WO2013128815A1 - 充電装置 - Google Patents

充電装置 Download PDF

Info

Publication number
WO2013128815A1
WO2013128815A1 PCT/JP2013/000771 JP2013000771W WO2013128815A1 WO 2013128815 A1 WO2013128815 A1 WO 2013128815A1 JP 2013000771 W JP2013000771 W JP 2013000771W WO 2013128815 A1 WO2013128815 A1 WO 2013128815A1
Authority
WO
WIPO (PCT)
Prior art keywords
position detection
coil
charging
nfc
charged
Prior art date
Application number
PCT/JP2013/000771
Other languages
English (en)
French (fr)
Inventor
悠 長谷川
金谷 昌宣
行雄 飯島
一則 山田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP13754191.8A priority Critical patent/EP2696467A4/en
Priority to US14/005,881 priority patent/US9502922B2/en
Priority to JP2013539029A priority patent/JP6112305B2/ja
Priority to CN201380000866.6A priority patent/CN103444044B/zh
Publication of WO2013128815A1 publication Critical patent/WO2013128815A1/ja
Priority to US15/299,681 priority patent/US20170040834A1/en

Links

Images

Classifications

    • H02J7/025
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a charging device in which a charged device including a secondary battery is installed, and the secondary battery is charged by transmitting electric power by electromagnetic induction.
  • Patent Document 1 discloses a structure in which a power receiving coil is built in a device to be charged, and a charging device that detects the position of a power transmitting coil and a power receiving coil is provided in a charging device that performs power transmission.
  • Patent Document 2 discloses a non-contact charging device that charges a mobile phone provided with a non-contact type near field communication means such as a non-contact IC card, Bluetooth (registered trademark), and infrared communication by a non-contact charging method. ing.
  • the present disclosure provides a charging device that is effective for charging a device having a wireless communication function while reducing an influence on a communication radio wave performed by a device to be charged.
  • the charging device in the present disclosure is a charging device that charges electric power to a charged device having a secondary battery by electromagnetic induction to charge the secondary battery, and the charged device mounted on the charging device is A position detection unit for detecting the position of the power receiving coil, and an attenuation prevention unit for preventing attenuation of radio waves or magnetic fields generated around the device itself.
  • the charging device is effective for charging a device to be charged while reducing the influence on a communication radio wave performed by the device to be charged having a wireless communication function.
  • FIG. 1 External view showing an example of a state of the non-contact charging apparatus and the mobile phone according to the first embodiment
  • the block diagram which shows each internal structure of the non-contact charging device which concerns on Embodiment 1, and a mobile telephone
  • the block diagram which shows the internal structure of the position detection part with which the non-contact charging device which concerns on Embodiment 1 is provided.
  • FIG. The flowchart which shows operation
  • the block diagram which shows each internal structure of the non-contact charging device which concerns on Embodiment 2, and a mobile telephone The block diagram which shows the internal structure of the position detection part with which the non-contact charging device which concerns on Embodiment 2 is equipped, an NFC control part, and a switching part.
  • Schematic diagram of magnetic field and demagnetizing field generated in position detection coil according to Embodiment 2 The block diagram which shows the mounting state of BEF arrange
  • FIG. The figure which shows the effect by inserting the magnetic field and BEF which generate
  • FIG. The figure which shows the circuit structure around the position detection circuit based on Embodiment 2.
  • FIG. 2 The figure which shows the waveform output to the position detection coil which concerns on Embodiment 2.
  • FIG. 2 The flowchart which shows operation
  • FIG. 1 is an external view showing an example of the state of contactless charging apparatus 100 and mobile phone 150 according to Embodiment 1.
  • FIG. The state shown in FIG. 1 is a state in which the mobile phone 150 is placed on the charging stand 101 that constitutes the upper surface of the contactless charging apparatus 100.
  • the non-contact charging apparatus 100 uses so-called non-contact charging by supplying power to the secondary battery of the mobile phone 150 as a device to be charged using non-contact power transmission in the electromagnetic induction effect. It is carried out. That is, contactless charging is performed by placing or bringing the mobile phone 150 close to the charging stand 101 of the contactless charging apparatus 100.
  • FIG. 2 is a block diagram showing the internal configuration of the non-contact charging device 100 and the mobile phone 150.
  • a position detection unit 201 having a plurality of coils for detecting the position of the mobile phone 150 placed on the charging stand 101 is disposed on the inner surface of the charging stand 101.
  • the charging stand 101 has a physical characteristic equivalent to a metal plate for a high frequency. That is, when the mobile phone 150 that is a device to be charged is placed on the charging stand 101, a high-frequency current flows through the coil of the position detection unit 201 due to radio waves that the mobile phone 150 performs wireless communication (radio waves generated around its own device). , Radio wave energy loss occurs. This contributes to a decrease in the strength of radio waves with which the mobile phone 150 performs wireless communication.
  • the contactless charging apparatus 100 includes a charging stand 101, a power supply circuit 204, a position detection unit 201, a contactless charging circuit unit 210, and a coil moving mechanism 207.
  • the mobile phone 150 is an electronic device having a communication means capable of wireless communication using a specific frequency band.
  • the mobile phone 150 includes a power receiving coil 251, a secondary battery 257, a parallel resonance circuit 258, and a charge control circuit 253. And have.
  • the power supply circuit 204 converts electric power supplied to the contactless charging apparatus 100 from an external power supply such as a commercial power supply or a battery mounted on the vehicle into a mode for use in the contactless charging apparatus 100.
  • the position detection unit 201 detects the position of the mobile phone 150 placed on the charging stand 101. Note that the position of the mobile phone 150 is precisely the position of the power receiving coil 251 on the surface of the charging stand 101.
  • the contactless charging circuit unit 210 supplies power to the mobile phone 150 in a contactless manner.
  • the non-contact charging circuit unit 210 includes a charging control circuit 205, an oscillation circuit 206, and a power transmission coil 208.
  • the charging control circuit 205 generates a high-frequency current through the oscillation circuit 206 and causes the high-frequency current to flow through the power transmission coil 208.
  • a high frequency current flows through the power transmission coil 208 in the state shown in FIG. 1, an induced electromotive force is generated in the power reception coil 251 of the mobile phone 150.
  • the charge control circuit 205 may have a charge detection function of detecting the charge state of the secondary battery 257 of the mobile phone 150 and may determine completion of charge.
  • the coil moving mechanism 207 causes the power transmission coil 208 to approach the position of the mobile phone 150 detected by the position detection unit 201 along the charging stand 101.
  • the coil moving mechanism 207 includes an X-axis servomotor that moves the power transmission coil 208 in the X-axis direction on the surface formed by the charging stand 101 and a Y-axis servomotor that moves the power transmission coil 208 in the Y-axis direction.
  • FIG. 3 is a block diagram illustrating an internal configuration of the position detection unit 201 included in the non-contact charging apparatus 100.
  • the position detection unit 201 includes a position detection coil 313, a BEF 316, a position detection circuit 311, a coil moving mechanism control circuit 312, a resonance frequency switching circuit 314, and a resonance frequency variable control circuit 315. Is provided.
  • the position detection coil 313 is a plurality of rows of coils arranged at predetermined intervals on the inner surface of the charging stand 101.
  • the position detection coil 313 includes a plurality of X-axis detection coils 313 ⁇ / b> A that detect positions in the X-axis direction of the power transmission coil 208 included in the non-contact charging circuit unit 210 and the power reception coil 251 of the mobile phone 150, and a power transmission coil 208.
  • a plurality of Y-axis detection coils 313B that detect the position of the power receiving coil 251 in the Y-axis direction. Note that the interval between adjacent axis detection coils is smaller than the outer diameter of the power receiving coil 251. If the interval is narrowed, the position of the power receiving coil 251 can be accurately detected.
  • a BEF Backelimination filter
  • LC parallel resonant circuit with an electrical length of 1/2 wavelength or less at the frequency of the radio wave used by the mobile phone 150 for wireless communication.
  • 316 is provided.
  • the band stop filtering function that reduces the influence on the frequency band used by the mobile phone 150 for wireless communication effectively works at the resonance frequency in the BEF 316.
  • the BEF 316 constitutes a circuit whose resonance frequency is variable under the control of the resonance frequency variable control circuit 315.
  • FIG. 4 is a diagram illustrating an example of a circuit configuration of the BEF 316.
  • the resonance frequency of the BEF 316 depends on the product of the capacitance of the capacitor 316A and the inductance value of the coil 316B. Therefore, the resonance frequency of the BEF 316 is controlled by controlling the capacitance and the inductance value.
  • FIG. 5 is a diagram illustrating another example of the circuit configuration of the BEF 316.
  • the capacitive element constituting the BEF 316 is a variable capacitor 316A ′. Capacitance can be controlled by applying a reverse voltage to the variable capacitor 316A '. Therefore, the resonance frequency variable control circuit 315 can change the resonance frequency of the BEF 316 by controlling the voltage applied to the variable capacitors 316A ′ of all the BEFs 316 included in the position detection unit 201. For this reason, the BEF 316 with a small resonance frequency and a small number of components can be realized by arranging the coils 316B ′ and the variable capacitors 316A ′ one by one.
  • FIG. 6 is a diagram illustrating another example of the circuit configuration of the BEF 316.
  • a plurality of capacitors 316 ⁇ / b> A ′′ and a coil 316 ⁇ / b> B ′′ are arranged in parallel, and the resonance frequency variable control circuit 315 can control the on / off state of the switch 317 so that the resonance frequency of the BEF 316 can be controlled.
  • the number of components is increased as compared with the previous example, but both the capacitance and the inductance value can be controlled, so that the resonance frequency can be controlled with higher accuracy.
  • the position detection circuit 311 excites the parallel resonance circuit 258 of the mobile phone 150 with the pulse signal output from the position detection coil 313, receives an echo signal from the power receiving coil 251, and receives the echo signal from the power receiving coil 251 of the mobile phone 150. Detect position. Note that the level of the echo signal from the power reception coil 251 varies depending on the relative position between the position detection coil 313 and the power reception coil 251. Therefore, the position detection circuit 311 can detect the position of the mobile phone 150 on the charging stand 101 based on the relative distance to each position detection coil 313 that outputs a pulse signal.
  • the coil moving mechanism control circuit 312 controls the coil moving mechanism 207 according to the position of the power receiving coil 251 detected by the position detecting circuit 311. That is, the coil moving mechanism control circuit 312 controls the servo motors in the respective axial directions that constitute the coil moving mechanism 207.
  • the resonance frequency switching circuit 314 is configured to instruct the resonance frequency variable control circuit 315 to determine the frequency so as to perform control related to the operation of changing the resonance frequency of the BEF 316 in response to manual switching of the input switch.
  • the purpose of changing the resonance frequency of the BEF 316 is to reduce the influence of the resonance frequency of the BEF 316 on the frequency band used by the mobile phone 150 for wireless communication.
  • the resonance frequency switching circuit 314 When the resonance frequency switching circuit 314 has a communication function, the resonance frequency switching circuit 314 performs wireless communication with the mobile phone 150 if an ID for each use frequency band of the mobile phone 150 is set in the mobile phone 150 in advance. Thus, the ID may be acquired, and an instruction may be given to change the resonance frequency of the BEF 316 according to the frequency corresponding to the ID.
  • the resonance frequency variable control circuit 315 changes either or both of the electrostatic capacity and the inductance value of the BEF 316 in accordance with an instruction from the resonance frequency switching circuit 314, and controls the resonance frequency of the BEF 316.
  • the above-described charging control circuit 205, coil moving mechanism control circuit 312 and resonance frequency control circuit 315 are realized by a microcomputer or the like that executes a computer program describing an operation process. That is, the CPU executes the computer program stored in the ROM using the CPU, ROM, and RAM of the microcomputer while using the RAM as a work area.
  • the charging control circuit 205, the coil moving mechanism control circuit 312 and the resonance frequency control circuit 315 may be configured by the same microcomputer.
  • the operation from the detection of the mobile phone 150 to the execution of the non-contact charging by the non-contact charging device 100 of the present embodiment will be described with reference to FIG.
  • the power supply circuit 204 performs power conversion for the contactless charging apparatus 100 and the contactless charging apparatus 100 is activated ( Step S40).
  • the contactless charging apparatus 100 may be activated by a manual switch or the like provided in the contactless charging apparatus 100.
  • the position detection unit 201 determines whether or not the mobile phone 150 is on the charging stand 101, and detects the position if the mobile phone 150 is on the charging stand 101 (step S41). ).
  • the position detection of the mobile phone 150 is performed by exciting the parallel resonance circuit 258 of the mobile phone 150 with a pulse signal output from the position detection coil 313 by the position detection circuit 311 and receiving an echo signal from the power receiving coil 251. Done. If the position of the mobile phone 150 can be detected in step S41, the process proceeds to step S42. Note that the position of the mobile phone 150 is precisely the position of the power receiving coil 251 on the surface of the charging stand 101. On the other hand, if the position of the mobile phone 150 cannot be detected in step S41, the process proceeds to step S48. In step S48, the non-contact charging device 100 shifts to a standby state.
  • step S42 the resonance frequency switching circuit 314 determines the resonance frequency of the BEF 316 according to the frequency band of the radio wave used by the mobile phone 150 for wireless communication.
  • the resonance frequency control circuit 315 controls either or both of the capacitance and the inductance value of the BEF 316 so that the resonance frequency of the BEF 316 becomes the frequency determined in step S42 (step S43).
  • the coil moving mechanism control circuit 312 controls the coil moving mechanism 207 based on the position of the mobile phone 150 detected in step S41 to bring the power transmission coil 208 close to the position of the power receiving coil 251 of the mobile phone 150.
  • the non-contact charging circuit unit 210 causes a high-frequency current to flow through the power transmission coil 208 and generates an induced electromotive force in the power reception coil 251 by electromagnetic induction between the power transmission coil 208 and the power reception coil 251. Charging of the secondary battery 257 of the mobile phone 150 is started (step S45).
  • the position detection unit 201 determines whether or not the mobile phone 150 is on the charging stand 101, and detects the position if the mobile phone 150 is on the charging stand 101 (step S46). ). If the position of the mobile phone 150 can be detected in step S46, the process proceeds to step S47 to continue non-contact charging. On the other hand, if the position of the mobile phone 150 cannot be detected in step S46, the process proceeds to step S48, and the non-contact charging apparatus 100 shifts to a standby state.
  • the contactless charging apparatus 100 matches the resonance frequency of the BEF 316 disposed on the inner surface of the charging stand 101 with the frequency of the radio wave used by the mobile phone 150 for wireless communication. For this reason, a band stop filter at the frequency is configured in the BEF 316. As a result, the mobile phone 150 is charged in a state where a decrease in radio wave intensity at the frequency is suppressed.
  • the band detection filter of the frequency band used by the mobile phone 150 for wireless communication is formed in the position detection coil 313, so that the high frequency current due to the radio wave of the frequency band used by the mobile phone 150 does not flow on the position detection coil 313. For this reason, the energy loss of the radio wave used by the mobile phone 150 can be suppressed.
  • the charging device acts as an attenuation preventing unit that prevents the BEF from attenuating a radio wave having a specific frequency generated around its own device such as the vicinity of the charging stand, the strength of the radio wave used by the device to be charged Non-contact charging can be performed while suppressing the decrease.
  • the non-contact charging device 100 is a short-range wireless communication that is one of wireless communication using an electromagnetic induction effect when the mobile phone 150 has an NFC (Near Field Communication) function. (Hereinafter referred to as NFC communication).
  • NFC Near Field Communication
  • Various information communication can be performed between the mobile phone 150 and an external device connected to the non-contact charging device 100 by NFC communication.
  • the destination information set by the mobile phone 150 can be transmitted to the car navigation by NFC communication to set the destination of the car navigation. Many communication contents are considered.
  • NFC communication In NFC communication, a 13.56 MHz carrier wave is used, and data is transmitted and received using the magnetic field generated in the antenna coil. Therefore, in order to perform communication by NFC, an antenna coil that generates a magnetic field having a frequency of 13.56 MHz in the vicinity of the charging stand or the charging stand is required.
  • the charging device also has an NFC function by using one of a number of position detection coils arranged inside the charging stand as an antenna coil used in NFC.
  • the NFC function can be mounted on the charging stand without adding a new NFC antenna to the conventional charging stand.
  • FIG. 8 is a block diagram showing internal configurations of the non-contact charging device 100 and the mobile phone 150.
  • the non-contact charging apparatus 100 includes a charging stand on the side where the mobile phone 150 is placed.
  • An NFC control unit 202 for performing NFC communication is arranged.
  • a switching unit 203 for switching the coil according to each function is arranged.
  • the non-contact charging apparatus 100 includes a power supply circuit 204, a charging control circuit 205, an oscillation circuit 206, a coil moving mechanism 207, a power transmission coil 208, and an external device connection unit 209.
  • the external device connection unit 209 connects the external device connected to the above-described non-contact charging device 100 and its own device. That is, the external device performs bidirectional communication with the position detection unit 201 and the NFC control unit 202 via the external device connection unit 209.
  • the mobile phone 150 is an electronic device having a communication means capable of wireless communication using a specific frequency.
  • the mobile phone 150 is a power receiving coil 251, a power receiving resonance circuit 252, a charging control circuit 253, and a short-range communication antenna.
  • FIG. 9 is a block diagram illustrating an internal structure of the position detection unit 201 and the NFC control unit 202 serving as the short-range communication control unit included in the non-contact charging apparatus 100.
  • the position detection unit 201 includes a position detection coil 301, a position detection control circuit 302, and a switch 303 controlled by the switching unit 203, and the NFC control unit 202 is controlled by the NFC control circuit 304 and the switching unit 203.
  • the switch 305 is provided.
  • the position detection unit 201 and the NFC control unit 202 include a position detection coil 301, a position detection control circuit 302, a coil moving mechanism 207, an NFC control circuit 304, a switching unit 203, and a switch 303 controlled by the switching unit 203. 305.
  • the position detection coil 301 is a plurality of rows of coils arranged on the inner surface of the charging base 101 at predetermined intervals.
  • the position detection coil 301 includes a plurality of X-axis direction position detection coils 301 ⁇ / b> A that detect positions in the X-axis direction of the power transmission coil 208 and the power reception coil 251 of the mobile phone 150, and Y of the power transmission coil 208 and the power reception coil 251. And a plurality of Y-axis direction position detection coils 301B for detecting the position in the axial direction.
  • the interval between adjacent axis detection coils is smaller than the outer diameter of the power receiving coil. If the interval is narrowed, the position of the power receiving coil 251 can be accurately detected.
  • one of the plurality of position detection coils 301 arranged is used as an NFC antenna coil (301 ′ in FIG. 9).
  • a plurality of position detection coils 301 arranged on the charging stand 101 are arranged in the X-axis direction and the Y-axis direction of the charging stand 101, respectively, and the position detection coils in each axial direction intersect.
  • NFC position detection coil orthogonal to the position detection coil 301 ′ (hereinafter also referred to as an NFC position detection coil) that is also used as an NFC antenna coil (301A in FIG. 9).
  • the antenna coil on the transmission side generates a 13.56 MHz magnetic field.
  • An induced electromotive force is generated in the antenna coil on the receiving side when the magnetic flux by the magnetic field passes through the antenna coil on the receiving side, and communication is performed using this power.
  • the magnetic field generated in the coil on the transmission side needs to have a magnetic field intensity sufficient to generate electric power necessary to activate the IC mounted on the reception side.
  • the induced electromotive force generated in the antenna coil on the receiving side is proportional to the strength of the magnetic field passing through the antenna coil on the receiving side.
  • the 13.56 MHz magnetic flux generated by the NFC position detection coil 301' is intersected by a plurality of intersecting X-axis directions.
  • the position detection coil 301A will also pass through.
  • a magnetic field is generated around the coil by the electromagnetic induction effect.
  • the direction of the magnetic field is opposite to the magnetic field generated by the NFC combined position detection coil 301 ′ (hereinafter, referred to as a demagnetizing field 402).
  • the demagnetizing field 402 attenuates the magnetic field 401 necessary for original NFC communication. As the magnetic field 401 is attenuated, the induced electromotive force generated in the NFC antenna coil 254 on the reception side also decreases.
  • a BEF (Band-elimination filter) 501 composed of an LC parallel resonance circuit is connected in series to the axial position detection coil 301A.
  • the BEF 501 is arranged at a location where the NFC combined position detection coil 301 ′ and the X-axis direction position detection coil 301 ⁇ / b> A intersect, but the location where the BEF 501 is arranged needs to be limited to this position.
  • the BEF 501 may be configured to be connected in series to any location on the coil 301 other than the NFC combined position detection coil 301 ′.
  • BEF is an LC parallel resonant circuit that attenuates only a specific frequency on the circuit. Therefore, the predetermined frequency attenuated by BEF is set to the same frequency as the 13.56 MHz carrier used in NFC.
  • BEF is applied only to a plurality of X-axis direction position detection coils 301A intersecting with the NFC position detection coil 301 ′ with respect to the NFC position detection coil 301 ′ that is the Y-axis direction position detection coil.
  • An example of serial connection has been described.
  • the BEF may be inserted on the Y-axis direction position detection coil 301B that is disposed close to or overlapping the NFC combined position detection coil 301 ′.
  • FIGS. 9 and 11 a plurality of coils parallel to each other are illustrated as being aligned without overlapping, but these coils overlap (the region closed by the coil is As a result of the arrangement, the position detection accuracy of the power receiving coil 251 of the mobile phone 150 can be improved.
  • the BEF is inserted into any coil (overlapping coil) of the Y-axis direction position detection coil 301B excluding the NFC combined position detection coil 301 ', so that it is counteracted by the arbitrary coil (overlapping coil). Generation of a magnetic field can be suppressed.
  • a plurality of BEFs are arranged on one coil.
  • the purpose of inserting the BEF is that a current of 13.56 MHz used for NFC flows on the coils other than the NFC combined position detection coil 301 ′.
  • the number of BEFs arranged on the coil need not be limited.
  • the contactless charging apparatus has the configuration shown in FIG. 13 in order to handle different frequencies for position detection of the power receiving coil 251 and for NFC communication in the NFC combined position detection coil 301 ′.
  • the functions of the NFC combined position detection coil 301 ′ are switched by controlling the switches 303 and 305 connected to the switching unit 203.
  • the NFC combined position detection coil 301 ′ functions as a position detection coil when the switching unit 203 turns on the switch 303 and turns off the switch 305 (this state is referred to as state 1).
  • a pulse signal output from the position detection control circuit 302 excites the power reception resonance circuit 252 of the mobile phone 150 and re-emits from the power reception coil 251.
  • the received magnetic field (hereinafter referred to as an echo signal) functions as one of a plurality of position detection coils for detecting the position of the power receiving coil 251 of the mobile phone 150.
  • the level of the echo signal from the power reception coil 251 varies depending on the relative position between the position detection coil 301 and the power reception coil 251.
  • the position detection control circuit 302 determines the position of the mobile phone 150 on the charging base 101 based on the level of the echo signal that differs depending on the relative distance between each position detection coil 301 that outputs a pulse signal and the power receiving coil 251. Can be detected.
  • the NFC combined position detection coil 301 ′ when the NFC combined position detection coil 301 ′ functions as a position detection coil, the NFC combined position detection coil 301 ′ resonates the power reception resonance circuit 252 of the mobile phone 150 and the echo signal output from the power reception coil. Is transmitted to the position detection control circuit 302.
  • the NFC control circuit 304 performs impedance matching on the path between the NFC control IC 701 that controls and outputs a 13.56 MHz carrier wave when performing desired communication with NFC, and the path between the NFC control IC 701 and the NFC combined position detection coil 301 ′.
  • the matching circuit 702 is implemented.
  • NFC uses a 13.56 MHz carrier wave for communication. Therefore, impedance matching is performed by the matching circuit 702, and the impedance of the matching circuit 702 is adjusted in advance so as to resonate at the frequency of the carrier wave output from the NFC control IC 701.
  • the impedance matching uses passive components such as capacitors and coils mounted on the matching circuit 702.
  • the NFC control circuit 304 and the NFC control circuit 256 mounted on the mobile phone 150 perform NFC communication via respective antenna coils.
  • the switching unit 203 switches the state 1 and the state 2 by controlling the switches 303 and 305.
  • FIG. 14 shows the relationship between the time axis and the signal output to the NFC combined position detection coil 301 ′ when the switches 303 and 305 are controlled to switch between the state 1 and the state 2.
  • the NFC combined position detection coil 301 ′ is in the state 1, and a pulse wave for detecting the position of the power receiving coil 251 mounted on the mobile phone 150 is output to the position detection coil 301.
  • FIG. 14 shows the signal output to the NFC combined position detection coil 301 ′, but the pulse waveform for position detection indicated by the broken line in section 1 is applied to the X-axis direction position detection coil 301A and the Y-axis direction position detection coil 301B.
  • the output pulse waveform is shown for convenience, following the position detection coil shown in FIG.
  • the position detection control circuit 302 switches and controls the X axis direction position detection coil 301 ⁇ / b> A and the Y axis.
  • a pulse signal is output to each position detection coil constituting the direction position detection coil 301B.
  • a method of outputting a pulse signal to the Y-axis direction position detection coil 301B only when a pulse signal is first output to the X-axis direction position detection coil 301A and the power receiving coil 251 is detected is considered. It is done.
  • a method of outputting a pulse signal to the X-axis direction position detection coil 301A and ending the section 1 if no echo signal is detected may be employed.
  • the power receiving coil 251 is installed on the charging stand. The time of section 1 when there is not can be shortened.
  • Position detection control when the position coordinate of the power receiving coil 251 is detected after the pulse signal is output to the position detecting coil 301 or when the echo signal is not detected and the power receiving coil 251 is not installed in the non-contact charging device 100
  • the switching unit 203 turns off the switch 303 and turns on the switch 305 to make a transition to the section 2 (state 2).
  • NFC communication is performed between the NFC control circuit 304 and the NFC control circuit 256 mounted on the mobile phone 150 using a 13.56 MHz carrier wave.
  • the NFC control IC 701 performs polling for a predetermined period in order to detect a device that is a target of NFC communication.
  • the NFC control circuit 256 mounted on the mobile phone 150 transmits a response command to the NFC control IC 701 by load-modulating the 13.56 MHz carrier wave sent thereto.
  • the NFC control IC 701 determines that the mobile phone 150 is not equipped with the NFC function.
  • the power supply circuit 204 converts the power to a mode used by the contactless charging apparatus 100 and the contactless charging apparatus 100 is activated ( Step S10).
  • the contactless charging apparatus 100 may be activated by a manual switch or the like provided in the contactless charging apparatus 100.
  • the switching unit 203 controls the switches 303 and 305 to shift the NFC combined position detection coil 301 ′ to the state 1 (step S11).
  • this state is called an initial state.
  • step S12 the position detection unit 201 determines whether or not the mobile phone 150 exists on the charging stand 101 during the section 1.
  • step S12 if the mobile phone 150 exists on the charging stand 101, the position is detected.
  • the position detection of the mobile phone 150 is performed by exciting the power reception resonance circuit 252 of the mobile phone 150 with the pulse signal output from the position detection coil 301 by the position detection unit 201 and receiving an echo signal from the power reception coil 251. Is called.
  • the position of the mobile phone 150 is precisely the position of the power receiving coil 251 on the surface of the charging stand 101.
  • the position detection control circuit 302 determines that the power receiving coil 251 is installed on the charging stand by receiving the echo signal (YES in step S12)
  • the power receiving coil 251 is stored in the memory mounted in the position detection control circuit.
  • the position coordinates are stored (step S13).
  • the switching unit 203 controls the switch 303 and the switch 305, so that the NFC combined position detection coil 301 ′ transitions to the state 2 (step S14).
  • NFC communication is performed between the NFC control circuit 304 and the NFC control circuit 256 mounted on the mobile phone 150 in section 2.
  • the NFC control IC 701 performs polling for a predetermined period in order to detect a target device for NFC communication, so that the mobile phone 150 mounted on the non-contact charging device 100 has an NFC function. It is determined whether or not (step S15).
  • the NFC control circuit 256 mounted on the mobile phone 150 transmits a response command to the NFC control IC 701 by load-modulating the 13.56 MHz carrier wave sent thereto. Therefore, if this response command is not detected in section 2, the NFC control IC 701 determines that the mobile phone 150 is not equipped with the NFC function (NO in step S15).
  • step S15 If it is determined in step S15 that the mobile phone 150 is equipped with the NFC function, NFC communication is started (step S16).
  • Step S17 After the NFC communication is started in Step 16, the process for determining whether or not the NFC communication has been completed is continued (Step S17).
  • step S15 When it is determined that the NFC function is not installed in the mobile phone 150 (NO in step S15) or when NFC communication with the NFC control circuit 256 installed in the mobile phone 150 is completed (YES in step S17). ) Transitions from section 2 to section 1 again (step S18).
  • step S19 Whether or not the position detection control circuit 302 detects the power reception coil 251 in step S12 when the state transitions to the state 1 again, that is, the position coordinate of the power reception coil 251 is stored in the memory mounted in the position detection control circuit 302. The flow changes depending on whether it is stored (step S19).
  • step S19 when the power receiving coil 251 is detected in step S12, the process proceeds to step S21, and the position detection control circuit 302 controls the coil moving mechanism 207 to bring the power transmitting coil 208 closer to the position of the power receiving coil 251.
  • step S19 If it is determined in step S19 that the position coordinates are not stored (NO in step 19), the process returns to the initial state. Therefore, unless the power receiving coil 251 is detected, the NFC combined position detecting coil 301 ′ repeats the flow of steps S12 to S19.
  • step S22 it is determined whether or not the movement of the power transmission coil 208 is completed. If the movement is not completed (NO in step S22), the process returns to step S21 to continue the movement of the power transmission coil 208.
  • step S21 and step S22 After step S21 and step S22, after the power transmission coil 208 has finished moving to the position of the power reception coil 251 (YES in step S22), the charging control circuit 205 generates a high-frequency current via the oscillation circuit 206, and power transmission A high frequency current is passed through the coil 208 for use.
  • step S24 it is determined whether or not a request for performing NFC communication with the mobile phone 150 is received from the external device connected to the external device connection unit 209 during charging to the non-contact charging device 100.
  • the switching unit 203 controls the switch 303 and the switch 305 to shift the NFC combined position detection coil 301 ′ to the state 2. (Step S25).
  • Steps S26 to S29 which are subsequent flows, perform the same operations as steps S15 to S18 described above.
  • steps S26 to S29 processing for stopping the charging operation of the power transmission coil 208 is performed, or the distance of the power transmission coil 208 is separated from the NFC combined position detection coil 301 ′.
  • both the charging stop process and the movement control for the power transmission coil 208 may be performed.
  • step S26 If the position detection control circuit 302 does not detect a target device for NFC communication in step S26, the target device is not detected from the position detection control circuit 302 to the external device via the external device connection unit 209. Such information may be transmitted.
  • step S30 the charging operation is continued (step S30).
  • NFC communication can be performed even while the mobile phone 150 is being charged.
  • step S31 when the power receiving coil 251 is removed from the power transmitting coil 208 during the charging operation, the charging control circuit 205 stops the charging operation. Therefore, steps S24 to S31 are repeatedly performed while the charging control circuit 205 is performing the charging operation.
  • step S31 When the charging control circuit 205 stops the charging operation in step S31, the operation returns to the initial state, and the detection operation of the power receiving coil 251 is performed.
  • This flow can realize a charging operation even for a “mobile phone equipped with a non-contact charging function but not an NFC function”.
  • NFC communication can be performed by repeating Step S12 to Step S19 for “a mobile phone that has no charging function but has an NFC function”.
  • the non-contact charging apparatus 100 can perform a desired operation according to the function mounted on the mobile phone placed on the charging stand.
  • processing flow shown here is an example of implementation, and according to the function installed in the mobile phone installed in the charging stand, the user switches the manual switch etc. installed in the charging device to state 1 and The state 2 may be switched.
  • FIG. 16 shows the relative sizes of the mobile phone 150 and the charging stand 101.
  • the charging base of this embodiment mainly considers what is used for charging a mobile phone, and the size of the charging base needs to be designed assuming mobile phones of various sizes.
  • mobile phones have a shape that fits within a square frame or a rectangular frame. Therefore, when the shape of the charging stand 101 is rectangular, the relative size of the charging stand 101 with respect to the mobile phone 150 becomes important.
  • the magnetic field strength depends on the size of the antenna that generates the magnetic field. Therefore, the NFC antenna coil 254 mounted on the mobile phone 150 is arranged to be as large as possible inside the casing of the mobile phone 150.
  • the NFC antenna coil 254 of the mobile phone 150 is arranged so as to overlap the center of the mobile phone 150.
  • NFC communication uses the induced electromotive force generated by the magnetic field generated by one antenna passing through the other antenna.
  • the magnetic field strength increases and the sensitivity increases as the area where the antennas for communication overlap each other is larger.
  • the length Lc in the short side direction of the charging stand 101 is made larger than the length Lm in the short side direction of the mobile phone 150, and the length Lm in the short side direction of the mobile phone is combined with NFC.
  • the length Lc in the short side direction of the charging stand 101 is made smaller than the sum of the distance Dl between the position detection coils 301 ′.
  • each is arranged so that the long side direction of the charging stand 101 and the longitudinal direction of the NFC combined position detection coil 301 ′ are parallel to each other.
  • the “interval D1” of the NFC combined position detection coil 301 ′ can also be referred to as “the width in the short side direction (short side direction of the charging stand) of the magnetic field excited by the NFC combined position detection coil 301 ′”. In the example shown in FIG. 16, this is the distance between one straight line in the longitudinal direction of the NFC combined position detection coil 301 ′ and the other straight line facing the one straight line.
  • the distance Dl between the NFC position detection coils is considered depending on how much width (or length) the magnetic field excited by the NFC position detection coil 301 ′ occupies in the short side direction of the mobile phone 150. It is preferred that
  • the NFC antenna coil 254 of the mobile phone 150 always overlaps more than half of the NFC combined position detection coil 301 ′.
  • the size of the charging stand is defined as described above with respect to the size of the mobile phone, and further, the position detection arranged at the center of the plurality of Y-axis direction position detecting coils 301B arranged in the short side direction of the charging stand.
  • the NFC combined position detection coil 301 ′ as the coil, antennas that perform NFC communication overlap each other regardless of the position on the charging stand, and communication can be performed.
  • a BEF Battery Eliminate Filter
  • a BEF Back Eliminate Filter
  • a frequency that is attenuated using BEF. was set to the same frequency as the 13.56 MHz carrier used in NFC.
  • the 13.56 MHz magnetic field generated by the NFC antenna coil passes through the position detection coil where the BEF is disposed, the 13.56 MHz high frequency current generated on the position detection coil is suppressed.
  • the generation of a demagnetizing field generated around the position detection coil that intersects the position detection coil that functions as the antenna coil for NFC communication is suppressed, and both the charging function and NFC communication are achieved. be able to.
  • the carrier used in near field communication is not limited to 13.56 MHz, and the charging device of this embodiment can be applied to an antenna of a device that performs communication using electromagnetic induction.
  • the charging device is effective for charging a device to be charged while reducing the influence on radio waves used by the device to be charged having a wireless communication function.
  • Embodiments 1 and 2 may be arbitrarily combined. According to this modification, it is possible to obtain an effect obtained by arbitrarily combining the first and second embodiments.
  • the charging device of the present disclosure is useful as a non-contact charging device for a device to be charged having a wireless communication function. Specifically, it is useful as a non-contact charging device for charging a mobile phone, a smart phone or the like.
  • Non-contact charging apparatus 101
  • Charging stand 150 Mobile phone (an example of to-be-charged apparatus)
  • DESCRIPTION OF SYMBOLS 201
  • Position detection part 202
  • NFC control part 203
  • Switching part 204
  • Power supply circuit 205
  • Charging control circuit 206
  • Oscillation circuit 207
  • Coil moving mechanism 208 Coil for power transmission 209
  • External device connection part 210
  • Non-contact charging circuit part 251
  • Power receiving coil 252
  • Power receiving resonance circuit 253
  • Charge control circuit 254 NFC antenna coil 255 NFC resonance circuit 256
  • Parallel resonance circuit 301
  • Position detection coil 301A X-axis direction position detection coil 301B
  • Y-axis direction position detection coil 301
  • 'NFC combined position detection coil 302
  • Position detection control circuit 303
  • Switch 304 NFC control circuit 305
  • Position detection circuit 312 Coil moving mechanism control circuit 313

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 無線通信機能を有する被充電機器が使用する電波または磁界の強度低下を抑制し、その電波または磁界への影響を軽減する充電装置。この装置では、位置検出部(201)は、充電台(101)に設置された被充電機器(150)が有する受電用コイル(251)の位置を検出する。送電用コイル(208)は、受電用コイル(251)に接近して電力伝送を行う。コイル移動機構(207)は、位置検出部(201)が検出した受電用コイル(251)の位置に送電用コイル(208)を接近させる。

Description

充電装置
 本開示は、二次電池を内蔵する被充電機器が設置され、電磁誘導作用により電力を伝送して二次電池を充電する充電装置に関する。
 特許文献1には、被充電機器に受電用コイルが内蔵され、電力伝送を行う充電装置には送電用コイルと受電用コイルの位置検出を行う充電台が設けられた構造が開示されている。
 特許文献2には、非接触ICカード、Bluetooth(登録商標)、赤外線通信などの非接触タイプの近距離通信手段を備えた携帯電話機を無接点充電方式によって充電を行う無接点充電装置が開示されている。
特開2011-4474号公報 特開2011-83057号公報
 本開示は、被充電機器がおこなう通信電波への影響を軽減しつつ、無線通信機能を備えた機器を充電するのに有効な充電装置を提供する。
 本開示における充電装置は、電磁誘導により二次電池を有する被充電機器へ電力を伝送して前記二次電池を充電する充電装置であって、当該充電装置に載置された前記被充電機器が有する受電用コイルの位置を検出する位置検出部と、自装置周辺に発生した電波または磁界の減衰を防止する減衰防止部とを備える。
 本開示における充電装置は、無線通信機能を備えた被充電機器がおこなう通信電波への影響を軽減しつつ、被充電機器を充電するのに有効である。
実施の形態1に係る非接触充電装置および携帯電話の状態の一例を示す外観図 実施の形態1に係る非接触充電装置および携帯電話の各内部構成を示すブロック図 実施の形態1に係る非接触充電装置が備える位置検出部の内部構成を示すブロック図 実施の形態1に係るBEFの回路構成の一例を示す図 実施の形態1に係るBEFの回路構成の他の例を示す図 実施の形態1に係るBEFの回路構成の他の例を示す図 実施の形態1に係る非接触充電装置による携帯電話の検出から非接触充電実施までの動作を示すフローチャート 実施の形態2に係る非接触充電装置および携帯電話の各内部構成を示すブロック図 実施の形態2に係る非接触充電装置が備える位置検出部とNFC制御部と切替部の内部構成を示すブロック図 実施の形態2に係る位置検出コイルに発生する磁界と反磁界の概要図 実施の形態2に係る位置検出コイルに配置するBEFの実装状態を示すブロック図 実施の形態2に係る位置検出コイルに発生する磁界とBEFを挿入することによる効果を示す図 実施の形態2に係る位置検出回路周辺の回路構成を示す図 実施の形態2に係る位置検出コイルに出力される波形を示す図 実施の形態2に係る非接触充電装置による携帯電話の検出から非接触充電及びNFC通信実施までの動作を示すフローチャート 実施の形態2に係る位置検出コイルと充電台の相対サイズを示す図
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が実施の形態を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 まず、実施の形態1について説明する。
 図1は、実施の形態1に係る非接触充電装置100および携帯電話150の状態の一例を示す外観図である。図1に示されている状態は、非接触充電装置100の上面を構成する充電台101上に携帯電話150が載せられた状態である。なお、この状態で、非接触充電装置100は、電磁誘導効果における非接触電力伝送を利用して、被充電機器としての携帯電話150の二次電池に電力を供給することで、いわゆる非接触充電を行っている。すなわち、非接触充電装置100の充電台101に携帯電話150を載せるか近づけることにより、非接触充電が行われる。
 図2は、非接触充電装置100および携帯電話150の各内部構成を示すブロック図である。図2に示すように、充電台101の内面には、充電台101に置かれた携帯電話150の位置検出のための複数のコイルを有する位置検出部201が配置される。このため、充電台101は、高周波にとって金属板と同等の物理的特性を持つ。すなわち、被充電機器である携帯電話150を充電台101に置いた場合、携帯電話150が無線通信を行う電波(自装置周辺に発生した電波)によって位置検出部201のコイルに高周波電流が流れるため、電波のエネルギー損失が生じる。これが、携帯電話150が無線通信を行う電波の強度低下の一因となる。
 本実施形態では、非接触充電装置100の充電台101に置かれた携帯電話150が使用する電波の強度低下を抑制する。そのため、図2に示すように、非接触充電装置100は、充電台101と、電源回路204と、位置検出部201と、非接触充電回路部210と、コイル移動機構207とを有する。また、携帯電話150は、特定の周波数帯を用いた無線通信が可能な通信手段を有する電子機器であり、受電用コイル251と、二次電池257と、並列共振回路258と、充電制御回路253とを有する。
 以下、非接触充電装置100の各構成要素について説明する。
 電源回路204は、商用電源や車両に搭載されたバッテリ等の外部電源から非接触充電装置100に供給される電力を非接触充電装置100で使用する態様に変換する。位置検出部201は、充電台101上に置かれた携帯電話150の位置を検出する。なお、携帯電話150の位置とは、正確には、充電台101の面上における受電用コイル251の位置である。
 非接触充電回路部210は、携帯電話150に非接触で電力を供給する。非接触充電回路部210は、充電制御回路205と、発振回路206と、送電用コイル208とを有する。充電制御回路205は、発振回路206を介して高周波電流を発生させ、送電用コイル208に高周波電流を流す。図1に示した状態で送電用コイル208に高周波電流が流れると、携帯電話150の受電用コイル251に誘導起電力が発生する。なお、充電制御回路205は、携帯電話150の二次電池257の充電状態を検知する充電検知機能を有し、充電完了を判断しても良い。
 コイル移動機構207は、充電台101に沿って、位置検出部201が検出した携帯電話150の位置に送電用コイル208を接近させる。コイル移動機構207は、充電台101が構成する面のX軸方向に送電用コイル208を移動させるX軸サーボモータと、Y軸方向に送電用コイル208を移動させるY軸サーボモータとから成る。
 図3は、非接触充電装置100が備える位置検出部201の内部構成を示すブロック図である。図3に示すように、位置検出部201は、位置検出コイル313と、BEF316と、位置検出回路311と、コイル移動機構制御回路312と、共振周波数切り替え回路314と、共振周波数可変制御回路315とを備える。
 位置検出コイル313は、充電台101の内面に所定の間隔で配置された複数列のコイルである。位置検出コイル313は、非接触充電回路部210が有する送電用コイル208と携帯電話150の受電用コイル251のX軸方向の位置を検出する複数のX軸検出コイル313Aと、送電用コイル208と受電用コイル251のY軸方向の位置を検出する複数のY軸検出コイル313Bとを備える。なお、隣接する各軸検出コイルの間隔は、受電用コイル251の外径よりも小さい。当該間隔を狭くすれば、受電用コイル251の位置を正確に検出することができる。
 位置検出コイル313のコイル間には、携帯電話150が無線通信に使用する電波の周波数において、電気長で1/2波長以下の間隔でLC並列共振回路で構成されるBEF(Band-elimination filter)316が設けられている。このため、BEF316における共振周波数で、携帯電話150が無線通信に使用する周波数帯への影響を低減するバンドストップフィルタリング機能が有効に作用する。BEF316は、共振周波数可変制御回路315からの制御によって、共振周波数が可変な回路を構成する。
 図4は、BEF316の回路構成の一例を示す図である。BEF316の共振周波数は、コンデンサ316Aの静電容量とコイル316Bのインダクタンス値の積に依存する。したがって、BEF316の共振周波数の制御は、静電容量とインダクタンス値を制御することで行われる。
 図5は、BEF316の回路構成の他の例を示す図である。図5の例では、BEF316を構成する静電容量素子が、可変容量コンデンサ316A’である。可変容量コンデンサ316A’に逆方向電圧を印加すれば静電容量を制御できる。したがって、共振周波数可変制御回路315が、位置検出部201が有する全てのBEF316の可変容量コンデンサ316A’へ印加する電圧を制御することで、BEF316の共振周波数を変更できる。このため、コイル316B’と可変容量コンデンサ316A’を一つずつ配置するだけで、部品点数が少ない共振周波数が可変なBEF316を実現できる。
 図6は、BEF316の回路構成の他の例を示す図である。図6の例では、複数のコンデンサ316A”及びコイル316B”が並列に配置され、共振周波数可変制御回路315がスイッチ317のオンオフを制御することでBEF316の共振周波数を制御できる。この構成では、前出の例に比べて部品点数が多くなってしまうが、静電容量及びインダクタンス値の両方を制御することができるため、より高精度に共振周波数の制御が可能である。
 位置検出回路311は、位置検出コイル313から出力したパルス信号で携帯電話150の並列共振回路258を励起し、受電用コイル251からのエコー信号を受信して、携帯電話150の受電用コイル251の位置を検出する。なお、受電用コイル251からのエコー信号のレベルは、位置検出コイル313と受電用コイル251の相対位置によって変動する。このため、位置検出回路311は、パルス信号を出力する各位置検出コイル313との相対距離に基づいて、充電台101上の携帯電話150の位置を検出することができる。
 コイル移動機構制御回路312は、位置検出回路311が検出した受電用コイル251の位置に応じて、コイル移動機構207を制御する。すなわち、コイル移動機構制御回路312は、コイル移動機構207を構成する各軸方向のサーボモータの制御を行う。
 共振周波数切り替え回路314は、手動による入力スイッチの切り替えに応じて、BEF316の共振周波数を変更する動作に関わる制御を行うよう、共振周波数可変制御回路315に指示して周波数を決定する構成としている。なお、BEF316の共振周波数を変更する目的は、BEF316の共振周波数で携帯電話150が無線通信に使用する周波数帯への影響を低減することである。
 なお、共振周波数切り替え回路314が通信機能を備える場合、携帯電話150の使用周波数帯毎のIDを携帯電話150に予め設定しておけば、共振周波数切り替え回路314が携帯電話150と無線通信を行うことでIDを取得して、当該IDに対応する周波数に合わせて、BEF316の共振周波数を変更するよう指示しても良い。
 共振周波数可変制御回路315は、共振周波数切り替え回路314からの指示に応じて、BEF316の静電容量及びインダクタンス値のいずれか又は両方を変更して、BEF316の共振周波数を制御する。
 上記説明した充電制御回路205、コイル移動機構制御回路312及び共振周波数制御回路315は、動作処理を記述したコンピュータプログラムを実行するマイコンなどによって実現される。すなわち、マイコンのCPU、ROM、RAMを用いてCPUがROMに格納されたコンピュータプログラムを、RAMを作業領域として用いながら実行する。非接触充電装置100において、充電制御回路205、コイル移動機構制御回路312及び共振周波数制御回路315は同一のマイコンによって実現される構成であっても良い。
 以下、本実施の形態の非接触充電装置100による携帯電話150の検出から非接触充電実施までの動作について、図7を参照して説明する。図7に示すように、外部電源から非接触充電装置100への電力供給が開始されると、電源回路204が非接触充電装置100用の電力変換を行い、非接触充電装置100が起動する(ステップS40)。なお、外部電源投入後、非接触充電装置100が備える手動スイッチ等によって非接触充電装置100が起動してもよい。
 次に、位置検出部201は、充電台101の上に携帯電話150が在るか否かの判断を行い、充電台101の上に携帯電話150が在ればその位置を検出する(ステップS41)。なお、携帯電話150の位置検出は、位置検出回路311が位置検出コイル313から出力したパルス信号で携帯電話150の並列共振回路258を励起し、受電用コイル251からのエコー信号を受信することによって行われる。ステップS41で携帯電話150の位置が検出できれば、ステップS42に進む。なお、携帯電話150の位置とは、正確には、充電台101の面上における受電用コイル251の位置である。一方、ステップS41で携帯電話150の位置が検出できなければステップS48に進む。ステップS48では、非接触充電装置100は待機状態に移行する。
 ステップS42では、共振周波数切り替え回路314は、携帯電話150が無線通信に使用する電波の周波数帯に合わせて、BEF316の共振周波数を決定する。次に、共振周波数制御回路315は、BEF316の共振周波数がステップS42で決定した周波数となるよう、BEF316の静電容量及びインダクタンス値のいずれか又は両方を制御する(ステップS43)。
 次に、コイル移動機構制御回路312は、ステップS41で検出した携帯電話150の位置に基づいてコイル移動機構207を制御して、携帯電話150の受電用コイル251の位置に送電用コイル208を接近させる(ステップS44)。次に、非接触充電回路部210は送電用コイル208に高周波電流を流し、送電用コイル208と受電用コイル251の間における電磁誘導作用によって受電用コイル251に誘導起電力を発生させることで、携帯電話150の二次電池257の充電を開始する(ステップS45)。
 次に、位置検出部201は、充電台101の上に携帯電話150が在るか否かの判断を行い、充電台101の上に携帯電話150が在ればその位置を検出する(ステップS46)。ステップS46で携帯電話150の位置が検出できれば、ステップS47に進んで非接触充電を継続する。一方、ステップS46で携帯電話150の位置が検出できなければ、ステップS48に進んで、非接触充電装置100が待機状態に移行する。
 以上説明したように、本実施の形態の非接触充電装置100は、充電台101内面に配置されたBEF316の共振周波数を携帯電話150が無線通信に使用する電波の周波数に合わせる。このため、前記周波数におけるバンドストップフィルタがBEF316に構成される。その結果、携帯電話150は、前記周波数における電波の強度低下が抑制された状態で充電される。
 位置検出コイル313に携帯電話150が無線通信に使用する周波数帯のバンドストップフィルタが形成されることで、携帯電話150が使用する周波数帯の電波による高周波電流が位置検出コイル313上を流れない。このため、携帯電話150が使用する電波のエネルギー損失を抑制できる。
 以上、本実施の形態の充電装置は、BEFが充電台付近などの自装置周辺に発生した特定周波数の電波の減衰を防止する減衰防止部として作用するため、被充電機器が使用する電波の強度低下を抑制しつつ非接触充電を行うことができる。
 (実施の形態2)
 次に、実施の形態2について説明する。ただし、実施の形態1にて説明したものと同じ構成については、同一の符号を付し、その詳細な説明を省略する。
 図1に示す状態において、非接触充電装置100は、携帯電話150がNFC(Near Field Communication)機能を搭載している場合、電磁誘導効果を利用して無線通信の一つである近距離無線通信(以下、NFC通信という)を行う。
 NFC通信により、携帯電話150と非接触充電装置100に接続される外部機器との間で種々の情報通信を行うことができる。
 例えば、外部機器としてカーナビゲーション装置が非接触充電装置100に接続されている場合、携帯電話150で設定した目的地情報をカーナビゲーションにNFC通信によって送信することにより、カーナビゲーションの目的地設定ができるなど、通信の内容が多々考えられる。
 ただし、携帯電話150と外部機器との間で行なわれるNFC通信の通信内容については本実施の形態の趣旨から外れるため、詳細な説明を省略する。
 NFC通信では13.56MHzの搬送波を使用し、アンテナコイルに発生する磁界を利用してデータの送受信を行う。そのためNFCでの通信を行うためには充電台あるいは充電台近傍に13.56MHzの周波数の磁界を発生させるアンテナコイルが必要となる。
 本実施の形態の充電装置は、充電台の内部に多数配置される位置検出コイルのうち一つをNFCで使用するアンテナコイルとして兼用してNFCの機能を持たせる。
 したがって、位置検出コイルをアンテナコイルとして兼用させるため、従来の充電台にNFC用のアンテナを新しく追加することなく、NFC機能を充電台に搭載することができる。
 そのため、モノや設備を配置するために場所を確保し易い一般家庭やオフィスなどの室内で本実施の形態の充電装置を活用することはもとより、特に、スペースが限られた自動車や輸送機に本実施の形態の充電装置を備えることは、有用である。
 図8は、非接触充電装置100および携帯電話150の各内部構成を示すブロック図である。
 図8に示すように、非接触充電装置100は、携帯電話150が載置される側に充電台を備えている。
 充電台101の内面側(装置の内部側)には、充電台101に置かれた携帯電話150の位置を検出するための複数のコイルを有する位置検出部201と、携帯電話150との間でNFC通信を実施するためのNFC制御部202とが配置される。
 さらに、位置検出部201の複数のコイルのうちの一つを位置検出用コイルおよびNFC用コイルとして用いるために、このコイルを各機能に応じて切り替えるための切替部203が配置される。
 非接触充電装置100は他にも、電源回路204と充電制御回路205と発振回路206とコイル移動機構207と送電用コイル208と外部機器接続部209を有する。
 外部機器接続部209は、前述の非接触充電装置100に接続される外部機器と自装置とを接続するものである。すなわち、外部機器は外部機器接続部209を介して位置検出部201及びNFC制御部202との間で双方向通信を行う。
 また、携帯電話150は、特定の周波数を用いた無線通信が可能な通信手段を有する電子機器であり、受電用コイル251と受電用共振回路252と、充電制御回路253と、近距離通信アンテナとしてのNFC用アンテナコイル254とNFC用共振回路255とNFC制御回路256、二次電池257とを有する。
 以下、非接触充電装置100の各構成要素について説明する。
 図9は、非接触充電装置100が備える位置検出部201および近距離通信制御部としてのNFC制御部202の内部構造を示すブロック図である。
 図9に示すように、位置検出部201は位置検出コイル301と位置検出制御回路302と切替部203によって制御されるスイッチ303を備え、NFC制御部202はNFC制御回路304と切替部203によって制御されるスイッチ305を備える。
 また、位置検出部201およびNFC制御部202は、位置検出コイル301と、位置検出制御回路302とコイル移動機構207とNFC制御回路304と切替部203と切替部203が制御をするスイッチ303、スイッチ305とを備える。
 位置検出コイル301は、充電台101の内面に所定の間隔で配置された複数列のコイルである。
 位置検出コイル301は、送電用コイル208と携帯電話150の受電用コイル251のX軸方向の位置を検出する複数のX軸方向位置検出コイル301Aと、送電用コイル208と受電用コイル251のY軸方向の位置を検出する複数のY軸方向位置検出コイル301Bとを備える。
 なお、隣接する各軸検出コイルの間隔は、受電用コイルの外径よりも小さい。当該間隔を狭くすれば、受電用コイル251の位置を正確に検出することができる。
 ここで、本実施の形態では複数配置される位置検出コイル301のうちの一つをNFC用アンテナコイルとして利用することで機能を兼用させる(図9の301´)。
 図9に示す通り充電台101に複数配置される位置検出コイル301は充電台101のX軸方向およびY軸方向にそれぞれ配置されており各軸方向の位置検出コイルは交差している。
 したがってNFC用アンテナコイルとして兼用する位置検出コイル301´(以下、NFC兼用位置検出コイルと呼ぶ)にも直交する位置検出コイルが複数存在する(図9の301A)。
 一般的に、NFCは送信側のアンテナコイルが13.56MHzの磁界を発生させる。受信側のアンテナコイルをこの磁界による磁束が通過することで受信側のアンテナコイルに誘導起電力が発生し、この電力を利用して通信を行う。
 従って、送信側のコイルに発生する磁界には、受信側に搭載されるICを起動させるのに必要な電力を発生させるだけの磁界の強度が必要となる。
 また、受信側のアンテナコイルに発生する誘導起電力は受信側のアンテナコイルを通過する磁界の強度に比例する。
 NFC兼用位置検出コイル301´に対して複数のX軸方向位置検出コイル301Aが交差しているため、NFC兼用位置検出コイル301´が発生させる13.56MHzの磁束は、交差する複数のX軸方向位置検出コイル301Aもまた通過することになる。
 従ってNFC兼用位置検出コイル301´に交差する複数のX軸方向位置検出コイル301Aは、図10に示すようにNFC兼用位置検出コイル301´が発生させる磁界(自装置周辺に発生した磁界)401を受けて、電磁誘導効果によりコイル周辺に磁界を発生させる。この磁界の方向はNFC兼用位置検出コイル301´が発生させる磁界とは反対方向である(以下、これを反磁界402と呼ぶ。)。
 この反磁界402によって、本来のNFC通信に必要な磁界401が減衰されてしまう。磁界401が減衰されることにより、受信側のNFC用アンテナコイル254に発生する誘導起電力も低下してしまう。
 受信側の回路に発生する起電力が低下することで、通信が不安定になり携帯電話150のNFC制御回路256との間で通信エラーが生じたり、通信が出来なくなる。
 そこで本実施の形態の非接触充電装置では、NFC通信に必要な磁界401の減衰を防止するために、図11に示すように減衰防止部としてNFC兼用位置検出コイル301´に交差する複数のX軸方向位置検出コイル301AにLC並列共振回路で構成されるBEF(Band-elimination filter)501を直列接続する。
 図11に示す例では、NFC兼用位置検出コイル301´とX軸方向位置検出コイル301Aが交差する箇所にBEF501を配置しているが、BEF501が配置される箇所はこの位置に限定される必要はなく、NFC兼用位置検出コイル301´以外のコイル301上の任意の箇所にBEF501が直列接続される構成であれば良い。
 BEFは回路上の特定の周波数のみを減衰させるLC並列共振回路である。そこで、BEFで減衰させる所定の周波数をNFCで使用する13.56MHzの搬送波と同じ周波数とする。
 これにより、図12に示すようにNFC用アンテナコイルが発生させる13.56MHzの磁界がBEF501を直列接続するX軸方向位置検出コイル301Aを通過しても高周波電流の発生を抑制することができ、反磁界の発生も抑制することが可能となる。
 本実施の形態では、便宜上、Y軸方向位置検出コイルであるNFC兼用位置検出コイル301´に対して、NFC兼用位置検出コイル301´に交差する複数のX軸方向位置検出コイル301AにのみBEFを直列接続する例を説明した。
 ただし、NFC兼用位置検出コイル301´に近接する、または重なって配置されるY軸方向位置検出コイル301B上にBEFを挿入する構成としてもよい。
 より詳細には、図9、図11に示される例において、互いに平行な複数のコイルが重ならずに整列されたものを例示しているが、これらのコイルが重なる(コイルによって閉じられる領域が重なる)ように配列されることによって、携帯電話150の受電用コイル251の位置検出精度を向上させることができる。
 この場合(コイルが重なる場合)、NFC兼用位置検出コイル301´を除くY軸方向位置検出コイル301Bの任意のコイル(重なるコイル)にBEFを挿入することで、任意のコイル(重なるコイル)による反磁界の発生を抑制させることができる。  
 このとき、301Aまたは301BのコイルがNFC兼用位置検出コイル301´に重なる面積が大きいコイルであるほど、BEFを挿入した時の抑制効果は大きい。したがって位置検出コイル301の配列に応じて(兼用コイルとの重なり度合いを考慮して)、BEFを挿入するコイルが選択されるのが好ましい。
 さらに、図11ではBEFを一つのコイル上に複数配置しているが、BEFを挿入する目的はNFC兼用位置検出コイル301´を除くコイル上に、NFCで使用する13.56MHzの電流が流れることを抑止(減衰)することであり、この目的が満たされれば、コイル上に配置されるBEFの個数は限定される必要はない。
 以下では、実際に位置検出コイルをNFC用アンテナコイルとして兼用させる際の実装状態について述べる。
 本実施の形態の非接触充電装置では、NFC兼用位置検出コイル301´に受電用コイル251の位置検出用とNFC通信用としての異なる周波数を扱うために、図13に示す構成をとる。
 図13に示すとおり、切替部203に接続されるスイッチ303、305が制御されることで、NFC兼用位置検出コイル301´の機能が切り替えられる。
 NFC兼用位置検出コイル301´は切替部203がスイッチ303をオンし、かつ、スイッチ305をオフした時には位置検出用コイルとしての機能を持つ(この状態を状態1と呼ぶ)。
 NFC兼用位置検出コイル301´が位置検出用コイルとして機能する場合は、位置検出制御回路302から出力されるパルス信号で携帯電話150の受電用共振回路252を励起し、受電用コイル251から再放出される磁界(以下、エコー信号と呼ぶ)を受信して、携帯電話150の受電用コイル251の位置を検出するための複数の位置検出コイルの一つとして機能する。
 ここで、受電用コイル251からのエコー信号のレベルは、位置検出コイル301と受電用コイル251の相対位置によって変動する。
 このため、位置検出制御回路302は、パルス信号を出力する各位置検出コイル301と受電用コイル251の相対距離に応じて異なるエコー信号のレベルに基づいて、充電台101上の携帯電話150の位置を検出することができる。
 従ってNFC兼用位置検出コイル301´を位置検出コイルとして機能させる場合、NFC兼用位置検出コイル301´は携帯電話150の受電用共振回路252を共振させるパルス信号、及び受電用コイルから出力されるエコー信号を位置検出制御回路302へ伝送する経路となる。
 次に、切替部203がスイッチ303をオフし、かつ、スイッチ305をオンした時にはNFC兼用位置検出コイル301´はNFC用アンテナコイルとしての機能を持つ(この状態を状態2と呼ぶ)。
 NFC制御回路304はNFCで所望の通信を行う際に13.56MHzの搬送波を制御し出力するNFC制御IC701と、NFC制御IC701とNFC兼用位置検出コイル301´との間までの経路でインピーダンスマッチングを実施するマッチング回路702から構成される。
 NFCは13.56MHzの搬送波を通信に使用する。従ってマッチング回路702でインピーダンスマッチングを行い、NFC制御IC701から出力される搬送波の周波数で共振するようにマッチング回路702のインピーダンスが予め調整される。
 本実施の形態においては、インピーダンスマッチングはマッチング回路702に実装するコンデンサやコイルといった受動部品が使用される。
 NFC制御回路304と携帯電話150に搭載されているNFC制御回路256とは、ぞれぞれのアンテナコイルを介してNFC通信を行う。
 NFC制御IC701と携帯電話150に搭載されているNFC制御回路256とは、ぞれぞれのアンテナコイルを介して通信を行い、通信結果に応じた所望の動作を行う。切替部203は、スイッチ303、305を制御して状態1と状態2とを切り替える。
 図14にスイッチ303、305を制御して状態1と状態2を切り替える際の、時間軸とNFC兼用位置検出コイル301´に出力される信号の関係を示す。
 図14の区間1ではNFC兼用位置検出コイル301´は状態1となっており携帯電話150に搭載される受電用コイル251の位置を検出するためのパルス波を位置検出コイル301に出力する。
 図14ではNFC兼用位置検出コイル301´に出力される信号を示しているが、区間1の破線で示す位置検出用のパルス波形はX軸方向位置検出コイル301AおよびY軸方向位置検出コイル301Bに出力されるパルス波形を図9に示す位置検出コイルに倣って便宜的に示している。
 区間1の期間では、非接触充電装置100に設置されている受電用コイル251の位置座標を検出するために、位置検出制御回路302のスイッチの切替制御によってX軸方向位置検出コイル301AおよびY軸方向位置検出コイル301Bを構成する各位置検出コイルにパルス信号を出力する。
 なお、図14に示す例ではX軸方向位置検出コイル301AおよびY軸方向位置検出コイル301Bへ順にパルス信号を出力する方法を例示しているが、この方法に限られる必要は無い。
 例えば、区間1において、先ずX軸方向位置検出コイル301Aにパルス信号を出力して受電用コイル251が検出された時のみ、次にY軸方向位置検出コイル301Bにパルス信号を出力する方法が考えられる。
 すなわちX軸方向位置検出コイル301Aにパルス信号を出力し、エコー信号が検出されなければ区間1を終了するといった方法を採用してもよく、この場合、受電用コイル251が充電台に設置されていない時の区間1の時間を短くすることができる。
 位置検出コイル301にパルス信号が出力されてから、受電用コイル251の位置座標を検出した場合またはエコー信号が検出されず受電用コイル251が非接触充電装置100に設置されていないと位置検出制御回路302が判定した場合、切替部203がスイッチ303をオフし、かつ、スイッチ305をオンにすることで区間2(状態2)に遷移する。
 次に、図14に示す区間2ではNFC兼用アンテナコイルが状態2に遷移したときの状態を示す。
 区間2では13.56MHzの搬送波を使用して、NFC制御回路304と携帯電話150に搭載されたNFC制御回路256との間でNFC通信を行う。
 この区間2で、NFC制御IC701は、NFC通信のターゲットとなる機器を検出するために所定の期間ポーリングを行う。携帯電話150に搭載されるNFC制御回路256は、送られてくる13.56MHzの搬送波を負荷変調することでレスポンスコマンドをNFC制御IC701に送信する。
 従って区間2において、このレスポンスコマンドが検出されない場合、携帯電話150にはNFC機能が搭載されていないとNFC制御IC701が判定する。
 携帯電話150にNFC機能が搭載されていないと判定されたり、携帯電話150に搭載されるNFC制御回路256との間でのNFC通信が終了した時点で、区間2から再び区間1に遷移する。
 以下、本実施の形態の非接触充電装置100による携帯電話150の検出から非接触充電実施およびNFC通信の実施までの動作について、図15を参照して説明する。
 商用電源などの外部電源から非接触充電装置100への電力供給が開始されると、電源回路204は非接触充電装置100で使用する態様に電力を変換し、非接触充電装置100が起動する(ステップS10)。
 ただし、外部電源投入後、非接触充電装置100が備える手動スイッチ等によって非接触充電装置100が起動してもよい。
 非接触充電装置100の起動後、切替部203がスイッチ303、305の制御を行いNFC兼用位置検出コイル301´を状態1へ遷移させる(ステップS11)。なお、本実施の形態ではこの状態を初期状態と呼ぶ。
 状態1への遷移後、ステップS12において位置検出部201は、区間1の間に充電台101の上に携帯電話150が在るか否かの判断を行う。
 ステップS12にて、充電台101の上に携帯電話150が在ればその位置を検出する。
 携帯電話150の位置検出は、位置検出部201が位置検出コイル301から出力したパルス信号で携帯電話150の受電用共振回路252を励起し、受電用コイル251からのエコー信号を受信することによって行われる。
 なお、携帯電話150の位置とは、正確には、充電台101の面上における受電用コイル251の位置である。
 エコー信号の受信により、受電用コイル251が充電台上に設置されていると位置検出制御回路302が判定すると(ステップS12のYES)、位置検出制御回路に実装されるメモリに受電用コイル251の位置座標を記憶する(ステップS13)。
 ステップS12で受電用コイルが検出されない場合またはステップS13終了後、切替部203がスイッチ303およびスイッチ305を制御することによってNFC兼用位置検出コイル301´は状態2に遷移する(ステップS14)。
 ステップS14で状態2に遷移した後、区間2においてNFC制御回路304と携帯電話150に搭載されたNFC制御回路256との間でNFC通信を行う。
 この区間2で、NFC制御IC701は、NFC通信のターゲットとなる機器を検出するために所定の期間ポーリングを行うことによって、非接触充電装置100に載置された携帯電話150がNFCの機能を備えているか否かを判定する(ステップS15)。
 携帯電話150に搭載されるNFC制御回路256は、送られてくる13.56MHzの搬送波を負荷変調することでレスポンスコマンドをNFC制御IC701に送信する。従って区間2において、このレスポンスコマンドが検出されない場合、携帯電話150にはNFC機能が搭載されていないとNFC制御IC701が判定する(ステップS15のNO)。
 ステップS15にて、携帯電話150にNFC機能が搭載されていると判定した場合は、NFC通信を開始する(ステップS16)。
 ステップ16にてNFC通信を開始した後、逐次NFC通信が終了したか否かの判定処理を続ける(ステップS17)。
 携帯電話150にNFC機能が搭載されていないと判定された場合(ステップS15のNO)または携帯電話150に搭載されるNFC制御回路256との間でのNFC通信が終了した時点(ステップS17のYES)で区間2から再び区間1に遷移する(ステップS18)。
 再度状態1に遷移した際に、位置検出制御回路302がステップS12で受電用コイル251を検出しているか否か、すなわち位置検出制御回路302に実装されるメモリに受電用コイル251の位置座標が格納されているか否かでフローが変化する(ステップS19)。
 ステップS19では、ステップS12で受電用コイル251が検出された場合、ステップS21に進み位置検出制御回路302がコイル移動機構207を制御して受電用コイル251の位置に送電用コイル208を接近させる。
 ステップS19にて位置座標が記憶されていないと判定されると(ステップ19のNO)、初期状態に戻る。従って、受電用コイル251が検出されない限り、NFC兼用位置検出コイル301´はステップS12~ステップS19のフローを繰り返す。
 ステップS22では、送電用コイル208の移動が完了したか否かを判定する。移動が完了しなければ(ステップS22のNO)、ステップS21に処理を戻して送電用コイル208の移動を続ける。
 ステップS21及びステップS22を経て、受電用コイル251の位置に送電用コイル208が移動し終わった後(ステップS22のYES)、充電制御回路205が発振回路206を介して高周波電流を発生させ、送電用コイル208に高周波電流を流す。
 図1に示した状態で送電用コイル208に高周波電流が流れると、携帯電話150の受電用コイル251に誘導起電力が発生し充電を開始する(ステップS23)。
 さらに、充電中に外部機器接続部209に接続される外部機器より非接触充電装置100に対して携帯電話150とNFC通信を実施する要求が来たか否かを判定する(ステップS24)。
 携帯電話150の充電中に、外部機器よりNFC通信の要求が来ると(ステップS24のYES)、切替部203はスイッチ303およびスイッチ305を制御してNFC兼用位置検出コイル301´を状態2に遷移させる(ステップS25)。
 その後のフローであるステップS26~ステップS29は前述のステップS15~ステップS18と同様の動作を行う。
 なお、ステップS26~ステップS29の処理を行なっている間は、送電用コイル208の充電動作を停止させる処理を行なう、または、NFC兼用位置検出コイル301´に対して送電用コイル208の距離を離すという制御を行なう、あるいは、この充電停止の処理と送電用コイル208に対する移動制御の両方を行なうようにしてもよい。
 このようにすることで、送電用コイル208が放出する磁界がNFC通信に使用する磁界に及ぼす影響を低減することが可能となる。
 ただしこの場合、NFC通信終了からステップS30の前までに送電用コイル208を受電用コイル251の位置に移動させる処理が必要となる。
 また、ステップS26で位置検出制御回路302がNFC通信のターゲットとなる機器が検出されない場合、位置検出制御回路302から外部機器接続部209を介して外部機器に、ターゲットとなる機器が検出されていないといった情報を伝送してもよい。
 ステップS26~ステップS29のフローの後、充電動作を継続する(ステップS30)。これにより携帯電話150の充電中でもNFC通信を実施することが可能となる。
 最後にステップS31において、充電動作中に送電用コイル208上に受電用コイル251がなくなると、充電制御回路205は充電動作を停止する。従って、充電制御回路205が充電動作を行っている間はステップS24からステップS31を繰り返し実施する。
 ステップS31において充電制御回路205が充電動作を停止すると、初期状態に戻り、受電用コイル251の検出動作を実施する。
 以上のフローにより、非接触充電装置100に設置される携帯電話150に対する充電動作とNFC通信を実現する。
 本フローによって、「非接触充電機能は搭載するが、NFC機能は非搭載である携帯電話」に対しても充電動作を実現することが可能である。
 また、「充電機能は非搭載であるが、NFC機能は搭載する携帯電話」に対してもステップS12からステップS19を繰り返すことで、NFC通信を実施することが可能となる。
 以上の動作によって、非接触充電装置100は充電台に乗せられる携帯電話に搭載される機能に応じた所望の動作を実施する事が可能である。
 また、ここで示した処理フローは実施の一例であり、充電台に設置される携帯電話に搭載される機能に応じてユーザーが、充電装置に搭載される手動スイッチ等を切り替えることで状態1と状態2を切り替える、としてもよい。
 次に図16を用いて本実施形態の充電台の大きさについて、説明する。図16に携帯電話150と充電台101の相対サイズを示す。本実施の形態の充電台は主として携帯電話の充電に用いるものを考慮しており、さまざまな大きさの携帯電話を想定して充電台のサイズが設計される必要がある。
 一般的に携帯電話は正方形~長方形といった幾何形状の枠に収まる形状をしている。そこで充電台101の形状を長方形としたときに、携帯電話150に対する充電台101の相対サイズが重要になる。
 磁界強度は磁界を発生させるアンテナのサイズに依存する。そのため携帯電話150に搭載されるNFC用アンテナコイル254は、携帯電話150の筐体内部で可能な限り大きなサイズとなるように配置される。
 図16に示す例では、携帯電話150のNFC用アンテナコイル254が携帯電話150の中心に重なるように配置されている事を想定している。
 NFCの通信は一方のアンテナが発生させる磁界がもう一方のアンテナを通過することによる誘導起電力を利用して通信を行う。
 したがって、通信を行うアンテナ同士が重なりあう領域が大きいほど磁界強度は上がり、感度は上昇する。
 図16に示すように、充電台101の短辺方向の長さLcを携帯電話150の短辺方向の長さLmよりも大きくとり、かつ、携帯電話の短辺方向の長さLmとNFC兼用位置検出コイル301´の間隔Dlとの和よりも充電台101の短辺方向の長さLcを小さくする。
 ただし、充電台101の長辺方向とNFC兼用位置検出コイル301´の長手方向とは並行になるように各々が配置されている。
 また、NFC兼用位置検出コイル301´の「間隔Dl」とは、「NFC兼用位置検出コイル301´が励起する磁場の短辺方向(充電台の短辺方向)の幅」とも換言することができるもので、図16に示す例では、NFC兼用位置検出コイル301´の長手方向の一方の直線と一方の直線に対向する他方の直線との距離である。
 実質的には、NFC兼用位置検出コイル301´が励起させる磁場が携帯電話150の短辺方向にどれだけの幅(あるいは長さ)を占有しているかによってNFC兼用位置検出コイルの間隔Dlが考慮されることが好ましい。
 このように充電台のサイズが設定されることにより、NFC兼用位置検出コイル301´に対して、携帯電話150のNFC用アンテナコイル254が常に半分以上重なることとなる。
 したがって、充電台のサイズを携帯電話のサイズに対して上述のように規定し、さらに、充電台の短辺方向に配置される複数のY軸方向位置検出コイル301Bの中央に配置される位置検出コイルを、NFC兼用位置検出コイル301´とすることで、充電台のどの位置に携帯電話を置いても、NFC通信を行うアンテナ同士が重なり合い、通信を行うことが可能となる。
 すなわち、携帯電話の位置に関わらず充電機能とNFC機能を両立することができる。以上説明したとおり、本実施の形態ではNFC用アンテナコイルとして機能させる位置検出コイルに交差する、複数の位置検出コイルにBEF(Band Eliminate Filter)を直列接続し、さらに、BEFを用いて減衰させる周波数をNFCで使用する13.56MHzの搬送波と同じ周波数とした。
 これにより、NFC用アンテナコイルが発生させる13.56MHzの磁界がBEFを配置する位置検出コイルを通過しても、位置検出コイル上に発生する13.56MHzの高周波電流が抑制される。
 したがって、高周波電流による電磁誘導効果によって位置検出コイルから生成される反磁界も抑制することが可能となる。
 すなわち、本実施の形態の充電装置によれば、NFC通信用アンテナコイルとして機能させる位置検出コイルに交差する位置検出コイル周辺に発生する反磁界の発生を抑制し、充電機能とNFC通信を両立することができる。
 なお、近距離無線通信(NFC通信)で使用する搬送波は13.56MHzに限られることなく、本実施の形態の充電装置は、電磁誘導を利用して通信を行う機器のアンテナに適応できる。
 以上、本実施の形態の充電装置は、無線通信機能を有する被充電機器が使用する電波への影響を軽減しつつ、被充電機器を充電するのに有効である。
 なお、以上の説明において、実施の形態1および2に記載の内容を任意に組み合わせてもよい。本変形例によれば、実施例1および2を任意に組み合わせた効果を得ることができる。
 2012年2月29日出願の特願2012-044027の日本出願、および、2012年9月6日出願の特願2012-195860の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の充電装置は、無線通信機能を有した被充電機器の非接触充電装置等として有用である。具体的には、携帯電話やスマートフォンなどを充電する非接触充電装置として有用である。
 100 非接触充電装置
 101 充電台
 150 携帯電話(被充電機器の一例)
 201 位置検出部
 202 NFC制御部
 203 切替部
 204 電源回路
 205 充電制御回路
 206 発振回路
 207 コイル移動機構
 208 送電用コイル
 209 外部機器接続部
 210 非接触充電回路部
 251 受電用コイル
 252 受電用共振回路
 253 充電制御回路
 254 NFC用アンテナコイル
 255 NFC用共振回路
 256 NFC制御回路
 257 二次電池
 258 並列共振回路
 301 位置検出コイル
 301A X軸方向位置検出コイル
 301B Y軸方向位置検出コイル
 301´ NFC兼用位置検出コイル
 302 位置検出制御回路
 303 スイッチ
 304 NFC制御回路
 305 スイッチ
 311 位置検出回路
 312 コイル移動機構制御回路
 313 位置検出コイル
 313A X軸検出コイル
 313B Y軸検出コイル
 314 共振周波数切り替え回路
 315 共振周波数可変制御回路
 316 BEF
 316A、316A” コンデンサ
 316A’ 可変容量コンデンサ
 316B、316B’、316B” コイル
 317 スイッチ
 401 磁界
 402 反磁界
 501 BEF
 701 NFC制御IC
 702 マッチング回路
 Lc  充電台の短辺方向の長さ
 Lm  携帯電話の短辺方向の長さ
 Dl  NFC兼用位置検出コイルの間隔

Claims (13)

  1.  電磁誘導により二次電池を有する被充電機器へ電力を伝送して前記二次電池を充電する充電装置であって、
     当該充電装置に載置された前記被充電機器が有する受電用コイルの位置を検出する位置検出部と、
     自装置周辺に発生した電波または磁界の減衰を防止する減衰防止部と、を備えた、
     充電装置。
  2.  前記位置検出部は複数列に配置されたコイルを備え、
     前記減衰防止部は所定の周波数の電波または磁界を減衰させる共振回路であり、
     前記減衰防止部の共振回路が前記位置検出部のコイルに設けられた、
     請求項1に記載の充電装置。
  3.  電磁誘導により二次電池を有する被充電機器へ電力を伝送して前記二次電池を充電する充電装置であって、
     当該充電装置に載置された前記被充電機器が有する受電用コイルの位置を検出する位置検出部を備え、
     前記位置検出部は、
     所定の間隔で配置された複数列のコイルと、
     前記複数列のコイルに設けられるLC並列共振回路と、を有し、
     前記LC並列共振回路の共振周波数は、前記被充電機器が無線通信に使用する電波の周波数帯に含まれる周波数である、
     充電装置。
  4.  前記LC並列共振回路の共振周波数を所定の周波数に変化させる共振周波数可変制御回路と、を有し、
     前記共振周波数可変制御回路は、前記所定の周波数を前記被充電機器が無線通信に使用する電波の周波数帯に含まれる周波数に変化させる、
     請求項3に記載の充電装置。
  5.  前記位置検出部は、前記所定の周波数を決定する共振周波数切り替え回路を有し、
     前記共振周波数可変制御回路は、前記共振周波数切り替え回路からの指示に応じて、前記LC並列共振回路の共振周波数を制御する、
     請求項4に記載の充電装置。
  6.  前記共振周波数切り替え回路は、手動による入力スイッチの切り替えに応じて、前記所定の周波数を決定する、
     請求項5に記載の充電装置。
  7.  前記共振周波数切り替え回路は、前記被充電機器との通信機能を備え、前記被充電機器が無線通信に使用する周波数毎に割り当てられたIDを識別することで、前記所定の周波数を決定する、
     請求項5に記載の充電装置。
  8.  電磁誘導によって前記被充電機器と外部機器とが近距離通信するための近距離通信アンテナを備え、
     前記近距離通信アンテナは、前記位置検出部の複数のコイルのいずれかである、
     請求項2に記載の充電装置。
  9.  前記近距離通信アンテナに接続されて前記被充電機器と前記外部機器との近距離通信を実行する近距離通信制御部と、
     前記位置検出部と前記近距離通信制御部との動作を切り替える切替部と、を備えた、
     請求項8に記載の充電装置。
  10.  前記位置検出部のコイルを内面側に配置し、前記被充電機器が載置される充電台を備え、
     前記充電台の短辺方向の長さは、前記被充電機器の短辺方向の長さよりも大きく、かつ、前記被充電機器の短辺方向の長さと前記近距離通信アンテナの間隔との和よりも小さい、
     請求項8に記載の充電装置。
  11.  前記位置検出部のコイルは、所定の間隔で前記充電台の縦方向および横方向に複数列配置され、前記近距離通信アンテナである前記位置検出部のコイルは、前記複数列の位置検出部のコイルのうち短辺方向の中央に配置される、
     請求項10に記載の充電装置。
  12.  電磁誘導により二次電池を有する被充電機器へ電力を伝送して前記二次電池を充電する充電装置であって、
     当該充電装置に載置された前記被充電機器が有する受電用コイルの位置を検出する位置検出部と、電磁誘導によって前記被充電機器と外部機器とが近距離通信するための近距離通信アンテナと、を備え、
     前記近距離通信アンテナは、前記位置検出部の複数のコイルのいずれかである、
     充電装置。
  13.  前記近距離通信アンテナに接続されて前記被充電機器と前記外部機器との近距離通信を実行する近距離通信制御部と、
     前記位置検出部と前記近距離通信制御部との動作を切り替える切替部と、を備えた、
     請求項12に記載の充電装置。
     
PCT/JP2013/000771 2012-02-29 2013-02-13 充電装置 WO2013128815A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13754191.8A EP2696467A4 (en) 2012-02-29 2013-02-13 LOADING APPARATUS
US14/005,881 US9502922B2 (en) 2012-02-29 2013-02-13 Charging apparatus
JP2013539029A JP6112305B2 (ja) 2012-02-29 2013-02-13 充電装置
CN201380000866.6A CN103444044B (zh) 2012-02-29 2013-02-13 充电装置
US15/299,681 US20170040834A1 (en) 2012-02-29 2016-10-21 Charging apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-044027 2012-02-29
JP2012044027 2012-02-29
JP2012195860 2012-09-06
JP2012-195860 2012-09-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/005,881 A-371-Of-International US9502922B2 (en) 2012-02-29 2013-02-13 Charging apparatus
US15/299,681 Continuation US20170040834A1 (en) 2012-02-29 2016-10-21 Charging apparatus

Publications (1)

Publication Number Publication Date
WO2013128815A1 true WO2013128815A1 (ja) 2013-09-06

Family

ID=49082031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000771 WO2013128815A1 (ja) 2012-02-29 2013-02-13 充電装置

Country Status (5)

Country Link
US (2) US9502922B2 (ja)
EP (1) EP2696467A4 (ja)
JP (2) JP6112305B2 (ja)
CN (2) CN106887883B (ja)
WO (1) WO2013128815A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048032A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Device alignment in inductive power transfer systems
CN104578447A (zh) * 2013-10-28 2015-04-29 松下电器产业株式会社 送电装置及无线电力传送***
JP2015176605A (ja) * 2014-03-13 2015-10-05 株式会社デンソー 緊急援助要請方法、システム、および装置
CN110417132A (zh) * 2014-04-04 2019-11-05 德克萨斯仪器股份有限公司 无线功率发射机的异物检测
JPWO2020170996A1 (ja) * 2019-02-21 2020-08-27
JPWO2021125228A1 (ja) * 2019-12-20 2021-06-24

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251986A1 (en) * 2009-05-15 2010-11-17 Nxp B.V. A near field communication device
WO2014199638A1 (ja) * 2013-06-13 2014-12-18 パナソニックIpマネジメント株式会社 携帯端末充電装置と、それを用いた自動車
JP6258816B2 (ja) 2013-10-29 2018-01-10 パナソニック株式会社 無線送電装置及び無線電力伝送システム
EP3086436B1 (en) * 2013-12-16 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Contactless charging device, program therefor, and automobile having contactless charging device mounted therein
CN104779654A (zh) * 2014-01-14 2015-07-15 惠州市华阳多媒体电子有限公司 一种车载无线充电器及蓝牙快速配对方法
CN104779707A (zh) * 2014-01-14 2015-07-15 惠州市华阳多媒体电子有限公司 一种车载无线充电器及车载导航方法
WO2015146030A1 (ja) * 2014-03-24 2015-10-01 パナソニックIpマネジメント株式会社 携帯端末充電装置と、それを搭載した自動車
KR101659162B1 (ko) * 2014-09-11 2016-09-22 삼성전기주식회사 비접촉 방식 충전 장치
WO2016042488A1 (en) * 2014-09-16 2016-03-24 Wayne State University Battery state of charge estimator
CN104377792B (zh) * 2014-12-01 2016-10-05 联想(北京)有限公司 一种无线充电设备和方法
FR3032076A1 (fr) * 2015-01-26 2016-07-29 Stmicroelectronics Rousset Procede de gestion de la communication sans contact et de la charge sans contact au sein d'un systeme, et systeme correspondant
FR3035549B1 (fr) * 2015-04-21 2018-09-14 Faurecia Interieur Industrie Dispositif pour recharger un appareil nomade, tel qu'un telephone mobile, ensemble comprenant le dispositif et vehicule
KR20170050656A (ko) 2015-10-30 2017-05-11 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
US10516304B2 (en) * 2015-12-22 2019-12-24 Intel Corporation Wireless charging coil placement for reduced field exposure
US10411492B2 (en) 2015-12-23 2019-09-10 Intel Corporation Wireless power transmitter shield with capacitors
CN105743179B (zh) * 2016-04-18 2018-08-03 惠州市华阳多媒体电子有限公司 无线充电器及其充电线圈位置自适应控制装置
US11129996B2 (en) * 2016-06-15 2021-09-28 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil
JP6901248B2 (ja) * 2016-09-01 2021-07-14 東芝テック株式会社 情報処理装置およびプログラム
KR102380348B1 (ko) * 2017-03-24 2022-03-31 삼성전자주식회사 무선 전력 송신 장치 및 거치 형태에 따른 무선 전력 송신 방법
CN110663157B (zh) * 2017-05-26 2024-02-13 通用电气公司 电力传输装置及其相关方法
US11289953B2 (en) 2017-07-05 2022-03-29 Mediatek Singapore Pte. Ltd. Adapting wireless power transfer parameters to transmitter operating conditions
CN107482739A (zh) * 2017-08-07 2017-12-15 珠海三吉士健康科技有限公司 一种电池感应充电装置及其***与控制方法
CN112889172A (zh) * 2018-03-03 2021-06-01 托马斯·哈林 电池储存***
CN108923545B (zh) * 2018-07-10 2020-01-17 维沃移动通信有限公司 一种电子设备、无线充电设备和无线充电方法
WO2020141378A1 (en) * 2018-12-31 2020-07-09 3M Innovative Properties Company Wireless power transfer
CN110048495A (zh) * 2019-05-31 2019-07-23 Oppo广东移动通信有限公司 无线充电板、无线充电方法及***
CN110165739A (zh) * 2019-05-31 2019-08-23 Oppo(重庆)智能科技有限公司 无线充电板、无线充电方法及***
JP2021061722A (ja) * 2019-10-09 2021-04-15 Tdk株式会社 ワイヤレス送電装置及びワイヤレス電力伝送システム
EP3890196B1 (en) * 2020-04-03 2023-06-21 Nxp B.V. Communication and wireless charging device and operating method
US11848573B2 (en) * 2021-04-08 2023-12-19 Samsung Electronics Co., Ltd. Wireless power transmission apparatus and control method thereof
JP2023000389A (ja) * 2021-06-17 2023-01-04 トヨタ自動車株式会社 位置情報送信装置、位置情報送信方法及び移動体
WO2024043085A1 (ja) * 2022-08-25 2024-02-29 パナソニックIpマネジメント株式会社 充電装置および充電方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166570A (ja) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd 路車間電力供給システム
JP2010093723A (ja) * 2008-10-10 2010-04-22 Olympus Imaging Corp クレードル装置、クレードル装置制御方法、及び、画像処理システム
JP2011004474A (ja) 2009-06-16 2011-01-06 Sanyo Electric Co Ltd 充電台
JP2011083057A (ja) 2009-10-02 2011-04-21 Panasonic Electric Works Co Ltd 電力供給システムの蓄電池残量監視装置
JP2011181769A (ja) * 2010-03-02 2011-09-15 Fujitsu Ltd 電磁波送受信特性改善用シート体
JP2011259534A (ja) * 2010-06-05 2011-12-22 Sanyo Electric Co Ltd 電池内蔵機器と充電台
JP2012038887A (ja) * 2010-08-06 2012-02-23 Nec Tokin Corp 送電コイル及びそれを用いた非接触電力伝送及び通信システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
WO2008032746A1 (fr) * 2006-09-12 2008-03-20 The University Of Tokyo Feuille d'alimentation électrique et circuit de connexion électrique
JP4972782B2 (ja) * 2007-06-22 2012-07-11 株式会社ワコム 位置検出装置
US8655272B2 (en) 2009-07-07 2014-02-18 Nokia Corporation Wireless charging coil filtering
EP2302756A1 (en) 2009-09-24 2011-03-30 ConvenientPower HK Limited Power transfer device and method
CN201830037U (zh) * 2010-03-20 2011-05-11 厦门市英诺尔电子科技有限公司 无线发射及接收电源
US9126490B2 (en) * 2010-10-29 2015-09-08 Qualcomm Incorporated Wireless energy transfer via coupled parasitic resonators
US9178369B2 (en) * 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166570A (ja) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd 路車間電力供給システム
JP2010093723A (ja) * 2008-10-10 2010-04-22 Olympus Imaging Corp クレードル装置、クレードル装置制御方法、及び、画像処理システム
JP2011004474A (ja) 2009-06-16 2011-01-06 Sanyo Electric Co Ltd 充電台
JP2011083057A (ja) 2009-10-02 2011-04-21 Panasonic Electric Works Co Ltd 電力供給システムの蓄電池残量監視装置
JP2011181769A (ja) * 2010-03-02 2011-09-15 Fujitsu Ltd 電磁波送受信特性改善用シート体
JP2011259534A (ja) * 2010-06-05 2011-12-22 Sanyo Electric Co Ltd 電池内蔵機器と充電台
JP2012038887A (ja) * 2010-08-06 2012-02-23 Nec Tokin Corp 送電コイル及びそれを用いた非接触電力伝送及び通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696467A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105580241A (zh) * 2013-09-27 2016-05-11 高通股份有限公司 感应电力传递***中的装置对准
CN105580241B (zh) * 2013-09-27 2018-10-12 高通股份有限公司 感应电力传递***中的装置对准
WO2015048032A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Device alignment in inductive power transfer systems
US9409490B2 (en) 2013-09-27 2016-08-09 Qualcomm Incorporated Device alignment in inductive power transfer systems
US9866033B2 (en) 2013-10-28 2018-01-09 Panasonic Corporation Power transmission apparatus and wireless power transmission system
US10277038B2 (en) 2013-10-28 2019-04-30 Panasonic Corporation Power transmission apparatus and wireless power transmission system
CN104578447B (zh) * 2013-10-28 2017-06-13 松下电器产业株式会社 送电装置及无线电力传送***
CN106981930A (zh) * 2013-10-28 2017-07-25 松下电器产业株式会社 送电装置及无线电力传送***
JP2015111996A (ja) * 2013-10-28 2015-06-18 パナソニック株式会社 送電装置及び無線電力伝送システム
CN104578447A (zh) * 2013-10-28 2015-04-29 松下电器产业株式会社 送电装置及无线电力传送***
JP2018166406A (ja) * 2013-10-28 2018-10-25 パナソニック株式会社 送電装置及び無線電力伝送システム
CN106981930B (zh) * 2013-10-28 2020-01-21 松下电器产业株式会社 送电装置及无线电力传送***
JP2015176605A (ja) * 2014-03-13 2015-10-05 株式会社デンソー 緊急援助要請方法、システム、および装置
CN110417132A (zh) * 2014-04-04 2019-11-05 德克萨斯仪器股份有限公司 无线功率发射机的异物检测
JPWO2020170996A1 (ja) * 2019-02-21 2020-08-27
JP7261506B2 (ja) 2019-02-21 2023-04-20 株式会社レゾンテック ワイヤレス給電システムおよび円形・球形・多面形状を有する受電器
JPWO2021125228A1 (ja) * 2019-12-20 2021-06-24
WO2021125228A1 (ja) * 2019-12-20 2021-06-24 株式会社レゾンテック チューニング調整回路を有するワイヤレス給電システム
JP7141156B2 (ja) 2019-12-20 2022-09-22 株式会社レゾンテック チューニング調整回路を有するワイヤレス給電システム

Also Published As

Publication number Publication date
US9502922B2 (en) 2016-11-22
US20170040834A1 (en) 2017-02-09
JPWO2013128815A1 (ja) 2015-07-30
CN103444044A (zh) 2013-12-11
CN106887883A (zh) 2017-06-23
EP2696467A4 (en) 2015-11-18
CN106887883B (zh) 2019-08-23
US20140070765A1 (en) 2014-03-13
EP2696467A1 (en) 2014-02-12
JP2017112834A (ja) 2017-06-22
JP6112305B2 (ja) 2017-04-12
CN103444044B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6112305B2 (ja) 充電装置
JP6452844B2 (ja) 受電装置及び非接触給電システム
JP5689682B2 (ja) 誘導電力供給装置
US20160118179A1 (en) Wireless power transfer device and wireless charging system having same
CN109067014B (zh) 非接触充电装置
EP2643916B1 (en) Wireless power utilization in a local computing environment
EP3087659B1 (en) Wireless charger for a mobile terminal
JP5700135B2 (ja) 受電装置、送電装置およびワイヤレス電力伝送システム
US20160126639A1 (en) Coil structure and wireless power receiving apparatus including the same
JP2012060875A (ja) 無線電力伝送装置、無線充電装置及びこれを用いた無線充電システム
EP3398238B1 (en) Wireless power transfer device and method
KR20140053758A (ko) 이종 충전 방식을 가진 무선 충전 시스템
KR20180042446A (ko) 메탈백 디바이스들에 대한 니어 필드 통신 및 무선 전력 전달 듀얼 모드 안테나들
JP2014023281A (ja) 伝送コイル装置及び携帯無線端末
KR102128017B1 (ko) 자기 공명 방식 무선 전력 신호 및 유도 방식 무선 전력신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치에서의 신호 처리 방법 및 이를 이용하는 하이브리드 무선 전력 전송 장치
KR20140095348A (ko) 고정 주파수를 이용하는 lc공진 발진기의 이득을 조절하는 무선 전력 전송 장치 및 이득 조절 방법
CN108401472B (zh) 均匀的无线充电设备
JP5548075B2 (ja) 通信出力設定装置
JP5027264B2 (ja) 非接触設定装置、及びプログラム
JP5991269B2 (ja) ループアンテナ
JP2014128055A (ja) 充電装置
JP2012059220A (ja) 通信モード設定装置
WO2015015635A1 (ja) 非接触電力伝送装置及び非接触電力伝送システム
JP2014128054A (ja) 充電装置
US20190123584A1 (en) Power transmission device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013539029

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013754191

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14005881

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE