WO2013132714A1 - Urethane (meth)acrylate resin composition and coating material - Google Patents

Urethane (meth)acrylate resin composition and coating material Download PDF

Info

Publication number
WO2013132714A1
WO2013132714A1 PCT/JP2012/081494 JP2012081494W WO2013132714A1 WO 2013132714 A1 WO2013132714 A1 WO 2013132714A1 JP 2012081494 W JP2012081494 W JP 2012081494W WO 2013132714 A1 WO2013132714 A1 WO 2013132714A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
urethane
acrylate resin
resin composition
acrylate
Prior art date
Application number
PCT/JP2012/081494
Other languages
French (fr)
Japanese (ja)
Inventor
松本 高志
勝也 船ヶ山
三田 俊夫
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201280071228.9A priority Critical patent/CN104159940B/en
Priority to JP2013515612A priority patent/JP5339171B1/en
Publication of WO2013132714A1 publication Critical patent/WO2013132714A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a urethane (meth) acrylate resin composition that suppresses generation of wrinkles on the surface of a coating film, and is excellent in room temperature curability and storage stability, and a coating material obtained using the same.
  • Urethane (meth) acrylate resins having a (meth) acryloyl group and an allyl ether group are widely used in civil engineering and building materials such as road waterproofing materials and road paving materials because of their excellent water resistance and flexibility.
  • Examples of the civil engineering building material include a urethane urethane acrylate resin (A) having a (meth) acryloyl group and an allyl ether group and a polymerizable unsaturated monomer (B), and a urethane (meth) acrylate resin.
  • the allyl ether group concentration is 0.1 or more and less than 1.0 mmol / g
  • the (meth) acryloyl group concentration is 0.2 to 2.0 mmol / g
  • the concentration ratio ⁇ (meth) acryloyl group concentration A civil engineering / building material obtained using a resin composition having a value of / allyl ether group concentration> of 1.2 to 10 is disclosed (for example, see Patent Document 1).
  • the civil engineering and building materials have excellent coating surface curability, water resistance, and storage stability, and are actually implemented at many sites.
  • the coating film surface shows a remarkable curing behavior compared to the inside of the coating film due to the strong influence of ultraviolet rays contained in sunlight.
  • a tension-like phenomenon (skinning phenomenon) occurred.
  • the skin tension has caused the problem that wrinkles occur on the surface of the coating film due to the influence of the inclination of the construction surface and the wind during construction.
  • toluhydroquinone or the like which is a polymerization inhibitor described in Patent Document 1
  • toluhydroquinone or the like which is a polymerization inhibitor described in Patent Document 1
  • the room temperature curability itself of the coating film is poor.
  • the problem to be solved by the present invention is to provide a urethane (meth) acrylate resin composition that suppresses the occurrence of wrinkles on the surface of the coating film and is excellent in room temperature curability and storage stability.
  • the inventors of the present invention while pursuing research to solve the above-mentioned problems, paid attention to the polymerization inhibitor and conducted diligent research. As a result, the present inventors have found that the above problem can be solved only when a specific polymerization inhibitor is used, and have completed the present invention.
  • the present invention relates to a urethane (urethane (meth) acrylate resin (A) having a (meth) acryloyl group and an allyl ether group, a polymerizable unsaturated monomer (B), and a polymerization inhibitor (C) ( A urethane (meth) acrylate, wherein the polymerization inhibitor (C) contains a hindered phenol compound (C-1) and a hindered amine compound (C-2) in the (meth) acrylate resin composition A resin composition and a coating material obtained by using the resin composition are provided.
  • a resin composition and a coating material obtained by using the resin composition are provided.
  • the urethane (meth) acrylate resin composition of the present invention suppresses generation of wrinkles on the surface of the coating film, and is excellent in room temperature curability and storage stability. Moreover, it is excellent in tensile physical properties such as tensile strength and tensile elongation and low odor. Therefore, the urethane (meth) acrylate resin composition of the present invention can be suitably used in fields such as civil engineering, architecture, railways, and roads. Among these, it can be particularly suitably used for road pavement materials, road waterproofing materials, flooring materials, and the like.
  • the urethane (meth) acrylate resin (A) has a (meth) acryloyl group and an allyl ether group, and includes a polyol (a-1), a polyisocyanate (a-2), and a hydroxyl group-containing (meth) acrylic compound. It is obtained by reacting (a-3) and an allyl ether compound (a-4) having a hydroxyl group.
  • polystyrene resin examples include polycarbonate polyol, polyacryl polyol, polyether polyol, polybutadiene polyol, hydrogenated polybutadiene polyol, and polyester polyol. These polyols may be used alone or in combination of two or more. Among these, it is preferable to use a polyether polyol from the viewpoint of room temperature curability.
  • polyether polyol examples include polyethylene glycol and polypropylene obtained by ring-opening polymerization of a polymerizable monomer such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran using a diol compound such as ethylene glycol and propylene glycol as an initiator.
  • a polymerizable monomer such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran using a diol compound such as ethylene glycol and propylene glycol as an initiator.
  • examples thereof include glycol, polybutylene glycol, polytetramethylene glycol, and the like, and may be a block or random copolymer obtained by polymerizing two or more of the above monomers.
  • the number average molecular weight of the polyol (a-1) is preferably in the range of 500 to 5,000, more preferably in the range of 700 to 3,000, from the viewpoints of room temperature curability and tensile properties.
  • the number average molecular weight of the polyol (a-1) is a value measured under the following conditions by gel permeation chromatography (GPC) method.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. “TSKgel G5000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 “TSKgel G4000” (7.8 mmID ⁇ 30 cm) ⁇ 1 “TSKgel G3000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • the polyisocyanate (a-2) only needs to have two or more isocyanate groups in the molecule.
  • aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, and the like.
  • Examples of the (meth) acrylic compound (a-3) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • (Meth) acrylic acid alkyl ester having a hydroxyl group such as polyethylene glycol monoacrylate, polypropylene glycol monoacrylate and the like can be used.
  • 2-hydroxyethyl (meth) acrylate is preferably used from the viewpoints of availability, reactivity, and the like, and 2-hydroxyethyl methacrylate is preferable from the viewpoint of skin irritation of the coating material and room temperature curing. Particularly preferred.
  • (meth) acrylic compound refers to one or both of a methacrylic compound and an acrylic compound
  • (meth) acrylate refers to one or both of methacrylate and acrylate.
  • Acryloyl group means one or both of methacryloyl group and acryloyl group
  • (meth) acrylic acid means one or both of methacrylic acid and acrylic acid
  • (meth) acrylic monomer Means one or both of a methacrylic monomer and an acrylic monomer.
  • allyl ether compound (a-4) examples include ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl ether, propylene glycol monoallyl ether, and dipropylene glycol monoallyl ether.
  • Tripropylene glycol monoallyl ether Tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, hexylene glycol monoallyl ether, octylene glycol monoallyl ether, trimethylol Propane diallyl ether, glyceryl diallyl ether, pentaerythritol triallyl ether, etc. It can be used. Among these, it is preferable to use pentaerythritol triallyl ether from the viewpoint of tensile properties and durability.
  • the urethane (meth) acrylate resin (A) for example, the polyol (a-1) and the polyisocyanate (a-2) are reacted to obtain a urethane prepolymer having an isocyanate group, , A method of reacting the (meth) acrylic compound (a-3) and the allyl ether compound (a-4), and a method of bringing the components (a-1) to (a-4) together and reacting them. It is done.
  • the former method is preferable from the viewpoint of reactivity control and tensile physical properties of the coating material.
  • the molar ratio [NCO / OH] of the polyol (a-1) and the polyisocyanate (a-2) is preferably in the range of 1.1 to 3.0 from the viewpoint of tensile properties and durability.
  • the range of 2 to 2.5 is more preferable.
  • the (meth) acrylic compound (a-3) and the allyl ether compound (a-4) are residual urethane prepolymers obtained by reacting the polyol (a-1) with the polyisocyanate (a-2). It is preferable to charge so that it may become equivalent to an isocyanate group.
  • the molar ratio [(a-3) / (a-4)] of the (meth) acrylic compound (a-3) and the allyl ether compound (a-4) is room temperature curability, wrinkle suppression, tensile properties
  • the range of 90/10 to 20/80 is preferable, and the range of 70/30 to 40/60 is more preferable.
  • the number average molecular weight of the urethane (meth) acrylate resin (A) obtained by the above method is preferably in the range of 800 to 20,000, more preferably in the range of 1,200 to 11,000.
  • the number average molecular weight of the urethane (meth) acrylate resin (A) is a value obtained in the same manner as the method for measuring the number average molecular weight of the polyol (a-1).
  • the polymerizable unsaturated monomer (B) is a reactive diluent for the urethane (meth) acrylate resin (A), and a (meth) acrylic monomer is preferably used.
  • a (meth) acrylic monomer is preferably used.
  • These radically polymerizable monomers (B) may be used alone or in combination of two or more. Among these, it is preferable to use methyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and phenoxyethyl (meth) acrylate from the viewpoint of tensile properties and the like.
  • the mass ratio [(A) / (B)] of the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer (B) is 20/80 to 80/20 from the viewpoint of tensile properties and the like.
  • the range of 30/70 to 70/30 is more preferable, and the range of 50/50 to 70/30 is particularly preferable.
  • radical polymerization inhibitor (C) be used in combination with a hindered phenol compound (C-1) and a hindered amine compound (C-2).
  • C-1 hindered phenol compound
  • C-2 hindered amine compound
  • Examples of the hindered phenol compound (C-1) include dibutylhydroxytoluene, tert-butylcatechol, triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4hydroxyphenyl) propionate].
  • IRGANOX 245" manufactured by BASF Japan Ltd.
  • IRGANOX 1010 pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • IRGANOX 1076 Octadecyl
  • thiodiethylenebis 3- (3,5-di-tert -Butyl-4-hydroxy Phenyl) propionate]
  • IRGANOX 1035 manufactured by BASF Japan Ltd.
  • IRGANOX 1135 "manufactured by BASF Japan Ltd.
  • 4,6-bis diodecylthio
  • dibutylhydroxytoluene and tert-butylcatechol are preferable from the viewpoint of further improving room temperature curability and wrinkle suppression when used in combination with the hindered amine compound (C-2), and are used in combination with the hindered amine compound (C-2). From the viewpoint, dibutylhydroxytoluene is particularly preferable.
  • Examples of the hindered amine compound (C-2) include 4H-2,2,6,6-tetramethylpiperidino-1-oxyl (“Polystop 7300P”, manufactured by Hakuto Co., Ltd.), bis (1,2 , 2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (“Tinvin 765”, manufactured by BASF Japan Ltd.), cyclohexane and N-butyl peroxide 2,2,6,6-tetramethyl-4-piperidinamine-2,4,6-trichloro 1,3,5-triazine reaction product and 2-aminoethanol reaction product ("Tinuvin 152", manufactured by BASF Japan Ltd.), bis (2,2,6,6-tetramethyl-1- (octyloxy) decanedioate -4-piperidinyl) ester ("Tinvin 123", manufactured by BASF Corporation)), reaction product of 1,1-dimethylethyl
  • 4H-2,2,6,6-tetramethylpiperidino-1-oxyl (“Polystop 7300P”, manufactured by Hakuto Co., Ltd.), bis (1, 2,2,6,6-pentamethyl-4-piperidyl) sebacate and a mixture of methyl 1,2,2,6,6-pentamethyl-4-piperidylsebacate (“Tinvin 765”, manufactured by BASF Japan Ltd.)
  • 4H-2,2,6,6-tetramethylpiperidino-1-oxyl (“Polystop 7300P”, manufactured by Hakuto Co., Ltd.) is particularly preferable.
  • the amount of the polymerization inhibitor (C) used is that the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer are used from the viewpoints of wrinkle suppression on the coating film surface, room temperature curability, and storage stability.
  • the range of 0.005 to 3 parts by mass is preferable with respect to the total of 100 parts by mass of (B), more preferably 0.01 to 2 parts by mass, and particularly preferably 0.05 to 1 part by mass.
  • the mass ratio [(C-1) / (C-2)] of the hindered phenol compound (C-1) and the hindered amine compound (C-2) is particularly from the viewpoint of room temperature curability and storage stability.
  • the range of 95/5 to 30/70 is preferable, and the range of 90/10 to 60/40 is more preferable.
  • polymerization inhibitor (C) may be used in combination with a known polymerization inhibitor other than (C-1) and (C-2) as long as the effects of the present invention are not impaired. .
  • toluhydroquinone As the known polymerization inhibitor, toluhydroquinone, hydroquinone, 1,4-naphthoquinone, parabenquinone, toluhydronone, p-tert-butylcatechol, 2,6-tert-butyl-4-methylphenol, etc. are used. Can do.
  • the urethane (meth) acrylate resin composition of the present invention contains the urethane (meth) acrylate resin (A), the polymerizable unsaturated monomer (B), and the polymerization inhibitor (C). Depending on the case, other additives may be contained.
  • Examples of the other additives include petroleum wax, curing agent, curing accelerator, antioxidant, anti-aging agent, pigment, thixotropic agent, solvent, filler, process oil, plasticizer, reinforcing material, bone Materials, flame retardants, stabilizers and the like can be used.
  • it may contain a petroleum wax. preferable.
  • a curing agent and a curing accelerator when further improving the room temperature curability, it is preferable to add a curing agent and a curing accelerator during construction.
  • a petroleum wax (D) having a melting point of 43 to 72 ° C. As the petroleum wax.
  • a petroleum wax having a melting point of 48 to 66 ° C. is more preferable, and a petroleum wax having a melting point of 48 to 60 ° C. is particularly preferable.
  • Specific examples of the petroleum wax (D) include paraffin wax, microcrystalline wax, petrolactam, and the like.
  • the polymerizable unsaturated monomer (B) and the polymerization inhibitor (C) From the viewpoint of compatibility, it is particularly preferable to use paraffin wax.
  • the melting point of the petroleum wax (D) indicates the melting point measured based on JIS K2235.
  • the amount of the petroleum wax (D) used is based on 100 parts by mass of the polymerization inhibitor (C) from the viewpoint of compatibility with the polymerizable unsaturated monomer (B) and the polymerization inhibitor (C).
  • the range is preferably 200 to 500 parts by mass, and more preferably 200 to 400 parts by mass.
  • an organic peroxide from the viewpoint of room temperature curing.
  • diacyl peroxide, peroxyester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxide Oxyketal type, alkyl perester type, percarbonate type and the like can be used.
  • These curing agents are appropriately selected depending on curing conditions and the like.
  • the curing agent is used in an amount of 0.5 to about 100 parts by mass of the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer (B) from the viewpoint of room temperature curing.
  • the range of 10 parts by mass is preferable, and the range of 1 to 5 parts by mass is more preferable.
  • the curing accelerator is a substance having an action of decomposing an organic peroxide of the curing agent by a redox reaction and facilitating generation of active radicals.
  • a cobalt-based organic material such as cobalt naphthenate or cobalt octylate.
  • Metal salts such as acid salts, zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, metal chelates such as vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate, aniline, N, N-dimethylaniline , N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, ethylene oxide adduct of N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p -Toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxy
  • the amount of the curing accelerator used is in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass in total of the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer (B).
  • the range of 0.5 to 3 parts by mass is more preferable.
  • Example 1 A four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 500 parts by mass of polytetramethylene glycol (number average molecular weight 1,000) and 174 parts by mass of tolylene diisocyanate under a nitrogen stream The mixture was reacted at 80 ° C. for 4 hours and cooled to 50 ° C. Next, 100 parts by mass of 2-hydroxyethyl methacrylate and 56 parts by mass of pentaerythritol triallyl ether were added under an air stream and reacted at 90 ° C. for 5 hours.
  • urethane methacrylate resin (A-1) having a number average molecular weight of 1,666 was obtained. 70 parts by mass of the urethane methacrylate resin (A-1) obtained, 30 parts by mass of methyl methacrylate, 0.04 parts by mass of dibutylhydroxytoluene, 4H-2,2,6,6-tetramethylpiperidino-1-oxyl ("Polystop 7300P", manufactured by Hakuto Co., Ltd.) 0.03 parts by mass and 0.2 parts by mass of paraffin wax having a melting point of 54 ° C. were mixed and stirred to obtain a urethane methacrylate resin composition.
  • Examples 2 to 4 Comparative Examples 1 to 5
  • a urethane methacrylate resin composition was obtained in the same manner as in Example 1 except that the type and / or amount of the polymerization inhibitor (C) used was changed as shown in Tables 1 and 2.
  • A The viscosity after the stability test is less than 1.4 times that before the test.
  • B The viscosity after the stability test is 1.4 times or more and less than 1.5 times compared to before the test.
  • C The viscosity after the stability test is 1.5 times or more compared with that before the test.
  • Example 4 is an aspect which contains many hindered amine compounds as a polymerization inhibitor, the storage stability was somewhat insufficient. However, it was found that the surface wrinkle suppression and the room temperature curability were excellent.
  • Comparative Examples 1 and 2 were embodiments in which no hindered amine was contained as a polymerization inhibitor, but it was found that the effect of suppressing wrinkle on the coating film surface was poor.
  • the comparative examples 3 and 4 are the aspects which do not contain hindered phenol as a polymerization inhibitor, it turned out that normal temperature curability is inferior and storage stability is also inadequate.
  • the comparative example 5 is the aspect which used tolhydroquinone as a polymerization inhibitor, it turned out that normal temperature curing property is unsatisfactory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Abstract

The problem to be solved by the present invention is to provide a urethane (meth)acrylate resin composition which enables the prevention of wrinkling occurring on the surface of a coating film and has excellent curability at ambient temperature and excellent storage stability. The present invention relates to a urethane (meth)acrylate resin composition comprising (A) a urethane (meth)acrylate resin having a (meth)acryloyl group and an allyl ether group, (B) a polymerizable unsaturated monomer (B) and (C) a polymerization inhibitor, said composition being characterized in that the polymerization inhibitor (C) comprises a hindered phenol compound (C-1) and a hindered amine compound (C-2).

Description

ウレタン(メタ)アクリレート樹脂組成物及び被覆材Urethane (meth) acrylate resin composition and coating material
 本発明は、塗膜表面のシワ発生を抑制し、かつ常温硬化性、貯蔵安定性にも優れるウレタン(メタ)アクリレート樹脂組成物及びそれを用いて得られた被覆材に関するものである。 The present invention relates to a urethane (meth) acrylate resin composition that suppresses generation of wrinkles on the surface of a coating film, and is excellent in room temperature curability and storage stability, and a coating material obtained using the same.
 (メタ)アクリロイル基及びアリルエーテル基を有するウレタン(メタ)アクリレート樹脂は、耐水性や柔軟性等に優れることから道路用防水材や道路用舗装材等の土木建築材に広く利用されている。 Urethane (meth) acrylate resins having a (meth) acryloyl group and an allyl ether group are widely used in civil engineering and building materials such as road waterproofing materials and road paving materials because of their excellent water resistance and flexibility.
 前記土木建築材としては、例えば、(メタ)アクリロイル基とアリルエーテル基とを有するポリエーテルウレタンアクリレート樹脂(A)と重合性不飽和単量体(B)とからなり、ウレタン(メタ)アクリレート樹脂中のアリルエーテル基濃度が0.1以上1.0未満mmol/g、及び(メタ)アクリロイル基濃度が0.2~2.0mmol/gであり、且つその濃度比<(メタ)アクリロイル基濃度/アリルエーテル基濃度>の値が、1.2~10である樹脂組成物を用いて得られた土木建築材が開示されている(例えば、特許文献1を参照。)。 Examples of the civil engineering building material include a urethane urethane acrylate resin (A) having a (meth) acryloyl group and an allyl ether group and a polymerizable unsaturated monomer (B), and a urethane (meth) acrylate resin. The allyl ether group concentration is 0.1 or more and less than 1.0 mmol / g, and the (meth) acryloyl group concentration is 0.2 to 2.0 mmol / g, and the concentration ratio <(meth) acryloyl group concentration A civil engineering / building material obtained using a resin composition having a value of / allyl ether group concentration> of 1.2 to 10 is disclosed (for example, see Patent Document 1).
 前記土木建築材は、塗膜表面硬化性や耐水性、貯蔵安定性に優れるものであり、実際多くの現場で実施工されている。しかしながら、太陽光の照射が著しく厳しい夏場等において施工した場合には、太陽光に含まれる紫外線の強い影響により、塗膜表面が塗膜内部に比べ著しい硬化挙動を示すため、塗膜に皮が張ったような現象(皮張り現象)が起こっていた。そして、その皮張りが施工面の傾斜や施工中の風等の影響により、塗膜表面にシワが発生するとの問題を引き起こしていた。 The civil engineering and building materials have excellent coating surface curability, water resistance, and storage stability, and are actually implemented at many sites. However, when it is installed in the summer, where sunlight irradiation is extremely severe, the coating film surface shows a remarkable curing behavior compared to the inside of the coating film due to the strong influence of ultraviolet rays contained in sunlight. A tension-like phenomenon (skinning phenomenon) occurred. And the skin tension has caused the problem that wrinkles occur on the surface of the coating film due to the influence of the inclination of the construction surface and the wind during construction.
 また、前記シワ発生を抑制する手法として、前記紫外線照射により塗膜表面に発生するラジカルを捕捉することを目的として、前記特許文献1に記載されている重合禁止剤であるトルハイドロキノン等を用いた場合には、シワの抑制には効果があるものの、塗膜の常温硬化性自体が不良となる問題があった。 In addition, as a technique for suppressing the generation of wrinkles, toluhydroquinone or the like, which is a polymerization inhibitor described in Patent Document 1, was used for the purpose of capturing radicals generated on the coating film surface by the ultraviolet irradiation. In such a case, although there is an effect in suppressing wrinkles, there is a problem that the room temperature curability itself of the coating film is poor.
特開平8-231655号公報JP-A-8-231655
 本発明が解決しようとする課題は、塗膜表面のシワ発生を抑制し、かつ常温硬化性、貯蔵安定性にも優れるウレタン(メタ)アクリレート樹脂組成物を提供することである。 The problem to be solved by the present invention is to provide a urethane (meth) acrylate resin composition that suppresses the occurrence of wrinkles on the surface of the coating film and is excellent in room temperature curability and storage stability.
 本発明者等は、前記課題を解決すべく研究を進める中で、重合禁止剤に着目し、鋭意研究を進めた。
 その結果、特定の重合禁止剤を用いた場合に限り、前記課題を解決できることを見出し、本発明を完成するに至った。
The inventors of the present invention, while pursuing research to solve the above-mentioned problems, paid attention to the polymerization inhibitor and conducted diligent research.
As a result, the present inventors have found that the above problem can be solved only when a specific polymerization inhibitor is used, and have completed the present invention.
 即ち、本発明は、(メタ)アクリロイル基及びアリルエーテル基を有するウレタン(メタ)アクリレート樹脂(A)、重合性不飽和単量体(B)、及び重合禁止剤(C)を含有するウレタン(メタ)アクリレート樹脂組成物において、前記重合禁止剤(C)が、ヒンダードフェノール化合物(C-1)及びヒンダードアミン化合物(C-2)を含有するものであることを特徴とするウレタン(メタ)アクリレート樹脂組成物及びそれを用いて得られた被覆材を提供するものである。 That is, the present invention relates to a urethane (urethane (meth) acrylate resin (A) having a (meth) acryloyl group and an allyl ether group, a polymerizable unsaturated monomer (B), and a polymerization inhibitor (C) ( A urethane (meth) acrylate, wherein the polymerization inhibitor (C) contains a hindered phenol compound (C-1) and a hindered amine compound (C-2) in the (meth) acrylate resin composition A resin composition and a coating material obtained by using the resin composition are provided.
 本発明のウレタン(メタ)アクリレート樹脂組成物は、特定の重合禁止剤を用いることにより、塗膜表面のシワ発生を抑制し、かつ常温硬化性、貯蔵安定性にも優れるものである。また、引張り強度や引張り伸び率等の引張り物性や低臭性にも優れるものである。
 従って、本発明のウレタン(メタ)アクリレート樹脂組成物は、土木、建築、鉄道、道路等の分野において好適に使用することができる。なかでも、道路用舗装材や道路用防水材、床材等に特に好適に使用することができる。
By using a specific polymerization inhibitor, the urethane (meth) acrylate resin composition of the present invention suppresses generation of wrinkles on the surface of the coating film, and is excellent in room temperature curability and storage stability. Moreover, it is excellent in tensile physical properties such as tensile strength and tensile elongation and low odor.
Therefore, the urethane (meth) acrylate resin composition of the present invention can be suitably used in fields such as civil engineering, architecture, railways, and roads. Among these, it can be particularly suitably used for road pavement materials, road waterproofing materials, flooring materials, and the like.
 前記ウレタン(メタ)アクリレート樹脂(A)は、(メタ)アクリロイル基とアリルエーテル基を有するものであり、ポリオール(a-1)、ポリイソシアネート(a-2)、水酸基を有する(メタ)アクリル化合物(a-3)及び水酸基を有するアリルエーテル化合物(a-4)を反応させて得られるものである。 The urethane (meth) acrylate resin (A) has a (meth) acryloyl group and an allyl ether group, and includes a polyol (a-1), a polyisocyanate (a-2), and a hydroxyl group-containing (meth) acrylic compound. It is obtained by reacting (a-3) and an allyl ether compound (a-4) having a hydroxyl group.
 前記ポリオール(a-1)としては、例えば、ポリカーボネートポリオール、ポリアクリルポリオール、ポリエーテルポリオール、ポリブタジエンポリオール、水添ポリブタジエンポリオール、ポリエステルポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。これらの中でも、常温硬化性の観点から、ポリエーテルポリオールを用いることが好ましい。 Examples of the polyol (a-1) include polycarbonate polyol, polyacryl polyol, polyether polyol, polybutadiene polyol, hydrogenated polybutadiene polyol, and polyester polyol. These polyols may be used alone or in combination of two or more. Among these, it is preferable to use a polyether polyol from the viewpoint of room temperature curability.
 前記ポリエーテルポリオールとしては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、テトラヒドロフラン等の重合性モノマーをエチレングリコール、プロピレングリコール等のジオール化合物を開始剤として開環重合させることにより得られるポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリテトラメチレングリコール等が挙げられ、上記のモノマーを2種類以上重合させたブロック及びランダムコポリマーでもよい。これらの中でも、常温硬化性等の観点から、ポリテトラメチレングリコールを用いることが好ましい。 Examples of the polyether polyol include polyethylene glycol and polypropylene obtained by ring-opening polymerization of a polymerizable monomer such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran using a diol compound such as ethylene glycol and propylene glycol as an initiator. Examples thereof include glycol, polybutylene glycol, polytetramethylene glycol, and the like, and may be a block or random copolymer obtained by polymerizing two or more of the above monomers. Among these, it is preferable to use polytetramethylene glycol from the viewpoint of room temperature curability and the like.
 前記ポリオール(a-1)の数平均分子量としては、常温硬化性や引張物性等の観点から、500~5,000の範囲が好ましく、700~3,000の範囲がより好ましい。なお、前記ポリオール(a-1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した値を示す。 The number average molecular weight of the polyol (a-1) is preferably in the range of 500 to 5,000, more preferably in the range of 700 to 3,000, from the viewpoints of room temperature curability and tensile properties. The number average molecular weight of the polyol (a-1) is a value measured under the following conditions by gel permeation chromatography (GPC) method.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
“TSKgel G5000” (7.8 mm ID × 30 cm) × 1 “TSKgel G4000” (7.8 mmID × 30 cm) × 1 “TSKgel G3000” (7.8 mm ID × 30 cm) × 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
 前記ポリイソシアネート(a-2)は、分子中にイソシアネート基を2個以上有するものであればよく、例えば、フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネートや、ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族または脂肪族環式構造含有ジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、メチレンジフェニルジシソシアネートのホルマリン縮合体、4,4’-ジフェニルメタンジイソシアネートのカルボジイミド変性体等の芳香族系ポリイソシアネート等を用いることができる。これらの中でも、引張物性等の観点からトリレンジイソシアネートが好ましい。 The polyisocyanate (a-2) only needs to have two or more isocyanate groups in the molecule. For example, aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, and the like. , Lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate and other aliphatic or aliphatic cyclic structure-containing diisocyanates, xylylene diisocyanate, tolylene diisocyanate, diphenylmethane Diisocyanate, phenylene diisocyanate, polyphenylene poly Chi Ren polyisocyanate, formalin condensate of methylene diphenyl dicyanamide Socia titanate, can be used aromatic polyisocyanates such as carbodiimide modified products, etc. 4,4'-diphenylmethane diisocyanate. Among these, tolylene diisocyanate is preferable from the viewpoint of tensile properties and the like.
 前記(メタ)アクリル化合物(a-3)は、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸アルキルエステル、ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート等を用いることができる。これらの中でも、入手容易性や反応性等の観点から、2-ヒドロキシエチル(メタ)アクリレートを用いることが好ましく、被覆材の皮膚刺激性等や常温硬化性の観点から、2-ヒドロキシエチルメタクリレートが特に好ましい。 Examples of the (meth) acrylic compound (a-3) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. (Meth) acrylic acid alkyl ester having a hydroxyl group such as polyethylene glycol monoacrylate, polypropylene glycol monoacrylate and the like can be used. Among these, 2-hydroxyethyl (meth) acrylate is preferably used from the viewpoints of availability, reactivity, and the like, and 2-hydroxyethyl methacrylate is preferable from the viewpoint of skin irritation of the coating material and room temperature curing. Particularly preferred.
 なお、本発明において、「(メタ)アクリル化合物」とは、メタクリル化合物とアクリル化合物の一方又は両方をいい、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリル単量体」とは、メタクリル単量体とアクリル単量体の一方又は両方をいう。 In the present invention, “(meth) acrylic compound” refers to one or both of a methacrylic compound and an acrylic compound, and “(meth) acrylate” refers to one or both of methacrylate and acrylate. ") Acryloyl group" means one or both of methacryloyl group and acryloyl group, and "(meth) acrylic acid" means one or both of methacrylic acid and acrylic acid, and "(meth) acrylic monomer" Means one or both of a methacrylic monomer and an acrylic monomer.
 前記アリルエーテル化合物(a-4)としては、例えば、エチレングリコールモノアリルエーテル、ジエチレングリコールモノアリルエーテル、トリエチレングリコールモノアリルエーテル、ポリエチレングリコールモノアリルエーテル、プロピレングリコールモノアリルエーテル、ジプロピレングリコールモノアリルエーテル、トリプロピレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、1,2-ブチレングリコールモノアリルエーテル、1,3-ブチレングリコールモノアリルエーテル、ヘキシレングリコールモノアリルエーテル、オクチレングリコールモノアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ペンタエリスリトールトリアリルエーテル等を用いることができる。これらの中でも、引張物性や耐久性等の観点から、ペンタエリスリトールトリアリルエーテルを用いることが好ましい。 Examples of the allyl ether compound (a-4) include ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl ether, propylene glycol monoallyl ether, and dipropylene glycol monoallyl ether. , Tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, hexylene glycol monoallyl ether, octylene glycol monoallyl ether, trimethylol Propane diallyl ether, glyceryl diallyl ether, pentaerythritol triallyl ether, etc. It can be used. Among these, it is preferable to use pentaerythritol triallyl ether from the viewpoint of tensile properties and durability.
 前記ウレタン(メタ)アクリレート樹脂(A)の製造方法としては、例えば、前記ポリオール(a-1)と前記ポリイソシアネート(a-2)とを反応させてイソシアネート基を有するウレタンプレポリマーを得、次いで、前記(メタ)アクリル化合物(a-3)及び前記アリルエーテル化合物(a-4)を反応させる方法や、前記成分(a-1)~(a-4)を一括に仕込み反応させる方法が挙げられる。これらの中でも、反応性制御や被覆材の引張物性等の観点から、前者の方法が好ましい。 As a method for producing the urethane (meth) acrylate resin (A), for example, the polyol (a-1) and the polyisocyanate (a-2) are reacted to obtain a urethane prepolymer having an isocyanate group, , A method of reacting the (meth) acrylic compound (a-3) and the allyl ether compound (a-4), and a method of bringing the components (a-1) to (a-4) together and reacting them. It is done. Among these, the former method is preferable from the viewpoint of reactivity control and tensile physical properties of the coating material.
 前記ポリオール(a-1)と前記ポリイソシアネート(a-2)のモル比[NCO/OH]としては、引張物性や耐久性等の観点から、1.1~3.0の範囲が好ましく、1.2~2.5の範囲がより好ましい。 The molar ratio [NCO / OH] of the polyol (a-1) and the polyisocyanate (a-2) is preferably in the range of 1.1 to 3.0 from the viewpoint of tensile properties and durability. The range of 2 to 2.5 is more preferable.
 前記(メタ)アクリル化合物(a-3)及び前記アリルエーテル化合物(a-4)は、前記ポリオール(a-1)と前記ポリイソシアネート(a-2)が反応して得られるウレタンプレポリマーの残存イソシアネート基と当量となるように仕込むことが好ましい。 The (meth) acrylic compound (a-3) and the allyl ether compound (a-4) are residual urethane prepolymers obtained by reacting the polyol (a-1) with the polyisocyanate (a-2). It is preferable to charge so that it may become equivalent to an isocyanate group.
 前記(メタ)アクリル化合物(a-3)と前記アリルエーテル化合物(a-4)のモル比[(a-3)/(a-4)]としては、常温硬化性やシワの抑制、引張物性等の観点から、90/10~20/80の範囲が好ましく、70/30~40/60の範囲がより好ましい。 The molar ratio [(a-3) / (a-4)] of the (meth) acrylic compound (a-3) and the allyl ether compound (a-4) is room temperature curability, wrinkle suppression, tensile properties In view of the above, the range of 90/10 to 20/80 is preferable, and the range of 70/30 to 40/60 is more preferable.
 以上の方法により得られるウレタン(メタ)アクリレート樹脂(A)の数平均分子量としては、800~20,000の範囲が好ましく、1,200~11,000の範囲がより好ましい。なお、前記ウレタン(メタ)アクリレート樹脂(A)の数平均分子量は、前記ポリオール(a-1)の数平均分子量の測定方法と同様にして得られた値を示す。 The number average molecular weight of the urethane (meth) acrylate resin (A) obtained by the above method is preferably in the range of 800 to 20,000, more preferably in the range of 1,200 to 11,000. The number average molecular weight of the urethane (meth) acrylate resin (A) is a value obtained in the same manner as the method for measuring the number average molecular weight of the polyol (a-1).
 前記重合性不飽和単量体(B)は、前記ウレタン(メタ)アクリレート樹脂(A)の反応性希釈剤であり、(メタ)アクリル単量体を用いることが好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、デシル(メタ)アクリレート、2-ハイドロキシエチル(メタ)アクリレート、2-ハイドロキシプロピル(メタ)アクリレート、β-エトキシエチル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ポリカプロラクトン(メタ)アクリレート、ジエチレングリコールモノメチルエーテルモノ(メタ)アクリレート、ジプロピレングリコールモノメチルエーテルモノ(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等を用いることができる。これらのラジカル重合性単量体(B)は、単独で用いても2種以上を併用してもよい。これらの中でも、引張物性等の観点から、(メタ)アクリル酸メチル、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートを用いることが好ましい。 The polymerizable unsaturated monomer (B) is a reactive diluent for the urethane (meth) acrylate resin (A), and a (meth) acrylic monomer is preferably used. For example, methyl (meth) Acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) Acrylate, decyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, β-ethoxyethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, diethylamino Ethyl (meta Acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, polycaprolactone (meth) acrylate, diethylene glycol monomethyl ether mono (meth) acrylate, dipropylene glycol monomethyl ether mono (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate Dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, tris (2-hydroxyethyl) isocyanur (meth) acrylate, phenoxyethyl (meth) acrylate, and the like can be used. These radically polymerizable monomers (B) may be used alone or in combination of two or more. Among these, it is preferable to use methyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and phenoxyethyl (meth) acrylate from the viewpoint of tensile properties and the like.
 前記ウレタン(メタ)アクリレート樹脂(A)と前記重合性不飽和単量体(B)の質量割合[(A)/(B)]は、引張物性等の観点から、20/80~80/20の範囲が好ましく、30/70~70/30の範囲が更に好ましく、50/50~70/30の範囲が特に好ましい。 The mass ratio [(A) / (B)] of the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer (B) is 20/80 to 80/20 from the viewpoint of tensile properties and the like. The range of 30/70 to 70/30 is more preferable, and the range of 50/50 to 70/30 is particularly preferable.
 前記ラジカル重合禁止剤(C)は、ヒンダードフェノール化合物(C-1)及びヒンダードアミン化合物(C-2)を併用することが必須である。前記ラジカル重合禁止剤として両者を併用しない場合には、塗膜表面のシワ抑制、常温硬化性、貯蔵安定性全てを満足することができない。 It is essential that the radical polymerization inhibitor (C) be used in combination with a hindered phenol compound (C-1) and a hindered amine compound (C-2). When both are not used together as the radical polymerization inhibitor, it is not possible to satisfy all of wrinkle suppression, room temperature curability and storage stability on the surface of the coating film.
 前記ヒンダードフェノール化合物(C-1)としては、例えば、ジブチルヒドロキシトルエン、tert-ブチルカテコール、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4ヒドロキシフェニル)プロピオネート](「IRGANOX 245」、BASFジャパン株式会社製))、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX 1010」、BASFジャパン株式会社製))、オクタデシル[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(「IRGANOX 1076」、BASFジャパン株式会社製))、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](「IRGANOX 1035」、BASFジャパン株式会社製)、ベンゼンプロパン酸-3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9側鎖アルキルエステル(「IRGANOX 1135」、BASFジャパン株式会社製)、4,6-ビス(ドデシルチオメチル)-o-クレゾール(「IRGANOX 1726」、BASFジャパン株式会社製)、N-フェニルベンゼンアミンと2,4,4-トリメチルペンテンとの反応生成物(「IRGANOX 5057」、BASFジャパン株式会社製)、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(「Sumilizer GM」、住友化学株式会社製)、3,9-ビス[2-〔3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]2,4,8,10-テトラオキサスピロ〔5・5〕ウンデカン(「Sumilizer GA-80」、住友化学株式会社製)、2,6-ジ-tert-ブチル-4-メチルフェノール(「ノクラック200」、大内新興化学工業株式会社製)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)(「ノクラックNS-6」、大内新興化学工業株式会社製)、2,5-ジ-tert-アミルハイドロキノン(「ノクラックDAH」、大内新興化学工業株式会社製)等を用いることができる。これらの中でも、ヒンダードアミン化合物(C-2)と併用し、常温硬化性、シワ抑制を更に向上できる観点から、ジブチルヒドロキシトルエン、tert-ブチルカテコールが好ましく、ヒンダードアミン化合物(C-2)との併用の観点から、ジブチルヒドロキシトルエンが特に好ましい。 Examples of the hindered phenol compound (C-1) include dibutylhydroxytoluene, tert-butylcatechol, triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4hydroxyphenyl) propionate]. ("IRGANOX 245", manufactured by BASF Japan Ltd.)), pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ("IRGANOX 1010", manufactured by BASF Japan Ltd.)) Octadecyl [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (“IRGANOX 1076”, manufactured by BASF Japan Ltd.)], thiodiethylenebis [3- (3,5-di-tert -Butyl-4-hydroxy Phenyl) propionate] ( "IRGANOX 1035", manufactured by BASF Japan Ltd.), benzenepropanoic acid 3,5-bis (1,1-dimethylethyl) -4-hydroxy -C 7 -C 9 side chain alkyl ester ( " IRGANOX 1135 "manufactured by BASF Japan Ltd.), 4,6-bis (dodecylthiomethyl) -o-cresol (" IRGANOX 1726 "manufactured by BASF Japan Ltd.), N-phenylbenzenamine and 2,4,4- Reaction product with trimethylpentene (“IRGANOX 5057”, manufactured by BASF Japan Ltd.), 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate ("Sumilizer GM", manufactured by Sumitomo Chemical Co., Ltd.), 3,9-bi [2- [3- (t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl] 2,4,8,10-tetraoxaspiro [5 · 5] undecane (“ Sumilizer GA-80 ”(manufactured by Sumitomo Chemical Co., Ltd.), 2,6-di-tert-butyl-4-methylphenol (“ NOCRACK 200 ”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), 2,2′-methylenebis ( 4-Methyl-6-tert-butylphenol) (“NOCRACK NS-6”, manufactured by Ouchi Shinsei Chemical Co., Ltd.), 2,5-di-tert-amylhydroquinone (“NOCRACK DAH”, Ouchi New Chemical Co., Ltd.) Etc.) can be used. Among these, dibutylhydroxytoluene and tert-butylcatechol are preferable from the viewpoint of further improving room temperature curability and wrinkle suppression when used in combination with the hindered amine compound (C-2), and are used in combination with the hindered amine compound (C-2). From the viewpoint, dibutylhydroxytoluene is particularly preferable.
 前記ヒンダードアミン化合物(C-2)としては、例えば、4H-2,2,6,6-テトラメチルピペリジノ-1-オキシル(「ポリストップ7300P」、伯東株式会社製)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(「Tinuvin 765」、BASFジャパン株式会社製)、シクロヘキサンと過酸化N-ブチル2,2,6,6-テトラメチル-4-ピペリジンアミン-2,4,6-トリクロロ1,3,5-トリアジンとの反応生成物と2-アミノエタノールとの反応生成物(「Tinuvin 152」、BASFジャパン株式会社製)、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル(「Tinuvin 123」、BASF株式会社製))、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン(「Hostavin 3058」、クラリアントジャパン株式会社製)等のN-アセチル系ヒンダードアミン化合物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(「サノールLS765」、BASFジャパン株式会社製)、ビス(1,2,2,6,6,-ペンタメチル-4-ピペリジル){[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}ブチルマロネート(「Tinuvin 144」、BASFジャパン株式会社製)、コハク酸ジメチルおよび4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物(「Tinuvin 622LD」、BASFジャパン株式会社製)、プロバンジオイックアシッド[{4-メトキシフェニル}メチレン]-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)エステル(「Hostavin PR-31」、クラリアントジャパン株式会社製)のN-アルキル系ヒンダードアミン化合物等を用いることができる。これらの中でも、貯蔵安定性やシワ抑制の観点から、4H-2,2,6,6-テトラメチルピペリジノ-1-オキシル(「ポリストップ7300P」、伯東株式会社製)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(「Tinuvin 765」、BASFジャパン株式会社製)を用いることが好ましく、4H-2,2,6,6-テトラメチルピペリジノ-1-オキシル(「ポリストップ7300P」、伯東株式会社製)が特に好ましい。 Examples of the hindered amine compound (C-2) include 4H-2,2,6,6-tetramethylpiperidino-1-oxyl (“Polystop 7300P”, manufactured by Hakuto Co., Ltd.), bis (1,2 , 2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (“Tinvin 765”, manufactured by BASF Japan Ltd.), cyclohexane and N-butyl peroxide 2,2,6,6-tetramethyl-4-piperidinamine-2,4,6-trichloro 1,3,5-triazine reaction product and 2-aminoethanol reaction product ("Tinuvin 152", manufactured by BASF Japan Ltd.), bis (2,2,6,6-tetramethyl-1- (octyloxy) decanedioate -4-piperidinyl) ester ("Tinvin 123", manufactured by BASF Corporation)), reaction product of 1,1-dimethylethyl hydroperoxide and octane, N-acetyl-3-dodecyl-1- (2,2,6 , 6-Tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione ("Hostavin 3058", manufactured by Clariant Japan KK) and the like, bis (1,2,2,6,6-) Pentamethyl-4-piperidyl) sebacate (“Sanol LS765”, manufactured by BASF Japan Ltd.), bis (1,2,2,6,6-pentamethyl-4-piperidyl) {[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl} butyl malonate ("Tinvin 144", ASF Japan Ltd.), dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol polymer ("Tinvin 622LD", BASF Japan Ltd.), Provandioic Acid N-alkyl hindered amine compound of [{4-methoxyphenyl} methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidyl) ester ("Hostavin PR-31", manufactured by Clariant Japan KK) Etc. can be used. Among these, 4H-2,2,6,6-tetramethylpiperidino-1-oxyl (“Polystop 7300P”, manufactured by Hakuto Co., Ltd.), bis (1, 2,2,6,6-pentamethyl-4-piperidyl) sebacate and a mixture of methyl 1,2,2,6,6-pentamethyl-4-piperidylsebacate (“Tinvin 765”, manufactured by BASF Japan Ltd.) 4H-2,2,6,6-tetramethylpiperidino-1-oxyl (“Polystop 7300P”, manufactured by Hakuto Co., Ltd.) is particularly preferable.
 前記重合禁止剤(C)の使用量としては、塗膜表面のシワ抑制、常温硬化性、貯蔵安定性の観点から、前記ウレタン(メタ)アクリレート樹脂(A)と前記重合性不飽和単量体(B)の合計100質量部に対し、0.005~3質量部の範囲が好ましく、0.01~2質量部の範囲がより好ましく、0.05~1質量部の範囲が特に好ましい。 The amount of the polymerization inhibitor (C) used is that the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer are used from the viewpoints of wrinkle suppression on the coating film surface, room temperature curability, and storage stability. The range of 0.005 to 3 parts by mass is preferable with respect to the total of 100 parts by mass of (B), more preferably 0.01 to 2 parts by mass, and particularly preferably 0.05 to 1 part by mass.
 前記ヒンダードフェノール化合物(C-1)と前記ヒンダードアミン化合物(C-2)との質量割合[(C-1)/(C-2)]としては、特に常温硬化性や貯蔵安定性の観点から、95/5~30/70の範囲が好ましく、90/10~60/40の範囲がより好ましい。 The mass ratio [(C-1) / (C-2)] of the hindered phenol compound (C-1) and the hindered amine compound (C-2) is particularly from the viewpoint of room temperature curability and storage stability. The range of 95/5 to 30/70 is preferable, and the range of 90/10 to 60/40 is more preferable.
 また、前記重合禁止剤(C)には、本発明の効果を損なわない範囲であれば、前記(C-1)及び前記(C-2)以外の公知の重合禁止剤を併用してもよい。 In addition, the polymerization inhibitor (C) may be used in combination with a known polymerization inhibitor other than (C-1) and (C-2) as long as the effects of the present invention are not impaired. .
 前記公知の重合禁止剤としては、トルハイドロキノン、ハイドロキノン、1,4-ナフトキノン、パラベンキノン、トルハイドロノン、p-tert-ブチルカテコール、2,6-tert-ブチル-4-メチルフェノール等を用いることができる。 As the known polymerization inhibitor, toluhydroquinone, hydroquinone, 1,4-naphthoquinone, parabenquinone, toluhydronone, p-tert-butylcatechol, 2,6-tert-butyl-4-methylphenol, etc. are used. Can do.
 本発明のウレタン(メタ)アクリレート樹脂組成物は、前記ウレタン(メタ)アクリレート樹脂(A)、前記重合性不飽和単量体(B)及び前記重合禁止剤(C)を含有するが、必要に応じてその他の添加剤を含有してもよい。 The urethane (meth) acrylate resin composition of the present invention contains the urethane (meth) acrylate resin (A), the polymerizable unsaturated monomer (B), and the polymerization inhibitor (C). Depending on the case, other additives may be contained.
 前記その他の添加剤としては、例えば、石油ワックス、硬化剤、硬化促進剤、酸化防止剤、老化防止剤、顔料、チキソ性付与剤、溶剤、充填剤、プロセスオイル、可塑剤、補強材、骨材、難燃剤、安定剤等を用いることができる。これらの中でも、前記ラジカル重合性単量体(B)や前記アリルエステル化合物(C)との相溶性を向上させ、更に常温硬化性や引張り物性を向上できる観点から、石油ワックスを含有することが好ましい。また、常温硬化性を更に向上させる際には、施工時に硬化剤、硬化促進剤を配合することが好ましい。 Examples of the other additives include petroleum wax, curing agent, curing accelerator, antioxidant, anti-aging agent, pigment, thixotropic agent, solvent, filler, process oil, plasticizer, reinforcing material, bone Materials, flame retardants, stabilizers and the like can be used. Among these, from the viewpoint of improving the compatibility with the radical polymerizable monomer (B) and the allyl ester compound (C) and further improving the room temperature curability and the tensile physical properties, it may contain a petroleum wax. preferable. Moreover, when further improving the room temperature curability, it is preferable to add a curing agent and a curing accelerator during construction.
 前記石油ワックスとしては、融点が43~72℃の石油ワックス(D)を用いることが前記重合性不飽和単量体(B)や前記重合禁止剤(C)との相溶性の観点から好ましく、融点が48~66℃の石油ワックスが更に好ましく、48~60℃の石油ワックスが特に好ましい。前記石油ワックス(D)としては、具体的には、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等を用いることができ、前記重合性不飽和単量体(B)や前記重合禁止剤(C)との相溶性の観点から、パラフィンワックスを用いることが特に好ましい。なお、前記石油ワックス(D)の融点は、JIS K2235に基づいて測定される融点を示す。 From the viewpoint of compatibility with the polymerizable unsaturated monomer (B) and the polymerization inhibitor (C), it is preferable to use a petroleum wax (D) having a melting point of 43 to 72 ° C. as the petroleum wax. A petroleum wax having a melting point of 48 to 66 ° C. is more preferable, and a petroleum wax having a melting point of 48 to 60 ° C. is particularly preferable. Specific examples of the petroleum wax (D) include paraffin wax, microcrystalline wax, petrolactam, and the like. The polymerizable unsaturated monomer (B) and the polymerization inhibitor (C) From the viewpoint of compatibility, it is particularly preferable to use paraffin wax. The melting point of the petroleum wax (D) indicates the melting point measured based on JIS K2235.
 前記石油ワックス(D)の使用量は、前記重合性不飽和単量体(B)や前記重合禁止剤(C)との相溶性の観点から、前記重合禁止剤(C)100質量部に対して200~500質量部の範囲であることが好ましく、200~400質量部の範囲がより好ましい。 The amount of the petroleum wax (D) used is based on 100 parts by mass of the polymerization inhibitor (C) from the viewpoint of compatibility with the polymerizable unsaturated monomer (B) and the polymerization inhibitor (C). The range is preferably 200 to 500 parts by mass, and more preferably 200 to 400 parts by mass.
 前記硬化剤としては、常温硬化性の観点から有機過酸化物を用いることが好ましく、例えば、ジアシルパーオキサイド系、パーオキシエステル系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等を用いることができる。これらの硬化剤は、養生条件等により適宜選択される。 As the curing agent, it is preferable to use an organic peroxide from the viewpoint of room temperature curing. For example, diacyl peroxide, peroxyester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxide Oxyketal type, alkyl perester type, percarbonate type and the like can be used. These curing agents are appropriately selected depending on curing conditions and the like.
 前記硬化剤の使用量としては、前記ウレタン(メタ)アクリレート樹脂(A)と前記重合性不飽和単量体(B)の合計100質量部に対し、常温硬化性の観点から、0.5~10質量部の範囲が好ましく、1~5質量部の範囲がより好ましい。 The curing agent is used in an amount of 0.5 to about 100 parts by mass of the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer (B) from the viewpoint of room temperature curing. The range of 10 parts by mass is preferable, and the range of 1 to 5 parts by mass is more preferable.
 前記硬化促進剤は、前記硬化剤の有機過酸化物をレドックス反応によって分解し、活性ラジカルの発生を容易にする作用のある物質であり、例えば、ナフテン酸コバルト、オクチル酸コバルト等のコバルト系有機酸塩、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸類、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート類、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-p-トルイジンのエチレンオキサイド付加物、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン類等を用いることができる。 The curing accelerator is a substance having an action of decomposing an organic peroxide of the curing agent by a redox reaction and facilitating generation of active radicals. For example, a cobalt-based organic material such as cobalt naphthenate or cobalt octylate. Metal salts such as acid salts, zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, metal chelates such as vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate, aniline, N, N-dimethylaniline , N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, ethylene oxide adduct of N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p -Toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m- N, N-substituted anilines such as toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline, N, N-substituted-p- Toluidine, amines such as 4- (N, N-substituted amino) benzaldehyde, and the like can be used.
 前記硬化促進剤の使用量としては、前記ウレタン(メタ)アクリレート樹脂(A)と前記重合性不飽和単量体(B)の合計100質量部に対し、0.05~5質量部の範囲が好ましく、0.5~3質量部の範囲が更に好ましい。 The amount of the curing accelerator used is in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass in total of the urethane (meth) acrylate resin (A) and the polymerizable unsaturated monomer (B). The range of 0.5 to 3 parts by mass is more preferable.
 以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
[実施例1]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにポリテトラメチレングリコール(数平均分子量1,000)500質量部とトリレンジイソシアネート174質量部を仕込み、窒素気流下80℃で4時間反応させ、50℃まで冷却した。
 次いで、空気気流下、2-ヒドロキシエチルメタクリレート100質量部とペンタエリスリトールトリアリルエーテル56質量部を加え、90℃で5時間反応させた。NCO%が0.1%以下となったことを確認し、数平均分子量1,666のウレタンメタクリレート樹脂(A-1)を得た。
 得られたウレタンメタクリレート樹脂(A-1)70質量部と、メチルメタクリレート30質量部、ジブチルヒドロキシトルエン0.04質量部、4H-2,2,6,6-テトラメチルピペリジノ-1-オキシル(「ポリストップ7300P」、伯東株式会社製)0.03質量部、融点が54℃のパラフィンワックス0.2質量部を混合、撹拌し、ウレタンメタクリレート樹脂組成物を得た。
[Example 1]
A four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 500 parts by mass of polytetramethylene glycol (number average molecular weight 1,000) and 174 parts by mass of tolylene diisocyanate under a nitrogen stream The mixture was reacted at 80 ° C. for 4 hours and cooled to 50 ° C.
Next, 100 parts by mass of 2-hydroxyethyl methacrylate and 56 parts by mass of pentaerythritol triallyl ether were added under an air stream and reacted at 90 ° C. for 5 hours. After confirming that NCO% was 0.1% or less, urethane methacrylate resin (A-1) having a number average molecular weight of 1,666 was obtained.
70 parts by mass of the urethane methacrylate resin (A-1) obtained, 30 parts by mass of methyl methacrylate, 0.04 parts by mass of dibutylhydroxytoluene, 4H-2,2,6,6-tetramethylpiperidino-1-oxyl ("Polystop 7300P", manufactured by Hakuto Co., Ltd.) 0.03 parts by mass and 0.2 parts by mass of paraffin wax having a melting point of 54 ° C. were mixed and stirred to obtain a urethane methacrylate resin composition.
[実施例2~4、比較例1~5]
 用いる重合禁止剤(C)の種類及び/又は量を表1~2に示すように変更した以外は、実施例1と同様にしてウレタンメタクリレート樹脂組成物を得た。
[Examples 2 to 4, Comparative Examples 1 to 5]
A urethane methacrylate resin composition was obtained in the same manner as in Example 1 except that the type and / or amount of the polymerization inhibitor (C) used was changed as shown in Tables 1 and 2.
[塗膜表面のシワ抑制の評価方法]
 実施例及び比較例で得られたウレタンメタクリレート樹脂組成物に、8%オクチル酸コバルト0.5質量部、トルイジン化合物イソプロパノール溶液(「RP-191」、ディーエイチ・マテリアル株式会社製)1質量部、40%ベンゾイルパーオキサイド2質量部を混合した。該混合物をスレート板の上に、刷毛にて1.0kg/mの量で塗布した。次いで、該塗布面に紫外線照射装置(「ケミカルランプFL15BL」、東芝ライテック株式会社製)を用いて紫外線を照射し、塗膜の硬化挙動を目視観察し、以下のように評価した。
 「A」:塗膜が均一に硬化した。
 「B」:塗膜表面から先に硬化した。
[Evaluation method of wrinkle suppression on coating surface]
In the urethane methacrylate resin compositions obtained in Examples and Comparative Examples, 0.5% by mass of 8% cobalt octylate, 1 part by mass of toluidine compound isopropanol solution (“RP-191”, manufactured by DH Material Co., Ltd.), 2 parts by mass of 40% benzoyl peroxide was mixed. The mixture was applied onto a slate plate with a brush in an amount of 1.0 kg / m 2 . Next, the coated surface was irradiated with ultraviolet rays using an ultraviolet irradiation device (“Chemical Lamp FL15BL”, manufactured by Toshiba Lighting & Technology Co., Ltd.), and the curing behavior of the coating film was visually observed and evaluated as follows.
“A”: The coating film was uniformly cured.
“B”: First cured from the coating surface.
[常温硬化性の評価方法]
 実施例及び比較例で得られたウレタンメタクリレート樹脂組成物に、8%オクチル酸コバルト0.5質量部、トルイジン化合物イソプロパノール溶液(「RP-191」、ディーエイチ・マテリアル株式会社製)1質量部、40%ベンゾイルパーオキサイド2質量部を混合した。該混合物をスレート板の上に、刷毛にて1.0kg/mの量で塗布した時点を基点として、脱脂綿を塗膜に3回押し付けても、脱脂綿が塗膜表面に残らなくなるまでの時間(分)を測定した。
[Evaluation method of room temperature curability]
In the urethane methacrylate resin compositions obtained in Examples and Comparative Examples, 0.5% by mass of 8% cobalt octylate, 1 part by mass of toluidine compound isopropanol solution (“RP-191”, manufactured by DH Material Co., Ltd.), 2 parts by mass of 40% benzoyl peroxide was mixed. The time until the absorbent cotton does not remain on the coating film surface even when the absorbent cotton is pressed three times on the basis of the time when the mixture is applied on the slate plate with a brush at an amount of 1.0 kg / m 2. (Min) was measured.
[貯蔵安定性の評価方法]
 実施例及び比較例で得られたウレタンメタクリレート樹脂組成物をビーカーに入れ、60℃の恒温水槽中に30日間放置した。
 30日間後に、ビーカー内でウレタンメタクリレート樹脂組成物がゲル化していたものは、貯蔵安定性が「×」であると評価した。
 また、30日間後にゲル化していないものについては、JIS K 6901 5.5に準拠し、粘度(ブルックフィールド形粘度計法、測定温度;25℃、BH形粘度計、回転数;10min-1、円筒形スピンドル、単位;mPa・s)を測定し、以下のように評価した。
 「A」:安定性試験後の粘度が、試験前と比較して1.4倍未満である。
 「B」:安定性試験後の粘度が、試験前と比較して1.4倍以上1.5倍未満である。
 「C」:安定性試験後の粘度が、試験前と比較して1.5倍以上である。
[Method for evaluating storage stability]
The urethane methacrylate resin compositions obtained in Examples and Comparative Examples were placed in a beaker and left in a constant temperature water bath at 60 ° C. for 30 days.
After 30 days, when the urethane methacrylate resin composition was gelled in a beaker, the storage stability was evaluated as “x”.
Further, for those not gelled after 30 days, in accordance with JIS K 6901 5.5, viscosity (Brookfield viscometer method, measurement temperature: 25 ° C., BH viscometer, rotation speed: 10 min −1 , Cylindrical spindle, unit: mPa · s) was measured and evaluated as follows.
“A”: The viscosity after the stability test is less than 1.4 times that before the test.
“B”: The viscosity after the stability test is 1.4 times or more and less than 1.5 times compared to before the test.
“C”: The viscosity after the stability test is 1.5 times or more compared with that before the test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のウレタン(メタ)アクリレート樹脂組成物である実施例1~3のものは、塗膜表面のシワ抑制、常温硬化性、貯蔵安定性に優れることが分かった。
 また、実施例4は、重合禁止剤としてヒンダードアミン化合物を多く含む態様であるが、貯蔵安定性がやや不十分であった。しかしながら、塗膜表面のシワ抑制及び常温硬化性は優れていることが分かった。
 一方、比較例1及び2は、重合禁止剤としてヒンダードアミンを含有しない態様であるが、塗膜表面のシワ抑制効果が不良であることが分かった。
 また、比較例3及び4は、重合禁止剤としてヒンダードフェノールを含有しない態様であるが、常温硬化性が不良であり、貯蔵安定性も不十分であることが分かった。
 また、比較例5は、重合禁止剤としてトルハイドロキノンを用いた態様であるが、常温硬化性が不良であることが分かった。
The urethane (meth) acrylate resin compositions of Examples 1 to 3 of the present invention were found to be excellent in suppressing wrinkles on the coating surface, room temperature curability, and storage stability.
Moreover, although Example 4 is an aspect which contains many hindered amine compounds as a polymerization inhibitor, the storage stability was somewhat insufficient. However, it was found that the surface wrinkle suppression and the room temperature curability were excellent.
On the other hand, Comparative Examples 1 and 2 were embodiments in which no hindered amine was contained as a polymerization inhibitor, but it was found that the effect of suppressing wrinkle on the coating film surface was poor.
Moreover, although the comparative examples 3 and 4 are the aspects which do not contain hindered phenol as a polymerization inhibitor, it turned out that normal temperature curability is inferior and storage stability is also inadequate.
Moreover, although the comparative example 5 is the aspect which used tolhydroquinone as a polymerization inhibitor, it turned out that normal temperature curing property is unsatisfactory.

Claims (7)

  1. (メタ)アクリロイル基及びアリルエーテル基を有するウレタン(メタ)アクリレート樹脂(A)、重合性不飽和単量体(B)、及び重合禁止剤(C)を含有するウレタン(メタ)アクリレート樹脂組成物において、前記重合禁止剤(C)が、ヒンダードフェノール化合物(C-1)及びヒンダードアミン化合物(C-2)を含有するものであることを特徴とするウレタン(メタ)アクリレート樹脂組成物。 Urethane (meth) acrylate resin composition containing urethane (meth) acrylate resin (A) having a (meth) acryloyl group and an allyl ether group, a polymerizable unsaturated monomer (B), and a polymerization inhibitor (C) Wherein the polymerization inhibitor (C) contains a hindered phenol compound (C-1) and a hindered amine compound (C-2).
  2. 前記ヒンダードフェノール化合物(C-1)と前記ヒンダードアミン化合物(C-2)との質量割合[(C-1)/(C-2)]が、95/5~30/70の範囲である請求項1記載のウレタン(メタ)アクリレート樹脂組成物。 The mass ratio [(C-1) / (C-2)] of the hindered phenol compound (C-1) and the hindered amine compound (C-2) is in the range of 95/5 to 30/70. Item 4. The urethane (meth) acrylate resin composition according to Item 1.
  3. 前記ヒンダードフェノール化合物(C-1)が、ジブチルヒドロキシトルエン及びtert-ブチルカテコールからなる群より選ばれる1種以上である請求項1記載のウレタン(メタ)アクリレート樹脂組成物。 The urethane (meth) acrylate resin composition according to claim 1, wherein the hindered phenol compound (C-1) is at least one selected from the group consisting of dibutylhydroxytoluene and tert-butylcatechol.
  4. 前記ヒンダードアミン化合物(C-2)が、4H-2,2,6,6-テトラメチルピペリジノ-1-オキシル及びビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物からなる群より選ばれる1種以上である請求項1記載のウレタン(メタ)アクリレート樹脂組成物。 The hindered amine compound (C-2) is 4H-2,2,6,6-tetramethylpiperidino-1-oxyl and bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate; 2. The urethane (meth) acrylate resin composition according to claim 1, wherein the urethane (meth) acrylate resin composition is one or more selected from the group consisting of methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate.
  5. 融点が43~72℃の範囲である石油ワックス(D)を更に含有するものである請求項1記載のウレタン(メタ)アクリレート樹脂組成物。 The urethane (meth) acrylate resin composition according to claim 1, further comprising a petroleum wax (D) having a melting point in the range of 43 to 72 ° C.
  6. 前記石油ワックス(D)の使用量が、前記重合禁止剤(C)100質量部に対して200~500質量部の範囲である請求項5記載のウレタン(メタ)アクリレート樹脂組成物。 The urethane (meth) acrylate resin composition according to claim 5, wherein the amount of the petroleum wax (D) used is in the range of 200 to 500 parts by mass with respect to 100 parts by mass of the polymerization inhibitor (C).
  7. 請求項1~6のいずれか1項記載のウレタン(メタ)アクリレート樹脂組成物を用いて得られたことを特徴とする被覆材。 A coating material obtained by using the urethane (meth) acrylate resin composition according to any one of claims 1 to 6.
PCT/JP2012/081494 2012-03-07 2012-12-05 Urethane (meth)acrylate resin composition and coating material WO2013132714A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280071228.9A CN104159940B (en) 2012-03-07 2012-12-05 Carbamate (methyl) acrylate resin composition and lining material
JP2013515612A JP5339171B1 (en) 2012-03-07 2012-12-05 Urethane (meth) acrylate resin composition and coating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050368 2012-03-07
JP2012050368 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013132714A1 true WO2013132714A1 (en) 2013-09-12

Family

ID=49116212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081494 WO2013132714A1 (en) 2012-03-07 2012-12-05 Urethane (meth)acrylate resin composition and coating material

Country Status (3)

Country Link
JP (1) JP5339171B1 (en)
CN (1) CN104159940B (en)
WO (1) WO2013132714A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014103A (en) * 2014-07-02 2016-01-28 川崎化成工業株式会社 Radical curable composition
JP2021098949A (en) * 2019-12-20 2021-07-01 Dic株式会社 Concrete protective material
US11635683B2 (en) 2015-08-24 2023-04-25 Toyo Gosei Co., Ltd. Method for manufacturing device, and composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189883B2 (en) * 2017-11-13 2022-12-14 三井化学株式会社 Polyurethane resin composition, cured product, molded article, fiber-reinforced plastic, and method for producing fiber-reinforced plastic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301020A (en) * 2002-02-08 2003-10-21 Dainippon Ink & Chem Inc Curable resin composition and adhesive
JP2007023059A (en) * 2005-07-12 2007-02-01 Fuji Shikiso Kk Ink composition
WO2011158566A1 (en) * 2010-06-18 2011-12-22 Dic株式会社 Urethane (meth)acrylate resin composition and coating material using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552324B2 (en) * 1995-02-28 2004-08-11 大日本インキ化学工業株式会社 Resin composition, lining material and molding material
JP3847120B2 (en) * 2001-08-28 2006-11-15 シャープ株式会社 Printing device
US20050239955A1 (en) * 2004-04-27 2005-10-27 Basf Corporation. Urethane acrylate composition structure
JP2010241917A (en) * 2009-04-03 2010-10-28 Nippon Kayaku Co Ltd Resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301020A (en) * 2002-02-08 2003-10-21 Dainippon Ink & Chem Inc Curable resin composition and adhesive
JP2007023059A (en) * 2005-07-12 2007-02-01 Fuji Shikiso Kk Ink composition
WO2011158566A1 (en) * 2010-06-18 2011-12-22 Dic株式会社 Urethane (meth)acrylate resin composition and coating material using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014103A (en) * 2014-07-02 2016-01-28 川崎化成工業株式会社 Radical curable composition
US11635683B2 (en) 2015-08-24 2023-04-25 Toyo Gosei Co., Ltd. Method for manufacturing device, and composition
JP2021098949A (en) * 2019-12-20 2021-07-01 Dic株式会社 Concrete protective material
JP7363457B2 (en) 2019-12-20 2023-10-18 Dic株式会社 concrete protection material

Also Published As

Publication number Publication date
CN104159940A (en) 2014-11-19
JP5339171B1 (en) 2013-11-13
JPWO2013132714A1 (en) 2015-07-30
CN104159940B (en) 2016-11-23

Similar Documents

Publication Publication Date Title
US7932302B2 (en) Radiation curable urethane (meth)acrylate polymer and adhesives formulated with them
JP5003853B2 (en) Radical curable resin composition
KR101786778B1 (en) Urethane(meth)acrylate resin composition and coating material using same
KR102108579B1 (en) Urethane(meth)acrylate mixture and urethane(meth)acrylate composition
JP5339171B1 (en) Urethane (meth) acrylate resin composition and coating material
JP2019507820A (en) Styrene-free reactive diluent for urethane acrylate resin compositions
KR102163353B1 (en) Radically polymerizable resin composition, and civil engineering and construction materilas
JP2016179966A (en) Photo-curing composition for nail makeup and nail cosmetics
JP7183580B2 (en) Concrete protection material
JP2018003357A (en) Active energy ray-curable concrete protective material
JP2015048459A (en) Radically polymerizable resin composition and civil engineering building material
JP5867793B1 (en) Radical polymerizable composition, concrete repair material and road primer
JP5765605B1 (en) Concrete repair material
JP5953732B2 (en) Composite covering structure
JP7363457B2 (en) concrete protection material
JP5927892B2 (en) Composite covering structure
JP7183579B2 (en) Active energy ray hardening type concrete protective material
JP2014051633A (en) Radical curable resin composition, covering material and waterproof material for floor slab
JP5979428B2 (en) Radical curable resin composition
JP2013155339A (en) Radical polymerizable resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515612

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870484

Country of ref document: EP

Kind code of ref document: A1