WO2013117695A2 - Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens - Google Patents

Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens Download PDF

Info

Publication number
WO2013117695A2
WO2013117695A2 PCT/EP2013/052539 EP2013052539W WO2013117695A2 WO 2013117695 A2 WO2013117695 A2 WO 2013117695A2 EP 2013052539 W EP2013052539 W EP 2013052539W WO 2013117695 A2 WO2013117695 A2 WO 2013117695A2
Authority
WO
WIPO (PCT)
Prior art keywords
truck
laser
cab
driver
source
Prior art date
Application number
PCT/EP2013/052539
Other languages
English (en)
French (fr)
Other versions
WO2013117695A3 (de
Inventor
Michael Jeck
Patricia Schall
Original Assignee
Smiths Heimann Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Heimann Gmbh filed Critical Smiths Heimann Gmbh
Priority to EP13704074.7A priority Critical patent/EP2812736A2/de
Publication of WO2013117695A2 publication Critical patent/WO2013117695A2/de
Publication of WO2013117695A3 publication Critical patent/WO2013117695A3/de
Priority to US14/456,617 priority patent/US20140348295A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/232Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays having relative motion between the source, detector and object other than by conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/223Mixed interrogation beams, e.g. using more than one type of radiation beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography

Definitions

  • the invention relates to a method for checking a truck, in which the load compartment of the truck is X-rayed while the truck is moved past the X-ray source, and an apparatus for carrying out the method.
  • a typical length of the cab is assumed, and X-ray fluoroscopy starts at a fixed distance from the tip of the truck. This method involves the risk that a part of the hold is not illuminated and thus not checked. If the driver's cab is assessed as too short, this may result in unintentional irradiation of the people in the driver's cab.
  • a method and a device of the generic type are known from DE 101 22 279 A1.
  • This document describes an X-ray system with a diaphragm for the X-rays, whose opening and closing is controlled by a bar code reader.
  • a barcode is attached to the load compartment of each truck to be tested, which triggers the beginning of the X-ray examination, by causing the opening of the aperture. Since barcodes must be attached to each truck as markings, this procedure is very time consuming.
  • the invention is therefore an object of the invention to improve a method of the generic type so that an accurate and rapid distinction between the not to be screened cab and to be screened load compartment of a truck.
  • This object is achieved according to the invention in that for determining the switch-on of the X-ray source of the truck is irradiated on one side with electromagnetic radiation, in particular laser beams, a wavelength between 200 nm and 3000 nm and the radiation reflected at the transition between the driver's cab and the load compartment is measured.
  • the invention makes use of the fact that the driver's cab and the loading compartment of a truck are usually limited by metal walls.
  • aerodynamic fairings at the transition between the driver's cab and the cargo area usually consist of plastic-based materials such as glass fiber reinforced plastics (GRP), whose reflection behavior is different for the electromagnetic radiation used.
  • GFP glass fiber reinforced plastics
  • laser beams of a wavelength between 600 nm and 1000 nm, in particular between 880 nm and 950 nm, are preferably used.
  • laser diodes are used to generate the laser beams.
  • Rotary laser scanners in which the measuring sensors are integrated in the housing of the laser source have proven particularly suitable.
  • the speed of a truck moving past is determined by means of an additional radar sensor.
  • an additional radar sensor In this way, distortions resulting from speed fluctuations can be corrected when determining the switch-on time.
  • the invention will be explained in more detail with reference to an embodiment shown in simplified form. 1 shows a rough schematic side view of a
  • FIG. 1 shows a lorry which contains a loading space 1, a driver's cab 2 and a transition area 3 between the driver's cab 2 and the loading space 1.
  • the transition region 2 is aerodynamically lined to reduce drag.
  • the aerodynamic panels are made of plastic-based materials, such as glass fiber reinforced plastic (GRP), which are optically opaque to electromagnetic radiation in the visible range.
  • GRP glass fiber reinforced plastic
  • the X-ray inspection system not shown in the drawing, contains an X-ray source and a detector arrangement, which is aligned with the X-ray source, and between which there is a route for the truck.
  • the X-ray source emit X-rays with a sufficiently high energy of more than 1 MeV.
  • the truck drives automatically through the X-ray inspection.
  • the driver thus drives the truck on the route between the stationary X-ray source and the stationary detector assembly past them.
  • the X-ray source it is necessary for the X-ray source to be switched off while the driver's cab is passing by. Immediately after the cab passes the beam area, the X-ray source must be turned on to check the beginning of the hold.
  • the X-ray source of the truck is irradiated on one side with electromagnetic radiation, in particular laser beams, a wavelength between 200 nm and 3000 nm, until the transition region between the cab and the cargo space is detected and thus has safely passed the cab.
  • electromagnetic radiation in particular laser beams
  • the radiation reflected by the truck is measured at least until the transition between the driver's cab and the load compartment.
  • laser sources laser diodes are advantageously used.
  • rotary laser scanners are placed on one side of the guideway that extends between the x-ray source and the associated detector array.
  • the measuring sensors are integrated in the housing of the laser source.
  • Rotary laser scanners with an IR laser (880 nm-950 nm, for example 905 nm), an angular range of 270 degrees with an angular resolution of 0.5 degrees and a scanning frequency of 50 Hz, which are at a distance between 0 and 0, have proven particularly suitable , 5 m and 20 m to the truck.
  • a rotary laser scanner 4 with a transmitting and receiving unit is arranged on one side of the travel path.
  • the laser scanner 4 is arranged along the route so that it is located at the beginning of the measurement in the region of the beginning of the driver's cab 2. Its lateral distance from the route is about 3 m. With this arrangement, the length of the cab 2, the length of a container as a cargo space 1, and the length of the entire vehicle can be determined.
  • the measured reflection power is high as long as radiation is reflected from the metallic cab 2 or a metallic cargo space 1 such as a container.
  • the measured reflection power drops markedly.
  • the plastic-based casing of the truck in the transition region 3 allows the predominant portion of the radiation to pass through without reflecting it.
  • the received power drops significantly, the X-ray radiation can be switched on, since the driver's cab 2 is no longer in the beam path of the X-radiation.
  • an additional radar sensor is preferably arranged in the X-ray inspection system, which determines the speed of the truck moving past.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

Es sind Verfahren zur Überprüfung des Laderaums (1) eines Lastkraftwagens bekannt, bei dem der Lastkraftwagen an einer Röntgenquelle vorbei bewegt wird, die eingeschaltet ist, während der Laderaum (1) vorbeibewegt wird, und die ausgeschaltet ist, während die Fahrerkabine (3) vorbeibewegt wird. Nach der Erfindung wird zur Bestimmung des Einschaltzeitpunkts der Röntgenquelle der Lastkraftwagen an einer Seite mit elektromagnetischen Strahlen, insbesondere Laserstrahlen, einer Wellenlänge zwischen 200 nm und 3000 nm bestrahlt, und die am Übergang (3) zwischen der Fahrerkabine (2) und dem Laderaum (1) reflektierte Strahlung wird zur Bestimmung des Einschaltzeitpunkts der Röntgenquelle gemessen.

Description

B E S C H R E I B U N G
Verfahren und Vorrichtung zur Überprüfung des Laderaums eines Lastkraftwagens
Die Erfindung betrifft ein Verfahren zur Überprüfung eines Lastkraftwagens, bei dem der Laderaum des Lastkraftwagens mit Röntgenstrahlen durchleuchtet wird, während der Lastkraftwagen an der Röntgenquelle vorbeibewegt wird, und eine Vorrichtung zur Durchführung des Verfahrens.
Zur Überprüfung von Lastkraftwagen auf verdächtige Güter (Waffen, Sprengstoffe, Schmuggelware etc.) werden bekannterweise Anlagen ohne eigene Fördersysteme verwendet, bei denen ein Fahrer den Lastkraftwagen durch die Prüfanlage fährt. Werden Container als Laderaum durchleuchtet, so müssen höherenergetische Röntgenstrahlen mit einer Energie von mehr als 1 MeV verwendet werden, die auch die Fahrerkabine durchdringen können. Zum Schutz des Fahrers ist es deshalb erforderlich, die Röntgenquelle auszuschalten, während sich die Fahrerkabine an dieser vorbeibewegt. Sobald die Fahrerkabine vorbeibewegt ist, wird die Röntgenquelle zur Durchleuchtung des nachfolgenden Laderaums, beispielsweise eines Containers, wieder eingeschaltet. Zur Bestimmung des Übergangs zwischen der Fahrerkabine und dem Laderaum und damit zur Bestimmung des Einschaltzeitpunktes der Röntgenquelle sind optische Verfahren bekannt, bei denen Lichtschranken verwendet werden. Da der Übergangsbereich zwischen Fahrerkabine und Laderaum zunehmend durch aerodynamische Verkleidungen abgedeckt wird, lässt sich die Einschaltposition der Röntgenstrahlen nicht mehr ausreichend genau genug mit Lichtschranken bestimmen.
Nach einem anderen Verfahren wird eine typische Länge der Fahrerkabine angenommen, und die Durchleuchtung mit Röntgenstrahlen beginnt bei einem festen Abstand von der Spitze des Lastkraftwagens. Dieses Verfahren birgt das Risiko, dass ein Teil des Laderaums nicht durchleuchtet und somit nicht geprüft wird. Wird die Fahrerkabine als zu kurz eingeschätzt, kann es zu einer unabsichtlichen Bestrahlung der Personen in der Fahrerkabine kommen.
Ein Verfahren und eine Vorrichtung der gattungsgemäßen Art sind aus der DE 101 22 279 A1 bekannt. Diese Schrift beschreibt eine Röntgenanlage mit einer Blende für die Röntgenstrahlen, deren Öffnen und Schließen über einen Barcodeleser gesteuert wird. Dazu wird am Laderaum jedes zu prüfenden Lastkraftwagens ein Barcode angebracht, der den Beginn der Röntgenprüfung auslöst, indem er die Öffnung der Blende veranlasst. Da an jedem Lastkraftwagen Barcodes als Markierungen angebracht werden müssen, ist dieses Verfahren sehr zeitaufwändig.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der gattungsgemäßen Art so zu verbessern, dass eine genaue und schnelle Unterscheidung zwischen der nicht zu durchleuchtenden Fahrerkabine und dem zu durchleuchtenden Laderaum eines Lastkraftwagens ermöglicht. Diese Aufgabe wird nach der Erfindung dadurch gelöst, dass zur Bestimmung des Einschaltzeitpunkts der Röntgenquelle der Lastkraftwagen an einer Seite mit elektromagnetischen Strahlen, insbesondere Laserstrahlen, einer Wellenlänge zwischen 200 nm und 3000 nm bestrahlt wird und die am Übergang zwischen der Fahrerkabine und dem Laderaum reflektierte Strahlung gemessen wird.
Die Erfindung macht sich dabei den Umstand zu Nutze, dass die Fahrerkabine und der Laderaum eines Lastkraftwagens in der Regel von Metallwänden begrenzt werden. Aerodynamische Verkleidungen am Übergang zwischen Fahrerkabine und Laderaum bestehen dagegen meist aus Kunststoff-basierten Materialien wie glasfaserverstärkte Kunststoffe (GFK), deren Reflektionsverhalten für die verwendete elektromagnetische Strahlung anders ist.
Bevorzugt werden zur Bestimmung des Einschaltzeitpunkts Laserstrahlen einer Wellenlänge zwischen 600nm und 1000 nm, insbesondere zwischen 880 nm und 950 nm, verwendet. Vorteilhaft werden zur Erzeugung der Laserstrahlen Laserdioden eingesetzt.
Als besonders geeignet gezeigt haben sich Rotationslaserscanner, bei denen die Messsensoren in dem Gehäuse der Laserquelle integriert sind.
Bevorzugt wird mittels eines zusätzlichen Radarsensors die Geschwindigkeit eines sich vorbei bewegenden Lastkraftwagens ermittelt. Damit können aus Geschwindigkeitsschwankungen resultierende Verzerrungen bei der Bestimmung des Einschaltzeitpunkts korrigiert werden. Nachfolgend wird die Erfindung anhand eines vereinfacht dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigen Figur 1 grob schematisch die Seitenansicht eines
Lastkraftwagens (LKW), die Figuren 2 und 3 die Funktionsweise einer Vorrichtung gemäß der
Erfindung.
In Figur 1 ist ein Lastkraftwagen dargestellt, der einen Laderaum 1 , eine Fahrerkabine 2 und einen Übergangsbereich 3 zwischen der Fahrerkabine 2 und dem Laderaum 1 enthält. Der Übergangsbereich 2 ist zur Verringerung des Luftwiderstands aerodynamisch verkleidet. Die aerodynamischen Verkleidungen bestehen aus kunststoffbasierten Materialien, beispielsweise glasfaserverstärkter Kunststoff (GFK), die optisch undurchlässig für elektromagnetische Strahlen im sichtbaren Bereich sind. Zur Überprüfung des Lastkraftwagens auf verdächtige Güter (Waffen, Sprengstoffe, Schmuggelware etc.) wird dieser durch eine Röntgenprüfanlage bewegt, wie sie beispielsweise in der DE 101 22 279 A1 beschrieben ist. Die nicht in der Zeichnung dargestellte Röntgenprüfanlage enthält eine Röntgenquelle und eine auf die Röntgenquelle ausgerichtete Detektoranordnung, zwischen denen sich ein Fahrweg für den Lastkraftwagen befindet. Damit auch Container aus Metall zur Überprüfung durchstrahlt werden können, gibt die Röntgenquelle Röntgenstrahlen mit ausreichend hoher Energie von mehr als 1 MeV ab. Bevorzugt fährt der Lastkraftwagen selbsttätig durch die Röntgenprüfanlage. Der Fahrer fährt somit den Lastkraftwagen auf dem Fahrweg zwischen der stillstehenden Röntgenquelle und der stillstehenden Detektoranordnung an diesen vorbei. Zum Schutz des Fahrers ist es erforderlich, dass die Röntgenquelle ausgeschaltet ist, während die Fahrerkabine sich an ihr vorbeibewegt. Unmittelbar nachdem die Fahrerkabine den Strahlbereich passiert hat, muss die Röntgenquelle eingeschaltet werden, damit auch der Anfang des Laderaums geprüft wird. Zur Bestimmung des Einschaltzeitpunkts der Röntgenquelle wird der Lastkraftwagen an einer Seite mit elektromagnetischen Strahlen, insbesondere Laserstrahlen, einer Wellenlänge zwischen 200 nm und 3000 nm bestrahlt, bis der Übergangsbereich zwischen der Fahrerkabine und dem Laderaum detektiert wird und somit sicher die Fahrerkabine passiert hat. Zur Detektion wird die vom Lastkraftwagen reflektierte Strahlung zumindest bis zum Übergang zwischen der Fahrerkabine und dem Laderaum gemessen. Bevorzugt erfolgt die Bestrahlung mit Laserstrahlen einer Wellenlänge zwischen 600 nm und 1000 nm, insbesondere zwischen 880 nm und 950 nm. Diese Strahlung kann das Kunststoffmaterial einer Verkleidung zum großen Teil durchdringen, während sie von Bauteilen aus Metall weitgehend reflektiert wird. Als Laserquellen werden vorteilhaft Laserdioden eingesetzt.
Bevorzugt werden Rotationslaserscanner an einer Seite des Fahrwegs angeordnet, der sich zwischen der Röntgenquelle und der zugehörigen Detektoranordnung erstreckt. Bei Rotationslaserscannern sind die Messsensoren in dem Gehäuse der Laserquelle integriert. Als besonders geeignet haben sich Rotationslaserscanner mit einem IR-Laser (880 nm - 950 nm, beispielsweise 905 nm), einem Winkelbereich von 270 Grad bei einer Winkelauflösung von 0,5 Grad und einer Scanfrequenz von 50 Hz gezeigt, die in einem Abstand zwischen 0,5 m und 20 m zum Lastkraftwagen angeordnet werden. Bei der Anlage nach den Figuren 2 und 3 ist an einer Seite des Fahrwegs ein Rotationslaserscanner 4 mit einer Sende- und Empfangseinheit angeordnet. Der Laserscanner 4 ist entlang der Fahrstrecke so angeordnet, dass er sich zu Beginn der Messung im Bereich des Anfangs der Fahrerkabine 2 befindet. Sein seitlicher Abstand von der Fahrstrecke beträgt ca. 3 m. Mit dieser Anordnung lassen sich die Länge der Fahrerkabine 2, die Länge eines Containers als Laderaum 1 , und die Länge des gesamten Fahrzeugs bestimmen.
Die gemessene Reflektionsleistung ist hoch, solange Strahlung von der metallischen Fahrerkabine 2 oder einem metallischen Laderaum 1 wie einem Container reflektiert wird.
Sobald der Übergangsbereich zwischen Fahrerkabine 2 und Laderaum 1 in den Strahlengang eintritt, sinkt die gemessene Reflektionsleistung deutlich ab. Wie in Figur 3 dargestellt, lässt die kunststoffbasierte Verkleidung des Lastkraftwagens im Übergangsbereich 3 den überwiegenden Anteil der Strahlung durchtreten ohne sie zu reflektieren. Sobald daraufhin die empfangene Leistung deutlich absinkt, kann die Röntgenstrahlung eingeschaltet werden, da sich die Fahrerkabine 2 nicht mehr im Strahlengang der Röntgenstrahlung befindet.
Um durch Geschwindigkeitsschwankungen des Lastkraftwagens bedingte Verzerrungen beim Empfang der transmittierten oder reflektierten elektromagnetischen Strahlen korrigieren zu können, ist bevorzugt in der Röntgenprüfanlage ein zusätzlicher Radarsensor angeordnet, der die Geschwindigkeit des sich vorbei bewegenden Lastkraftwagens ermittelt.

Claims

P A T E N T A N S P R Ü C H E
1 .
Verfahren zur Überprüfung des Laderaums (1 ) eines Lastkraftwagens, bei dem der Lastkraftwagen an einer Röntgenquelle vorbei bewegt wird, die eingeschaltet ist, während der Laderaum (1 ) vorbeibewegt wird, und die ausgeschaltet ist, während die Fahrerkabine (2) vorbeibewegt wird, dadurch gekennzeichnet, dass zur Bestimmung des Einschaltzeitpunkts der Röntgenquelle der Lastkraftwagen an einer Seite mit elektromagnetischen Strahlen, insbesondere Laserstrahlen, einer Wellenlänge zwischen 200 nm und 3000 nm bestrahlt wird und die am Übergang (3) zwischen der Fahrerkabine (2) und dem Laderaum (1 ) reflektierte Strahlung gemessen wird.
2.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass
Laserstrahlen einer Wellenlänge zwischen 600 nm und 1000 nm, insbesondere zwischen 880 nm und 950 nm, verwendet wird.
3.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet zur
Erzeugung der Laserstrahlen Laserdioden eingesetzt.
4.
Verfahren nach einem der Ansprüche 1 bis 3 gekennzeichnet durch die Verwendung eines Rotationslaserscanners, bei dem die Messsensoren in dem Gehäuse für die Laserquelle integriert sind.
5.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mittels eines Radarsensors die Geschwindigkeit des vorbeibewegten Lastkraftwagens bestimmt wird.
6.
Vorrichtung zur Durchführung eines Verfahrens gemäß den Patentansprüchen 1 bis 5 mit zumindest einer Röntgenquelle und einer auf die Röntgenquelle ausgerichteten Detektoranordnung, zwischen denen sich ein Fahrweg für einen Lastkraftwagen befindet, dadurch gekennzeichnet, dass an einer Seite des Fahrwegs eine auf einen vorbei bewegten Lastkraftwagen ausgerichtete Quelle (4) für elektromagnetischen Strahlen, insbesondere Laserstrahlen, einer Wellenlänge zwischen 200 nm und 3000 nm angeordnet ist und sich auf derselben Seite des Fahrwegs ein Sensor zum Empfang reflektierter Strahlung befindet.
7.
Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Strahlenquelle Laserstrahlen einer Wellenlänge zwischen 600 nm und 1000 nm, insbesondere zwischen 880 nm und 950 nm abgibt.
8.
Vorrichtung nach Anspruch 6 oder 7, gekennzeichnet durch Laserdioden zur Erzeugung der Laserstrahlen
9.
Vorrichtung nach einem der Ansprüche 6 bis 8, gekennzeichnet durch einen Rotationslaserscanner, bei dem die Messsensoren in dem Gehäuse für die Laserquelle integriert sind
10.
Vorrichtung nach einem der Ansprüche 6 bis 9, gekennzeichnet durch einen Radarsensor zur Bestimmung der Geschwindigkeit eines vorbeibewegten Lastkraftwagens.
PCT/EP2013/052539 2012-02-10 2013-02-08 Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens WO2013117695A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13704074.7A EP2812736A2 (de) 2012-02-10 2013-02-08 Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens
US14/456,617 US20140348295A1 (en) 2012-02-10 2014-08-11 Method and device for inspecting the cargo space of a truck

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012002484.3 2012-02-10
DE102012002484 2012-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/456,617 Continuation US20140348295A1 (en) 2012-02-10 2014-08-11 Method and device for inspecting the cargo space of a truck

Publications (2)

Publication Number Publication Date
WO2013117695A2 true WO2013117695A2 (de) 2013-08-15
WO2013117695A3 WO2013117695A3 (de) 2013-10-24

Family

ID=47710142

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2013/052538 WO2013117694A2 (de) 2012-02-10 2013-02-08 Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens
PCT/EP2013/052539 WO2013117695A2 (de) 2012-02-10 2013-02-08 Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052538 WO2013117694A2 (de) 2012-02-10 2013-02-08 Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens

Country Status (3)

Country Link
US (2) US20140348295A1 (de)
EP (2) EP2812736A2 (de)
WO (2) WO2013117694A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926261B (zh) 2013-11-14 2017-01-04 清华大学 多能量多剂量加速器、具有该加速器的快检***及对应的快检方法
CN103984035A (zh) * 2014-05-15 2014-08-13 北京君和信达科技有限公司 一种双模速通式移动目标辐射检查***及方法
CN106896118B (zh) * 2014-07-22 2019-09-10 北京君和信达科技有限公司 对移动目标进行辐射扫描的***、方法以及数据信息标签
CN105333826B (zh) 2015-12-04 2019-02-22 同方威视技术股份有限公司 车辆快速检查方法及***
US10416094B2 (en) 2016-03-31 2019-09-17 Northeastern University Characterization of dielectric slabs attached to the body using focused millimeter waves
CN112363154B (zh) * 2020-10-14 2023-06-20 中国航天科工集团第二研究院 一种基于计算机断层扫描模式的探测识别***及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122279A1 (de) 2001-05-08 2002-12-12 Heimann Systems Gmbh & Co Röntgenanlage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
US20040256565A1 (en) * 2002-11-06 2004-12-23 William Adams X-ray backscatter mobile inspection van
US8275091B2 (en) * 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
EP2275839A3 (de) * 2002-11-06 2011-11-02 American Science & Engineering, Inc. System zur Rückstreuröntgenstrahlungsdetektor von beweglichen Inspektionspackwagen
RO121293B1 (ro) * 2004-09-30 2007-02-28 Mb Telecom Ltd. - S.R.L. Metodă şi sistem de control neintruziv
WO2008133765A2 (en) * 2007-02-13 2008-11-06 Sentinel Scanning Corporation Ct scanning and contraband detection
US9036779B2 (en) * 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
US8054937B2 (en) * 2008-08-11 2011-11-08 Rapiscan Systems, Inc. Systems and methods for using an intensity-modulated X-ray source
CN102460134B (zh) * 2009-05-22 2014-01-22 拉派斯坎***股份有限公司 紧凑的移动货物扫描***

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122279A1 (de) 2001-05-08 2002-12-12 Heimann Systems Gmbh & Co Röntgenanlage

Also Published As

Publication number Publication date
EP2812736A2 (de) 2014-12-17
EP2812735A2 (de) 2014-12-17
WO2013117695A3 (de) 2013-10-24
WO2013117694A2 (de) 2013-08-15
WO2013117694A3 (de) 2013-10-03
US20140348294A1 (en) 2014-11-27
US20140348295A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2013117695A2 (de) Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens
US11852775B2 (en) High-speed security inspection system
EP2567267B1 (de) Fracht- und fahrzeuginspektionssystem
DE102008017838A1 (de) Lackieranlage mit einer Messzelle zur Schichtdickenmessung
DE19532965A1 (de) Röntgenprüfanlage für großvolumige Güter
DE102011112697A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Substanz unter Verwendung von THz-Strahlung
WO2016030009A1 (de) Vorrichtung und verfahren zur ermittlung von geometrie-kennwerten eines radprofils an einem rollenden rad eines schienenfahrzeugs
DE102013214324A1 (de) Radarfüllstandmessgerät mit einer Sicherheitseinrichtung
WO2010112161A1 (de) Anlage zur prüfung von objekten mittels elektromagnetischer strahlen, insbesondere mittels röntgenstrahlen
DE202018103274U1 (de) Vorrichtung zur Oberflächeninspektion eines Kraftfahrzeugs
WO2017220452A1 (de) Laser-scan-system
DE102008040813A1 (de) Schweißnahtprüfverfahren sowie Schweißnahtprüfvorrichtung
WO2019238689A1 (de) Vorrichtung zur oberflächeninspektion eines kraftfahrzeugs und verfahren hierzu
DE102004056380B4 (de) Messvorrichtung und Verfahren zur Messung eines freifliegenden Körpers
DE10335685A1 (de) Vorrichtung zum umseitigen Prüfen von Werkstücken
DE102013203135A1 (de) Inspektion eines Bauteils
DE102020005608A1 (de) Verfahren zur Detektion eines Risses in einer Schweißnaht
DE102020210684A1 (de) Verfahren zum ortsaufgelösten Prüfen einer Eigenschaft einer Wand und Prüfvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13704074

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013704074

Country of ref document: EP