WO2013127621A1 - Procédé et dispositif de pulvérisation réactive par magnétron d'une couche d'oxyde métallique transparente - Google Patents

Procédé et dispositif de pulvérisation réactive par magnétron d'une couche d'oxyde métallique transparente Download PDF

Info

Publication number
WO2013127621A1
WO2013127621A1 PCT/EP2013/052742 EP2013052742W WO2013127621A1 WO 2013127621 A1 WO2013127621 A1 WO 2013127621A1 EP 2013052742 W EP2013052742 W EP 2013052742W WO 2013127621 A1 WO2013127621 A1 WO 2013127621A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
magnetron
metal oxide
magnetron sputtering
reactive
Prior art date
Application number
PCT/EP2013/052742
Other languages
German (de)
English (en)
Inventor
Volker Linss
Original Assignee
Von Ardenne Anlagentechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Von Ardenne Anlagentechnik Gmbh filed Critical Von Ardenne Anlagentechnik Gmbh
Publication of WO2013127621A1 publication Critical patent/WO2013127621A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/342Hollow targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution

Definitions

  • the invention generally relates to the reactive
  • Metal oxide layer on a substrate It concerns
  • a method and apparatus for depositing a TCO layer Transparent Conductive Oxide
  • a plasma is ignited under vacuum in a suitable process gas between a substrate to be coated and a magnetron, a target connected to an electrode and a magnet system, whose positive charge carriers ablate the upper layers of a target surface by the sputtering effect.
  • Metals can be sputtered with or without the presence of reactive gas and in the latter case e.g. as oxide or nitride on one of the Abtragsober Design of the target opposite
  • Substrate are deposited. In a similar way, it is possible to use and sputter other material compounds as target material.
  • a magnet system with juxtaposed magnets of locally alternating polarity is arranged on the side of the target facing away from the plasma. It is known that there is one that employed for magnetic ⁇ ronsputtern magnet system usually consists of a central pole piece first polarity to the pole pieces
  • racetrack Due to the form of a ring, tunnel-shaped magnetic field, the target material over the gap between two magnetic poles, where the magnetic field lines are parallel to the target surface, removed to a particular extent, so that in this area a self-contained, racetrack-shaped sputter trench forms. This is also called Racetrack.
  • Racetrack The local course of the magnetically guided, in itself
  • targets planar and pipe targets which are arranged with their axial extent transverse to the transport direction of the substrates through the coating system. Depending on the design of the target is used in conjunction with the
  • Tubular magnetrons are known to allow stable
  • Coating processes with high target utilization are particularly suitable for coating large-area substrates or for continuous coating. she
  • Longitudinal axis is rotatable.
  • the target material may be formed either as a tubular target, so that the cylinder of the tube cathode consists entirely of the material to be sputtered, or the tube cathodes consist of a support tube, which with the sputterndem
  • Material is coated. Regardless of the particular embodiment is usually spoken of a tubular target or a pipe target.
  • the pipe target is based on the
  • Rotatable magnet assembly so that in Coating operation can rotate the tube target, while the magnet assembly is aligned consistently in the coating chamber.
  • the tube targets By uniformly rotating the tube targets at a steady state magnetic field, the entire cylindrical target surface passes through the racetrack region and uniform erosion of the target material is achieved.
  • Tubular magnetrons are available as single magnetrons (single tube magnetron or RSM) or as double magnetrons
  • a tubular magnetron As a single tubular magnetron, a tubular magnetron is considered, if it is so far away from a neighboring tubular magnetron or separated from it by diaphragms or a partition, that its distribution characteristic can not overlap with that of the neighboring:
  • the process gas is composed of an inert working gas, such as argon or xenon, and a reactive gas such as oxygen or nitrogen so that a layer is deposited on the substrate in a composition containing the reactive gas.
  • an inert working gas such as argon or xenon
  • a reactive gas such as oxygen or nitrogen
  • Transparent metal oxide layers are used for the
  • dielectric layers e.g. for optical layer systems
  • electrically conductive layers e.g. when
  • Sensitivity of individual layers in a layer stack clearly limited.
  • Other process parameters such as pressure, power and magnetic field strength, which in the ceramic process certainly optimization potential for the
  • Metal oxides e.g., an optimum of transmission as well as resistance, thus not adjustable over the entire layer thickness. It has also been found that uniformity of the stoichiometry of the layer-forming
  • the object is therefore to provide a method and a device for magnetron sputtering of transparent metal oxide layers, which are available in reactive sputtering allow the optical and electrical
  • Opening angle of the outer pole piece of less than 30 °, measured between the central and outer pole piece, or
  • Which angle is set between the two outer pole shoes of the magnet system depends on the possible introduction of energy into the layer, wherein regularly larger opening angles are preferred due to the lower energy input and the limit is set eg by the morphological and adhesion properties of the layer to be deposited.
  • very good layer properties were achieved with an opening angle of 120 °.
  • the upper limit of the substrate target distance is also determined by the properties of the layer to be deposited, for example by the morphological and adhesion properties, and by the plasma distribution and thus
  • the latter is for
  • the target as a doped zinc-containing tube target with the
  • Doping be performed by at least one element of aluminum and gallium.
  • ZnO Al layers are used in many fields, so that their optimization of the optical and electrical properties is subject to the most diverse requirements and an extension of the parameter ranges usable for this purpose is advantageous.
  • the substrate by means of a suitable heating device before the deposition of
  • Metal oxide layer is at least partially heated to a substrate temperature such that during the
  • Deposition reaches a predefined maximum temperature or at least not exceeded, it is possible to heat the substrate, at least in the heated section, homogeneous and as close as possible to maximum
  • the maximum temperature is determined by various known or determinable parameters of the metal oxide layer layer system and its application and by the
  • Metal oxide layer or, in a mutual
  • Influencing between the upstream and / or downstream further process sequences for the entire layer system to be considered. For example, e.g. for the use of
  • Metal oxide layer in CIGS solar cells to limit the substrate temperature during the TCO deposition to a maximum temperature of about 200 ° C, otherwise the absorber degrades. However, if the substrate of previous processes already significantly heated, this is to be considered for the maintenance of the maximum temperature. For other layers and layer systems and coating processes, other maximum temperatures may result, which may be determined by experiments or simulations.
  • Parameters of the opening angle of the outer pole piece and the substrate target distance are also available as stable values during the process.
  • sputtering is both from below (Sputter-up) as well as from above (sputter-down) a substrate level in which a substrate is held in a Be Bertungsdhunt or transported through this or by a coating system.
  • the preceding explanations of the method according to the invention and the device which can be used for this purpose are not limited to any of the two sputtering directions.
  • Embodiment which uses sputter-down, should therefore be exemplary only and not restrictive.
  • Fig. 1 is a tubular magnetron according to the invention
  • Fig. 2 is a vacuum chamber for carrying out the
  • FIG 3 shows a diagram of the electro-optical layer properties of a transparent metal oxide layer when using the method according to the invention in comparison to the prior art at different operating points of the reactive process.
  • a tube magnetron according to FIG. 1 comprises a carrier tube 3 whose lateral surface is covered with the target material 2 to be sputtered, in the exemplary embodiment metallic aluminum-doped zinc. Inside this support tube 3 is the
  • Magnet system 5 is arranged, which extends parallel to the longitudinal axis 4 of the support tube 3 (perpendicular to the plane of the drawing) over its entire length.
  • the support tube 3 is rotatably mounted, represented by an arrow about the longitudinal axis 4 of the support tube 3.
  • the magnet system 5 is the support tube. 3 mounted movable relative to, so that the magnetic system 5 maintains its position during rotation of the support tube 3 relative to the surroundings of the support tube 3.
  • the magnet system 5 consists of a central pole piece 7, which is formed in the embodiment as a north pole, and an outer pole piece 9, the south pole of the magnet system 5.
  • the polarity can also be reversed, i. N-S-N, be executed.
  • the alignment of the magnet system 5 takes place with the
  • the magnet system 5 thus has a cross-section similar to W.
  • Target material 2 between the pole pieces 7, 9 extending portions of the race track forming racetrack 11 are shown as dashed lines.
  • the racetrack 11 is stretched over a larger portion of the circumference of the support tube 3 due to the relatively large opening angle.
  • a vacuum chamber 20 of a sputter coating system with a tubular magnetron 1 according to FIG. 1 is shown schematically and without any claim to representation of all components.
  • a single tubular magnetron 1 is arranged as a single-tube magnetron, which serves as a cathode of the electrode assembly for plasma generation, wherein a further electrode 23 is required.
  • this electrode 23 is shown only schematically and therefore without further connections, such as electrical or coolant connections, and may also be like the chamber wall lying on ground.
  • the tubular magnetron 1 extends transversely to a
  • Substrattransport coupons 25 in which a substrate 21 by means of a suitable transport device 27 through the vacuum chamber and continuing through the entire
  • Tube magnetron 1 is set at a substrate-target distance H of 120 mm. The distance is between the substrate plane 22, in which a substrate 21 through the vacuum chamber 20th
  • argon is supplied as an inert working gas and oxygen as a reactive gas through separate gas feeds 29 over the length of the tubular magnetron 1.
  • the gas supply can be carried out laterally for the working gas and for the reactive gas above the tubular magnetron 1 or vice versa. Other distributions of the gas supply of at least one gas than those shown can prove favorable in other coating materials.
  • the vacuum chamber On the input side and output side, the vacuum chamber has in each case a passage 31 for extending and retracting the Substrate 21 on.
  • the substrate 21 may be a heater (not shown), in one of the preceding
  • Chambers of the coating plant or alternatively also in the illustrated vacuum chamber 20 is arranged, or previous treatment or coating processes can be used, which heat the substrate 21 to the desired temperature, which should be as high as described above, that the substrate 21 during the coating not warmer than the desired maximum temperature.
  • Racetrack 11 in which the target material from the outer surface of the rotating tubular magnetron 1
  • Target material evenly removed from the entire surface of the tubular magnetrons 1.
  • the sputtered target material spreads in the direction of the optionally heated
  • Substrate 21 reacts with the admitted into the vacuum chamber, the reactive gas and is transparent
  • the maximum achievable transparency in the visible range is T max of an aluminum-doped zinc oxide layer
  • the curve 42 represents the values for the method according to the invention with a
  • the target Substrate distance H is in the embodiment by the
  • Geometry of the vacuum chamber 20 is limited and may assume other values for optimizing the layer properties under other geometric conditions as set forth above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

L'invention concerne un procédé et un dispositif utilisable à cette fin pour la pulvérisation réactive par magnétron d'une couche d'oxyde métallique transparente sur un substrat 21 revêtu ou non revêtu, dans lequel le matériau cible 2 est déposé, en introduisant un gaz réactif dans le gaz de travail, par projection par un magnétron tubulaire 1, qui comprend un système d'aimant 5 doté d'un épanouissement polaire 7 centrale d'une première polarité et, des deux côtés de l'épanouissement polaire 7 centrale, à chaque fois d'un épanouissement polaire extérieure 9 de polarité opposée, et déposé sous forme de couche d'oxyde métallique sur le substrat 21. Afin d'améliorer davantage, même lors de la pulvérisation réactive, les propriétés de couche optiques et électriques, le dépôt par pulvérisation est réalisé par un magnétron tubulaire simple, dont l'épanouissement polaire 9 extérieur présente, en section transversale, un angle d'ouverture α supérieur à 60°, de préférence supérieur à 90°, plus préférablement supérieur à 110° et la distance substrat-cible H est réglée à une distance ≥ 100 mm, de préférence ≥ 120 mm.
PCT/EP2013/052742 2012-02-29 2013-02-12 Procédé et dispositif de pulvérisation réactive par magnétron d'une couche d'oxyde métallique transparente WO2013127621A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203152.9 2012-02-29
DE201210203152 DE102012203152A1 (de) 2012-02-29 2012-02-29 Verfahren und Vorrichtung zum reaktiven Magnetronsputtern einer transparenten Metalloxidschicht

Publications (1)

Publication Number Publication Date
WO2013127621A1 true WO2013127621A1 (fr) 2013-09-06

Family

ID=47681941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052742 WO2013127621A1 (fr) 2012-02-29 2013-02-12 Procédé et dispositif de pulvérisation réactive par magnétron d'une couche d'oxyde métallique transparente

Country Status (3)

Country Link
DE (1) DE102012203152A1 (fr)
TW (1) TW201335398A (fr)
WO (1) WO2013127621A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289179A (zh) * 2019-05-29 2019-09-27 南京源恒能源科技有限公司 活性金属氧化物-碳化细菌纤维素电极材料的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208118A1 (de) 2012-11-30 2014-06-05 Von Ardenne Anlagentechnik Gmbh Verfahren zum reaktiven Magnetronsputtern mit gesteuerter Racetrackstöchiometrie und Anordnung zu dessen Ausführung
DE102015113454A1 (de) * 2015-08-14 2017-02-16 Von Ardenne Gmbh Reaktiv-Sputteranordnung und Verfahren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475354B1 (en) * 1997-07-10 2002-11-05 Canon Kabushiki Kaisha Deposited film producing process, photovoltaic device producing process, and deposited film producing system
DE102008034960A1 (de) * 2008-07-25 2010-01-28 Von Ardenne Anlagentechnik Gmbh Verfahren und Beschichtungskammer zur Beschichtung eines Substrats mit einer transparenten Metalloxid-Schicht
EP2306490A1 (fr) * 2009-10-02 2011-04-06 Applied Materials, Inc. Agencement d'aimant pour tube de support de cible et tube de support de cible le comprenant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD217964A3 (de) * 1981-10-02 1985-01-23 Ardenne Manfred Einrichtung zum hochratezerstaeuben nach dem plasmatronprinzip
AU8320491A (en) * 1990-07-06 1992-02-04 Boc Group, Inc., The Method and apparatus for co-sputtering and cross-sputtering homogeneous films
DE4117367C2 (de) * 1991-05-28 1999-11-04 Leybold Ag Verfahren zur Erzeugung eines homogenen Abtragprofils auf einem rotierenden Target einer Sputtervorrichtung
DE102006017455A1 (de) * 2006-04-13 2007-10-25 Applied Materials Gmbh & Co. Kg Rohrkathode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475354B1 (en) * 1997-07-10 2002-11-05 Canon Kabushiki Kaisha Deposited film producing process, photovoltaic device producing process, and deposited film producing system
DE102008034960A1 (de) * 2008-07-25 2010-01-28 Von Ardenne Anlagentechnik Gmbh Verfahren und Beschichtungskammer zur Beschichtung eines Substrats mit einer transparenten Metalloxid-Schicht
EP2306490A1 (fr) * 2009-10-02 2011-04-06 Applied Materials, Inc. Agencement d'aimant pour tube de support de cible et tube de support de cible le comprenant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289179A (zh) * 2019-05-29 2019-09-27 南京源恒能源科技有限公司 活性金属氧化物-碳化细菌纤维素电极材料的制备方法

Also Published As

Publication number Publication date
DE102012203152A1 (de) 2013-08-29
TW201335398A (zh) 2013-09-01

Similar Documents

Publication Publication Date Title
DE4117518C2 (de) Vorrichtung zum Sputtern mit bewegtem, insbesondere rotierendem Target
EP0235770A2 (fr) Dispositif pour le traitement par plasma de substrats dans une décharge plasmatique excitée par haute fréquence
WO1986007391A1 (fr) Procede et appareil d'enduction de substrats par decharge de plasma
DE102005058869A1 (de) Verfahren und Vorrichtung zur Beschichtung von Bändern
DE102011075851B4 (de) Verfahren zur stabilen reaktiven Abscheidung von Oxiden von einer Rohrmagnetronanordnung in Vakuumbeschichtungsanlagen und Anordnung zur Durchführung des Verfahrens
DE10100746A1 (de) Vorrichtung und Verfahren zum Bilden von Filmen
EP2778253A1 (fr) Source d'évaporation cylindrique
DE102012109691B4 (de) Solarabsorber-Schichtsystem mit Gradientenschicht und Verfahren zu dessen Herstellung
WO2013127621A1 (fr) Procédé et dispositif de pulvérisation réactive par magnétron d'une couche d'oxyde métallique transparente
EP0734459B1 (fr) Procede et dispositif de metallisation en phase vapeur activee au plasma
DE102008034960A1 (de) Verfahren und Beschichtungskammer zur Beschichtung eines Substrats mit einer transparenten Metalloxid-Schicht
EP2028695A1 (fr) Procédé destiné à la production d'une couche d'oxyde conductrice transparente
DE102007004760A1 (de) Vorrichtung und Verfahren zum Beschichten von plattenförmigen oder bandförmigen metallischen Substraten
DE102011085888A1 (de) Beschichtungsverfahren zum Sputtern von Mischschichten und Vorrichtung zum Ausführen des Verfahrens
DE102008009337B4 (de) Verfahren zur Herstellung einer transparenten leitfähigen Schicht
DE102011005760B4 (de) Verfahren zur Herstellung und Behandlung einer optisch streuenden TCO-Schicht auf einem Substrat
DE102013210155A1 (de) Verfahren zum Abscheiden einer transparenten, elektrisch leitfähigen Metalloxidschicht
WO2009030374A1 (fr) Procédé pour former un contact métallique arrière sur un composant semi-conducteur, en particulier une cellule solaire
DE102010051259B4 (de) Verfahren zum Aufbringen einer elektrisch leitfähigen und optisch transparenten Metallschicht, ein Substrat mit dieser Metallschicht sowie dessen Verwendung
DE102017115153A1 (de) Beschichtungsanordnung und Verfahren
DE102016118799B4 (de) Verfahren zum Magnetronsputtern
DE102012003828A1 (de) Verfahren und Vorrichtung zur Abscheidung eines Schichtstapels eines Metalloxids mit wechselnder Leitfähigkeit
DE102009053609A1 (de) Verfahren und Vorrichtung zum Magnetronsputtern ferromagnetischer Materialien
WO2004075212A1 (fr) Materiau pour le recouvrement par depot en phase gazeuse par procede physique
EP2526217B1 (fr) Procédé de revêtement sous vide d'un substrat par un oxyde d'alliage métallique conducteur transparent et couche conductrice transparente faite d'un oxyde d'alliage métallique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703441

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13703441

Country of ref document: EP

Kind code of ref document: A1