WO2013125673A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2013125673A1
WO2013125673A1 PCT/JP2013/054482 JP2013054482W WO2013125673A1 WO 2013125673 A1 WO2013125673 A1 WO 2013125673A1 JP 2013054482 W JP2013054482 W JP 2013054482W WO 2013125673 A1 WO2013125673 A1 WO 2013125673A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
wire
bus bar
conductive
bar electrode
Prior art date
Application number
PCT/JP2013/054482
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 茂樹
紀代 石丸
村田 潔
靖 福田
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2013125673A1 publication Critical patent/WO2013125673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module including a plurality of solar cells, and more particularly to an electrical connection structure between solar cells.
  • a solar cell module is formed by arranging a plurality of solar cells in a matrix and electrically connecting adjacent solar cells in series by tab wires.
  • the solar battery cell has a large number of thin-line finger electrodes and at least one bus bar electrode arranged so as to be orthogonal to these finger electrodes on the surface (light-receiving surface) side. Further, on the back surface side, a back surface electrode is provided over the entire surface, and the same number of bus bar electrodes as the front surface side are provided on the back surface electrode. And the bus-bar electrode of the surface side of one photovoltaic cell and the bus-bar electrode of the back surface side of the other photovoltaic cell are connected by the ribbon-shaped tab wire among adjacent photovoltaic cells (patent documents 1, 2). reference).
  • tab wires are metal foils mainly composed of Cu (thickness 50 to 300 ⁇ m, width 1 to 3 mm). Then, by inserting a conductive adhesive medium (solder or conductive resin tape) between the tab wire and the bus bar electrode and melting the conductive adhesive medium by heating and / or pressure bonding, the tab wire and the bus bar electrode And connected.
  • a conductive adhesive medium soldder or conductive resin tape
  • the prior art has the following problems. (1) Since the tab wire is a metal foil, the mechanical strength against bending and torsion that occurs during manufacturing (during cell connection and transportation) is low. For this reason, cracks are likely to occur in the tab lines (particularly between the cells), and disconnections are likely to occur. Thereby, the yield at the time of manufacture was bad.
  • a sealing step (laminating step) is performed.
  • this step it is necessary to heat, and the back side cover and the sealing material are thermally contracted during the heating. Wake up and the cell moves with this contraction. Even with such contraction movement, cracks and breaks are likely to occur in the tab wire, and the yield during manufacturing was poor. Further, with regard to long-term reliability, cracks and disconnections are likely to occur in the tab wire as the back surface side cover and the sealing material expand and contract, and an improvement in durability is required.
  • Patent Document 2 describes that the adhesion of the tab wire is enhanced by providing a convex portion on the bonding surface side of the tab wire. Can't get.
  • the present invention relates to a tab wire of a solar cell module, (1) improvement of mechanical strength against bending or twisting, (2) improvement of stretchability / flexibility, and (3) adhesion of an adhesive portion. It is an object to improve the property (decrease in electric resistance and increase in adhesive strength) and (4) suppress light reflection.
  • the solar cell module according to the present invention includes a plurality of solar cells, and each solar cell has a bus bar electrode on the front surface and the back surface. And the bus-bar electrode of the surface side of one photovoltaic cell and the bus-bar electrode of the back surface side of the other photovoltaic cell among adjacent photovoltaic cells are connected via a ribbon-shaped tab wire.
  • the tab wire is made of a woven or knitted conductive wire, and is bonded to the bus bar electrode via a conductive adhesive medium.
  • the tab wire is made of a conductive wire woven fabric or knitted fabric
  • the tab wire has an intricately curved surface. Therefore, the locally applied force is dispersed to the metal foil, and the mechanical strength against bending and twisting can be improved. Thereby, generation
  • the surface area of the tab wire is increased by using the tab wire having an intricate uneven surface. Therefore, the contact area with the conductive adhesive medium is increased, and the adhesion with the conductive adhesive medium can be improved. As a result, the electrical resistance between the two is reduced, leading to improved module efficiency. In addition, the adhesive strength between the two can be increased, and the tab wire can be prevented from peeling off due to long-term use, and the durability can be improved.
  • top view of the solar cell module shown as embodiment of this invention AA sectional view of FIG.
  • Top view of solar cells Front view of solar cells Plan view showing the connection between solar cells Front view showing the connection between solar cells
  • Sectional view of the tab line connecting portion to the bus bar electrode corresponding to the BB section of FIG. Illustration of plain weave Illustration of twill Illustration of knitting Table showing the results of Examples 1 to 4 and Comparative Example 1
  • FIG. 1 is a plan view of a solar cell module shown as an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the solar cell module 1 includes a rectangular frame 2 made of metal (for example, aluminum) and a PV (Photovoltaic) panel 3 fitted in the upper portion of the frame 2.
  • a rectangular frame 2 made of metal (for example, aluminum) and a PV (Photovoltaic) panel 3 fitted in the upper portion of the frame 2.
  • the PV panel 3 is arranged in a matrix between a transparent front side cover 4 such as white plate tempered glass, a weather resistant back side cover 5 made of a resin film, and the front side cover 4 and the back side cover 5.
  • a transparent front side cover 4 such as white plate tempered glass
  • a weather resistant back side cover 5 made of a resin film
  • a plurality of solar cells 6 that are electrically connected in series and a seal that is filled between the front surface side cover 4 and the back surface side cover 5 to form the cover 4, 5 and the solar cells 6 into a panel.
  • the surface side cover 4 is required to have sunlight permeability, insulation, weather resistance, heat resistance, moisture resistance, antifouling property, and light resistance, and is excellent in chemical strength, toughness, and long-term durability. In order to ensure the properties, it is necessary to have excellent scratch resistance, shock absorption and the like. For this reason, a transparent glass substrate is widely used, and in particular, a white plate tempered glass having a thickness of 4.0 mm that is excellent in light transmittance and impact strength is used. Soda lime glass is preferably used as the material. The thickness may be 0.1 to 10 mm.
  • polyamide-type resin (various nylon), polyester-type resin, cyclic polyolefin-type resin, polystyrene-type resin, fluorine-type resin, polyethylene-type resin, for example Films or sheets of various resins such as (meth) acrylic resins, polycarbonate resins, acetal resins, cellulose resins, and the like can be used.
  • the back surface side cover 5 for example, a resin-coated metal sheet having a thickness of about 0.1 mm in which both surfaces of an aluminum sheet are coated with a polyvinyl fluoride film (fluorine film) having excellent insulating properties is preferably used.
  • the back cover 5 include polystyrene resins such as polyethylene resins, polypropylene resins, cyclic polyolefin resins, and syndiotactic polystyrene resins, acrylonitrile-styrene copolymers (AS resins), acrylonitrile-butadienes, and the like.
  • Fluorine resins such as styrene copolymer (ABS resin), polyvinyl chloride resin, polyvinylidene fluoride, poly (meth) acrylic resin, polycarbonate resin, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN)
  • Polyester resins various polyamide resins such as nylon, polyimide resins, polybutylene terephthalate resins, polyamideimide resins, polyaryl phthalate resins, polycyclohexanedimethanol-terephthale Resin, silicone resin, polysulfone resin, polyphenylene sulfide resin, polyethersulfone resin, polyurethane resin, acetal resin, cellulose resin, polyester such as PET-G which is a copolymer of PET and PEN Polyester resin and other various resin films or sheets, ceramic, glass, stainless steel, etc. can be used.
  • ABS resin styrene copolymer
  • polyvinyl chloride resin polyvinylid
  • the solar battery cell 6 may be any of single crystal silicon, thin film silicon, polycrystalline silicon, amorphous silicon, and a compound semiconductor type cell.
  • a general crystalline silicon solar battery cell 6 includes an n-type diffusion layer (n-type silicon layer) on a light incident surface (a surface on which light is incident upon power generation) of a p-type crystalline silicon substrate. Form. More specifically, it is manufactured through the following texture process, pn junction process, reflective film forming process, and front and back collector electrode forming process.
  • an uneven structure is formed on the surface by etching the surface of the substrate using an acid or alkali solution or reactive plasma before forming a pn junction on the substrate.
  • the method of forming the pn junction is not particularly limited.
  • the pn junction can be formed by diffusing an n-type impurity on the light receiving surface side of the p-type silicon substrate.
  • the diffusion of n-type impurities can be performed by placing the substrate in a high-temperature gas containing a material containing n-type impurities (for example, POC 13), for example.
  • an antireflection film is formed on the light receiving surface side of the substrate.
  • the SiN film can be formed by plasma CVD.
  • the finger electrode and the bus bar electrode are formed on the surface of the solar battery cell 6, and the back electrode and the bus bar electrode are formed on the back surface.
  • the sealing material 7 it is necessary to have translucency and adhesiveness with a front surface side cover and a back surface side cover. Furthermore, from the viewpoint of protecting the solar cell, it is necessary to have excellent light resistance, heat resistance, water resistance, scratch resistance, impact absorption, and the like. From such a viewpoint, a film made of an ethylene-vinyl acetate copolymer containing an organic peroxide such as an EVA (ethylene vinyl acetate) film generally excellent in moisture resistance is preferably used as the sealing material 7.
  • EVA ethylene vinyl acetate
  • ionomer resin polyvinyl butyral resin, silicon resin, epoxy resin, (meth) acrylic resin, fluorine resin, ethylene-acrylic acid, or methacrylic acid copolymer, polyethylene resin, polypropylene resin,
  • a mixture of one or more of acid-modified polyolefin resins obtained by modifying polyolefin resins such as polyethylene or polypropylene with unsaturated carboxylic acids such as acrylic acid, itaconic acid, maleic acid, and fumaric acid, and other resins Can be used.
  • the thickness of the sealing material 7 is about 100 to 1000 ⁇ m, preferably about 300 to 500 ⁇ m.
  • FIG. 3 is a plan view of the solar battery cell
  • FIG. 4 is a front view of the solar battery cell.
  • the solar battery cell 6 has a light receiving surface 10 on the surface side, and a plurality of finger electrodes 11 are provided thereon.
  • the finger electrodes 11 are formed to be as thin as possible so as not to interfere with the incidence of light, extend in one predetermined direction, and are arranged in parallel in a direction orthogonal to the extending direction.
  • the bus bar electrode 12 extends in the juxtaposition direction of the finger electrodes 11 and connects the plurality of finger electrodes 11.
  • about 90 finger electrodes 11 having a width of about 0.05 mm are formed, and at least one bus bar electrode 12 has a width of about 0.5 to 3 mm (1 to 4, generally, for example). 2, 3).
  • the back electrode 13 is provided on the entire back surface of the solar battery cell 1.
  • a bus bar electrode 14 for connecting a tab line is also provided on the back electrode 13.
  • the same number and the same number of the bus bar electrodes 14 on the back surface side are provided at positions corresponding to the bus bar electrodes 12 on the front surface side.
  • Examples of the material of the collecting electrode include known materials that can obtain electrical continuity. For example, metals such as Ag, Ni, Cu, Sn, Au, V, Al, and Pt, or of these metals Of these, alloys or mixtures of two or more metals can be applied. Moreover, what laminated
  • ITO transparent conductive material
  • conductive paste printing is generally used.
  • the conductive paste is formed by general silver-containing glass paste, silver paste in which various conductive particles are dispersed in adhesive resin, gold paste, carbon paste, nickel paste and aluminum paste, and baking or vapor deposition. ITO etc. are mentioned.
  • a glass paste containing silver is preferably used from the viewpoints of heat resistance, conductivity, stability, and cost.
  • sputtering using a mask pattern, resistance heating, a CVD method, a photo CVD method, a plating method, and the like can be given.
  • the formation method of the finger electrode 11 and the bus bar electrode 12 is not particularly limited, but in general, a glass paste containing silver is used, and this is formed by coating, drying, and baking by screen printing. it can.
  • the formation method of the back electrode 13 and the bus bar electrode 14 is not particularly limited, but an aluminum paste can be used for the back electrode 13, and a glass paste containing silver can be used for the bus bar electrode 14.
  • the front side drying and firing and the back side drying and firing may be performed simultaneously or separately.
  • FIG. 5 is a plan view showing a connection state between solar cells
  • FIG. 6 is a front view showing a connection state between solar cells
  • FIG. 7 is a cross-sectional view of the tab line connecting portion to the bus bar electrode corresponding to the BB cross section of FIG.
  • Adjacent solar cells 6, 6 are electrically connected in series via tab wires 20. That is, for adjacent solar cells 6, 6, the bus bar electrode 12 on the front side of one solar cell 6 and the bus bar electrode 14 on the back side of the other solar cell 6 are connected by a ribbon-like tab wire 20. Connecting. In other words, one end of the ribbon-shaped tab wire 20 is connected to the bus bar electrode 12 on the surface side of one solar battery cell 6 via the conductive adhesive medium 22, and the other end of the ribbon-shaped tab wire 20 is connected to the other solar cell. The battery cell 6 is connected to the bus bar electrode 14 on the back surface side via the conductive adhesive medium 22. Therefore, the tab wire 20 bends between the solar cells 6 and 6, and connects the front and back.
  • a tab wire made of a woven or knitted conductive wire is used as the tab wire 20. More specifically, a copper wire having a wire diameter of about 50 to 200 ⁇ m is used as the conductive wire. However, what is necessary is just to contain the 1 or more types of metal element selected from the group which consists of Cu, Ag, Au, Fe, Ni, Pb, Zn, Co, Ti, and Mg.
  • the opening ratio of the tab wire made of a woven or knitted conductive wire is 10 to 80%, more preferably 20 to 60%.
  • a plain weave ribbon is formed by weaving into a plain weave as shown in FIG. Or, it is knitted in a twill shape as shown in FIG. Alternatively, a knitted ribbon is formed by knitting as shown in FIG.
  • the conductive wire (for example, copper wire) before knitting is subjected to a surface roughening treatment such as a sand blast treatment, and the conductive wire subjected to the surface roughening treatment is knitted. Further, an appropriate plating process may be applied to the surface of the conductive wire.
  • solder As the conductive adhesive medium 22, solder or a conductive resin tape is used. Since solder is well known, description thereof is omitted.
  • the conductive resin tape is required to have excellent moisture resistance and heat resistance in order to maintain adhesiveness with the electrode on the cell surface, conductivity, and reliability.
  • the material used as the conductive resin include polycarbonate, triacetyl cellulose, polyethylene terephthalate, polyvinyl alcohol, polyvinyl butyral, polyetherimide, polyester, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyimide, polyamide, polyurethane, polyethylene, Fluorine resins such as polypropylene, polystyrene, polyacrylonitrile, butyral resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), ethylene-tetrafluoroethylene copolymer, polyvinyl fluoride, epoxy resin, acrylic resin, phenol resin, urethane resin, silicone resin Maleimide resin, bismaleimide resin, triazine-bismaleimide resin and phenol resin, Sulphonate resins polyviny
  • thermosetting property or UV curable property it is preferable to impart thermosetting property or UV curable property to these resins.
  • it may be one in which at least one inorganic oxide selected from alumina, silica, ceramics, titanium oxide, glass and the like is subjected to metal coating, epoxy resin, acrylic resin, polyimide resin, phenol resin, urethane resin.
  • at least one selected from silicon resins and the like, or a mixture or copolymer of these resins may be provided with a metal coating.
  • the size of the fine particles is 2 to 30 ⁇ m ⁇ , preferably about 10 ⁇ m in average particle size.
  • a conductive adhesive medium solder or conductive material having substantially the same width on the bus bar electrode 12 (14).
  • (Resin tape) 22 is placed, then the tab wire 20 is placed, and the heated crimping head is pressed. Thereby, the conductive adhesive medium 22 is melted and the bus bar electrode 12 (14) and the tab wire 20 are bonded.
  • the conductive adhesive medium 22 may be either a solder or a conductive resin tape. However, in order not to impair the surface shape of the tab wire 20, a conductive resin tape that can be bonded at a lower temperature may be used.
  • the tab wire 20 is made of a conductive wire woven or knitted fabric, so that it has an intricately curved surface. Therefore, the locally applied force is dispersed to the metal foil, and the mechanical strength against bending and twisting can be improved. Thereby, the generation
  • the tab wire 20 having an intricately uneven curved surface by using the tab wire 20 having an intricately uneven curved surface, the actual length per unit length is increased, so that an elongation margin is generated and the elasticity and flexibility are improved. Can be made. Thereby, it can endure the expansion-contraction stress in the temperature cycle at the time of manufacture (sealing process) and long-term use after that, and durability can be improved.
  • the surface area of the tab wire 20 is increased by using the tab wire 20 having a curved surface with intricate irregularities. Therefore, the contact area with the conductive adhesive medium 22 is increased, and the adhesion with the conductive adhesive medium 22 can be improved. This reduces the electrical resistance between the two, leading to improved module efficiency. Moreover, the adhesive strength between both increases, the peeling of the tab wire 20 by long-term use can be prevented, and durability can be improved.
  • the tab wire 20 having a curved surface with intricate unevenness fine unevenness is formed on the surface, and the glossy surface can be matted. Thereby, light reflection can be suppressed and appearance can be improved.
  • the light reflection suppressing effect can be further improved and the appearance can be further improved.
  • Example 1 plain weave ribbon
  • a copper wire having a wire diameter of 120 ⁇ m was knitted into a plain woven shape to prepare a plain woven ribbon having an aperture ratio of 40%.
  • a copper wire having a wire diameter of 150 ⁇ m was knitted in a twill shape to prepare a twill ribbon having an opening ratio of 45%.
  • a copper wire having a wire diameter of 100 ⁇ m was knitted to create a knitted ribbon having an aperture ratio of 40%.
  • Example 4 (knitted ribbon + surface roughening) As a tab wire, a copper wire having a wire diameter of 100 ⁇ m subjected to surface roughening treatment (sand blasting) was knitted, and a knitted ribbon with a surface roughening treatment and an aperture ratio of 45% was prepared. ⁇ Comparative example 1 (metal foil) A conventional metal foil was used as the tab wire.
  • the production yield and the temperature cycle deterioration rate were measured.
  • the production yield was set to 100-A (%), where A (%) is the rate at which disconnection occurred in the modularization process.
  • the temperature cycle deterioration rate is determined by conducting 100 cycles of a temperature cycle test of ⁇ 40 ° C./1 hour and 90 ° C./1 hour, and the initial electrical maximum output B (W) and the electrical maximum output C (W) after the temperature cycle test. Ratio (C / B) ⁇ 100 (%).
  • the present invention can be used for manufacturing efficiency improvement and product performance improvement in the manufacture of solar cell modules, and its industrial applicability is great.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In a solar cell module, mechanical strength, stretchability, flexibility, and adhesion of an adhesion part (electric resistance, adhesion strength) are improved with respect to a ribbon-shaped tab line (20) that connects solar cells (6, 6). The tab line (20) is made of a fabric or web of a conductive wire (for example, copper wire). The tab line (20) is adhered to a bus bar electrode (12) on a cell surface via a conductive adhesion medium (solder or conductive resin tape).

Description

太陽電池モジュールSolar cell module
 本発明は、複数の太陽電池セルを含んで構成される太陽電池モジュールに関し、特に太陽電池セル間の電気的接続構造に関する。 The present invention relates to a solar cell module including a plurality of solar cells, and more particularly to an electrical connection structure between solar cells.
 太陽電池モジュールは、複数の太陽電池セルをマトリクス状に配列し、隣合う太陽電池セルをタブ線により電気的に直列に接続してなる。 A solar cell module is formed by arranging a plurality of solar cells in a matrix and electrically connecting adjacent solar cells in series by tab wires.
 太陽電池セルは、その表面(受光面)側に、多数の細線状のフィンガー電極と、これらのフィンガー電極と直交するように配置される少なくとも1本のバスバー電極とを有している。また、裏面側には、その全面に亘る裏面電極が設けられ、この裏面電極上に表面側と同数のバスバー電極が設けられる。そして、隣合う太陽電池セルのうち一方の太陽電池セルの表面側のバスバー電極と他方の太陽電池セルの裏面側のバスバー電極とをリボン状のタブ線により接続している(特許文献1、2参照)。 The solar battery cell has a large number of thin-line finger electrodes and at least one bus bar electrode arranged so as to be orthogonal to these finger electrodes on the surface (light-receiving surface) side. Further, on the back surface side, a back surface electrode is provided over the entire surface, and the same number of bus bar electrodes as the front surface side are provided on the back surface electrode. And the bus-bar electrode of the surface side of one photovoltaic cell and the bus-bar electrode of the back surface side of the other photovoltaic cell are connected by the ribbon-shaped tab wire among adjacent photovoltaic cells (patent documents 1, 2). reference).
 従来使用されているタブ線は、Cuを主体とした金属箔(厚さ50~300μm、幅1~3mm)である。そして、このタブ線とバスバー電極との間に導電性接着媒体(ハンダや導電性樹脂テープ)を挿入し、加熱及び/又は圧着により、導電性接着媒体を溶融させることで、タブ線とバスバー電極とを接続している。 Conventionally used tab wires are metal foils mainly composed of Cu (thickness 50 to 300 μm, width 1 to 3 mm). Then, by inserting a conductive adhesive medium (solder or conductive resin tape) between the tab wire and the bus bar electrode and melting the conductive adhesive medium by heating and / or pressure bonding, the tab wire and the bus bar electrode And connected.
日本国公開特許公報:特開2011-049612号Japanese Patent Publication: JP2011-049612A 日本国公開特許公報:特開2008-147567号Japanese Patent Publication: JP 2008-147567 A
 しかしながら、従来技術については、次のような問題点があった。
 (1)タブ線が金属箔であるため、製造時(セル接続時や運搬時)に発生する曲げやねじりに対する機械的強度が低い。このため、タブ線(特にそのセル間部分)にクラックが入りやすく、また断線が起きやすい。これにより、製造時の歩留まりが悪かった。
However, the prior art has the following problems.
(1) Since the tab wire is a metal foil, the mechanical strength against bending and torsion that occurs during manufacturing (during cell connection and transportation) is low. For this reason, cracks are likely to occur in the tab lines (particularly between the cells), and disconnections are likely to occur. Thereby, the yield at the time of manufacture was bad.
 (2)製造時には、セルをタブ線で接続した後、封止工程(ラミネート工程)がなされるが、この工程では加熱する必要があり、その加熱時に裏面側カバーや封止材が熱収縮を起こし、この収縮運動に伴いセルが動く。このような収縮運動によっても、タブ線にクラックや断線を生じやすく、製造時の歩留まりが悪かった。
 また、長期信頼性についても、裏面側カバーや封止材の温度伸縮に伴い、タブ線にクラックや断線を生じやすく、耐久性の向上が求められている。
(2) At the time of manufacturing, after the cells are connected by tab wires, a sealing step (laminating step) is performed. In this step, it is necessary to heat, and the back side cover and the sealing material are thermally contracted during the heating. Wake up and the cell moves with this contraction. Even with such contraction movement, cracks and breaks are likely to occur in the tab wire, and the yield during manufacturing was poor.
Further, with regard to long-term reliability, cracks and disconnections are likely to occur in the tab wire as the back surface side cover and the sealing material expand and contract, and an improvement in durability is required.
 (3)タブ線が、表面が平坦な金属箔であって、タブ線と導電性接着媒体との接触面積が小さいため、接触部の電気抵抗が高い。そのため、CTM(Cell to Module)ロスが大きく、太陽電池モジュールの状態での変換効率が低い。
 また、同じ理由で、接触部の接着強度が低い。そのため、長期の使用によりタブ線の剥がれ等を生じやすく、耐久性の向上が求められている。
 尚、特許文献2には、タブ線の接着面側に凸部を設けることで、タブ線の密着性を高めることが記載されているが、表面加工によって凹凸を付ける程度では、十分な密着性を得ることはできない。
(3) Since the tab wire is a metal foil having a flat surface and the contact area between the tab wire and the conductive adhesive medium is small, the electrical resistance of the contact portion is high. Therefore, CTM (Cell to Module) loss is large and the conversion efficiency in the state of a solar cell module is low.
For the same reason, the adhesive strength of the contact portion is low. Therefore, long-term use tends to cause tab wire peeling and the like, and improvement in durability is required.
Note that Patent Document 2 describes that the adhesion of the tab wire is enhanced by providing a convex portion on the bonding surface side of the tab wire. Can't get.
 (4)タブ線の表面側の金属反射率が高く、太陽電池モジュールの状態でタブ線がキラキラ光るため、見た目が悪い。 (4) Since the metal reflectance on the surface side of the tab wire is high, and the tab wire glitters in the state of the solar cell module, it looks bad.
 本発明は、このような実状に鑑み、太陽電池モジュールのタブ線に関し、(1)曲げやねじりに対する機械的強度の向上、(2)伸縮性・柔軟性の向上、(3)接着部の密着性の向上(電気抵抗減少及び接着強度増大)、(4)光反射の抑制、を図ることを課題とする。 In view of such a situation, the present invention relates to a tab wire of a solar cell module, (1) improvement of mechanical strength against bending or twisting, (2) improvement of stretchability / flexibility, and (3) adhesion of an adhesive portion. It is an object to improve the property (decrease in electric resistance and increase in adhesive strength) and (4) suppress light reflection.
 本発明に係る太陽電池モジュールは、複数の太陽電池セルを含んで構成され、各太陽電池セルは、表面及び裏面側にそれぞれバスバー電極を有する。そして、隣合う太陽電池セルのうち一方の太陽電池セルの表面側のバスバー電極と他方の太陽電池セルの裏面側のバスバー電極とがリボン状のタブ線を介して接続される。
 ここにおいて、前記タブ線は、導電性ワイヤの織物若しくは編物からなり、前記バスバー電極に導電性接着媒体を介して接着される。
The solar cell module according to the present invention includes a plurality of solar cells, and each solar cell has a bus bar electrode on the front surface and the back surface. And the bus-bar electrode of the surface side of one photovoltaic cell and the bus-bar electrode of the back surface side of the other photovoltaic cell among adjacent photovoltaic cells are connected via a ribbon-shaped tab wire.
Here, the tab wire is made of a woven or knitted conductive wire, and is bonded to the bus bar electrode via a conductive adhesive medium.
 本発明によれば、次の(1)~(4)の効果のうち少なくとも1つを奏する。
 (1)タブ線が導電性ワイヤの織物若しくは編物からなることにより、入り組んだ凹凸の屈曲面を有することになる。そのため、金属箔に対して、局所的に付与される力が分散され、曲げやねじりに対する機械的強度を向上させることができる。これにより、製造時におけるタブ線へのクラックの発生や、これによる断線を防ぐことができ、製造時の歩留まりを向上させることができる。
According to the present invention, at least one of the following effects (1) to (4) is achieved.
(1) Since the tab wire is made of a conductive wire woven fabric or knitted fabric, the tab wire has an intricately curved surface. Therefore, the locally applied force is dispersed to the metal foil, and the mechanical strength against bending and twisting can be improved. Thereby, generation | occurrence | production of the crack to the tab wire at the time of manufacture and the disconnection by this can be prevented, and the yield at the time of manufacture can be improved.
 (2)入り組んだ凹凸の屈曲面を有するタブ線を用いることで、単位長さ当たりの実長さが増加するため、伸び代が生じ、伸縮性・柔軟性を向上させることができる。これにより、製造時やその後の長期使用中の温度サイクルでの伸縮ストレスに耐えることができ、耐久性を向上させることができる。 (2) Since the actual length per unit length is increased by using a tab wire having an intricately curved surface, the allowance for elongation is generated, and the elasticity and flexibility can be improved. Thereby, it can endure the expansion-contraction stress in the temperature cycle at the time of manufacture and subsequent long-term use, and can improve durability.
 (3)入り組んだ凹凸の屈曲面を有するタブ線を用いることで、タブ線の表面積が増大する。そのため、導電性接着媒体との接触面積が増大し、導電性接着媒体との密着性を向上させることできる。これにより、両者間の電気抵抗が低減し、モジュール効率向上につながる。また、両者間の接着強度が増大し、長期の使用によるタブ線の剥がれを防ぎ、耐久性を向上させることができる。 (3) The surface area of the tab wire is increased by using the tab wire having an intricate uneven surface. Therefore, the contact area with the conductive adhesive medium is increased, and the adhesion with the conductive adhesive medium can be improved. As a result, the electrical resistance between the two is reduced, leading to improved module efficiency. In addition, the adhesive strength between the two can be increased, and the tab wire can be prevented from peeling off due to long-term use, and the durability can be improved.
 (4)入り組んだ凹凸の屈曲面を有するタブ線を用いることで、表面に微細な凹凸が形成され光沢面のつや消しをすることができる。これにより、見た目を改善することができる。 (4) By using a tab wire having a curved surface with intricate irregularities, fine irregularities are formed on the surface, and the glossy surface can be matted. Thereby, the appearance can be improved.
本発明の実施形態として示す太陽電池モジュールの平面図The top view of the solar cell module shown as embodiment of this invention 図1のA-A断面図AA sectional view of FIG. 太陽電池セルの平面図Top view of solar cells 太陽電池セルの正面図Front view of solar cells 太陽電池セル間の接続状態を示す平面図Plan view showing the connection between solar cells 太陽電池セル間の接続状態を示す正面図Front view showing the connection between solar cells 図6のB-B断面に相当するバスバー電極へのタブ線接続部の断面図Sectional view of the tab line connecting portion to the bus bar electrode corresponding to the BB section of FIG. 平織の説明図Illustration of plain weave 綾織の説明図Illustration of twill メリヤス編みの説明図Illustration of knitting 実施例1~4及び比較例1についての実施結果を示す表図Table showing the results of Examples 1 to 4 and Comparative Example 1
 以下、本発明の実施の形態について、詳細に説明する。
 図1は本発明の一実施形態として示す太陽電池モジュールの平面図、図2は図1のA-A断面図である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a plan view of a solar cell module shown as an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.
 太陽電池モジュール1は、金属(例えばアルミ)製の矩形のフレーム2と、該フレーム2内の上部に嵌め込まれたPV(Photovoltaic)パネル3と、を含んで構成される。 The solar cell module 1 includes a rectangular frame 2 made of metal (for example, aluminum) and a PV (Photovoltaic) panel 3 fitted in the upper portion of the frame 2.
 PVパネル3は、白板強化ガラス等の透明な表面側カバー4と、樹脂フィルムからなる耐候性の裏面側カバー5と、表面側カバー4と裏面側カバー5との間にマトリクス状に配置されて電気的には直列に接続される複数の太陽電池セル6と、表面側カバー4と裏面側カバー5との間に充填されて該カバー4、5と太陽電池セル6とをパネル化する封止材(充填接着剤)7と、を含んで構成される。 The PV panel 3 is arranged in a matrix between a transparent front side cover 4 such as white plate tempered glass, a weather resistant back side cover 5 made of a resin film, and the front side cover 4 and the back side cover 5. A plurality of solar cells 6 that are electrically connected in series and a seal that is filled between the front surface side cover 4 and the back surface side cover 5 to form the cover 4, 5 and the solar cells 6 into a panel. And a material (filling adhesive) 7.
 表面側カバー4としては、太陽光の透過性、絶縁性、耐候性、耐熱性、防湿性、防汚性、耐光性が求められ、更に、化学的強度性、強靱性等に優れ、長期耐久性を確保するためにも耐スクラッチ性、衝撃吸収性等に優れていることが必要である。このため、広く透明ガラス基板が使用されており、特に光透過率や耐衝撃強度に優れる厚さ4.0mmの白板強化ガラスが使用されている。材質としてソーダライムガラスが好適に用いられる。尚、厚さは0.1~10mmであればよい。
 また、表面側カバー4としては、公知のガラス板等は勿論のこと、例えば、ポリアミド系樹脂(各種のナイロン)、ポリエステル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、フッ素系樹脂、ポリエチレン系樹脂、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のフィルムないしシートを使用することができる。
The surface side cover 4 is required to have sunlight permeability, insulation, weather resistance, heat resistance, moisture resistance, antifouling property, and light resistance, and is excellent in chemical strength, toughness, and long-term durability. In order to ensure the properties, it is necessary to have excellent scratch resistance, shock absorption and the like. For this reason, a transparent glass substrate is widely used, and in particular, a white plate tempered glass having a thickness of 4.0 mm that is excellent in light transmittance and impact strength is used. Soda lime glass is preferably used as the material. The thickness may be 0.1 to 10 mm.
Moreover, as the surface side cover 4, let alone a well-known glass plate etc., for example, polyamide-type resin (various nylon), polyester-type resin, cyclic polyolefin-type resin, polystyrene-type resin, fluorine-type resin, polyethylene-type resin, for example Films or sheets of various resins such as (meth) acrylic resins, polycarbonate resins, acetal resins, cellulose resins, and the like can be used.
 裏面側カバー5としては、例えば、アルミシートの両面を絶縁性の優れたポリフッ化ビニルフィルム(フッ素フィルム)で被覆した厚さ約0.1mmの樹脂被覆メタルシートが好適に用いられる。
 また、裏面側カバー5としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、シンジオタクチックポリスチレン樹脂等のポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリフッ化ビニリデン等のフッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)又はポリエチレンナフタレート(PEN)等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリブチレンテレフタレート樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、ポリシクロヘキサンジメタノール-テレフタレート樹脂、シリコン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、PETとPENの共重合体であるPET-G等のポリエステルからなるポリエステル樹脂、その他等の各種の樹脂のフィルムないしシ-ト、更にセラミック、ガラス、ステンレス等を使用することができる。
As the back surface side cover 5, for example, a resin-coated metal sheet having a thickness of about 0.1 mm in which both surfaces of an aluminum sheet are coated with a polyvinyl fluoride film (fluorine film) having excellent insulating properties is preferably used.
Examples of the back cover 5 include polystyrene resins such as polyethylene resins, polypropylene resins, cyclic polyolefin resins, and syndiotactic polystyrene resins, acrylonitrile-styrene copolymers (AS resins), acrylonitrile-butadienes, and the like. Fluorine resins such as styrene copolymer (ABS resin), polyvinyl chloride resin, polyvinylidene fluoride, poly (meth) acrylic resin, polycarbonate resin, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) Polyester resins, various polyamide resins such as nylon, polyimide resins, polybutylene terephthalate resins, polyamideimide resins, polyaryl phthalate resins, polycyclohexanedimethanol-terephthale Resin, silicone resin, polysulfone resin, polyphenylene sulfide resin, polyethersulfone resin, polyurethane resin, acetal resin, cellulose resin, polyester such as PET-G which is a copolymer of PET and PEN Polyester resin and other various resin films or sheets, ceramic, glass, stainless steel, etc. can be used.
 太陽電池セル6としては、単結晶シリコン、薄膜シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体型セルのいずれであっても構わない。
 一例として、一般的な結晶系シリコンの太陽電池セル6は、p型結晶系シリコン基板の光入射面(発電する際に光が入射する側の表面)にn型拡散層(n型シリコン層)を形成する。より詳しくは、下記のテクスチャ工程、pn接合工程、反射膜形成工程、表裏面集電極形成工程を経て製造する。
The solar battery cell 6 may be any of single crystal silicon, thin film silicon, polycrystalline silicon, amorphous silicon, and a compound semiconductor type cell.
As an example, a general crystalline silicon solar battery cell 6 includes an n-type diffusion layer (n-type silicon layer) on a light incident surface (a surface on which light is incident upon power generation) of a p-type crystalline silicon substrate. Form. More specifically, it is manufactured through the following texture process, pn junction process, reflective film forming process, and front and back collector electrode forming process.
 テクスチャ形成工程では、基板にpn接合を形成する前に、酸やアルカリの溶液や反応性プラズマを用いて基板の表面をエッチングすることにより、表面に凹凸構造(テクスチャ構造)を形成する。
 pn接合形成工程では、pn接合の形成方法は特に限定されないが、例えば、p型シリコン基板の受光面側にn型不純物を拡散させることによってpn接合を形成することができる。n型不純物の拡散は、例えばn型不純物を含む材料(例えばPOC13)を含む高温気体中に基板を置くことによって行うことができる。
 反射防止膜形成工程では、基板の受光面側に反射防止膜を形成する。例えば、プラズマCVD法によってSiN膜を形成することができる。
 表裏面集電極形成工程では、後述のように、太陽電池セル6の表面にフィンガー電極及びバスバー電極を形成し、裏面に裏面電極及びバスバー電極を形成する。
In the texture forming step, an uneven structure (texture structure) is formed on the surface by etching the surface of the substrate using an acid or alkali solution or reactive plasma before forming a pn junction on the substrate.
In the pn junction formation step, the method of forming the pn junction is not particularly limited. For example, the pn junction can be formed by diffusing an n-type impurity on the light receiving surface side of the p-type silicon substrate. The diffusion of n-type impurities can be performed by placing the substrate in a high-temperature gas containing a material containing n-type impurities (for example, POC 13), for example.
In the antireflection film forming step, an antireflection film is formed on the light receiving surface side of the substrate. For example, the SiN film can be formed by plasma CVD.
In the front and back collector electrode forming step, as will be described later, the finger electrode and the bus bar electrode are formed on the surface of the solar battery cell 6, and the back electrode and the bus bar electrode are formed on the back surface.
 封止材7としては、透光性、表面側カバー及び裏面側カバーとの接着性を有することが必要である。さらに、太陽電池の保護という観点から、耐光性、耐熱性、耐水性、耐スクラッチ性、衝撃吸収性等に優れていることも必要である。かかる観点から、封止材7には、一般に耐湿性に優れたEVA(エチレンビニルアセテート)フィルム等の有機過酸化物を含有するエチレン-酢酸ビニル共重合体からなるフィルムが好適に用いられる。
 その他にも、例えば、アイオノマー樹脂、ポリビニルブチラール樹脂、シリコン樹脂、エポキシ系樹脂、(メタ)アクリル系樹脂、フッ素系樹脂、エチレン-アクリル酸、又は、メタクリル酸共重合体、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、イタコン酸、マレイン酸、フマ-ル酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン系樹脂、その他等の樹脂の1種ないし2種以上の混合物を使用することができる。
 尚、上記の封止材7の厚さとしては、100~1000μm位、好ましくは、300~500μm位が望ましい。
As the sealing material 7, it is necessary to have translucency and adhesiveness with a front surface side cover and a back surface side cover. Furthermore, from the viewpoint of protecting the solar cell, it is necessary to have excellent light resistance, heat resistance, water resistance, scratch resistance, impact absorption, and the like. From such a viewpoint, a film made of an ethylene-vinyl acetate copolymer containing an organic peroxide such as an EVA (ethylene vinyl acetate) film generally excellent in moisture resistance is preferably used as the sealing material 7.
In addition, for example, ionomer resin, polyvinyl butyral resin, silicon resin, epoxy resin, (meth) acrylic resin, fluorine resin, ethylene-acrylic acid, or methacrylic acid copolymer, polyethylene resin, polypropylene resin, A mixture of one or more of acid-modified polyolefin resins obtained by modifying polyolefin resins such as polyethylene or polypropylene with unsaturated carboxylic acids such as acrylic acid, itaconic acid, maleic acid, and fumaric acid, and other resins Can be used.
The thickness of the sealing material 7 is about 100 to 1000 μm, preferably about 300 to 500 μm.
 次に太陽電池セル6の集電極構造について説明する。
 図3は太陽電池セルの平面図、図4は太陽電池セルの正面図である。
Next, the collector electrode structure of the solar battery cell 6 will be described.
FIG. 3 is a plan view of the solar battery cell, and FIG. 4 is a front view of the solar battery cell.
 太陽電池セル6は、表面側が受光面10をなし、その上に、複数のフィンガー電極11が設けられる。フィンガー電極11は、光の入射をできるだけ妨げないように細く形成されて、それぞれ所定の一方向に延在し、延在方向と直交する方向に所定の間隔で並設されている。 The solar battery cell 6 has a light receiving surface 10 on the surface side, and a plurality of finger electrodes 11 are provided thereon. The finger electrodes 11 are formed to be as thin as possible so as not to interfere with the incidence of light, extend in one predetermined direction, and are arranged in parallel in a direction orthogonal to the extending direction.
 また、太陽電池セル6の表面(受光面10)側には、フィンガー電極11の上に、フィンガー電極11と直交するように、タブ線を接続して電力を取出すための比較的太いバスバー電極12が設けられる。従って、バスバー電極12は、フィンガー電極11の並設方向に延在して、複数のフィンガー電極11をつないでいる。尚、フィンガー電極11は、例えば0.05mm程度の幅で90本程度形成され、バスバー電極12は、例えば0.5~3mm程度の幅で少なくとも1本(1~4本で、一般的には2、3本)設けられる。 Moreover, on the surface (light-receiving surface 10) side of the solar battery cell 6, a relatively thick bus bar electrode 12 for connecting a tab wire on the finger electrode 11 so as to be orthogonal to the finger electrode 11 and taking out electric power. Is provided. Accordingly, the bus bar electrode 12 extends in the juxtaposition direction of the finger electrodes 11 and connects the plurality of finger electrodes 11. For example, about 90 finger electrodes 11 having a width of about 0.05 mm are formed, and at least one bus bar electrode 12 has a width of about 0.5 to 3 mm (1 to 4, generally, for example). 2, 3).
 太陽電池セル1の裏面側には、全面にわたって裏面電極13が設けられる。また、裏面電極13上にもタブ線を接続するためのバスバー電極14が設けられる。裏面側のバスバー電極14は表面側のバスバー電極12と対応する位置に同形状で同数設けられる。 The back electrode 13 is provided on the entire back surface of the solar battery cell 1. A bus bar electrode 14 for connecting a tab line is also provided on the back electrode 13. The same number and the same number of the bus bar electrodes 14 on the back surface side are provided at positions corresponding to the bus bar electrodes 12 on the front surface side.
 集電極の材料としては、電気的導通を得ることができる公知の材質のものが挙げられ、例えば、Ag、Ni、Cu、Sn、Au、V、Al、Ptなどの金属、あるいはこれらの金属のうち2種以上の金属の合金、混合物などが適用できる。また、これらの金属を複数積層したものでもよい。また、カーボン材料や透明導電材料(ITO)単独もしくはこれらの材料と上記金属の複合体等でもよい。但し、太陽電池で発電した電流を流すときに抵抗とならないことが必要である(5~10Ωcm-1程度)。 Examples of the material of the collecting electrode include known materials that can obtain electrical continuity. For example, metals such as Ag, Ni, Cu, Sn, Au, V, Al, and Pt, or of these metals Of these, alloys or mixtures of two or more metals can be applied. Moreover, what laminated | stacked two or more of these metals may be used. Further, a carbon material or a transparent conductive material (ITO) alone or a composite of these materials and the above metal may be used. However, it is necessary not to become a resistance when a current generated by the solar cell is passed (about 5 to 10 Ωcm −1 ).
 集電極の形成方法としては、一般に導電性ペースト印刷が用いられる。導電性ペーストとしては、一般的な銀を含有したガラスペーストや接着剤樹脂に各種導電性粒子を分散した銀ペースト、金ペースト、カーボンペースト、ニッケルペースト及びアルミニウムペースト、並びに、焼成や蒸着によって形成されるITOなどが挙げられる。これらの中でも、耐熱性、導電性、安定性及びコストの観点から、銀を含有したガラスペーストが好適に用いられる。その他に、マスクパターンを用いたスパッタリング、抵抗加熱、CVD法、光CVD法、メッキ法などが挙げられる。 As a method for forming the collecting electrode, conductive paste printing is generally used. The conductive paste is formed by general silver-containing glass paste, silver paste in which various conductive particles are dispersed in adhesive resin, gold paste, carbon paste, nickel paste and aluminum paste, and baking or vapor deposition. ITO etc. are mentioned. Among these, a glass paste containing silver is preferably used from the viewpoints of heat resistance, conductivity, stability, and cost. In addition, sputtering using a mask pattern, resistance heating, a CVD method, a photo CVD method, a plating method, and the like can be given.
 フィンガー電極11及びバスバー電極12については、その形成方法は特に限定されないものの、一般的には、銀を含有したガラスペーストを用い、これをスクリーン印刷よる塗布、乾燥、焼成することによって形成することができる。
 裏面電極13及びバスバー電極14についても、その形成方法は特に限定されないものの、裏面電極13についてはアルミニウムペースト、バスバー電極14については銀を含有したガラスペーストを用いることができる。尚、表面側の乾燥及び焼成と、裏面側の乾燥及び焼成は、同時に行ってもよいし、別々に行ってもよい。
The formation method of the finger electrode 11 and the bus bar electrode 12 is not particularly limited, but in general, a glass paste containing silver is used, and this is formed by coating, drying, and baking by screen printing. it can.
The formation method of the back electrode 13 and the bus bar electrode 14 is not particularly limited, but an aluminum paste can be used for the back electrode 13, and a glass paste containing silver can be used for the bus bar electrode 14. The front side drying and firing and the back side drying and firing may be performed simultaneously or separately.
 次に太陽電池セル6、6間の電気的接続構造について説明する。
 図5は太陽電池セル間の接続状態を示す平面図、図6は太陽電池セル間の接続状態を示す正面図である。また、図7は図6のB-B断面に相当するバスバー電極へのタブ線接続部の断面図である。
Next, an electrical connection structure between the solar cells 6 and 6 will be described.
FIG. 5 is a plan view showing a connection state between solar cells, and FIG. 6 is a front view showing a connection state between solar cells. FIG. 7 is a cross-sectional view of the tab line connecting portion to the bus bar electrode corresponding to the BB cross section of FIG.
 隣合う太陽電池セル6、6は、相互にタブ線20により電気的に直列接続されている。すなわち、隣合う太陽電池セル6、6について、一方の太陽電池セル6の表面側のバスバー電極12と、他方の太陽電池セル6の裏面側のバスバー電極14とを、リボン状のタブ線20により接続する。言い換えれば、リボン状のタブ線20の一端を一方の太陽電池セル6の表面側のバスバー電極12に導電性接着媒体22を介して接続し、リボン状のタブ線20の他端を他方の太陽電池セル6の裏面側のバスバー電極14に導電性接着媒体22を介して接続する。従って、タブ線20は、太陽電池セル6、6間で折れ曲がり、表と裏とをつなぐ。 Adjacent solar cells 6, 6 are electrically connected in series via tab wires 20. That is, for adjacent solar cells 6, 6, the bus bar electrode 12 on the front side of one solar cell 6 and the bus bar electrode 14 on the back side of the other solar cell 6 are connected by a ribbon-like tab wire 20. Connecting. In other words, one end of the ribbon-shaped tab wire 20 is connected to the bus bar electrode 12 on the surface side of one solar battery cell 6 via the conductive adhesive medium 22, and the other end of the ribbon-shaped tab wire 20 is connected to the other solar cell. The battery cell 6 is connected to the bus bar electrode 14 on the back surface side via the conductive adhesive medium 22. Therefore, the tab wire 20 bends between the solar cells 6 and 6, and connects the front and back.
 本実施形態では、タブ線20として、導電性ワイヤの織物若しくは編物からなるタブ線を使用する。
 より具体的には、導電性ワイヤとしては、線径50~200μm程度の銅線を用いる。但し、Cu、Ag、Au、Fe、Ni、Pb、Zn、Co、Ti及びMgからなる群より選択される1種以上の金属元素を含むものであればよい。
 また、導電性ワイヤの織物若しくは編物からなるタブ線の開口率は、10~80%、より好ましくは20~60%とする。
In the present embodiment, a tab wire made of a woven or knitted conductive wire is used as the tab wire 20.
More specifically, a copper wire having a wire diameter of about 50 to 200 μm is used as the conductive wire. However, what is necessary is just to contain the 1 or more types of metal element selected from the group which consists of Cu, Ag, Au, Fe, Ni, Pb, Zn, Co, Ti, and Mg.
The opening ratio of the tab wire made of a woven or knitted conductive wire is 10 to 80%, more preferably 20 to 60%.
 編み方としては、例えば、図8に示すような平織状に編んで、平織リボンとする。又は、図9に示すような綾織状に編んで、綾織リボンとする。又は、図10に示すようなメリヤス編みにより、メリヤス編みリボンとする。 As the knitting method, for example, a plain weave ribbon is formed by weaving into a plain weave as shown in FIG. Or, it is knitted in a twill shape as shown in FIG. Alternatively, a knitted ribbon is formed by knitting as shown in FIG.
 また、編む前の導電性ワイヤ(例えば銅線)にサンドブラスト処理などの表面粗化処理を施し、表面粗化処理を施した導電性ワイヤを編むようにするとよい。
 また、導電性ワイヤの表面には適宜のメッキ処理を施すようにしてもよい。
Further, it is preferable that the conductive wire (for example, copper wire) before knitting is subjected to a surface roughening treatment such as a sand blast treatment, and the conductive wire subjected to the surface roughening treatment is knitted.
Further, an appropriate plating process may be applied to the surface of the conductive wire.
 本実施形態ではまた、導電性接着媒体22としては、ハンダ、又は、導電性樹脂テープを使用する。
 ハンダについてはよく知られているので、説明は省略する。
In the present embodiment, as the conductive adhesive medium 22, solder or a conductive resin tape is used.
Since solder is well known, description thereof is omitted.
 導電性樹脂テープとしては、セル表面の集電極との接着性、導電性、更には、信頼性を維持するため耐湿性や耐熱性に優れていることが要求される。
 導電性樹脂として用いられる材料は、例えば、ポリカーボネート、トリアセチルセルロース、ポリエチレンテレフタレート、ポリビニルアルコール、ポリビニルブチラール、ポリエーテルイミド、ポリエステル、エチレン-ビニルアセテートコポリマー、ポリ塩化ビニル、ポリイミド、ポリアミド、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ブチラール樹脂、アクリロニトリル-ブタジエン-スチレンコポリマー(ABS樹脂)、エチレン-テトラフルオロエチレンコポリマー、ポリフッ化ビニルなどのフッ素樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビスマレイミド樹脂、トリアジン-ビスマレイミド樹脂及びフェノール樹脂、シアネート樹脂ポリビニルアセテート、ゴム、ウレタン等の樹脂などが挙げられ、これらから選ばれる少なくとも1種、あるいは、これらの樹脂の混合、共重合などを用いることが好ましい。また、これらの樹脂に熱硬化性あるいはUV硬化性を付与することが好ましい。また、樹脂中に紫外線吸収剤、光安定化剤、酸化防止剤、シランカップリング剤を適宜添加してもよい。また、低温かつ短時間で硬化できるという点から、エポキシ樹脂やアクリル樹脂を用いることが、製造上、より好ましい。
The conductive resin tape is required to have excellent moisture resistance and heat resistance in order to maintain adhesiveness with the electrode on the cell surface, conductivity, and reliability.
Examples of the material used as the conductive resin include polycarbonate, triacetyl cellulose, polyethylene terephthalate, polyvinyl alcohol, polyvinyl butyral, polyetherimide, polyester, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyimide, polyamide, polyurethane, polyethylene, Fluorine resins such as polypropylene, polystyrene, polyacrylonitrile, butyral resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), ethylene-tetrafluoroethylene copolymer, polyvinyl fluoride, epoxy resin, acrylic resin, phenol resin, urethane resin, silicone resin Maleimide resin, bismaleimide resin, triazine-bismaleimide resin and phenol resin, Sulphonate resins polyvinyl acetate, rubber, resins such as urethane and the like, at least one selected from these, or mixtures of these resins, the use of such copolymerization preferred. Further, it is preferable to impart thermosetting property or UV curable property to these resins. Moreover, you may add a ultraviolet absorber, a light stabilizer, antioxidant, and a silane coupling agent suitably in resin. Moreover, it is more preferable on manufacture to use an epoxy resin or an acrylic resin from the viewpoint that it can be cured at a low temperature in a short time.
 また、導電性樹脂は、微粒子を含んでもよい。微粒子を樹脂中に含むことにより、熱圧着過程において微粒子同士が接触するため、加熱圧着後により高い導電性を発現することができる。
 微粒子として、導電性粒子を用いる場合には、銀、銅、白金、ニッケル、金、錫、アルミニウム、ビスマス、インジウム、パラジウム、亜鉛、コバルトなどから選ばれる少なくとも1種の金属粒子、あるいはこれらの合金、混合などが適用できる。また、カーボン材料であってもよく、カーボン粒子と金属の複合材料でもよい。また、アルミナ、シリカ、セラミックス、酸化チタン、ガラスなどから選ばれる少なくとも1種の無機酸化物に金属コーティングを施したものであってもよく、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、ウレタン樹脂、シリコン樹脂などから選ばれる少なくとも1種、あるいは、これらの樹脂の混合体、共重合体などに金属コーティングを施したものであってもよい。微粒子の大きさについては、2~30μmφ、好ましくは、平均粒径10μm程度の大きさがよい。
Further, the conductive resin may contain fine particles. By including the fine particles in the resin, the fine particles come into contact with each other in the thermocompression bonding process, so that higher conductivity can be expressed after the thermocompression bonding.
When conductive particles are used as the fine particles, at least one metal particle selected from silver, copper, platinum, nickel, gold, tin, aluminum, bismuth, indium, palladium, zinc, cobalt, etc., or an alloy thereof Mixing etc. can be applied. Further, it may be a carbon material or a composite material of carbon particles and metal. Further, it may be one in which at least one inorganic oxide selected from alumina, silica, ceramics, titanium oxide, glass and the like is subjected to metal coating, epoxy resin, acrylic resin, polyimide resin, phenol resin, urethane resin. In addition, at least one selected from silicon resins and the like, or a mixture or copolymer of these resins may be provided with a metal coating. The size of the fine particles is 2 to 30 μmφ, preferably about 10 μm in average particle size.
 太陽電池セル6の表面側(裏面側)のバスバー電極12(14)にタブ線20を接続する際は、バスバー電極12(14)上に、略同幅の導電性接着媒体(ハンダ又は導電性樹脂テープ)22を載置してから、タブ線20を載置し、加熱状態の圧着ヘッドを押付ける。これにより、導電性接着媒体22を溶融させて、バスバー電極12(14)とタブ線20とを接着する。尚、導電性接着媒体22としては、ハンダ、導電性樹脂テープのいずれでもよいが、タブ線20の表面形状を損なわないためには、より低温で接着可能な導電性樹脂テープを使用するとよい。 When the tab wire 20 is connected to the bus bar electrode 12 (14) on the front surface side (back surface side) of the solar battery cell 6, a conductive adhesive medium (solder or conductive material) having substantially the same width on the bus bar electrode 12 (14). (Resin tape) 22 is placed, then the tab wire 20 is placed, and the heated crimping head is pressed. Thereby, the conductive adhesive medium 22 is melted and the bus bar electrode 12 (14) and the tab wire 20 are bonded. The conductive adhesive medium 22 may be either a solder or a conductive resin tape. However, in order not to impair the surface shape of the tab wire 20, a conductive resin tape that can be bonded at a lower temperature may be used.
 本実施形態によれば、タブ線20が導電性ワイヤの織物若しくは編物からなることにより、入り組んだ凹凸の屈曲面を有することになる。そのため、金属箔に対して、局所的に付与される力が分散され、曲げやねじりに対する機械的強度を向上させることができる。これにより、製造時(セル接続時や運搬時)におけるタブ線20へのクラックの発生や、これによる断線を防ぐことができ、製造時の歩留まりを向上させることができる。 According to the present embodiment, the tab wire 20 is made of a conductive wire woven or knitted fabric, so that it has an intricately curved surface. Therefore, the locally applied force is dispersed to the metal foil, and the mechanical strength against bending and twisting can be improved. Thereby, the generation | occurrence | production of the crack to the tab wire 20 at the time of manufacture (at the time of a cell connection or conveyance) and the disconnection by this can be prevented, and the yield at the time of manufacture can be improved.
 また、本実施形態によれば、入り組んだ凹凸の屈曲面を有するタブ線20を用いることで、単位長さ当たりの実長さが増加するため、伸び代が生じ、伸縮性・柔軟性を向上させることができる。これにより、製造時(封止工程)やその後の長期使用中の温度サイクルでの伸縮ストレスに耐えることができ、耐久性を向上させることができる。 In addition, according to the present embodiment, by using the tab wire 20 having an intricately uneven curved surface, the actual length per unit length is increased, so that an elongation margin is generated and the elasticity and flexibility are improved. Can be made. Thereby, it can endure the expansion-contraction stress in the temperature cycle at the time of manufacture (sealing process) and long-term use after that, and durability can be improved.
 また、本実施形態によれば、入り組んだ凹凸の屈曲面を有するタブ線20を用いることで、タブ線20の表面積が増大する。そのため、導電性接着媒体22との接触面積が増大し、導電性接着媒体22との密着性を向上させることできる。これにより、両者間の電気抵抗が低減し、モジュール効率向上につながる。また、両者間の接着強度が増大し、長期の使用によるタブ線20の剥がれを防ぎ、耐久性を向上させることができる。 Further, according to the present embodiment, the surface area of the tab wire 20 is increased by using the tab wire 20 having a curved surface with intricate irregularities. Therefore, the contact area with the conductive adhesive medium 22 is increased, and the adhesion with the conductive adhesive medium 22 can be improved. This reduces the electrical resistance between the two, leading to improved module efficiency. Moreover, the adhesive strength between both increases, the peeling of the tab wire 20 by long-term use can be prevented, and durability can be improved.
 また、本実施形態によれば、入り組んだ凹凸の屈曲面を有するタブ線20を用いることで、表面に微細な凹凸が形成され光沢面のつや消しをすることができる。これにより、光反射を抑制し、見た目を改善することができる。 Moreover, according to the present embodiment, by using the tab wire 20 having a curved surface with intricate unevenness, fine unevenness is formed on the surface, and the glossy surface can be matted. Thereby, light reflection can be suppressed and appearance can be improved.
 更に、本実施形態によれば、タブ線20を構成する導電性ワイヤの表面に粗化処理を施すことにより、光反射抑制効果が更に向上し、見栄えを更に良くすることができる。 Furthermore, according to the present embodiment, by performing a roughening process on the surface of the conductive wire constituting the tab wire 20, the light reflection suppressing effect can be further improved and the appearance can be further improved.
 次に実施結果について説明する。
 下記の実施例1~4及び比較例1のタブ線を使用して、太陽電池モジュールを製造し、それぞれについて、製造歩留まり、温度サイクル劣化率を測定した。
Next, an implementation result will be described.
Solar cell modules were manufactured using the tab wires of Examples 1 to 4 and Comparative Example 1 below, and the manufacturing yield and the temperature cycle deterioration rate were measured for each.
〔タブ線の種類〕
・実施例1(平織リボン)
 タブ線として、線径120μmの銅線を平織状に編んで、開口率40%の平織リボンを作成した。
・実施例2(綾織リボン)
 タブ線として、線径150μmの銅線を綾織状に編んで、開口率45%の綾織リボンを作成した。
・実施例3(メリヤス編みリボン)
 タブ線として、線径100μmの銅線をメリヤス編みして、開口率40%のメリヤス編みリボンを作成した。
・実施例4(メリヤス編みリボン+表面粗化)
 タブ線として、線径100μmの銅線に表面粗化処理(サンドブラスト)を施したものをメリヤス編みして、表面粗化処理付きで開口率45%のメリヤス編みリボンを作成した。
・比較例1(金属箔)
 タブ線として、従来の金属箔を用いた。
[Tab line type]
Example 1 (plain weave ribbon)
As a tab wire, a copper wire having a wire diameter of 120 μm was knitted into a plain woven shape to prepare a plain woven ribbon having an aperture ratio of 40%.
-Example 2 (twill ribbon)
As a tab wire, a copper wire having a wire diameter of 150 μm was knitted in a twill shape to prepare a twill ribbon having an opening ratio of 45%.
-Example 3 (knitted ribbon)
As a tab wire, a copper wire having a wire diameter of 100 μm was knitted to create a knitted ribbon having an aperture ratio of 40%.
Example 4 (knitted ribbon + surface roughening)
As a tab wire, a copper wire having a wire diameter of 100 μm subjected to surface roughening treatment (sand blasting) was knitted, and a knitted ribbon with a surface roughening treatment and an aperture ratio of 45% was prepared.
・ Comparative example 1 (metal foil)
A conventional metal foil was used as the tab wire.
 評価方法としては、製造歩留まりと温度サイクル劣化率を測定した。
 製造歩留まりは、モジュール化の工程で断線が起きた割合をA(%)とすると、100-A(%)とした。
 温度サイクル劣化率は、-40℃/1時間、90℃/1時間の温度サイクル試験を100サイクル行い、初期の電気最大出力B(W)と温度サイクル試験後の電気最大出力C(W)との比率(C/B)×100(%)とした。
As an evaluation method, the production yield and the temperature cycle deterioration rate were measured.
The production yield was set to 100-A (%), where A (%) is the rate at which disconnection occurred in the modularization process.
The temperature cycle deterioration rate is determined by conducting 100 cycles of a temperature cycle test of −40 ° C./1 hour and 90 ° C./1 hour, and the initial electrical maximum output B (W) and the electrical maximum output C (W) after the temperature cycle test. Ratio (C / B) × 100 (%).
 この結果は図11の表に示される通りである。
 この結果から、実施例1~4のいずれも、比較例1との比較で、製造歩留まり、温度サイクル劣化率が改善されていることがわかった。
The result is as shown in the table of FIG.
From these results, it was found that in all of Examples 1 to 4, the production yield and the temperature cycle deterioration rate were improved as compared with Comparative Example 1.
 尚、以上の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。 The above embodiment is merely illustrative of the present invention, and the present invention is not limited to the embodiment described directly, but includes various improvements and modifications made by those skilled in the art within the scope of the claims. Needless to say, it is included.
 本発明は、太陽電池モジュールの製造において、製造効率改善及び製品性能改善のために利用することができ、産業上の利用可能性は大である。 The present invention can be used for manufacturing efficiency improvement and product performance improvement in the manufacture of solar cell modules, and its industrial applicability is great.
 1 太陽電池モジュール
 2 フレーム
 3 PVパネル
 4 表面側カバー
 6 裏面側カバー
 7 封止材
10 受光面
11 フィンガー電極
12 バスバー電極
13 裏面電極
14 バスバー電極
20 タブ線
22 導電性接着媒体
DESCRIPTION OF SYMBOLS 1 Solar cell module 2 Frame 3 PV panel 4 Front side cover 6 Back side cover 7 Sealing material 10 Light-receiving surface 11 Finger electrode 12 Bus bar electrode 13 Back surface electrode 14 Bus bar electrode 20 Tab wire 22 Conductive adhesive medium

Claims (3)

  1.  複数の太陽電池セルを含んで構成され、
     各太陽電池セルは、表面及び裏面にそれぞれバスバー電極を有し、
     隣合う太陽電池セルのうち一方の太陽電池セルの表面側のバスバー電極と他方の太陽電池セルの裏面側のバスバー電極とがリボン状のタブ線を介して接続される、太陽電池モジュールであって、
     前記タブ線は、導電性ワイヤの織物若しくは編物からなり、前記バスバー電極に導電性接着媒体を介して接着されることを特徴とする、太陽電池モジュール。
    Comprising a plurality of solar cells,
    Each solar cell has a bus bar electrode on the front and back surfaces,
    A solar battery module in which a bus bar electrode on the front surface side of one solar battery cell and a bus bar electrode on the back surface side of the other solar battery cell are connected via a ribbon-shaped tab wire among adjacent solar battery cells. ,
    The tab wire is made of a woven or knitted conductive wire, and is bonded to the bus bar electrode via a conductive adhesive medium.
  2.  前記導電性ワイヤはその表面に粗化処理がなされていることを特徴とする、請求項1記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the surface of the conductive wire is roughened.
  3.  前記導電性ワイヤは銅線であることを特徴とする、請求項1記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the conductive wire is a copper wire.
PCT/JP2013/054482 2012-02-23 2013-02-22 Solar cell module WO2013125673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012037484A JP2013175502A (en) 2012-02-23 2012-02-23 Solar cell module
JP2012-037484 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125673A1 true WO2013125673A1 (en) 2013-08-29

Family

ID=49005850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054482 WO2013125673A1 (en) 2012-02-23 2013-02-22 Solar cell module

Country Status (2)

Country Link
JP (1) JP2013175502A (en)
WO (1) WO2013125673A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214348A1 (en) * 2017-08-17 2019-02-21 Opvius Gmbh Organic semiconductor module and method for its production
WO2022237314A1 (en) * 2021-05-12 2022-11-17 常州时创能源股份有限公司 Tandem connection assembly for photovoltaic cell layer and preparation method and application of tandem connection assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211154A (en) * 2014-04-28 2015-11-24 パナソニックIpマネジメント株式会社 Photovoltaic device, solar cell structure using the same and manufacturing method of solar cell structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381649U (en) * 1989-12-08 1991-08-21
JPH08312089A (en) * 1995-05-18 1996-11-26 Fuji Electric Corp Res & Dev Ltd Roof material for solar power generation
JPH11177117A (en) * 1997-12-12 1999-07-02 Showa Shell Sekiyu Kk Solar battery module
JP2001352089A (en) * 2000-06-08 2001-12-21 Showa Shell Sekiyu Kk Thermal expansion strain preventing solar cell module
JP2007123522A (en) * 2005-10-27 2007-05-17 Kyocera Corp Method of manufacturing solar cell module
JP2008147567A (en) * 2006-12-13 2008-06-26 Sanyo Electric Co Ltd Solar-battery module and method of manufacturing solar-battery module
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381649U (en) * 1989-12-08 1991-08-21
JPH08312089A (en) * 1995-05-18 1996-11-26 Fuji Electric Corp Res & Dev Ltd Roof material for solar power generation
JPH11177117A (en) * 1997-12-12 1999-07-02 Showa Shell Sekiyu Kk Solar battery module
JP2001352089A (en) * 2000-06-08 2001-12-21 Showa Shell Sekiyu Kk Thermal expansion strain preventing solar cell module
JP2007123522A (en) * 2005-10-27 2007-05-17 Kyocera Corp Method of manufacturing solar cell module
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
JP2008147567A (en) * 2006-12-13 2008-06-26 Sanyo Electric Co Ltd Solar-battery module and method of manufacturing solar-battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214348A1 (en) * 2017-08-17 2019-02-21 Opvius Gmbh Organic semiconductor module and method for its production
WO2022237314A1 (en) * 2021-05-12 2022-11-17 常州时创能源股份有限公司 Tandem connection assembly for photovoltaic cell layer and preparation method and application of tandem connection assembly

Also Published As

Publication number Publication date
JP2013175502A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5445419B2 (en) Solar cell module and manufacturing method thereof
KR100221179B1 (en) Group of solar cell elements, and solar cell module and production method thereof
WO2015133633A1 (en) Sealing sheet for solar cell modules, and solar cell module
US20100084001A1 (en) Solar cell module
WO2013018763A1 (en) Solar cell module and method of manufacturing same
US20180083152A1 (en) Crystalline silicon solar cell module and manufacturing method for same
US20120305047A1 (en) Solar cell, solar cell module and solar cell system
JP6280692B2 (en) SOLAR CELL MODULE AND CRYSTAL SOLAR CELL MODULE MANUFACTURING METHOD
JP5739076B2 (en) Solar cell module and manufacturing method thereof
WO2008016043A1 (en) Solar cell module
US20210159845A1 (en) Cascaded solar cell string
JP2013033848A (en) Solar cell module and manufacturing method of the same
JP2022135851A (en) Cell string structure, photovoltaic module and manufacturing methods therefor
JP2000216415A (en) Solar cell module, its manufacture and working method, and solar battery power generation system using the solar cell module
KR20120138021A (en) Solar cell module
WO2013125673A1 (en) Solar cell module
JPH07302923A (en) Photovoltaic device
WO2013150976A1 (en) Crystal system solar battery module and method for manufacturing same
CN111668330A (en) Double-sided back contact solar cell module
KR20130011328A (en) Ribbon and solar cell module comprising the same
KR102019310B1 (en) Solar cell module and manufacturing method for same
EP2533295B1 (en) Solar cell module
WO2019202958A1 (en) Solar battery device and method for manufacturing solar battery device
JP2016225446A (en) Sealing sheet for solar cell module and solar cell module
WO2020031574A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751326

Country of ref document: EP

Kind code of ref document: A1