WO2013125476A1 - Modified coal production equipment - Google Patents

Modified coal production equipment Download PDF

Info

Publication number
WO2013125476A1
WO2013125476A1 PCT/JP2013/053824 JP2013053824W WO2013125476A1 WO 2013125476 A1 WO2013125476 A1 WO 2013125476A1 JP 2013053824 W JP2013053824 W JP 2013053824W WO 2013125476 A1 WO2013125476 A1 WO 2013125476A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
oxygen adsorption
oxygen
adsorption rate
test
Prior art date
Application number
PCT/JP2013/053824
Other languages
French (fr)
Japanese (ja)
Inventor
飛太 阿部
慶一 中川
大本 節男
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380005660.2A priority Critical patent/CN104053756B/en
Priority to DE112013001126.3T priority patent/DE112013001126T5/en
Priority to AU2013223341A priority patent/AU2013223341B2/en
Priority to US14/373,584 priority patent/US20150027872A1/en
Publication of WO2013125476A1 publication Critical patent/WO2013125476A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • C10L9/06Treating solid fuels to improve their combustion by chemical means by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/083Torrefaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a modified coal production facility, and is particularly effective when applied to reforming a low-grade coal having a high moisture content such as lignite or subbituminous coal.
  • Low-grade coal such as lignite and sub-bituminous coal, which has a high water content, has a large reserve, but its calorific value per unit weight is low. The calorific value per weight is increased.
  • the heated low-grade coal is easy to adsorb water, and the surface carboxyl groups and the like are released to generate radicals on the surface, so that the surface activity becomes high and reacts with oxygen in the air. Since it becomes easy, there exists a possibility that it may ignite spontaneously with the reaction heat accompanying the said reaction.
  • the dry-distilled coal obtained by drying and dry-distilling low-grade coal is heated (about 150 to 170 ° C.) in a low-oxygen atmosphere (about 10% oxygen concentration).
  • a part of the surface of the dry-distilled coal is oxidized to perform a deactivation treatment that reduces the activity of the surface of the dry-distilled coal, thereby producing a modified coal that suppresses spontaneous combustion.
  • the composition of the raw material coal varies depending on the sampled mountain, so that it is inactive regardless of the raw material coal of any composition.
  • Various treatment conditions such as the oxygen concentration in the atmosphere of the inactivation treatment, the ambient temperature, and the treatment time are set so that the activation can be sufficiently performed. For this reason, even for raw coal that can be sufficiently deactivated under relatively loose processing conditions, the inactivation is performed under relatively severe processing conditions, resulting in waste of processing costs. It was.
  • the present invention provides a modified coal production facility that can easily produce a modified coal by performing an inactivation treatment under necessary and sufficient conditions even for raw material coal of various compositions.
  • the purpose is to provide.
  • the modified coal production facility according to the first invention for solving the above-mentioned problem is a drying means for making dry coal by removing moisture from raw coal, and dry distillation coal by dry distillation of the dry coal
  • a reformed coal production facility comprising: a dry distillation means; and an inactivation treatment means for heating the dry distillation coal with a treatment gas containing oxygen to inactivate the reformed coal.
  • a part of the dried coal dried by the drying means is fractionated to obtain an oxygen adsorption rate Vd of the dried coal, and the deactivation treatment means is inactivated.
  • a second oxygen adsorption rate measuring means for fractionating a part of the modified coal to determine the oxygen adsorption rate Vr of the modified coal, the following oxygen adsorption rate ratio Oxygen adsorption from the calculation formula
  • the deactivation processing means is controlled so as to maintain the deactivation processing condition, and the oxygen adsorption rate
  • the ratio N is larger than the range of the standard value Ns
  • the increased oxygen concentration value Oa into the processing gas corresponding to the oxygen adsorption rate ratio N is read from the map, and the current oxygen concentration in the processing gas
  • a corrected oxygen concentration value Oc in the processing gas is calculated, and the deactivation processing means is controlled so that the processing gas becomes the corrected oxygen concentration value Oc.
  • a reduced oxygen concentration value Od into the process gas corresponding to the oxygen adsorption rate ratio N is read from the map, and the process gas Current oxygen concentration in Based on Op and the reduced oxygen concentration value Od, a corrected oxygen concentration value Oc in the processing gas is calculated, and the deactivation processing means is controlled so that the processing gas becomes the corrected oxygen concentration value Oc.
  • Computational control means is provided.
  • the main arithmetic control means when the corrected oxygen concentration value Oc exceeds the upper limit value Ou, the oxygen adsorption rate ratio N Is read from the map, and a corrected temperature value Tc is calculated based on the current temperature value Tp in the process gas and the increased temperature value Ta, and the process gas is corrected.
  • the deactivation processing means is controlled so as to have a temperature value Tc.
  • the modified coal production facility is the first or second aspect of the invention, wherein the second oxygen adsorption rate measuring means is inactivated by the inactivation means.
  • a portion of the reformed coal is sampled and every time the specified time Ts elapses, a portion of the new reformed coal that has been deactivated by the deactivation processing means is again sorted and the modified coal is separated.
  • the oxygen adsorption rate Vr n-1 that this is newly sought immediately before the oxygen adsorption rate Vr n and time determined based on, it calculates the stability S from stability calculation formula, when the stability S is in the range of standard value Ss, the oxygen adsorption rate Vd, on the basis of Vr n, oxygen adsorption rate below
  • the oxygen adsorption rate ratio N is recalculated from the ratio recalculation formula, and the standard value Ns The comparison is performed again.
  • the reformed coal production facility is the modified coal production facility according to any one of the first to third aspects, wherein the first oxygen adsorption rate measuring means is the dry coal dried by the drying means.
  • first sub-operation control means for calculating the oxygen adsorption rate Vd of the dry coal from the following dry coal oxygen adsorption rate calculation formula based on the weights Wd1 and Wd2 weighed by the first weighing unit. And comprising A second fractionation means, wherein the second oxygen adsorption rate measuring means fractionates a part of the modified coal deactivated by the inactivation treatment means as a sample; and the second fractionation means A second test means for performing an oxygen adsorption test by exposing the sample fractionated in step (b) to an oxygen-containing gas at a test temperature for a test time Tr; and before the oxygen adsorption test fractionated by the second fractionation means.
  • a second sub-operation control means for calculating the oxygen adsorption rate Vr of the modified coal from a modified coal oxygen adsorption rate calculation formula.
  • Vd (Wd2 ⁇ Wd1) / (Wd1 ⁇ Td) ⁇ 100
  • Modified coal oxygen adsorption rate calculation formula: Vr (Wr2 ⁇ Wr1) / (Wr1 ⁇ Tr) ⁇ 100
  • the reformed coal production facility is the modified coal production facility according to any one of the first to third aspects, wherein the first oxygen adsorption rate measuring means is the dry coal dried by the drying means.
  • First sorting means for sorting a part as a sample, first weighing means for weighing the weight Wd1 of the sample sorted by the first sorting means, and the first sorting means Measuring the pressure inside the first test means, and a first test means for performing an oxygen adsorption test by keeping the sample separated in step 2 in an oxygen-containing atmosphere at a constant temperature in a test temperature Td.
  • a first pressure measuring means an internal pressure Pd1 before the oxygen adsorption test of the first testing means measured by the first pressure measuring means that is hermetically maintained in a constant temperature state in the oxygen-containing atmosphere, and Internal pressure Pd2 immediately after the oxygen adsorption test and before First sub-operation control means for calculating the oxygen adsorption rate Vd of the dry coal from the following dry coal oxygen adsorption rate calculation formula based on the weight Wd1 weighed by the first weighing unit, A second oxygen adsorption rate measuring means, a second fractionation means for fractionating a part of the modified coal deactivated by the inactivation treatment means as a sample; and the second fractionation A second weighing means for weighing a weight Wr1 of the sample separated by the means, and the sample separated by the second sorting means is hermetically sealed in a constant temperature state of an oxygen-containing atmosphere at a test time Tr.
  • a second test means for holding and performing an oxygen adsorption test a second pressure measuring means for measuring the pressure inside the second test means, and the inside being kept airtight in a constant temperature state in the oxygen-containing atmosphere.
  • the second pressure measuring means Based on the internal pressure Pr1 before the oxygen adsorption test of the second test means, the internal pressure Pr2 immediately after the oxygen adsorption test, and the weight Wr1 weighed by the second weighing means, the following modified coal oxygen adsorption rate calculation And a second sub-operation control means for calculating the oxygen adsorption rate Vr of the modified coal from the equation.
  • Vd Qd / (Wd1 ⁇ Td) ⁇ 100
  • Modified coal oxygen adsorption rate calculation formula: Vr Qr / (Wr1 ⁇ Tr) ⁇ 100
  • Qd is the oxygen adsorption amount of dry coal
  • Qr is the oxygen adsorption amount of the modified coal, and is a value obtained from the following formula.
  • Qd [ ⁇ (Pd1-Pd2) / 1013 ⁇ ⁇ ⁇ Cd ⁇ (Wd1 / D) ⁇ ] / (22.4 ⁇ Wd1)
  • Qr [ ⁇ (Pr1-Pr2) / 1013 ⁇ ⁇ ⁇ Cr- (Wr1 / D) ⁇ ] / (22.4 ⁇ Wr1)
  • Cd is the internal volume of the first test means
  • Cr is the internal volume of the second test means
  • D is the true density of the raw material coal.
  • the modified coal production facility according to the sixth invention is characterized in that, in any of the first to fifth inventions, the raw coal is lignite or subbituminous coal.
  • the modified coal production facility it is possible to easily produce a modified coal by performing an inactivation treatment under necessary and sufficient conditions even for raw material coal of various compositions.
  • FIG. 3 is a control flow diagram following FIG. 2.
  • FIG. 4 is a control flow diagram following FIG. 3.
  • FIG. 7 is a control flow diagram following FIG. 6.
  • FIG. 8 is a control flow diagram following FIG. 7.
  • the outlet of a mill-type pulverizer 111 that pulverizes low-grade coal 1 that is raw coal such as subbituminous coal and lignite coal is a steam tube dryer that evaporates moisture 2 in the low-grade coal 1.
  • the drying device 112 of the type is connected to the inlet of the low-grade coal 1 via a rotary valve 121, and the drying device 112 is a heating medium inside a coiled heating tube disposed in the central portion.
  • the low-grade coal 1 can be heated (about 100 ° C.) to remove the moisture 2 from the low-grade coal 1 to obtain dry coal 3.
  • the discharge port of the dry coal 3 of the drying device 112 is connected to the upstream side of the conveyor 113 in the transport direction via a rotary valve 122.
  • the downstream side in the transport direction of the conveyor 113 is connected to the dry coal 3 receiving port of the rotary kiln type dry distillation apparatus 114 for carbonizing the dry coal 3 via a rotary valve 123, and the dry distillation apparatus 114 is By supplying combustion gas 102 as a heating medium to the outer jacket fixedly supported, the dry coal 3 is heated and distilled (400 to 600 ° C.) to remove the volatile component 4 from the dry coal 3.
  • combustion gas 102 as a heating medium
  • the discharge port of the dry distillation coal 6 of the dry distillation device 114 is connected to the upstream side of the conveyor 115 in the transport direction via a rotary valve 124.
  • a downstream side of the conveyor 124 in the conveying direction is connected to a receiving port of the dry distillation coal 6 of a steam tube dryer type cooling device 116 for cooling the dry distillation coal 6 via a rotary valve 125.
  • the dry-distilled coal 6 can be cooled (100 ° C. or lower) by supplying the cooling water 103 as a cooling medium to the inside of the coiled cooling pipe disposed in the central portion. .
  • the discharge port of the dry distillation coal 6 of the cooling device 116 is a continuous processing type inactivation processing device such as a circular grade type or a sintering machine type (mesh conveyor type) for inactivating the dry distillation coal 6.
  • the apparatus main body 131 is connected to the inlet of the dry-distilled coal 6 via a rotary valve 126.
  • a nitrogen gas supply source 132 is connected to the lower portion of the apparatus main body 131 via a blower 133 and a heater 134.
  • a blower 135 for feeding air 104 is connected between the blower 133 and the heater 134.
  • the nitrogen gas 105 which is an inert gas from the nitrogen gas supply source 132, and the external air 104 are mixed to form the processing gas 106 containing oxygen as the heating gas 106.
  • the vessel 134 By operating the vessel 134, the processing gas 106 can be heated, and the dry-distilled coal 6 inside the apparatus main body 131 is heated with the processing gas 106 to be inactivated, and the modified coal 7 It can be done.
  • the oxygen gas concentration in the processing gas 106 can be adjusted, and the heater 134 is adjusted. By doing so, the temperature of the processing gas 106 can be adjusted.
  • the outlet of the reformed coal 7 of the apparatus main body 131 is connected to the upstream side of the conveyor 117 in the transport direction via a rotary valve 127.
  • a downstream side of the conveyor 117 in the transport direction is connected to a receiving port of the modified coal 7 of the storage tank 118 that stores the modified coal 7 via a rotary valve 128.
  • the pulverizing device 111, the drying device 112, the conveyor 113, the rotary valves 121, 122, and the like constitute drying means, and the dry distillation device 114, the conveyor 115, and the cooling device 116.
  • the rotary valves 123 to 125 constitute dry distillation means, the apparatus main body 131, the nitrogen gas supply source 132, the blowers 133 and 135, the deactivation processing device 130 such as the heater 134, the conveyor 117,
  • the rotary valves 126, 127, etc. constitute deactivation processing means, and the storage tank 118, the rotary valve 128, etc. constitute storage means.
  • the conveyor 113 is provided with a first sorting device 141 for sorting a part of the dry coal 3 dried by the drying device 112 as a sample 3a.
  • a first sample moving device 142 that receives and moves the sample 3 a from the first sorting device 141 is in communication with the first sorting device 141.
  • the first sample moving device 142 includes a first test device 143 that performs an oxygen adsorption test of the sample 3a sorted by the first sorting device 141, and the first sorting device 141 that sorts the sample 3a.
  • a first weighing device 144 that weighs the weight of the sample 3a before the oxygen adsorption test and the weight of the sample 3b after the oxygen adsorption test can be communicated with each other.
  • the first test apparatus 143 is connected to a blower 149a and a heater 149b for supplying air 104 which is an oxygen-containing gas heated in the test apparatus 143.
  • the conveyor 117 is attached with a second sorting device 145 for sorting a part of the modified coal 7 deactivated by the deactivation processing device 130 as a sample 7a.
  • a second sample moving device 146 that receives and moves the sample 7a from the second sorting device 145 communicates with the second sorting device 145.
  • the second sample moving device 146 includes a second test device 147 that performs an oxygen adsorption test on the sample 7 a that has been collected by the second sorting device 145 and the second sorting device 145 that has sorted the sample 7 a.
  • a second weighing device 148 that weighs the weight of the sample 7a before the oxygen adsorption test and the weight of the sample 7b after the oxygen adsorption test can be communicated with each other.
  • the second test apparatus 147 is connected to the blower 149a and the heater 149b for feeding the heated air 104 into the test apparatus 147.
  • the weighing devices 144 and 148 are electrically connected to the input unit of the arithmetic control device 150 having a built-in timer.
  • the output unit of the arithmetic and control unit 150 includes the blowers 133 and 135, the heater 134, the sorting devices 141 and 145, the sample moving devices 142 and 146, the test devices 143 and 147, the blower 149a, and the heating.
  • the calculation control device 150 is electrically connected to each of the devices 149b, and the calculation control device 150 is based on the information from the timer or the like, and the sorting devices 141 and 145, the sample moving devices 142 and 146, the testing device 143 and the like. 147, the blower 149a, the heater 149b, etc. can be operated and controlled, and the blowers 133, 135, the heater 134, etc. are controlled based on information from the weighing devices 144, 148, etc. (Details will be described later).
  • the first sorting device 141 and the like constitute a first sorting means
  • the first sample moving device 142 and the like constitute a first sample moving means
  • the first sorting device and the like constitute a first sorting device
  • the test device 143, the blower 149a, the heater 149b, etc. constitute a first test means
  • the first weighing device 144, etc. constitute a first weighing means
  • the second sample moving device 146 etc. constitutes a second sample moving device
  • the second test device 147, the blower 149a, the heater 149b etc. constitute a second test means.
  • the second weighing device 148 and the like constitute second weighing means
  • the arithmetic and control device 150 and the like constitute main arithmetic control means, first sub-arithmetic control means, and second sub-arithmetic control means.
  • the second oxygen adsorption rate measuring means is configured.
  • the pulverizer 111 When the low-grade coal 1 is supplied to the hopper 111a of the pulverizer 111, the pulverizer 111 pulverizes the low-grade coal 1 to a predetermined particle size, and the drying device 112 via the rotary valve 121. To supply. The drying device 112 heats and dries the low-grade coal 1 with the heat of the water vapor 101 (about 100 ° C.) to remove moisture 2 to form the dry coal 3, and then passes the rotary valve 122 through the rotary valve 122. Feed to the conveyor 113. The conveyor 113 feeds the dry coal 3 to the dry distillation apparatus 114 via the rotary valve 123.
  • the dry distillation device 114 heats and dry-distills the dry coal 3 (400 to 600 ° C.) to remove the volatile component 4 to make the dry-distilled coal 6 by the heat of the combustion gas 102, and then turns the rotary valve 124.
  • the conveyor 115 supplies the dry-distilled coal 6 to the cooling device 116 via the rotary valve 125.
  • the cooling device 116 cools the dry-distilled coal 6 with the cooling water 103 (100 ° C. or less), and then feeds it into the device main body 131 of the deactivation processing device 130 via the rotary valve 126. .
  • the deactivation processing device 130 is a processing gas 106 in which the nitrogen gas 105 from the nitrogen gas supply source 132 and the external air 104 are mixed by the blowers 133 and 135 and the heater 134 (oxygen concentration: 1.. 5%) is heated (50 ° C.) and fed to the inside of the apparatus main body 131, and the dry-distilled coal 6 in the apparatus main body 131 is heated and deactivated to obtain the modified coal 7. , And fed to the conveyor 117 via the rotary valve 127. The conveyor 117 supplies and stores the modified coal 7 to the storage tank 118 through the rotary valve 128.
  • the arithmetic and control unit 150 uses a part of the dry coal 3 dried by the drying unit 112 as the sample 3a from the conveyor 113.
  • the first sample moving device After controlling the operation of the first sorting device 141 so as to sort (S101 in FIG. 2), the first sample moving device so as to receive the sorted sample 3a from the first sorting device 141. 142 controls the operation.
  • the arithmetic and control unit 150 controls the operation of the first sample moving unit 142 so that the weight Wd1 (g) of the sample 3a is measured by the first weighing unit 144 (S102 in FIG. 2).
  • the first sample moving device 142 is controlled to move the weighed sample 3a into the first test device 143.
  • the arithmetic and control unit 150 operates the blower 149a and the heater 149b so as to supply the air 104 heated to a predetermined test temperature (for example, 95 ° C.) into the first test unit 143.
  • a predetermined test temperature for example, 95 ° C.
  • the sample 3a is exposed to the air 104 at the test temperature to perform an oxygen adsorption test (S103 in FIG. 2).
  • the arithmetic and control unit 150 adds the sample 3b that has been subjected to the oxygen adsorption test to the first sample based on information from the timer.
  • Td predetermined test time
  • the arithmetic and control unit 150 adds the sample 3b that has been subjected to the oxygen adsorption test to the first sample based on information from the timer.
  • the weight Wd2 (g) of the sample 3b is weighed by the first weighing device 144 ( In FIG. 2, the operation of the first sample moving device 142 is controlled so that the sample 3b is discharged out of the system (S104).
  • the arithmetic and control unit 150 calculates the drying from the dry coal oxygen adsorption rate calculation formula (11) below based on the weights Wd1 and Wd2.
  • the oxygen adsorption rate Vd (wt% / min.) Of the coal 4 is calculated (S105 in FIG. 2).
  • Vd (Wd2-Wd1) / (Wd1 ⁇ Td) ⁇ 100 (11)
  • the arithmetic and control unit 150 sorts the part of the reformed coal 7 deactivated by the apparatus main body 131 of the deactivation processing unit 130 as the sample 7a from the conveyor 117. After the operation of the second sorting device 145 is controlled (S106 in FIG. 2), the second sample moving device 146 is controlled to receive the sample 7a that has been sorted from the second sorting device 145.
  • the arithmetic and control unit 150 controls the operation of the second sample moving unit 146 so that the weight Wr1 (g) of the sample 7a is measured by the second weighing unit 148 (S107 in FIG. 2).
  • the second sample moving device 146 is controlled to operate so that the weighed sample 7 a is positioned in the second test device 147.
  • the arithmetic and control unit 150 operates the blower 149a and the heater 149b so as to supply the air 104 heated to a predetermined test temperature (for example, 95 ° C.) into the second test unit 147.
  • a predetermined test temperature for example, 95 ° C.
  • the sample 7a is exposed to the air 104 at the test temperature to perform an oxygen adsorption test (S108 in FIG. 2).
  • the arithmetic and control unit 150 determines the sample 7b on which the adsorption test has been performed on the second test based on information from the timer.
  • the second sample moving device 146 is controlled to move from the device 147 to the second weighing device 148, and the weight Wr2 (g) of the sample 3b is weighed by the second weighing device 148 (see FIG. 2, the operation of the second sample moving device 146 is controlled so that the sample 7 b is discharged out of the system.
  • the arithmetic and control unit 150 calculates the above-described modified coal oxygen adsorption rate calculation formula (12) based on the weights Wr1 and Wr2.
  • the oxygen adsorption rate Vr (wt% / min.) Of the modified coal 7 is calculated (S110 in FIG. 2).
  • Vr (Wr2-Wr1) / (Wr1 ⁇ Tr) ⁇ 100 (12)
  • the arithmetic and control unit 150 calculates the following based on the oxygen adsorption rates Vd and Vr.
  • the oxygen adsorption rate ratio N is calculated from the oxygen adsorption rate ratio calculation formula (13) (S111 in FIG. 2).
  • the arithmetic and control unit 150 determines whether or not the oxygen adsorption rate ratio N is within a range of a standard value Ns (for example, 0 to 0.05) (S112 in FIG. 2), and the standard value Ns. If it is within the range, it is determined that the inactivation process is properly performed, and the blowers 133, 135 and Operation of the heater 134 is controlled (S113 in FIG. 2).
  • Ns for example, 0 to 0.05
  • the arithmetic and control unit 150 determines whether or not the oxygen adsorption rate ratio N is larger than the range of the standard value Ns ( In FIG. 3, when S114) is larger than the range of the standard value Ns (N> Ns), it is determined that the inactivation process is insufficient, and is set corresponding to the oxygen adsorption rate ratio N.
  • the increased oxygen concentration value Oa into the processing gas 106 is read out from a previously input map (S115 in FIG. 3), and the current oxygen concentration value Op in the processing gas 106 and the increased oxygen concentration value Oa are read out. Based on the above, a corrected oxygen concentration value Oc in the processing gas 106 is calculated (S116 in FIG. 3).
  • the arithmetic and control unit 150 determines whether or not the corrected oxygen concentration value Oc is equal to or lower than an upper limit value Ou (for example, 10%) (S117 in FIG. 3).
  • an upper limit value Ou for example, 10%
  • the blowers 133 and 135 of the deactivation processing apparatus 130 are controlled to operate so that the processing gas 106 becomes the corrected oxygen concentration value Oc (S118 in FIG. 3).
  • the arithmetic and control unit 150 determines that the response due to the increase in the oxygen concentration of the processing gas 106 is inappropriate, An increased temperature value Ta of the processing gas 106 set corresponding to the oxygen adsorption rate ratio N is read from a previously input map (S119 in FIG. 3), and the current temperature value in the processing gas 106 is read. A corrected temperature value Tc of the processing gas 106 is calculated based on Tp and the increased temperature value Ta (S120 in FIG. 3).
  • the arithmetic and control unit 150 determines whether or not the corrected temperature value Tc is equal to or lower than an upper limit value Tu (for example, 95 ° C.) (S121 in FIG. 3).
  • an upper limit value Tu for example, 95 ° C.
  • the heater 134 of the deactivation processing apparatus 130 is controlled to operate so that the processing gas 106 becomes the corrected temperature value Tc (S122 in FIG. 3).
  • the arithmetic and control unit 150 determines that the deactivation process cannot be appropriately performed for some reason, and the modified coal 7 A command necessary for interrupting the manufacturing of the device is transmitted (S123 in FIG. 3).
  • step S114 when the oxygen adsorption rate ratio N is smaller than the range of the standard value Ns (N ⁇ Ns), it is determined that the arithmetic and control unit 150 is excessively inactivated. Then, a reduced oxygen concentration value Od from the processing gas 106 set corresponding to the oxygen adsorption rate ratio N is read from a previously input map (S124 in FIG. 3), and the processing gas 106 is read out.
  • the corrected oxygen concentration value Oc in the processing gas 106 is calculated on the basis of the current oxygen concentration value Op and the reduced oxygen concentration value Od in the processing gas (S125 in FIG. 3), and the processing gas is subjected to the corrected oxygen concentration value.
  • the blowers 133 and 135 of the deactivation processing apparatus 130 are controlled to be Oc (S118 in FIG. 3).
  • the blowers 133 and 135 and the heater 134 of the deactivation processing apparatus 130 are operated and controlled so as to appropriately perform the deactivation processing, and the specified time Ts ( For example, when 1 hour elapses (S126 in FIG. 4), the arithmetic and control unit 150 performs the new modification that has been deactivated by the deactivation processing unit 130 in the same manner as in steps S106 to S110. was collected again divided part quality coal 7 as a sample 7a n (in FIG. 4, S127), after weighing the weight Wr1 n (g) of the sample 7a n before the oxygen adsorption test (in FIG.
  • Vr n (Wr2 n ⁇ Wr1 n ) / (Wr1 n ⁇ Tr) ⁇ 100 (14)
  • the arithmetic and control unit 150 performs the following based on the oxygen adsorption rate Vr n newly obtained this time and the oxygen adsorption rate Vr n-1 (Vr in this case) obtained immediately before this time.
  • the stability S of the inactivation processing is calculated from the stability calculation formula (15) (S132 in FIG. 4).
  • the arithmetic and control unit 150 determines whether or not the stability S is within a standard value Ss (for example, 0 to 0.01) (S133 in FIG. 4), and the range of the standard value Ss. If it is within the range, it is determined that the inactivation process has been stably performed, and the oxygen adsorption rate Vd obtained from the samples 3a and 3b of the dry coal 3 and the current time are determined.
  • a standard value Ss for example, 0 to 0.01
  • the arithmetic and control unit 150 determines that the inactivation process is in an unstable state and cannot be determined appropriately. Then, returning to the step S126, the steps S127 to S133 are performed again.
  • the modified coal production facility 100 even if the low-grade coal 1 has various compositions, the modified coal can be easily produced at low cost.
  • the first sample moving device 142 that receives and moves the sample 3 a from the first sorting device 141 includes the oxygen contained in the sample 3 a sorted by the first sorting device 141.
  • a first test device 243 which is a first test means for performing an oxygen adsorption test while keeping the inside of a constant temperature state (for example, 20 ° C.) of an air atmosphere which is an atmosphere, and the first sorting device 141 for sorting. It is possible to communicate with the first weighing device 144 for weighing the sample 3a.
  • the first test apparatus 243 is provided with a pressure sensor 243a that is a first pressure measuring unit that measures the pressure inside the test apparatus 243.
  • the second sample moving device 146 that receives and moves the sample 7a from the second sorting device 145 is an air atmosphere in which the sample 7a sorted by the second sorting device 145 is an oxygen-containing atmosphere.
  • a second test device 247 which is a second test means for performing an oxygen adsorption test while maintaining airtightness in a constant temperature state (for example, 20 ° C.), and the sample 7a sorted by the second fractionation device 145 It is possible to communicate with a second weighing device 148 for weighing each of the two.
  • the second test apparatus 247 is provided with a pressure sensor 247a which is a second pressure measuring means for measuring the pressure inside the test apparatus 247.
  • the pressure sensors 243a and 247a are electrically connected together with the weighing devices 144 and 148 to the input unit of the arithmetic control device 250 having a built-in timer or the like.
  • the output unit of the arithmetic control device 250 is electrically connected to the blowers 133 and 135, the heater 134, the sorting devices 141 and 145, and the sample moving devices 142 and 146, together with the test devices 243 and 247, respectively.
  • the arithmetic and control unit 250 controls the operations of the sorting devices 141 and 145, the sample moving devices 142 and 146, the test devices 243 and 247, etc., based on information from the timer and the like.
  • the blowers 133 and 135, the heater 134 and the like can be controlled based on information from the weighing devices 144 and 148 and the pressure sensors 243a and 247a (details). Will be described later).
  • the arithmetic control device 250 or the like is configured to serve as the main arithmetic control means, the first sub arithmetic control means, and the second sub arithmetic control means.
  • the modified coal production facility 200 is similar to the modified coal production facility 100 according to the embodiment described above.
  • the dry coal 3 is obtained by removing moisture 2 from the low-grade coal 1, the dry coal 3 is dry-distilled to form the dry-distilled coal 6, and the dry-distilled coal 6 is heated with the processing gas 106 to be inactivated.
  • the modified coal 7 is stored in the storage tank 118.
  • the arithmetic and control unit 250 is configured to sort a part of the dry coal 3 dried by the drying device 112 as the sample 3a from the conveyor 113.
  • the first sample moving device 142 is controlled to receive the sample 3a thus sorted from the first sorting device 141.
  • the arithmetic and control unit 250 operates the first sample moving device 142 so that the weight Wd1 (g) of the sample 3a is weighed by the first weighing device 144 as in the case of the above-described embodiment.
  • the first sample moving device 142 is controlled to seal the weighed sample 3a inside the first test device 243, information from the pressure sensor 243a is obtained.
  • the internal pressure Pd1 (hPa) before the oxygen adsorption test of the first test apparatus 243 is measured (S203 in FIG. 6).
  • the arithmetic and control unit 250 sets the sample 3a to a predetermined test time Td (min.) (For example, in a constant temperature air atmosphere inside the first test unit 243). 10 minutes)
  • Td predetermined test time
  • the arithmetic and control unit 250 sets the sample 3a to a predetermined test time Td (min.) (For example, in a constant temperature air atmosphere inside the first test unit 243). 10 minutes)
  • the arithmetic and control unit 250 sets the sample 3a to a predetermined test time Td (min.) (For example, in a constant temperature air atmosphere inside the first test unit 243). 10 minutes)
  • Td predetermined test time
  • the internal pressure Pd2 (hPa) after the oxygen adsorption test of the first test device 243 S205 in FIG. 6
  • the operation of the first sample moving device 142 is controlled so that the sample 3b after the oxygen adsorption test is discharged out of the system from the first test device 243.
  • the arithmetic and control unit 250 determines the weight Wd1 and the internal pressures Pd1 and Pd2. Based on the dry coal oxygen adsorption rate calculation formulas (21) and (22) below, the oxygen adsorption rate Vd (wt% / min.) Of the dry coal 3 is calculated (S206 in FIG. 6).
  • Vd Qd / (Wd1 ⁇ Td) ⁇ 100 (21)
  • Qd is the oxygen adsorption amount (mmol-O 2 / g-coal) of the dry coal 3, and is a value obtained from the following formula (22).
  • Cd is the internal volume (cm 3 ) of the first test apparatus 243
  • D is the true density (g / cm 3 ) of the low-grade coal 1, each of which is obtained in advance.
  • the arithmetic and control unit 250 separates a part of the modified coal 7 deactivated by the deactivation processing unit 130 from the conveyor 117 as a sample 7a.
  • the second sample moving device 146 is received so as to receive the sorted sample 7a from the second sorting device 145. To control the operation.
  • the arithmetic and control unit 250 operates the second sample moving unit 146 so that the weight Wr1 (g) of the sample 7a is weighed by the second weighing unit 148 as in the case of the above-described embodiment.
  • the control S208 in FIG. 6
  • the second sample moving device 146 is controlled to seal the weighed sample 7a inside the second test device 247
  • information from the pressure sensor 247a is obtained.
  • the internal pressure Pr1 (hPa) before the oxygen adsorption test of the second test apparatus 247 is measured (S209 in FIG. 6).
  • the arithmetic and control unit 250 sets the sample 7a to a predetermined test time Tr (min.) (For example, in a constant temperature air atmosphere inside the second test unit 247). 10 minutes) After the oxygen adsorption test by holding the gas tightly (S210 in FIG. 6), based on the information from the pressure sensor 247a, the internal pressure Pr2 (hPa) after the oxygen adsorption test of the second test device 247 (S211 in FIG. 6), the second sample moving device 146 is controlled to discharge the sample 7b after the oxygen adsorption test from the second test device 247 to the outside of the system.
  • Tr predetermined test time Tr
  • the arithmetic and control unit 250 calculates the weight Wr1 and the internal pressures Pr1 and Pr2. Based on the following modified coal oxygen adsorption rate calculation formula (23), the oxygen adsorption rate Vr (wt% / min.) Of the modified coal 7 is calculated (S212 in FIG. 6).
  • Vr Qr / (Wr1 ⁇ Tr) ⁇ 100 (23)
  • Qr is the oxygen adsorption amount (mmol-O 2 / g-coal) of the modified coal 7, and is a value obtained from the following equation (24).
  • Cr is the internal volume (cm 3 ) of the second test apparatus 247 and is a value obtained in advance.
  • the oxygen adsorption rate ratio N is calculated from the oxygen adsorption rate ratio calculation formula (13) (S111 in FIG. 6).
  • the arithmetic and control unit 250 performs the steps S112 to S126 as in the above-described embodiment (see FIGS. 6 to 8).
  • the blower 133, 135 and the heater 134 of the deactivation processing apparatus 130 are operated and controlled so as to appropriately perform the deactivation processing, and the modified coal
  • Ts for example, 1 hour
  • the arithmetic and control unit 250 causes the deactivation processing unit 130 to perform the inactivation in the same manner as in steps S207 to S212.
  • Vr n Qr n / (Wr1 n ⁇ Tr) ⁇ 100 (25)
  • Qr n is the oxygen adsorption amount (mmol-O 2 / g-coal) of newly reformed coal 7 that has been newly separated, and is obtained from the following equation (26) similar to the equation (24). Value.
  • the arithmetic and control unit 250 described above based on the oxygen adsorption rate Vr n newly obtained this time and the oxygen adsorption rate Vr n-1 (Vr in this case) obtained immediately before this time.
  • the stability S is calculated from the equation (15) (S132 in FIG. 8).
  • the said arithmetic and control unit 250 performs said step S133, S134 similarly to the case of embodiment mentioned above (refer FIG. 8). Thereafter, the arithmetic and control unit 250 performs operation control in the same manner as in the above-described embodiment (see FIGS. 6 to 8).
  • the composition of the low-grade coal 1 has variations, as in the case of the modified coal manufacturing facility 100 according to the above-described embodiment.
  • inactivation treatment can be easily performed under necessary and sufficient conditions corresponding to the composition of the low-grade coal 1.
  • the reformed coal production facility 100 according to the present embodiment as in the case of the reformed coal production facility 100 according to the above-described embodiment, even with the low-grade coal 1 having various compositions, the cost is low.
  • the modified coal can be easily produced.
  • the arithmetic control devices 150 and 250 are configured to serve as the main arithmetic control means, the first sub arithmetic control means, and the second sub arithmetic means.
  • the main calculation control means, the first sub calculation control means, and the second sub calculation means independently of each other.
  • the sample 3a sorted by the first sorting device 141 is moved to the first weighing device 144 and the first testing devices 143 and 243 by the first sample moving device 142.
  • the sample 7a sorted by the second sorting device 145 is moved to the second weighing device 148 and the second testing devices 147 and 247 by the second sample moving device 146.
  • the sample 3a sorted by the first sorting means and the sample 7a sorted by the second sorting means are moved by the same sample moving means.
  • the first weighing means and the second weighing means can be configured to serve as the same weighing means, or the first testing means and the second testing means can be used as the same testing means. It is also possible to configure the.
  • the processing gas 106 having a desired oxygen concentration is generated by mixing the nitrogen gas 105 and the air 104.
  • the nitrogen gas 105 is used. It is also possible to generate the processing gas 106 having a desired oxygen concentration by mixing the oxygen gas and the oxygen gas. However, if the processing gas 106 having a desired oxygen concentration is generated by mixing the nitrogen gas 105 and the air 104 as in the above-described embodiment, it is not necessary to prepare the oxygen gas. So very preferable.
  • a nitrogen gas cylinder prepared only for generating the processing gas 106 can be applied, and in addition, for example, nitrogen gas supplied to the dry distillation apparatus, for example. It is also possible to apply dry distillation gas (main component: nitrogen gas) from which volatile components and dust, etc. have been separated after carbonizing low-grade coal and sending it from the carbonization device. It is possible to reduce the heat energy newly added to the processing gas 106 when performing.
  • main component nitrogen gas
  • the modified coal 7 is not limited to this, Drying
  • the reformed coal production facility according to the present invention can be used for industrially extremely beneficial because it can produce a reformed coal by simply inactivating at low cost even if it is a raw material coal of various compositions. can do.

Abstract

Modified coal production equipment comprising: first oxygen adsorption speed measuring means (141-144, 149a, 149b), etc., that sort dried coal (3) dried in a drying device (112), and find the oxygen adsorption speed (Vd) of the dried coal (3); second oxygen adsorption speed measuring means (145-148, 149a, 149b) that sort modified coal (7) deactivated by an deactivation treatment device (130), and find the oxygen adsorption speed (Vr) of the modified coal (7); and an arithmetic control device (150) that calculates the oxygen adsorption speed ratio (N) from formula (Vr-Vd)/Vd=N, on the basis of Vd and Vr, and, if N>Ns (a standard value), reads from a map the increased oxygen concentration value (Oa) in a processing gas (106) corresponding to N, calculates a revised oxygen concentration value (Oc) on the basis of the current oxygen concentration value (Op) and Oa, and controls blowers (133, 135) so as to reach Oc.

Description

改質石炭製造設備Modified coal production facility
 本発明は、改質石炭製造設備に関し、特に、褐炭や亜瀝青炭等のような多孔質で水分含有量の多い低品位石炭を改質する場合に適用すると有効なものである。 The present invention relates to a modified coal production facility, and is particularly effective when applied to reforming a low-grade coal having a high moisture content such as lignite or subbituminous coal.
 褐炭や亜瀝青炭等のような水分含有量の多い石炭である低品位石炭は、埋蔵量が多いものの、単位重量当たりの発熱量が低いため、加熱して乾燥処理や乾留処理することにより、単位重量当たりの発熱量を高めるようにしている。 Low-grade coal, such as lignite and sub-bituminous coal, which has a high water content, has a large reserve, but its calorific value per unit weight is low. The calorific value per weight is increased.
 ところで、加熱された上記低品位石炭は、水を吸着しやすくなると共に、表面のカルボキシル基等が離脱して表面にラジカル等を生じることにより表面の活性が高くなって空気中の酸素と反応しやすくなってしまうことから、上記反応に伴う反応熱によって自然発火してしまうおそれがある。 By the way, the heated low-grade coal is easy to adsorb water, and the surface carboxyl groups and the like are released to generate radicals on the surface, so that the surface activity becomes high and reacts with oxygen in the air. Since it becomes easy, there exists a possibility that it may ignite spontaneously with the reaction heat accompanying the said reaction.
 このため、例えば、下記特許文献1等においては、低品位石炭を乾燥して乾留した乾留石炭を低酸素雰囲気(酸素濃度約10%前後)中で加熱(約150~170℃)して、当該乾留石炭の表面を一部酸化させて当該乾留石炭の表面の活性を低下させる不活性化処理を行うことにより、自然発火を抑制した改質石炭を製造するようにしている。 For this reason, for example, in the following Patent Document 1 and the like, the dry-distilled coal obtained by drying and dry-distilling low-grade coal is heated (about 150 to 170 ° C.) in a low-oxygen atmosphere (about 10% oxygen concentration). A part of the surface of the dry-distilled coal is oxidized to perform a deactivation treatment that reduces the activity of the surface of the dry-distilled coal, thereby producing a modified coal that suppresses spontaneous combustion.
特開平11-310785号公報JP-A-11-310785
 ところで、前述したようにして改質石炭を製造する際には、原料石炭の組成が、採取される山元によってバラつきを有していることから、どのような組成の原料石炭であっても不活性化を十分に実施できるように、不活性化処理の雰囲気中の酸素濃度や雰囲気温度や処理時間等の各種処理条件を設定している。このため、比較的緩い処理条件で不活性化を十分に実施できる原料石炭に対しても、比較的厳しい処理条件で不活性化を実施することになってしまい、処理コストに無駄を生じてしまっていた。 By the way, when producing modified coal as described above, the composition of the raw material coal varies depending on the sampled mountain, so that it is inactive regardless of the raw material coal of any composition. Various treatment conditions such as the oxygen concentration in the atmosphere of the inactivation treatment, the ambient temperature, and the treatment time are set so that the activation can be sufficiently performed. For this reason, even for raw coal that can be sufficiently deactivated under relatively loose processing conditions, the inactivation is performed under relatively severe processing conditions, resulting in waste of processing costs. It was.
 このようなことから、本発明は、各種組成の原料石炭であっても、必要十分な条件で不活性化処理を実施して改質石炭を製造することが簡単にできる改質石炭製造設備を提供することを目的とする。 Therefore, the present invention provides a modified coal production facility that can easily produce a modified coal by performing an inactivation treatment under necessary and sufficient conditions even for raw material coal of various compositions. The purpose is to provide.
 前述した課題を解決するための、第一番目の発明に係る改質石炭製造設備は、原料石炭から水分を除去することにより乾燥石炭とする乾燥手段と、前記乾燥石炭を乾留することにより乾留石炭とする乾留手段と、酸素を含有する処理ガスで前記乾留石炭を加熱して不活性化処理することにより改質石炭とする不活性化処理手段とを備えている改質石炭製造設備において、前記乾燥手段で乾燥された前記乾燥石炭の一部を分取して当該乾燥石炭の酸素吸着速度Vdを求める第一の酸素吸着速度測定手段と、前記不活性化処理手段で不活性化処理された前記改質石炭の一部を分取して当該改質石炭の酸素吸着速度Vrを求める第二の酸素吸着速度測定手段と、前記酸素吸着速度Vd,Vrに基づいて、下記の酸素吸着速度比算出式から酸素吸着速度比Nを算出し、当該酸素吸着速度比Nが規格値Nsの範囲内である場合には、不活性化処理条件を維持するように前記不活性化処理手段を制御し、前記酸素吸着速度比Nが前記規格値Nsの範囲よりも大きい場合には、当該酸素吸着速度比Nに対応する前記処理ガス中への増加酸素濃度値Oaをマップから読み出して、当該処理ガス中の現在酸素濃度値Op及び当該増加酸素濃度値Oaに基づいて当該処理ガス中の修正酸素濃度値Ocを算出して、当該処理ガスが当該修正酸素濃度値Ocとなるように前記不活性化処理手段を制御し、前記酸素吸着速度比Nが前記規格値Nsの範囲よりも小さい場合には、当該酸素吸着速度比Nに対応する前記処理ガス中への減少酸素濃度値Odをマップから読み出して、当該処理ガス中の現在酸素濃度値Op及び当該減少酸素濃度値Odに基づいて当該処理ガス中の修正酸素濃度値Ocを算出して、当該処理ガスが当該修正酸素濃度値Ocとなるように前記不活性化処理手段を制御する主演算制御手段とを備えていることを特徴とする。 The modified coal production facility according to the first invention for solving the above-mentioned problem is a drying means for making dry coal by removing moisture from raw coal, and dry distillation coal by dry distillation of the dry coal A reformed coal production facility comprising: a dry distillation means; and an inactivation treatment means for heating the dry distillation coal with a treatment gas containing oxygen to inactivate the reformed coal. A part of the dried coal dried by the drying means is fractionated to obtain an oxygen adsorption rate Vd of the dried coal, and the deactivation treatment means is inactivated. Based on the oxygen adsorption rate Vd and Vr, a second oxygen adsorption rate measuring means for fractionating a part of the modified coal to determine the oxygen adsorption rate Vr of the modified coal, the following oxygen adsorption rate ratio Oxygen adsorption from the calculation formula When the degree ratio N is calculated and the oxygen adsorption rate ratio N is within the range of the standard value Ns, the deactivation processing means is controlled so as to maintain the deactivation processing condition, and the oxygen adsorption rate When the ratio N is larger than the range of the standard value Ns, the increased oxygen concentration value Oa into the processing gas corresponding to the oxygen adsorption rate ratio N is read from the map, and the current oxygen concentration in the processing gas Based on the value Op and the increased oxygen concentration value Oa, a corrected oxygen concentration value Oc in the processing gas is calculated, and the deactivation processing means is controlled so that the processing gas becomes the corrected oxygen concentration value Oc. When the oxygen adsorption rate ratio N is smaller than the range of the standard value Ns, a reduced oxygen concentration value Od into the process gas corresponding to the oxygen adsorption rate ratio N is read from the map, and the process gas Current oxygen concentration in Based on Op and the reduced oxygen concentration value Od, a corrected oxygen concentration value Oc in the processing gas is calculated, and the deactivation processing means is controlled so that the processing gas becomes the corrected oxygen concentration value Oc. Computational control means is provided.
  酸素吸着速度比算出式:
   N=|(Vr-Vd)|/Vd
Oxygen adsorption rate ratio calculation formula:
N = | (Vr−Vd) | / Vd
 第二番目の発明に係る改質石炭製造設備は、第一番目の発明において、前記主演算制御手段は、前記修正酸素濃度値Ocが上限値Ouを超える場合には、前記酸素吸着速度比Nに対応する前記処理ガスの増加温度値Taをマップから読み出して、当該処理ガス中の現在温度値Tp及び当該増加温度値Taに基づいて修正温度値Tcを算出して、当該処理ガスが前記修正温度値Tcとなるように前記不活性化処理手段を制御するものであることを特徴とする。 In the modified coal production facility according to the second aspect of the present invention, in the first aspect, the main arithmetic control means, when the corrected oxygen concentration value Oc exceeds the upper limit value Ou, the oxygen adsorption rate ratio N Is read from the map, and a corrected temperature value Tc is calculated based on the current temperature value Tp in the process gas and the increased temperature value Ta, and the process gas is corrected. The deactivation processing means is controlled so as to have a temperature value Tc.
 第三番目の発明に係る改質石炭製造設備は、第一番目又は第二番目の発明において、前記第二の酸素吸着速度測定手段は、前記不活性化処理手段で不活性化処理された前記改質石炭の一部を分取して規定時間Ts経過ごとに、当該不活性化処理手段で不活性化処理された新たな前記改質石炭の一部を改めて分取して当該改質石炭の新たな酸素吸着速度Vrnを求めるものであり、前記主演算制御手段は、今回新たに求められた前記酸素吸着速度Vrn及び今回の直前に求められている酸素吸着速度Vrn-1に基づいて、下記の安定度算出式から安定度Sを算出し、当該安定度Sが規格値Ssの範囲内である場合に、前記酸素吸着速度Vd,Vrnに基づいて、下記の酸素吸着速度比再算出式から酸素吸着速度比Nを再算出して、前記規格値Nsとの比較を改めて行うものであることを特徴とする。 The modified coal production facility according to a third aspect of the present invention is the first or second aspect of the invention, wherein the second oxygen adsorption rate measuring means is inactivated by the inactivation means. A portion of the reformed coal is sampled and every time the specified time Ts elapses, a portion of the new reformed coal that has been deactivated by the deactivation processing means is again sorted and the modified coal is separated. is intended to seek a new oxygen adsorption rate Vr n of said main arithmetic control means, the oxygen adsorption rate Vr n-1 that this is newly sought immediately before the oxygen adsorption rate Vr n and time determined based on, it calculates the stability S from stability calculation formula, when the stability S is in the range of standard value Ss, the oxygen adsorption rate Vd, on the basis of Vr n, oxygen adsorption rate below The oxygen adsorption rate ratio N is recalculated from the ratio recalculation formula, and the standard value Ns The comparison is performed again.
  安定度算出式:
   S=|(Vrn-Vrn-1)|/Vrn
  酸素吸着速度比再算出式:
   N=|(Vrn-Vd)|/Vd
Stability calculation formula:
S = | (Vr n −Vr n−1 ) | / Vr n
Oxygen adsorption rate ratio recalculation formula:
N = | (Vr n −Vd) | / Vd
 第四番目の発明に係る改質石炭製造設備は、第一番目から第三番目の発明のいずれかにおいて、前記第一の酸素吸着速度測定手段が、前記乾燥手段で乾燥された前記乾燥石炭の一部をサンプルとして分取する第一の分取手段と、前記第一の分取手段で分取された前記サンプルを試験温度の酸素含有ガスに試験時間Tdで曝して酸素吸着試験を行う第一の試験手段と、前記第一の分取手段で分取された前記酸素吸着試験前の前記サンプルの重量Wd1及び当該酸素吸着試験後の当該サンプルの重量Wd2をそれぞれ秤量する第一の秤量手段と、前記第一の秤量手段で秤量された前記重量Wd1,Wd2に基づいて、下記の乾燥石炭酸素吸着速度算出式から前記乾燥石炭の前記酸素吸着速度Vdを算出する第一の副演算制御手段とを備え、前記第二の酸素吸着速度測定手段が、前記不活性化処理手段で不活性化処理された前記改質石炭の一部をサンプルとして分取する第二の分取手段と、前記第二の分取手段で分取された前記サンプルを試験温度の酸素含有ガスに試験時間Trで曝して酸素吸着試験を行う第二の試験手段と、前記第二の分取手段で分取された前記酸素吸着試験前の前記サンプルの重量Wr1及び当該酸素吸着試験後の当該サンプルの重量Wr2をそれぞれ秤量する第二の秤量手段と、前記第二の秤量手段で秤量された前記重量Wd1,Wd2に基づいて、下記の改質石炭酸素吸着速度算出式から前記改質石炭の前記酸素吸着速度Vrを算出する第二の副演算制御手段とを備えていることを特徴とする。 The reformed coal production facility according to a fourth aspect of the present invention is the modified coal production facility according to any one of the first to third aspects, wherein the first oxygen adsorption rate measuring means is the dry coal dried by the drying means. A first fractionation means for fractionating a sample as a sample; and an oxygen adsorption test in which the sample fractionated by the first fractionation means is exposed to an oxygen-containing gas at a test temperature for a test time Td. And a first weighing means for weighing a weight Wd1 of the sample before the oxygen adsorption test and a weight Wd2 of the sample after the oxygen adsorption test, which are separated by the first sorting means. And first sub-operation control means for calculating the oxygen adsorption rate Vd of the dry coal from the following dry coal oxygen adsorption rate calculation formula based on the weights Wd1 and Wd2 weighed by the first weighing unit. And comprising A second fractionation means, wherein the second oxygen adsorption rate measuring means fractionates a part of the modified coal deactivated by the inactivation treatment means as a sample; and the second fractionation means A second test means for performing an oxygen adsorption test by exposing the sample fractionated in step (b) to an oxygen-containing gas at a test temperature for a test time Tr; and before the oxygen adsorption test fractionated by the second fractionation means. Based on the second weighing means for weighing the sample weight Wr1 and the weight Wr2 of the sample after the oxygen adsorption test, and the weights Wd1 and Wd2 weighed by the second weighing means, And a second sub-operation control means for calculating the oxygen adsorption rate Vr of the modified coal from a modified coal oxygen adsorption rate calculation formula.
 乾燥石炭酸素吸着速度算出式:
  Vd=(Wd2-Wd1)/(Wd1×Td)×100
 改質石炭酸素吸着速度算出式:
  Vr=(Wr2-Wr1)/(Wr1×Tr)×100
Dry coal oxygen adsorption rate calculation formula:
Vd = (Wd2−Wd1) / (Wd1 × Td) × 100
Modified coal oxygen adsorption rate calculation formula:
Vr = (Wr2−Wr1) / (Wr1 × Tr) × 100
 第五番目の発明に係る改質石炭製造設備は、第一番目から第三番目の発明のいずれかにおいて、前記第一の酸素吸着速度測定手段が、前記乾燥手段で乾燥された前記乾燥石炭の一部をサンプルとして分取する第一の分取手段と、前記第一の分取手段で分取された前記サンプルの重量Wd1を秤量する第一の秤量手段と、前記第一の分取手段で分取された前記サンプルを酸素含有雰囲気の恒温状態の内部に試験時間Tdで気密保持して酸素吸着試験を行う第一の試験手段と、前記第一の試験手段の内部の圧力を計測する第一の圧力計測手段と、内部を前記酸素含有雰囲気で恒温状態に気密保持されて前記第一の圧力計測手段で計測された前記第一の試験手段の前記酸素吸着試験前の内圧Pd1及び当該酸素吸着試験直後の内圧Pd2並びに前記第一の秤量手段で秤量された前記重量Wd1に基づいて、下記の乾燥石炭酸素吸着速度算出式から前記乾燥石炭の前記酸素吸着速度Vdを算出する第一の副演算制御手段とを備え、前記第二の酸素吸着速度測定手段が、前記不活性化処理手段で不活性化処理された前記改質石炭の一部をサンプルとして分取する第二の分取手段と、前記第二の分取手段で分取された前記サンプルの重量Wr1を秤量する第二の秤量手段と、前記第二の分取手段で分取された前記サンプルを酸素含有雰囲気の恒温状態の内部に試験時間Trで気密保持して酸素吸着試験を行う第二の試験手段と、前記第二の試験手段の内部の圧力を計測する第二の圧力計測手段と、内部を前記酸素含有雰囲気で恒温状態に気密保持されて前記第二の圧力計測手段で計測された前記第二の試験手段の前記酸素吸着試験前の内圧Pr1及び当該酸素吸着試験直後の内圧Pr2並びに前記第二の秤量手段で秤量された前記重量Wr1に基づいて、下記の改質石炭酸素吸着速度算出式から前記改質石炭の前記酸素吸着速度Vrを算出する第二の副演算制御手段とを備えていることを特徴とする。 The reformed coal production facility according to a fifth aspect of the present invention is the modified coal production facility according to any one of the first to third aspects, wherein the first oxygen adsorption rate measuring means is the dry coal dried by the drying means. First sorting means for sorting a part as a sample, first weighing means for weighing the weight Wd1 of the sample sorted by the first sorting means, and the first sorting means Measuring the pressure inside the first test means, and a first test means for performing an oxygen adsorption test by keeping the sample separated in step 2 in an oxygen-containing atmosphere at a constant temperature in a test temperature Td. A first pressure measuring means, an internal pressure Pd1 before the oxygen adsorption test of the first testing means measured by the first pressure measuring means that is hermetically maintained in a constant temperature state in the oxygen-containing atmosphere, and Internal pressure Pd2 immediately after the oxygen adsorption test and before First sub-operation control means for calculating the oxygen adsorption rate Vd of the dry coal from the following dry coal oxygen adsorption rate calculation formula based on the weight Wd1 weighed by the first weighing unit, A second oxygen adsorption rate measuring means, a second fractionation means for fractionating a part of the modified coal deactivated by the inactivation treatment means as a sample; and the second fractionation A second weighing means for weighing a weight Wr1 of the sample separated by the means, and the sample separated by the second sorting means is hermetically sealed in a constant temperature state of an oxygen-containing atmosphere at a test time Tr. A second test means for holding and performing an oxygen adsorption test, a second pressure measuring means for measuring the pressure inside the second test means, and the inside being kept airtight in a constant temperature state in the oxygen-containing atmosphere. Before being measured by the second pressure measuring means Based on the internal pressure Pr1 before the oxygen adsorption test of the second test means, the internal pressure Pr2 immediately after the oxygen adsorption test, and the weight Wr1 weighed by the second weighing means, the following modified coal oxygen adsorption rate calculation And a second sub-operation control means for calculating the oxygen adsorption rate Vr of the modified coal from the equation.
 乾燥石炭酸素吸着速度算出式:
  Vd=Qd/(Wd1×Td)×100
 改質石炭酸素吸着速度算出式:
  Vr=Qr/(Wr1×Tr)×100
Dry coal oxygen adsorption rate calculation formula:
Vd = Qd / (Wd1 × Td) × 100
Modified coal oxygen adsorption rate calculation formula:
Vr = Qr / (Wr1 × Tr) × 100
 ただし、Qdは乾燥石炭の酸素吸着量、Qrは改質石炭の酸素吸着量であり、下記の式より求められる値である。 However, Qd is the oxygen adsorption amount of dry coal, Qr is the oxygen adsorption amount of the modified coal, and is a value obtained from the following formula.
 Qd=[{(Pd1-Pd2)/1013}
   ×{Cd-(Wd1/D)}]/(22.4×Wd1)
 Qr=[{(Pr1-Pr2)/1013}
   ×{Cr-(Wr1/D)}]/(22.4×Wr1)
Qd = [{(Pd1-Pd2) / 1013}
× {Cd− (Wd1 / D)}] / (22.4 × Wd1)
Qr = [{(Pr1-Pr2) / 1013}
× {Cr- (Wr1 / D)}] / (22.4 × Wr1)
 なお、Cdは第一の試験手段の内容積、Crは第二の試験手段の内容積、Dは原料石炭の真密度である。 Cd is the internal volume of the first test means, Cr is the internal volume of the second test means, and D is the true density of the raw material coal.
 第六番目の発明に係る改質石炭製造設備は、第一番目から第五番目の発明のいずれかにおいて、前記原料石炭が、褐炭又は亜瀝青炭であることを特徴とする。 The modified coal production facility according to the sixth invention is characterized in that, in any of the first to fifth inventions, the raw coal is lignite or subbituminous coal.
 本発明に係る改質石炭製造設備によれば、各種組成の原料石炭であっても、必要十分な条件で不活性化処理を実施して改質石炭を製造することが簡単にできる。 According to the modified coal production facility according to the present invention, it is possible to easily produce a modified coal by performing an inactivation treatment under necessary and sufficient conditions even for raw material coal of various compositions.
本発明に係る改質石炭製造設備の第一番目の実施形態の概略構成図である。It is a schematic block diagram of 1st embodiment of the modified coal manufacturing equipment which concerns on this invention. 図1の改質石炭製造設備の主要部の制御フロー図である。It is a control flowchart of the principal part of the modified coal manufacturing equipment of FIG. 図2に続く制御フロー図である。FIG. 3 is a control flow diagram following FIG. 2. 図3に続く制御フロー図である。FIG. 4 is a control flow diagram following FIG. 3. 本発明に係る改質石炭製造設備の第二番目の実施形態の概略構成図である。It is a schematic block diagram of 2nd embodiment of the modified coal manufacturing equipment which concerns on this invention. 図5の改質石炭製造設備の主要部の制御フロー図である。It is a control flow figure of the principal part of the modified coal manufacturing equipment of FIG. 図6に続く制御フロー図である。FIG. 7 is a control flow diagram following FIG. 6. 図7に続く制御フロー図である。FIG. 8 is a control flow diagram following FIG. 7.
 本発明に係る改質石炭製造設備の実施形態を図面に基づいて説明するが、本発明は図面に基づいて説明する以下の実施形態のみに限定されるものではない。 DETAILED DESCRIPTION Embodiments of a modified coal production facility according to the present invention will be described with reference to the drawings, but the present invention is not limited to only the following embodiments described with reference to the drawings.
〈第一番目の実施形態〉
 本発明に係る改質石炭製造設備の第一番目の実施形態を図1~4に基づいて説明する。
<First embodiment>
A first embodiment of a modified coal production facility according to the present invention will be described with reference to FIGS.
 図1に示すように、亜瀝青炭や褐炭等の原料石炭である低品位石炭1を粉砕するミル形式の粉砕装置111の送出口は、当該低品位石炭1中の水分2を蒸発させるスチームチューブドライヤ方式の乾燥装置112の低品位石炭1の受入口にロータリバルブ121を介して接続されており、当該乾燥装置112は、中心部分に配設されたコイル状の加熱管の内部に加熱媒体である水蒸気101が供給されることにより、上記低品位石炭1を加熱して(約100℃)、当該低品位石炭1から水分2を除去して乾燥石炭3とすることができるようになっている。 As shown in FIG. 1, the outlet of a mill-type pulverizer 111 that pulverizes low-grade coal 1 that is raw coal such as subbituminous coal and lignite coal is a steam tube dryer that evaporates moisture 2 in the low-grade coal 1. The drying device 112 of the type is connected to the inlet of the low-grade coal 1 via a rotary valve 121, and the drying device 112 is a heating medium inside a coiled heating tube disposed in the central portion. By supplying the water vapor 101, the low-grade coal 1 can be heated (about 100 ° C.) to remove the moisture 2 from the low-grade coal 1 to obtain dry coal 3.
 前記乾燥装置112の前記乾燥石炭3の排出口は、コンベア113の搬送方向上流側にロータリバルブ122を介して接続されている。前記コンベア113の搬送方向下流側は、前記乾燥石炭3を乾留するロータリキルン方式の乾留装置114の当該乾燥石炭3の受入口にロータリバルブ123を介して接続しており、当該乾留装置114は、固定支持されている外側のジャケットに加熱媒体である燃焼ガス102が供給されることにより、上記乾燥石炭3を加熱乾留(400~600℃)して、当該乾燥石炭3から揮発成分4を除去して乾留石炭6とすることができるようになっている。 The discharge port of the dry coal 3 of the drying device 112 is connected to the upstream side of the conveyor 113 in the transport direction via a rotary valve 122. The downstream side in the transport direction of the conveyor 113 is connected to the dry coal 3 receiving port of the rotary kiln type dry distillation apparatus 114 for carbonizing the dry coal 3 via a rotary valve 123, and the dry distillation apparatus 114 is By supplying combustion gas 102 as a heating medium to the outer jacket fixedly supported, the dry coal 3 is heated and distilled (400 to 600 ° C.) to remove the volatile component 4 from the dry coal 3. Thus, it is possible to obtain dry-distilled coal 6.
 前記乾留装置114の前記乾留石炭6の排出口は、コンベア115の搬送方向上流側にロータリバルブ124を介して接続している。前記コンベア124の搬送方向下流側は、前記乾留石炭6を冷却するスチームチューブドライヤ方式の冷却装置116の当該乾留石炭6の受入口にロータリバルブ125を介して接続しており、当該冷却装置116は、中心部分に配設されたコイル状の冷却管の内部に冷却媒体である冷却水103が供給されることにより、上記乾留石炭6を冷却(100℃以下)することができるようになっている。 The discharge port of the dry distillation coal 6 of the dry distillation device 114 is connected to the upstream side of the conveyor 115 in the transport direction via a rotary valve 124. A downstream side of the conveyor 124 in the conveying direction is connected to a receiving port of the dry distillation coal 6 of a steam tube dryer type cooling device 116 for cooling the dry distillation coal 6 via a rotary valve 125. The dry-distilled coal 6 can be cooled (100 ° C. or lower) by supplying the cooling water 103 as a cooling medium to the inside of the coiled cooling pipe disposed in the central portion. .
 前記冷却装置116の前記乾留石炭6の排出口は、当該乾留石炭6を不活性化処理するサーキュラグレード型や焼結機型(メッシュコンベア型)等のような連続処理式の不活性化処理装置130の装置本体131の上記乾留石炭6の受入口にロータリバルブ126を介して接続している。上記装置本体131の下部には、窒素ガス供給源132がブロア133及び加熱器134を介して連結されている。前記ブロア133と前記加熱器134との間には、空気104を送給するブロア135が連結されている。 The discharge port of the dry distillation coal 6 of the cooling device 116 is a continuous processing type inactivation processing device such as a circular grade type or a sintering machine type (mesh conveyor type) for inactivating the dry distillation coal 6. The apparatus main body 131 is connected to the inlet of the dry-distilled coal 6 via a rotary valve 126. A nitrogen gas supply source 132 is connected to the lower portion of the apparatus main body 131 via a blower 133 and a heater 134. A blower 135 for feeding air 104 is connected between the blower 133 and the heater 134.
 つまり、前記ブロア133,135を作動させることにより、前記窒素ガス供給源132からの不活性ガスである窒素ガス105と外部の空気104とを混合して酸素を含有する処理ガス106として、前記加熱器134を作動させることにより、当該処理ガス106を加熱することができ、前記装置本体131の内部の前記乾留石炭6を当該処理ガス106で加熱して不活性化処理して改質石炭7とすることができるようになっているのである。ここで、前記ブロア133,135からの前記窒素ガス105及び前記空気104の送給量を調整することにより、前記処理ガス106中の酸素ガス濃度を調整することができ、前記加熱器134を調整することにより、前記処理ガス106の温度を調整することができる。 In other words, by operating the blowers 133 and 135, the nitrogen gas 105, which is an inert gas from the nitrogen gas supply source 132, and the external air 104 are mixed to form the processing gas 106 containing oxygen as the heating gas 106. By operating the vessel 134, the processing gas 106 can be heated, and the dry-distilled coal 6 inside the apparatus main body 131 is heated with the processing gas 106 to be inactivated, and the modified coal 7 It can be done. Here, by adjusting the supply amount of the nitrogen gas 105 and the air 104 from the blowers 133 and 135, the oxygen gas concentration in the processing gas 106 can be adjusted, and the heater 134 is adjusted. By doing so, the temperature of the processing gas 106 can be adjusted.
 前記装置本体131の改質石炭7の排出口は、コンベア117の搬送方向上流側にロータリバルブ127を介して接続している。前記コンベア117の搬送方向下流側は、前記改質石炭7を貯留する貯留タンク118の当該改質石炭7の受入口にロータリバルブ128を介して接続している。 The outlet of the reformed coal 7 of the apparatus main body 131 is connected to the upstream side of the conveyor 117 in the transport direction via a rotary valve 127. A downstream side of the conveyor 117 in the transport direction is connected to a receiving port of the modified coal 7 of the storage tank 118 that stores the modified coal 7 via a rotary valve 128.
 このような本実施形態においては、前記粉砕装置111、前記乾燥装置112、前記コンベア113、前記ロータリバルブ121,122等により乾燥手段を構成し、前記乾留装置114、前記コンベア115、前記冷却装置116、前記ロータリバルブ123~125等により乾留手段を構成し、前記装置本体131、前記窒素ガス供給源132、前記ブロア133,135、前記加熱器134等の不活性化処理装置130、前記コンベア117、前記ロータリバルブ126,127等により不活性化処理手段を構成し、前記貯留タンク118、前記ロータリバルブ128等により貯留手段を構成している。 In this embodiment, the pulverizing device 111, the drying device 112, the conveyor 113, the rotary valves 121, 122, and the like constitute drying means, and the dry distillation device 114, the conveyor 115, and the cooling device 116. The rotary valves 123 to 125 constitute dry distillation means, the apparatus main body 131, the nitrogen gas supply source 132, the blowers 133 and 135, the deactivation processing device 130 such as the heater 134, the conveyor 117, The rotary valves 126, 127, etc. constitute deactivation processing means, and the storage tank 118, the rotary valve 128, etc. constitute storage means.
 また、前記コンベア113には、前記乾燥装置112で乾燥された前記乾燥石炭3の一部をサンプル3aとして分取する第一分取装置141が取り付けられている。前記第一分取装置141には、当該第一分取装置141から前記サンプル3aを受け取って移動させる第一サンプル移動装置142が連絡している。 Further, the conveyor 113 is provided with a first sorting device 141 for sorting a part of the dry coal 3 dried by the drying device 112 as a sample 3a. A first sample moving device 142 that receives and moves the sample 3 a from the first sorting device 141 is in communication with the first sorting device 141.
 前記第一サンプル移動装置142は、前記第一分取装置141で分取された前記サンプル3aの酸素吸着試験を行う第一試験装置143と、前記第一分取装置141で分取された前記酸素吸着試験前の前記サンプル3aの重量及び当該酸素吸着試験後のサンプル3bの重量をそれぞれ秤量する第一秤量装置144とにそれぞれ連絡できるようになっている。前記第一試験装置143には、当該試験装置143内に加熱された酸素含有ガスである空気104を送給するブロア149a及び加熱器149bが接続されている。 The first sample moving device 142 includes a first test device 143 that performs an oxygen adsorption test of the sample 3a sorted by the first sorting device 141, and the first sorting device 141 that sorts the sample 3a. A first weighing device 144 that weighs the weight of the sample 3a before the oxygen adsorption test and the weight of the sample 3b after the oxygen adsorption test can be communicated with each other. The first test apparatus 143 is connected to a blower 149a and a heater 149b for supplying air 104 which is an oxygen-containing gas heated in the test apparatus 143.
 他方、前記コンベア117には、前記不活性化処理装置130で不活性化処理された前記改質石炭7の一部をサンプル7aとして分取する第二分取装置145が取り付けられている。前記第二分取装置145には、当該第二分取装置145から前記サンプル7aを受け取って移動させる第二サンプル移動装置146が連絡している。 On the other hand, the conveyor 117 is attached with a second sorting device 145 for sorting a part of the modified coal 7 deactivated by the deactivation processing device 130 as a sample 7a. A second sample moving device 146 that receives and moves the sample 7a from the second sorting device 145 communicates with the second sorting device 145.
 前記第二サンプル移動装置146は、前記第二分取装置145で分取された前記サンプル7aの酸素吸着試験を行う第二試験装置147と、前記第二分取装置145で分取された前記酸素吸着試験前の前記サンプル7aの重量及び当該酸素吸着試験後のサンプル7bの重量をそれぞれ秤量する第二秤量装置148とにそれぞれ連絡できるようになっている。前記第二試験装置147には、当該試験装置147内に加熱された前記空気104を送給する前記ブロア149a及び前記加熱器149bが接続されている。 The second sample moving device 146 includes a second test device 147 that performs an oxygen adsorption test on the sample 7 a that has been collected by the second sorting device 145 and the second sorting device 145 that has sorted the sample 7 a. A second weighing device 148 that weighs the weight of the sample 7a before the oxygen adsorption test and the weight of the sample 7b after the oxygen adsorption test can be communicated with each other. The second test apparatus 147 is connected to the blower 149a and the heater 149b for feeding the heated air 104 into the test apparatus 147.
 前記秤量装置144,148は、タイマ等を内蔵する演算制御装置150の入力部にそれぞれ電気的に接続している。この演算制御装置150の出力部は、前記ブロア133,135、前記加熱器134、前記分取装置141,145、前記サンプル移動装置142,146、前記試験装置143,147、前記ブロア149a、前記加熱器149bにそれぞれ電気的に接続しており、当該演算制御装置150は、前記タイマ等からの情報に基づいて、前記分取装置141,145、前記サンプル移動装置142,146、前記試験装置143,147、前記ブロア149a、前記加熱器149b等をそれぞれ作動制御することができると共に、前記秤量装置144,148等からの情報に基づいて、前記ブロア133,135、前記加熱器134等を作動制御することができるようになっている(詳細は後述する)。 The weighing devices 144 and 148 are electrically connected to the input unit of the arithmetic control device 150 having a built-in timer. The output unit of the arithmetic and control unit 150 includes the blowers 133 and 135, the heater 134, the sorting devices 141 and 145, the sample moving devices 142 and 146, the test devices 143 and 147, the blower 149a, and the heating. The calculation control device 150 is electrically connected to each of the devices 149b, and the calculation control device 150 is based on the information from the timer or the like, and the sorting devices 141 and 145, the sample moving devices 142 and 146, the testing device 143 and the like. 147, the blower 149a, the heater 149b, etc. can be operated and controlled, and the blowers 133, 135, the heater 134, etc. are controlled based on information from the weighing devices 144, 148, etc. (Details will be described later).
 このような本実施形態においては、前記第一分取装置141等により第一の分取手段を構成し、前記第一サンプル移動装置142等により第一のサンプル移動手段を構成し、前記第一試験装置143、前記ブロア149a、前記加熱器149b等により第一の試験手段を構成し、前記第一秤量装置144等により第一の秤量手段を構成し、前記第二分取装置145等により第二の分取手段を構成し、前記第二サンプル移動装置146等により第二のサンプル移動手段を構成し、前記第二試験装置147、前記ブロア149a、前記加熱器149b等により第二の試験手段を構成し、前記第二秤量装置148等により第二の秤量手段を構成し、前記演算制御装置150等により、主演算制御手段と第一の副演算制御手段と第二の副演算制御手段とを兼ねるように構成し、前記第一の分取手段、前記第一のサンプル移動手段、前記第一の試験手段、前記第一の秤量手段、前記第一の副演算制御手段等により第一の酸素吸着速度測定手段を構成し、前記第二の分取手段、前記第二のサンプル移動手段、前記第二の試験手段、前記第二の秤量手段、前記第二の副演算制御手段等により第二の酸素吸着速度測定手段を構成している。 In this embodiment, the first sorting device 141 and the like constitute a first sorting means, the first sample moving device 142 and the like constitute a first sample moving means, and the first sorting device and the like. The test device 143, the blower 149a, the heater 149b, etc. constitute a first test means, the first weighing device 144, etc. constitute a first weighing means, and the second sorting device 145, etc. The second sample moving device 146 etc. constitutes a second sample moving device, and the second test device 147, the blower 149a, the heater 149b etc. constitute a second test means. And the second weighing device 148 and the like constitute second weighing means, and the arithmetic and control device 150 and the like constitute main arithmetic control means, first sub-arithmetic control means, and second sub-arithmetic control means. And the first sorting means, the first sample moving means, the first test means, the first weighing means, the first sub-operation control means, etc. The oxygen adsorption rate measuring means, and the second sorting means, the second sample moving means, the second test means, the second weighing means, the second sub-operation control means, etc. The second oxygen adsorption rate measuring means is configured.
 次に、本実施形態に係る上述した改質石炭製造設備100の作動を説明する。 Next, the operation of the above-described modified coal production facility 100 according to this embodiment will be described.
 前記粉砕装置111の前記ホッパ111aに前記低品位石炭1を供給すると、当該粉砕装置111は、当該低品位石炭1を所定の粒径に粉砕して、前記ロータリバルブ121を介して前記乾燥装置112に供給する。前記乾燥装置112は、前記水蒸気101の熱により、前記低品位石炭1を加熱乾燥(約100℃)して水分2を除去して前記乾燥石炭3とした後、前記ロータリバルブ122を介して前記コンベア113に送給する。前記コンベア113は、前記ロータリバルブ123を介して前記乾燥石炭3を前記乾留装置114に送給する。 When the low-grade coal 1 is supplied to the hopper 111a of the pulverizer 111, the pulverizer 111 pulverizes the low-grade coal 1 to a predetermined particle size, and the drying device 112 via the rotary valve 121. To supply. The drying device 112 heats and dries the low-grade coal 1 with the heat of the water vapor 101 (about 100 ° C.) to remove moisture 2 to form the dry coal 3, and then passes the rotary valve 122 through the rotary valve 122. Feed to the conveyor 113. The conveyor 113 feeds the dry coal 3 to the dry distillation apparatus 114 via the rotary valve 123.
 前記乾留装置114は、前記燃焼ガス102の熱により、前記乾燥石炭3を加熱乾留(400~600℃)して前記揮発成分4を除去して前記乾留石炭6とした後、前記ロータリバルブ124を介して前記コンベア115に送給する。前記コンベア115は、前記ロータリバルブ125を介して前記乾留石炭6を前記冷却装置116に送給する。 The dry distillation device 114 heats and dry-distills the dry coal 3 (400 to 600 ° C.) to remove the volatile component 4 to make the dry-distilled coal 6 by the heat of the combustion gas 102, and then turns the rotary valve 124. To the conveyor 115. The conveyor 115 supplies the dry-distilled coal 6 to the cooling device 116 via the rotary valve 125.
 前記冷却装置116は、前記冷却水103により、前記乾留石炭6を冷却(100℃以下)した後、前記ロータリバルブ126を介して前記不活性化処理装置130の前記装置本体131内に送給する。 The cooling device 116 cools the dry-distilled coal 6 with the cooling water 103 (100 ° C. or less), and then feeds it into the device main body 131 of the deactivation processing device 130 via the rotary valve 126. .
 前記不活性化処理装置130は、前記ブロア133,135及び前記加熱器134によって、前記窒素ガス供給源132からの窒素ガス105と外部の空気104とを混合した処理ガス106(酸素濃度:1.5%)を加熱(50℃)して前記装置本体131の内部に送給し、当該装置本体131内の前記乾留石炭6を加熱して不活性化処理することにより改質石炭7とした後、前記ロータリバルブ127を介して前記コンベア117に送給する。前記コンベア117は、前記ロータリバルブ128を介して前記改質石炭7を前記貯留タンク118に送給して貯留する。 The deactivation processing device 130 is a processing gas 106 in which the nitrogen gas 105 from the nitrogen gas supply source 132 and the external air 104 are mixed by the blowers 133 and 135 and the heater 134 (oxygen concentration: 1.. 5%) is heated (50 ° C.) and fed to the inside of the apparatus main body 131, and the dry-distilled coal 6 in the apparatus main body 131 is heated and deactivated to obtain the modified coal 7. , And fed to the conveyor 117 via the rotary valve 127. The conveyor 117 supplies and stores the modified coal 7 to the storage tank 118 through the rotary valve 128.
 そして、上述したようにして前記改質石炭7を製造しているときに、前記演算制御装置150は、前記乾燥装置112で乾燥された前記乾燥石炭3の一部を前記コンベア113からサンプル3aとして分取するように前記第一分取装置141を作動制御した後(図2中、S101)、分取された当該サンプル3aを前記第一分取装置141から受け取るように前記第一サンプル移動装置142を作動制御する。 When the modified coal 7 is manufactured as described above, the arithmetic and control unit 150 uses a part of the dry coal 3 dried by the drying unit 112 as the sample 3a from the conveyor 113. After controlling the operation of the first sorting device 141 so as to sort (S101 in FIG. 2), the first sample moving device so as to receive the sorted sample 3a from the first sorting device 141. 142 controls the operation.
 続いて、前記演算制御装置150は、前記サンプル3aの重量Wd1(g)を前記第一秤量装置144で秤量するように前記第一サンプル移動装置142を作動制御した後(図2中、S102)、秤量された当該サンプル3aを前記第一試験装置143内に移動させるように上記第一サンプル移動装置142を作動制御する。 Subsequently, the arithmetic and control unit 150 controls the operation of the first sample moving unit 142 so that the weight Wd1 (g) of the sample 3a is measured by the first weighing unit 144 (S102 in FIG. 2). The first sample moving device 142 is controlled to move the weighed sample 3a into the first test device 143.
 次に、前記演算制御装置150は、所定の試験温度(例えば、95℃)に加熱された空気104を前記第一試験装置143内に送給するように前記ブロア149a及び前記加熱器149bを作動制御することにより、前記サンプル3aを上記試験温度の空気104に曝して酸素吸着試験を行う(図2中、S103)。 Next, the arithmetic and control unit 150 operates the blower 149a and the heater 149b so as to supply the air 104 heated to a predetermined test temperature (for example, 95 ° C.) into the first test unit 143. By controlling, the sample 3a is exposed to the air 104 at the test temperature to perform an oxygen adsorption test (S103 in FIG. 2).
 そして、所定の試験時間Td(min.)(例えば、30分間)経過すると、前記演算制御装置150は、前記タイマからの情報に基づいて、前記酸素吸着試験を行われたサンプル3bを前記第一試験装置143内から前記第一秤量装置144に移動させるように前記第一サンプル移動装置142を作動制御して、当該サンプル3bの重量Wd2(g)を前記第一秤量装置144で秤量した後(図2中、S104)、当該サンプル3bを系外へ排出するように上記第一サンプル移動装置142を作動制御する。 When a predetermined test time Td (min.) (For example, 30 minutes) elapses, the arithmetic and control unit 150 adds the sample 3b that has been subjected to the oxygen adsorption test to the first sample based on information from the timer. After the operation of the first sample moving device 142 is controlled so as to be moved from the test device 143 to the first weighing device 144, the weight Wd2 (g) of the sample 3b is weighed by the first weighing device 144 ( In FIG. 2, the operation of the first sample moving device 142 is controlled so that the sample 3b is discharged out of the system (S104).
 このようにして前記サンプル3a,3bの重量Wd1,Wd2をそれぞれ計測すると、前記演算制御装置150は、当該重量Wd1,Wd2に基づいて、下記の乾燥石炭酸素吸着速度算出式(11)から前記乾燥石炭4の酸素吸着速度Vd(wt%/min.)を算出する(図2中、S105)。 When the weights Wd1 and Wd2 of the samples 3a and 3b are respectively measured in this way, the arithmetic and control unit 150 calculates the drying from the dry coal oxygen adsorption rate calculation formula (11) below based on the weights Wd1 and Wd2. The oxygen adsorption rate Vd (wt% / min.) Of the coal 4 is calculated (S105 in FIG. 2).
Vd=(Wd2-Wd1)/(Wd1×Td)×100   (11) Vd = (Wd2-Wd1) / (Wd1 × Td) × 100 (11)
 また、前記演算制御装置150は、前記不活性化処理装置130の前記装置本体131で不活性化処理された前記改質石炭7の一部を前記コンベア117からサンプル7aとして分取するように前記第二分取装置145を作動制御した後(図2中、S106)、分取された当該サンプル7aを当該第二分取装置145から受け取るように前記第二サンプル移動装置146を作動制御する。 Further, the arithmetic and control unit 150 sorts the part of the reformed coal 7 deactivated by the apparatus main body 131 of the deactivation processing unit 130 as the sample 7a from the conveyor 117. After the operation of the second sorting device 145 is controlled (S106 in FIG. 2), the second sample moving device 146 is controlled to receive the sample 7a that has been sorted from the second sorting device 145.
 続いて、前記演算制御装置150は、前記サンプル7aの重量Wr1(g)を前記第二秤量装置148で秤量するように前記第二サンプル移動装置146を作動制御した後(図2中、S107)、秤量された当該サンプル7aを前記第二試験装置147内に位置させるように上記第二サンプル移動装置146を作動制御する。 Subsequently, the arithmetic and control unit 150 controls the operation of the second sample moving unit 146 so that the weight Wr1 (g) of the sample 7a is measured by the second weighing unit 148 (S107 in FIG. 2). The second sample moving device 146 is controlled to operate so that the weighed sample 7 a is positioned in the second test device 147.
 次に、前記演算制御装置150は、所定の試験温度(例えば、95℃)に加熱された空気104を前記第二試験装置147内に送給するように前記ブロア149a及び前記加熱器149bを作動制御することにより、前記サンプル7aを上記試験温度の空気104に曝して酸素吸着試験を行う(図2中、S108)。 Next, the arithmetic and control unit 150 operates the blower 149a and the heater 149b so as to supply the air 104 heated to a predetermined test temperature (for example, 95 ° C.) into the second test unit 147. By controlling, the sample 7a is exposed to the air 104 at the test temperature to perform an oxygen adsorption test (S108 in FIG. 2).
 そして、所定の試験時間Tr(min.)(例えば、30分間)経過すると、前記演算制御装置150は、前記タイマからの情報に基づいて、前記吸着試験を行われたサンプル7bを前記第二試験装置147内から前記第二秤量装置148に移動させるように前記第二サンプル移動装置146を作動制御して、当該サンプル3bの重量Wr2(g)を前記第二秤量装置148で秤量した後(図2中、S109)、当該サンプル7bを系外へ排出するように上記第二サンプル移動装置146を作動制御する。 Then, when a predetermined test time Tr (min.) (For example, 30 minutes) elapses, the arithmetic and control unit 150 determines the sample 7b on which the adsorption test has been performed on the second test based on information from the timer. The second sample moving device 146 is controlled to move from the device 147 to the second weighing device 148, and the weight Wr2 (g) of the sample 3b is weighed by the second weighing device 148 (see FIG. 2, the operation of the second sample moving device 146 is controlled so that the sample 7 b is discharged out of the system.
 このようにして前記サンプル7a,7bの重量Wr1,Wr2をそれぞれ計測すると、前記演算制御装置150は、当該重量Wr1,Wr2に基づいて、下記の改質石炭酸素吸着速度算出式(12)から前記改質石炭7の酸素吸着速度Vr(wt%/min.)を算出する(図2中、S110)。 When the weights Wr1 and Wr2 of the samples 7a and 7b are measured in this way, the arithmetic and control unit 150 calculates the above-described modified coal oxygen adsorption rate calculation formula (12) based on the weights Wr1 and Wr2. The oxygen adsorption rate Vr (wt% / min.) Of the modified coal 7 is calculated (S110 in FIG. 2).
Vr=(Wr2-Wr1)/(Wr1×Tr)×100   (12) Vr = (Wr2-Wr1) / (Wr1 × Tr) × 100 (12)
 このようにして前記乾燥石炭3の前記酸素吸着速度Vd及び前記改質石炭7の前記酸素吸着速度Vrをそれぞれ求めると、前記演算制御装置150は、当該酸素吸着速度Vd,Vrに基づいて、下記の酸素吸着速度比算出式(13)から酸素吸着速度比Nを算出する(図2中、S111)。 When the oxygen adsorption rate Vd of the dry coal 3 and the oxygen adsorption rate Vr of the modified coal 7 are respectively determined in this way, the arithmetic and control unit 150 calculates the following based on the oxygen adsorption rates Vd and Vr. The oxygen adsorption rate ratio N is calculated from the oxygen adsorption rate ratio calculation formula (13) (S111 in FIG. 2).
N=|(Vr-Vd)|/Vd   (13) N = | (Vr−Vd) | / Vd (13)
 そして、前記演算制御装置150は、前記酸素吸着速度比Nが規格値Ns(例えば、0~0.05)の範囲内であるか否か判断し(図2中、S112)、当該規格値Nsの範囲内である場合には、不活性化処理が適切に行われていると判断して、不活性化処理条件をそのまま維持するように前記不活性化処理装置130の前記ブロア133,135及び前記加熱器134を作動制御する(図2中、S113)。 Then, the arithmetic and control unit 150 determines whether or not the oxygen adsorption rate ratio N is within a range of a standard value Ns (for example, 0 to 0.05) (S112 in FIG. 2), and the standard value Ns. If it is within the range, it is determined that the inactivation process is properly performed, and the blowers 133, 135 and Operation of the heater 134 is controlled (S113 in FIG. 2).
 他方、前記酸素吸着速度比Nが前記規格値Nsの範囲外の場合には、前記演算制御装置150は、当該酸素吸着速度比Nが当該規格値Nsの範囲よりも大きいか否か判断し(図3中、S114)、当該規格値Nsの範囲よりも大きい場合(N>Ns)には、不活性化処理が不足していると判断し、当該酸素吸着速度比Nに対応して設定されている前記処理ガス106中への増加酸素濃度値Oaを、予め入力されているマップから読み出し(図3中、S115)、前記処理ガス106中の現在酸素濃度値Op及び上記増加酸素濃度値Oaに基づいて、前記処理ガス106中の修正酸素濃度値Ocを算出する(図3中、S116)。 On the other hand, when the oxygen adsorption rate ratio N is outside the range of the standard value Ns, the arithmetic and control unit 150 determines whether or not the oxygen adsorption rate ratio N is larger than the range of the standard value Ns ( In FIG. 3, when S114) is larger than the range of the standard value Ns (N> Ns), it is determined that the inactivation process is insufficient, and is set corresponding to the oxygen adsorption rate ratio N. The increased oxygen concentration value Oa into the processing gas 106 is read out from a previously input map (S115 in FIG. 3), and the current oxygen concentration value Op in the processing gas 106 and the increased oxygen concentration value Oa are read out. Based on the above, a corrected oxygen concentration value Oc in the processing gas 106 is calculated (S116 in FIG. 3).
 次に、前記演算制御装置150は、前記修正酸素濃度値Ocが上限値Ou(例えば、10%)以下であるか否か判断し(図3中、S117)、当該上限値Ou以下である場合(Oc≦Ou)には、前記処理ガス106が前記修正酸素濃度値Ocとなるように、前記不活性化処理装置130の前記ブロア133,135を作動制御する(図3中、S118)。 Next, the arithmetic and control unit 150 determines whether or not the corrected oxygen concentration value Oc is equal to or lower than an upper limit value Ou (for example, 10%) (S117 in FIG. 3). In (Oc ≦ Ou), the blowers 133 and 135 of the deactivation processing apparatus 130 are controlled to operate so that the processing gas 106 becomes the corrected oxygen concentration value Oc (S118 in FIG. 3).
 そして、前記修正酸素濃度値Ocが上限値Ouを超える場合(Oc>Ou)には、前記演算制御装置150は、前記処理ガス106の酸素濃度の増加による対応が不適切であると判断し、前記酸素吸着速度比Nに対応して設定されている前記処理ガス106の増加温度値Taを、予め入力されているマップから読み出し(図3中、S119)、前記処理ガス106中の現在温度値Tp及び上記増加温度値Taに基づいて、前記処理ガス106の修正温度値Tcを算出する(図3中、S120)。 When the corrected oxygen concentration value Oc exceeds the upper limit value Ou (Oc> Ou), the arithmetic and control unit 150 determines that the response due to the increase in the oxygen concentration of the processing gas 106 is inappropriate, An increased temperature value Ta of the processing gas 106 set corresponding to the oxygen adsorption rate ratio N is read from a previously input map (S119 in FIG. 3), and the current temperature value in the processing gas 106 is read. A corrected temperature value Tc of the processing gas 106 is calculated based on Tp and the increased temperature value Ta (S120 in FIG. 3).
 続いて、前記演算制御装置150は、前記修正温度値Tcが上限値Tu(例えば、95℃)以下であるか否か判断し(図3中、S121)、当該上限値Tu以下である場合(Tc≦Tu)には、前記処理ガス106が前記修正温度値Tcとなるように、前記不活性化処理装置130の前記加熱器134を作動制御する(図3中、S122)。 Subsequently, the arithmetic and control unit 150 determines whether or not the corrected temperature value Tc is equal to or lower than an upper limit value Tu (for example, 95 ° C.) (S121 in FIG. 3). In Tc ≦ Tu), the heater 134 of the deactivation processing apparatus 130 is controlled to operate so that the processing gas 106 becomes the corrected temperature value Tc (S122 in FIG. 3).
 なお、前記修正温度値Tcが上限値Tuを超える場合(Tc>Tu)には、前記演算制御装置150は、不活性化処理が何らかの原因により適切に実施できないと判断し、前記改質石炭7の製造の中断に必要な指令を発信する(図3中、S123)。 When the corrected temperature value Tc exceeds the upper limit value Tu (Tc> Tu), the arithmetic and control unit 150 determines that the deactivation process cannot be appropriately performed for some reason, and the modified coal 7 A command necessary for interrupting the manufacturing of the device is transmitted (S123 in FIG. 3).
 また、前記ステップS114において、前記酸素吸着速度比Nが前記規格値Nsの範囲よりも小さい場合(N<Ns)には、前記演算制御装置150は、過剰に不活性化処理されていると判断し、当該酸素吸着速度比Nに対応して設定されている前記処理ガス106中からの減少酸素濃度値Odを、予め入力されているマップから読み出し(図3中、S124)、前記処理ガス106中の現在酸素濃度値Op及び上記減少酸素濃度値Odに基づいて、前記処理ガス106中の修正酸素濃度値Ocを算出して(図3中、S125)、前記処理ガスが当該修正酸素濃度値Ocとなるように、前記不活性化処理装置130の前記ブロア133,135を作動制御する(図3中、前記S118)。 In step S114, when the oxygen adsorption rate ratio N is smaller than the range of the standard value Ns (N <Ns), it is determined that the arithmetic and control unit 150 is excessively inactivated. Then, a reduced oxygen concentration value Od from the processing gas 106 set corresponding to the oxygen adsorption rate ratio N is read from a previously input map (S124 in FIG. 3), and the processing gas 106 is read out. The corrected oxygen concentration value Oc in the processing gas 106 is calculated on the basis of the current oxygen concentration value Op and the reduced oxygen concentration value Od in the processing gas (S125 in FIG. 3), and the processing gas is subjected to the corrected oxygen concentration value. The blowers 133 and 135 of the deactivation processing apparatus 130 are controlled to be Oc (S118 in FIG. 3).
 このように不活性化処理を適切に行うように前記不活性化処理装置130の前記ブロア133,135及び前記加熱器134を作動制御して、前記改質石炭7の分取から規定時間Ts(例えば、1時間)経過すると(図4中、S126)、前記演算制御装置150は、前記ステップS106~S110と同様にして、前記不活性化処理装置130で不活性化処理された新たな前記改質石炭7の一部をサンプル7anとして改めて分取して(図4中、S127)、前記酸素吸着試験前の上記サンプル7anの重量Wr1n(g)を秤量してから(図4中、S128)、当該サンプル7anに前記酸素吸着試験を行った後(図4中、S129)、当該酸素吸着試験後のサンプル7bnの重量Wr2n(g)を秤量して(図4中、S130)、上記重量Wr1n,Wr2nに基づいて、前記式(12)と同様な下記の式(14)から上記改質石炭7の新たな酸素吸着速度Vrn(wt%/min.)を改めて算出する(図4中、S131)。 In this way, the blowers 133 and 135 and the heater 134 of the deactivation processing apparatus 130 are operated and controlled so as to appropriately perform the deactivation processing, and the specified time Ts ( For example, when 1 hour elapses (S126 in FIG. 4), the arithmetic and control unit 150 performs the new modification that has been deactivated by the deactivation processing unit 130 in the same manner as in steps S106 to S110. was collected again divided part quality coal 7 as a sample 7a n (in FIG. 4, S127), after weighing the weight Wr1 n (g) of the sample 7a n before the oxygen adsorption test (in FIG. 4 , S128), (in Figure 4 after the oxygen adsorption test on the sample 7a n, S129), were weighed weight Wr2 n (g) of the sample 7b n after the oxygen adsorption test (in Fig. 4, S130), the above weight Wr1 Based on n, Wr2 n, the equation (12) new from equation (14) similar following the above upgraded coal 7 oxygen adsorption rate Vr n (wt% / min. ) To again calculated (Fig. 4, S131).
Vrn=(Wr2n-Wr1n)/(Wr1n×Tr)×100   (14) Vr n = (Wr2 n −Wr1 n ) / (Wr1 n × Tr) × 100 (14)
 次に、前記演算制御装置150は、今回新たに求められた上記酸素吸着速度Vrn及び今回の直前に求められている酸素吸着速度Vrn-1(今回においてはVr)に基づいて、下記の安定度算出式(15)から不活性化処理の安定度Sを算出する(図4中、S132)。 Next, the arithmetic and control unit 150 performs the following based on the oxygen adsorption rate Vr n newly obtained this time and the oxygen adsorption rate Vr n-1 (Vr in this case) obtained immediately before this time. The stability S of the inactivation processing is calculated from the stability calculation formula (15) (S132 in FIG. 4).
S=|(Vrn-Vrn-1)|/Vrn   (15) S = | (Vr n −Vr n−1 ) | / Vr n (15)
 そして、前記演算制御装置150は、前記安定度Sが規格値Ss(例えば、0~0.01)の範囲内であるか否か判断し(図4中、S133)、当該規格値Ssの範囲内である場合には、不活性化処理が安定して行われている安定期の状態になったと判断し、前記乾燥石炭3の前記サンプル3a,3bから求められた前記酸素吸着速度Vd及び今回改めて分取した新たな前記改質石炭7の前記サンプル7an,7bnから新たに求めた前記酸素吸着速度Vrnに基づいて、前記式(13)と同様な下記の酸素吸着速度比再算出式(16)に基づいて、酸素吸着速度比Nを再算出した後(図4中、S134)、前記ステップS112に戻る。 Then, the arithmetic and control unit 150 determines whether or not the stability S is within a standard value Ss (for example, 0 to 0.01) (S133 in FIG. 4), and the range of the standard value Ss. If it is within the range, it is determined that the inactivation process has been stably performed, and the oxygen adsorption rate Vd obtained from the samples 3a and 3b of the dry coal 3 and the current time are determined. the samples 7a n of new the upgraded coal 7 was collected again minute, based on the oxygen adsorption rate Vr n the newly determined from 7b n, the equation (13) as well as oxygen adsorption rate ratio recalculation following After recalculating the oxygen adsorption rate ratio N based on the equation (16) (S134 in FIG. 4), the process returns to step S112.
N=|(Vrn-Vd)|/Vd   (16) N = | (Vr n −Vd) | / Vd (16)
 他方、前記安定度Sが規格値Ssの範囲内である場合には、前記演算制御装置150は、不活性化処理が不安定な過渡期の状態にあって、まだ適切に判定できないと判断して、前記ステップS126に戻って、前記ステップS127~S133を改めて行う。 On the other hand, when the stability S is within the range of the standard value Ss, the arithmetic and control unit 150 determines that the inactivation process is in an unstable state and cannot be determined appropriately. Then, returning to the step S126, the steps S127 to S133 are performed again.
 このため、本実施形態に係る改質石炭製造設備100においては、前記低品位石炭1の組成にバラつきを有していたとしても、当該低品位石炭1の組成に対応して必要十分な条件で不活処理を行うことが簡単にできる。 For this reason, in the reformed coal production facility 100 according to the present embodiment, even if the composition of the low-grade coal 1 has variations, the necessary and sufficient conditions correspond to the composition of the low-grade coal 1. Inactive treatment can be easily performed.
 したがって、本実施形態に係る改質石炭製造設備100によれば、各種組成の低品位石炭1であっても、低コストで簡単に改質石炭を製造することができる。 Therefore, according to the modified coal production facility 100 according to the present embodiment, even if the low-grade coal 1 has various compositions, the modified coal can be easily produced at low cost.
〈第二番目の実施形態〉
 本発明に係る改質石炭製造設備の第二番目の実施形態を図5~8に基づいて説明する。ただし、前述した実施形態と同様な部分については、前述した実施形態の説明で用いた符号と同様な符号を用いることにより、前述した実施形態での説明と重複する説明を省略する。
<Second Embodiment>
A second embodiment of the modified coal production facility according to the present invention will be described with reference to FIGS. However, with respect to the same parts as those of the above-described embodiment, the same reference numerals as those used in the description of the above-described embodiment are used, and the description overlapping with the description of the above-described embodiment is omitted.
 図5に示すように、前記第一分取装置141から前記サンプル3aを受け取って移動させる前記第一サンプル移動装置142は、前記第一分取装置141で分取された前記サンプル3aを酸素含有雰囲気である空気雰囲気の恒温状態(例えば、20℃)の内部に気密保持して酸素吸着試験を行う第一の試験手段である第一試験装置243と、前記第一分取装置141で分取された前記サンプル3aの重量を秤量する前記第一秤量装置144とにそれぞれ連絡できるようになっている。前記第一試験装置243には、当該試験装置243の内部の圧力を計測する第一の圧力計測手段である圧力センサ243aが設けられている。 As shown in FIG. 5, the first sample moving device 142 that receives and moves the sample 3 a from the first sorting device 141 includes the oxygen contained in the sample 3 a sorted by the first sorting device 141. A first test device 243 which is a first test means for performing an oxygen adsorption test while keeping the inside of a constant temperature state (for example, 20 ° C.) of an air atmosphere which is an atmosphere, and the first sorting device 141 for sorting. It is possible to communicate with the first weighing device 144 for weighing the sample 3a. The first test apparatus 243 is provided with a pressure sensor 243a that is a first pressure measuring unit that measures the pressure inside the test apparatus 243.
 また、前記第二分取装置145から前記サンプル7aを受け取って移動させる前記第二サンプル移動装置146は、前記第二分取装置145で分取された前記サンプル7aを酸素含有雰囲気である空気雰囲気の恒温状態(例えば、20℃)の内部に気密保持して酸素吸着試験を行う第二の試験手段である第二試験装置247と、前記第二分取装置145で分取された前記サンプル7aの重量を秤量する第二秤量装置148とにそれぞれ連絡できるようになっている。前記第二試験装置247には、当該試験装置247の内部の圧力を計測する第二の圧力計測手段である圧力センサ247aが設けられている。 In addition, the second sample moving device 146 that receives and moves the sample 7a from the second sorting device 145 is an air atmosphere in which the sample 7a sorted by the second sorting device 145 is an oxygen-containing atmosphere. A second test device 247 which is a second test means for performing an oxygen adsorption test while maintaining airtightness in a constant temperature state (for example, 20 ° C.), and the sample 7a sorted by the second fractionation device 145 It is possible to communicate with a second weighing device 148 for weighing each of the two. The second test apparatus 247 is provided with a pressure sensor 247a which is a second pressure measuring means for measuring the pressure inside the test apparatus 247.
 前記圧力センサ243a,247aは、タイマ等を内蔵する演算制御装置250の入力部に前記秤量装置144,148と共にそれぞれ電気的に接続している。この演算制御装置250の出力部は、前記試験装置243,247と共に、前記ブロア133,135、前記加熱器134、前記分取装置141,145、前記サンプル移動装置142,146にそれぞれ電気的に接続されており、当該演算制御装置250は、前記タイマ等からの情報に基づいて、前記分取装置141,145、前記サンプル移動装置142,146、前記試験装置243,247等をそれぞれ作動制御することができると共に、前記秤量装置144,148、前記圧力センサ243a,247a等からの情報に基づいて、前記ブロア133,135、前記加熱器134等を作動制御することができるようになっている(詳細は後述する)。 The pressure sensors 243a and 247a are electrically connected together with the weighing devices 144 and 148 to the input unit of the arithmetic control device 250 having a built-in timer or the like. The output unit of the arithmetic control device 250 is electrically connected to the blowers 133 and 135, the heater 134, the sorting devices 141 and 145, and the sample moving devices 142 and 146, together with the test devices 243 and 247, respectively. The arithmetic and control unit 250 controls the operations of the sorting devices 141 and 145, the sample moving devices 142 and 146, the test devices 243 and 247, etc., based on information from the timer and the like. The blowers 133 and 135, the heater 134 and the like can be controlled based on information from the weighing devices 144 and 148 and the pressure sensors 243a and 247a (details). Will be described later).
 このような本実施形態においては、前記演算制御装置250等により、主演算制御手段と第一の副演算制御手段と第二の副演算制御手段とを兼ねるように構成している。 In this embodiment, the arithmetic control device 250 or the like is configured to serve as the main arithmetic control means, the first sub arithmetic control means, and the second sub arithmetic control means.
 次に、本実施形態に係る上述した改質石炭製造設備200の作動を説明する。 Next, the operation of the above-described modified coal production facility 200 according to this embodiment will be described.
 前記粉砕装置111の前記ホッパ111aに前記低品位石炭1を供給すると、本実施形態に係る改質石炭製造設備200は、前述した実施形態に係る改質石炭製造設備100の場合と同様にして、前記低品位石炭1から水分2を除去することにより前記乾燥石炭3とし、当該乾燥石炭3を乾留することにより前記乾留石炭6とし、当該乾留石炭6を前記処理ガス106で加熱して不活性化処理することにより前記改質石炭7として前記貯留タンク118に貯留する。 When the low-grade coal 1 is supplied to the hopper 111a of the pulverizer 111, the modified coal production facility 200 according to the present embodiment is similar to the modified coal production facility 100 according to the embodiment described above. The dry coal 3 is obtained by removing moisture 2 from the low-grade coal 1, the dry coal 3 is dry-distilled to form the dry-distilled coal 6, and the dry-distilled coal 6 is heated with the processing gas 106 to be inactivated. By processing, the modified coal 7 is stored in the storage tank 118.
 そして、前記演算制御装置250は、前述した実施形態の場合と同様に、前記乾燥装置112で乾燥された前記乾燥石炭3の一部を前記コンベア113からサンプル3aとして分取するように前記第一分取装置141を作動制御した後(図6中、S201)、分取された当該サンプル3aを当該第一分取装置141から受け取るように前記第一サンプル移動装置142を作動制御する。 Then, as in the case of the above-described embodiment, the arithmetic and control unit 250 is configured to sort a part of the dry coal 3 dried by the drying device 112 as the sample 3a from the conveyor 113. After controlling the operation of the sorting device 141 (S201 in FIG. 6), the first sample moving device 142 is controlled to receive the sample 3a thus sorted from the first sorting device 141.
 続いて、前記演算制御装置250は、前述した実施形態の場合と同様に、前記サンプル3aの重量Wd1(g)を前記第一秤量装置144で秤量するように前記第一サンプル移動装置142を作動制御した後(図6中、S202)、秤量された当該サンプル3aを前記第一試験装置243の内部に密封するように上記第一サンプル移動装置142を作動制御したら、前記圧力センサ243aからの情報に基づいて、当該第一試験装置243の酸素吸着試験前の内圧Pd1(hPa)を計測する(図6中、S203)。 Subsequently, the arithmetic and control unit 250 operates the first sample moving device 142 so that the weight Wd1 (g) of the sample 3a is weighed by the first weighing device 144 as in the case of the above-described embodiment. After controlling (S202 in FIG. 6), when the first sample moving device 142 is controlled to seal the weighed sample 3a inside the first test device 243, information from the pressure sensor 243a is obtained. Based on the above, the internal pressure Pd1 (hPa) before the oxygen adsorption test of the first test apparatus 243 is measured (S203 in FIG. 6).
 次に、前記演算制御装置250は、前記タイマからの情報に基づいて、前記サンプル3aを前記第一試験装置243の内部に恒温状態の空気雰囲気で所定の試験時間Td(min.)(例えば、10分間)気密保持することにより酸素吸着試験した後(図6中、S204)、前記圧力センサ243aからの情報に基づいて、当該第一試験装置243の上記酸素吸着試験後の内圧Pd2(hPa)を計測したら(図6中、S205)、酸素吸着試験後の前記サンプル3bを当該第一試験装置243内から系外へ排出するように前記第一サンプル移動装置142を作動制御する。 Next, based on the information from the timer, the arithmetic and control unit 250 sets the sample 3a to a predetermined test time Td (min.) (For example, in a constant temperature air atmosphere inside the first test unit 243). 10 minutes) After the oxygen adsorption test by holding the gas tight (S204 in FIG. 6), based on the information from the pressure sensor 243a, the internal pressure Pd2 (hPa) after the oxygen adsorption test of the first test device 243 (S205 in FIG. 6), the operation of the first sample moving device 142 is controlled so that the sample 3b after the oxygen adsorption test is discharged out of the system from the first test device 243.
 このようにして前記サンプル3aの重量Wd1及び酸素吸着試験前後の前記第一試験装置243の前記内圧Pd1,Pd2をそれぞれ計測すると、前記演算制御装置250は、当該重量Wd1及び当該内圧Pd1,Pd2に基づいて、下記の乾燥石炭酸素吸着速度算出式(21),(22)から前記乾燥石炭3の酸素吸着速度Vd(wt%/min.)を算出する(図6中、S206)。 When the weight Wd1 of the sample 3a and the internal pressures Pd1 and Pd2 of the first test device 243 before and after the oxygen adsorption test are respectively measured in this way, the arithmetic and control unit 250 determines the weight Wd1 and the internal pressures Pd1 and Pd2. Based on the dry coal oxygen adsorption rate calculation formulas (21) and (22) below, the oxygen adsorption rate Vd (wt% / min.) Of the dry coal 3 is calculated (S206 in FIG. 6).
Vd=Qd/(Wd1×Td)×100   (21) Vd = Qd / (Wd1 × Td) × 100 (21)
 ただし、Qdは、前記乾燥石炭3の酸素吸着量(mmol-O2/g-coal)であり、下記の式(22)より求められる値である。 However, Qd is the oxygen adsorption amount (mmol-O 2 / g-coal) of the dry coal 3, and is a value obtained from the following formula (22).
Qd=[{(Pd1-Pd2)/1013}
  ×{Cd-(Wd1/D)}]/(22.4×Wd1)   (22)
Qd = [{(Pd1-Pd2) / 1013}
× {Cd− (Wd1 / D)}] / (22.4 × Wd1) (22)
 なお、Cdは第一試験装置243の内容積(cm3)、Dは低品位石炭1の真密度(g/cm3)であり、それぞれ予め求められている値である。 Note that Cd is the internal volume (cm 3 ) of the first test apparatus 243, and D is the true density (g / cm 3 ) of the low-grade coal 1, each of which is obtained in advance.
 また、前記演算制御装置250は、前述した実施形態の場合と同様に、前記不活性化処理装置130で不活性化処理された前記改質石炭7の一部を前記コンベア117からサンプル7aとして分取するように前記第二分取装置145を作動制御した後(図6中、S207)、分取された当該サンプル7aを当該第二分取装置145から受け取るように前記第二サンプル移動装置146を作動制御する。 Further, as in the case of the above-described embodiment, the arithmetic and control unit 250 separates a part of the modified coal 7 deactivated by the deactivation processing unit 130 from the conveyor 117 as a sample 7a. After the operation of the second sorting device 145 is controlled so as to be taken (S207 in FIG. 6), the second sample moving device 146 is received so as to receive the sorted sample 7a from the second sorting device 145. To control the operation.
 続いて、前記演算制御装置250は、前述した実施形態の場合と同様に、前記サンプル7aの重量Wr1(g)を前記第二秤量装置148で秤量するように前記第二サンプル移動装置146を作動制御した後(図6中、S208)、秤量された当該サンプル7aを前記第二試験装置247の内部に密封するように上記第二サンプル移動装置146を作動制御したら、前記圧力センサ247aからの情報に基づいて、当該第二試験装置247の酸素吸着試験前の内圧Pr1(hPa)を計測する(図6中、S209)。 Subsequently, the arithmetic and control unit 250 operates the second sample moving unit 146 so that the weight Wr1 (g) of the sample 7a is weighed by the second weighing unit 148 as in the case of the above-described embodiment. After the control (S208 in FIG. 6), when the second sample moving device 146 is controlled to seal the weighed sample 7a inside the second test device 247, information from the pressure sensor 247a is obtained. Based on the above, the internal pressure Pr1 (hPa) before the oxygen adsorption test of the second test apparatus 247 is measured (S209 in FIG. 6).
 次に、前記演算制御装置250は、前記タイマからの情報に基づいて、前記サンプル7aを前記第二試験装置247の内部に恒温状態の空気雰囲気で所定の試験時間Tr(min.)(例えば、10分間)気密保持することにより酸素吸着試験した後(図6中、S210)、前記圧力センサ247aからの情報に基づいて、当該第二試験装置247の上記酸素吸着試験後の内圧Pr2(hPa)を計測したら(図6中、S211)、酸素吸着試験後の前記サンプル7bを当該第二試験装置247内から系外へ排出するように前記第二サンプル移動装置146を作動制御する。 Next, based on the information from the timer, the arithmetic and control unit 250 sets the sample 7a to a predetermined test time Tr (min.) (For example, in a constant temperature air atmosphere inside the second test unit 247). 10 minutes) After the oxygen adsorption test by holding the gas tightly (S210 in FIG. 6), based on the information from the pressure sensor 247a, the internal pressure Pr2 (hPa) after the oxygen adsorption test of the second test device 247 (S211 in FIG. 6), the second sample moving device 146 is controlled to discharge the sample 7b after the oxygen adsorption test from the second test device 247 to the outside of the system.
 このようにして前記サンプル7aの重量Wr1及び酸素吸着試験前後の前記第二試験装置247の前記内圧Pr1,Pr2をそれぞれ計測すると、前記演算制御装置250は、当該重量Wr1及び当該内圧Pr1,Pr2に基づいて、下記の改質石炭酸素吸着速度算出式(23)から前記改質石炭7の酸素吸着速度Vr(wt%/min.)を算出する(図6中、S212)。 When the weight Wr1 of the sample 7a and the internal pressures Pr1 and Pr2 of the second test device 247 before and after the oxygen adsorption test are respectively measured in this way, the arithmetic and control unit 250 calculates the weight Wr1 and the internal pressures Pr1 and Pr2. Based on the following modified coal oxygen adsorption rate calculation formula (23), the oxygen adsorption rate Vr (wt% / min.) Of the modified coal 7 is calculated (S212 in FIG. 6).
Vr=Qr/(Wr1×Tr)×100   (23) Vr = Qr / (Wr1 × Tr) × 100 (23)
 ただし、Qrは、前記改質石炭7の酸素吸着量(mmol-O2/g-coal)であり、下記の式(24)より求められる値である。 However, Qr is the oxygen adsorption amount (mmol-O 2 / g-coal) of the modified coal 7, and is a value obtained from the following equation (24).
Qr=[{(Pr1-Pr2)/1013}
  ×{Cr-(Wr1/D)}]/(22.4×Wr1)   (24)
Qr = [{(Pr1-Pr2) / 1013}
× {Cr- (Wr1 / D)}] / (22.4 × Wr1) (24)
 なお、Crは第二試験装置247の内容積(cm3)であり、予め求められている値である。 Cr is the internal volume (cm 3 ) of the second test apparatus 247 and is a value obtained in advance.
 このようにして前記乾燥石炭3の前記酸素吸着速度Vd及び前記改質石炭7の前記酸素吸着速度Vrをそれぞれ求めると、前記演算制御装置250は、前述した実施形態の場合と同様に、当該酸素吸着速度Vd,Vrに基づいて、前記酸素吸着速度比算出式(13)から酸素吸着速度比Nを算出する(図6中、S111)。 When the oxygen adsorption rate Vd of the dry coal 3 and the oxygen adsorption rate Vr of the modified coal 7 are respectively determined in this way, the arithmetic and control unit 250, as in the above-described embodiment, Based on the adsorption rates Vd and Vr, the oxygen adsorption rate ratio N is calculated from the oxygen adsorption rate ratio calculation formula (13) (S111 in FIG. 6).
 次に、前記演算制御装置250は、前述した実施形態の場合と同様に、前記ステップS112~S126を行う(図6~8参照)。 Next, the arithmetic and control unit 250 performs the steps S112 to S126 as in the above-described embodiment (see FIGS. 6 to 8).
 そして、前述した実施形態の場合と同様に、不活性化処理を適切に行うように前記不活性化処理装置130の前記ブロア133,135及び前記加熱器134を作動制御して、前記改質石炭7の分取から規定時間Ts(例えば、1時間)経過すると(図8中、S126)、前記演算制御装置250は、前記ステップS207~S212と同様にして、前記不活性化処理装置130で不活性化処理された新たな前記改質石炭7の一部をサンプル7anとして改めて分取して(図8中、S213)、前記酸素吸着試験前の上記サンプル7anの重量Wr1n(g)を秤量し(図8中、S214)、空気で恒温状態に気密保持された前記酸素吸着試験前の前記内圧Pr1nを計測した後に(図8中、S215)、当該サンプル7anの前記酸素吸着試験を行って(図8中、S216)、当該酸素吸着試験直後の前記内圧Pr2nを計測し(図8中、S217)、上記重量Wr1n及び上記内圧Pr1n,Pr2nに基づいて、前記式(23)と同様な下記の式(25)から上記改質石炭7の新たな酸素吸着速度Vrn(wt%/min.)を改めて算出する(図8中、S218)。 Then, as in the case of the above-described embodiment, the blower 133, 135 and the heater 134 of the deactivation processing apparatus 130 are operated and controlled so as to appropriately perform the deactivation processing, and the modified coal When a specified time Ts (for example, 1 hour) elapses from the sorting in FIG. 7 (S126 in FIG. 8), the arithmetic and control unit 250 causes the deactivation processing unit 130 to perform the inactivation in the same manner as in steps S207 to S212. some of the new the upgraded coal 7 which has been treated activated was collected again min as a sample 7a n (in FIG. 8, S213), the weight of the oxygen adsorption test before the samples 7a n Wr1 n (g) was weighed (in FIG. 8, S214), after measuring the internal pressure Pr1 n before the oxygen adsorption test is hermetically held in a constant temperature with air (in FIG. 8, S215), the oxygen adsorption of the sample 7a n Trial The performed (in FIG. 8, S216), the internal pressure Pr2 n immediately after the oxygen adsorption test was measured (in FIG. 8, S217), based on the weight Wr1 n and the internal pressure Pr1 n, Pr2 n, the formula A new oxygen adsorption rate Vr n (wt% / min.) Of the modified coal 7 is calculated again from the following equation (25) similar to (23) (S218 in FIG. 8).
Vrn=Qrn/(Wr1n×Tr)×100   (25) Vr n = Qr n / (Wr1 n × Tr) × 100 (25)
 ただし、Qrnは、改めて分取された新たな改質石炭7の酸素吸着量(mmol-O2/g-coal)であり、前記式(24)と同様な下記の式(26)より求められる値である。 However, Qr n is the oxygen adsorption amount (mmol-O 2 / g-coal) of newly reformed coal 7 that has been newly separated, and is obtained from the following equation (26) similar to the equation (24). Value.
Qrn=[{(Pr1n-Pr2n)/1013}
  ×{Cr-(Wr1n/D)}]/(22.4×Wr1n)   (23)
Qr n = [{(Pr1 n −Pr2 n ) / 1013}
× {Cr- (Wr1 n /D)}]/(22.4×Wr1 n ) (23)
 次に、前記演算制御装置250は、今回新たに求められた上記酸素吸着速度Vrn及び今回の直前に求められている酸素吸着速度Vrn-1(今回においてはVr)に基づいて、前述した実施形態の場合と同様に、前記式(15)から前記安定度Sを算出する(図8中、S132)。 Next, the arithmetic and control unit 250 described above based on the oxygen adsorption rate Vr n newly obtained this time and the oxygen adsorption rate Vr n-1 (Vr in this case) obtained immediately before this time. As in the case of the embodiment, the stability S is calculated from the equation (15) (S132 in FIG. 8).
 そして、前記演算制御装置250は、前述した実施形態の場合と同様に、前記ステップS133,S134を行う(図8参照)。以下、前記演算制御装置250は、前述した実施形態の場合と同様にして作動制御を行う(図6~8参照)。 And the said arithmetic and control unit 250 performs said step S133, S134 similarly to the case of embodiment mentioned above (refer FIG. 8). Thereafter, the arithmetic and control unit 250 performs operation control in the same manner as in the above-described embodiment (see FIGS. 6 to 8).
 このため、本実施形態に係る改質石炭製造設備200においては、前述した実施形態に係る改質石炭製造設備100の場合と同様に、前記低品位石炭1の組成にバラつきを有していたとしても、当該低品位石炭1の組成に対応して必要十分な条件で不活処理を行うことが簡単にできる。 For this reason, in the reformed coal manufacturing facility 200 according to the present embodiment, it is assumed that the composition of the low-grade coal 1 has variations, as in the case of the modified coal manufacturing facility 100 according to the above-described embodiment. In addition, inactivation treatment can be easily performed under necessary and sufficient conditions corresponding to the composition of the low-grade coal 1.
 したがって、本実施形態に係る改質石炭製造設備100によれば、前述した実施形態に係る改質石炭製造設備100の場合と同様に、各種組成の低品位石炭1であっても、低コストで簡単に改質石炭を製造することができる。 Therefore, according to the reformed coal production facility 100 according to the present embodiment, as in the case of the reformed coal production facility 100 according to the above-described embodiment, even with the low-grade coal 1 having various compositions, the cost is low. The modified coal can be easily produced.
〈他の実施形態〉
 なお、前述した実施形態においては、前記粉砕装置111や前記冷却装置116を備える改質石炭製造設備100,200の場合について説明したが、低品位石炭1の状態や乾留条件等の各種条件によっては、前記粉砕装置111や前記冷却装置116を省略することも可能である。
<Other embodiments>
In the above-described embodiment, the case of the modified coal production facilities 100 and 200 including the pulverizer 111 and the cooling device 116 has been described. However, depending on various conditions such as the state of the low-grade coal 1 and the dry distillation conditions, The crushing device 111 and the cooling device 116 can be omitted.
 また、前述した実施形態においては、前記演算制御装置150,250が、主演算制御手段と第一の副演算制御手段と第二の副演算手段とを兼ねるように構成したが、他の実施形態として、例えば、主演算制御手段と第一の副演算制御手段と第二の副演算手段とをそれぞれ独立して構成することも可能である。 In the above-described embodiment, the arithmetic control devices 150 and 250 are configured to serve as the main arithmetic control means, the first sub arithmetic control means, and the second sub arithmetic means. As an example, it is possible to configure the main calculation control means, the first sub calculation control means, and the second sub calculation means independently of each other.
 また、前述した実施形態においては、前記第一分取装置141で分取した前記サンプル3aを前記第一サンプル移動装置142により前記第一秤量装置144や前記第一試験装置143,243に移動させると共に、前記第二分取装置145で分取した前記サンプル7aを前記第二サンプル移動装置146により前記第二秤量装置148や前記第二試験装置147,247に移動させるようにしたが、他の実施形態として、例えば、第一の分取手段で分取された前記サンプル3aと第二の分取手段で分取された前記サンプル7aとを同じサンプル移動手段で移動させるようにすることや、第一の秤量手段と第二の秤量手段とを同一の秤量手段で兼ねるように構成することや、第一の試験手段と第二の試験手段とを同一の試験手段で兼ねるように構成することも可能である。 In the above-described embodiment, the sample 3a sorted by the first sorting device 141 is moved to the first weighing device 144 and the first testing devices 143 and 243 by the first sample moving device 142. At the same time, the sample 7a sorted by the second sorting device 145 is moved to the second weighing device 148 and the second testing devices 147 and 247 by the second sample moving device 146. As an embodiment, for example, the sample 3a sorted by the first sorting means and the sample 7a sorted by the second sorting means are moved by the same sample moving means, The first weighing means and the second weighing means can be configured to serve as the same weighing means, or the first testing means and the second testing means can be used as the same testing means. It is also possible to configure the.
 また、前述した実施形態においては、窒素ガス105と空気104とを混合することにより、所望の酸素濃度を有する処理ガス106を生成するようにしたが、他の実施形態として、例えば、窒素ガス105と酸素ガスとを混合することにより、所望の酸素濃度を有する処理ガス106を生成するようにすることも可能である。しかしながら、前述した実施形態のように、窒素ガス105と空気104とを混合することにより、所望の酸素濃度を有する処理ガス106を生成するようにすれば、酸素ガスをわざわざ用意しなくても済むので、非常に好ましい。 Further, in the above-described embodiment, the processing gas 106 having a desired oxygen concentration is generated by mixing the nitrogen gas 105 and the air 104. However, as another embodiment, for example, the nitrogen gas 105 is used. It is also possible to generate the processing gas 106 having a desired oxygen concentration by mixing the oxygen gas and the oxygen gas. However, if the processing gas 106 having a desired oxygen concentration is generated by mixing the nitrogen gas 105 and the air 104 as in the above-described embodiment, it is not necessary to prepare the oxygen gas. So very preferable.
 また、前記窒素ガス供給源132としては、処理ガス106を生成させるためだけに用意した窒素ガスボンベ等を適用することができるのはもちろんのこと、その他、例えば、乾留装置に送給された窒素ガスにより低品位石炭を乾留して当該乾留装置から送出された後に揮発成分や粉塵等を分離された乾留ガス(主成分:窒素ガス)を適用することも可能であり、この場合、不活処理を行うにあたって処理ガス106に新たに加える熱エネルギを削減することが可能となる。 Further, as the nitrogen gas supply source 132, a nitrogen gas cylinder prepared only for generating the processing gas 106 can be applied, and in addition, for example, nitrogen gas supplied to the dry distillation apparatus, for example. It is also possible to apply dry distillation gas (main component: nitrogen gas) from which volatile components and dust, etc. have been separated after carbonizing low-grade coal and sending it from the carbonization device. It is possible to reduce the heat energy newly added to the processing gas 106 when performing.
 また、前述した実施形態においては、低品位石炭1を乾燥及び乾留した後に不活性化処理して改質石炭7を製造する場合について説明したが、本発明はこれに限らず、原料石炭を乾燥及び乾留した後に不活性化処理して改質石炭を製造する場合であれば、前述した実施形態の場合と同様に適用することが可能である。 Moreover, in embodiment mentioned above, although the case where the low-grade coal 1 was dried and dry-distilled and inactivated and manufactured the modified coal 7 was demonstrated, this invention is not limited to this, Drying | coating raw material coal is demonstrated. If the modified coal is produced by inactivation after dry distillation, it can be applied in the same manner as in the embodiment described above.
 本発明に係る改質石炭製造設備は、各種組成の原料石炭であっても、低コストで簡単に不活性化処理して改質石炭を製造することができるので、産業上、極めて有益に利用することができる。 The reformed coal production facility according to the present invention can be used for industrially extremely beneficial because it can produce a reformed coal by simply inactivating at low cost even if it is a raw material coal of various compositions. can do.
 1 低品位石炭
 2 水分
 3 乾燥石炭
 3a,3b サンプル
 4 揮発成分
 6 乾留石炭
 7 改質石炭
 7a,7b サンプル
 100 改質石炭製造設備
 101 水蒸気
 102 燃焼ガス
 103 冷却水
 104 空気
 105 窒素ガス
 106 処理ガス
 111 粉砕装置
 111a ホッパ
 112 乾燥装置
 113 コンベア
 114 乾留装置
 115 コンベア
 116 冷却装置
 117 コンベア
 118 貯留タンク
 121~128 ロータリバルブ
 130 不活性化処理装置
 131 装置本体
 132 窒素ガス供給源
 133 ブロア
 134 加熱器
 135 ブロア
 141 第一分取装置
 142 第一サンプル移動装置
 143 第一試験装置
 144 第一秤量装置
 145 第二分取装置
 146 第二サンプル移動装置
 147 第二試験装置
 148 第二秤量装置
 149a ブロア
 149b 加熱器
 150 演算制御装置
 200 改質石炭製造設備
 243 第一試験装置
 243a 圧力センサ
 247 第二試験装置
 247a 圧力センサ
 250 演算制御装置
1 low-grade coal 2 moisture 3 dry coal 3a, 3b Sample 4 volatiles 6 carbonization coal 7 upgraded coal 7a, 7b sample 100 upgraded coal production equipment 101 steam 102 combustion gas 103 cooling water 104 air 105 Nitrogen gas 106 treatment gas 111 Pulverizer 111a Hopper 112 Dryer 113 Conveyor 114 Dry distillation device 115 Conveyor 116 Cooling device 117 Conveyor 118 Storage tank 121-128 Rotary valve 130 Deactivation processing device 131 Main body 132 Nitrogen gas supply source 133 Blower 134 Heater 135 Blower 141 First First sorter 142 First sample mover 143 First tester 144 First weighing unit 145 Second fractionator 146 Second sample mover 147 Second tester 148 Second weigher 149a Blower 149b Heater 150 Operation control device 200 Modified coal production facility 243 First test device 243a Pressure sensor 247 Second test device 247a Pressure sensor 250 Operation control device

Claims (6)

  1.  原料石炭から水分を除去することにより乾燥石炭とする乾燥手段と、
     前記乾燥石炭を乾留することにより乾留石炭とする乾留手段と、
     酸素を含有する処理ガスで前記乾留石炭を加熱して不活性化処理することにより改質石炭とする不活性化処理手段と
     を備えている改質石炭製造設備において、
     前記乾燥手段で乾燥された前記乾燥石炭の一部を分取して当該乾燥石炭の酸素吸着速度Vdを求める第一の酸素吸着速度測定手段と、
     前記不活性化処理手段で不活性化処理された前記改質石炭の一部を分取して当該改質石炭の酸素吸着速度Vrを求める第二の酸素吸着速度測定手段と、
     前記酸素吸着速度Vd,Vrに基づいて、下記の酸素吸着速度比算出式から酸素吸着速度比Nを算出し、当該酸素吸着速度比Nが規格値Nsの範囲内である場合には、不活性化処理条件を維持するように前記不活性化処理手段を制御し、前記酸素吸着速度比Nが前記規格値Nsの範囲よりも大きい場合には、当該酸素吸着速度比Nに対応する前記処理ガス中への増加酸素濃度値Oaをマップから読み出して、当該処理ガス中の現在酸素濃度値Op及び当該増加酸素濃度値Oaに基づいて当該処理ガス中の修正酸素濃度値Ocを算出して、当該処理ガスが当該修正酸素濃度値Ocとなるように前記不活性化処理手段を制御し、前記酸素吸着速度比Nが前記規格値Nsの範囲よりも小さい場合には、当該酸素吸着速度比Nに対応する前記処理ガス中への減少酸素濃度値Odをマップから読み出して、当該処理ガス中の現在酸素濃度値Op及び当該減少酸素濃度値Odに基づいて当該処理ガス中の修正酸素濃度値Ocを算出して、当該処理ガスが当該修正酸素濃度値Ocとなるように前記不活性化処理手段を制御する主演算制御手段と
     を備えていることを特徴とする改質石炭製造設備。
      酸素吸着速度比算出式:
       N=|(Vr-Vd)|/Vd
    A drying means for making dry coal by removing moisture from raw coal;
    A carbonization means for carbonizing the dry coal by dry distillation;
    In a reformed coal production facility comprising a deactivation treatment means for heating the dry-distilled coal with a treatment gas containing oxygen to inactivate the reformed coal,
    A first oxygen adsorption rate measuring means for fractionating a part of the dried coal dried by the drying means to obtain an oxygen adsorption rate Vd of the dry coal;
    A second oxygen adsorption rate measuring means for fractionating a part of the reformed coal that has been inactivated by the inactivation treatment means to obtain an oxygen adsorption rate Vr of the modified coal;
    Based on the oxygen adsorption rates Vd and Vr, the oxygen adsorption rate ratio N is calculated from the following formula for calculating the oxygen adsorption rate ratio, and when the oxygen adsorption rate ratio N is within the range of the standard value Ns, it is inactive. If the oxygen adsorption rate ratio N is larger than the range of the standard value Ns, the process gas corresponding to the oxygen adsorption rate ratio N is controlled. The increased oxygen concentration value Oa to the inside is read from the map, and the corrected oxygen concentration value Oc in the processing gas is calculated based on the current oxygen concentration value Op in the processing gas and the increased oxygen concentration value Oa. The inactivation processing means is controlled so that the processing gas becomes the corrected oxygen concentration value Oc, and when the oxygen adsorption rate ratio N is smaller than the range of the standard value Ns, the oxygen adsorption rate ratio N is Corresponding process gas The reduced oxygen concentration value Od is read from the map, and the corrected oxygen concentration value Oc in the processing gas is calculated based on the current oxygen concentration value Op in the processing gas and the reduced oxygen concentration value Od. A reformed coal production facility, comprising: a main arithmetic control unit that controls the deactivation processing unit so that the gas has the corrected oxygen concentration value Oc.
    Oxygen adsorption rate ratio calculation formula:
    N = | (Vr−Vd) | / Vd
  2.  請求項1に記載の改質石炭製造設備において、
     前記主演算制御手段は、前記修正酸素濃度値Ocが上限値Ouを超える場合には、前記酸素吸着速度比Nに対応する前記処理ガスの増加温度値Taをマップから読み出して、当該処理ガス中の現在温度値Tp及び当該増加温度値Taに基づいて修正温度値Tcを算出して、当該処理ガスが前記修正温度値Tcとなるように前記不活性化処理手段を制御するものである
     ことを特徴とする改質石炭製造設備。
    In the modified coal production facility according to claim 1,
    When the corrected oxygen concentration value Oc exceeds the upper limit value Ou, the main calculation control means reads an increase temperature value Ta of the process gas corresponding to the oxygen adsorption rate ratio N from the map, and in the process gas The corrected temperature value Tc is calculated based on the current temperature value Tp and the increased temperature value Ta, and the inactivation processing means is controlled so that the processing gas becomes the corrected temperature value Tc. A featured modified coal production facility.
  3.  請求項1又は請求項2に記載の改質石炭製造設備において、
     前記第二の酸素吸着速度測定手段は、前記不活性化処理手段で不活性化処理された前記改質石炭の一部を分取して規定時間Ts経過ごとに、当該不活性化処理手段で不活性化処理された新たな前記改質石炭の一部を改めて分取して当該改質石炭の新たな酸素吸着速度Vrnを求めるものであり、
     前記主演算制御手段は、今回新たに求められた前記酸素吸着速度Vrn及び今回の直前に求められている酸素吸着速度Vrn-1に基づいて、下記の安定度算出式から安定度Sを算出し、当該安定度Sが規格値Ssの範囲内である場合に、前記酸素吸着速度Vd,Vrnに基づいて、下記の酸素吸着速度比再算出式から酸素吸着速度比Nを再算出して、前記規格値Nsとの比較を改めて行うものである
     ことを特徴とする改質石炭製造設備。
      安定度算出式:
       S=|(Vrn-Vrn-1)|/Vrn
      酸素吸着速度比再算出式:
       N=|(Vrn-Vd)|/Vd
    In the modified coal production facility according to claim 1 or 2,
    The second oxygen adsorption rate measuring means fractionates a part of the reformed coal that has been inactivated by the inactivation processing means, and at each elapse of a specified time Ts, the inactivation processing means is intended to seek a new oxygen adsorption rate Vr n of the upgraded coal was collected again divided part of the new the upgraded coal that has been treated inactivated,
    The main arithmetic control unit on the basis of the oxygen adsorption rate Vr n-1 that this is newly sought the oxygen adsorption rate Vr n and the previous time was determined, the stability S from stability calculation formula calculated, the if the stability S is in the range of standard value Ss, the oxygen adsorption rate Vd, on the basis of Vr n, recalculates the oxygen adsorption rate ratio n from the oxygen adsorption rate ratio recalculation formula The modified coal production facility is characterized in that the comparison with the standard value Ns is performed again.
    Stability calculation formula:
    S = | (Vr n −Vr n−1 ) | / Vr n
    Oxygen adsorption rate ratio recalculation formula:
    N = | (Vr n −Vd) | / Vd
  4.  請求項1から請求項3のいずれか一項に記載の改質石炭製造設備において、
     前記第一の酸素吸着速度測定手段が、
     前記乾燥手段で乾燥された前記乾燥石炭の一部をサンプルとして分取する第一の分取手段と、
     前記第一の分取手段で分取された前記サンプルを試験温度の酸素含有ガスに試験時間Tdで曝して酸素吸着試験を行う第一の試験手段と、
     前記第一の分取手段で分取された前記酸素吸着試験前の前記サンプルの重量Wd1及び当該酸素吸着試験後の当該サンプルの重量Wd2をそれぞれ秤量する第一の秤量手段と、
     前記第一の秤量手段で秤量された前記重量Wd1,Wd2に基づいて、下記の乾燥石炭酸素吸着速度算出式から前記乾燥石炭の前記酸素吸着速度Vdを算出する第一の副演算制御手段と
     を備え、
     前記第二の酸素吸着速度測定手段が、
     前記不活性化処理手段で不活性化処理された前記改質石炭の一部をサンプルとして分取する第二の分取手段と、
     前記第二の分取手段で分取された前記サンプルを試験温度の酸素含有ガスに試験時間Trで曝して酸素吸着試験を行う第二の試験手段と、
     前記第二の分取手段で分取された前記酸素吸着試験前の前記サンプルの重量Wr1及び当該酸素吸着試験後の当該サンプルの重量Wr2をそれぞれ秤量する第二の秤量手段と、
     前記第二の秤量手段で秤量された前記重量Wd1,Wd2に基づいて、下記の改質石炭酸素吸着速度算出式から前記改質石炭の前記酸素吸着速度Vrを算出する第二の副演算制御手段と
     を備えている
     ことを特徴とする改質石炭製造設備。
     乾燥石炭酸素吸着速度算出式:
      Vd=(Wd2-Wd1)/(Wd1×Td)×100
     改質石炭酸素吸着速度算出式:
      Vr=(Wr2-Wr1)/(Wr1×Tr)×100
    In the modified coal manufacturing facility according to any one of claims 1 to 3,
    The first oxygen adsorption rate measuring means is
    First fractionation means for fractionating a part of the dry coal dried by the drying means as a sample;
    First test means for performing an oxygen adsorption test by exposing the sample sorted by the first sorting means to an oxygen-containing gas at a test temperature for a test time Td;
    First weighing means for weighing each of the weight Wd1 of the sample before the oxygen adsorption test and the weight Wd2 of the sample after the oxygen adsorption test that are sorted by the first sorting means;
    Based on the first the weight of the weighed weighing means Wd1, Wd2, and a first sub-arithmetic control unit for calculating the oxygen adsorption rate Vd of the dry coal from dry coal oxygen adsorption rate calculation formula Prepared,
    The second oxygen adsorption rate measuring means is
    Second fractionation means for fractionating a part of the modified coal that has been inactivated by the inactivation treatment means, as a sample;
    Second test means for performing an oxygen adsorption test by exposing the sample separated by the second sorting means to an oxygen-containing gas at a test temperature for a test time Tr;
    Second weighing means for weighing each of the weight Wr1 of the sample before the oxygen adsorption test and the weight Wr2 of the sample after the oxygen adsorption test that are sorted by the second sorting means;
    Based on the second the weight is weighed in the weighing means Wd1, Wd2, second sub-arithmetic control unit for calculating the oxygen adsorption rate Vr of the upgraded coal from the upgraded coal oxygen adsorption rate calculation formula A modified coal production facility characterized by comprising: and.
    Dry coal oxygen adsorption rate calculation formula:
    Vd = (Wd2−Wd1) / (Wd1 × Td) × 100
    Modified coal oxygen adsorption rate calculation formula:
    Vr = (Wr2−Wr1) / (Wr1 × Tr) × 100
  5.  請求項1から請求項3のいずれか一項に記載の改質石炭製造設備において、
     前記第一の酸素吸着速度測定手段が、
     前記乾燥手段で乾燥された前記乾燥石炭の一部をサンプルとして分取する第一の分取手段と、
     前記第一の分取手段で分取された前記サンプルの重量Wd1を秤量する第一の秤量手段と、
     前記第一の分取手段で分取された前記サンプルを酸素含有雰囲気の恒温状態の内部に試験時間Tdで気密保持して酸素吸着試験を行う第一の試験手段と、
     前記第一の試験手段の内部の圧力を計測する第一の圧力計測手段と、
     内部を前記酸素含有雰囲気で恒温状態に気密保持されて前記第一の圧力計測手段で計測された前記第一の試験手段の前記酸素吸着試験前の内圧Pd1及び当該酸素吸着試験直後の内圧Pd2並びに前記第一の秤量手段で秤量された前記重量Wd1に基づいて、下記の乾燥石炭酸素吸着速度算出式から前記乾燥石炭の前記酸素吸着速度Vdを算出する第一の副演算制御手段と
     を備え、
     前記第二の酸素吸着速度測定手段が、
     前記不活性化処理手段で不活性化処理された前記改質石炭の一部をサンプルとして分取する第二の分取手段と、
     前記第二の分取手段で分取された前記サンプルの重量Wr1を秤量する第二の秤量手段と、
     前記第二の分取手段で分取された前記サンプルを酸素含有雰囲気の恒温状態の内部に試験時間Trで気密保持して酸素吸着試験を行う第二の試験手段と、
     前記第二の試験手段の内部の圧力を計測する第二の圧力計測手段と、
     内部を前記酸素含有雰囲気で恒温状態に気密保持されて前記第二の圧力計測手段で計測された前記第二の試験手段の前記酸素吸着試験前の内圧Pr1及び当該酸素吸着試験直後の内圧Pr2並びに前記第二の秤量手段で秤量された前記重量Wr1に基づいて、下記の改質石炭酸素吸着速度算出式から前記改質石炭の前記酸素吸着速度Vrを算出する第二の副演算制御手段と
     を備えている
     ことを特徴とする改質石炭製造設備。
     乾燥石炭酸素吸着速度算出式:
      Vd=Qd/(Wd1×Td)×100
     改質石炭酸素吸着速度算出式:
      Vr=Qr/(Wr1×Tr)×100
     ただし、Qdは乾燥石炭の酸素吸着量、Qrは改質石炭の酸素吸着量であり、下記の式より求められる値である。
     Qd=[{(Pd1-Pd2)/1013}
       ×{Cd-(Wd1/D)}]/(22.4×Wd1)
     Qr=[{(Pr1-Pr2)/1013}
       ×{Cr-(Wr1/D)}]/(22.4×Wr1)
     なお、Cdは第一の試験手段の内容積、Crは第二の試験手段の内容積、Dは原料石炭の真密度である。
    In the modified coal manufacturing facility according to any one of claims 1 to 3,
    The first oxygen adsorption rate measuring means is
    First fractionation means for fractionating a part of the dry coal dried by the drying means as a sample;
    First weighing means for weighing a weight Wd1 of the sample sorted by the first sorting means;
    First test means for performing an oxygen adsorption test by keeping the sample separated by the first fractionation means airtight in a constant temperature state of an oxygen-containing atmosphere at a test time Td;
    First pressure measuring means for measuring the pressure inside the first test means;
    The oxygen adsorption test before pressure Pd1 and the oxygen adsorption test pressure Pd2 and immediately after the first testing means measured by said hermetically kept in a constant temperature the first pressure measuring means in the interior of the oxygen-containing atmosphere based on the weight Wd1 which are weighed by the first weighing means, and a first sub-arithmetic control unit for calculating the oxygen adsorption rate Vd of the dry coal from dry coal oxygen adsorption rate calculation formula,
    The second oxygen adsorption rate measuring means is
    Second fractionation means for fractionating a part of the modified coal that has been inactivated by the inactivation treatment means, as a sample;
    A second weighing means for weighing a weight Wr1 of the sample sorted by the second sorting means;
    A second test means for performing an oxygen adsorption test by holding the sample separated by the second fractionation means in a constant temperature state of an oxygen-containing atmosphere at a test time Tr;
    Second pressure measuring means for measuring the pressure inside the second test means;
    Hermetically held by said second pressure pressure immediately after the oxygen adsorption test before pressure Pr1 and the oxygen adsorption test of said second test means which is measured by the measuring means Pr2 as well as constant temperature in the interior of the oxygen-containing atmosphere based on the weight Wr1 which is weighed by the second weighing means and a second sub-arithmetic control unit for calculating the oxygen adsorption rate Vr of the upgraded coal from the upgraded coal oxygen adsorption rate calculation formula A modified coal production facility characterized in that it is equipped.
    Dry coal oxygen adsorption rate calculation formula:
    Vd = Qd / (Wd1 × Td) × 100
    Modified coal oxygen adsorption rate calculation formula:
    Vr = Qr / (Wr1 × Tr) × 100
    However, Qd is the oxygen adsorption amount of dry coal, Qr is the oxygen adsorption amount of the modified coal, and is a value obtained from the following equation.
    Qd = [{(Pd1-Pd2) / 1013}
    × {Cd− (Wd1 / D)}] / (22.4 × Wd1)
    Qr = [{(Pr1-Pr2) / 1013}
    × {Cr- (Wr1 / D)}] / (22.4 × Wr1)
    Cd is the internal volume of the first test means, Cr is the internal volume of the second test means, and D is the true density of the raw material coal.
  6.  請求項1から請求項5のいずれか一項に記載の改質石炭製造設備において、
     前記原料石炭が、褐炭又は亜瀝青炭である
     ことを特徴とする改質石炭製造設備。
    In the reformed coal production facility according to any one of claims 1 to 5,
    The raw coal is lignite or subbituminous coal.
PCT/JP2013/053824 2012-02-24 2013-02-18 Modified coal production equipment WO2013125476A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380005660.2A CN104053756B (en) 2012-02-24 2013-02-18 Modified coal producing apparatus
DE112013001126.3T DE112013001126T5 (en) 2012-02-24 2013-02-18 Production plant for modified coal
AU2013223341A AU2013223341B2 (en) 2012-02-24 2013-02-18 Modified coal production equipment
US14/373,584 US20150027872A1 (en) 2012-02-24 2013-02-18 Modified coal production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-038515 2012-02-24
JP2012038515A JP2013173832A (en) 2012-02-24 2012-02-24 Modified coal production equipment

Publications (1)

Publication Number Publication Date
WO2013125476A1 true WO2013125476A1 (en) 2013-08-29

Family

ID=49005662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053824 WO2013125476A1 (en) 2012-02-24 2013-02-18 Modified coal production equipment

Country Status (6)

Country Link
US (1) US20150027872A1 (en)
JP (1) JP2013173832A (en)
CN (1) CN104053756B (en)
AU (1) AU2013223341B2 (en)
DE (1) DE112013001126T5 (en)
WO (1) WO2013125476A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143431A1 (en) * 2015-03-09 2016-09-15 三菱重工業株式会社 Dry-distilled coal inactivation device, coal upgrading plant, and production method for inactivated dry-distilled coal
US10151530B2 (en) 2015-03-09 2018-12-11 Mitsubishi Heavy Industries Engineering, Ltd. Coal upgrade plant and method for manufacturing upgraded coal
US10188980B2 (en) 2015-03-09 2019-01-29 Mitsubishi Heavy Industries Engineering, Ltd. Coal upgrade plant and method for manufacturing upgraded coal
US10221070B2 (en) 2015-03-09 2019-03-05 Mitsubishi Heavy Industries Engineering, Ltd. Coal upgrade plant and method for manufacturing upgraded coal
US10703976B2 (en) 2015-03-09 2020-07-07 Mitsubishi Heavy Industries Engineering, Ltd. Pyrolyzed coal quencher, coal upgrade plant, and method for cooling pyrolyzed coal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983545A (en) * 2014-06-05 2014-08-13 北京国电清新环保技术股份有限公司 Active coke sulfur dioxide adsorption rate testing device and method
CN108759313B (en) * 2018-06-14 2019-10-29 中国矿业大学 A kind of brown coal drying-dry separation collaboration optimization method for upgrading and technique
CN115141639A (en) * 2021-03-28 2022-10-04 上海梅山钢铁股份有限公司 Sample arrangement device and method for coke dry quenching tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367518B2 (en) * 1982-10-20 1988-12-26 Idemitsu Kosan Co
JP2733048B2 (en) * 1995-09-08 1998-03-30 テック コール パートナーシップ Method of passivating reactive coal char
WO2012081371A1 (en) * 2010-12-17 2012-06-21 三菱重工業株式会社 Coal deactivation apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2247101A1 (en) * 1972-09-26 1974-04-04 Bergwerksverband Gmbh PROCEDURE FOR AFTER-TREATMENT OF HOT BRIQUETTES OR THE LIKE
AU552638B2 (en) * 1982-10-20 1986-06-12 Idemitsu Kosan Co. Ltd Process for modification of coal
US5601692A (en) * 1995-12-01 1997-02-11 Tek-Kol Partnership Process for treating noncaking coal to form passivated char
ID29498A (en) * 1997-03-31 2001-08-30 Mitsubishi Heavy Ind Ltd METHODS AND EQUIPMENT OF COAL DRYING, METHODS FOR PRESERVING COAL WHICH THE QUALITY HAS BEEN IMPROVED, THE COAL WHICH HAS BEEN ENHANCED, AND THE PROCESSES AS WELL AS A SYSTEM TO PRODUCE THE QUALITY OF THE COAL WHICH HAS BEEN IMPROVED
US7198655B2 (en) * 2004-05-03 2007-04-03 Evergreen Energy Inc. Method and apparatus for thermally upgrading carbonaceous materials
JP4719298B1 (en) * 2010-03-24 2011-07-06 三菱重工業株式会社 Modified coal production equipment
JP5511855B2 (en) * 2012-01-06 2014-06-04 三菱重工業株式会社 Coal deactivation treatment method
IN2014DN05770A (en) * 2012-01-18 2015-04-10 Mitsubishi Heavy Ind Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367518B2 (en) * 1982-10-20 1988-12-26 Idemitsu Kosan Co
JP2733048B2 (en) * 1995-09-08 1998-03-30 テック コール パートナーシップ Method of passivating reactive coal char
WO2012081371A1 (en) * 2010-12-17 2012-06-21 三菱重工業株式会社 Coal deactivation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143431A1 (en) * 2015-03-09 2016-09-15 三菱重工業株式会社 Dry-distilled coal inactivation device, coal upgrading plant, and production method for inactivated dry-distilled coal
US10151530B2 (en) 2015-03-09 2018-12-11 Mitsubishi Heavy Industries Engineering, Ltd. Coal upgrade plant and method for manufacturing upgraded coal
US10188980B2 (en) 2015-03-09 2019-01-29 Mitsubishi Heavy Industries Engineering, Ltd. Coal upgrade plant and method for manufacturing upgraded coal
US10221070B2 (en) 2015-03-09 2019-03-05 Mitsubishi Heavy Industries Engineering, Ltd. Coal upgrade plant and method for manufacturing upgraded coal
US10703976B2 (en) 2015-03-09 2020-07-07 Mitsubishi Heavy Industries Engineering, Ltd. Pyrolyzed coal quencher, coal upgrade plant, and method for cooling pyrolyzed coal

Also Published As

Publication number Publication date
CN104053756B (en) 2016-04-20
AU2013223341B2 (en) 2015-07-16
JP2013173832A (en) 2013-09-05
DE112013001126T5 (en) 2014-11-06
AU2013223341A1 (en) 2014-08-14
US20150027872A1 (en) 2015-01-29
CN104053756A (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2013125476A1 (en) Modified coal production equipment
CN106102869B (en) The active carbon of fine particle size
US20110252698A1 (en) Method of Drying Biomass
EP3389870B1 (en) Grinding and drying plant
RU2009140379A (en) METHOD OF HEAT PROCESSING OF MATERIAL (OPTIONS) AND INSTALLATION OF SEPARATION OF GRAIN MATERIAL
WO2012081371A1 (en) Coal deactivation apparatus
JP6958158B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
JP6846920B2 (en) Organic waste treatment method and treatment equipment
Chun et al. Development of a high-efficiency rotary dryer for sewage sludge
JP2647726B2 (en) Powder humidity control method
JPH0120859B2 (en)
CN105308160B (en) The manufacture method and manufacture device of solid fuel
JP2003215078A (en) Method of testing heat build-up of coal
JP2023012957A (en) Manufacturing method of carbonized product and carbonization treatment equipment
JP6173953B2 (en) Pyrolysis system and carbonized sludge manufacturing method
TWI654291B (en) Method and system for enhancing the carbon content of carbon-containing materials
KR20170090402A (en) Indirect heat-drying device and method for drying low-grade coal
EP2062859A1 (en) Method and installation for transforming fermentable sludge
CN114433343B (en) Method for operating a classifier and classifier for classifying
JP4101896B2 (en) Coke coking coal pretreatment method
JP6137327B2 (en) Biomass production method and biomass storage device
CN106766684A (en) A kind of humidity control system of battery powder materials
JP2933775B2 (en) Coal dust humidification equipment during preheating drying
JP2013224357A (en) Method and device for immobilizing co2
Lee Study on the fluidized-bed drying characteristics of sawdust as a raw-material for wood-pellet fuel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380005660.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14373584

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201404578

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013223341

Country of ref document: AU

Date of ref document: 20130218

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013001126

Country of ref document: DE

Ref document number: 1120130011263

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752351

Country of ref document: EP

Kind code of ref document: A1