ましく、10~15元素%であることがさらに好ましい。上記基材における有機物としては、PETフィルム等のポリマーフィルムが挙げられる。また、無機物としては、Ag、Al、Mo、又は、ZnO、ITO、BZO、AZOならびにGZO等の透明電極膜などが挙げられる。
 無機物との密着性については、例えばAgの場合には、Ag-O-SiやAg-O-O-Si-のような酸素原子を介した状態で結合・密着すると推測できる。化学蒸着膜の酸素原子(O)の濃度が10元素%以下で密着性が悪くなる理由としては、膜中にOが少ないと、その結合量も少なくなるため密着性が悪くなると考えられる。また、Ag等の無機物が触媒活性を有する影響も考えられ、酸素原子の濃度が10元素%以上であることが必要になると考えられる。一方、酸素原子の濃度が35元素%以上の場合には、膜中の酸素が多すぎて表面の酸化が進みすぎ、膜にダメージを与えてしまい、抵抗率増大等の性能劣化が生じる。また、外観も黒色化する。
 有機物との密着性については、例えばPETの場合には、表面に存在するOH基やCOOH基を介して結合・密着すると推測できる。Ag等の無機物の表面にもOH基やCOOH基は存在するが、有機物の場合には、Ag等の無機物に比べて少ない量でも、密着性良好になりやすい。このような違いは、PET等の有機物では触媒活性がないためとも考えられる。一方、酸素原子の濃度が35元素%を超えると、膜の組成がSiO2に近づくため、膜密度が高まり、フレキシブル性のない膜となり、密着性が悪くなる。このような膜では、膨張や収縮、フレキシブル性の大きいPET等の有機物と相性が悪くなるためと考えられる。
 本発明の化学蒸着膜の組成としては、酸素原子が10~35元素%であり、ケイ素原子が例えば10~30元素%、炭素原子が例えば10~30元素%、水素原子が例えば10~50元素%とすることができる。窒素原子は含まれていなくてもよい。このような組成の場合に、特に有機物と無機物の両方の基材に対する密着性が優れ、好ましい。
 上記化学蒸着膜の膜厚は、例えば5~400nm、好ましくは5~200nmである。また、上記化学蒸着膜の密度は、例えば1.7~1.9g/cm3が好ましい。
 (1-1)酸素原子濃度の測定方法
 本発明において、化学蒸着膜中の酸素原子の濃度は、ラザフォード後方散乱分光法(RBS)、及び、水素前方散乱分析法を用いた組成分析(HFS)により決定できる。ケイ素原子、炭素原子の濃度も同様に測定できる。水素原子についてはRBSでは分析できないため、HFSにより測定する。
 RBSでは、試料に高速イオン(He+、H+等)を照射して、試料中の原子核により弾性(ラザフォード)散乱を受けた入射イオンの一部について、散乱イオンのエネルギーと収量とを測定する。散乱イオンのエネルギーは、対象原子の質量及び位置(深さ)により異なるため、この散乱イオンのエネルギーと収量から、深さ方向の試料の元素組成を得ることができる。HFSでは、試料に高速イオン(He+)を照射することにより、試料中の水素が弾性反跳により前方に散乱されることを利用して、この反跳水素のエネルギーと収量から水素の深さ分布を得る。
 本発明の化学蒸着膜は、プラズマCVD法において、供給ガス及びプラズマ電力(投入パワー)を調整することにより、酸素原子の濃度を10~35元素%に制御して形成できる。
 原料ガスとしては、酸素原子を含有する有機ケイ素化合物を使用する。具体的には、HMDSO単体、HMDSO+Ar/H2、HMDSO+O2、HMDSO+HMDS、HMDS+O2等が挙げられる。なかでも、HMDSO単体が好ましい。
 (2)積層体
 本発明の積層体は、上記の化学蒸着膜(以下、密着層と称する場合がある)、第2化学蒸着膜(以下、フレキシブル層と称する場合がある)及び第3化学蒸着膜(以下、バリア層と称する場合がある)とを備えている。化学蒸着膜の一方の面上に、第2化学蒸着膜と第3化学蒸着膜とが、それぞれプラズマCVD法により形成される。密着層上にフレキシブル層が、さらにフレキシブル層上にバリア層が形成されていても良く、また、密着層上にバリア層が、さらにバリア層上にフレキシブル層が形成されていても良い。
 図1に、本発明の一実施形態に係る積層体10を概略的に示すと、2は密着層、4はフレキシブル層、6はバリア層である。このような構成とすることにより、有機物と無機物を含む基材との密着性に優れ、且つ水蒸気を効果的にバリアできる積層体が得られる。
 各層はケイ素原子を含んでいる。酸素原子の含有量は、密着層では上記の通り10~35元素%であり、フレキシブル層では0元素%以上10元素%未満、バリア層では35元素%超70元素%以下である。酸素原子の含有量は、上記の方法で測定できる。
 第2化学蒸着膜(フレキシブル層)は、ケイ素原子と酸素原子とに加えて、炭素原子を含んでいても良い。本発明において、第2化学蒸着膜の組成は、酸素原子が10元素%未満であり、ケイ素原子が例えば10~20元素%、炭素原子が例えば20~35元素%であってもよい。さらに、水素原子を例えば30~55元素%含んでいても良い。窒素原子は、例えば、10元素%以下(0~10元素%程度)含んでいてもよい。
 上記第2化学蒸着膜の膜厚は、例えば5~1000nm、好ましくは5~500nmである。また、上記第2化学蒸着膜の密度は、1.7g/cm3未満(例えば1.2g/cm3以上1.7g/cm3未満)が好ましい。
 第3化学蒸着膜(バリア層)は、酸素原子が60~70元素%であり、ケイ素原子が例えば30~35元素%であってもよい。さらに炭素原子を含んでいても良い。さらに、水素原子を例えば5元素%以下(0~5元素%程度)含んでいても良い。窒素原子は含まれていなくてもよい。
 上記第3化学蒸着膜の膜厚は、例えば5~1000nm、好ましくは5~500nmである。また、上記第3化学蒸着膜の密度は、1.9g/cm3超(例えば1.9g/cm3超2.2g/cm3未満以下)が好ましい。
 本発明の積層体の、各層の組成の例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体では、上記第2化学蒸着膜と第3化学蒸着膜とが交互に複数層形成されていてもよい。図2に本発明の他の一実施形態に係る積層体20を概略的に示すと、8はプラスチックフィルム等の有機物基材であり、9はAg等の無機物基材である。これらの基材上に、密着層2、フレキシブル層4、バリア層6がこの順に積層されている。そして、その上にさらにフレキシブル層4とバリア層6が交互に各n層ずつ、複数層積層され、封止膜1を形成している。密着層上にこのような封止膜を設けることにより、密着性と水蒸気バリア性に優れた膜とすることができる。図2において、フレキシブル層4とバリア層6が密着層2上に形成される順序は逆でもよい。nとしては、1~10の整数とすることができ、フレキシブル層/バリア層の積層数が、6/6、7/7、8/8などが好ましい。
 (3)有機エレクトロルミネセンス素子または薄膜太陽電池セル
 本発明の有機エレクトロルミネセンス素子または薄膜太陽電池セルは、上記積層体を含んでいる。このため、密着性とバリア性に優れている。具体的には、有機EL素子や太陽電池等に存在する透明導電膜や金属膜との密着性に優れ、バリア膜の破断も生じにくい。
 図3に、本発明の一実施形態に係る薄膜太陽電池セル50の断面を概略的に示すと、21はプラスチック基板、22はITO電極、23は発電層(有機系発電層又は無機系発電層)、26はAg電極である。これらの、有機物と無機物を含む基板上に、密着層2を介して封止膜1が積層されている。
 (4)積層体の製造方法
 本発明の積層体の製造方法は、基材上に、酸素原子を含有する有機ケイ素化合物からなる原料ガスを用いてプラズマCVD法により化学蒸着膜を形成する第1工程と;第1工程で形成した化学蒸着膜上に、有機ケイ素化合物と水素原子を含有する化合物とからなる原料ガスを用いてプラズマCVD法により、第2化学蒸着膜を形成する第2工程と;第1工程で形成した化学蒸着膜上に、有機ケイ素化合物と酸素原子を含有する化合物とからなる原料ガスを用いてプラズマCVD法により、第3化学蒸着膜を形成する第3工程とを含んでいる。第2、3工程を交互に複数回行うことにより、複数層の第1化学蒸着膜と第2化学蒸着膜が交互に積層された積層体を得ることができる。
 上記第2、3工程では、酸素原子を含有しない有機ケイ素化合物を使用することが好ましい。また、酸素原子を含有する有機ケイ素化合物としてはヘキサメチルジシロキサンが好ましく、酸素原子を含有しない有機ケイ素化合物としてはヘキサメチルジシラザンが好ましい。
 図4(側面断面図)と図5(平面図)に膜形成装置の構成図を示す。膜形成装置30には、成膜室31である真空チャンバーと、ロータリーポンプおよびターボ分子ポンプを備えた排気系45と、プラズマ発生用の高周波電源36と、各種ガスを導入するフランジが配置されている。
 成膜室31は、排気系45、製膜ガスタンク46、O2供給タンク47、H2供給タンク48、Ar供給タンク49に接続される。排気系45は、流量制御バルブ41を介して成膜室31に接続される。製膜ガスタンク46は流量制御バルブ42を介して、O2供給タンク47は流量制御バルブ43を介して、H2供給タンク48及びAr供給タンク49は流量制御バルブ44を介して、それぞれ成膜室31に接続される。成膜室31の内部には、ループアンテナ33が設けられている。
 ループアンテナ33は、プラズマを生成する手段であり、絶縁チューブ34と導電性電極35とにより構成される。絶縁チューブ34は、成膜室31内に互いに2本対向して平行配設される。導電性電極35は、2本の絶縁チューブ34に挿設され、図5のように平面視が略U字形を呈するように成膜室31の互いに対向する側壁を貫通し、高周波電流を供給する高周波電源36に接続される。高周波電流の周波数は13.56MHzであることが好ましい。なお、使用するプラズマはCCP、ICP、バリア放電、ホロー放電などでもよい。
 基板の固定台32上に、膜を形成する基板7を、蒸着面がループアンテナ33側に向くように配置した後、排気系45により成膜室31の内圧が好ましくは9.9×10-5Pa以下になるまで減圧する。
 成膜室31内の減圧が完了後、流量制御バルブ42~44を開くことにより、原料ガスを成膜室31に導入する。原料ガスは、化学蒸着膜が、ケイ素原子、酸素原子、炭素原子及び水素原子を含み、該酸素原子の濃度が10~35元素%となるように、適宜選択できる。原料ガスとしては、具体的には、HMDSOガスの単体、HMDSO+Ar/H2、HMDSO+O2、HMDSO+HMDS、HMDS+O2等が挙げられる。なかでも、HMDSOガス単体が好ましい。ガスの導入速度は、3sccm~45sccmとすることができる。
 続いて、高周波電源36からループアンテナ33に高周波電流を流し、ループアンテナ33の周辺にプラズマを発生させる。このときのプラズマ電力は1kW~10kWとすることができる。基板の表面では表面反応が行われ、基板7上に化学蒸着膜が形成される。所定時間の経過後、流量制御バルブ42~44を閉じることによりガスの導入を停める。
 化学蒸着膜(密着層)の形成後、上記と同様に、例えば、第2化学蒸着膜(フレキシブル層)を形成する。まず、流量制御バルブ44を開いて例えば、H2ガスとArガスの混合ガスを成膜室31に導入する。同時に流量制御バルブ42によりHMDSガス等の原料ガスを導入する。このときの各ガスの導入速度は、H2ガスとArガスの混合ガスについては20sccm~40sccm、HMDSガスについては3sccm~20sccmとすることができる。続いて、高周波電源36からループアンテナ33に、プラズマ電力が0.1kW~10kWとなるように高周波電流を流し、ループアンテナ33の周辺にプラズマを発生させる。
 基板の表面では表面反応が行われ、図2に示すように、密着層2を被覆するようにフレキシブル層4を形成する。所定時間が経過した後、流量制御バルブ42、44を閉じることによりガスの導入を停める。
 第2化学蒸着膜(フレキシブル層)の形成後、上記と同様に、第3化学蒸着膜(バリア層)を形成する。まず、流量制御バルブ43を開いて例えばO2ガスを成膜室31に導入する。同時に流量制御バルブ42によりHMDSガス等の原料ガスを導入する。このときの各ガスの導入速度は、例えばO2ガスが20sccm~1000sccm、HMDSガスが3sccm~20sccmとすることができる。続いて、高周波電源36からループアンテナ33に、プラズマ電力が0.1kW~8kWとなるように高周波電流を流し、ループアンテナ33の周辺にプラズマを発生させる。
 基板の表面では表面反応が行われ、図2に示すように、フレキシブル層4を被覆するようにバリア層6(シリコン酸化膜)を形成する。所定時間が経過した後、流量制御バルブ42、43を閉じることによりガスの導入を停める。このシリコン酸化膜は、SiとOとをSi:O=1:1.9~2.1の組成比で含むことが好ましい。
 上記フレキシブル層4とバリア層6で行った処理をn回(nは上記と同様、例えばn=7)繰り返す。その結果、図2に示すように、密着層2が基板上に積層され、その上に、シリコンを含むフレキシブル層4上にシリコン酸化膜(バリア層6)を積層した積層体が7段形成される。
 以上のように、先ず、原料ガスとして、HMDSOガス等を用い、基板上にプラズマCVD法により密着層2を形成し、次いで、HMDSガス、HMDSOガス等を用い、フレキシブル層4を密着層2の上に形成できる。さらに、HMDSガス、HMDSOガス等を用い、バリア層6をフレキシブル層4の上に形成できる。なお、ここでは密着層、フレキシブル層、バリア層の順での膜形成を示したが、バリア層を密着層上に形成後、バリア層上にフレキシブル層を形成してもよい。また、NH3ガスとSiH4ガスなどを用いてシリコン窒化膜を中間層として積層してもよい。
 本発明の方法は、従来とは異なりエッチング処理等を用いないため、太陽電池セルなどの基板にダメージを与えることがない。また、密着層2とフレキシブル層4とバリア層6との積層体は、基板7の上に化学的に気相成長するに従い、太陽電池セルなどの基板をプラズマエネルギーから保護する機能も有するため、プラズマエネルギーによるデバイスへのダメージが少なくて済む。また、密着層2の形成とフレキシブル層4、バリア層6の形成とが同室(成膜室31)内で行われるため、装置構造を簡易にできる。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1
 プラスチックフィルムの表面の一部に、厚さ200nmのAg層を形成した。このフィルムを、Ag層を有する面がループアンテナ側に向くように、成膜室内の基板固定台上に配置した。次に排気系により成膜室の内圧を9.9×10-5Pa以下になるまで減圧した。成膜室内の減圧が完了後、HMDSOガスを成膜室に導入した。HMDSOガスの導入速度は、3sccm~45sccmとした。
 続いて、高周波電源からループアンテナに高周波電流を流した。このときのプラズマ電力は1kW~10kWとした。基板の表面では表面反応が行われ、Ag層を有するプラスチックフィルムを被覆する密着層が形成された。1分後、流量制御バルブを閉じ、HMDSOガスの導入を停めた。
 密着層の形成後、HMDSガスとH2ガスとArガスの混合ガスとを用いてフレキシブル層の形成処理を行った。このときHMDSガスの導入速度は3sccm~20sccm、H2ガスとArガスの混合ガスの導入速度は20sccm~40sccm、プラズマ電力は0.1kW~10kWとした。
 フレキシブル層の形成後、上記と同様に、HMDSガスとO2ガスとを用いてバリア層を形成した。このときHMDSガスの導入速度は3sccm~20sccm、O2ガスの導入速度は20sccm~1000sccm、プラズマ電力は1kW~10kWとした。このシリコン酸化膜は、SiとOとがSi:O=1:1.9~2.1の組成比であった。
 上記フレキシブル層とバリア層の形成処理を7回繰り返した。その結果、図2に示すように、密着層上に、フレキシブル層とバリア層を積層した積層体が7段形成された積層体を得た。密着層、フレキシブル層、バリア層の1層の膜厚は、それぞれ、128nm、180nm、390nmであった。
 得られた積層体中の各元素の濃度を、上記のラザフォード後方散乱分光法(RBS)、及び、水素前方散乱分析法(HFS)により決定した。その結果、密着層では、酸素原子濃度が12元素%、ケイ素原子濃度が17元素%、水素原子濃度が44元素%、炭素原子濃度が27元素%;フレキシブル層では、酸素原子濃度が7元素%、ケイ素原子濃度が15元素%、水素原子濃度が50元素%、炭素原子濃度が22元素%、窒素原子濃度が6元素%;バリア層では、酸素原子濃度が64元素%、ケイ素原子濃度が32元素%、水素原子濃度が4元素%であった。
 実施例2
 実施例1において、フレキシブル層とバリア層を、HMDSOガス(導入速度3sccm~30sccm)を用いて形成した以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 実施例3
 実施例1において、フレキシブル層を、HMDSOガス(導入速度3sccm~30sccm)を用いて形成した以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 実施例4
 実施例1において、バリア層を、HMDSOガス(導入速度3sccm~20sccm)を用いて形成した以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 実施例5
 実施例1において、密着層をO2ガス(導入速度20sccm~1000sccm)とHMDSOガス(導入速度3sccm~20sccm)を用いて形成した以外は実施例1と同様にして、積層体を得た。各層の膜厚は実施例1と同様であった。元素濃度は、密着層の酸素元素濃度が25元素%、ケイ素原子濃度が15元素%、水素原子濃度が40元素%、炭素原子濃度が20元素%であった。
 実施例6
 実施例1において、密着層をO2ガス(導入速度20sccm~1000sccm)とHMDSガス(導入速度3sccm~20sccm)を用い、プラズマ電力を0.1kW~0.5kWとした以外は実施例1と同様にして、積層体を得た。各層の膜厚は実施例1と同様であった。元素濃度は、密着層の酸素元素濃度が30元素%、ケイ素原子濃度が22元素%、水素原子濃度が30元素%、炭素原子濃度が18元素%であった。
 実施例7
 実施例1において、密着層をO2ガス(導入速度20sccm~1000sccm)とHMDSガス(導入速度3sccm~20sccm)を用い、プラズマ電力を0.6kW~0.9kWとした以外は実施例1と同様にして、積層体を得た。各層の膜厚は実施例1と同様であった。元素濃度は、密着層の酸素元素濃度が35元素%、ケイ素原子濃度が22元素%、水素原子濃度が28元素%、炭素原子濃度が15元素%であった。
 比較例1
 密着層を形成しなかった以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 比較例2
 密着層形成の代わりに、フレキシブル層の蒸着前に基板にO2プラズマ処理をした以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 比較例3
 密着層形成の代わりに、フレキシブル層の蒸着前に基板にAr+H2プラズマ処理をした以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 比較例4
 密着層形成の代わりに、フレキシブル層の蒸着前に基板にN2プラズマ処理をした以外は実施例1と同様にして、積層体を得た。各層の膜厚及び各元素の濃度は、実施例1と同様であった。
 比較例5
 実施例1において、密着層をO2ガス(導入速度20sccm~1000sccm)とHMDSガス(導入速度3sccm~20sccm)を用い、プラズマ電力を1kW~10kWとした以外は実施例1と同様にして、積層体を得た。各層の膜厚は実施例1と同様であった。元素濃度は、密着層の酸素元素濃度が64元素%、ケイ素原子濃度が32元素%、水素原子濃度が4元素%であった。
 基材との密着性評価
 実施例1~4ならびに比較例1~7で得られた積層体の基材との密着性を、以下のようにして評価した。図6にテープ剥離試験方法の概略を示す。テープ剥離試験は、まず、基板31上に形成された密着膜及び封止膜の積層体60に、粘着力2.7N/10mmのカプトンテープ32を貼着する。このカプトンテープを、引張速度20mm/minで垂直方向上向きに、基材に対して90度の角度で引っ張る。この場合に、積層体10の剥がれの程度を観察した。このテストを、基板のAg層上の積層体と、プラスチックフィルム表面上の積層体について、カプトンテープを貼り付けて以下の基準で評価した。結果を表2に示す。
   ◎:全く剥離していない
   ○:ほとんど剥離していない
   △:半分程度剥離した
   ×:全て剥離した
 バリア性評価方法(Caテスト)
 実施例1~7の積層体について、バリア性の評価を行った。バリア性の評価は、Caテストにより行った。Caテストは、カルシウム(金属色)がガスバリア膜を通過してきた水分と反応して水酸化カルシウム(無色透明)になることを利用し、色の変化(=透過してきた水分量)からガスバリア膜の水蒸気透過度(g/m2/day)を算出する方法である。色の変化の化学式を以下に示す。
   Ca(金属色)+2H2O→Ca(OH)2(透明)+H2
実施例1~4ならびに比較例1~3の各条件で、図7に示すようなバリア性評価用のサンプルをそれぞれ作製し、Caテストを行った。図7において、41はガラス基板、42はCa蒸着膜、70は評価する膜である。結果は、実施例1の積層体では9.0×10-5g/m2/day、実施例2の積層体では3.0×10-4g/m2/day、実施例3の積層体では2.0×10-4g/m2/day、実施例4の積層体では1.8×10-4g/m2/dayであった。実施例5~7の積層体においても、バリア性はいずれも優れていた。
Figure JPOXMLDOC01-appb-T000002
 上記の結果より、密着層としてHMDSOガスを原料として作成した蒸着膜において、酸素濃度を10~35元素%の範囲とすることができ、この場合に最も密着性が高くなることを見出した。有機物(例えばPETフィルム)と無機物(例えばAg)の両方に密着性の良い膜とするためには、酸素濃度を10~35元素%の範囲にする必要がある。さらに、この密着層を含む積層体のバリア性を評価し、高いバリア性を示すことが確認できた。
 水分や酸素に対して劣化し易い有機EL素子や太陽電池セル等、特に表面に有機物(有機系発電層、発光層、プラスチックフィルム(PETやPEN)等)と無機物(透明導電膜、金属電極、無機系発電層等)が混在、露出している基材に対して、基材にダメージを与えること無く、密着性の良好なバリア膜を形成できる。
1  封止膜(フレキシブル層+バリア層)
2  密着層
4  フレキシブル層
6  バリア層
7  基材
8  有機物
9  無機物
10 積層体(密着層+フレキシブル層+バリア層)
21 プラスチック基板
22 ITO膜
23 発電層(有機系発電層又は無機系発電層)
26 Ag電極
27 封止膜
50 薄膜太陽電池セル
31 台
32 カプトンテープ
41 ガラス基板
42 Ca蒸着膜

Claims (9)

  1.  ケイ素原子、酸素原子、炭素原子及び水素原子を含み、該酸素原子の濃度が10~35元素%である、
    プラズマCVD法により形成された化学蒸着膜。
  2.  請求項1記載の化学蒸着膜と;
     ケイ素原子と0元素%以上10元素%未満の酸素原子とを含み、プラズマCVD法により形成された第2化学蒸着膜と;
     ケイ素原子と35元素%超70元素%以下の酸素原子とを含み、プラズマCVD法により形成された第3化学蒸着膜と;
    を備え、
     該化学蒸着膜の一方の面上に、該第2化学蒸着膜と該第3化学蒸着膜とが積層された、積層体。
  3.  前記第2化学蒸着膜と第3化学蒸着膜とが交互に複数層形成された、請求項2記載の積層体。
  4.  前記第2化学蒸着膜が、さらに炭素原子を含む、請求項2又は3記載の積層体。
  5.  無機物を含む基材をさらに備え、
     前記化学蒸着膜の前記第2化学蒸着膜と前記第3化学蒸着膜とが積層されていない面が該無機物に接するように、前記化学蒸着膜が該基材上に積層された、請求項2~4の何れか1項に記載の積層体。
  6.  前記無機物がAg、Al、Mo、又は、ZnO、ITO、BZO、AZOならびにGZOからなる群から選択された何れかの透明電極膜を含む、請求項5記載の積層体。
  7.  請求項2~6記載の積層体を含む、有機エレクトロルミネセンス素子または薄膜太陽電池セル。
  8.  前記基材上に、酸素原子を含有する有機ケイ素化合物からなる原料ガスを用いてプラズマCVD法により前記化学蒸着膜を形成する第1工程と、
     前記化学蒸着膜上に、有機ケイ素化合物とH2若しくは水素原子を含有する化合物とからなる原料ガスを用いてプラズマCVD法により、前記第2化学蒸着膜を形成する第2工程と、
     前記化学蒸着膜上に、有機ケイ素化合物とO2若しくは酸素原子を含有する化合物とからなる原料ガスを用いてプラズマCVD法により、前記第3化学蒸着膜を形成する第3工程と、
    を含む、請求項5又は6記載の積層体の製造方法。
  9.  前記酸素原子を含有する有機ケイ素化合物がヘキサメチルジシロキサンである、請求項8記載の積層体の製造方法。
PCT/JP2013/050606 2012-03-07 2013-01-16 プラズマcvd法により形成された化学蒸着膜 WO2013132889A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380011749.XA CN104136657B (zh) 2012-03-07 2013-01-16 通过等离子体cvd法形成的化学沉积膜
US14/382,823 US9281420B2 (en) 2012-03-07 2013-01-16 Chemical vapor deposited film formed by plasma CVD method
KR1020147024084A KR102098226B1 (ko) 2012-03-07 2013-01-16 플라즈마 cvd법에 의하여 형성된 화학 증착막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050960 2012-03-07
JP2012050960A JP5967982B2 (ja) 2012-03-07 2012-03-07 プラズマcvd法により形成された化学蒸着膜

Publications (1)

Publication Number Publication Date
WO2013132889A1 true WO2013132889A1 (ja) 2013-09-12

Family

ID=49116376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050606 WO2013132889A1 (ja) 2012-03-07 2013-01-16 プラズマcvd法により形成された化学蒸着膜

Country Status (5)

Country Link
US (1) US9281420B2 (ja)
JP (1) JP5967982B2 (ja)
KR (1) KR102098226B1 (ja)
CN (1) CN104136657B (ja)
WO (1) WO2013132889A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140306211A1 (en) * 2011-11-14 2014-10-16 Konica Minolta, Inc. Organic electroluminescent element and planar light-emitting unit
WO2015107702A1 (ja) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 ガスバリア性フィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653702B2 (en) * 2014-02-10 2017-05-16 Sharp Kabushiki Kaisha Electroluminescent device
CN104733647B (zh) * 2015-03-10 2016-08-24 京东方科技集团股份有限公司 薄膜封装方法及薄膜封装结构、显示装置
CN108075040A (zh) * 2016-11-07 2018-05-25 中国科学院苏州纳米技术与纳米仿生研究所 柔性oled基材及其制备方法
CN109608678A (zh) * 2018-11-07 2019-04-12 无锡泓瑞航天科技有限公司 一种三明治结构硅氧烷薄膜及其制备方法
TWI712119B (zh) * 2018-12-05 2020-12-01 位元奈米科技股份有限公司 凹槽封裝結構
IT202100002966A1 (it) * 2021-02-10 2022-08-10 Sambonet Paderno Ind S P A Copertura per prodotti argentati destinati ad entrare in contatto con alimenti

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221039A (ja) * 2006-02-20 2007-08-30 National Institute For Materials Science 絶縁膜および絶縁膜材料
JP2010114452A (ja) * 2004-09-28 2010-05-20 Air Products & Chemicals Inc 多孔質の低誘電率組成物並びにそれを作製及び使用するための方法
JP2010532708A (ja) * 2007-07-06 2010-10-14 シデル・パーティシペーションズ 少なくとも3つの層を含むプラズマ堆積遮蔽コーティング、そのような1つのコーティングを得るための方法、およびそのようなコーティングでコーティングされた容器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526766B2 (ja) 1992-06-15 1996-08-21 東洋製罐株式会社 ガス遮断性積層プラスチックス材
US7023010B2 (en) * 2003-04-21 2006-04-04 Nanodynamics, Inc. Si/C superlattice useful for semiconductor devices
JP4432423B2 (ja) 2003-09-25 2010-03-17 東洋製罐株式会社 プラズマcvd法による化学蒸着膜
KR101052573B1 (ko) 2004-04-02 2011-07-29 씨제이제일제당 (주) 균일한 함량을 갖는 과립형 동물 사료 첨가제를 제조하는 방법 및 그에 의하여 제조되는 과립형 동물 사료 첨가제
WO2005104317A1 (en) * 2004-04-23 2005-11-03 Massachusetts Institute Of Technology Silicon rich nitride cmos-compatible light sources and si-based laser structures
SG121180A1 (en) * 2004-09-28 2006-04-26 Air Prod & Chem Porous low dielectric constant compositions and methods for making and using same
US7256426B2 (en) * 2005-01-19 2007-08-14 Sharp Laboratories Of America, Inc. Rare earth element-doped silicon/silicon dioxide lattice structure
JP4947766B2 (ja) 2006-03-30 2012-06-06 東レエンジニアリング株式会社 シリコン系薄膜の形成方法
US7776670B2 (en) * 2006-06-16 2010-08-17 Toray Engineering Co., Ltd. Silicon thin-film and method of forming silicon thin-film
TWI455338B (zh) * 2010-02-12 2014-10-01 Univ Nat Chiao Tung 超晶格結構的太陽能電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114452A (ja) * 2004-09-28 2010-05-20 Air Products & Chemicals Inc 多孔質の低誘電率組成物並びにそれを作製及び使用するための方法
JP2007221039A (ja) * 2006-02-20 2007-08-30 National Institute For Materials Science 絶縁膜および絶縁膜材料
JP2010532708A (ja) * 2007-07-06 2010-10-14 シデル・パーティシペーションズ 少なくとも3つの層を含むプラズマ堆積遮蔽コーティング、そのような1つのコーティングを得るための方法、およびそのようなコーティングでコーティングされた容器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140306211A1 (en) * 2011-11-14 2014-10-16 Konica Minolta, Inc. Organic electroluminescent element and planar light-emitting unit
US9236583B2 (en) * 2011-11-14 2016-01-12 Konica Minolta, Inc. Organic electroluminescent element and planar light-emitting unit
WO2015107702A1 (ja) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 ガスバリア性フィルム
JPWO2015107702A1 (ja) * 2014-01-15 2017-03-23 コニカミノルタ株式会社 ガスバリア性フィルム

Also Published As

Publication number Publication date
KR102098226B1 (ko) 2020-04-07
CN104136657A (zh) 2014-11-05
KR20140136437A (ko) 2014-11-28
US9281420B2 (en) 2016-03-08
US20150068600A1 (en) 2015-03-12
JP2013185206A (ja) 2013-09-19
JP5967982B2 (ja) 2016-08-10
CN104136657B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5967982B2 (ja) プラズマcvd法により形成された化学蒸着膜
JP2013185206A5 (ja)
JP6370816B2 (ja) 高性能コーティングの堆積装置
US20150132587A1 (en) Gas barrier film and electronic device using the same
TWI700192B (zh) 積層膜及可撓性電子裝置
JP6394600B2 (ja) 電子デバイスおよびその製造方法
KR102374497B1 (ko) 적층 필름 및 플렉시블 전자 디바이스
JP6705170B2 (ja) 積層フィルムおよびフレキシブル電子デバイス
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
WO2013132890A1 (ja) シリコン含有膜及びシリコン含有膜形成方法
Han et al. Water vapor and hydrogen gas diffusion barrier characteristics of Al 2 O 3–alucone multi-layer structures for flexible OLED display applications
JP6657687B2 (ja) 積層フィルムおよびフレキシブル電子デバイス
JP2014100806A (ja) ガスバリア性フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024084

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382823

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13758104

Country of ref document: EP

Kind code of ref document: A1