WO2013108942A1 - Composite prepared by adhering nano-tin to metal and nonmetal powders - Google Patents

Composite prepared by adhering nano-tin to metal and nonmetal powders Download PDF

Info

Publication number
WO2013108942A1
WO2013108942A1 PCT/KR2012/000472 KR2012000472W WO2013108942A1 WO 2013108942 A1 WO2013108942 A1 WO 2013108942A1 KR 2012000472 W KR2012000472 W KR 2012000472W WO 2013108942 A1 WO2013108942 A1 WO 2013108942A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
copper powder
sintering
nanoparticles
tin nanoparticles
Prior art date
Application number
PCT/KR2012/000472
Other languages
French (fr)
Korean (ko)
Inventor
김용상
Original Assignee
Kim Young Sang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Young Sang filed Critical Kim Young Sang
Priority to PCT/KR2012/000472 priority Critical patent/WO2013108942A1/en
Publication of WO2013108942A1 publication Critical patent/WO2013108942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to a composite material used for patterning, sintering and the like.
  • the present invention has been made focusing on the problem that the oxidation of copper prevents the oxidation of copper by the surface melting at a low temperature of nano tin.
  • Challenges in patterning lead-free solder pastes include lowering the sintering temperature and ensuring electrical conductivity after sintering.
  • the present invention significantly lowered the sintering temperature from 240 ° C to 160 ° C and significantly improved the electrical conductivity compared to the conventional lead-free solder.
  • the composite material in which tin nanoparticles were attached to the present copper powder solved this problem because the electrical conductivity of copper powder and low sintering temperature of tin nanoparticles could be realized.
  • the nanoparticles of tin were first subjected to surface melting to oxidize copper. Has the advantage of preventing the source.
  • the tin nanoparticles surface-melted at 160 ° C. or lower are attached to the copper powder surface before the tin powder is oxidized. Surface is melted to prevent oxidation of copper and oxygen.
  • the copper powder may have the tin nanoparticles acting as an adhesive between the copper powder particles without surface melting, thereby simultaneously obtaining the effect of sintering.
  • tin serves as a coating of copper.
  • the present invention can prevent the oxidation of the copper powder by coating the coating of the copper powder with tin, it is possible to lower the sintering temperature below 160 °C, the sintering temperature of the tin nanoparticles, the electrical conductivity can maintain the level of copper powder
  • innovative improvements in the electrical and electronics industries can be achieved. That is, it is possible to replace most processes using silver powder with copper, to solve the oxidation problem during sintering of copper powder, and to solve the problem of low electrical conductivity, which is a problem of lead-free solder.
  • 1 is a composite material of the present invention and a paste manufacturing process thereof.
  • 3 is an electron micrograph of the tin nanoparticles used in the composite material of the present invention.
  • step 1 shows a process for producing the composite material and the paste of the present invention.
  • step 1 relates to copper powder preparation.
  • the copper powder may be prepared at a level of 10 ⁇ m at 100 nm with small particles, and may be prepared at 10 ⁇ m or more when used for general purpose and low quality.
  • Process 2 relates to the production of tin nanoparticles.
  • the easiest way is to obtain tin nanoparticles by using tin as the cathode and anode electrodes in a reactor containing pure water, adding electrolyte solution and reducing agent, and then electrolyzing tin by direct current.
  • tin nanoparticles can be obtained by a method such as plasma or arc generation. Tin nanoparticles obtained in this manner can be obtained at the level of 1 to 20 nm.
  • a substance that does not cause oxidation when copper powder such as alcohol or MEK is added is added to the glass reactor by the volume of tin nanoparticles and copper powder, and the tin nanoparticles are first dispersed.
  • the copper powder is added to the dispersed colloidal tin nanoparticles, and the mixture is mixed with ultrasonic waves.
  • the ratio of copper powder: tin nanoparticles: solvent is 49.5: 0.5: 50 to 35:15:50. If the electrical conductivity is important according to the use of the product, increase the volume ratio of the copper powder, and attach and sinter If more quality is required, increase the volume fraction of the tin nanoparticles.
  • step 4 the colloid of step 3 mixed well is freeze-dried to obtain a composite powder in which tin nanoparticles are attached to the copper powder. At this time, care should be taken when drying at high temperature because the tin nanoparticles agglomerate and affect the sintering temperature.
  • step 5 the composite material obtained in step 4 is added with agitation of a flux suitable for the purpose, and then the composite material paste is prepared, and the material is ready for use in the field.
  • the tin nanoparticles prepared in the process (2) are mixed with copper powder and flux, and the composite material paste can be directly prepared using a paste maker.
  • the distribution of tin nanoparticles in the copper powder is slightly uneven, but there is an advantage of simplifying the manufacturing process.
  • FIG. 2 shows a photograph taken with an electron microscope of the composite material of the present invention and a conceptual diagram thereof. Substantially the same effect can be obtained by using nanoparticles of low melting point metal such as tin alloy, tin oxide, and lead instead of tin. Tin oxide can also be reduced to tin at low temperatures during sintering to achieve a similar effect.
  • low melting point metal such as tin alloy, tin oxide, and lead instead of tin.
  • Tin oxide can also be reduced to tin at low temperatures during sintering to achieve a similar effect.
  • metals such as tungsten, titanium, aluminum and stainless steel, materials with high electrical conductivity such as CNT and graphene, alumina and ceramic may be used.
  • Copper powder increases the electrical conductivity of copper, tungsten and titanium increase strength, aluminum can realize lightness and rigidity, and CNT and graphene can achieve similar effects with high conductivity like copper. Can be.
  • the advantages of metals or ceramics are nano-ized metals with low melting point, such as tin or lead, attached to the surface and sintered at a low temperature of 160 ° C to prevent surface oxidation of the metals, It is the most efficient composite material that can save.
  • the electrode was made of a rod of 40 cm in length, 3 cm in thickness, and 1 cm in thickness, and attached to the cathode and the anode.
  • a direct current of 540 volts was applied to the electrode, a few amperes of current initially flowed, and after about 10 minutes, the sodium chloride aqueous solution temperature in the electrolyzer rose, and 10 ampere currents flowed. As it boiled, it began to evaporate. The current flowed up and down from 35 amps to 45 amps. From this time, a pump for automatically supplying pure water was operated so that the water level was reduced to maintain a constant level.
  • tin nanoparticles having a particle size of 1-20 nm are added in a volume of 20 ml, followed by dispersion by applying ultrasonic waves.
  • a copper powder having a particle size of 1 to 3 ⁇ m was added to a colloid in which tin nanoparticles were dispersed in ethyl alcohol in a glass container, and then dispersed by freezing and freeze drying to prepare a composite material.
  • FIG. 3 is an electron micrograph (FE-SEM) of the tin nanoparticles obtained in Example 1 described above and photographed by an analysis request from the Daegu-Gyeongbuk Nano Parts Commercialization Center. As a result of the photo analysis, it was confirmed that the size of 95% or more of the initial particles was very uniform at 4-8 nm level.
  • FE-SEM electron micrograph

Abstract

The present invention relates to a composite prepared by combining tin nanoparticles with a copper powder, wherein the composite is sintered below the sintering temperature of tin nanoparticles while maintaining the electrical conductivity of a copper powder. Particularly, when the composite is sintered, the surface of tin nanoparticles is first melted so as to block the contact of copper powder particles and air, thereby preventing the oxidation of copper under high temperature sintering. In other words, it is possible to obtain economic efficiency by replacing conventional expensive silver. In addition, it is possible to remarkably improve an electrical conductivity to the level of that of a copper powder and to lower sintering temperature to the level of that of a conventional solder paste in a conventional lead-free solder patterning, thereby bringing major improvement to the electric and electronic industry. Further, a composite prepared by combining tin nanoparticles with a metal powder selected from the group consisting of gold, silver, tungsten, titanium, stainless steel, aluminum, iron and nickel, or a combination thereof instead of a copper powder can also display characteristic physical properties according to the characteristics of a material. In other words, it is possible to develop a material suitable for a specific use through advantages such as sintering using tin with a low melting point, tungsten having strong abrasion resistance, and the like. Particularly, the surface of tin is melted at a sintering temperature so as to prevent the oxidation of adhered tungsten when sintering, which enables sintering in a non-vacuum state, thereby increasing economic effects.

Description

금속과 비금속 파우더에 나노 주석을 부착하여 제조한 복합소재Composites made by attaching nano tin to metal and nonmetal powders
본 발명은 패터닝, 소결 등에 사용되는 복합 소재에 관한것이다.The present invention relates to a composite material used for patterning, sintering and the like.
현재 PDP TV 등 전기 전자 부문에 사용하는 패터닝의 대부분은 은을 사용하여 소결시 산화를 방지하고 높은 전기전도도를 구현할 수 있다. 여기서 전기전도도는 비슷하나 수십배 가격이 비싼 은을 구리대신 사용하는 이유는 패터닝시 발생하는 구리의 산화 문제가 있기 때문이다.Most of the patterning currently used in the electric and electronics sectors, such as PDP TVs, can use silver to prevent oxidation during sintering and achieve high electrical conductivity. The reason for using silver instead of copper, which is similar in electrical conductivity but expensive tens of times, is that there is a problem of oxidation of copper generated during patterning.
본 발명은 구리의 산화문제를 나노 주석이 낮은 온도에서 표면 멜팅이 이루어져 구리의 산화를 방지 한다는 점에 착안하여 이루어졌다. 무연 솔더 페이스트의 패터닝에서 과제는 소결 온도를 낮추는 것과 소결후 전기전도도를 확보하는 것이다. 본 발명은 소결 온도를 240℃ 수준에서 160℃ 이하로 대폭 낮추었고, 전기전도도를 기존의 무연솔더보다 대폭 개선하였다.The present invention has been made focusing on the problem that the oxidation of copper prevents the oxidation of copper by the surface melting at a low temperature of nano tin. Challenges in patterning lead-free solder pastes include lowering the sintering temperature and ensuring electrical conductivity after sintering. The present invention significantly lowered the sintering temperature from 240 ° C to 160 ° C and significantly improved the electrical conductivity compared to the conventional lead-free solder.
구리 파우더를 이용한 패터닝에서 소결시 고온에서 구리가 산화되어 사용이 제약되어있는 문제 및 소결 온도가 높아 기판에 패터닝시 고온의 영향을 받아 기판이 손상되는 단점이 있다.In the patterning using copper powder, there is a problem that copper is oxidized at a high temperature during sintering and its use is restricted, and the substrate is damaged due to the high temperature when patterning the substrate due to the high sintering temperature.
본 구리 파우더에 주석 나노입자를 부착시킨 복합 소재는 구리 파우더의 전기전도도와 주석 나노입자의 낮은 소결 온도를 구현할 수 있어 이러한 문제점을 해결하였고, 특히 주석의 나노입자가 먼저 표면 멜팅이 이루어져 구리의 산화를 원천적으로 방지한다는 장점을 지닌다.The composite material in which tin nanoparticles were attached to the present copper powder solved this problem because the electrical conductivity of copper powder and low sintering temperature of tin nanoparticles could be realized. Particularly, the nanoparticles of tin were first subjected to surface melting to oxidize copper. Has the advantage of preventing the source.
본 발명은 구리 파우더 패터닝에 있어서 패터닝시 소요되는 고온에 구리 파우더가 산화되는 것을 방지하기 위하여, 160℃ 이하에서 표면 멜팅되는 주석 나노입자를 구리 파우더 표면에 부착시켜 구리 파우더가 산화되기 전에 주석 나노입자가 표면 멜팅되어 구리와 산소와의 접촉을 막아 산화를 방지한다.In the present invention, in order to prevent the copper powder from oxidizing at the high temperature required during patterning in the copper powder patterning, the tin nanoparticles surface-melted at 160 ° C. or lower are attached to the copper powder surface before the tin powder is oxidized. Surface is melted to prevent oxidation of copper and oxygen.
또한 구리 파우더에 부착된 주석 나노입자가 표면 멜팅이 이루어져 구리 파우더는 표면 멜팅이 이루어지지 않아도 주석 나노입자가 구리 파우더 입자의 사이에 접착제 역할을 하여 소결의 효과를 동시에 얻을 수 있다.In addition, since the tin nanoparticles attached to the copper powder is subjected to surface melting, the copper powder may have the tin nanoparticles acting as an adhesive between the copper powder particles without surface melting, thereby simultaneously obtaining the effect of sintering.
따라서 구리의 높은 전기전도도와 주석의 낮은 소결 온도의 장점을 동시에 얻을 수 있고 주석의 산화 안정성을 이용하여 구리의 산화를 방지할 수 있다. 즉 주석이 구리의 피복 역할을 하는 것이다.Therefore, the advantages of the high electrical conductivity of copper and the low sintering temperature of tin can be simultaneously obtained, and the oxidation of copper can be prevented by using the oxidation stability of tin. That is, tin serves as a coating of copper.
본 발명은 구리 파우더의 피복을 주석으로 입혀서 구리 파우더의 산화를 방지할 수 있고, 소결 온도를 주석 나노입자의 소결 온도인 160℃ 이하로 낮출 수 있고, 전기전도도는 구리 파우더의 수준을 유지할 수 있어 전기, 전자 산업의 혁신적인 개선을 이룩할 수 있다. 즉 은 파우더를 이용한 대부분의 공정을 구리로 대체할 수 있고, 구리 파우더의 소결시 산화 문제를 해결할 수 있게 되었으며, 무연솔더의 문제점인 전기전도도가 낮은 문제를 해결할 수 있게 되었다. The present invention can prevent the oxidation of the copper powder by coating the coating of the copper powder with tin, it is possible to lower the sintering temperature below 160 ℃, the sintering temperature of the tin nanoparticles, the electrical conductivity can maintain the level of copper powder Innovative improvements in the electrical and electronics industries can be achieved. That is, it is possible to replace most processes using silver powder with copper, to solve the oxidation problem during sintering of copper powder, and to solve the problem of low electrical conductivity, which is a problem of lead-free solder.
따라서 기존의 은 파우더 사용 시장, 구리 파우더 사용 시장, 무연 솔더 사용 시장을 모두 대체할 수 있는 광범위한 대체가 가능하다.Therefore, there is a wide range of alternatives to replace the traditional silver powder market, copper powder market and lead-free solder market.
도 1은 본 발명 복합소재와 그 페이스트 제조 공정이다.1 is a composite material of the present invention and a paste manufacturing process thereof.
도 2는 본 발명 복합소재의 전자현미경 사진 및 개념도이다.2 is an electron micrograph and a conceptual diagram of the composite material of the present invention.
도 3은 본 발명 복합소재에 사용된 주석 나노입자의 전자현미경 사진이다.3 is an electron micrograph of the tin nanoparticles used in the composite material of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
*도 1은 본 발명 복합소재와 그 페이스트의 제조 공정을 나타낸다. 도면에 있어서, 공정 ①은 구리 파우더 준비에 관한 것이다. 구리 파우더는 고품질의 제품에 사용할 경우는 입자가 작은 100㎚에서 10㎛ 수준으로 준비하고, 범용 및 저급 품질에 사용할 때는 10㎛ 이상으로 준비해도 좋다. 1 shows a process for producing the composite material and the paste of the present invention. In the figure, step ① relates to copper powder preparation. When used for high quality products, the copper powder may be prepared at a level of 10 μm at 100 nm with small particles, and may be prepared at 10 μm or more when used for general purpose and low quality.
공정 ②는 주석 나노입자 제조에 관한 것이다. 가장 쉬운 방법은 순수물이 담긴 반응기에 음극과 양극 전극으로 주석을 사용하고 전해질 용액과 환원제를 첨가한 다음 직류 전기를 가하여 주석을 전기분해함으로써 주석 나노입자를 얻을 수 있다. 또한 플라즈마나 아크 발생법 등의 방법으로 주석 나노입자를 얻을 수 있다. 이러한 방법으로 얻어진 주석 나노입자는 1∼20nm 수준으로 얻을 수 있다. Process ② relates to the production of tin nanoparticles. The easiest way is to obtain tin nanoparticles by using tin as the cathode and anode electrodes in a reactor containing pure water, adding electrolyte solution and reducing agent, and then electrolyzing tin by direct current. In addition, tin nanoparticles can be obtained by a method such as plasma or arc generation. Tin nanoparticles obtained in this manner can be obtained at the level of 1 to 20 nm.
공정 ③에서는 알코올이나 MEK 등 구리 파우더를 넣었을 때 산화를 일으키지 않는 물질을 주석 나노입자와 구리 파우더를 합한 부피만큼 유리 반응기에 넣고 먼저 주석 나노입자를 분산시킨다. 다음으로 분산시킨 주석 나노입자 콜로이드에 구리 파우더를 넣고 교반하며, 초음파를 가하여 섞어 준다. 이때 구리 파우더:주석 나노입자:용매를 49.5:0.5:50 내지 35:15:50의 비율로 하는데, 제품의 용도에 따라 전기전도도가 중요할 경우는 구리 파우더의 부피 비율을 높여주고, 부착 및 소결 품질이 더 요구되는 경우는 주석 나노입자의 부피 비율을 높인다. In the process ③, a substance that does not cause oxidation when copper powder such as alcohol or MEK is added is added to the glass reactor by the volume of tin nanoparticles and copper powder, and the tin nanoparticles are first dispersed. Next, the copper powder is added to the dispersed colloidal tin nanoparticles, and the mixture is mixed with ultrasonic waves. At this time, the ratio of copper powder: tin nanoparticles: solvent is 49.5: 0.5: 50 to 35:15:50. If the electrical conductivity is important according to the use of the product, increase the volume ratio of the copper powder, and attach and sinter If more quality is required, increase the volume fraction of the tin nanoparticles.
공정 ④에서는 잘 섞인 공정 ③의 콜로이드를 동결 건조시켜 구리 파우더에 주석 나노입자가 부착된 복합소재 파우더를 얻는다. 이때 고온에서 건조하면 주석 나노입자가 서로 뭉쳐서 소결 온도에 영향을 주므로 주의 하여야 한다. In step ④, the colloid of step ③ mixed well is freeze-dried to obtain a composite powder in which tin nanoparticles are attached to the copper powder. At this time, care should be taken when drying at high temperature because the tin nanoparticles agglomerate and affect the sintering temperature.
공정 ⑤에서는 공정 ④에서 얻어진 복합 소재를 용도에 맞는 플럭스를 첨가하여 교반하면 복합소재 페이스트가 제조되어 현장에서 바로 사용할 수 있는 단계의 소재가 된다. In step ⑤, the composite material obtained in step ④ is added with agitation of a flux suitable for the purpose, and then the composite material paste is prepared, and the material is ready for use in the field.
공정 ⑥에서는 공정 ②에서 제조된 주석 나노입자를 구리 파우더와 플럭스를 혼합하여 페이스트 제조기 등을 이용하여 바로 복합소재 페이스트를 제조할 수 있다. 이 경우 구리 파우더에 주석 나노입자의 분포가 약간 균일하지 못한 단점이 있으나 제조공정 단순화의 장점이 있다. In the process (6), the tin nanoparticles prepared in the process (2) are mixed with copper powder and flux, and the composite material paste can be directly prepared using a paste maker. In this case, there is a disadvantage that the distribution of tin nanoparticles in the copper powder is slightly uneven, but there is an advantage of simplifying the manufacturing process.
다음 도 2는 본 발명 복합소재를 전자현미경으로 촬영한 사진과 그 개념도를 나타낸다. 주석 대신 주석합금, 주석 산화물, 납 등과 같이 녹는점이 낮은 금속의 나노입자를 사용하여도 실질적으로 동일한 효과를 얻을 수 있다. 주석 산화물도 소결시 낮은 온도에서 주석으로 환원되어 유사한 효과를 낼수 있다.2 shows a photograph taken with an electron microscope of the composite material of the present invention and a conceptual diagram thereof. Substantially the same effect can be obtained by using nanoparticles of low melting point metal such as tin alloy, tin oxide, and lead instead of tin. Tin oxide can also be reduced to tin at low temperatures during sintering to achieve a similar effect.
구리 파우더 대신 텅스텐, 티타늄, 알루미늄, 스테인레스 스틸과 같은 금속 이나, CNT, 그래핀 등 전기전도도가 높은 물질이나, 알루미나, 세라믹을 사용할 수 있다. 구리 파우더는 구리의 특징인 전기전도도를 증가시키고, 텅스텐, 티타늄은 강도를 증가시키며, 알루미늄은 가벼움과 단단함을 동시에 실현시켜줄 수 있고, CNT나 그래핀은 구리와 같이 전기전도도가 높은 유사한 효과를 얻을 수 있다.Instead of copper powder, metals such as tungsten, titanium, aluminum and stainless steel, materials with high electrical conductivity such as CNT and graphene, alumina and ceramic may be used. Copper powder increases the electrical conductivity of copper, tungsten and titanium increase strength, aluminum can realize lightness and rigidity, and CNT and graphene can achieve similar effects with high conductivity like copper. Can be.
따라서 본 발명은 금속이나 세라믹의 장점을 주석이나 납처럼 녹는점이 낮은 금속을 나노화 하여, 표면에 부착시켜 온도를 160℃ 수준의 낮은 온도에서 소결하여 금속의 표면 산화를 방지하고, 금속이나 세라믹의 장점을 살릴 수 있는 가장 효율적인 복합소재이다.Therefore, in the present invention, the advantages of metals or ceramics are nano-ized metals with low melting point, such as tin or lead, attached to the surface and sintered at a low temperature of 160 ° C to prevent surface oxidation of the metals, It is the most efficient composite material that can save.
[실시예 1 - 주석 나노입자 제조]Example 1 Preparation of Tin Nanoparticles
전기분해조에 순수 물을 100리터 넣고 염화나트륨을 100그램 희석하여 용해시킨 후 전극으로 주석을 길이 40cm 너비 3cm 두께 1cm의 막대로 제작하여 음극과 양극에 부착 시켰다. 전극에 직류 540볼트가 허여 하였을 때, 초기에는 수 암페어의 전류가 흐르고 약 10분뒤 전해조 내의 염화나트륨 수용액 온도가 오르면서 10 암페어의 전류가 흘렀고, 30분뒤 전해조 내의 염화나트륨 수용액 온도가 98℃ 수준으로 격렬하게 끓으면서 증발하기 시작했다. 이때 전류는 35 암페어에서 45 암페어로 오르락 내리락하며 흘렀다. 이때부터 순수물을 자동으로 급수하는 펌프를 가동하여 물이 증발하여 낮아진 수위를 일정 수준으로 유지시켰다.100 liters of pure water was added to the electrolysis tank, and 100 grams of sodium chloride was dissolved to dissolve the tin. The electrode was made of a rod of 40 cm in length, 3 cm in thickness, and 1 cm in thickness, and attached to the cathode and the anode. When a direct current of 540 volts was applied to the electrode, a few amperes of current initially flowed, and after about 10 minutes, the sodium chloride aqueous solution temperature in the electrolyzer rose, and 10 ampere currents flowed. As it boiled, it began to evaporate. The current flowed up and down from 35 amps to 45 amps. From this time, a pump for automatically supplying pure water was operated so that the water level was reduced to maintain a constant level.
이렇게 12시간이 경과한 후에 전기분해조에 침전된 주석 나노입자 약 100g을 수거하여 세척하고, 냉동동결건조시킨 후 분쇄하여 주석 나노입자를 제조하였다.After 12 hours, about 100 g of the tin nanoparticles precipitated in the electrolytic bath was collected, washed, freeze-dried and ground to prepare tin nanoparticles.
[실시예 2 - 구리 파우더에 주석 나노입자 부착]Example 2 Attachment of Tin Nanoparticles to Copper Powder
99% 에틸알코올을 유리 용기에 1ℓ 넣은후 20㎖의 부피만큼 입자크기 1∼20㎚의 주석 나노입자를 첨가한후 초음파를 가하여 분산시킨다. 여기에 980㎖의 부피만큼 입자크기 1∼3㎛의 구리 파우더를 유리 용기안의 에틸알코올에 주석 나노입자가 분산된 콜로이드에 첨가하고 초음파를 가하여 분산 후 냉동 동결건조시켜 복합소재를 제조하였다.1 liter of 99% ethyl alcohol is placed in a glass container, and tin nanoparticles having a particle size of 1-20 nm are added in a volume of 20 ml, followed by dispersion by applying ultrasonic waves. A copper powder having a particle size of 1 to 3 µm was added to a colloid in which tin nanoparticles were dispersed in ethyl alcohol in a glass container, and then dispersed by freezing and freeze drying to prepare a composite material.
[실시예 3 - 주석 나노입자의 전자현미경 분석]Example 3 Electron Microscopy Analysis of Tin Nanoparticles
도 3은 전술한 실시예 1에서 얻어진 주석 나노입자의 전자현미경 사진(FE-SEM)으로 「대구·경북 나노부품 실용화 센터」에 분석 의뢰하여 촬영한 것이다. 사진 분석 결과, 초기 입자 95% 이상의 크기가 4∼8㎚ 수준으로 매우 균일함을 확인할 수 있었다.FIG. 3 is an electron micrograph (FE-SEM) of the tin nanoparticles obtained in Example 1 described above and photographed by an analysis request from the Daegu-Gyeongbuk Nano Parts Commercialization Center. As a result of the photo analysis, it was confirmed that the size of 95% or more of the initial particles was very uniform at 4-8 nm level.

Claims (4)

  1. 알코올, MEK 등 용매에 구리 파우더와 주석 나노입자가 혼합되어 그 구리 파우더와 주석 나노입자와 용매의 비율이 49.5:0.5:50 내지 35:15:50의 사이에 있는 콜로이드를 진공 건조시켜 제조된 것으로서 구리 파우더에 주석 나노입자가 부착된 고전도성을 가지며, 소결 온도가 160℃ 이내인 것을 특징으로 하는 복합소재.Copper powder and tin nanoparticles are mixed with a solvent such as alcohol and MEK, and the powder is manufactured by vacuum drying a colloid having a ratio of 49.5: 0.5: 50 to 35:15:50 Tin nanoparticles attached to the copper powder has a high conductivity, the composite material characterized in that the sintering temperature is within 160 ℃.
  2. 청구항 1의 주석 나노입자를 대체하여 주석합금, 주석산화물, 납, 납합금 등 녹는점이 낮은 금속의 나노입자를 사용한 것을 특징으로 하는 복합소재.A composite material comprising nanoparticles of low melting point such as tin alloy, tin oxide, lead, and lead alloy in place of tin nanoparticles of claim 1.
  3. 청구항 1의 구리 파우더를 대체하여 텅스텐, 티타늄, 알루미늄, 스테인레스 스틸과 같은 금속이나 CNT, 그래핀 등 전기전도도가 높은 물질 또는 알루미나, 세라믹을 사용한 것을 특징으로 하는 복합소재.A composite material comprising a metal such as tungsten, titanium, aluminum, or stainless steel, a material having high electrical conductivity such as CNT, graphene, alumina, or ceramic, in place of the copper powder of claim 1.
  4. 청구항 1 내지 3 중의 어느 하나에 기재된 바와 같은 복합소재에 플럭스나 첨가제가 0.1 내지 10% 수준으로 혼합하여 제조된 복합소재 페이스트.Composite composite paste prepared by mixing a flux or additive to the composite material as described in any one of claims 1 to 3 to the level of 0.1 to 10%.
PCT/KR2012/000472 2012-01-19 2012-01-19 Composite prepared by adhering nano-tin to metal and nonmetal powders WO2013108942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/000472 WO2013108942A1 (en) 2012-01-19 2012-01-19 Composite prepared by adhering nano-tin to metal and nonmetal powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/000472 WO2013108942A1 (en) 2012-01-19 2012-01-19 Composite prepared by adhering nano-tin to metal and nonmetal powders

Publications (1)

Publication Number Publication Date
WO2013108942A1 true WO2013108942A1 (en) 2013-07-25

Family

ID=48799357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000472 WO2013108942A1 (en) 2012-01-19 2012-01-19 Composite prepared by adhering nano-tin to metal and nonmetal powders

Country Status (1)

Country Link
WO (1) WO2013108942A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105643148A (en) * 2016-03-07 2016-06-08 上海和伍复合材料有限公司 Silver brazing paste and preparation method thereof
WO2017050284A1 (en) * 2015-09-25 2017-03-30 天津大学 Preparation method for tin-based silver graphene lead-free composite solder
CN109014221A (en) * 2018-09-05 2018-12-18 新疆烯金石墨烯科技有限公司 A kind of preparation method of graphene Al alloy powder
CN114293051A (en) * 2021-12-23 2022-04-08 北京科大京都高新技术有限公司 Preparation method of high-temperature softening resistant high-strength high-conductivity copper-based composite material formed part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010691A (en) * 2006-07-27 2008-01-31 주식회사 엘지화학 Alloy nano particle comprising silver, copper, and tin and preparation method thereof
KR20100019867A (en) * 2008-08-11 2010-02-19 삼성전기주식회사 Alloy nano particle of sn-cu-ag, preparation method thereof and ink or paste using the alloy nano particle
JP2011162879A (en) * 2010-02-04 2011-08-25 Robert Bosch Gmbh Conductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010691A (en) * 2006-07-27 2008-01-31 주식회사 엘지화학 Alloy nano particle comprising silver, copper, and tin and preparation method thereof
KR20100019867A (en) * 2008-08-11 2010-02-19 삼성전기주식회사 Alloy nano particle of sn-cu-ag, preparation method thereof and ink or paste using the alloy nano particle
JP2011162879A (en) * 2010-02-04 2011-08-25 Robert Bosch Gmbh Conductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050284A1 (en) * 2015-09-25 2017-03-30 天津大学 Preparation method for tin-based silver graphene lead-free composite solder
CN105643148A (en) * 2016-03-07 2016-06-08 上海和伍复合材料有限公司 Silver brazing paste and preparation method thereof
CN109014221A (en) * 2018-09-05 2018-12-18 新疆烯金石墨烯科技有限公司 A kind of preparation method of graphene Al alloy powder
CN114293051A (en) * 2021-12-23 2022-04-08 北京科大京都高新技术有限公司 Preparation method of high-temperature softening resistant high-strength high-conductivity copper-based composite material formed part

Similar Documents

Publication Publication Date Title
Mizuguchi et al. A highly stable nonaqueous suspension for the electrophoretic deposition of powdered substances
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
WO2013108942A1 (en) Composite prepared by adhering nano-tin to metal and nonmetal powders
JP2013053347A (en) Dendritic copper powder
CN103273056A (en) Flake-shaped copper powder and preparing method thereof
CN102969082B (en) The preparation method of Ag coated Ni composite nano powder electrocondution slurry
CN107868964A (en) The preparation method of alloy powder
CN108360025B (en) A kind of method that aqueous solution electrolysis solid metallic sulfide prepares metal
KR20120082972A (en) A complex material obtained by attaching tin nano powder to metal and ceramic powder
JP2018168445A (en) Silver chloride-coated particle
CN100570011C (en) A kind of method for preparing metallic substance by complex chemical compound
JPWO2015060258A1 (en) Silver coated copper powder
CN103422122B (en) A kind of method of titanium dioxide direct Preparation of Titanium
WO2013185539A1 (en) Inert alloy anode used for aluminum electrolysis and preparation method therefor
CN101709490A (en) Method for directly preparing titanium alloy by titanium concentrate powder
CN105127414B (en) A kind of preparation method of core shell structure silver nickel coat nano-powder material
JP2015021137A (en) Silver-coated copper alloy powder and method for producing the same
CN107723748B (en) Application of the hollow plasma electrode of normal pressure in molten-salt electrolysis
CN110205651A (en) A kind of method that low temperature electrochemical reduction barium oxide prepares vanadium metal
CN110073037A (en) The manufacturing method and manufacturing device of electrolytic aluminum foil
KR20190071116A (en) Composite for solid oxide membrane, manufacturing method thereof and solid oxide membrane comprising the same
KR101274979B1 (en) Method for forming coating having carbon nanotube on aluminum alloy and aluminum alloy having the coating
CN107083510B (en) A kind of nickel based metal oxide ceramics inert anode, preparation method and application
CN105568321A (en) Method for preparing titanium-iron alloy
CN103484895A (en) Inert alloy anode for aluminum electrolysis and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865916

Country of ref document: EP

Kind code of ref document: A1