WO2013125763A1 - Heat radiation coating composition, heat radiation plate coated with same, and preparation method thereof - Google Patents

Heat radiation coating composition, heat radiation plate coated with same, and preparation method thereof Download PDF

Info

Publication number
WO2013125763A1
WO2013125763A1 PCT/KR2012/008976 KR2012008976W WO2013125763A1 WO 2013125763 A1 WO2013125763 A1 WO 2013125763A1 KR 2012008976 W KR2012008976 W KR 2012008976W WO 2013125763 A1 WO2013125763 A1 WO 2013125763A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite powder
coating composition
heat
impression graphite
heat dissipation
Prior art date
Application number
PCT/KR2012/008976
Other languages
French (fr)
Korean (ko)
Inventor
노재승
김재홍
서승국
이광주
강동수
엄운용
Original Assignee
주식회사 카보랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 카보랩 filed Critical 주식회사 카보랩
Publication of WO2013125763A1 publication Critical patent/WO2013125763A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat dissipation coating composition, a heat dissipation plate and a method of manufacturing the same, and more particularly, to a heat dissipation coating composition comprising an impression graphite powder, and to apply a magnetic field to the coating layer to arrange the impression graphite powder vertically to improve the heat radiation ability. It relates to an improved heat sink and a method of manufacturing the same.
  • the crystal structure of graphite is hexagonal, and the basal plan in the a-axis direction has strong sp2 bonds and weak van der Waals bonds in the c-axis. Therefore, the electrical conductivity, thermal conductivity, and stiffness are excellent in the a-axis, and these characteristics are relatively weak in the c-axis direction . It is already known experimentally that emissivity also exhibits this anisotropy.
  • Thermal radiation is defined as "radiation emitted by the constituent particles of a thermally excited material to convert thermal energy into electron energy.”
  • Thermal radiation is a type of electromagnetic wave that propagates at a speed of light through a suitable medium, and interacts with a material to absorb, scatter, and reflect it.
  • Thermal radiation uses black body radiation as a reference, and when the radiation of the black body, which is a perfect radiator, is 1, the ratio of the radiant luminance to this represents the degree of thermal radiation of an arbitrary object.
  • the thermal emissivity is dependent on the temperature of the material.
  • the thermal emissivity of nonmetallic materials decreases with increasing temperature, but the thermal emissivity of graphite is relatively uniform up to about 530 ° C., which is used as a heat radiator and absorber.
  • the thermal emissivity is a physical property inherent to the material, but its value varies depending on the surface condition of the material such as the degree of surface contamination or surface roughness change. In general, as the surface roughness of the material increases, the thermal emissivity increases, but in the presence of excessive pores on the surface, the emissivity tends to decrease.
  • Thermal emissivity is widely used to express thermal properties of metal materials, ceramic materials, plastic materials, etc., and it is known that heat radiation plays a very important role in heat transfer in a relatively low temperature region. Many researches are being conducted in the aerospace, fire safety, health care, plastics processing, textile industries, and electrical and electronic industries.
  • the present inventors have tried to develop a more effective thermal radiation material, as a result of the vertical arrangement of the particles of the impression graphite powder was found that the thermal radiation efficiency is greatly increased, the composition and method for using it as a coating agent the present invention To complete.
  • the present invention is an impression graphite powder for achieving the above object; And an organic binder containing a lacca-based resin and a diluent.
  • the present invention also provides a heat sink comprising a coating film containing the impression graphite powder arranged perpendicularly to the heat sink, and further comprising: an aluminum substrate; It provides a heat sink including; the heat dissipation coating composition coated on the front, the back of the substrate.
  • the present invention relates to a method of manufacturing the heat sink, (a) mixing the graphite powder and the organic binder to prepare a heat dissipation coating composition; (b) coating the heat dissipation coating composition on the front and back surfaces of the aluminum substrate; And (c) arranging the impression graphite powder vertically by applying a magnetic field to the aluminum substrate coated with the heat dissipation coating composition in a vertical direction.
  • the heat sink according to the present invention is coated with a coating composition containing an impression graphite powder having excellent heat radiation ability, and then, by applying a magnetic field to the coating layer to arrange the impression graphite bars vertically to further improve heat dissipation capacity, various electronic products, In particular, by effectively dissipating heat generated inside the display, LED, and photovoltaic devices to the outside to prevent deterioration of components and improve durability.
  • 1 is an SEM image of natural impression graphite which is one component of a heat dissipation coating composition according to the present invention.
  • FIG. 2 is a conceptual view of applying a magnetic field in the up-down direction of the substrate in order to change the particle arrangement of the impression graphite flakes after coating the heat-dissipating coating composition according to the invention on the surface of the substrate.
  • FIG. 3 is an image showing the surface and cross-section of the impression graphite coating layer for the MF (Magnetic field) of Example 1 of the present invention and the Non-magnetic field (NMF) of Comparative Example 1,
  • Figure 3a) is a magnetic field
  • the cross-sectional image of the impression graphite coating layer when not given b) is the cross-sectional image of the impression graphite coating layer when the magnetic field is applied, c) the 45 ° tilted surface image of the impression graphite coating layer when the magnetic field is not applied, and d) the magnetic field. This is a 45 ° tilted surface image of the impression graphite coating layer.
  • Figure 4 is a Raman spectrum measured to determine the change in crystallinity with or without magnetic field of the impression graphite coating layer.
  • FIG. 5 is a schematic diagram of a device for measuring the surface temperature of the heat sink according to the present invention.
  • Example 6 is an image showing the results of the measurement of heat dissipation characteristics for the aluminum substrate coated with NMF and MF according to Example 1 and Comparative Example 1 of the present invention.
  • Example 7 is a graph showing the cooling rate of the aluminum substrate and the non-coated aluminum substrate coated with NMF and MF according to Example 1 and Comparative Example 1 of the present invention.
  • Example 8 is a graph showing cooling rates of aluminum substrates coated with NMF and MF and uncoated aluminum substrates according to Example 1 and Comparative Example 1 of the present invention.
  • FIG. 10 is a conceptual diagram illustrating heat dissipation for a case in which a magnetic field is applied to the coating layer and a case in which no magnetic field is applied.
  • Br is an abbreviation of the current magnetic flux density.
  • the magnetic flux density (B) when the magnetic field (H) is 0 represents the strength of the magnet, and the unit is G (Gauss).
  • Hc is the magnetic field (H) coercive force or coercive force required for zero magnetic flux density (B), and the unit is Oe (Oersted).
  • BH (max) represents the point of time when the magnetic energy density of the magnetic field is at the maximum by the magnetic flux density and the space between the product of the magnetic field and the magnet.
  • the heat dissipation coating composition of the present invention is an impression graphite powder; And an organic binder containing a lacca-based resin and a diluent.
  • the impression graphite powder has an average particle diameter of less than 1 to 100 ⁇ m, preferably 10 to 80 ⁇ m, and more preferably 30 to 70 ⁇ m.
  • the graphite powder is less than 1 ⁇ m average particle diameter may cause a problem that there is no vertical culture effect, when the graphite graphite powder is more than 100 ⁇ m, it is difficult to arrange the graphite graphite vertically, the impression having an average particle diameter within the above range It is better to use graphite.
  • the lacca-based resin serves to increase the adhesion in the coating composition of the present invention, it is preferable to include a nitrocellulose alkyd resin (Nirtocellulose alkyd resin).
  • the impression graphite powder and the lacquer resin may be included in a 5 to 30: 100 weight ratio, preferably 5 to 28: 100 weight ratio, more preferably 5 to 25 weight ratio, less than 5: 100 weight ratio If the amount of the graphite powder is too small, it may cause a problem that a satisfactory heat dissipation effect may not be seen, and if the weight ratio exceeds 30: 100, the viscosity of the heat dissipation coating composition may be too high, and the cooling rate of the heat sink may decrease. Therefore, it is preferable to use within the above range.
  • the diluent acts as a solvent and is highly volatile, so that the diluent is mostly vaporized into the atmosphere after the coating composition is coated on the substrate of the heat sink.
  • the diluent preferably uses laccasina including ketones, esters, alcohols and aromatic hydrocarbons.
  • the impression graphite powder and the diluent are 20 to 110: 100 weight ratio, preferably 25 to 100: 100 weight ratio, and the impression graphite powder and the diluent 20
  • the ratio exceeds 110: 100, the viscosity of the paste in which the composition is mixed is too high, and may be agglomerated during coating, and therefore it is preferable to use within the above range.
  • the heat sink of the present invention is characterized in that it comprises a coating film containing the impression graphite powder arranged perpendicular to the heat sink, the coating film is an impression graphite powder; And an organic binder containing a lacca-based resin.
  • the heat sink of the present invention is an aluminum substrate; And a heat dissipation coating film coated on the rear surface of the aluminum substrate.
  • the heat dissipation coating film is made of impression graphite powder and an organic binder.
  • the heat dissipation coating film is impression graphite powder; And an organic binder containing a lacquer-based resin and a diluent; after the heat-dissipating coating composition is coated on the aluminum substrate, the impression graphite powder is vertically arranged by applying a magnetic field in an up-down direction of the aluminum substrate. do.
  • the diluent of the heat dissipation coating composition is almost vaporized during the composition preparation and coating process.
  • the impression graphite powder may be thinner than the impression graphite powder through ball milling during the manufacturing process of the heat dissipation coating composition, the composition and composition ratio of the heat dissipation coating composition is the same as described above.
  • Another aspect of the present invention relates to a method for manufacturing a heat sink comprising the following steps,
  • the step of preparing the heat dissipation coating composition may be prepared in the form of a paste by mixing the impression graphite powder and the organic binder, the composition, composition ratio and type of the heat dissipation coating composition is the same as the heat dissipation coating composition of the present invention described above.
  • the coating step may use a variety of coating methods commonly used in the art, preferably, it is fast and uniformly performed by a dipping coating method, a spin coating method and a spray coating method. Good in terms of coating
  • the impression graphite powder Arranging the impression graphite powder vertically, as shown in FIG. 2, by arranging the aluminum substrate coated with the heat-dissipating coating composition up and down in a magnetic field in a vertical direction, the impression graphite powder is arranged vertically with respect to the aluminum substrate or the heat sink. It is recommended to use ferromagnetic material as a means to apply magnetic field. In this case, the conditions for applying the magnetic field are Br 12.8 ⁇ 14.0 G (gauss), Hc 12 ⁇ 14.9 KOe, BH (max) 20 ⁇ 40 MGOe, and density 7 ⁇ 8 under the method of applying the magnetic field in the up-down direction It is preferable to carry out.
  • the raw material powder used in the present invention is natural impression graphite (HC-398, HYUNDAI COMA, purity> 98.5%) having an average diameter of 63 ⁇ m, it is shown in FIG.
  • the lacquer resin was a DLP-3210F brand name of Defy Co., Ltd., and a naturally-dried lacquer-based resin mainly composed of an alkyd resin, a plasticizer, a pigment, and the like was used. Laccasinna based on esters, alcohols and aromatic hydrocarbons was used.
  • a magnetic field was applied using a magnet, as shown in Figure 2 on the top / bottom of the coated aluminum substrate in order to change the particle arrangement of the natural impression graphite powder.
  • the magnetic field conditions are Br: 12.8 to 14.0 G, Hc: 12 to 14.9 KOe, BH (max): 20 to 40 mg.Oe, and density: 7.58.
  • MF2-1 is prepared by coating a heat radiator material on an aluminum substrate and applying a change to the impression graphite powder by applying a magnetic field as in Example 1.
  • a heat sink was manufactured in the same manner as in Example 1, but the amount of the natural impression graphite was used 6g (Example 2, MF2-2), 8g (Example 3, MF2-3), 10g (Example 4, MF2-4 ), 12 g (Example 5, MF2-5) and 14 g (Example 6, MF2-6) to prepare a heat sink having a coating layer.
  • Example 2 After the paste was prepared in the same manner as in Example 1, the paste was coated on an aluminum substrate, and then a heat sink was manufactured without applying a magnetic field (hereinafter, referred to as NMF).
  • NMF a magnetic field
  • Example 2 In the same manner as in Example 1, a heat-dissipating coating plate was prepared, but after the paste was prepared using carbon black instead of natural impression graphite, it was coated on an aluminum substrate, and then a heat sink was manufactured by applying a magnetic field.
  • Figure 3 a) is a cross-sectional image of the heat sink coating layer of Comparative Example 1 not applied to the magnetic field
  • b) is a cross-sectional image of the heat sink coating layer of Example 1 when the magnetic field is applied
  • c) of the Comparative Example 1 45 ° tilted surface image of the heat sink coating layer
  • d) is 45 ° tilted surface image of the heat sink coating layer of Example 1.
  • Comparative Example 1 can be observed that the flaky and flaky coating is maintained in its original shape and coated on the aluminum substrate in a horizontal form, and Example 1 is coated on the aluminum substrate in a vertical form. From this, it can be seen that the particles are arranged in the form perpendicular to the aluminum substrate by applying a magnetic field to the impression graphite.
  • Raman spectroscopy (inVia System, Renishaw, France) used an Ar laser (514.5 nm) as a light source.
  • the In Via system has a focal length of 800 mm for the best results with high resolution and efficient scattered light condensing power. It is equipped with an LN 2 cooled CCD as a detector to measure a wide range in a short time without noise.
  • confocal Raman microscope (Confocal Raman microscope) can be used to measure small areas, such as micrometers.
  • Raman spectroscopic analysis conditions are as follows.
  • Example 1 The specimens according to Example 1 and Comparative Example 1 were prepared in the same state as the specimen for cross-sectional tissue analysis, and the peaks obtained by Raman analysis were quantitatively compared ( I d / I g ). After the measurement, several sites (4 times) were measured and averaged.
  • Impression graphite powder has different Raman properties depending on the degree of arrangement. That is, the Raman profile of the graphite base plan has a weak D band and the vertical direction of the graphite base has a strong D band. The degree of establishment of the was confirmed.
  • Figure 4 is a change in the Raman spectrum for confirming the change in crystallinity with or without the magnetic field of the impression graphite coating layer, the intensity ratio of the D band and G band of the Raman spectrum is a measure of amorphousness and crystallinity, respectively.
  • Id / Ig is a measure of crystallinity.
  • Graphite's crystal structure is hexagonal, and the basal plan in the a-axis direction has strong sp 2 bonds, and weak van der Waals (Van) in the c-axis. der Waals). Therefore, electrical conductivity, thermal conductivity, and stiffness are excellent in the a-axis, and these characteristics are relatively weak in the c-axis direction.
  • MF according to the present invention is 0.47 larger than NMF. This is because MNF is thinly flaky and bonded to a binder while maintaining its original shape, and is coated in a horizontal form on an aluminum substrate. Therefore, the basal plan in the a-axis direction with strong sp 2 bonding is measured. Since MF is coated in a vertical form on the aluminum substrate, the plane in the c-axis direction with weak van der Waals bonding is measured.
  • the surface temperature of the heat sink was measured using a thermal imaging camera.
  • the specimen was mounted on a hot plate and the edge of the external environment was removed, and a thermal imaging camera was installed at a distance of 3 cm from the specimen, and the measurement mode was spot-centered. The part was set up to measure the surface temperature.
  • thermocouple thermocouple
  • the cooling rate of the copper according to the aluminum substrate used in the manufacture of the heat sink of Comparative Example 1 and Example 1 was measured using the K-type thermocouple (K-Type Thermocouple) to determine the heat dissipation effect of the magnetic field (with or without magnetic field) YOKOGAWA's DR-300 data logger was used to acquire and store measured temperature data over time.
  • K-Type Thermocouple K-Type Thermocouple
  • Figure 6 is an image showing the results of the measurement of the heat dissipation characteristics of the heat sinks prepared in Example 1 and Comparative Example 1 after maintaining the temperature of the copper at 100 °C, the array of particles of the impression graphite coating layer is arranged vertically Example 1 was measured 14.7 °C higher than that of Comparative Example 1, which indicates that the coating layer vertically arranged in the grain arrangement of the impression graphite coating layer releases heat faster, resulting in a higher surface temperature of the aluminum heat sink. Able to know.
  • FIG. 7 is a graph showing the cooling rates of the heat sinks of Example 1 and Comparative Example 1 and the uncoated aluminum substrate.
  • Example 1 the cooling rate from 100 ° C. to 33 ° C. was 33% faster than that of the uncoated aluminum substrate, about 16% faster than that of Comparative Example 1, and Example 1 in the cooling rate range from 100 ° C. to 33 ° C. It is at most 2.4 ° C lower than this Comparative Example 1, and at most 5.1 ° C lower than the aluminum substrate. From this, it can be seen that the coating layers of the impression graphite arranged vertically contributed greatly to the heat dissipation.
  • FIG. 8 is a graph showing the cooling rates of the heat sinks and uncoated aluminum substrates (Al-NMF) of Example 1 and Comparative Example 1.
  • FIG. 8 As a result of measuring the cooling rate of copper from 100 ° C. to 30 ° C., Example 1 showed a maximum difference of 8.4 ° C. after 10 minutes from an uncoated aluminum substrate.
  • the emissivity value increases as the weight ratio of the impression graphite powder and lacquer resin increases to 25: 100 weight ratio, and the emissivity value rather decreases when the weight ratio is more than 30: 100 weight ratio, and in the case of 35: 100 weight ratio, than the 10: 100 weight ratio It was confirmed that the emissivity is further lowered.
  • Example 1 emissivity: 0.799
  • Example 4 emissivity: 0.912
  • Example 1 Table 1 division Impression Graphite Powder Lacquer resin Weight ratio Thermal Emissivity
  • Example 2 6 g 15: 100 0.899
  • Example 3 8 g 20: 100 0.906
  • Example 4 10 g 25: 100 0.912
  • Example 5 12 g 30: 100 0.883
  • Example 6 14 g 35: 100 0.774 Comparative Example 1 4 g 10: 100 0.773 Comparative Example 2 4 g of carbon black 10: 100 0.769
  • the present invention is a carbon material having excellent heat radiation ability, and mixed the graphite powder with an organic binder and coated it on the aluminum substrate, by applying a magnetic field to the coating layer and changing the particle arrangement, the metal according to the particle arrangement of the graphite coating layer As a result of comparative analysis of cooling rate change of
  • the heat sink (MF2) of the present invention was measured to be 14.7 ° C higher than the heat sink (NMF) without a magnetic field, and the grain array of the impression graphite coating layer was vertically arranged. Showed better heat release characteristics than NMF.
  • the crystal structure in the case where the flakes are vertically arranged by applying a magnetic field is a hexagonal structure, and the basal plan in the a-axis direction has a strong sp 2 bond.
  • MF2 is weaker than NMF because it has weak van der Waals bonds, it has excellent electrical conductivity, thermal conductivity, and stiffness in the a-axis, and it has considerable anisotropy, which is relatively weak in the c-axis direction. It can be seen that the cooling rate was relatively fast.
  • the heat sink according to the present invention has excellent heat dissipation ability, and effectively releases heat generated from the inside of various electronic products, especially displays, LEDs, and photovoltaic devices to the outside. Can prevent deterioration and improve durability.
  • the heat sink according to the present invention can effectively discharge heat to the outside to prevent deterioration of the component, it can be used in various electronic products, especially displays, LEDs and solar devices.

Abstract

The present invention relates to a heat radiation plate using a heat radiation coating composition containing a crystalline graphite powder, wherein the heat radiation coating composition is coated on a substrate, and magnetic fields are applied in the vertical direction of the substrate so as to vertically align the crystalline graphite powder. According to the present invention, the heat radiation plate has a remarkable heat radiating property, and thus can effectively radiate the heat generated inside various electronic devices, particularly, an LED, a solar device, and the like, thereby preventing the deterioration of parts and improving durability.

Description

방열 코팅 조성물, 이를 코팅시킨 방열판 및 그 제조방법Heat dissipation coating composition, heat dissipating plate coated with the same and method for manufacturing same
본 발명은 방열 코팅 조성물, 방열판 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 인상흑연 분말을 포함하는 방열 코팅 조성물로 코팅하고, 코팅층에 자기장을 걸어 인상흑연 분말을 수직으로 배열시켜서 열방사 능력을 우수하게 향상시킨 방열판 및 그 제조방법에 관한 것이다.The present invention relates to a heat dissipation coating composition, a heat dissipation plate and a method of manufacturing the same, and more particularly, to a heat dissipation coating composition comprising an impression graphite powder, and to apply a magnetic field to the coating layer to arrange the impression graphite powder vertically to improve the heat radiation ability. It relates to an improved heat sink and a method of manufacturing the same.
반도체 산업과 통신 산업이 발전함에 따라 전자제품의 고성능화 및 초소형화로 제한된 공간에 더 많은 소자들이 집적되면서 단위 면적당 발열량이 급격히 증가하였다. 또한 최근 고효율, 친환경 제품으로 각광받고 있는 LED 등의 광소자 핵심 부품산업이 풀어야 할 중요한 과제 중 하나가 방열의 문제이다. LED의 발광 효율이 높아진 것은 사실이지만, LED 패키지의 발열량은 상당한 수준이며 방열 대책을 마련하지 않으면 LED 패키지의 온도 상승으로 인한 발광 효율의 저하, 칩의 단수명화를 초래하게 된다. 이처럼 전자부품의 소형화 및 새로운 응용제품의 적용은 열적 문제의 해결이 없이는 불가능하다.As the semiconductor industry and the communication industry develop, more devices are integrated in a limited space due to high performance and miniaturization of electronic products, and the amount of heat generated per unit area is rapidly increased. In addition, one of the important tasks to be solved by the optical component core parts industry, such as LED, which is recently spotlighted as high efficiency and eco-friendly product, is the problem of heat dissipation. It is true that the luminous efficiency of the LED is increased, but the heat generation amount of the LED package is considerable, and if the heat dissipation measures are not taken, the luminous efficiency decreases due to the temperature increase of the LED package and the life of the chip is shortened. Such miniaturization of electronic components and the application of new applications are impossible without solving the thermal problem.
이렇게 전자제품의 발열을 최소화시킬 수 있는 방법으로는 소형 팬을 설치하는 등의 기계적 방법이 있고, 부피를 최소화하기 위하여 고방열 물질을 이용한 방열코팅방법이 있다. 그 중 흑연 및 탄소재료는 원자력이나 에너지 재료로 각광을 받고 있으며 전자기기 및 LED 등의 전자부품의 열방출을 위한 코팅재료로 그 이용 영역이 확대되고 있다. 흑연은 결합력이 큰 기저면을 따라 우수한 열전도도, 전기전도도 및 강성률 등을 나타내고 화학적으로 매우 안정하여 화학, 전기전자, 기계, 자동차, 원자로 등에 널리 사용되고 있다. 이러한 특성은 흑연의 결정구조에서 그 원인을 찾을 수 있다. 흑연의 결정구조는 육방정 구조로써 a-축 방향으로의 기저면(basal plan)은 강한 sp2 결합을 하고 있으며 c-축으로는 약한 Van der Waals 결합을 하고 있다. 따라서 a-축으로는 전기전도도, 열전도도 및 강성률 등이 우수하며 c-축 방향으로는 이러한 특성들이 상대적으로 미약하다. 방사율 또한 이런 이방성 특성을 나타내고 있다고 실험적으로 이미 알려져 있다.As such a method of minimizing the heat generation of electronic products, there is a mechanical method such as installing a small fan, there is a heat radiation coating method using a high heat radiation material to minimize the volume . Among them, graphite and carbon materials are in the spotlight as nuclear or energy materials, and their use areas are expanding as coating materials for heat emission of electronic parts such as electronic devices and LEDs. Graphite exhibits excellent thermal conductivity, electrical conductivity, stiffness, and the like along the base of a large bonding force, and is very chemically stable and widely used in chemistry, electrical and electronics, machinery, automobiles, and reactors. These characteristics can be found in the crystal structure of graphite. The crystal structure of graphite is hexagonal, and the basal plan in the a-axis direction has strong sp2 bonds and weak van der Waals bonds in the c-axis. Therefore, the electrical conductivity, thermal conductivity, and stiffness are excellent in the a-axis, and these characteristics are relatively weak in the c-axis direction . It is already known experimentally that emissivity also exhibits this anisotropy.
열방사란 “열적으로 여기 된 물질의 구성입자들이 열에너지를 전자에너지로 전환하여 출사하는 방사”라고 정의한다. 열방사는 전자파의 일종으로서 적당한 매질을 통하여 빛의 속도로 전파되며, 물질과 상호작용하여 흡수, 산란, 반사 등을 한다. 열방사는 그 기준으로 흑체방사를 사용하며, 이상적으로 완전 방사체인 흑체의 방사를 1로 할 때 이에 대한 방사휘도의 비율로서 임의 물체의 열방사 정도를 표현한다.Thermal radiation is defined as "radiation emitted by the constituent particles of a thermally excited material to convert thermal energy into electron energy." Thermal radiation is a type of electromagnetic wave that propagates at a speed of light through a suitable medium, and interacts with a material to absorb, scatter, and reflect it. Thermal radiation uses black body radiation as a reference, and when the radiation of the black body, which is a perfect radiator, is 1, the ratio of the radiant luminance to this represents the degree of thermal radiation of an arbitrary object.
열방사율은 재료의 온도에 따라 달라지며, 일반적으로 비금속 물질은 온도가 상승할수록 열방사율은 감소하지만 흑연의 열방사율은 약 530 ℃까지 비교적 균일하게 유지하기 때문에 열방사의 방사체와 흡수체로 이용되고 있다. 또한 열방사율이 재료 고유의 물리적 특성이지만 표면의 오염정도 또는 표면 거칠기 변화 등 재료의 표면 상태에 따라 그 값은 변한다. 일반적으로 재료의 표면 거칠기가 증가하면 열방사율이 증가하지만 표면에 과도한 기공이 존재할 경우 방사율이 저하하는 경향이 있다.The thermal emissivity is dependent on the temperature of the material. In general, the thermal emissivity of nonmetallic materials decreases with increasing temperature, but the thermal emissivity of graphite is relatively uniform up to about 530 ° C., which is used as a heat radiator and absorber. In addition, the thermal emissivity is a physical property inherent to the material, but its value varies depending on the surface condition of the material such as the degree of surface contamination or surface roughness change. In general, as the surface roughness of the material increases, the thermal emissivity increases, but in the presence of excessive pores on the surface, the emissivity tends to decrease.
열방사율은 금속재료, 세라믹재료, 플라스틱재료 등의 열적 물성을 표현하는데 다양하게 이용되고 있으며, 상대적으로 저온 영역에서의 열전달에서도 열방사는 매우 중요한 역할을 한다고 알려졌다. 이를 이용하여 항공우주분야, 소방 안전, 건강의료, 플라스틱 가공, 섬유산업, 전기 전자부품 등 산업 전반에 걸쳐 많은 연구가 진행되고 있다.Thermal emissivity is widely used to express thermal properties of metal materials, ceramic materials, plastic materials, etc., and it is known that heat radiation plays a very important role in heat transfer in a relatively low temperature region. Many researches are being conducted in the aerospace, fire safety, health care, plastics processing, textile industries, and electrical and electronic industries.
이에 본 발명자들은 보다 효과적인 열방사 소재를 개발하고자 노력한 결과, 인상흑연 분말의 입자를 수직으로 배열시키면 열방사 효율이 크게 증대 되는 것을 알게 되었고, 이를 코팅제로 사용하기 위한 조성 및 방법을 알게 되어 본 발명을 완성하게 되었다. Thus, the present inventors have tried to develop a more effective thermal radiation material, as a result of the vertical arrangement of the particles of the impression graphite powder was found that the thermal radiation efficiency is greatly increased, the composition and method for using it as a coating agent the present invention To complete.
본 발명은 상기 과제를 달성하기 위한 본 발명은 인상흑연 분말; 및 락카계 수지 및 희석제를 함유한 유기 바인더;를 포함하는 방열 코팅 조성물을 제공한다.The present invention is an impression graphite powder for achieving the above object; And an organic binder containing a lacca-based resin and a diluent.
또한, 본 발명은 방열판에 대하여 수직으로 배열된 인상흑연 분말을 함유한 코팅막을 포함하는 방열판을 제공하며, 또한, 알루미늄 기판; 상기 기판 전, 후면에 코팅된 상기 방열 코팅 조성물;을 포함한 방열판을 제공한다.The present invention also provides a heat sink comprising a coating film containing the impression graphite powder arranged perpendicularly to the heat sink, and further comprising: an aluminum substrate; It provides a heat sink including; the heat dissipation coating composition coated on the front, the back of the substrate.
또한, 본 발명은 상기 방열판의 제조방법에 관한 것으로서, (a) 인상흑연 분말와 유기 바인더를 혼합하여 방열 코팅 조성물을 제조하는 단계; (b) 상기 방열 코팅 조성물을 알루미늄 기판 전, 후면에 코팅하는 단계; 및 (c) 상기 방열 코팅 조성물로 코팅된 알루미늄 기판을 상-하 방향으로 자기장을 걸어 인상흑연 분말을 수직으로 배열시키는 단계;를 포함하는 방열판의 제조방법을 제공하고자 한다.In addition, the present invention relates to a method of manufacturing the heat sink, (a) mixing the graphite powder and the organic binder to prepare a heat dissipation coating composition; (b) coating the heat dissipation coating composition on the front and back surfaces of the aluminum substrate; And (c) arranging the impression graphite powder vertically by applying a magnetic field to the aluminum substrate coated with the heat dissipation coating composition in a vertical direction.
본 발명에 따른 방열판은 열방사 능력이 우수한 인상흑연 분말을 포함하는 코팅 조성물로 코팅하고, 이후 코팅층에 자기장을 걸어 인상흑연 바편을 수직으로 배열시켜 열방출 능력을 보다 향상시킨 것으로서, 각종 전자제품, 특히 디스플레이, LED 및 태양광 소자 등의 내부에서 발생하는 열을 효과적으로 외부로 방출시켜 부품의 열화를 방지하고 내구성을 향상시킬 수 있다.The heat sink according to the present invention is coated with a coating composition containing an impression graphite powder having excellent heat radiation ability, and then, by applying a magnetic field to the coating layer to arrange the impression graphite bars vertically to further improve heat dissipation capacity, various electronic products, In particular, by effectively dissipating heat generated inside the display, LED, and photovoltaic devices to the outside to prevent deterioration of components and improve durability.
도 1은 본 발명에 따른 방열 코팅 조성물의 일 성분인 천연 인상흑연의 SEM 이미지이다.1 is an SEM image of natural impression graphite which is one component of a heat dissipation coating composition according to the present invention.
도 2는 기판 표면에 본 발명에 따른 방열 코팅 조성물을 코팅한 후, 인상흑연 박편의 입자 배열을 변화시키기 위하여 기판 상-하 방향으로 자기장을 걸어주는 개념도이다.2 is a conceptual view of applying a magnetic field in the up-down direction of the substrate in order to change the particle arrangement of the impression graphite flakes after coating the heat-dissipating coating composition according to the invention on the surface of the substrate.
도 3은 본 발명의 실시예 1의 MF(Magnetic field)와 비교예1의 NMF(Non-magnetic field)에 대한 인상흑연 코팅층의 표면과 단면을 나타낸 이미지로서, 도 3의 a)는 자장을 걸어주지 않았을 때 인상흑연 코팅층의 단면 이미지, b)는 자장을 걸어주었을 때 인상흑연 코팅층의 단면 이미지, c)는 자장을 걸어주지 않았을 때 인상흑연 코팅층의 45°틸트된 표면 이미지, 그리고 d)는 자장을 걸어주었을 때 인상흑연 코팅층의 45°틸트된 표면 이미지이다.3 is an image showing the surface and cross-section of the impression graphite coating layer for the MF (Magnetic field) of Example 1 of the present invention and the Non-magnetic field (NMF) of Comparative Example 1, Figure 3a) is a magnetic field The cross-sectional image of the impression graphite coating layer when not given, b) is the cross-sectional image of the impression graphite coating layer when the magnetic field is applied, c) the 45 ° tilted surface image of the impression graphite coating layer when the magnetic field is not applied, and d) the magnetic field. This is a 45 ° tilted surface image of the impression graphite coating layer.
도 4는 인상흑연 코팅층의 자장 유/무에 따른 결정성의 변화를 확인하기 위하여 측정한 라만 스펙트럼이다.Figure 4 is a Raman spectrum measured to determine the change in crystallinity with or without magnetic field of the impression graphite coating layer.
도 5는 본 발명에 따른 방열판의 표면온도를 측정하기 장치의 모식도이다.5 is a schematic diagram of a device for measuring the surface temperature of the heat sink according to the present invention.
도 6은 본 발명의 실시예 1 및 비교예 1에 따라 NMF와 MF로 코팅된 알루미늄 기판에 대한 열방출 특성 측정 결과를 나타낸 이미지이다.6 is an image showing the results of the measurement of heat dissipation characteristics for the aluminum substrate coated with NMF and MF according to Example 1 and Comparative Example 1 of the present invention.
도 7은 본 발명의 실시예 1 및 비교예 1에 따라 NMF와 MF로 코팅된 알루미늄 기판과 코팅하지 않은 알루미늄 기판의 냉각속도를 나타낸 그래프이다.7 is a graph showing the cooling rate of the aluminum substrate and the non-coated aluminum substrate coated with NMF and MF according to Example 1 and Comparative Example 1 of the present invention.
도 8은 본 발명의 실시예 1 및 비교예 1에 따라 NMF와 MF로 코팅된 알루미늄 기판과 코팅하지 않은 알루미늄 기판의 냉각속도를 나타낸 그래프이다.8 is a graph showing cooling rates of aluminum substrates coated with NMF and MF and uncoated aluminum substrates according to Example 1 and Comparative Example 1 of the present invention.
도 9 는 본 발명의 실시예 1 내지 6 및 비교예 1 내지 2에 따른 방열판에 대하여 냉각속도를 측정한 결과 그래프이다.9 is a graph showing the results of measuring cooling rates of the heat sinks according to Examples 1 to 6 and Comparative Examples 1 to 2 of the present invention.
도 10은 코팅층에 자기장을 걸어준 경우와 걸어주지 않은 경우에 대한 열방출을 나타낸 개념도이다.10 is a conceptual diagram illustrating heat dissipation for a case in which a magnetic field is applied to the coating layer and a case in which no magnetic field is applied.
본 발명에서 사용하는 용어에 대하여 설명을 하면, Br은 전류자속밀도의 약자로서, 자기장(H)이 0인 경우의 자속밀도(B)로 자석의 강도를 나타내며, 단위는 G(Gauss)이다. 그리고, Hc는 자속밀도(B)를 0으로 하는데 필요한 자기장(H) 보자력 또는 항자력이며, 단위는 Oe(Oersted)이다. 또한, BH(max)는 자속밀도와 자기장의 제품 및 자석을 둘러싼 공기 간격으로 자기장의 에너지밀도가 최대에 있는 시점을 나타낸다. When the terms used in the present invention are explained, Br is an abbreviation of the current magnetic flux density. The magnetic flux density (B) when the magnetic field (H) is 0 represents the strength of the magnet, and the unit is G (Gauss). Hc is the magnetic field (H) coercive force or coercive force required for zero magnetic flux density (B), and the unit is Oe (Oersted). In addition, BH (max) represents the point of time when the magnetic energy density of the magnetic field is at the maximum by the magnetic flux density and the space between the product of the magnetic field and the magnet.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 방열 코팅 조성물은 인상흑연 분말; 및 락카계 수지 및 희석제를 함유한 유기 바인더;를 포함하는 것을 특징으로 한다.The heat dissipation coating composition of the present invention is an impression graphite powder; And an organic binder containing a lacca-based resin and a diluent.
상기 인상흑연 분말은 평균입경 1 ~ 100 ㎛ 미만인 것을, 바람직하게는 10 ~ 80 ㎛인 것을, 더욱 바람직하게는 30 ~ 70 ㎛인 것을 사용하는 것이 좋다. 여기서, 인상흑연 분말이 평균입경 1 ㎛ 미만이면 수직배양 효과가 없는 문제가 발생할 수 있고, 평균입경 100 ㎛를 초과하면 인상흑연 분말을을 수직으로 배열시키기 어려운 바, 상기 범위 내의 평균입경을 갖는 인상흑연을 사용하는 것이 좋다.It is preferable that the impression graphite powder has an average particle diameter of less than 1 to 100 µm, preferably 10 to 80 µm, and more preferably 30 to 70 µm. Here, if the graphite powder is less than 1 ㎛ average particle diameter may cause a problem that there is no vertical culture effect, when the graphite graphite powder is more than 100 ㎛, it is difficult to arrange the graphite graphite vertically, the impression having an average particle diameter within the above range It is better to use graphite.
상기 락카계 수지는 본 발명의 코팅 조성물에 있어서, 접착력을 증가시키는 역할을 하며, 초화면 알키드 수지(Nirtocellulose alkyd resin)를 포함하는 것이 바람직하다.The lacca-based resin serves to increase the adhesion in the coating composition of the present invention, it is preferable to include a nitrocellulose alkyd resin (Nirtocellulose alkyd resin).
그리고, 상기 인상흑연 분말과 상기 락카계 수지를 5 ~ 30 : 100 중량비로, 바람직하게는 5 ~ 28 : 100 중량비로, 더욱 바람직하게는 5 ~ 25 중량비로 포함할 수 있으며, 5 : 100 중량비 미만이면 인상흑연 분말 양이 너무 적어서 만족할 만한 방열 효과를 볼 수 없는 문제가 발생할 수 있고, 30 : 100 중량비를 초과하면 방열 코팅 조성물의 점도가 너무 높아지고, 방열판의 냉각속도가 오히려 감소하는 문제가 발생할 수 있으므로 상기 범위 내에서 사용하는 것이 바람직하다. In addition, the impression graphite powder and the lacquer resin may be included in a 5 to 30: 100 weight ratio, preferably 5 to 28: 100 weight ratio, more preferably 5 to 25 weight ratio, less than 5: 100 weight ratio If the amount of the graphite powder is too small, it may cause a problem that a satisfactory heat dissipation effect may not be seen, and if the weight ratio exceeds 30: 100, the viscosity of the heat dissipation coating composition may be too high, and the cooling rate of the heat sink may decrease. Therefore, it is preferable to use within the above range.
상기 희석제는 본 발명의 코팅 조성물에 있어서, 용매 역할을 하며, 휘발성이 강하기 때문에 코팅 조성물을 방열판의 기판에 코팅시킨 후에는 대부분 대기로 기화된다. 상기 희석제는 케톤, 에스테르, 알코올 및 방향족 탄화수소를 포함하는 락카신나를 사용하는 것이 바람직하다. 그리고, 본 발명의 방열 코팅 조성물에 있어서, 상기 인상흑연 분말과 상기 희석제는 20 ~ 110 : 100 중량비인 것이, 바람직하게는 25 ~ 100 : 100 중량비인 것이 좋으며, 상기 인상흑연 분말과 상기 희석제가 20 : 100 중량비 미만이면, 희석제의 사용량이 너무 많은 바, 묽어지기 때문에 인상흑연 분말, 락카계 수지 및 희석제를 혼합시킨 조성물이 페이스트 형태로 형성시키기 곤란한 문제가 있을 수 있고, 상기 인상흑연 분말과 상기 희석제가 110 : 100 중량비를 초과하면, 오히려 조성물이 혼합된 페이스트의 점도가 너무 높아져서 코팅시, 뭉칠 수 있으므로 상기 범위 내에서 사용하는 것이 바람직하다.In the coating composition of the present invention, the diluent acts as a solvent and is highly volatile, so that the diluent is mostly vaporized into the atmosphere after the coating composition is coated on the substrate of the heat sink. The diluent preferably uses laccasina including ketones, esters, alcohols and aromatic hydrocarbons. In the heat-dissipating coating composition of the present invention, the impression graphite powder and the diluent are 20 to 110: 100 weight ratio, preferably 25 to 100: 100 weight ratio, and the impression graphite powder and the diluent 20 When less than 100 weight ratio, since the amount of the diluent is too much, it may become thin, so that a composition containing the mixed graphite powder, the lacquer-based resin and the diluent may be difficult to form in a paste form. If the ratio exceeds 110: 100, the viscosity of the paste in which the composition is mixed is too high, and may be agglomerated during coating, and therefore it is preferable to use within the above range.
이하에서는 방열판에 대하여 구체적으로 설명을 한다.Hereinafter, the heat sink will be described in detail.
본 발명의 방열판은 방열판에 대하여 수직으로 배열된 인상흑연 분말을 함유한 코팅막을 포함하는 것을 특징으로 하며, 상기 코팅막은 인상흑연 분말; 및 락카계 수지를 함유한 유기 바인더;를 포함하는 것을 특징으로 한다.The heat sink of the present invention is characterized in that it comprises a coating film containing the impression graphite powder arranged perpendicular to the heat sink, the coating film is an impression graphite powder; And an organic binder containing a lacca-based resin.
또한, 본 발명의 방열판은 알루미늄 기판; 상기 알루미늄 기판 전, 후면에 코팅된 방열 코팅막;을 포함한다. 그리고, 상기 방열 코팅막은 인상흑연 분말 및 유기 바인더로 이루어진 것을 특징으로 한다. 또한, 상기 방열 코팅막은 인상흑연 분말; 및 락카계 수지 및 희석제를 함유한 유기 바인더;를 포함하는 방열 코팅 조성물을 상기 알루미늄 기판에 코팅시킨 후, 알루미늄 기판의 상-하 방향으로 자기장을 걸어 상기 인상흑연 분말을 수직으로 배열한 것을 특징으로 한다. 여기서, 상기 방열 코팅 조성물의 희석제는 조성물 제조 및 코팅 과정에서 거의 기화된다.In addition, the heat sink of the present invention is an aluminum substrate; And a heat dissipation coating film coated on the rear surface of the aluminum substrate. The heat dissipation coating film is made of impression graphite powder and an organic binder. In addition, the heat dissipation coating film is impression graphite powder; And an organic binder containing a lacquer-based resin and a diluent; after the heat-dissipating coating composition is coated on the aluminum substrate, the impression graphite powder is vertically arranged by applying a magnetic field in an up-down direction of the aluminum substrate. do. Here, the diluent of the heat dissipation coating composition is almost vaporized during the composition preparation and coating process.
상기 인상흑연 분말은 방열 코팅 조성물 제조 과정 중 볼밀링을 통해 인상흑연 분말이 좀 더 박편화될 수 있으며, 상기 방열 코팅 조성물의 조성물 및 조성비는 앞서 설명한 바와 동일하다.The impression graphite powder may be thinner than the impression graphite powder through ball milling during the manufacturing process of the heat dissipation coating composition, the composition and composition ratio of the heat dissipation coating composition is the same as described above.
또한, 본 발명의 다른 측면은 하기의 공정을 포함하는 방열판의 제조방법에 관한 것으로서, In addition, another aspect of the present invention relates to a method for manufacturing a heat sink comprising the following steps,
(a) 방열 코팅 조성물을 제조하는 단계; (b) 상기 방열 코팅 조성물을 알루미늄 기판 전, 후면에 코팅하는 단계; 및 (c) 상기 방열 코팅 조성물로 코팅된 알루미늄 기판을 상-하 방향으로 자기장을 걸어 인상흑연 분말을 수직으로 배열시키는 단계;를 포함하는 것을 특징으로 하는 방열판의 제조방법에 관한 것이다.(a) preparing a heat dissipation coating composition; (b) coating the heat dissipation coating composition on the front and back surfaces of the aluminum substrate; And (c) arranging the impression graphite powder vertically by applying a magnetic field to the aluminum substrate coated with the heat dissipation coating composition in a vertical direction.
상기 방열 코팅 조성물을 제조하는 단계는 인상흑연 분말와 유기 바인더를 혼합하여 페이스트 형태로 제조할 수 있으며, 상기 방열 코팅 조성물의 조성, 조성비 및 종류는 앞서 설명한 본 발명의 방열 코팅 조성물과 같다.The step of preparing the heat dissipation coating composition may be prepared in the form of a paste by mixing the impression graphite powder and the organic binder, the composition, composition ratio and type of the heat dissipation coating composition is the same as the heat dissipation coating composition of the present invention described above.
상기 코팅하는 단계는 당업계에서 일반적으로 사용하는 다양한 코팅 방법을 사용할 수 있으며, 바람직하게는 디핑(dipping) 코팅법, 스핀(spin) 코팅법 및 스프레이(spray) 코팅법으로 수행하는 것이 빠르고 균일하게 코팅하는 면에서 좋다. The coating step may use a variety of coating methods commonly used in the art, preferably, it is fast and uniformly performed by a dipping coating method, a spin coating method and a spray coating method. Good in terms of coating
인상흑연 분말을 수직으로 배열시키는 단계는 도 2에 나타낸 바와 같이 상, 하에 방열 코팅 조성물로 코팅된 알루미늄 기판을 상-하 방향으로 자기장을 걸어서 인상흑연 분말을 상기 알루미늄 기판 또는 방열판에 대하여 수직으로 배열시킬 수 있으며, 자기장을 걸어주기 위한 수단으로는 강자성체를 사용하여 수행하는 것이 좋다. 그리고, 이 경우, 자기장을 걸어주기 위한 조건은 Br 12.8~14.0 G(gauss), Hc 12~14.9 KOe, BH(max) 20~40 MGOe, 및 밀도 7 ~ 8 하에서 상-하 방향 자장 인가 방법으로 수행하는 것이 바람직하다. Arranging the impression graphite powder vertically, as shown in FIG. 2, by arranging the aluminum substrate coated with the heat-dissipating coating composition up and down in a magnetic field in a vertical direction, the impression graphite powder is arranged vertically with respect to the aluminum substrate or the heat sink. It is recommended to use ferromagnetic material as a means to apply magnetic field. In this case, the conditions for applying the magnetic field are Br 12.8 ~ 14.0 G (gauss), Hc 12 ~ 14.9 KOe, BH (max) 20 ~ 40 MGOe, and density 7 ~ 8 under the method of applying the magnetic field in the up-down direction It is preferable to carry out.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, and the scope of the present invention is not limited thereto, and various changes and modifications are possible within the scope and spirit of the present invention. It will be self-evident to those who have knowledge.
[실시예]EXAMPLE
실시예 1Example 1
본 발명에서 사용된 원료분말은 평균직경 63㎛를 갖는 천연 인상흑연(HC-398, HYUNDAI COMA, 순도 > 98.5%)이며, 도 1에 나타내었다. 그리고, 락카계 수지는 디파이사의 상품명 DNL-3210F로서, 초화면 알키드수지, 가소제, 안료 등을 주성분으로 하는 자연건조형 락카계 수지를 사용하였으며, 락카신나는 디파이사의 DR-170으로서, 케톤, 에스테르, 알코올 및 방향족 탄화수소를 주제로 한 락카신나를 사용하였다.The raw material powder used in the present invention is natural impression graphite (HC-398, HYUNDAI COMA, purity> 98.5%) having an average diameter of 63㎛, it is shown in FIG. The lacquer resin was a DLP-3210F brand name of Defy Co., Ltd., and a naturally-dried lacquer-based resin mainly composed of an alkyd resin, a plasticizer, a pigment, and the like was used. Laccasinna based on esters, alcohols and aromatic hydrocarbons was used.
상기 천연 인상흑연 4g을 유기바인더 55g(락카계 수지 40g + 락카신나 15g)과 혼합 후, 볼밀링하여 페이스트를 제조하였고, 제조된 페이스트를 알루미늄 기판(30 × 30 × 3 mm)위에 디핑(dipping) 방법으로 코팅하였다. 4 g of the natural impression graphite was mixed with 55 g of an organic binder (40 g of lacquer-based resin + 15 g of laccacinna), followed by ball milling to prepare a paste, and dipping the prepared paste onto an aluminum substrate (30 × 30 × 3 mm). Coating by the method.
다음으로, 상기와 같이 알루미늄 기판에 코팅한 후, 천연 인상흑연 분말의 입자 배열에 변화를 주기 위하여 코팅한 알루미늄 기판 상/하에 도 2와 같이, 자석을 이용하여 자장을 걸어주었다. 이때, 자장 조건은 Br : 12.8~14.0 G, Hc : 12~14.9 KOe, BH(max) : 20~40 MG.Oe, 및 밀도 : 7.58이다. Next, after the coating on the aluminum substrate as described above, a magnetic field was applied using a magnet, as shown in Figure 2 on the top / bottom of the coated aluminum substrate in order to change the particle arrangement of the natural impression graphite powder. At this time, the magnetic field conditions are Br: 12.8 to 14.0 G, Hc: 12 to 14.9 KOe, BH (max): 20 to 40 mg.Oe, and density: 7.58.
이하에서, 실시예 1과 같이 알루미늄 기판에 열방사체 물질을 코팅하고, 자장을 걸어 인상흑연 분말에 변화를 가하여 제조한 것을 MF2-1이라 명하기로 한다.In the following description, MF2-1 is prepared by coating a heat radiator material on an aluminum substrate and applying a change to the impression graphite powder by applying a magnetic field as in Example 1.
실시예 2 내지 6Examples 2-6
상기 실시예 1과 동일한 방법으로 방열판을 제조하되, 천연 인상흑연의 사용량을 6g(실시예 2, MF2-2), 8g(실시예 3, MF2-3), 10g(실시예 4, MF2-4), 12g(실시예 5, MF2-5) 및 14g(실시예 6, MF2-6)으로 하여 코팅층이 형성된 방열판을 제조하였다.A heat sink was manufactured in the same manner as in Example 1, but the amount of the natural impression graphite was used 6g (Example 2, MF2-2), 8g (Example 3, MF2-3), 10g (Example 4, MF2-4 ), 12 g (Example 5, MF2-5) and 14 g (Example 6, MF2-6) to prepare a heat sink having a coating layer.
비교예 1Comparative Example 1
상기 실시예 1과 동일한 방법으로 페이스트를 제조한 후, 알루미늄 기판에 페이스트를 코팅한 다음, 자기장을 걸지 않고서 방열판을 제조하였다(이하, NMF로 칭함).After the paste was prepared in the same manner as in Example 1, the paste was coated on an aluminum substrate, and then a heat sink was manufactured without applying a magnetic field (hereinafter, referred to as NMF).
비교예 2Comparative Example 2
상기 실시예 1과 동일한 방법으로 방열 코팅된 방열판을 제조하되, 천연 인상흑연 대신 카본블랙을 사용하여 페이스트를 제조 후, 알루미늄 기판에 코팅한 다음, 자기장을 걸어서 방열판을 제조하였다. In the same manner as in Example 1, a heat-dissipating coating plate was prepared, but after the paste was prepared using carbon black instead of natural impression graphite, it was coated on an aluminum substrate, and then a heat sink was manufactured by applying a magnetic field.
실험예 1 : 전자현미경을 이용한 표면 및 단면 확인Experimental Example 1: Checking the surface and cross section using an electron microscope
(1) 전자현미경을 이용하여 비교예 1 및 실시예 1에서 제조한 방열판의 코팅막 표면 및 단면을 관찰하였다. 그리고, 천연 인상흑연 분말의 입자크기를 고려하여 관찰배율은 500 배로 하였고, 표면 형상은 45°틸팅(tilting)하여 관찰하였으며, 그 결과를 도 3에 나타내었다.(1) The coating film surface and the cross section of the heat sinks manufactured in Comparative Examples 1 and 1 were observed using an electron microscope. In addition, the observation magnification was set to 500 times in consideration of the particle size of the natural impression graphite powder, and the surface shape was observed by tilting 45 °, and the results are shown in FIG. 3.
(2) 하기 도 3의 a)는 자장을 걸어주지 않은 비교예 1의 방열판 코팅층의 단면 이미지, b)는 자장을 걸어주었을 때 실시예 1의 방열판 코팅층의 단면 이미지, c)는 비교예 1의 방열판 코팅층의 45°틸트된 표면 이미지, 그리고 d)는 실시예 1의 방열판 코팅층의 45°틸트된 표면 이미지이다.(2) Figure 3 a) is a cross-sectional image of the heat sink coating layer of Comparative Example 1 not applied to the magnetic field, b) is a cross-sectional image of the heat sink coating layer of Example 1 when the magnetic field is applied, c) of the Comparative Example 1 45 ° tilted surface image of the heat sink coating layer, and d) is 45 ° tilted surface image of the heat sink coating layer of Example 1. FIG.
비교예 1은 얇게 벗겨진(Flaky) 형태로 원래의 형상을 유지하면서 바인더와 결함되어 알루미늄 기판에 수평의 형태로 코팅되어 있고, 실시예 1은 알루미늄 기판에 수직의 형태로 코팅되어 있는 것을 관찰할 수 있으며, 이로부터 인상흑연에 자장을 걸어줌으로써 알루미늄 기판에 수직의 형태로 입자 배열된다는 것을 알 수 있다.Comparative Example 1 can be observed that the flaky and flaky coating is maintained in its original shape and coated on the aluminum substrate in a horizontal form, and Example 1 is coated on the aluminum substrate in a vertical form. From this, it can be seen that the particles are arranged in the form perpendicular to the aluminum substrate by applying a magnetic field to the impression graphite.
실험예 2 : 라만분광분석Experimental Example 2 Raman spectroscopic analysis
(1) 라만분광분석(inVia System, Renishaw, France)은 Ar 레이저(514.5 nm)를 광원으로 이용하였다. In Via system은 800 ㎜의 초점거리를 가지고 있어 고분해능과 효율적인 산란광 집광력으로 최상의 결과를 얻을 수 있고, LN2 cooled CCD를 검출기로 장착하고 있어 잡음 없이 짧은 시간에 광범위 영역의 측정이 가능하였다. 또한, 공초점 라만 현미경(Confocal Raman microscope) 사용으로 마이크로미터 정도의 작은 영역도 구분하여 측정할 수 있었다. (1) Raman spectroscopy (inVia System, Renishaw, France) used an Ar laser (514.5 nm) as a light source. The In Via system has a focal length of 800 mm for the best results with high resolution and efficient scattered light condensing power. It is equipped with an LN 2 cooled CCD as a detector to measure a wide range in a short time without noise. In addition, confocal Raman microscope (Confocal Raman microscope) can be used to measure small areas, such as micrometers.
라만분광분석 조건은 다음과 같다.Raman spectroscopic analysis conditions are as follows.
* Wavelength : 514.5 nm of Ar Laser(Green), ~1 nm of beam size* Wavelength: 514.5 nm of Ar Laser (Green), ~ 1 nm of beam size
* Resolution : down to 0.4 cm, ± 1~2 ㎝-1 (× 500)* Resolution: down to 0.4 cm, ± 1 ~ 2 cm -1 (× 500)
상기 실시예 1, 비교예 1에 따른 시편을 단면 조직 분석용 시편과 같은 상태로 준비하였으며, 라만분석으로 얻어진 피크를 정량(I d /I g )비교하였다. 측정시 여러 부위(4회)를 측정 후 평균값을 구하였다.The specimens according to Example 1 and Comparative Example 1 were prepared in the same state as the specimen for cross-sectional tissue analysis, and the peaks obtained by Raman analysis were quantitatively compared ( I d / I g ). After the measurement, several sites (4 times) were measured and averaged.
인상흑연 분말은 배열 정도에 따라 라만(Raman) 특성이 달라진다. 즉, 흑연 기저(base plan)의 라만특성(Raman profile)은 D 밴드(D band)가 약하게 나타나고, 흑연 기저의 수직 방향은 D 밴드가 강하게 나타나는데 이러한 특성을 이용하여 자장을 걸어줬을 경우 인상흑연 분말의 세워진 정도를 확인하였다.Impression graphite powder has different Raman properties depending on the degree of arrangement. That is, the Raman profile of the graphite base plan has a weak D band and the vertical direction of the graphite base has a strong D band. The degree of establishment of the was confirmed.
(2) 도 4는 인상흑연 코팅층의 자장 유/무에 따른 결정성의 변화를 확인하기 위한 라만 스펙트럼의 변화로서, 라만 스펙트럼의 D 밴드 및 G 밴드의 강도비가 각각 비결정성과 결정성의 척도가 된다.(2) Figure 4 is a change in the Raman spectrum for confirming the change in crystallinity with or without the magnetic field of the impression graphite coating layer, the intensity ratio of the D band and G band of the Raman spectrum is a measure of amorphousness and crystallinity, respectively.
Id/Ig는 결정성을 나타내는 척도가 되는데 흑연의 결정구조는 육방정 구조로써 a-축 방향으로의 기저면(basal plan)은 강한 sp2 결합을 하고 있으며 c-축으로는 약한 반데르 발스(Van der Waals) 결합을 하고 있다. 따라서 a-축으로는 전기전도도, 열전도도 및 강성률 등이 우수하며 c-축 방향으로는 이러한 특성들이 상대적으로 미약하다.Id / Ig is a measure of crystallinity. Graphite's crystal structure is hexagonal, and the basal plan in the a-axis direction has strong sp 2 bonds, and weak van der Waals (Van) in the c-axis. der Waals). Therefore, electrical conductivity, thermal conductivity, and stiffness are excellent in the a-axis, and these characteristics are relatively weak in the c-axis direction.
Id/Ig 결정성을 4회 측정 후 평균값을 비교한 결과 본 발명에 따른 MF가 NMF보다 강도 대비 0.47 크다. 이는 MNF는 얇게 벗겨진 형태(Flaky)로 원래의 형상을 유지하면서 바인더와 결합되어 알루미늄 기판에 수평의 형태로 코팅되어 있으므로 강한 sp2 결합을 하고 있는 a-축 방향으로의 기저면(basal plan)이 측정된 것으로 보이고, MF는 알루미늄 기판에 수직의 형태로 코팅되어 있으므로 약한 반데르 발스 결합을 하고 있는 c-축 방향으로의 면이 측정된 것으로 판단된다.As a result of comparing four average values of Id / Ig crystallinity, MF according to the present invention is 0.47 larger than NMF. This is because MNF is thinly flaky and bonded to a binder while maintaining its original shape, and is coated in a horizontal form on an aluminum substrate. Therefore, the basal plan in the a-axis direction with strong sp 2 bonding is measured. Since MF is coated in a vertical form on the aluminum substrate, the plane in the c-axis direction with weak van der Waals bonding is measured.
실험예 3 : Heat-sink 표면온도 및 냉각속도의 측정Experimental Example 3 Measurement of Heat-sink Surface Temperature and Cooling Rate
(1) 히트싱크(Heat-sink)의 표면온도는 열화상 카메라(Thermo)를 이용하여 측정하였다. 표면온도 측정은 도 5에 나타낸 바와 같이 핫플레이트에 시편을 장착하고 외부환경에 대한 변를 제거하여 시편으로부터 3 cm 거리에 열화상 카메라를 설치하였고, 측정모드를 스팟(spot)방식으로 하여 시편의 중앙부분에서 표면온도를 측정하도록 설치하였다.(1) The surface temperature of the heat sink was measured using a thermal imaging camera. For surface temperature measurement, as shown in FIG. 5, the specimen was mounted on a hot plate and the edge of the external environment was removed, and a thermal imaging camera was installed at a distance of 3 cm from the specimen, and the measurement mode was spot-centered. The part was set up to measure the surface temperature.
또한, 시편에는 열전대(thermocouple)를 설치하여 열화상 카메라의 온도를 보정하였으며, 시험시 측정온도는 100 ℃로 유지하였다. 측정시 실내온도는 상온으로 일정하게 유지하였다. 최대온도 값을 이용하였으며 3회 측정 후 평균값을 이용하였다.In addition, the thermocouple (thermocouple) was installed on the specimen to correct the temperature of the thermal imaging camera, the test temperature was maintained at 100 ℃ during the test. The room temperature was kept constant at room temperature. The maximum temperature value was used and the average value was used after 3 measurements.
비교예 1과 실시예 1의 방열판 제조에 사용한 알루미늄 기판에 따른 구리의 냉각속도 측정은 K-타입 써머커플(K-Type Thermocouple)을 이용하여 자기장(Magnetic field) 유/무에 따른 열방출효과를 측정하였으며, 시간에 따른 측정온도 Data 획득 및 저장을 위해 YOKOGAWA 사의 DR-300 Data logger를 이용하였다.The cooling rate of the copper according to the aluminum substrate used in the manufacture of the heat sink of Comparative Example 1 and Example 1 was measured using the K-type thermocouple (K-Type Thermocouple) to determine the heat dissipation effect of the magnetic field (with or without magnetic field) YOKOGAWA's DR-300 data logger was used to acquire and store measured temperature data over time.
(2) 도 6은 구리의 온도를 100 ℃로 유지시킨 후 실시예 1 및 비교예1에서 제조한 방열판의 열방출 특성 측정 결과를 나타낸 이미지로서, 인상흑연 코팅층의 입자배열이 수직으로 배열된 실시예 1이 비교예 1 보다 14.7 ℃ 높게 측정되었으며, 이는 인상흑연 코팅층의 입자배열이 수직으로 배열된 코팅층이 열을 더 빨리 방출해 주는 것으로 판단되며, 이로 인해 알루미늄 히트싱크의 표면 온도가 높게 나타난 것을 알 수 있다.(2) Figure 6 is an image showing the results of the measurement of the heat dissipation characteristics of the heat sinks prepared in Example 1 and Comparative Example 1 after maintaining the temperature of the copper at 100 ℃, the array of particles of the impression graphite coating layer is arranged vertically Example 1 was measured 14.7 ℃ higher than that of Comparative Example 1, which indicates that the coating layer vertically arranged in the grain arrangement of the impression graphite coating layer releases heat faster, resulting in a higher surface temperature of the aluminum heat sink. Able to know.
(3) 도 7은 실시예 1 및 비교예 1의 방열판과 코팅하지 않은 알루미늄 기판의 냉각속도를 나타낸 그래프이다.(3) FIG. 7 is a graph showing the cooling rates of the heat sinks of Example 1 and Comparative Example 1 and the uncoated aluminum substrate.
냉각속도 측정결과 100 ℃에서 33 ℃까지 냉각되는데 걸리는 시간은 실시예 1은 83 분, 비교예 1은 97 분이 걸렸으며, 코팅하지 않은 알루미늄 기판은 111 분으로 실시예 1이 0.8℃/분으로 가장 빠른 냉각 속도를 보였고, 비교예 1은 0.69℃/분 그리고 코팅하지 않은 알루미늄 기판은 0.6℃/분으로 가장 느린 냉각속도를 보였다.As a result of the cooling rate measurement, it took 83 minutes for Example 1 and 97 minutes for Comparative Example 1, and it took 111 minutes for the uncoated aluminum substrate and 111 minutes for 0.8 ° C / min. The fast cooling rate was shown, and Comparative Example 1 showed the slowest cooling rate at 0.69 ° C / min and the uncoated aluminum substrate was 0.6 ° C / min.
즉, 실시예 1이 100 ℃에서 33 ℃까지의 냉각속도가 코팅하지 않은 알루미늄 기판보다 33% 빠르고, 비교예 1 보다는 약 16% 정도 빨랐으며, 100 ℃ ~ 33 ℃까지 냉각속도 구간에서는 실시예 1이 비교예 1 보다 최대 2.4 ℃ 낮고, 알루미늄 기판 보다 최대 5.1 ℃ 낮다. 이로부터 수직으로 배열된 인상흑연의 코팅층이 열방출에 크게 기여한 것임을 알 수 있다.That is, in Example 1, the cooling rate from 100 ° C. to 33 ° C. was 33% faster than that of the uncoated aluminum substrate, about 16% faster than that of Comparative Example 1, and Example 1 in the cooling rate range from 100 ° C. to 33 ° C. It is at most 2.4 ° C lower than this Comparative Example 1, and at most 5.1 ° C lower than the aluminum substrate. From this, it can be seen that the coating layers of the impression graphite arranged vertically contributed greatly to the heat dissipation.
(4) 또한, 도 8은 실시예 1 및 비교예 1의 방열판, 코팅하지 않은 알루미늄 기판(Al-NMF)의 냉각속도를 나타낸 그래프이다. 100 ℃에서 30 ℃까지 구리의 냉각속도 측정 결과, 실시예 1은 코팅하지 않은 알루미늄 기판과 10분 경과 후 최대 8.4 ℃차이를 보였고, 실시예 1(Al-MF)과 비교예 1(Al-NMF)은 5.5 분경과 후 최대 6.4 ℃의 차이를 보였다. 이는 인상흑연 분말에 자장을 걸어줌으로써 알루미늄 기판에 수직의 형태로 입자 배열된 실시예 1이 비교예 1 보다 구리의 냉각속도에 영향을 미치는 열방출에 기여하는 입자가 비교예 1 보다 더 많다는 것을 보여주는 것이다.(4) FIG. 8 is a graph showing the cooling rates of the heat sinks and uncoated aluminum substrates (Al-NMF) of Example 1 and Comparative Example 1. FIG. As a result of measuring the cooling rate of copper from 100 ° C. to 30 ° C., Example 1 showed a maximum difference of 8.4 ° C. after 10 minutes from an uncoated aluminum substrate. Example 1 (Al-MF) and Comparative Example 1 (Al-NMF) ) Showed a difference of up to 6.4 ℃ after 5.5 minutes. This shows that Example 1, which is arranged in the form of particles perpendicular to the aluminum substrate by applying a magnetic field to the impression graphite powder, has more particles than the Comparative Example 1 that contribute to heat release, which affects the cooling rate of copper. will be.
(5) 도 9 및 하기 표 1은 본 발명의 실시예 1 내지 6에 따른 방열판에 대하여 냉각속도를 측정한 결과로서, 실시예 4의 25 중량%가 가장 우수한 열방사율 값을 나타내는 것으로 나타났고, 방사율 값의 증가폭은 실시예 1 → 실시예 2는 0.100, 실시예 2 → 실시예 3는 0.007, 실시예 3 → 실시예 4는 0.006, 실시예 4 → 실시예 5는 -0.029, 실시예 5 → 실시예 6은 -0.109로 측정되었다. 인상흑연 분말과 락카계 수지의 중량비가 25:100 중량비까지 증가함에 따라 방사율 값이 증가하고, 30:100 중량비 이상이면 오히려 방사율 값이 오히려 감소하며, 35:100 중량비인 경우, 10:100 중량비 보다 방사율이 더 떨어짐을 확인할 수 있었다.(5) Figure 9 and Table 1 as a result of measuring the cooling rate for the heat sink according to Examples 1 to 6 of the present invention, it was found that 25% by weight of Example 4 exhibits the best thermal emissivity value, The increase of the emissivity value was 0.100 in Example 1 → Example 2, Example 2 → 0.007 in Example 2 → Example 3 → 0.006 in Example 3 → Example 4, -0.029 in Example 4 → Example 5, and Example 5 → Example 6 measured -0.109. The emissivity value increases as the weight ratio of the impression graphite powder and lacquer resin increases to 25: 100 weight ratio, and the emissivity value rather decreases when the weight ratio is more than 30: 100 weight ratio, and in the case of 35: 100 weight ratio, than the 10: 100 weight ratio It was confirmed that the emissivity is further lowered.
또한, 실시예 1(방사율 : 0.799)이 비교예 1(방사율 : 0.773) 보다 방사율이 0.026 높게 측정되었으며, 실시예 4(방사율 : 0.912)는 비교예 1(방사율 : 0.773) 보다 방사율이 0.139 높게 측정되었으며 가장 큰 차이의 값을 보였다. In addition, the emissivity of Example 1 (emissivity: 0.799) was measured to be 0.026 higher than that of Comparative Example 1 (emissivity: 0.773), and Example 4 (emissivity: 0.912) was measured to be 0.139 higher than that of Comparative Example 1 (emissivity: 0.773). And showed the largest difference.
그리고, 인상흑연이 아닌 카본블랙을 사용하여 실시예 1과 동일한 방법으로 제조한 비교예 2의 경우, 실시예 1 ~ 5의 방열판 보다 매우 낮은 열 방사율을 갖는 것을 확인할 수 있었으며, 이를 통하여 카본블랙을 사용해서는 자기장을 가하는 효과를 볼 수 없는 것을 알 수 있었다.In addition, in the case of Comparative Example 2 prepared in the same manner as in Example 1 using carbon black rather than impression graphite, it was confirmed that the thermal emissivity is much lower than the heat sinks of Examples 1 to 5, through which the carbon black It can be seen that the effect of applying a magnetic field is not used.
표 1
구분 인상흑연 분말 락카계 수지 중량비 열방사율(Thermal Emissivity)
실시예 1 4 g 40 g 10:100 0.799
실시예 2 6 g 15:100 0.899
실시예 3 8 g 20:100 0.906
실시예 4 10 g 25:100 0.912
실시예 5 12 g 30:100 0.883
실시예 6 14 g 35:100 0.774
비교예 1 4 g 10:100 0.773
비교예 2 카본블랙4 g 10:100 0.769
Table 1
division Impression Graphite Powder Lacquer resin Weight ratio Thermal Emissivity
Example 1 4 g 40 g 10: 100 0.799
Example 2 6 g 15: 100 0.899
Example 3 8 g 20: 100 0.906
Example 4 10 g 25: 100 0.912
Example 5 12 g 30: 100 0.883
Example 6 14 g 35: 100 0.774
Comparative Example 1 4 g 10: 100 0.773
Comparative Example 2 4 g of carbon black 10: 100 0.769
이와 같이, 본 발명은 열방사 능력이 우수한 탄소재료로 인상흑연분말을 유기바인더와 혼합하여 알루미늄 기판위에 코팅하였으며, 코팅층에 자장을 걸어주어 입자배열을 달리한 후 인상흑연 코팅층의 입자배열에 따른 금속의 냉각속도 변화를 비교분석한 결과,As described above, the present invention is a carbon material having excellent heat radiation ability, and mixed the graphite powder with an organic binder and coated it on the aluminum substrate, by applying a magnetic field to the coating layer and changing the particle arrangement, the metal according to the particle arrangement of the graphite coating layer As a result of comparative analysis of cooling rate change of
(1) 열화상 카메라로 방열판의 코팅된 표면 온도 측정시 본 발명의 방열판(MF2)이 자기장을 걸지 않은 방열판(NMF)보다 14.7 ℃ 높게 측정되었고, 인상흑연 코팅층의 입자배열이 수직으로 배열된 MF가 NMF 보다 열방출 특성이 우수한 것으로 나타났다.(1) When the coated surface temperature of the heat sink was measured by a thermal imaging camera, the heat sink (MF2) of the present invention was measured to be 14.7 ° C higher than the heat sink (NMF) without a magnetic field, and the grain array of the impression graphite coating layer was vertically arranged. Showed better heat release characteristics than NMF.
(2) 냉각속도 측정 결과, MF2는 0.8 ℃/분, NMF는 0.69 ℃/분, 그리고 코팅하지 않은 알루미늄 기판은 0.6 ℃/분으로 MF2는 알루미늄 기판보다 33% 빠르고 NMF 보다는 약 16% 정도 빨랐다.(2) As a result of cooling rate measurement, MF2 was 0.8 ℃ / min, NMF was 0.69 ℃ / min, and uncoated aluminum substrate was 0.6 ℃ / min, MF2 was 33% faster than aluminum substrate and about 16% faster than NMF.
이는 도 10에서 볼 수 있듯이 자기장을 걸어 주어 박편이 수직으로 배열된 경우의 결정구조는 육방정 구조로써 a-축 방향으로의 기저면(basal plan)은 강한 sp2 결합을 하고 있으며 c-축으로는 약한 반데르 발스 결합을 하고 있어서, a-축으로는 전기전도도, 열전도도 및 강성률 등이 우수하며 c-축 방향으로는 이러한 특성들이 상대적으로 미약한 상당한 이방적 특성을 가지고 있기 때문에 MF2가 NMF보다 냉각속도가 상대적으로 빨랐음을 알 수 있다.As shown in FIG. 10, the crystal structure in the case where the flakes are vertically arranged by applying a magnetic field is a hexagonal structure, and the basal plan in the a-axis direction has a strong sp 2 bond. MF2 is weaker than NMF because it has weak van der Waals bonds, it has excellent electrical conductivity, thermal conductivity, and stiffness in the a-axis, and it has considerable anisotropy, which is relatively weak in the c-axis direction. It can be seen that the cooling rate was relatively fast.
상기 실시예 및 실험예를 통하여 확인한 바와 같이 본 발명에 따른 방열판은 열방출 능력이 우수한 바, 각종 전자제품, 특히 디스플레이, LED 및 태양광 소자 등의 내부에서 발생하는 열을 효과적으로 외부로 방출시켜 부품의 열화를 방지하고 내구성을 향상시킬 수 있다.As can be seen from the above examples and experimental examples, the heat sink according to the present invention has excellent heat dissipation ability, and effectively releases heat generated from the inside of various electronic products, especially displays, LEDs, and photovoltaic devices to the outside. Can prevent deterioration and improve durability.
본 발명에 따른 방열판은 열을 효과적으로 외부로 방출시켜 부품의 열화를 방지할 수 있는 바, 각종 전자제품, 특히 디스플레이, LED 및 태양광 소자 등에 사용될 수 있다.The heat sink according to the present invention can effectively discharge heat to the outside to prevent deterioration of the component, it can be used in various electronic products, especially displays, LEDs and solar devices.

Claims (12)

  1. 인상흑연 분말; 및 락카계 수지 및 희석제를 함유한 유기 바인더;를 포함하는 것을 특징으로 하는 방열 코팅 조성물.Impression graphite powder; And an organic binder containing a lacca-based resin and a diluent.
  2. 제 1 항에 있어서, 상기 인상흑연 분말은 평균직경 1 ~ 100 ㎛인 것을 특징으로 하는 방열 코팅 조성물.The heat dissipating coating composition according to claim 1, wherein the impression graphite powder has an average diameter of 1 to 100 µm.
  3. 제 1 항에 있어서, 상기 인상흑연 분말과 상기 락카계 수지를 5 ~ 30 : 100 중량비로 포함하고 있는 것을 특징으로 하는 방열 코팅 조성물.The heat dissipation coating composition according to claim 1, wherein the impression graphite powder and the lacquer resin are included in a weight ratio of 5 to 30: 100.
  4. 제 1 항에 있어서, 상기 인상흑연 분말과 상기 희석제를 20 ~ 110 : 100 중량비로 포함하고 있는 것을 특징으로 하는 방열 코팅 조성물.The heat dissipation coating composition according to claim 1, wherein the impression graphite powder and the diluent are contained in a weight ratio of 20 to 110: 100.
  5. 제 1 항에 있어서, 상기 락카계 수지는 초화면 알키드 수지(Nirtocellulose alkyd resin)를 포함하는 것을 특징으로 하는 방열 코팅 조성물.The heat dissipating coating composition of claim 1, wherein the lacca-based resin comprises a nitrocellulose alkyd resin.
  6. 제 1 항에 있어서, 상기 희석제는 케톤, 에스테르, 알코올 및 방향족 탄화수소를 포함하는 래커 신나인 것을 특징으로 하는 방열 코팅 조성물.The heat dissipating coating composition of claim 1, wherein said diluent is a lacquer thinner comprising ketones, esters, alcohols and aromatic hydrocarbons.
  7. 방열판에 대하여 수직으로 배열된 인상흑연 분말을 함유한 코팅막을 포함하는 방열판.A heat sink comprising a coating film containing impression graphite powder arranged perpendicularly to the heat sink.
  8. 제 7 항에 있어서, 상기 코팅막은 The method of claim 7, wherein the coating film
    인상흑연 분말; 및 락카계 수지를 함유한 유기 바인더;Impression graphite powder; And an organic binder containing lacca-type resin;
    를 포함하는 것을 특징으로 하는 방열판.Heat sink comprising a.
  9. 알루미늄 기판; 상기 알루미늄 기판 전, 후면에 코팅된 방열 코팅막;을 포함하고,Aluminum substrate; And a heat dissipation coating film coated on the rear surface of the aluminum substrate.
    상기 방열 코팅막은 인상흑연 분말 및 유기 바인더로 이루어져 있으며,The heat dissipation coating film is made of impression graphite powder and an organic binder,
    상기 방열 코팅막은 제1항의 방열 코팅 조성물을 상기 알루미늄 기판에 코팅시킨 후, 알루미늄 기판의 상-하 방향으로 자기장을 걸어 상기 인상흑연 분말을 수직으로 배열한 것을 특징으로 하는 방열판.The heat dissipation coating layer is a heat dissipation plate characterized in that after the heat-dissipating coating composition of claim 1 coated on the aluminum substrate, the impression graphite powder is arranged vertically by applying a magnetic field in the up-down direction of the aluminum substrate.
  10. (a) 인상흑연 분말와 유기 바인더를 혼합하여 방열 코팅 조성물을 제조하는 단계;(a) mixing the impression graphite powder with the organic binder to prepare a heat dissipation coating composition;
    (b) 상기 방열 코팅 조성물을 알루미늄 기판 전, 후면에 코팅하는 단계; 및(b) coating the heat dissipation coating composition on the front and back surfaces of the aluminum substrate; And
    (c) 상기 방열 코팅 조성물로 코팅된 알루미늄 기판을 상-하 방향으로 자기장을 걸어 인상흑연 분말을 수직으로 배열시키는 단계;를 포함하는 것을 특징으로 하는 방열판의 제조방법.(c) arranging the impression graphite powder in a vertical direction by applying a magnetic field to the aluminum substrate coated with the heat dissipation coating composition in a vertical direction.
  11. 제 10 항에 있어서, 상기 코팅하는 단계에 있어서, The method of claim 10, wherein in the coating step,
    상기 코팅은 디핑(dipping) 코팅법, 스핀(spin) 코팅법 및 스프레이(spray) 코팅법 중에서 선택된 1종 이상으로 수행하는 것을 특징으로 하는 방열판의 제조방법.The coating is a method of manufacturing a heat sink, characterized in that carried out by one or more selected from a dipping coating method, a spin coating method and a spray coating method.
  12. 제 10 항에 있어서, 상기 인상흑연 분말을 수직으로 배열시키는 단계는 전류자속밀도(Br) 12.8~14.0 G(gauss), 자기장 보자력(Hc) 12~14.9 KOe, BH(max) 20~40 MGOe, 및 밀도 7 ~ 8의 자장 분위기 하에서, 상-하 방향 자장 인가 방법으로 수행하는 것을 특징으로 하는 방열판의 제조방법.The method of claim 10, wherein the vertically arranging the impression graphite powder comprises: magnetic flux density (Br) 12.8 to 14.0 G (gauss), magnetic field coercive force (Hc) 12 to 14.9 KOe, BH (max) 20 to 40 MGOe, And in a magnetic field atmosphere having a density of 7 to 8, by a vertical magnetic field applying method.
PCT/KR2012/008976 2012-02-21 2012-10-30 Heat radiation coating composition, heat radiation plate coated with same, and preparation method thereof WO2013125763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0017361 2012-02-21
KR1020120017361A KR101392880B1 (en) 2012-02-21 2012-02-21 Coating composite for sinking heat, heat sink coating that and manufacturing method of the heat sink

Publications (1)

Publication Number Publication Date
WO2013125763A1 true WO2013125763A1 (en) 2013-08-29

Family

ID=49005918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008976 WO2013125763A1 (en) 2012-02-21 2012-10-30 Heat radiation coating composition, heat radiation plate coated with same, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101392880B1 (en)
WO (1) WO2013125763A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755773B1 (en) 2014-12-03 2017-07-10 현대자동차주식회사 Coating composite for heat dissipation and method of manufacturing the same
KR101527376B1 (en) * 2014-12-30 2015-06-09 주식회사 카보랩 Multi-layered heat emission film and processing method thereof
KR101742863B1 (en) 2015-04-08 2017-05-31 동의대학교 산학협력단 Coating solutions for thermally conductive composite with dispersion stability, preparation method thereof, and thermal conductive and heat dissipative coating layer using the same
KR101644743B1 (en) 2015-04-08 2016-08-01 동의대학교 산학협력단 Coating solutions for thermally conductive composite, preparation method thereof, and thermal conductive and heat dissipative coating layer using the same
KR102102406B1 (en) 2017-10-16 2020-05-12 주식회사 인스텍 A heat sink element having an increased heat radiating surface and manufacturing method thereof
KR102246911B1 (en) * 2020-12-01 2021-04-30 주식회사 올그린텍코리아 Thermal bench using carbon heating sheet
KR102246918B1 (en) * 2020-12-01 2021-04-30 주식회사 올그린텍코리아 Thermal bench using red clay
CN113956775B (en) * 2021-11-01 2022-10-14 烟台万华新材料技术有限公司 Thin wave-absorbing basalt flake polyurethane coating and coating method thereof
KR102587457B1 (en) * 2023-05-18 2023-10-11 성진특수잉크(주) Heat-dissipation film for flexible display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281802A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermoconductive formed shape, its production, and semiconductor device
JP2005305993A (en) * 2004-03-25 2005-11-04 Furukawa Sky Kk Resin-coated highly functional aluminum material showing excellent heat radiation
KR100990240B1 (en) * 2009-07-10 2010-10-29 이승욱 Elastic coating composition with heat conductive and spread function
JP2011513567A (en) * 2008-03-13 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Method and dispersion for forming a metal layer on a substrate, and metallizable thermoplastic molding compound
KR20120013914A (en) * 2010-08-05 2012-02-15 한화케미칼 주식회사 Highly efficient heat radiant paint using carbon materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960007180B1 (en) * 1992-12-29 1996-05-29 고려화학주식회사 Heating paint composition
JP4150516B2 (en) * 2001-12-21 2008-09-17 三星エスディアイ株式会社 Method for producing graphite-containing composition for negative electrode of lithium secondary battery, method for producing negative electrode for lithium secondary battery, and method for producing lithium secondary battery
JP2010111829A (en) * 2008-11-10 2010-05-20 Unitika Ltd Thermally conductive coating for screen printing and electronic parts using the same
KR101260492B1 (en) * 2010-12-30 2013-05-06 (주) 디바이스이엔지 Pigment composition for radiating heat and sheet for radiating heat using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281802A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermoconductive formed shape, its production, and semiconductor device
JP2005305993A (en) * 2004-03-25 2005-11-04 Furukawa Sky Kk Resin-coated highly functional aluminum material showing excellent heat radiation
JP2011513567A (en) * 2008-03-13 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Method and dispersion for forming a metal layer on a substrate, and metallizable thermoplastic molding compound
KR100990240B1 (en) * 2009-07-10 2010-10-29 이승욱 Elastic coating composition with heat conductive and spread function
KR20120013914A (en) * 2010-08-05 2012-02-15 한화케미칼 주식회사 Highly efficient heat radiant paint using carbon materials

Also Published As

Publication number Publication date
KR101392880B1 (en) 2014-05-12
KR20130095936A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
WO2013125763A1 (en) Heat radiation coating composition, heat radiation plate coated with same, and preparation method thereof
KR101271965B1 (en) Resin composition for surface treatment and steel sheet coated by the same
US20160326419A1 (en) Thermal interface materials with alligned fillers
JP5604002B2 (en) Light emitting structure and manufacturing method thereof
WO2012148218A2 (en) Horizontal thermoelectric tape and method for manufacturing same
KR101430235B1 (en) Thermally conductive and emissive heat resistant graphene composite coating and its application method
Shan et al. The effect of decomposed PbI 2 on microscopic mechanisms of scattering in CH 3 NH 3 PbI 3 films
WO2014061929A1 (en) Coated particle, composition including same, and heat transfer sheet
Chieu et al. High-field magnetoresistance measurements on highly ordered graphite fibers
US20210403726A1 (en) Metal-free solar-reflective infrared-emissive paints and methods of producing the same
KR101508828B1 (en) A heating element and LED device using that
Chen et al. 2D Rare Earth Material (EuOCl) with Ultra‐Narrow Photoluminescence at Room Temperature
Wang et al. Co-growing design of super-repellent dual-layer coating for multiple heat dissipation improvement
KR101705229B1 (en) Heat-dissipation adhesive tape, heat-dissipation sheet and composition used in the preparation thereof
JP2024508000A (en) Electric infrared heating film, its preparation method, electric infrared heating device
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
Idris et al. Performance of 9.0 W light-emitting diode on various layers of magnesium oxide thin film thermal interface material
Idris et al. Heat transfer enhancement in light‐emitting diode packaging employing different molar concentration of magnesium oxide thin films as a heat spreader
KR20200113607A (en) Manufacturing Method of Powder Coating Materials
Xu et al. Stable quantum dots/polymer matrix and their versatile 3D printing frameworks
CN110591579B (en) Electromagnetic shielding heat dissipation film and preparation method and application thereof
WO2020105328A1 (en) Aluminum-(carbon particle) composite material and method for producing same
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
WO2021162368A1 (en) Multifunctional composite film having heat dissipation and electromagnetic wave shielding/ absorption capabilities, and production method therefor
KR101856666B1 (en) Heatsink for LED and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869395

Country of ref document: EP

Kind code of ref document: A1