WO2013128881A1 - モールドモータ - Google Patents

モールドモータ Download PDF

Info

Publication number
WO2013128881A1
WO2013128881A1 PCT/JP2013/001080 JP2013001080W WO2013128881A1 WO 2013128881 A1 WO2013128881 A1 WO 2013128881A1 JP 2013001080 W JP2013001080 W JP 2013001080W WO 2013128881 A1 WO2013128881 A1 WO 2013128881A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
mold
motor
flow path
gas flow
Prior art date
Application number
PCT/JP2013/001080
Other languages
English (en)
French (fr)
Inventor
暢謙 森田
近藤 憲司
誠治 黒住
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013128881A1 publication Critical patent/WO2013128881A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the present invention relates to a mold motor including a rotor in which a stator core around which a winding is wound is molded by a mold resin.
  • mold motors used for home appliances and the like are strongly required to be small, thin, and have high output.
  • a molded motor incorporated in some home appliances is also required to have low noise and low vibration.
  • a mold motor that molds a stator core around which a winding is wound with a mold resin.
  • the mold motor 101 used for the conventional home appliance will be described with reference to FIG.
  • the stator 110 includes a stator core 12 that is a stator core around which the winding 11 is wound, and a mold resin 114 that is molded except for the inner peripheral surface of the stator core 12.
  • the winding 11 is wound around the stator core 12 via a winding frame.
  • a rotation shaft 22 is provided along the central axis of the rotor 20.
  • the rotating shaft 22 is supported by bearings 102 and 103 so that the rotating shaft 22 is rotatable.
  • the bearing 103 is held by the bracket 4.
  • a control circuit 130 for controlling the current flowing through the winding 11 is provided.
  • Patent Document 1 proposes forming an organic lubricant film on a polyurethane electric wire.
  • Patent Document 2 proposes a device that suppresses an adverse effect on electronic components caused by forming a resin film on a polyurethane electric wire. That is, generation of decomposition gas is prevented by providing self-lubricating properties to the coating of the electric wire itself.
  • Patent Document 3 proposes an improvement in the reliability of a molded motor. Specifically, the outer peripheral surface of the stator core (corresponding to the “stator core” of the present invention) is partially exposed. This improves the insulation characteristics of the molded motor under conditions of high temperature and high humidity.
  • the molded motor according to the present invention includes a stator, a rotor, and a bearing.
  • the stator core is molded with mold resin.
  • a winding is wound around the stator core.
  • the stator core has a slot.
  • the rotor includes a rotating body and a rotating shaft.
  • the rotating body has a permanent magnet in the circumferential direction facing the stator.
  • the rotating shaft passes through the axis of the rotating body.
  • the pair of bearings sandwich the rotating shaft so as to be rotatable.
  • the mold resin has a gas flow path that guides gas generated in the stator, particularly decomposition gas, to the outside of the mold resin.
  • FIG. 1 is a perspective view of a molded motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the molded motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of the winding in the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of another winding in the first embodiment of the present invention.
  • FIG. 5 is a perspective view of the insulator according to Embodiment 1 of the present invention.
  • FIG. 6 is a perspective view of another insulator according to Embodiment 1 of the present invention.
  • FIG. 7 is an explanatory diagram of the molded motor according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view of a molded motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the molded motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-
  • FIG. 8 is an explanatory view showing a change in weight of polybutylene terephthalate in Example 1 of the present invention.
  • FIG. 9 is an explanatory diagram showing a change in weight of the bulk mold compound in Example 1 of the present invention.
  • FIG. 10 is an explanatory diagram showing a dielectric strength test result of the molded motor in Example 1 of the present invention.
  • FIG. 11 is an explanatory view showing the dielectric strength test result of the molded motor in Comparative Example 1 of the present invention.
  • FIG. 12 is a perspective view of another insulator according to Embodiment 1 of the present invention.
  • FIG. 13 is a perspective view of still another insulator according to Embodiment 1 of the present invention.
  • FIG. 14 is a longitudinal sectional view of a conventional molded motor.
  • the decomposition gas when decomposition gas is generated from an insulating material such as an insulating film or an insulator applied to the winding wound around the stator core, the decomposition gas is transferred to the outside of the mold motor. A gas flow path is provided. A detailed configuration will be described later.
  • the decomposition gas generated in the mold motor is guided to the outside of the mold resin, that is, to the outside of the mold motor. Therefore, it can avoid that the atmosphere in a mold motor becomes high temperature high pressure. As a result, the insulation characteristics required for the molded motor are ensured.
  • the conventional mold motor has the following points to be improved. That is, some conventional molded motors form an organic lubricant film on a polyurethane wire. Alternatively, some conventional molded motors impart self-lubricating properties to the polyurethane wire coating itself. These conventional molded motors prevent generation of decomposition gas. However, these conventional molded motors can suppress the generation of cracked gas, but cannot completely eliminate the cracked gas generation itself.
  • a higher load than before may be applied to the molded motor.
  • the mold motor was driven under such a high load condition, there were the following points to be improved. That is, when the mold motor is driven under a high load condition, a current exceeding the initially assumed range is supplied to the winding. As a result, the winding generates more heat than originally expected. This heat generation warms the insulating film of the winding and the insulating member such as an insulator provided between the stator core and the winding. When an insulating member such as an insulating film of a winding or an insulator is warmed, decomposition gas is generated.
  • the windings and insulation members are covered with mold resin. Therefore, the atmosphere in the mold motor becomes high temperature and pressure. Under such a high temperature and high pressure, the insulating material contained in the insulating coating and the insulating member described above deteriorates at an accelerated rate. As a result, the insulation resistance of these insulating materials deteriorates. When the insulation resistance of the insulating material deteriorates, the insulation characteristics required for the molded motor cannot be maintained.
  • a molded motor according to an embodiment of the present invention will be described with reference to the drawings.
  • the following description will be made using a mold motor that exhibits a particularly remarkable effect, that is, a so-called brushless mold motor.
  • the following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
  • FIG. 1 is a perspective view of a molded motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the molded motor according to Embodiment 1 of the present invention.
  • the mold motor shown in the drawing is a molded brushless DC motor (hereinafter referred to as “mold motor”).
  • the mold motor 1 includes a stator 10 and a rotor 20 disposed inside the stator 10.
  • the stator 10 has a stator core 12 that is a stator core around which a winding 11 is wound. Specifically, the winding 11 is wound around the stator core 12 in a coil shape. An insulator 13 that is an insulating member is provided between the winding 11 and the stator core 12.
  • the stator 10 is configured integrally with a mold frame 14 that is molded with a resin material that becomes a mold resin, in particular, a thermosetting resin.
  • the winding 11 has a core wire 11A made of copper or the like. As shown in FIG. 3, layers of a first insulating coating 11B and a second insulating coating 11C are formed in order from the center side on the core wire 11A. Polyester can be used for the first insulating coating 11B. Polyamide can be used for the second insulating film. The diameter of the winding 11 provided with the second insulating coating 11C is about 0.3 mm. Further, as shown in FIG. 4, a lubricating film 11D having a self-lubricating property may be further applied to the second insulating film 11C. Paraffin oil can be used for this lubricating coating 11D.
  • the insulator 13 has a groove portion 15 in a direction intersecting with the direction in which the winding 11 is wound.
  • the mold resin used for the mold frame 14 for example, a resin having a thermal conductivity of 1.1 W / m ⁇ K and having flame retardancy of UL standard 94V-0 can be used. Specifically, the total blending amount of the unsaturated polyester resin and the polyester resin is 21.2% by weight, the glass fiber is 7% by weight, the polymerization initiator t-butyl peroxybenzoate is 0.4% by weight, Zinc stearate is 1.3% by weight, the polymerization inhibitor is 0.1% by weight, and aluminum hydroxide is 70% by weight.
  • the unsaturated polyester resin Sandoma (registered trademark) PB210 manufactured by DH Material Co., Ltd. can be used.
  • the polyester resin Sandoma PB987 manufactured by DH Material Co., Ltd. can be used.
  • the rotor 20 includes a rotating body 21 and a rotating shaft 22.
  • the rotating body 21 has a permanent magnet 23 in the circumferential direction facing the stator 10.
  • the rotating shaft 22 is attached through the axis of the rotating body 21.
  • Bearings are ball bearings 2 and 3 having an inner ring, an outer ring, and balls between the inner ring and the outer ring. A pair of ball bearings 2 and 3 pinch the rotor 20 in a freely rotatable manner.
  • the inner ring and the outer ring are made of sintered metal obtained by sintering metal powder.
  • the ball is made of iron.
  • the bracket 4 holds the ball bearing 3.
  • the bracket 4 is made of a conductive metal.
  • a galvanized steel plate, an aluminum die cast, a stainless steel plate or the like is used. More specifically, SECC or SECD can be used as the galvanized steel sheet.
  • ADC12 can be used as an aluminum die casting.
  • SUS304 or SUS430 can be used. Note that other metals may be used as long as similar characteristics can be obtained.
  • the ball bearing 2 is held integrally with the mold frame 14.
  • the ball bearing 3 is arranged so as to surround the rotating shaft 22.
  • an annular portion 4 ⁇ / b> A is provided in which a part of the bracket 4 protrudes in a convex shape toward the rotating body 21 to form an annular wall surface.
  • the ball bearing 3 is fixed to the annular portion 4A with a fitting tolerance.
  • the gas flow path 16 is formed in the mold frame 14.
  • the gas flow path 16 communicates the inside of the mold motor 1 and the outside of the mold motor 1.
  • the gas flow path 16 (16A, 16B, 16C, 16D, 16E) is provided in each part of the mold frame 14.
  • the gas flow path 16 ⁇ / b> A has one end provided at the position of the slot 17 included in the stator core 12 and the other end provided on the outer surface of the molded motor 1.
  • the gas flow path 16 ⁇ / b> B has one end provided on the end portion 13 ⁇ / b> A of the groove portion 15 provided in the insulator 13 and the other end provided on the outer surface of the mold motor 1.
  • the gas flow path 16 ⁇ / b> C has one end provided on the outermost peripheral portion 11 ⁇ / b> E of the winding 11 wound around the stator core 12 and the other end provided on the outer surface of the molded motor 1.
  • the gas flow path 16 ⁇ / b> D has one end provided on the end portion 13 ⁇ / b> B of the insulator 13 and the other end provided on the outer surface of the mold motor 1.
  • the gas flow path 16 ⁇ / b> E has one end provided on the end portion 13 ⁇ / b> C of the insulator 13 and the other end provided on the outer surface of the mold motor 1.
  • the gas flow path 16 provided at such a position is formed using a presser pin used at the time of molding.
  • a presser pin used for positioning the insulator 13 is used, the gas flow paths 16B, 16D, and 16E are easily formed. Therefore, the man-hour for forming the gas flow path 16 does not increase.
  • Mold motor 1 may have a control board on which an inverter circuit is mounted. When the control board is built in, the high-frequency pulse controlled by the control board switches the current flowing through the winding 11.
  • a predetermined control current is passed through the winding 11 of the stator 10.
  • the rotor 20 provided with the permanent magnet 23 rotates so as to follow the magnetic field generated by the control current.
  • the current supplied to the winding 11 increases or decreases according to the load applied to the rotating shaft 22.
  • the core wire 11A constituting the winding 11 has a resistance component. Therefore, when a current flows through the winding 11, the winding 11 generates heat due to the relationship between the current and the resistance component. When the winding 11 generates heat, decomposition gas is generated from the first insulating coating 11B, the second insulating coating 11C applied to the core wire 11A, an insulating member such as the insulator 13, and the like. At this time, the decomposition gas is discharged to the outside of the mold motor 1 through the gas flow path 16 (16A to 16E) that communicates the inside of the mold motor 1 and the outside of the mold motor 1. Details thereof will be described.
  • the winding 11 has a predetermined wire diameter. Therefore, when the winding 11 is wound around the stator core 12, a slight gap is generated between the windings 11. The decomposition gas generated inside the mold motor 1 moves to the surface of the stator 10 through this gap.
  • one end of the gas flow path 16A is provided at the position of each slot 17 of the stator core 12.
  • the windings 11 wound around the adjacent teeth 18 are densely packed in each slot 17. Some gaps exist between the windings 11 as described above. Therefore, the cracked gas flowing out to the slot 17 through the gap is led out of the mold motor 1 through the gas flow path 16A having one opening at the slot 17 position.
  • the winding 11 is wound around the stator core 12 via the insulator 13.
  • the insulator 13 has a groove 15 in a direction that intersects the direction in which the winding 11 is wound. Therefore, since a predetermined gap is generated between the winding 11 and the insulator 13, the winding 11 and the insulator 13 do not adhere to each other. Decomposed gas generated from the winding 11 and the insulator 13 flows along the groove 15. One end of the groove 15 communicates with one end of the gas flow path 16B. As a result, the cracked gas that has reached the gas flow path 16B via the groove 15 is led out of the mold motor 1 through the gas flow path.
  • the width of the groove 15 may be smaller than the minimum gap through which the mold resin constituting the mold frame 14 flows. With this configuration, the mold resin does not flow into the groove 15, and the mold resin does not hinder the cracked gas flow path of the groove 15.
  • the minimum gap through which the mold resin constituting the mold frame 14 flows is 0.1 mm. Therefore, the width of the groove 15 is set to 0.05 mm.
  • the winding 11 wound around the stator core 12 several times has a gap in the outermost peripheral portion 11E. Therefore, the decomposed gas generated in the winding 11 and the like moves to the outermost peripheral portion 11E of the winding 11 through the gap generated in the winding 11.
  • One end of a gas flow path 16 ⁇ / b> C leading to the outside of the molded motor 1 is provided on the outermost peripheral portion 11 ⁇ / b> E of the winding 11. Therefore, the decomposed gas that has moved to the outermost peripheral portion 11E of the winding 11 is led out of the molded motor 1 through the gas flow path 16C.
  • the decomposition gas generated in the mold motor 1 is transferred to the outside of the mold motor 1 through the gas flow paths 16 (16A to 16E) provided in the mold frame 14. Can be derived.
  • the inside of the mold motor 1 can be prevented from becoming a high temperature and a high pressure. Therefore, it is possible to prevent the insulating members such as the first insulating film 11B, the second insulating film 11C, and the insulator 13 of the winding 11 from being exposed to a high temperature and high pressure atmosphere. Therefore, it becomes possible to suppress deterioration of the first insulating coating 11B, the second insulating coating 11C and the insulating member, and the reliability of the molded motor 1 can be improved.
  • the molded motor 1 according to the first embodiment of the present invention it is possible to accelerate the discharge of the decomposition gas generated in the molded motor 1, so that a higher load than before can be applied. Therefore, the output as a mold motor can be increased. Alternatively, if the output is the same, the molded motor can be made smaller.
  • the lubricating film 11D having self-lubricating property is provided on the outermost surface of the winding 11, it is possible to suppress the mold resin forming the mold frame 14 and the winding 11 from being in close contact with each other. Therefore, it becomes easy to guide the cracked gas generated in the stator 10 to the gas flow path 16C.
  • FIG. 8 shows a result 30 of thermal analysis of polybutylene terephthalate (hereinafter referred to as “PBT”) used for the insulator 13 which is an insulating member, focusing on weight change (TG).
  • PBT polybutylene terephthalate
  • the winding temperature generated in the load region where the mold motor has been used is 100 ° C.
  • the winding temperature generated in the load region that can be used in the molded motor according to the first embodiment of the present invention is set to 150 ° C.
  • TG analysis was performed for the winding temperature of 100 ° C. and the winding temperature of 150 ° C. As a result, when 1000 hours passed, assuming that the weight change at 100 ° C. was 1, the weight change at 150 ° C. was confirmed to generate about 7.6 times as much cracked gas.
  • FIG. 9 shows a result 31 of thermal analysis of a bulk mold compound (hereinafter referred to as “BMC”) used as a mold resin constituting the mold frame 14 by paying attention to weight change (TG).
  • BMC is a glass fiber reinforced resin made of a thermosetting resin (unsaturated polyester) and an inorganic filler (aluminum hydroxide, calcium carbonate, etc.). Similar to PBT, a TG analysis was performed for a winding temperature of 100 ° C. and a winding temperature of 150 ° C. As a result, when 30 minutes passed, assuming that the weight change at 100 ° C. was 1, the weight change at 150 ° C. was confirmed to generate about twice as much cracked gas. In each measurement, EXSTAR6000TG / DTA, which is a differential thermothermal gravimetric simultaneous measurement apparatus manufactured by SII Nanotechnology, Inc. was used.
  • the winding 11 is not coated with a self-lubricant (specification 1) and the winding 11 is coated with a self-lubricating agent (specification) 2) was evaluated.
  • the operating conditions followed the dielectric strength test defined by the Electrical Appliance and Material Safety Law. When a voltage of 1000 V AC was applied between the power source and the rotating shaft 22 for 1 minute and the leakage current was 10 mA or less, it was determined that the standard was cleared. For this measurement, TOS5050, which is a withstand voltage tester manufactured by Kikusui Electronics Corporation, was used. The result 32 of this withstand voltage test is shown in FIG.
  • the specification 3 was measured as the range where the mold motor was used conventionally. Specifically, the molded motor in the specification 3 is not provided with the gas flow path that is characteristic of the present invention. Also, the winding is not coated with a self-lubricant. The winding temperature was set to 100 ° C. in light of conventional usage conditions.
  • the molded motor in specification 4 is not provided with a gas flow path, and no self-lubricant is applied to the windings.
  • the winding temperature was set to 150 ° C. in light of the required specifications.
  • the insulator 13 may be provided with a ridge 19 in a direction crossing the direction in which the winding 11 is wound.
  • the gas flow path 16 has one end provided on the end of the protrusion 19 provided on the insulator 13 and the other end provided on the outer surface of the molded motor 1.
  • the space between the adjacent protrusions 19 becomes a passage for the cracked gas.
  • the field of application of the present invention includes a stator in which a stator core around which a winding is wound is molded with a mold resin, and the stator motor is molded with a mold resin. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本発明のモールドモータ(1)は、巻線(11)が巻装された固定子鉄心であるステータコア(12)をモールド樹脂によってモールドした固定子(10)と、固定子(10)に対向して周方向に永久磁石(23)を有する回転体(21)と、回転体(21)の軸芯を貫通する回転軸(22)とを含む回転子(20)と、回転軸(22)を回転自在に挟持する一対の軸受(2),(3)と、を備える。さらに、モールド樹脂は、固定子(10)で生じた分解ガスをモールド樹脂の外部へと導くガス流路(16)を有する。

Description

モールドモータ
 本発明は、巻線が巻装された固定子鉄心が、モールド樹脂によってモールド成形される回転子を備えるモールドモータに関する。
 従来、家電機器等に用いられるモールドモータは、小型化、薄型化および高出力化が強く求められる。特に、一部の家電機器に組み込まれるモールドモータには、低騒音や低振動であることも要求される。これらの要求に応えるため、巻線が巻装された固定子鉄心を、モールド樹脂によりモールド成形するモールドモータが提案されている。
 図14を用いて、従来の家電機器に用いられるモールドモータ101について、説明する。
 固定子110は、巻線11が巻装された固定子鉄心であるステータコア12と、このステータコア12の内周面を除いて成形されるモールド樹脂114とを有する。巻線11は、巻枠を介してステータコア12に巻装される。
 ステータコア12の内側には、外周面に永久磁石23が施された回転子20が存在する。回転子20の中心軸に沿って、回転軸22が設けられる。回転軸22は、回転軸22が回転自在となるよう軸受102,103によって支持される。軸受103は、ブラケット4により保持される。
 モールドモータ101を形成するモールド樹脂114の内部には、巻線11へ流す電流を制御する制御回路130が備えられる。
 近年、上記モールドモータ101に対する要求を満たすため、巻線11は、線積率を高めることが検討されている。線積率を高めるために、巻線11には、被膜として低沸点材料が塗布される。巻線11の被膜となる低沸点材料には、巻線11の潤滑性を向上するものが存在する。
 一方、従来、巻線11に施された低沸点材料が揮発し、巻線11間の絶縁障害が引き起こされることもよく知られている。
 この絶縁障害への対応として、特許文献1では、ポリウレタン電線に有機潤滑剤の被膜を形成するものが提案されている。
 また、特許文献2では、ポリウレタン電線に樹脂の被膜を形成することで生じる、電子部品への悪影響を抑制するものも提案されている。すなわち、電線の被膜自体に自己潤滑性を付与することで、分解ガスの発生が防止される。
 さらに、特許文献3では、モールドモータの信頼性を向上するものも提案されている。具体的には、ステータ鉄心(本願発明の「固定子鉄心」に相当)の外周面が、部分的に露出される。これは、高温高湿という条件化において、モールドモータの絶縁特性が改良される。
特開昭63-121213号公報 特開昭63-178410号公報 特公昭61-60655号公報
 本発明に関するモールドモータは、固定子と、回転子と、軸受と、を備える。
 固定子は、固定子鉄心がモールド樹脂によってモールドされる。固定子鉄心は、巻線が巻装される。固定子鉄心は、スロットを有する。回転子は、回転体と、回転軸と、を含む。回転体は、固定子に対向して周方向に永久磁石を有する。回転軸は、回転体の軸芯を貫通する。一対の軸受は、回転軸を回転自在に挟持する。モールド樹脂は、固定子で生じたガス、特に分解ガスをモールド樹脂の外部へと導くガス流路を有する。
図1は、本発明の実施の形態1におけるモールドモータの斜視図である。 図2は、本発明の実施の形態1におけるモールドモータの縦断面図である。 図3は、本発明の実施の形態1における巻線の断面図である。 図4は、本発明の実施の形態1における他の巻線の断面図である。 図5は、本発明の実施の形態1におけるインシュレータの斜視図である。 図6は、本発明の実施の形態1における他のインシュレータの斜視図である。 図7は、本発明の実施の形態1におけるモールドモータの説明図である。 図8は、本発明の実施例1におけるポリブチレンテレフタレートの重量変化を示す説明図である。 図9は、本発明の実施例1におけるバルクモールドコンパウンドの重量変化を示す説明図である。 図10は、本発明の実施例1におけるモールドモータの絶縁耐圧試験結果を示す説明図である。 図11は、本発明の比較例1におけるモールドモータの絶縁耐圧試験結果を示す説明図である。 図12は、本発明の実施の形態1における他のインシュレータの斜視図である。 図13は、本発明の実施の形態1におけるさらに他のインシュレータの斜視図である。 図14は、従来のモールドモータの縦断面図である。
 本発明の実施の形態におけるモールドモータは、固定子鉄心へ巻装される巻線に施される絶縁被膜やインシュレータなどの絶縁材料から分解ガスが発生した場合、この分解ガスをモールドモータの外部へ導き出すガス流路を有する。詳細な構成は、後述する。
 従って、モールドモータ内で生じた分解ガスは、モールド樹脂の外部、つまり、モールドモータの外部へ導き出される。よって、モールドモータ内の雰囲気が高温高圧となることを回避できる。この結果、モールドモータに要求される絶縁特性は確保される。
 従来のモールドモータには、つぎの改善すべき点があった。すなわち、従来のモールドモータには、ポリウレタン電線に有機潤滑剤の被膜を形成するものがある。あるいは、従来のモールドモータには、ポリウレタン電線の被膜自体に自己潤滑性を付与するものがある。これら従来のモールドモータは、分解ガスが発生することを防止する。しかしながら、これら従来のモールドモータは、分解ガスの発生を抑制できるが、分解ガスの発生そのものを完全になくすことはできない。
 ところで、小型化、薄型化および高出力化などの要求を満たすために、モールドモータへ従来よりも高い負荷が加えられることがある。このような高負荷の条件下において、モールドモータを駆動した場合、つぎの改善すべき点があった。すなわち、高負荷の条件下において、モールドモータが駆動されると、当初想定された範囲以上の電流が巻線へ流される。その結果、巻線には、当初見込まれていた以上の発熱が生じる。この発熱によって、巻線の絶縁被膜や、ステータコアと巻線との間に設けられるインシュレータなどの絶縁部材が温められる。巻線の絶縁被膜やインシュレータなどの絶縁部材が温められると、分解ガスが発生する。
 モールドモータ内において、巻線や絶縁部材などはモールド樹脂で覆われている。よって、モールドモータ内の雰囲気は高温高圧となる。このような高温高圧下において、上述した絶縁被膜や絶縁部材に含まれる絶縁材料は、加速度的に劣化が進行する。この結果、これらの絶縁材料は、耐絶縁性能が劣化する。絶縁材料の耐絶縁性能が劣化すると、モールドモータに要求される絶縁特性が維持できなくなる。
 また、ステータ鉄心の外周面のみを部分的に露出しても、巻線から発生した分解ガスをモールドモータの外部へ排出することは困難である。よって、上述したものと同様、絶縁材料の耐絶縁性能が劣化するため、モールドモータに要求される絶縁特性が維持できなくなる。
 以下、本発明の実施の形態におけるモールドモータについて、図面を参照しながら説明する。以下の説明は、特に顕著な効果を発揮するモールドモータ、いわゆるブラシレスモールドモータを用いて説明する。以下に示す実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 また、背景技術で説明したものと同じ構成要素については、同一の符号を付し、説明を援用する。
 (実施の形態1)
 図1は、本発明の実施の形態1におけるモールドモータの斜視図である。図2は、本発明の実施の形態1におけるモールドモータの縦断面図である。図に示すモールドモータは、モールド形成されたブラシレスDCモータ(以下、「モールドモータ」と記す。)である。
 モールドモータ1は、固定子10と、固定子10の内側に配された回転子20とを備える。
 固定子10は、巻線11が巻装された固定子鉄心であるステータコア12を有する。具体的には、巻線11は、ステータコア12の周りに対してコイル状に巻き回される。巻線11とステータコア12との間には、絶縁部材であるインシュレータ13が設けられる。固定子10は、モールド樹脂となる樹脂材、特に熱硬化性樹脂でモールド成形されたモールドフレーム14と一体化して構成される。
 巻線11は、銅などで芯線11Aが構成される。図3に示すように、この芯線11Aに対して、中心側から順に、第1の絶縁被膜11B、第2の絶縁被膜11Cの層が形成される。第1の絶縁被膜11Bには、ポリエステルを用いることができる。第2の絶縁被膜には、ポリアミドを用いることができる。第2の絶縁被膜11Cが施された巻線11の直径は、0.3mm程度となる。また、図4に示すように、さらに第2の絶縁被膜11Cには、自己潤滑性を有する潤滑被膜11Dを施してもよい。この潤滑被膜11Dは、パラフィン油を用いることができる。
 図5、図6に示すように、インシュレータ13は、巻線11が巻装される方向とは交差する方向に溝部15を有する。
 モールドフレーム14に用いられるモールド樹脂は、例えば、熱伝導率が1.1W/m・Kであり、UL規格の94V-0の難燃性を有するものが使用できる。具体的な組成は、不飽和ポリエステル樹脂とポリエステル樹脂との合計配合量が21.2重量%、ガラス繊維が7重量%、重合開始剤であるt-ブチルパーオキシベンゾエートが0.4重量%、ステアリン酸亜鉛が1.3重量%、重合禁止剤が0.1重量%、水酸化アルミニウムが70重量%である。不飽和ポリエステル樹脂は、ディーエイチ・マテリアル株式会社製のサンドーマ(登録商標)PB210を用いることができる。ポリエステル樹脂は、ディーエイチ・マテリアル株式会社製のサンドーマPB987を用いることができる。
 図2に示すように、回転子20は、回転体21と回転軸22とを有する。回転体21は、固定子10に対向して周方向に永久磁石23を有する。回転軸22は、回転体21の軸心を貫通して取り付けられる。
 軸受は、内輪と、外輪と、この内輪とこの外輪との間に玉と、を有する玉軸受2,3である。一対の玉軸受2,3は、回転子20を回転自在に挟持する。内輪と外輪とは、金属粉末を焼結させた焼結金属で構成される。玉は鉄で構成される。
 ブラケット4は、玉軸受3を保持する。ブラケット4は、導電性を有する金属からなる。例えば、亜鉛めっき鋼板、アルミダイカスト、ステンレス鋼板などが用いられる。より具体的には、亜鉛めっき鋼板として、SECCやSECDを用いることができる。アルミダイカストとして、ADC12を用いることができる。ステンレス鋼板として、SUS304やSUS430を用いることができる。なお、同様の特性を得ることができれば、他の金属を用いてもよい。
 玉軸受2は、モールドフレーム14と一体となって保持される。
 玉軸受3は、回転軸22を囲うように配される。玉軸受3の周囲には、ブラケット4の一部を回転体21方向へ凸状に突き出して環状の壁面とした環状部4Aが設けられる。玉軸受3は、環状部4Aに対して嵌め合い公差で固定される。
 ガス流路16は、モールドフレーム14に形成される。ガス流路16は、モールドモータ1の内側とモールドモータ1の外側とを連通する。ガス流路16(16A,16B,16C,16D,16E)は、モールドフレーム14の各部に設けられる。
 まず、図1、図7に示すように、ガス流路16Aは、一端をステータコア12が有するスロット17の位置に、他端をモールドモータ1の外表面に設ける。
 他に、図1、図7に示すように、ガス流路16Bは、一端をインシュレータ13に設けられた溝部15の端部13Aに、他端をモールドモータ1の外表面に設ける。
 また、図2に示すように、ガス流路16Cは、一端をステータコア12へ巻装された巻線11の最外周部11Eに、他端をモールドモータ1の外表面に設ける。
 また、図2に示すように、ガス流路16Dは、一端をインシュレータ13の端部13Bに、他端をモールドモータ1の外表面に設ける。
 あるいは、図2に示すように、ガス流路16Eは、一端をインシュレータ13の端部13Cに、他端をモールドモータ1の外表面に設ける。
 このような位置へ設けられるガス流路16は、モールド成形時に使用される押えピンを用いて、形成される。特に、インシュレータ13の位置決めに用いられる押えピンを用いれば、ガス流路16B,16D,16Eは容易に形成される。よって、ガス流路16を形成するための工数が、増加することはない。
 モールドモータ1は、インバータ回路を搭載した制御基板を内部に有してもよい。制御基板を内蔵した場合、この制御基板で制御された高周波パルスが、巻線11へ流す電流を切替える。
 以上のように構成されたモールドモータ1について、その作用を説明する。
 固定子10が有する巻線11へ、所定の制御電流が流される。この制御電流が作り出す磁界を追従するように、永久磁石23が設けられた回転子20は回動する。回転軸22へ加えられる負荷に応じて、巻線11へ供給される電流は増減する。
 巻線11を構成する芯線11Aは、抵抗成分を有する。よって、巻線11へ電流が流されると、この電流と抵抗成分との関係により、巻線11は発熱する。巻線11が発熱すれば、芯線11Aに施された第1の絶縁被膜11B、第2の絶縁被膜11Cや、インシュレータ13などの絶縁部材などから分解ガスが発生する。このとき、分解ガスは、モールドモータ1の内側とモールドモータ1の外側とを連通するガス流路16(16A乃至16E)を経て、モールドモータ1の外側へ放出される。その詳細について、説明する。
 巻線11は所定の線径を有している。よって、ステータコア12へ巻線11が巻き付けられると、巻線11間には多少の隙間が生じる。モールドモータ1の内側に生じた分解ガスは、この隙間を経由して、固定子10表面へ移動する。
 ところで、モールドモータ1の内部に分解ガスが発生すると、モールドモータ1の内部における気圧は高くなる。そこで、固定子10表面へ移動した分解ガスは、各部に設けられたガス流路16(16A乃至16E)を介して、モールドモータ1の外部へ導き出される。
 まず、ステータコア12が有する各スロット17の位置に、ガス流路16Aの一端が設けられる。各スロット17には、隣接するティース18へ巻き付けられた巻線11が密集している。これら巻線11間には、上述したように多少の隙間が存在している。よって、隙間を介してスロット17へ流れ出た分解ガスは、スロット17位置へ一方の開口を有するガス流路16Aを経て、モールドモータ1の外部へと導き出される。
 次に、巻線11は、インシュレータ13を介してステータコア12へ巻き付けられる。インシュレータ13は、巻線11が巻装される方向とは交差する方向へ溝部15を有する。よって、巻線11とインシュレータ13との間には、所定の隙間が生じるため、巻線11とインシュレータ13とが密着することはない。巻線11やインシュレータ13から生じた分解ガスは、この溝部15に沿って流れる。溝部15の一端は、ガス流路16Bの一端と連絡している。この結果、溝部15を介してガス流路16Bへとたどり着いた分解ガスは、ガス流路を経て、モールドモータ1の外部へと導き出される。
 ところで、溝部15の幅は、モールドフレーム14を構成するモールド樹脂が流動する最小隙間よりも小さければよい。本構成とすれば、モールド樹脂が溝部15へ流れ込むことがなく、モールド樹脂が溝部15という分解ガスの流路を妨げることがなくなる。
 本実施の形態1では、モールドフレーム14を構成するモールド樹脂が流動する最小隙間は、0.1mmである。そこで、溝部15の幅を0.05mmとした。
 また、ステータコア12に幾重にも巻装された巻線11は、その最外周部11Eに隙間が生じる。よって、巻線11などで生じた分解ガスは、巻線11に生じた隙間を経て、巻線11の最外周部11Eへと移動する。巻線11の最外周部11Eには、モールドモータ1の外部へと通じるガス流路16Cの一端が設けられている。よって、巻線11の最外周部11Eへと移動した分解ガスは、ガス流路16Cを介して、モールドモータ1の外部へと導き出される。
 本発明の実施の形態1におけるモールドモータ1を用いれば、モールドフレーム14に設けられたガス流路16(16A乃至16E)を経て、モールドモータ1内に発生した分解ガスをモールドモータ1の外側へ導き出すことができる。この結果、モールドモータ1の内部が、高温高圧となることを回避できる。従って、巻線11の第1の絶縁被膜11B、第2の絶縁被膜11Cやインシュレータ13などの絶縁部材が高温高圧の雰囲気下に晒されることを防止できる。よって、これら第1の絶縁被膜11B、第2の絶縁被膜11Cや絶縁部材の劣化を抑制することが可能となり、モールドモータ1の信頼性を向上できる。
 あるいは、本発明の実施の形態1におけるモールドモータ1を用いれば、モールドモータ1内で生じた分解ガスの排出を促進できるため、従来よりも高い負荷を加えることが可能となる。従って、モールドモータとしての出力を上げることができる。または、同じ出力であれば、モールドモータを小型にすることも可能となる。
 なお、巻線11の最表面へ自己潤滑性を有する潤滑被膜11Dを設けた場合、モールドフレーム14を成すモールド樹脂と巻線11とが密着することを抑制できる。よって、固定子10で生じた分解ガスをガス流路16Cへと導き易くなる。
 (実施例1)
 本発明の実施の形態1におけるモールドモータ1を用いて、実験した結果を示す。図8に、絶縁部材であるインシュレータ13に用いられるポリブチレンテレフタレート(Polybutylene Terephthalate、以下「PBT」と記す。)について、重量変化(TG)に着目して熱分析を行った結果30を示す。
 従来、モールドモータが使用されていた負荷領域で生じる巻線温度を100℃とする。本発明の実施の形態1におけるモールドモータであれば使用可能となる負荷領域で生じる巻線温度を150℃とする。この巻線温度100℃と巻線温度150℃について、TG分析を行った。その結果、1000時間を経過したところで、100℃での重量変化を1とした場合、150℃での重量変化は、約7.6倍の分解ガスが生じることが確認された。
 次に、図9に、モールドフレーム14を構成するモールド樹脂として用いられるバルクモールドコンパウンド(以下、「BMC」と記す。)について、重量変化(TG)に着目して熱分析を行った結果31を示す。なお、BMCとは、熱硬化性樹脂(不飽和ポリエステル)と無機充填材(水酸化アルミニウム、炭酸カルシウム等)からなるガラス繊維強化樹脂である。PBTと同様、巻線温度100℃と巻線温度150℃について、TG分析を行った。その結果、30分を経過したところで、100℃での重量変化を1とした場合、150℃での重量変化は、約2倍の分解ガスが生じることが確認された。なお、いずれの測定にも、エスアイアイ・ナノテクノロジー株式会社製の示差熱熱重量同時測定装置であるEXSTAR6000TG/DTAを用いた。
 以上の結果から、1000時間という長期的評価、および、30分という短期的評価のいずれからも、巻線温度が高くなれば、より多くの分解ガスが発生することが確認された。
 上記結果を踏まえ、本発明の実施の形態1におけるモールドモータ1について、巻線11には自己潤滑剤が塗布されないもの(仕様1)と、巻線11に自己潤滑剤が塗布されたもの(仕様2)とを評価した。運転条件は、電気用品安全法で定められた絶縁耐圧試験に従った。そして、電源と回転軸22との間にAC1000Vで1分間の電圧を掛けて、リーク電流が10mA以下である場合、規格クリアと判断した。この測定には、菊水電子工業株式会社製の耐電圧試験器であるTOS5050を用いた。この絶縁耐圧試験の結果32を図10に示す。
 以上の結果より、ガス流路16が設けられているモールドモータ1であれば、巻線11への自己潤滑剤の塗布の有無に拘らず、上記規格をクリアできることが確認できた。
 (比較例1)
 つぎに、上述した本発明の実施の形態1におけるモールドモータとの比較を行うため、次の仕様について評価を行った。
 まず、従来、モールドモータが使用されている範囲として仕様3を測定した。具体的には、仕様3におけるモールドモータには、本願発明が特徴とするガス流路が設けられていない。また、巻線には、自己潤滑剤も塗布されていない。巻線温度は、従来の使用状況に照らし、100℃とした。
 さらに、本願発明の特徴であるガス流路と、巻線に自己潤滑剤が塗布されたことの効果を検証するため、次の仕様を準備した。
 仕様4におけるモールドモータは、ガス流路が設けられず、かつ、巻線には自己潤滑剤も塗布されない。巻線温度は、求められる仕様状況に照らして150℃とした。
 仕様5におけるモールドモータは、ガス流路は設けられないものの、巻線には自己潤滑剤が塗布されている。巻線温度は、求められる仕様状況に照らして150℃とした。これらの評価結果33を、図11に示す。
 以上の結果より、つぎの見解が導き出される。すなわち、仕様3の評価結果より、従来の使用状況であれば、ガス流路および巻線に自己潤滑剤が塗布されなくても、上記規格がクリアできていたことが確認できた。
 また、仕様4、仕様5の評価結果より、本願発明が特徴とするガス流路がなければ、巻線に自己潤滑剤が塗布されたとしても、上記規格がクリアできないことが確認できた。
 以上の実験結果より、モールドモータにガス流路が設けられれば、従来の使用状況よりも厳しい環境であっても、上記規格がクリアできることが確認できた。これは、ガス流路が、モールドモータ内に発生した分解ガスをモールドモータ外へと導く、ガス抜き穴の役目を果たしているためと考えられる。この結果、本発明の実施の形態1におけるモールドモータを用いれば、同じ大きさのモールドモータであれば、より高い負荷を掛けることができる。あるいは、同じ負荷を掛けるのであれば、モールドモータの大きさをより小さくすることができる。
 なお、図12、図13に示すように、他の実施の形態として、インシュレータ13には、巻線11が巻装される方向とは交差する方向へ突条19を施してもよい。本構成において、図2、図7に示すように、ガス流路16は、一端をインシュレータ13に設けられた突条19の端部に、他端をモールドモータ1の外表面に設ける。このとき、隣接する突条19間の空間が分解ガスの通り道となる。その結果、モールドモータ1内に発生した分解ガスを円滑にガス流路16Bへと導くことが可能となる。
 本発明の利用分野は、巻線が巻装された固定子鉄心がモールド樹脂によってモールドされる固定子を備え、この固定子がモールド樹脂によりモールド成形されるモールドモータについて、広範囲に利用することができる。
 1  モールドモータ
 2,3  玉軸受(軸受)
 4  ブラケット
 4A  環状部
 10  固定子
 11  巻線
 11A  芯線
 11B  第1の絶縁被膜
 11C  第2の絶縁被膜
 11D  潤滑被膜
 11E  最外周部
 12  ステータコア(固定子鉄心)
 13  インシュレータ(絶縁部材)
 13A,13B,13C  端部
 14  モールドフレーム(モールド樹脂)
 15  溝部
 16,16A,16B,16C,16D,16E  ガス流路
 17  スロット
 18  ティース
 19  突条
 20  回転子
 21  回転体
 22  回転軸
 23  永久磁石

Claims (5)

  1. 巻線が巻装されるとともにスロットを有する固定子鉄心を、モールド樹脂によってモールドした固定子と、
    前記固定子に対向して周方向に永久磁石を有する回転体と、前記回転体の軸芯を貫通する回転軸とを含む回転子と、
    前記回転軸を回転自在に挟持する一対の軸受と、を備え、
    前記モールド樹脂は、前記固定子で生じたガスを前記モールド樹脂の外部へと導くガス流路を有するモールドモータ。
  2. 前記ガス流路は、前記スロットの位置に前記ガス流路の一端を設けた請求項1に記載のモールドモータ。
  3. さらに、前記巻線と前記固定子鉄心との間に絶縁部材を備え、
    前記絶縁部材は、前記巻線が巻装される方向とは交差する方向に形成された溝部を有し、この溝部の一端は、前記ガス流路の一端と連絡する請求項1に記載のモールドモータ。
  4. さらに、前記巻線と前記固定子鉄心との間に絶縁部材を備え、
    前記絶縁部材は、前記巻線が巻装される方向とは交差する方向に形成された突条を有し、この突条の一端は、前記ガス流路の一端と連絡する請求項1に記載のモールドモータ。
  5. 前記ガス流路は、前記固定子鉄心へ巻装された前記巻線の最外周部に前記ガス流路の一端を設けた請求項1から4のいずれか一項に記載のモールドモータ。
PCT/JP2013/001080 2012-03-01 2013-02-26 モールドモータ WO2013128881A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-044958 2012-03-01
JP2012044958A JP2015097430A (ja) 2012-03-01 2012-03-01 モールドモータ

Publications (1)

Publication Number Publication Date
WO2013128881A1 true WO2013128881A1 (ja) 2013-09-06

Family

ID=49082094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001080 WO2013128881A1 (ja) 2012-03-01 2013-02-26 モールドモータ

Country Status (2)

Country Link
JP (1) JP2015097430A (ja)
WO (1) WO2013128881A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133873A (ja) * 2014-01-15 2015-07-23 トヨタ自動車株式会社 回転電機ステータ
CN109997294A (zh) * 2016-11-28 2019-07-09 松下知识产权经营株式会社 马达
EP3996258A4 (en) * 2019-07-04 2023-07-12 Sinfonia Technology Co., Ltd. MANUFACTURING PROCESS FOR MOTOR AND STATOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599930B2 (ja) 2017-06-12 2019-10-30 ファナック株式会社 モータ及びその製造方法
JP2021057931A (ja) * 2019-09-26 2021-04-08 日本電産株式会社 ステータ及びモータ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241809A (en) * 1975-09-29 1977-03-31 Hitachi Ltd Plastic rotary electric machine
JPS5326402U (ja) * 1976-08-13 1978-03-06
JPS5326401U (ja) * 1976-08-13 1978-03-06
JPS5997555U (ja) * 1982-12-20 1984-07-02 松下電器産業株式会社 樹脂モ−ルドモ−タ
JPS6160655B2 (ja) * 1978-12-20 1986-12-22 Hitachi Ltd
JPS63121213A (ja) * 1986-11-11 1988-05-25 住友電気工業株式会社 潤滑性ポリウレタン絶縁電線および電磁リレ−
JPS63178410A (ja) * 1987-01-19 1988-07-22 東京特殊電線株式会社 滑性ポリウレタン絶縁電線
JPH08172743A (ja) * 1994-12-20 1996-07-02 Fujitsu General Ltd モールドモータ
JPH10271720A (ja) * 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd モールドモータの固定子
JP2005057884A (ja) * 2003-08-04 2005-03-03 Honda Motor Co Ltd モータ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241809A (en) * 1975-09-29 1977-03-31 Hitachi Ltd Plastic rotary electric machine
JPS5326402U (ja) * 1976-08-13 1978-03-06
JPS5326401U (ja) * 1976-08-13 1978-03-06
JPS6160655B2 (ja) * 1978-12-20 1986-12-22 Hitachi Ltd
JPS5997555U (ja) * 1982-12-20 1984-07-02 松下電器産業株式会社 樹脂モ−ルドモ−タ
JPS63121213A (ja) * 1986-11-11 1988-05-25 住友電気工業株式会社 潤滑性ポリウレタン絶縁電線および電磁リレ−
JPS63178410A (ja) * 1987-01-19 1988-07-22 東京特殊電線株式会社 滑性ポリウレタン絶縁電線
JPH08172743A (ja) * 1994-12-20 1996-07-02 Fujitsu General Ltd モールドモータ
JPH10271720A (ja) * 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd モールドモータの固定子
JP2005057884A (ja) * 2003-08-04 2005-03-03 Honda Motor Co Ltd モータ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133873A (ja) * 2014-01-15 2015-07-23 トヨタ自動車株式会社 回転電機ステータ
CN109997294A (zh) * 2016-11-28 2019-07-09 松下知识产权经营株式会社 马达
EP3734805A1 (en) * 2016-11-28 2020-11-04 Panasonic Intellectual Property Management Co., Ltd. Motor
US11190076B2 (en) 2016-11-28 2021-11-30 Panasonic Inteliectual Property Management Co., Ltd. Motor
US11764636B2 (en) 2016-11-28 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Motor
EP3996258A4 (en) * 2019-07-04 2023-07-12 Sinfonia Technology Co., Ltd. MANUFACTURING PROCESS FOR MOTOR AND STATOR

Also Published As

Publication number Publication date
JP2015097430A (ja) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2013128881A1 (ja) モールドモータ
CN108702052B (zh) 定子、马达以及压缩机
WO2013054479A1 (ja) レジンモールドモータおよびそれを備えた装置
JP2011147253A (ja) モータ、およびそれを備える車両
EP1876684A2 (en) Electric motor and method for producing electric motor
US11056953B2 (en) Stator unit, motor, and fan motor
JP2008061391A (ja) モータ
US20130300223A1 (en) Molded structure and motor
US10090726B2 (en) Motor and air-conditioning apparatus
JP2004215333A (ja) 電動パワーステアリング装置用ブラシモータ
JP4771137B2 (ja) モータの製造方法およびそのモータを用いた燃料ポンプ
JP2018050397A (ja) 永久磁石電動機
JP6634591B2 (ja) 電動機と電動機を備える冷凍機器
JP6921752B2 (ja) 電動機、送風機および空気調和機
WO2021220732A1 (ja) モータ、圧縮機、及びファンモータ
US20130300224A1 (en) Mold structure and motor
JP2016013005A (ja) 電動機および送風装置
JP7483150B2 (ja) 電動機
JP5490182B2 (ja) 電動機、この電動機を内蔵した空気調和機、およびこの電動機の製造方法
JP2012067782A (ja) 電磁クラッチ及び電磁ブレーキ
WO2024084845A1 (ja) 電動機
JP2019097236A (ja) 静止部およびモータ
US11223247B2 (en) Stator for rotary electric machine
JP2005318717A (ja) 電磁ブレーキ付モータ
WO2016084354A1 (ja) 電動機と電動機を備える冷凍機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP