WO2013107399A1 - 基于跨载波调度的数据传输方法、用户设备和基站 - Google Patents

基于跨载波调度的数据传输方法、用户设备和基站 Download PDF

Info

Publication number
WO2013107399A1
WO2013107399A1 PCT/CN2013/070749 CN2013070749W WO2013107399A1 WO 2013107399 A1 WO2013107399 A1 WO 2013107399A1 CN 2013070749 W CN2013070749 W CN 2013070749W WO 2013107399 A1 WO2013107399 A1 WO 2013107399A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
downlink
cell
downlink configuration
Prior art date
Application number
PCT/CN2013/070749
Other languages
English (en)
French (fr)
Inventor
李迎阳
官磊
李博
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to AU2013211301A priority Critical patent/AU2013211301B2/en
Priority to SG11201508976VA priority patent/SG11201508976VA/en
Priority to ES13738988.8T priority patent/ES2627496T3/es
Priority to EP13738988.8A priority patent/EP2712258B1/en
Publication of WO2013107399A1 publication Critical patent/WO2013107399A1/zh
Priority to US14/145,078 priority patent/US9584242B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and, more particularly, to a data transmission method based on cross-carrier scheduling, a user equipment, and a base station. Halo technology
  • the minimum time interval for the base station to schedule user equipment is one subframe.
  • Upstream data transmission is based on the strategy of Hybrid Automatic Repeat reQuest (HQQ).
  • the base station sends an uplink uplink grant (UPlink_grant, UL_grant) information in a downlink subframe to schedule a physical uplink shared channel (PUSCH) in an uplink subframe; a user equipment (User Equipment, UE) Transmitting the PUSCH according to the UL grant; the base station receives the PUSCH, and transmits the feedback information (ACK or NACK) of the PUSCH at a fixed timing, that is, the physical HARQ Indicator Channel (PHICH) information, and the negative PHICH information (ie, NACK) Triggering PUSCH retransmission in a subsequent uplink subframe.
  • PHICH physical HARQ Indicator Channel
  • NACK negative PHICH information
  • CA Carrier Aggregation
  • the UL-grant and PHICH that schedule the PUSCH of the Scell are sent on the Scell; and for cross-carrier scheduling, the UL-grant and PHICH that schedule the PUSCH of the Scell are sent on the Pcell.
  • LTE version 1 1 for TDD systems, it is necessary to study the use of CA technology.
  • the uplink and downlink configurations of the cells are not the same.
  • PCell adopts uplink and downlink configuration 1
  • SCell adopts uplink and downlink configuration 2.
  • the duplex directions of PCell and SCell are the same.
  • subframe 0 of two cells is a downlink subframe
  • subframe 2 of two cells are uplink subframes; but for some special sub-frames Frames, for example, subframe 3 and subframe 8, the duplex directions of the two cells are different.
  • the scheduling of the PUSCH transmission of the Scell can still work according to the uplink HARQ timing of the Scell.
  • the Pcell subframe of the timing of scheduling the PUSCH obtained according to a certain timing policy may be an uplink subframe, and cannot support the Scell.
  • Cross-carrier scheduling of PUSCH so that cross-carrier scheduling cannot be effectively implemented.
  • the embodiments of the present invention provide a data transmission method, a user equipment, and a base station, which are based on the cross-carrier scheduling, and can effectively implement cross-carrier scheduling in the case where the uplink and downlink configurations of the two cells in the carrier aggregation are different.
  • a method for data transmission based on cross-carrier scheduling including: determining, according to a timing relationship of an uplink hybrid automatic repeat request (HARQ) that is configured with an uplink and downlink configuration, where the first downlink subframe is used, where the first downlink subframe is used.
  • the timing of the uplink scheduling grant information indicating the first uplink subframe of the transmitted cell; and the subframe of the primary cell corresponding to the first downlink subframe is a downlink subframe, and the first downlink
  • the uplink scheduling grant information is transmitted on the subframe of the primary cell corresponding to the subframe, where the uplink and downlink configurations of the primary cell and the modulated cell are different; and the uplink data is transmitted in the first uplink subframe.
  • a base station including: a processor, configured to determine, according to a timing relationship of an uplink hybrid automatic repeat request (HARQ) that is configured with an uplink and downlink configuration, where the first downlink subframe is used, where the first downlink subframe is used by a timing of instructing to send the uplink scheduling grant information of the first uplink subframe of the to-be-tuned cell, where the transmitter is configured to be the downlink subframe of the primary cell corresponding to the first downlink subframe, Transmitting the uplink scheduling grant information on a subframe of the calling cell corresponding to the first downlink subframe, where the calling cell and the The uplink and downlink configurations of the cell are different; the receiver is configured to receive the uplink data sent by the user equipment on the first uplink subframe.
  • HARQ uplink hybrid automatic repeat request
  • a user equipment including: a processor, configured to determine a first downlink subframe according to a timing relationship of an uplink hybrid automatic repeat request HARQ that is configured with reference to an uplink and downlink configuration, where the first downlink subframe a timing for indicating the uplink scheduling grant information of the first uplink subframe of the transmitted cell; the receiver configured to: when the subframe of the primary cell corresponding to the first downlink subframe is a downlink subframe Receiving the uplink scheduling grant information in a subframe of the calling cell corresponding to the first downlink subframe, where the uplink and downlink configurations of the calling cell and the adjusted cell are different; and the transmitter is configured to be configured according to the The uplink scheduling grant information sends uplink data on the first uplink subframe.
  • a processor configured to determine a first downlink subframe according to a timing relationship of an uplink hybrid automatic repeat request HARQ that is configured with reference to an uplink and downlink configuration, where the first downlink subframe a timing for indicating the uplink scheduling grant information of
  • a communication system comprising: the base station and the user equipment.
  • the technical solution may determine, according to the timing relationship of the uplink HARQ that is configured with the uplink and downlink, a downlink subframe for performing cross-carrier scheduling on the subframe of the modulated cell, and the subframe of the primary cell corresponding to the downlink subframe is In the case of a downlink subframe, cross-carrier scheduling is performed on the subframe of the modulated cell, so that cross-carrier scheduling can be effectively implemented when the uplink and downlink configurations of the primary and the modulated cells are different.
  • FIG. 1 is a schematic flow chart of a data transmission method based on cross-carrier scheduling according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flow chart of a data transmission process based on cross-carrier scheduling according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic flow chart of a data transmission process based on cross-carrier scheduling according to Embodiment 3 of the present invention.
  • 4 is a structural schematic diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 5 is a structural schematic diagram of a user equipment according to an embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE General Packet Radio Service Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • Embodiments of the present invention can be used in wireless networks of different standards.
  • a wireless access network may include different network elements in different systems.
  • network elements of a radio access network in LTE (Long Term Evolution) and LTE (Advanced Long Term Evolution) include an eNB (eNodeB, evolved base station), and WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access)
  • the network elements of the wireless access network include RNC (Radio Network Controller) and NodeB.
  • RNC Radio Network Controller
  • WiMax Worldwide Interoperability for Microwave Access It is also possible to use a scheme similar to the embodiment of the present invention, but the related modules in the base station system may be different, and the embodiments of the present invention are not limited. However, for convenience of description, the following embodiments will be described by taking an eNodeB as an example.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • mobile phones mobile phones
  • portable devices etc.
  • RAN Radio Access Network
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with wireless communication function, etc., and the user equipment may also be portable, pocket-sized, Handheld, computer built-in or in-vehicle mobile devices.
  • the concept of a primary cell and a modulated cell is introduced.
  • a cell that transmits UL-grant information and a PHICH is referred to as a primary cell, and a cell that transmits a PUSCH is a modulated cell.
  • the method of the present invention is described by taking a primary tone cell and a tuned cell as an example in accordance with an embodiment of the present invention. It should be understood that embodiments of the present invention can be directly extended to a primary tone cell and multiple toned cells.
  • the primary cell corresponds to the primary cell of the CA
  • the modulated cell corresponds to the secondary cell adopting the CA technology
  • the keynote The cell may correspond to the primary cell, or may correspond to the secondary cell
  • the adjusted cell corresponds to the secondary cell
  • the primary and the modulated cells may be multiple.
  • FIG. 1 is a schematic flow chart of a data transmission method based on cross-carrier scheduling according to Embodiment 1 of the present invention.
  • the method of Figure 1 can be performed by a base station or a UE.
  • the first downlink subframe is determined according to the timing relationship of the uplink hybrid automatic repeat request (HARQ), and the first downlink subframe is used to indicate the uplink scheduling of the first uplink subframe of the transmitted modulated cell.
  • HARQ uplink hybrid automatic repeat request
  • the uplink HARQ timing of the uplink and downlink configuration already defined in LTE Release 8 may be multiplexed to process the PUSCH transmission of the modulated cell.
  • the uplink and downlink configuration used is called the reference uplink and downlink configuration.
  • the uplink and downlink configuration of the primary and secondary cells may be configured as the uplink and downlink configuration of the primary or the uplink and downlink configuration of the modulated cell, or may be other uplink and downlink configurations different from the primary and the modulated cells.
  • the reference uplink and downlink configuration may be notified by the high layer signaling, that is, the broadcast signaling or the RRC (Radio Resource Control) signaling is used to notify the UE, and the embodiment according to the present invention is not limited thereto, for example, refer to the uplink and downlink configuration. Can also be predetermined Meaning or configuration, no signaling is required, so signaling overhead can be reduced.
  • the high layer signaling that is, the broadcast signaling or the RRC (Radio Resource Control) signaling is used to notify the UE
  • RRC Radio Resource Control
  • LTE Release 8 defines the timing relationship of the uplink HARQ for the seven uplink and downlink configurations (upstream and downlink configurations 0, 1, 2, 3, 4, 5, 6), and the timing relationship of the uplink HARQ is used to indicate the uplink of the uplink subframe.
  • the timing of scheduling the authorization information, the timing of the uplink subframe, the timing of the feedback information of the uplink subframe, and the timing of the retransmission of the uplink subframe that is, in which downlink subframe, the uplink scheduling grant information of the uplink subframe is sent, which uplink
  • the subframe transmits the PUSCH of the uplink subframe, in which downlink subframe the feedback information of the uplink subframe is transmitted, and in which uplink subframe the PUSCH of the uplink subframe is retransmitted.
  • the base station or the UE may determine the timing of the cross-carrier scheduling of the tuned area according to the uplink HARQ timing relationship of the reference uplink and downlink configuration.
  • the subframe of the primary cell corresponding to the first downlink subframe is a downlink subframe
  • the uplink and downlink configurations of the primary cell and the activated cell are different.
  • the uplink and downlink configurations of the primary and secondary cells are different. Therefore, the subframe of the primary cell corresponding to the first downlink subframe may be an uplink subframe.
  • the cross-carrier scheduling of the first uplink subframe of the modulated cell is not allowed, because the uplink scheduling grant information cannot be sent to the UE by using the uplink subframe of the primary cell, in other words, only in the first
  • the subframe of the primary cell corresponding to the downlink subframe is a downlink subframe
  • the first uplink subframe of the modulated cell is allowed to perform cross-carrier scheduling.
  • the first uplink subframe of the modulated cell may be non-cross-carrier scheduled or not used.
  • the first uplink subframe performs PUSCH transmission.
  • the base station may send the uplink scheduling grant information on a subframe of the calling cell corresponding to the first downlink subframe, and the UE may be in a subframe of the calling cell corresponding to the first downlink subframe. Receiving the uplink scheduling grant information.
  • the UE may send the PUSCH on the first uplink subframe, and the base station may receive the PUSCH on the first uplink subframe.
  • Embodiment 1 of the present invention may determine, according to a timing relationship of an uplink HARQ that is configured with reference to an uplink and downlink, a downlink subframe for performing cross-carrier scheduling on a subframe of the modulated cell, and If the subframe of the primary cell corresponding to the downlink subframe is a downlink subframe, the subframe of the modulated cell is cross-carrier scheduled, so that the uplink and downlink configurations of the primary and the modulated cells are not configured.
  • Cross-carrier scheduling is effectively implemented under the same conditions.
  • a method for supporting cross-carrier scheduling of a modulated cell can be obtained.
  • a reference uplink and downlink configuration to further improve system performance and avoid problems in synchronous HARQ operation
  • Other design principles are used to obtain a better performance cross-carrier scheduling method.
  • the reference uplink and downlink configuration allows cross-carrier scheduling of at least one uplink subframe of the camped cell according to the timing relationship of the uplink HARQ configured by the reference uplink and downlink.
  • the reference uplink and downlink configures a subframe of the primary handover cell corresponding to the downlink subframe for transmitting the uplink scheduling grant information of the at least one uplink subframe determined according to the timing relationship of the uplink HARQ.
  • Determining, for the downlink subframe, the subframe of the primary handover cell corresponding to the downlink subframe for transmitting the physical hybrid retransmission indication channel PHICH information, which is determined according to the uplink HARQ timing relationship, is a downlink subframe, and is determined according to the uplink HARQ timing relationship.
  • the at least one uplink subframe of the tuned cell is allowed to be cross-carrier. Scheduling.
  • the reference uplink and downlink configuration when determining the reference uplink and downlink configuration, may be selected according to the configuration of the primary and the adjusted cells to ensure that the reference uplink and downlink configuration supports at least one uplink of the adjusted cell.
  • the cross-carrier scheduling of the subframe for example, the at least one uplink subframe of the modulated cell may find a downlink subframe for transmitting uplink scheduling grant information and a downlink subframe for transmitting feedback information on the primary tuning cell according to the reference uplink and downlink configuration. Frame and uplink subframe for retransmission.
  • the UE can be configured to adopt the asymmetric CA mode, that is, the downlink configuration CA and the uplink configuration single cell.
  • the primary adjustment cell adopts one of the uplink and downlink configuration 2 to the uplink and downlink configuration 5 defined in the LTE version 8.
  • the uplink and downlink configuration of the adjusted cell is used as the reference uplink and downlink configuration.
  • the uplink and downlink configurations of the primary and the modulated cells are different, in order to Supporting the cross-carrier scheduling of the synchronous HARQ-based PUSCH transmission of the modulated cell, according to an embodiment of the present invention, the uplink HARQ timing of a certain uplink and downlink configuration already defined in the LTE Release 8 may be multiplexed to process the PUSCH transmission of the modulated cell. , thereby reducing the complexity of standardization.
  • the uplink and downlink configuration of the modulated cell can be used as a reference uplink and downlink configuration.
  • such a reference uplink and downlink configuration may be selected, so that cross-carrier scheduling of as many uplink subframes as possible of the modulated cell can be performed.
  • the primary or secondary cell adopts the uplink and downlink configuration 0, the uplink and downlink configuration 1 or the uplink and downlink configuration 6 defined in the LTE version 8, and the uplink and downlink configuration 1 is used as the reference uplink and downlink configuration.
  • using the uplink and downlink configuration 1 as the reference uplink and downlink configuration may enable the most uplink subframes of the modulated cell for cross-carrier scheduling, as compared with the other uplink and downlink configurations.
  • the primary adjustment cell adopts one of the uplink and downlink configuration 1 to the uplink and downlink configuration 5 defined in the LTE version 8.
  • the uplink and downlink configuration of the primary adjustment cell is used as the reference uplink and downlink configuration.
  • the uplink and downlink configurations of the reference uplink and downlink configurations are used to determine the PUSCH transmission of the modulated cell according to the uplink and downlink configuration of the primary modulated cell.
  • the reference uplink and downlink configuration is configured by using the signaling method, as long as the primary cell (corresponding to the Pcell) is unchanged, no new signaling is required to notify the reference uplink and downlink configuration, thereby reducing the signaling overhead.
  • the primary or secondary cell adopts the uplink and downlink configuration 0 or the uplink and downlink configuration 6 defined in the LTE version 8 and the uplink and downlink configuration 1 defined in the LTE version 8 as the reference uplink and downlink configuration.
  • using the uplink and downlink configuration 1 as the reference uplink and downlink configuration may enable the most uplink subframes of the modulated cell for cross-carrier scheduling, as compared with the other uplink and downlink configurations.
  • the method of FIG. 1 further includes: determining, according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration, the second downlink subframe, where the second downlink subframe is used to indicate PHICH information for transmitting the PUSCH. Timing; in the second If the subframe of the primary cell corresponding to the downlink subframe is a downlink subframe, the PHICH information is transmitted on a subframe of the primary handover cell corresponding to the second downlink subframe, where, in 120, If the subframe of the primary cell corresponding to the second downlink subframe is a downlink subframe, the uplink scheduling grant message is transmitted on the subframe of the primary cell corresponding to the first downlink subframe, for example, according to the present invention.
  • the first embodiment can be designed to be used for transmitting the PUSCH when the uplink subframe of the modulated cell satisfies the following conditions. If the PHICH defined in the LTE version 8 is not available on the primary cell, the uplink timing of the uplink and downlink configurations may be determined for the uplink timing of the uplink and downlink configurations, and the transmission timing of the UL-grant and PHICH information may be determined. If the downlink subframes are both the timings of the primary cell, the uplink subframe of the modulated cell may be scheduled across carriers.
  • the uplink subframe of the camped cell finds a downlink subframe for transmitting uplink scheduling grant information and sends feedback information or PHICH information on the primary cell according to the timing relationship of the HARQ with reference to the uplink and downlink configuration.
  • the uplink subframe of the modulated cell can be scheduled for cross-carrier scheduling.
  • the PHICH for multiple uplink subframes is defined on the second downlink subframe of the reference uplink and downlink configuration, and the subframe of the primary handover cell corresponding to the second downlink subframe is also A PHICH is defined, and one of the plurality of uplink subframes uses a PHICH defined on a subframe of a tone cell, or the plurality of uplink subframes use a PHICH defined on a subframe of a tone cell.
  • the camped cell adopts the uplink and downlink configuration 0 and the uplink and downlink configurations are configured as the upper and lower configurations of the camped cell
  • the synchronous HARQ on the two uplink subframes is defined in each of the subframes 0 or 5 of the uplink and downlink configuration 0.
  • the PHIC of the procedure such as corpse HICH 0 and PHICH 1
  • the subframe of the primary cell is used according to the synchronous HARQ process using PHICH 0 or PHICH 1 PHICH of 0 (or 5); or PHICH of subframe 0 (or 5) of the primary cell is used for both synchronous HARQ processes.
  • a subframe of the primary handover cell corresponding to the second downlink subframe is a downlink subframe and a PHICH is defined
  • the uplink scheduling authorization information is transmitted on the uplink. For example, if the PHICH channel defined in the LTE version 8 is available on the primary cell, the uplink timing of the uplink and downlink configuration is determined according to the uplink timing relationship of the reference uplink and downlink configuration. At this timing of the cell is a downlink subframe and there is a PHICH defined in the available LTE Release 8, the uplink subframe of the modulated cell can be cross-carrier scheduled.
  • the method of FIG. 1 further includes: determining, according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration, a second uplink subframe, where the second uplink subframe is used to indicate a timing of retransmitting the PUSCH; If the subframe of the tuned cell corresponding to the second uplink subframe is an uplink subframe, the PUSCH is retransmitted on the subframe of the tuned cell corresponding to the second uplink subframe, where And if the subframe of the to-be-adjusted cell corresponding to the second uplink subframe is an uplink subframe, the uplink scheduling grant information is transmitted on a subframe of the primary-tuned cell corresponding to the first downlink subframe.
  • the subframe timing used for the synchronous HARQ retransmission is also an uplink subframe, thereby ensuring the performance of the synchronous HARQ. Otherwise, if there is a downlink subframe at one or more retransmission locations, in the case of such a combination of the configuration of the primary and the modulated cells, it takes more time to retransmit the PUSCH again. If this waiting time is too long and exceeds the service tolerance range, it is actually equivalent to not using HARQ technology to enhance the transmission performance, which has an impact on link reliability.
  • a unified method can be used for processing the PUSCH transmission of the modulated cell for the uplink and downlink configuration of each of the primary tuning cells.
  • the PUSCH transmission of the modulated cell is processed according to the uplink HARQ timing of the primary cell; or the PUSCH transmission of the modulated cell is processed according to the uplink HARQ timing of the modulated cell; or, according to a fixed reference
  • the uplink HARQ timing configured by the row handles the PUSCH transmission of the modulated cell.
  • FIG. 2 is a schematic flowchart of a data transmission process based on cross-carrier scheduling according to Embodiment 2 of the present invention.
  • the second embodiment is a refinement of one or more steps in the method of the first embodiment.
  • the second embodiment of the present invention may select an appropriate reference uplink and downlink configuration for a combination of different primary and secondary uplink and downlink configurations according to specific needs, for example, may select an uplink of a modulated cell that enables cross-carrier scheduling.
  • the uplink and downlink configuration with the most subframes is used as the reference uplink and downlink configuration.
  • the PUSCH of the modulated cell can be required to support only the retransmission period of 10 ms, so that the uplink subframe must exist in the PUSCH retransmission position.
  • the configuration of each of the primary and secondary cells can be combined, and only the upstream and downstream configurations of the primary modulated cell are used to determine which uplink of the reference uplink and downlink configuration is used.
  • the HARQ timing is used to process the PUSCH transmission of the modulated cell, and is independent of the uplink and downlink configuration adopted by the modulated cell. If the reference uplink and downlink configuration is configured by means of signaling, as long as the primary cell (corresponding to Pcell) is unchanged, no new signaling is required to notify the reference uplink and downlink configuration. In other words, the signaling for configuring the reference uplink and downlink configuration is sent together with the signaling for configuring the Pcell. If the method of signaling is not used, the reference uplink and downlink configuration corresponding to the uplink and downlink configuration of each primary cell may be determined according to the following method.
  • the uplink and downlink configuration of the primary adjustment cell is referred to the uplink and downlink configuration, that is, the uplink HARQ timing of the primary adjustment cell is used to support the coordinated cell.
  • Cross-carrier scheduling of uplink subframes Specifically, for those subframe timings that are uplink subframes on the primary and the modulated cells, the UL-grant and PHICH information are sent according to the uplink HARQ timing of the primary cell to the uplink subframe of the modulated cell. And for the case where the uplink subframe is on the modulated cell and the primary cell is the downlink subframe at the same subframe timing, cross-carrier scheduling for the uplink subframe on such a modulated cell is not supported.
  • the fixed upper and lower The line configuration 1 is used as a reference uplink and downlink configuration, that is, the cross-carrier scheduling of the uplink subframe of the modulated cell is transmitted according to the uplink HARQ timing of the uplink and downlink configuration 1. Since the PHICH defined in Release 8 exists on all subframes of the uplink and downlink configuration 0 or 6, there must be no problem that the available PHICH cannot be found.
  • the uplink timing of the uplink-downlink configuration 1 is used to determine the transmission timing of the UL-grant and PHICH information, and if the two subframes of the primary-tuned cell are downlink subframes, Then, the uplink subframe of the modulated cell can be scheduled across carriers; otherwise, cross-carrier scheduling is not supported.
  • a downlink subframe corresponding to the first downlink subframe exists on the primary cell. For example, determining, according to an uplink HARQ timing relationship of the uplink and downlink configuration, a first downlink subframe for indicating a timing of uplink scheduling grant information of the first uplink subframe of the modulated cell, and determining, corresponding to the first downlink subframe Whether the subframe of the primary tone cell is a downlink subframe, and if yes, perform 220; otherwise, cross-carrier scheduling for the first uplink subframe is not supported.
  • the first uplink subframe refers to one uplink subframe of the modulated cell.
  • a downlink subframe corresponding to the second downlink subframe exists on the primary cell. For example, determining a second downlink subframe for indicating a timing of a PHICH of the first uplink subframe of the modulated cell according to the timing relationship of the uplink HARQ configured by the reference uplink and downlink, and determining a tone corresponding to the second downlink subframe Whether the subframe of the cell is a downlink subframe. If so, execution 230, otherwise, cross-carrier scheduling for the first uplink subframe is not supported.
  • the PHICH is defined on the subframe corresponding to the second downlink subframe of the primary handover cell, perform 240; otherwise, cross-carrier scheduling for the first uplink subframe is not supported.
  • the cross-carrier scheduling of the first uplink subframe of the camped cell can be performed under the condition that 210 to 240 are satisfied.
  • the first uplink subframe of the modulated cell may be cross-carrier scheduled according to the requirement that only 210 or only 210 and 220 or only 210, 220, and 230 are satisfied.
  • Both the base station and the UE can perform the above judgments 210 to 240 to determine that the pair can be Which uplink subframes are used for cross-carrier scheduling.
  • 250 to 280 below describe a process of performing cross-carrier scheduling on a first uplink subframe of a modulated cell.
  • the base station sends the uplink scheduling grant information on the downlink subframe corresponding to the primary cell of the first downlink subframe, in the case that it is determined that the first uplink subframe of the modulated cell can be used for cross-carrier scheduling.
  • the UE After receiving the uplink scheduling grant information in the downlink subframe corresponding to the primary downlink cell of the first downlink subframe, the UE performs demodulation processing, and sends a PUSCH on the first uplink subframe of the modulated cell.
  • the base station After receiving the PUSCH in the first uplink subframe of the modulated cell, the base station performs demodulation processing, and sends PHICH information to the UE in a downlink subframe of the primary cell corresponding to the second downlink subframe.
  • the UE After receiving the PHICH information in the downlink subframe of the primary cell corresponding to the second downlink subframe, the UE performs a demodulation process, and performs an uplink subframe on the modulated cell corresponding to the second uplink subframe.
  • the base station retransmits the last PUSCH or transmits a new PUSCH.
  • the UE may be in the uplink subframe.
  • a new PUSCH is sent to the base station in the frame. If the information sent by the PHICH is NACK, the UE may retransmit the previous PUSCH to the base station in the uplink subframe.
  • Embodiment 3 is a schematic flow chart of a data transmission process based on cross-carrier scheduling according to Embodiment 3 of the present invention.
  • the third embodiment is a refinement of one or more steps in the method of the first embodiment.
  • the PHICH defined in the LTE Release 8 must be available when the synchronous HARQ transmission is performed on the PUSCH of the modulated cell, so that the uplink subframe of the more modulated cells can be supported.
  • Carrier scheduling For uplink and downlink configurations 0 and 6, the synchronous HARQ transmission is not 10 ms period, so that only when all uplink subframes configured with 0 and 6 can be scheduled across carriers, it can be considered to work according to their own uplink timing, thereby ensuring The camped cell is one at the second uplink subframe timing Uplink subframes.
  • the uplink and downlink configuration of the modulated cell is referred to the uplink and downlink configuration, that is, the uplink of the activated cell is supported according to the uplink HARQ timing of the modulated cell.
  • Cross-carrier scheduling of subframes Specifically, in the case that the configured cell adopts configurations 1 to 5, the uplink subframe of a modulated cell is determined according to its own uplink timing relationship, and the transmission timing of the UL-grant and PHICH information is determined. This timing is a downlink subframe, and the uplink subframe of the modulated cell can be scheduled across carriers; otherwise, cross-carrier scheduling is not supported.
  • configurations 1 ⁇ 5 are 10 ms periods, synchronous HARQ retransmissions are processed according to their own uplink HARQ timing, and there must be available uplink subframes at the retransmission timing.
  • their downlink subframes are a subset of the downlink subframes of the primary cell, so the downlink subframe may be present on the primary cell according to the uplink HARQ timing of the modulated cell.
  • the UL-grant and PHICH information is sent, that is, the uplink subframes of all the modulated cells can be scheduled across carriers, which ensures that when the HARQ retransmission is processed according to their own uplink HARQ timing, there must be available uplinks at the retransmission timing. Subframe.
  • the LTE version 9 and the LTE version 10 when the uplink and downlink configuration 0 is used for the camped cell, the UL_index field needs to be set in the UL_grant. In the case where the uplink and downlink configurations are used for the camped cell, the UL-DAI domain is set in the UL_grant.
  • LTE Release 8, LTE Release 9, and LTE Release 10 there are two PHICs, such as corpse HICH 0 corpse HICH 1 ), on subframes 0 or 5 of the uplink and downlink configuration 0, and are used for different synchronous HARQ processes.
  • the uplink and downlink configuration 0 when used for the camped cell, if there is a PHICH on the subframe 0 or 5 of the primary cell, the subframe 0 or 5 of the primary cell may exist.
  • PHICH as PHICH 0, that is, the PHICH existing on subframe 0 or 5 can be used only for the synchronous HARQ process using PHICH 0 according to LTE Release 8; or, the subframe 0 or 5 can be used for both synchronous HARQ processes.
  • the PHICH that exists.
  • the uplink and downlink configuration 1 is used as the reference uplink and downlink configuration, that is, the cross-carrier scheduling of the uplink subframe of the modulated cell is transmitted according to the uplink HARQ timing of the uplink and downlink configuration 1. .
  • the UL-grant is determined according to the uplink timing relationship of the uplink and downlink configuration 1.
  • the transmission timing of the PHICH information if it is a downlink subframe at this timing of the primary cell, the uplink subframe of the modulated cell may be scheduled across carriers; otherwise, cross-carrier scheduling is not supported. Because the uplink and downlink configuration 1 is a 10 ms period, when processing the synchronous HARQ retransmission according to the uplink and downlink configuration 1, it is ensured that there are necessarily available uplink subframes at the retransmission timing.
  • the following method can be used to support synchronous HARQ transmission.
  • the PHICH allocated according to the method defined in LTE Rel-8 may be added to these subframes of the main tone cell, but this method may cause subsequent compatibility problems, that is, UEs of LTE version 8, LTE version 9 and LTE version 10 are not. It is known that this subframe has a newly allocated PHICH according to the method defined in LTE Release 8, causing a PDCCH reception error.
  • the PHICH may be allocated in other ways, for example, by assigning a new PHICH on the time-frequency resource where the data channel is located, for example, an enhanced PHICH (ePHICH) channel, since the new PHICH is transmitted within the data channel resource, so for LTE UEs in version 8, LTE version 9, and LTE version 10 have no effect on detecting PDCCH, and satisfy the subsequent compatibility.
  • ePHICH enhanced PHICH
  • no PHICH is allocated to these subframes.
  • the base station can still use the UL-grant to trigger synchronous HARQ retransmission, but the signaling overhead is large.
  • the 310 Determine whether there is a downlink subframe corresponding to the first downlink subframe on the primary cell. For example, determining, according to an uplink HARQ timing relationship of the uplink and downlink configuration, a first downlink subframe for indicating a timing of uplink scheduling grant information of the first uplink subframe of the modulated cell, and determining, corresponding to the first downlink subframe, Whether the subframe of the primary tone cell is a downlink subframe, and if yes, perform 320; otherwise, cross-carrier scheduling for the first uplink subframe is not supported.
  • the first uplink subframe refers to any uplink subframe of the modulated cell.
  • 320 Determine whether there is a downlink subframe corresponding to the second downlink subframe on the primary cell. For example, determining a second downlink subframe for indicating a timing of a PHICH of the first uplink subframe of the modulated cell according to the timing relationship of the uplink HARQ configured by the reference uplink and downlink, and determining a tone corresponding to the second downlink subframe Whether the subframe of the cell is a downlink subframe. If so, execution 340, otherwise, cross-carrier scheduling for the first uplink subframe is not supported.
  • the cross-carrier scheduling of the first uplink subframe of the camped cell can be performed under the condition that 310 to 340 are satisfied.
  • the first uplink subframe of the camped cell may be scheduled for cross-carrier scheduling if only 310 or only 310 and 320 are satisfied.
  • Both the base station and the UE can perform the above judgments 310 to 340 to determine which uplink subframes can be cross-carrier scheduled.
  • the following 350 to 380 describe the process of cross-carrier scheduling for the first uplink subframe of the modulated cell.
  • the base station sends the uplink scheduling grant information on the downlink subframe corresponding to the primary downlink cell of the first downlink subframe.
  • the UE After receiving the uplink scheduling grant information in the downlink subframe corresponding to the primary downlink cell of the first downlink subframe, the UE performs demodulation processing, and sends the PUSCH in the first uplink subframe of the modulated cell.
  • the base station After receiving the PUSCH in the first uplink subframe of the modulated cell, the base station performs demodulation processing, and sends PHICH information to the UE in a downlink subframe of the primary handover cell corresponding to the second downlink subframe.
  • the UE After receiving the PHICH information in the downlink subframe of the primary cell corresponding to the second downlink subframe, the UE performs a demodulation process, and performs an uplink subframe on the modulated cell corresponding to the second uplink subframe.
  • the base station retransmits the last PUSCH or transmits a new PUSCH.
  • FIG. 4 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention.
  • the base station 400 of FIG. 4 includes a processor 410, a transmitter 420, and a receiver 430.
  • the embodiment of Figure 4 is a refinement of one or more of the steps of the embodiment of Figure 1.
  • the processor 410 is configured to determine a first downlink subframe according to a timing relationship of an uplink hybrid automatic repeat request HARQ that is configured with reference to an uplink and downlink configuration, where the first downlink subframe is used for Indicates the timing of transmitting uplink scheduling grant information of the first uplink subframe of the modulated cell.
  • the transmitter 420 is configured to: when the subframe of the primary cell corresponding to the first downlink subframe is a downlink subframe, send the subframe on the subframe corresponding to the primary downlink cell corresponding to the first downlink subframe Uplink scheduling authorization information, where the uplink and downlink configurations of the primary cell and the activated cell are different.
  • the receiver 430 is configured to receive uplink data transmitted by the user equipment on the first uplink subframe.
  • the reference uplink and downlink configuration allows cross-carrier scheduling of at least one uplink subframe of the modulated cell according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration.
  • the reference uplink and downlink configures a subframe of the primary handover cell corresponding to the downlink subframe for transmitting the uplink scheduling grant information of the at least one uplink subframe determined according to the timing relationship of the uplink HARQ.
  • the subframe of the primary cell corresponding to the downlink subframe for transmitting the physical hybrid retransmission indication channel PHICH information determined by the uplink subframe and the uplink HARQ timing relationship is a downlink subframe and is determined according to the uplink HARQ timing relationship. If the subframe of the tuned cell corresponding to the downlink subframe of the uplink data of the at least one uplink subframe is an uplink subframe, the at least one uplink subframe of the tuned cell is allowed to perform cross-carrier scheduling. .
  • the primary adjustment cell adopts one of the uplink and downlink configuration 2 to the uplink and downlink configuration 5 defined in the LTE version 8.
  • the uplink and downlink configuration of the activated cell is used as the reference uplink and downlink configuration;
  • the cell adopts the uplink and downlink configuration 0, the uplink and downlink configuration 1 or the uplink and downlink configuration 6 defined in the LTE version 8, and the uplink and downlink configuration 1 is used as the reference uplink and downlink configuration.
  • the primary adjustment cell adopts one of uplink and downlink configuration 1 to uplink and downlink configuration 5 defined in LTE Release 8, and the uplink and downlink configuration of the primary handover cell is used as a reference uplink and downlink configuration; or, the primary adjustment cell
  • the uplink and downlink configuration 1 defined in the LTE version 8 or the uplink and downlink configuration 6 and the uplink and downlink configuration 1 defined in the LTE version 8 are used as the reference uplink and downlink configuration.
  • the processor 410 is further configured to determine, according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration, the second downlink subframe, where the second The downlink subframe is used to indicate the timing of transmitting the PHICH information of the uplink data
  • the transmitter 420 is further configured to: when the subframe of the primary handover cell corresponding to the second downlink subframe is a downlink subframe, The PHICH information is sent on the subframe of the primary cell corresponding to the second downlink subframe, where the transmitter 420 is further configured to be configured to be the downlink subframe of the primary cell corresponding to the second downlink subframe. And transmitting the uplink scheduling grant information on a subframe of the calling cell corresponding to the first downlink subframe.
  • the PHICH for multiple uplink subframes is defined on the second downlink subframe of the reference uplink and downlink configuration, and the subframe of the primary handover cell corresponding to the second downlink subframe is also A PHICH is defined, and one of the plurality of uplink subframes uses a PHICH defined on a subframe of the tone cell, or the plurality of uplink subframes use a PHICH defined on a subframe of the tone cell.
  • the transmitter 420 is further configured to: when the subframe of the primary cell corresponding to the second downlink subframe is a downlink subframe and the PHICH is defined, corresponding to the first downlink subframe Sending the uplink scheduling grant on the subframe of the primary cell
  • the processor 410 is further configured to determine, according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration, the second uplink subframe, where the second uplink subframe is used to indicate that the uplink data is retransmitted.
  • the receiver 430 is further configured to: in the case that the subframe of the tuned cell corresponding to the second uplink subframe is an uplink subframe, on the subframe of the tuned cell corresponding to the second uplink subframe And receiving, by the user equipment, the uplink data that is retransmitted by the user equipment, where the transmitter 420 is further configured to: when the subframe of the to-be-tuned cell corresponding to the second uplink subframe is an uplink subframe, The uplink scheduling grant information is sent on a subframe of the primary cell corresponding to the frame.
  • the reference uplink and downlink configuration is pre-configured, and the transmitter 420 is further configured to notify the user equipment of the reference uplink and downlink configuration.
  • the user equipment is notified by high layer signaling.
  • processor 410 the transmitter 420 and the receiver 430 are coupled to each other.
  • a computer readable medium comprising computer readable instructions that, when executed, perform the operations of 110, 120, and 130 of the method of the above-described first embodiment.
  • Embodiment 5 includes the computer readable medium described above.
  • FIG. 5 is a schematic structural diagram of a user equipment 500 according to Embodiment 5 of the present invention.
  • the user equipment 500 of FIG. 5 includes a processor 510, a receiver 520, and a transmitter 530.
  • the processor 510 is configured to determine, according to a timing relationship of an uplink hybrid automatic repeat request (HARQ) that is configured with an uplink and downlink configuration, where the first downlink subframe is used to indicate that the first uplink subframe of the modulated cell is sent.
  • the timing of the uplink scheduling authorization information The receiver 520 is configured to receive, when the subframe of the primary cell corresponding to the first downlink subframe is a downlink subframe, on a subframe of the primary cell corresponding to the first downlink subframe. Uplink scheduling authorization information, where the uplink and downlink configurations of the primary cell and the activated cell are different.
  • the transmitter 530 is configured to send uplink data in the first uplink subframe according to the uplink scheduling grant information.
  • the reference uplink and downlink configuration allows cross-carrier scheduling of at least one uplink subframe of the modulated cell according to the timing relationship of the uplink HARQ configured by the reference uplink and the downlink.
  • the reference uplink and downlink configuration is configured as a downlink subframe according to the uplink subframe corresponding to the downlink subframe for transmitting the uplink scheduling grant information of the at least one uplink subframe, which is determined according to the timing relationship of the uplink HARQ, according to the uplink
  • the subframe of the primary handover cell corresponding to the downlink subframe for transmitting the physical hybrid retransmission indication channel PHICH information determined by the HARQ timing relationship is a downlink subframe, and the at least one uplink is retransmitted according to the uplink HARQ timing relationship.
  • the subframe of the modulated cell corresponding to the downlink subframe of the uplink data of the subframe is an uplink subframe, cross-carrier scheduling of at least one uplink subframe of the modulated cell is allowed.
  • the primary adjustment cell adopts one of the uplink and downlink configuration 2 to the uplink and downlink configuration 5 defined in the LTE version 8.
  • the uplink and downlink configuration of the activated cell is used as the reference uplink and downlink configuration;
  • the cell adopts the upper and lower definitions defined in LTE Release 8.
  • Line configuration 0, uplink and downlink configuration 1 or uplink and downlink configuration 6 the uplink and downlink configuration 1 is used as the reference uplink and downlink configuration.
  • the primary adjustment cell adopts one of the uplink and downlink configuration 1 to the uplink and downlink configuration 5 defined in the LTE version 8.
  • the uplink and downlink configuration of the primary adjustment cell is used as a reference uplink and downlink configuration; or the primary adjustment cell
  • the uplink and downlink configuration 1 defined in the LTE version 8 or the uplink and downlink configuration 6 and the uplink and downlink configuration 1 defined in the LTE version 8 are used as the reference uplink and downlink configuration.
  • the processor 510 is further configured to determine, according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration, the second downlink subframe, where the second downlink subframe is used to indicate the PHICH that receives the uplink data.
  • the timing of the information, and the receiver 520 is further configured to: in the case that the subframe of the primary handover cell corresponding to the second downlink subframe is a downlink subframe, the primary handover cell corresponding to the second downlink subframe Receiving the PHICH information on the subframe, where the receiver 520 is further configured to correspond to the first downlink subframe if the subframe of the primary handover cell corresponding to the second downlink subframe is a downlink subframe.
  • the uplink scheduling grant information is received on a subframe of the primary tuning cell.
  • the PHICH for multiple uplink subframes is defined on the second downlink subframe of the reference uplink and downlink configuration, and the subframe of the primary handover cell corresponding to the second downlink subframe A PHICH is also defined, and one of the plurality of uplink subframes uses a PHICH defined on a subframe of the tone cell, or the plurality of uplink subframes use a PHICH defined on a subframe of the tone cell.
  • the receiver 520 is further configured to: when the subframe of the primary cell corresponding to the second downlink subframe is a downlink subframe and the PHICH is defined, in the first downlink subframe Receiving the uplink scheduling authorization on the subframe of the corresponding primary cell
  • the processor 510 is further configured to determine, according to the timing relationship of the uplink HARQ of the reference uplink and downlink configuration, the second uplink subframe, where the second uplink subframe is used to indicate that the uplink data is retransmitted.
  • the timing transmitter 530 is further configured to: when the subframe of the tuned cell corresponding to the second uplink subframe is an uplink subframe, and the subframe of the tuned cell corresponding to the second uplink subframe is heavy Transmitting the uplink data, where the receiver 520 is further configured to be in a subframe of the to-be-tuned cell corresponding to the second uplink subframe.
  • the uplink scheduling grant information is received on a subframe of the primary cell corresponding to the first downlink subframe.
  • the receiver 520 receives the reference uplink and downlink configuration from the base station, or the reference uplink and downlink configuration is pre-configured.
  • processor 510 the receiver 520 and the transmitter 530 are coupled to each other.
  • a computer readable medium comprising computer readable instructions that, when executed, perform the operations of steps 10, 120, and 130 of the method of the first embodiment described above.
  • a communication system includes a base station 400 in the embodiment of FIG. 4 and a user equipment 500 in the embodiment of FIG.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the device is only a logical function division, and the actual implementation may have another division manner, for example, multiple devices or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • Another point, the mutual coupling or direct coupling or communication connection shown or discussed may be It is an indirect coupling or communication connection through some interface, device or device, which may be in electrical, mechanical or other form.
  • the devices described as separate components may or may not be physically separate, and the components displayed as devices may or may not be physical devices, i.e., may be located in one place, or may be distributed over multiple network devices. Some or all of the devices may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • the respective functional devices in the various embodiments of the present invention may be integrated in one processing device, or each device may exist physically separately, or two or more devices may be integrated in one device.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional device and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including Several instructions to make a computer device
  • the foregoing storage medium includes: u disk, mobile hard disk, read only memory (ROM, Read-Only) Memory Random access memory (RAM, Random Access Memory disk or optical disk, etc., which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种基于跨载波调度的数据传输方法、用户设备和基站。该方法包括:根据参考上下行配置的上行混合自动重传请求HARQ的定时关系确定第一下行子帧,其中所述第一下行子帧用于指示发送被调小区的第一上行子帧的上行调度授权信息的定时;在与所述第一下行子帧对应的主调小区的子帧为下行子帧的情况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输所述上行调度授权信息,其中所述主调小区和所述被调小区的上下行配置不同,并且在所述第一上行子帧上接收或发送所述上行数据。本发明能够在所述主调小区和所述被调小区的上下行配置不同的情况下有效实现跨载波调度。

Description

基于跨载波调度的数据传输方法、 用户设备和基站 技术领域
本发明实施例涉及通信技术领域,并且更具体地,涉及一种基于 跨载波调度的数据传输方法、 用户设备和基站。 背暈技术
在 LTE ( Long Term Evolution ,长期演进)***中 ,基站调度 用户设备的最小时间间隔是一个子帧。上行方向的数据传输是基于同 步(混合自动重传请求, Hybrid Automatic Repeat reQuest ) HARQ 的策略。 具体的说 , 基站在一个下行子帧发送上行调度授权 ( Uplink_grant , UL_grant )信息调度后面某个上行子帧内的物理上 行共享信道( Physical Uplink Shared Channel , PUSCH ) ;用户设 备 ( User Equipment , UE )根据 UL— grant发送 PUSCH;基站接收 PUSCH ,并在一个固定定时发送这个 PUSCH的反馈信息( ACK或 NACK ) , 即物理 HARQ 指示信道 ( Physical HARQ Indicator Channel , PHICH )信息,否定的 PHICH信息(即 NACK )触发后 续一个上行子帧内的 PUSCH重传。这里,基站调度一个 PUSCH后, 其对应的 PHICH和 PUSCH重传的定时都是固定的。
在 LTE版本 10中 ,引入了载波聚合( Carrier Aggregation ,CA ) 技术,以通过同时支持在多个载波上发送数据提高***的峰值速率。 LTE版本 10中引入了两种调度上行数据的方法,即非跨载波调度和 跨载波调度。因为在版本 10中是假设采用 CA技术的主小区( Pcell ) 和次小区( Scell )采用相同的时分双工( Time Division Duplexing , TDD )上下行配置,所以在这两种调度策略中都可以完全按照在 LTE 版本 8中定义的这个上下行配置的 HARQ定时关系来工作。 对于非 跨载波调度,对 Scell的 PUSCH进行调度的 UL— grant和 PHICH在 Scell 上发送;而对跨载波调度,对 Scell 的 PUSCH 进行调度的 UL— grant和 PHICH在 Pcell上发送。
在 LTE版本 1 1 中 ,对 TDD***,需要研究采用 CA技术的多 个小区的上下行配置不一样的处理方法。 例如, PCell采用了上下行 配置 1 , SCell采用了上下行配置 2。 对有些子帧, PCell和 SCell的 双工方向是一致的,例如,两个小区的子帧 0都是下行子帧,两个小 区的子帧 2 都是上行子帧;但是对一些特殊的子帧,例如,子帧 3 和子帧 8 ,两个小区的双工方向是不一样的。
针对上述采用 CA技术的两个小区的上下行配置不一样的情况, 如果是采用非跨载波调度,在对 Scell的 PUSCH传输进行调度时仍 然可以按照 Scell的上行 HARQ定时来工作。但是,对采用跨载波调 度的情况,因为 UL— grant和 PHICH需要在 Pcell上发送,而按照某 种定时策略得到的调度 PUSCH的定时的 Pcell子帧可能是一个上行 子帧,不能支持对 Scell的 PUSCH的跨载波调度,从而不能有效实 现跨载波调度。 发明内容
本发明实施例提供一种基于跨载波调度的数据传输方法、用户设 备和基站,能够在载波聚合的两个小区的上下行配置不一样的情况下 有效实现跨载波调度。
一方面,提供了一种基于跨载波调度的数据传输方法,包括:根 据参考上下行配置的上行混合自动重传请求 HARQ的定时关系确定 第一下行子帧,其中第一下行子帧用于指示发送被调小区的第一上行 子帧的上行调度授权信息的定时;在与第一下行子帧对应的主调小区 的子帧为下行子帧的情况下,在与第一下行子帧对应的该主调小区的 子帧上传输该上行调度授权信息,其中该主调小区和该被调小区的上 下行配置不同;在第一上行子帧上传输上行数据。
另一方面,提供了一种基站,包括:处理器,被配置为根据参考 上下行配置的上行混合自动重传请求 HARQ的定时关系确定第一下 行子帧,其中第一下行子帧用于指示发送被调小区的第一上行子帧的 上行调度授权信息的定时;发送器,被配置为在与第一下行子帧对应 的主调小区的子帧为下行子帧的情况下,在与第一下行子帧对应的该 主调小区的子帧上发送该上行调度授权信息,其中该主调小区和该被 调小区的上下行配置不同;接收器,被配置为接收用户设备在第一上 行子帧上发送的该上行数据。
另一方面,提供了一种用户设备,包括:处理器,被配置为根据 参考上下行配置的上行混合自动重传请求 HARQ的定时关系确定第 一下行子帧,其中第一下行子帧用于指示发送被调小区的第一上行子 帧的上行调度授权信息的定时;接收器,被配置为在与第一下行子帧 对应的主调小区的子帧为下行子帧的情况下,在与第一下行子帧对应 的该主调小区的子帧上接收该上行调度授权信息,其中该主调小区和 该被调小区的上下行配置不同;发送器,被配置为根据该上行调度授 权信息在第一上行子帧上发送上行数据。
另一方面,提供了一种通信***,包括:上述基站和上述用户设 备。
本技术方案可以根据参考上下行配置的上行 HARQ的定时关系 确定用于对被调小区的子帧进行跨载波调度的下行子帧,并且在与该 下行子帧对应的主调小区的子帧为下行子帧的情况下,才对被调小区 的子帧进行跨载波调度,从而能够在主调小区和被调小区的上下行配 置不一样的情况下有效实现跨载波调度。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员 来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他 的附图。
图 1 是根据本发明的实施例一的基于跨载波调度的数据传输方 法示意性流程图。
图 2 是根据本发明的实施例二的基于跨载波调度的数据传输过 程示意性流程图。
图 3 是根据本发明的实施例三的基于跨载波调度的数据传输过 程示意性流程图。 图 4是根据本发明的实施例的基站的结构性示意图。
图 5是根据本发明的实施例的用户设备的结构性示意图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方 案进行清楚、 完整地描述,显然,所描述的实施例是本发明一部分实 施例,而不是全部的实施例。 基于本发明中的实施例,本领域普通技 术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属 于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信***,例如:全 球移动通讯 ( GSM , Global System of Mobile communication )***、 码分多址 ( CDMA , Code Division Multiple Access )***、 宽带码 分多址( WCDMA , Wideband Code Division Multiple Access )***、 通用分组无线业务 ( GPRS , General Packet Radio Service 长期 演进 ( LTE , Long Term Evolution )***、 先进的长期演进 ( LTE-A , Advanced long term evolution )***、 通用移动通信*** ( UMTS , Universal Mobile Telecommunication System )等,本发明实施例并 不限定,但为描述方便,本发明实施例将以 LTE网络为例进行说明。
本发明实施例可以用于不同的制式的无线网络。无线接入网络在 不同的***中可包括不同的网元。例如,LTE( Long Term Evolution , 长期演进)和 LTE ( Advanced long term evolution ,先进的长期演 进)中无线接入网络的网元包括 eNB ( eNodeB ,演进型基站), WCDMA( Wideband Code Division Multiple Access ,宽带码分多址) 中无线接入网络的网元包括 RNC ( Radio Network Controller ,无线 网络控制器 )和 NodeB,类似地,WiMax( Worldwide Interoperability for Microwave Access ,全球微波互联接入)等其它无线网络也可以 使用与本发明实施例类似的方案,只是基站***中的相关模块可能有 所不同,本发明实施例并不限定,但为描述方便,下述实施例将以 eNodeB为例进行说明。
还应理解,在本发明实施例中 ,用户设备( UE , User Equipment ) 包括但不限于移动台( MS , Mobile Station )、 移动终端( Mobile Terminal 移动电话 ( Mobile Telephone )、 手机 ( handset )及便 携设备( portable equipment )等,该用户设备可以经无线接入网 ( RAN , Radio Access Network )与一个或多个核心网进行通信,例 如,用户设备可以是移动电话(或称为"蜂窝"电话)、具有无线通信功 能的计算机等,用户设备还可以是便携式、 袖珍式、 手持式、 计算机 内置的或者车载的移动装置。
根据本发明的实施例引入了主调小区和被调小区的概念,将发送 UL— grant信息和 PHICH的小区称为主调小区,将发送 PUSCH的小 区成为被调小区。根据本发明的实施例以一个主调小区和一个被调小 区为例描述本发明的方法,应理解,根据本发明的实施例可以直接扩 展到一个主调小区和多个被调小区的情况。对于只有两个小区的采用 CA技术的***,主调小区对应于 CA的主小区,被调小区对应于采 用 CA技术的次小区,而对于多于两个小区的采用 CA技术的***, 主调小区可以对应于主小区,也可以对应于次小区,被调小区对应于 次小区,并且主调小区和被调小区可以为多个。
实施例一
图 1 是根据本发明的实施例一的基于跨载波调度的数据传输方 法的示意性流程图。 图 1的方法可以由基站或 UE来执行。
1 10,根据参考上下行配置的上行混合自动重传请求 HARQ的定 时关系确定第一下行子帧,其中第一下行子帧用于指示发送被调小区 的第一上行子帧的上行调度授权信息的定时。
例如,对每种主调小区和被调小区的上下行配置的组合,可以复 用 LTE版本 8中已经定义的某种上下行配置的上行 HARQ定时来处 理被调小区的 PUSCH传输,这个被复用的上下行配置称为参考上下 行配置。参考上下行配置可以为主调小区的上下行配置或者被调小区 的上下行配置,也可以是不同于主调小区和被调小区的其他上下行配 置。参考上下行配置可以通过高层信令通知,即采用广播信令或者无 线资源控制( RRC , Radio Resource Control )信令来通知 UE ,根 据本发明的实施例并不限于此,例如,参考上下行配置也可以预先定 义或配置,不需要信令通知,从而能够减小信令开销。
例如, LTE版本 8针对 7种上下行配置(上下行配置 0、 1、 2、 3、 4、 5、 6 )定义了上行 HARQ的定时关系,上行 HARQ的定时关 系用于指示上行子帧的上行调度授权信息的定时、 上行子帧的定时, 上行子帧的反馈信息的定时以及上行子帧的重传的定时,即在哪个下 行子帧上发送上行子帧的上行调度授权信息,在哪个上行子帧发送上 行子帧的 PUSCH ,在哪个下行子帧发送上行子帧的反馈信息以及在 哪个上行子帧重传上行子帧的 PUSCH。 根据本发明的实施例,基站 或 UE可以根据参考上下行配置的上行 HARQ定时关系确定被调小 区的跨载波调度的定时。
120 ,在与第一下行子帧对应的主调小区的子帧为下行子帧的情 况下,在与第一下行子帧对应的该主调小区的子帧上传输该上行调度 授权信息,其中该主调小区和该被调小区的上下行配置不同。
例如,由于主调小区和被调小区的上下行配置不同,所以可能会 存在与上述第一下行子帧对应的主调小区的子帧为上行子帧的情况。 在这种情况下不允许对被调小区的第一上行子帧进行跨载波调度,因 为无法用主调小区的这个上行子帧向 UE发送上行调度授权信息,换 句话说,只有在与第一下行子帧对应的主调小区的子帧为下行子帧的 情况下,才允许对该被调小区的第一上行子帧进行跨载波调度。可选 地,在与第一下行子帧对应的主调小区的子帧为上行子帧的情况下, 可以对被调小区的第一上行子帧进行非跨载波调度或者不使用被调 小区的第一上行子帧进行 PUSCH传输。
例如,基站可以在与第一下行子帧对应的该主调小区的子帧上发 送该上行调度授权信息,而 UE可以在与第一下行子帧对应的该主调 小区的子帧上接收该上行调度授权信息。
130 ,在第一上行子帧上传输上行数据。
例如, UE可以在第一上行子帧上发送上述 PUSCH ,而基站可 以在第一上行子帧上接收上述 PUSCH。
本发明的实施例一可以根据参考上下行配置的上行 HARQ的定 时关系确定用于对被调小区的子帧进行跨载波调度的下行子帧,并且 在与该下行子帧对应的主调小区的子帧为下行子帧的情况下,才对被 调小区的子帧进行跨载波调度,从而能够在主调小区和被调小区的上 下行配置不一样的情况下有效实现跨载波调度。
根据本发明的实施例一,可以得到支持被调小区的跨载波调度的 方法,为了合理选择参考上下行配置以进一步提高***性能,避免同 步 HARQ操作存在问题,根据本发明的实施例进一步考虑了其它设 计原则来得到性能更优的跨载波调度方法。
根据本发明的实施例一,上述参考上下行配置允许根据该参考上 下行配置的上行 HARQ的定时关系对上述被调小区的至少一个上行 子帧进行跨载波调度。
根据本发明的实施例一,该参考上下行配置在根据该上行 HARQ 的定时关系确定的用于发送该至少一个上行子帧的上行调度授权信 息的下行子帧对应的该主调小区的子帧为下行子帧、 根据该上行 HARQ定时关系确定的用于发送物理混合重传指示信道 PHICH信息 的下行子帧对应的该主调小区的子帧为下行子帧,并且根据该上行 HARQ 定时关系确定的用于重传该至少一个上行子帧的上行数据的 下行子帧对应的该被调小区的子帧为上行子帧的情况下,允许对该被 调小区的至少一个上行子帧进行跨载波调度。
例如,根据本发明的实施例一在确定参考上下行配置时,可以根 据主调小区和被调小区的配置选择参考上下行配置,以保证该参考上 下行配置支持对被调小区的至少一个上行子帧的跨载波调度,例如, 被调小区的至少一个上行子帧根据参考上下行配置可以在主调小区 上找到用于发送上行调度授权信息的下行子帧、用于发送反馈信息的 下行子帧以及用于重传的上行子帧。对于不支持跨载波调度被调小区 的任何上行子帧的情况,可以通过配置 UE采用非对称 CA模式来实 现,即下行配置 CA而上行配置单小区。
根据本发明的实施例,该主调小区采用 LTE版本 8中定义的上 下行配置 2至上下行配置 5之一,该被调小区的上下行配置作为参考 上下行配置。
例如,对主调小区和被调小区的上下行配置不一样的情况,为了 支持对被调小区的基于同步 HARQ的 PUSCH传输的跨载波调度, 根据本发明的实施例可以复用 LTE版本 8中已经定义的某个上下行 配置的上行 HARQ定时来处理被调小区的 PUSCH传输,从而减少 标准化的复杂度。例如,可以利用被调小区的上下行配置作为参考上 下行配置。 另外,对于主调小区和被调小区的上下行配置的组合,可 以选择这样的参考上下行配置,使得能够对被调小区的尽可能多的上 行子帧进行跨载波调度。
可选地,作为补充或者例外,该主调小区采用 LTE版本 8中定 义的上下行配置 0、 上下行配置 1或者上下行配置 6 ,该上下行配置 1作为该参考上下行配置。
例如,与使用其它上下行配置作为参考上下行配置相比,使用上 下行配置 1 作为参考上下行配置可以使得能够实现跨载波调度的被 调小区的上行子帧最多。
根据本发明的实施例一,该主调小区采用 LTE版本 8中定义的 上下行配置 1至上下行配置 5之一,该主调小区的上下行配置作为参 考上下行配置。
例如,对每种主调小区和被调小区的配置组合,根据主调小区的 上下行配置来确定使用哪种参考上下行配置的上行 HARQ定时来处 理被调小区的 PUSCH传输。在这种情况下,当采用信令通知的方法 配置参考上下行配置,只要主调小区(对应 Pcell )不变,就不需要 新的信令来通知参考上下行配置, 因而可以降低信令开销。
可选地,作为补充或者例外,该主调小区采用 LTE版本 8中定 义的上下行配置 0或者上下行配置 6 ,LTE版本 8中定义的上下行配 置 1作为该参考上下行配置。
例如,与使用其它上下行配置作为参考上下行配置相比,使用上 下行配置 1 作为参考上下行配置可以使得能够实现跨载波调度的被 调小区的上行子帧最多。
可选地,作为补充或者例外,图 1的方法还包括:根据该参考上 下行配置的上行 HARQ的定时关系确定第二下行子帧,其中第二下 行子帧用于指示传输该 PUSCH的 PHICH信息的定时;在与第二下 行子帧对应的该主调小区的子帧为下行子帧的情况下,在与第二下行 子帧对应的该主调小区的子帧上传输该 PHICH信息,其中在 120中 , 在与第二下行子帧对应的该主调小区的子帧为下行子帧的情况下,在 与第一下行子帧对应的该主调小区的子帧上传输该上行调度授权信 例如,根据本发明的实施例一,可以设计为在被调小区的上行子 帧满足以下条件时才能用于传输 PUSCH。 如果不限制主调小区上必 须存在可用的 LTE版本 8中定义的 PHICH ,可以针对一个被调小区 的上行子帧,按照参考上下行配置的上行定时关系确定 UL— grant和 PHICH 信息的发送定时,如果在主调小区的这两个定时上都是下行 子帧,则被调小区的上行子帧可以跨载波调度。换句话说,只有当该 被调小区的上行子帧根据参考上下行配置的 HARQ的定时关系在主 调小区上找到用于发送上行调度授权信息的下行子帧和用于发送反 馈信息或 PHICH信息的下行子帧时,才可以对被调小区的这个上行 子帧进行跨载波调度。
根据本发明的实施例一,如果上述参考上下行配置的第二下行子 帧上定义了用于多个上行子帧的 PHICH ,并且与第二下行子帧对应 的主调小区的子帧上也定义了 PHICH ,则上述多个上行子帧之一使 用主调小区的子帧上定义的 PHICH ,或者上述多个上行子帧均使用 主调小区的子帧上定义的 PHICH。
例如,在被调小区采用上下行配置 0并且参考上下行配置为被调 小区的上下配置的情况下,上下行配置 0的子帧 0或 5上各定义了两 个上行子帧上的同步 HARQ过程的 PHIC 例如尸 HICH 0和 PHICH 1 ) ,如果在主调小区的子帧 0 (或 5 )上也定义了 PHICH ,则按照使 用 PHICH 0或 PHICH 1的同步 HARQ过程使用主调小区的子帧 0 (或 5 )的 PHICH;或者,对两个同步 HARQ过程都使用主调小区 的子帧 0 (或 5 )的 PHICH。
在 120中 ,在与上述第二下行子帧对应的该主调小区的子帧为下 行子帧并且定义了 PHICH的情况下,在与第一下行子帧对应的该主 调小区的子帧上传输该上行调度授权信息。 例如,如果限制主调小区上必须存在可用的 LTE版本 8中定义 的 PHICH信道,对一个被调小区的上行子帧,按照参考上下行配置 的上行定时关系确定 PHICH的发送定时,如果在主调小区的这个定 时上是一个下行子帧并且存在可用的 LTE版本 8中定义的 PHICH , 则可以对这个被调小区的上行子帧进行跨载波调度。
可选地,作为补充或者例外,图 1的方法还包括:根据该参考上 下行配置的上行 HARQ的定时关系确定第二上行子帧,第二上行子 帧用于指示重传该 PUSCH的定时;在与第二上行子帧对应的该被调 小区的子帧为上行子帧的情况下,在与第二上行子帧对应的该被调小 区的子帧上重传该 PUSCH ,其中在 120中 ,在与第二上行子帧对应 的该被调小区的子帧为上行子帧的情况下,在与第一下行子帧对应的 该主调小区的子帧上传输该上行调度授权信息。
例如对被调小区的一个上行子帧的 PUSCH,保证其同步 HARQ 重传时使用的子帧定时上也是一个上行子帧,从而保证同步 HARQ 的性能。否则,如果在一个或者多个重传位置上是下行子帧,则在这 样的主调小区和被调小区的配置组合的情况下,需要等待更多的时间 才能再次对 PUSCH进行重传。如果这个等待时间过长,超过业务容 忍范围 ,实际上相当于不能使用 HARQ技术来增强传输性能,造成 对链路可靠性的影响。
根据本发明的实施例一 , 可以对于每一种主调小区的上下行配 置,采用一种统一的方法来处理被调小区的 PUSCH传输。换句话说, 按照主调小区的上行 HARQ定时来处理被调小区的 PUSCH传输; 或者 , 按照被调小区自己的上行 HARQ 定时来处理被调小区的 PUSCH传输;或者,按照某个固定的参考上下行配置的上行 HARQ 定时来处理被调小区的 PUSCH传输。
下面结合具体例子,更加详细地描述本发明的实施例。
实施例二
图 2 是根据本发明的实施例二的基于跨载波调度的数据传输过 程的示意性流程图。实施例二是对实施例一的方法中一个或多个步骤 的细化。 本发明的实施例二可以根据具体需要针对不同的主调小区和被 调小区上下行配置的组合,选择合适的参考上下行配置,例如,可以 选择使得能够实现跨载波调度的被调小区的上行子帧最多的上下行 配置作为参考上下行配置。
在本实施例中 ,考虑了限制在对被调小区的 PUSCH 进行同步 HARQ传输时一定存在可用的在 LTE版本 8中定义的 PHICH信道。 因为 LTE的帧结构就是以 10ms为周期的,所以可以要求被调小区 的 PUSCH只支持 10ms的重传周期,从而保证在 PUSCH重传位置 一定存在上行子帧。
对每种主调小区和被调小区的上下行配置组合,都需要指定参考 上下行配置。如果是采用信令通知的方法配置参考上下行配置,则信 令开销较大,因为在每次给采用 CA模式的 UE增加一个新的被调小 区时,都需要指定所采用的参考上下行配置。为了降低复杂度和信令 开销,根据本发明的实施例可以对每种主调小区和被调小区的配置组 合,只根据主调小区的上下行配置来确定使用哪种参考上下行配置的 上行 HARQ定时来处理被调小区的 PUSCH传输,而与被调小区采 用的上下行配置无关。如果是采用信令通知的方法配置参考上下行配 置,只要主调小区(对应 Pcell )不变,就不需要新的信令来通知参 考上下行配置。 或者说,配置参考上下行配置的信令是和配置 Pcell 的信令一起发送的。如果不使用信令通知的方法,则可以按照下面的 方法确定每种主调小区的上下行配置对应的参考上下行配置。
例如, 当主调小区采用了上下行配置 1 ~5 中的某个配置时,以 主调小区的上下行配置为参考上下行配置,即根据主调小区的上行 HARQ定时来支持对被调小区的上行子帧的跨载波调度。 具体地说, 对在主调小区和被调小区上都是上行子帧的那些子帧定时,对被调小 区的上行子帧,按照主调小区的上行 HARQ定时来发送 UL— grant和 PHICH 信息;而对在被调小区上是上行子帧,而在相同子帧定时上 主调小区是下行子帧的情况,不支持对这样的被调小区上的上行子帧 的跨载波调度。
例如,当主调小区采用了上下行配置 0或者 6时,固定采用上下 行配置 1作为参考上下行配置,即根据上下行配置 1 的上行 HARQ 定时来传输被调小区的上行子帧的跨载波调度。由于上下行配置 0或 者 6的所有子帧上都存在版本 8中定义的 PHICH ,所以一定不存在 找不到可用 PHICH的问题。具体地说,对一个被调小区的上行子帧, 按照上下行配置 1 的上行定时关系确定 UL— grant和 PHICH信息的 发送定时,如果在主调小区的这两个定时上都是下行子帧,则这个被 调小区的上行子帧可以跨载波调度;否则,不支持跨载波调度。
210,判断主调小区上是否存在与第一下行子帧对应的下行子帧。 例如,根据参考上下行配置的上行 HARQ定时关系确定用于指 示被调小区的第一上行子帧的上行调度授权信息的定时的第一下行 子帧,并确定与第一下行子帧对应的主调小区的子帧是否为下行子 帧,如果是,执行 220 ,否则,不支持对第一上行子帧的跨载波调度。 这里,第一上行子帧指被调小区的一个上行子帧。
220,判断主调小区上是否存在与第二下行子帧对应的下行子帧。 例如,根据该参考上下行配置的上行 HARQ的定时关系确定用 于指示被调小区的第一上行子帧的 PHICH的定时的第二下行子帧, 并且确定与第二下行子帧对应的主调小区的子帧是否为下行子帧。如 果是,执行 230 ,否则,不支持对第一上行子帧的跨载波调度。
230 ,判断主调小区的与第二下行子帧对应的子帧是否定义了 PHICH。
例如 , 如果主调小区的与第二下行子帧对应的子帧上定义了 PHICH ,则执行 240 ,否则,不支持对第一上行子帧的跨载波调度。
240 ,判断在被调小区上是否存在与第二上行子帧对应的上行子 帧。 如果是,则对第一上行子帧进行跨载波调度,否则,不支持对第 一上行子帧的跨载波调度。
上面描述了在满足 210至 240的条件下,可以对被调小区的第 一上行子帧进行跨载波调度。 可选地,也可以根据需要在只满足 210 或者只满足 210和 220或者只满足 210、 220和 230的条件下,对 被调小区的第一上行子帧进行跨载波调度。
基站和 UE均可以进行上述 210至 240的判断,以确定可以对 哪些上行子帧进行跨载波调度。 下面 250至 280描述对被调小区的 第一上行子帧进行跨载波调度的过程。
250 ,在确定可以对被调小区的第一上行子帧进行跨载波调度的 情况下,基站在与第一下行子帧对应主调小区的下行子帧上发送上行 调度授权信息。
260 , UE 与第一下行子帧对应主调小区的下行子帧上接收到上 行调度授权信息后,进行解调处理,并在被调小区的第一上行子帧上 发送 PUSCH。
270 ,基站在被调小区的第一上行子帧上收到 PUSCH后,进行 解调处理,并在与第二下行子帧对应的主调小区的下行子帧上向 UE 发送 PHICH信息。
280 , UE 在与第二下行子帧对应的主调小区的下行子帧上接收 到 PHICH信息之后,进行解调处理,并在与第二上行子帧对应的被 调小区的上行子帧上向基站重传上一个 PUSCH 或发送新的 PUSCH。
例如,在与根据参考上下行配置的上行 HARQ定时关系确定的 上行子帧对应的被调小区的子帧为上行子帧的情况下,如果 PHICH 发送的信息为 ACK ,则 UE 可以在该上行子帧上向基站发送新的 PUSCH ,如果 PHICH发送的信息为 NACK ,则 UE可以该上行子帧 上向基站重传上一个 PUSCH。
实施例三
图 3 是根据本发明的实施例三的基于跨载波调度的数据传输过 程的示意性流程图。实施例三是对实施例一的方法中一个或多个步骤 的细化。
在本实施例三中 , 不限制在对被调小区的 PUSCH 进行同步 HARQ传输时一定存在可用的在 LTE版本 8中定义的 PHICH,从而 可以支持对更多的被调小区的上行子帧的跨载波调度。对上下行配置 0和 6,其同步 HARQ传输不是 10ms周期的,这样只有在配置 0和 6的所有上行子帧都能够被跨载波调度时才考虑可以按照他们自己的 上行定时来工作,从而保证在上述第二上行子帧定时上被调小区是一 个上行子帧。
当主调小区采用了上下行配置 2~5 中的某个配置时,以被调小 区的上下行配置为参考上下行配置,即根据被调小区自己的上行 HARQ定时来支持对被调小区的上行子帧的跨载波调度。 具体地说, 对被调小区采用配置 1~5 的情况,对一个被调小区的上行子帧,按 照它自己的上行定时关系确定 UL— grant和 PHICH信息的发送定时, 如果在主调小区的这个定时上是一个下行子帧,则这个被调小区的上 行子帧可以跨载波调度;否则,不支持跨载波调度。 因为配置 1 ~5 是 10ms周期,按照他们自己的上行 HARQ定时处理同步 HARQ重 传时,在重传定时上一定存在可用的上行子帧。对被调小区采用配置 0或者 6的情况,他们的下行子帧都是主调小区的下行子帧的子集, 所以按照被调小区的上行 HARQ定时一定可以在主调小区上存在下 行子帧发送 UL— grant和 PHICH信息,即所有被调小区的上行子帧都 可以被跨载波调度,这保证按照他们自己的上行 HARQ定时处理同 步 HARQ重传时,在重传定时上一定存在可用的上行子帧。
特别地,在 LTE版本 8 , LTE版本 9及 LTE版本 10中 ,对被 调小区采用上下行配置 0的情况,UL— grant中需要设置 UL— index域。 对被调小区采用其他上下行配置的情况,在 UL— grant中设置 UL— DAI 域。在 LTE版本 8 , LTE版本 9及 LTE版本 10中 ,在上下行配置 0 的子帧 0或者 5上分别存在两个 PHIC 例如尸 HICH 0尸 HICH 1 ) , 并且用于不同的同步 HARQ过程。这样,在采用不同配比的情况下, 对被调小区采用上下行配置 0时,如果在主调小区的子帧 0或者 5 上存在 PHICH,可以把主调小区的子帧 0或者 5上存在 PHICH作为 PHICH 0 ,即可以只对按照 LTE版本 8使用 PHICH 0的那个同步 HARQ过程使用子帧 0或者 5上存在的 PHICH;或者,也可以对两 个同步 HARQ过程都使用子帧 0或者 5上存在的 PHICH。
当主调小区采用了上下行配置 0、 1或者 6时,固定采用上下行 配置 1作为参考上下行配置,即根据上下行配置 1的上行 HARQ定 时来传输被调小区的上行子帧的跨载波调度。具体地说,对一个被调 小区的上行子帧,按照上下行配置 1 的上行定时关系确定 UL— grant 和 PHICH信息的发送定时,如果在主调小区的这个定时上是一个下 行子帧,则这个被调小区的上行子帧可以跨载波调度;否则,不支持 跨载波调度。 因为上下行配置 1是 10ms周期,所以按照上下行配置 1 来处理处理同步 HARQ重传时,保证了在重传定时上一定存在可 用的上行子帧。
对不存在 LTE版本 8中定义的 PHICH的情况,可以采用下面的 方法来支持同步 HARQ传输。 可以是在主调小区的这些子帧上增加 按照 LTE版本 8中定义的方法来分配的 PHICH ,但是这个方法会导 致后续兼容问题,即 LTE版本 8 , LTE版本 9及 LTE版本 10的 UE 都不知道这个子帧存在按照 LTE 版本 8 中定义的方法新分配的 PHICH ,造成 PDCCH 接收错误。 或者, 可以用其他方法来分配 PHICH ,例如,在数据信道所在的时频资源上分配新的 PHICH ,例 如,增强 PHICH ( ePHICH )信道, 因为新 PHICH是在数据信道资 源内发射的,所以对 LTE版本 8、 LTE版本 9、 LTE版本 10的 UE 检测 PDCCH 没有影响,满足后续兼容。 或者,对这些子帧不分配 PHICH , 实际上 , 虽然不存在 PHICH ,但是基站仍然可以使用 UL— grant来触发同步 HARQ重传,但是信令开销较大。
310,判断主调小区上是否存在与第一下行子帧对应的下行子帧。 例如,根据参考上下行配置的上行 HARQ定时关系确定用于指 示被调小区的第一上行子帧的上行调度授权信息的定时的第一下行 子帧,并确定与第一下行子帧对应的主调小区的子帧是否为下行子 帧,如果是,执行 320 ,否则,不支持对第一上行子帧的跨载波调度。 这里,第一上行子帧指被调小区的任一上行子帧。
320,判断主调小区上是否存在与第二下行子帧对应的下行子帧。 例如,根据该参考上下行配置的上行 HARQ的定时关系确定用 于指示被调小区的第一上行子帧的 PHICH的定时的第二下行子帧, 并且确定与第二下行子帧对应的主调小区的子帧是否为下行子帧。如 果是,执行 340 ,否则,不支持对第一上行子帧的跨载波调度。
340 ,判断在被调小区上是否存在与第二上行子帧对应的上行子 帧。 如果是,则对第一上行子帧进行跨载波调度,否则,不支持对第 一上行子帧的跨载波调度。
上面描述了在满足 310至 340的条件下,可以对被调小区的第 一上行子帧进行跨载波调度。 可选地,也可以根据需要在只满足 310 或者只满足 310和 320的条件下,对被调小区的第一上行子帧进行 跨载波调度。
基站和 UE均可以进行上述 310至 340的判断,以确定可以对 哪些上行子帧进行跨载波调度。 下面 350至 380描述对被调小区的 第一上行子帧进行跨载波调度的过程。
350 ,在确定可以对被调小区的第一上行子帧进行跨载波调度的 情况下,基站在与第一下行子帧对应主调小区的下行子帧上发送上行 调度授权信息。
360 , UE 与第一下行子帧对应主调小区的下行子帧上接收到上 行调度授权信息后,进行解调处理,并在被调小区的第一上行子帧上 发送 PUSCH。
370 ,基站在被调小区的第一上行子帧上收到 PUSCH后,进行 解调处理,并在与第二下行子帧对应的主调小区的下行子帧上向 UE 发送 PHICH信息。
380 , UE 在与第二下行子帧对应的主调小区的下行子帧上接收 到 PHICH信息之后,进行解调处理,并在与第二上行子帧对应的被 调小区的上行子帧上向基站重传上一个 PUSCH 或发送新的 PUSCH。
上面描述了根据本发明实施例的基于跨载波调度的数据传输方 法,下面分别结合图 4和图 5描述根据本发明实施例的基站和用户设 备和***,以及相应的可存储介质和计算机程序产品。
实施例四
图 4是根据本发明的实施例四的基站的结构性示意图。图 4的基 站 400包括:处理器 410、 发送器 420和接收器 430。 图 4的实施 例是对图 1的实施例的方法中一个或多个步骤的细化。
处理器 410被配置为根据参考上下行配置的上行混合自动重传 请求 HARQ的定时关系确定第一下行子帧,其中第一下行子帧用于 指示发送被调小区的第一上行子帧的上行调度授权信息的定时。 发送器 420被配置为在与第一下行子帧对应的主调小区的子帧 为下行子帧的情况下,在与第一下行子帧对应的该主调小区的子帧上 发送该上行调度授权信息,其中该主调小区和该被调小区的上下行配 置不同。
接收器 430被配置为接收用户设备在第一上行子帧上发送的上 行数据。
根据本发明的实施例,该参考上下行配置允许根据该参考上下行 配置的上行 HARQ的定时关系对该被调小区的至少一个上行子帧进 行跨载波调度。
根据本发明的实施例四,该参考上下行配置在根据该上行 HARQ 的定时关系确定的用于发送该至少一个上行子帧的上行调度授权信 息的下行子帧对应的该主调小区的子帧为下行子帧、 根据该上行 HARQ定时关系确定的用于发送物理混合重传指示信道 PHICH信息 的下行子帧对应的该主调小区的子帧为下行子帧并且根据该上行 HARQ 定时关系确定的用于重传该至少一个上行子帧的上行数据的 下行子帧对应的该被调小区的子帧为上行子帧的情况下,允许对该被 调小区的至少一个上行子帧进行跨载波调度。
根据本发明的实施例四,该主调小区采用 LTE版本 8中定义的 上下行配置 2至上下行配置 5之一,该被调小区的上下行配置作为该 参考上下行配置;或者,该主调小区采用 LTE版本 8中定义的上下 行配置 0、 上下行配置 1或者上下行配置 6 ,该上下行配置 1作为该 参考上下行配置。
根据本发明的实施例四,该主调小区采用 LTE版本 8中定义的 上下行配置 1至上下行配置 5之一,该主调小区的上下行配置作为参 考上下行配置;或者,该主调小区采用 LTE版本 8中定义的上下行 配置 0或者上下行配置 6 ,LTE版本 8中定义的上下行配置 1作为该 参考上下行配置。
可选地,作为补充或者例外,处理器 410还被配置为根据该参考 上下行配置的上行 HARQ的定时关系确定第二下行子帧,其中第二 下行子帧用于指示发送上行数据的 PHICH信息的定时,并且发送器 420 还被配置为在与第二下行子帧对应的该主调小区的子帧为下行 子帧的情况下,在与第二下行子帧对应的该主调小区的子帧上发送该 PHICH信息,其中发送器 420还被配置为在与第二下行子帧对应的 该主调小区的子帧为下行子帧的情况下,在与第一下行子帧对应的该 主调小区的子帧上发送该上行调度授权信息。
根据本发明的实施例,如果该参考上下行配置的第二下行子帧上 定义了用于多个上行子帧的 PHICH ,并且与第二下行子帧对应的该 主调小区的子帧上也定义了 PHICH ,则上述多个上行子帧之一使用 该主调小区的子帧上定义的 PHICH ,或者上述多个上行子帧均使用 该主调小区的子帧上定义的 PHICH。
根据本发明的实施例 送器 420还被配置为在与第二下行子帧 对应的该主调小区的子帧为下行子帧并且定义了 PHICH的情况下, 在与第一下行子帧对应的该主调小区的子帧上发送该上行调度授权
4曰碧、 o
可选地,作为补充或者例外,处理器 410还被配置为根据该参考 上下行配置的上行 HARQ的定时关系确定第二上行子帧,其中第二 上行子帧用于指示重传该上行数据的定时,接收器 430还被配置为在 与第二上行子帧对应的该被调小区的子帧为上行子帧的情况下,在与 第二上行子帧对应的该被调小区的子帧上接收该用户设备重传的该 上行数据,其中发送器 420还被配置为在与第二上行子帧对应的该被 调小区的子帧为上行子帧的情况下,在与第一下行子帧对应的该主调 小区的子帧上发送该上行调度授权信息。
根据本发明的实施例,该参考上下行配置被预先配置,并且发送 器 420还被配置为将该参考上下行配置通知用户设备。例如,通过高 层信令通知用户设备。
需要说明的是:处理器 410 ,发送器 420和接收器 430彼此之 间相互耦合。
基站 400 的各个硬件或硬件与相应软件的配合所执行的操作可 以参考实施例一至实施例三的相应方法,例如,上述实施例一的方法 的 110、 120和 130。 为了避免重复,在此不再赘述。
此外,还提供一种计算可读媒体(或介质),包括在被执行时进 行以下操作的计算机可读指令:执行上述实施例一的方法的 110、120 和 130的操作。
另外,还提供一种计算机程序产品,包括上述计算机可读介质。 实施例五
图 5是根据本发明的实施例五的用户设备 500的结构性示意图。 图 5的用户设备 500包括:处理器 510、 接收器 520和发送器 530。
处理器 510被配置为根据参考上下行配置的上行混合自动重传 请求 HARQ的定时关系确定第一下行子帧,其中第一下行子帧用于 指示发送被调小区的第一上行子帧的上行调度授权信息的定时。接收 器 520 被配置为在与第一下行子帧对应的主调小区的子帧为下行子 帧的情况下,在与第一下行子帧对应的该主调小区的子帧上接收该上 行调度授权信息,其中该主调小区和该被调小区的上下行配置不同。 发送器 530 被配置为根据该上行调度授权信息在第一上行子帧上发 送上行数据
根据本发明的实施例五,该参考上下行配置允许根据该参考上下 行配置的上行 HARQ的定时关系对该被调小区的至少一个上行子帧 进行跨载波调度。
该参考上下行配置在根据该上行 HARQ的定时关系确定的用于 发送该至少一个上行子帧的上行调度授权信息的下行子帧对应的该 主调小区的子帧为下行子帧、 根据该上行 HARQ定时关系确定的用 于发送物理混合重传指示信道 PHICH信息的下行子帧对应的该主调 小区的子帧为下行子帧并且根据该上行 HARQ定时关系确定的用于 重传该至少一个上行子帧的上行数据的下行子帧对应的该被调小区 的子帧为上行子帧的情况下,允许对该被调小区的至少一个上行子帧 进行跨载波调度。
根据本发明的实施例五,该主调小区采用 LTE版本 8中定义的 上下行配置 2至上下行配置 5之一,该被调小区的上下行配置作为该 参考上下行配置;或者,该主调小区采用 LTE版本 8中定义的上下 行配置 0、 上下行配置 1或者上下行配置 6 ,该上下行配置 1作为该 参考上下行配置。
根据本发明的实施例五,该主调小区采用 LTE版本 8中定义的 上下行配置 1至上下行配置 5之一,该主调小区的上下行配置作为参 考上下行配置;或者,该主调小区采用 LTE版本 8中定义的上下行 配置 0或者上下行配置 6 ,LTE版本 8中定义的上下行配置 1作为该 参考上下行配置。
可选地,作为补充或者例外,处理器 510还被配置为根据该参考 上下行配置的上行 HARQ的定时关系确定第二下行子帧,其中第二 下行子帧用于指示接收该上行数据的 PHICH信息的定时,并且接收 器 520 还被配置为还在与第二下行子帧对应的该主调小区的子帧为 下行子帧的情况下,在与第二下行子帧对应的该主调小区的子帧上接 收该 PHICH信息,其中接收器 520还被配置为在与第二下行子帧对 应的该主调小区的子帧为下行子帧的情况下,在与第一下行子帧对应 的该主调小区的子帧上接收该上行调度授权信息。
根据本发明的实施例五,如果该参考上下行配置的第二下行子帧 上定义了用于多个上行子帧的 PHICH ,并且与第二下行子帧对应的 该主调小区的子帧上也定义了 PHICH ,则上述多个上行子帧之一使 用该主调小区的子帧上定义的 PHICH ,或者上述多个上行子帧均使 用该主调小区的子帧上定义的 PHICH。
根据本发明的实施例,接收器 520还被配置为在与第二下行子帧 对应的该主调小区的子帧为下行子帧并且定义了 PHICH的情况下, 在与第一下行子帧对应的该主调小区的子帧上接收该上行调度授权
4曰碧、 o
可选地,作为补充或者例外,处理器 510还被配置为根据该参考 上下行配置的上行 HARQ的定时关系确定第二上行子帧,其中第二 上行子帧用于指示重传该上行数据的定时 送器 530还被配置为在 与第二上行子帧对应的该被调小区的子帧为上行子帧的情况下,在与 第二上行子帧对应的该被调小区的子帧上重传该上行数据,其中接收 器 520 还被配置为在与第二上行子帧对应的该被调小区的子帧为上 行子帧的情况下,在与第一下行子帧对应的该主调小区的子帧上接收 该上行调度授权信息。
根据本发明的实施例,接收器 520从基站接收该参考上下行配 置,或者,该参考上下行配置被预先配置。
需要说明的是:处理器 510 ,接收器 520和发送器 530彼此之 间相互耦合。
用户设备 500 的各个硬件或硬件与相应软件的配合所执行的操 作可以参考实施例一至实施例三的相应方法,例如,上述实施例一中 的方法的 1 10、 120和 130。 为了避免重复,在此不再赘述。
此外,还提供一种计算可读媒体(或介质),包括在被执行时进 行以下操作的计算机可读指令:执行上述实施例一中的方法的 1 10、 120和 130的操作。
另外,还提供一种计算机程序产品,包括上述计算机可读介质。 根据本发明的实施例提供一种通信***包括图 4 的实施例中的 基站 400和图 5的实施例中的用户设备 500。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描 述的各示例的器件及算法步骤,能够以电子硬件、或者计算机软件和 电子硬件的结合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不 应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 上述描述的***、装置和器件的具体工作过程,可以参考前述方法实 施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中 ,应该理解到,所掲露的***、 装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实 施例仅仅是示意性的,例如,所述器件的划分,仅仅为一种逻辑功能 划分,实际实现时可以有另外的划分方式,例如多个器件或组件可以 结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。 另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以 是通过一些接口 ,装置或器件的间接耦合或通信连接,可以是电性, 机械或其它的形式。
所述作为分离部件说明的器件可以是或者也可以不是物理上分 开的,作为器件显示的部件可以是或者也可以不是物理器件,即可以 位于一个地方,或者也可以分布到多个网络器件上。 可以根据实际的 需要选择其中的部分或者全部器件来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能器件可以集成在一个处理 器件中 ,也可以是各个器件单独物理存在,也可以两个或两个以上器 件集成在一个器件中。
所述功能如果以软件功能器件的形式实现并作为独立的产品销 售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的 理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或 者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件 产品存储在一个存储介质中 ,包括若干指令用以使得一台计算机设备
(可以是个人计算机,服务器,或者网络设备等 丸行本发明各个实 施例所述方法的全部或部分步骤。 而前述的存储介质包括: u盘、 移 动硬盘、 只读存储器( ROM , Read-Only Memory 随机存取存储 器( RAM , Random Access Memory 磁碟或者光盘等各种可以存 储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并 不局限于此,任何熟悉本技术领域的技术人员在本发明掲露的技术范 围内 ,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。 因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种基于跨载波调度的数据传输方法,其特征在于,包括: 根据参考上下行配置的上行混合自动重传请求 HARQ的定时关 系确定第一下行子帧,其中所述第一下行子帧用于指示发送被调小区 的第一上行子帧的上行调度授权信息的定时; 在与所述第一下行子帧对应的主调小区的子帧为下行子帧的情 况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输所述 上行调度授权信息,其中所述主调小区和所述被调小区的上下行配置 不同;
在所述第一上行子帧上传输上行数据。
2、 根据权利要求 1所述的方法,其特征在于,所述参考上下行 配置允许根据所述参考上下行配置的上行 HARQ的定时关系对所述 被调小区的至少一个上行子帧进行跨载波调度。
3、 根据权利要求 2所述的方法,其特征在于,所述参考上下行 配置允许根据所述参考上下行配置的上行 HARQ的定时关系对所述 被调小区的至少一个上行子帧进行跨载波调度,包括:
所述参考上下行配置在根据所述上行 HARQ的定时关系确定的 用于发送所述至少一个上行子帧的上行调度授权信息的下行子帧对 应的所述主调小区的子帧为下行子帧、 根据所述上行 HARQ定时关 系确定的用于发送物理混合重传指示信道 PHICH信息的下行子帧对 应的所述主调小区的子帧为下行子帧,并且根据所述上行 HARQ定 时关系确定的用于重传所述至少一个上行子帧的上行数据的上行子 帧对应的所述被调小区的子帧为上行子帧的情况下,允许对所述被调 小区的至少一个上行子帧进行跨载波调度。
4、 根据权利要求 1至 3任一项所述的方法,其特征在于,所述 主调小区采用长期演进 LTE版本 8中定义的上下行配置 2至上下行 配置 5之一,所述被调小区的上下行配置作为所述参考上下行配置; 或者,
所述主调小区采用 LTE版本 8中定义的上下行配置 0、 上下行 配置 1或者上下行配置 6 ,所述 LTE版本 8中定义的上下行配置 1 作为所述参考上下行配置。
5、 根据权利要求 1至 3任一项所述的方法,其特征在于,其特 征在于,所述主调小区采用 LTE版本 8中定义的上下行配置 1至上 下行配置 5之一,所述主调小区的上下行配置作为参考上下行配置。 或者,
所述主调小区采用 LTE版本 8中定义的上下行配置 0或者上下 行配置 6 ,LTE版本 8中定义的上下行配置 1作为所述参考上下行配 置。
6、 根据权利要求 1至 5任一项所述的方法,其特征在于,还包 括: 根据所述参考上下行配置的上行 HARQ的定时关系确定第二下 行子帧,其中所述第二下行子帧用于指示传输所述上行数据的物理混 合重传指示信道 PHICH信息的定时; 在与所述第二下行子帧对应的所述主调小区的子帧为下行子帧 的情况下,在与所述第二下行子帧对应的所述主调小区的子帧上传输 所述 PHICH信息, 其中所述在与所述第一下行子帧对应的所述主调小区的子帧上 传输所述上行调度授权信息,包括: 在与所述第二下行子帧对应的所述主调小区的子帧为下行子帧 的情况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输 所述上行调度授权信息。
1、 根据权利要求 6所述的方法,其特征在于,如果所述参考上 下行配置的第二下行子帧上定义了用于多个上行子帧的 PHICH ,并 且与所述第二下行子帧对应的所述主调小区的子帧上也定义了 PHICH,则所述多个上行子帧之一使用所述主调小区的子帧上定义的 PHICH,或者所述多个上行子帧均使用所述主调小区的子帧上定义的 PHICH。
8、 根据权利要求 6中的所述的方法,其特征在于,所述在与所 述第一下行子帧对应的所述主调小区的子帧上传输所述上行调度授 权信息,包括:在与所述第二下行子帧对应的所述主调小区的子帧为 下行子帧并且定义了 PHICH的情况下,在与所述第一下行子帧对应 的所述主调小区的子帧上传输所述上行调度授权信息。
9、 根据权利要求 1至 8中的任一项所述的方法,其特征在于, 还包括: 根据所述参考上下行配置的上行 HARQ的定时关系,确定第二 上行子帧,所述第二上行子帧用于指示重传所述上行数据的定时; 在与所述第二上行子帧对应的所述被调小区的子帧为上行子帧 的情况下,在与所述第二上行子帧对应的所述被调小区的子帧上重传 所述上行数据, 其中所述在与所述第一下行子帧对应的所述主调小区的子帧上 传输所述上行调度授权信息,包括: 在与所述第二上行子帧对应的所述被调小区的子帧为上行子帧 的情况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输 所述上行调度授权信息。
10、 根据权利要求 1至 9中的任一项所述的方法,其特征在于, 所述参考上下行配置通过高层信令通知,或者,所述参考上下行配置 被预先配置。
11、 一种基站,其特征在于,包括: 处理器,被配置为根据参考上下行配置的上行混合自动重传请求 HARQ的定时关系确定第一下行子帧,其中所述第一下行子帧用于指 示发送被调小区的第一上行子帧的上行调度授权信息的定时; 发送器,被配置为在与所述第一下行子帧对应的主调小区的子帧 为下行子帧的情况下,在与所述第一下行子帧对应的所述主调小区的 子帧上发送所述上行调度授权信息,其中所述主调小区和所述被调小 区的上下行配置不同; 接收器,被配置为接收用户设备在所述第一上行子帧上发送的所 述上行数据。
12、 根据权利要求 1 1所述的基站,其特征在于,所述参考上下 行配置允许根据所述参考上下行配置的上行 HARQ的定时关系对所 述被调小区的至少一个上行子帧进行跨载波调度。
13、 根据权利要求 12所述的基站,其特征在于,所述参考上下 行配置在根据所述上行 HARQ的定时关系确定的用于发送所述至少 一个上行子帧的上行调度授权信息的下行子帧对应的所述主调小区 的子帧为下行子帧、 根据所述上行 HARQ定时关系确定的用于发送 物理混合重传指示信道 PHICH信息的下行子帧对应的所述主调小区 的子帧为下行子帧并且根据所述上行 HARQ定时关系确定的用于重 传所述至少一个上行子帧的上行数据的下行子帧对应的所述被调小 区的子帧为上行子帧的情况下,允许对所述被调小区的至少一个上行 子帧进行跨载波调度。
14、 根据权利要求 1 1所述的基站,其特征在于,所述处理器还 被配置为根据所述参考上下行配置的上行 HARQ的定时关系确定第 二下行子帧,其中所述第二下行子帧用于指示发送所述上行数据的物 理混合重传指示信道 PHICH信息的定时,并且所述发送器还被配置 为在所述第二下行子帧对应的所述主调小区的子帧为下行子帧的情 况下,在与所述第二下行子帧对应的所述主调小区的子帧上发送所述
PHICH 信息,其中所述发送器还被配置为在所述第二下行子帧对应 的所述主调小区的子帧为下行子帧的情况下,在与所述第一下行子帧 对应的所述主调小区的子帧上发送所述上行调度授权信息。
15、 根据权利要求 14中的所述的基站,其特征在于,所述发送 器还被配置为在与所述第二下行子帧对应的所述主调小区的子帧为 下行子帧并且定义了 PHICH的情况下,在与所述第一下行子帧对应 的所述主调小区的子帧上发送所述上行调度授权信息。
16、 根据权利要求 1 1 至 15中的任一项所述的基站,其特征在 于,所述处理器还被配置为根据所述参考上下行配置的上行 HARQ 的定时关系确定第二上行子帧,其中所述第二上行子帧用于指示重传 所述上行数据的定时,所述接收器还被配置为在与所述第二上行子帧 对应的所述被调小区的子帧为上行子帧的情况下,在与所述第二上行 子帧对应的所述被调小区的子帧上接收所述用户设备重传的所述上 行数据,其中所述发送器还被配置为在与所述第二上行子帧对应的所 述被调小区的子帧为上行子帧的情况下,在与所述第一下行子帧对应 的所述主调小区的子帧上发送所述上行调度授权信息。
17、 根据权利要求 1 1 至 15中的任一项所述的基站,其特征在 于,所述参考上下行配置被预先配置,所述发送器还被配置为将所述 参考上下行配置通知用户设备。
18、 根据权利要求 1 1 至 13中的任一项所述的基站,其特征在 于, 所述主调小区采用长期演进 LTE版本 8中定义的上下行配置 2 至上下行配置 5之一,所述被调小区的上下行配置作为所述参考上下 行配置; 或者,
所述主调小区采用 LTE版本 8中定义的上下行配置 0、 上下行 配置 1或者上下行配置 6 ,所述 LTE版本 8中定义的上下行配置 1 作为所述参考上下行配置。
19、 一种用户设备,其特征在于,包括: 处理器,被配置为根据参考上下行配置的上行混合自动重传请求 HARQ的定时关系确定第一下行子帧,其中所述第一下行子帧用于指 示发送被调小区的第一上行子帧的上行调度授权信息的定时; 接收器,被配置为在与所述第一下行子帧对应的主调小区的子帧 为下行子帧的情况下,在与所述第一下行子帧对应的所述主调小区的 子帧上接收所述上行调度授权信息,其中所述主调小区和所述被调小 区的上下行配置不同; 发送器,被配置为根据所述上行调度授权信息在所述第一上行子 帧上发送上行数据。
20、 根据权利要求 19所述的用户设备,其特征在于,所述参考 上下行配置允许根据所述参考上下行配置的上行 HARQ的定时关系 对所述被调小区的至少一个上行子帧进行跨载波调度。
21、 根据权利要求 20所述的用户设备,其特征在于,所述参考 上下行配置在根据所述上行 HARQ的定时关系确定的用于发送所述 至少一个上行子帧的上行调度授权信息的下行子帧对应的所述主调 小区的子帧为下行子帧、 根据所述上行 HARQ定时关系确定的用于 发送物理混合重传指示信道 PHICH信息的下行子帧对应的所述主调 小区的子帧为下行子帧并且根据所述上行 HARQ定时关系确定的用 于重传所述至少一个上行子帧的上行数据的下行子帧对应的所述被 调小区的子帧为上行子帧的情况下,允许对所述被调小区的至少一个 上行子帧进行跨载波调度。
22、 根据权利要求 19所述的用户设备,其特征在于,所述处理 器还被配置为根据所述参考上下行配置的上行 HARQ的定时关系确 定第二下行子帧,其中所述第二下行子帧用于指示接收所述上行数据 的物理混合重传指示信道 PHICH信息的定时,并且所述接收器还被 配置为在所述第二下行子帧对应的所述主调小区的子帧为下行子帧 的情况下,在与所述第二下行子帧对应的所述主调小区的子帧上接收 所述 PHICH信息,其中所述接收器还被配置为在所述第二下行子帧 对应的所述主调小区的子帧为下行子帧的情况下,在与所述第一下行 子帧对应的所述主调小区的子帧上接收所述上行调度授权信息。
23、 根据权利要求 22所述的用户设备,其特征在于,所述接收 器还被配置为在与所述第二下行子帧对应的所述主调小区的子帧为 下行子帧并且定义了 PHICH的情况下,在与所述第一下行子帧对应 的所述主调小区的子帧上接收所述上行调度授权信息。
24、 根据权利要求 19至 23所述的用户设备,其特征在于,所 述处理器还被配置为根据所述参考上下行配置的上行 HARQ的定时 关系确定第二上行子帧,其中所述第二上行子帧用于指示重传所述上 行数据的定时,所述发送器还被配置为在与所述第二上行子帧对应的 所述被调小区的子帧为上行子帧的情况下,在与所述第二上行子帧对 应的所述被调小区的子帧上重传所述上行数据,其中所述接收器还被 配置为在与所述第二上行子帧对应的所述被调小区的子帧为上行子 帧的情况下,在与所述第一下行子帧对应的所述主调小区的子帧上接 收所述上行调度授权信息。
25、 根据权利要求 19至 23中的任一项所述的用户设备,其特 征在于,所述接收器还被配置为从基站接收所述参考上下行配置,或 者,所述参考上下行配置被预先配置。
26、 根据权利要求 19至 21 中的任一项所述的用户设备,其特 征在于,
所述主调小区采用长期演进 LTE版本 8中定义的上下行配置 2 至上下行配置 5之一,所述被调小区的上下行配置作为所述参考上下 行配置;
或者,
所述主调小区采用 LTE版本 8中定义的上下行配置 0、 上下行 配置 1或者上下行配置 6 ,所述 LTE版本 8中定义的上下行配置 1 作为所述参考上下行配置。
27、 一种通信***,其特征在于,包括: 如权利要求 1 1至 18中的任一项所述的基站; 如权利要求 19至 26中的任一项所述的用户设备。
28、 一种可读介质,其特征在于,包括:在被执行时进行以下操 作的计算机可读指令: 根据参考上下行配置的上行混合自动重传请求 HARQ的定时关 系确定第一下行子帧,其中所述第一下行子帧用于指示发送被调小区 的第一上行子帧的上行调度授权信息的定时; 在与所述第一下行子帧对应的主调小区的子帧为下行子帧的情 况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输所述 上行调度授权信息,其中所述主调小区和所述被调小区的上下行配置 不同; 在所述第一上行子帧上传输上行数据。
29、 根据权利要求 28所述的可读介质,其特征在于,所述参考 上下行配置允许根据所述参考上下行配置的上行 HARQ的定时关系 对所述被调小区的至少一个上行子帧进行跨载波调度。
30、 根据权利要求 29所述的可读介质,其特征在于, 所述参考上下行配置允许根据所述参考上下行配置的上行 HARQ 的定时关系对所述被调小区的至少一个上行子帧进行跨载波 调度,包括: 所述参考上下行配置在根据所述上行 HARQ的定时关系确定的 用于发送所述至少一个上行子帧的上行调度授权信息的下行子帧对 应的所述主调小区的子帧为下行子帧、 根据所述上行 HARQ定时关 系确定的用于发送物理混合重传指示信道 PHICH信息的下行子帧对 应的所述主调小区的子帧为下行子帧,并且根据所述上行 HARQ定 时关系确定的用于重传所述至少一个上行子帧的上行数据的上行子 帧对应的所述被调小区的子帧为上行子帧的情况下,允许对所述被调 小区的至少一个上行子帧进行跨载波调度。
31、 根据权利要求 28至 30任一项所述的可读介质,其特征在 于,所述主调小区采用长期演进 LTE版本 8中定义的上下行配置 2 至上下行配置 5之一,所述被调小区的上下行配置作为所述参考上下 行配置;
或者,
所述主调小区采用 LTE版本 8中定义的上下行配置 0、 上下行 配置 1或者上下行配置 6 ,所述 LTE版本 8中定义的上下行配置 1 作为所述参考上下行配置。
32、 根据权利要求 28至 30任一项所述的可读介质,其特征在 于,所述主调小区采用 LTE版本 8中定义的上下行配置 1至上下行 配置 5之一,所述主调小区的上下行配置作为参考上下行配置。 或者,
所述主调小区采用 LTE版本 8中定义的上下行配置 0或者上下 行配置 6 ,LTE版本 8中定义的上下行配置 1作为所述参考上下行配 置。
33、 根据权利要求 28至 32任一项所述的可读介质,其特征在 于, 还包括: 根据所述参考上下行配置的上行 HARQ的定时关系确定第二下 行子帧,其中所述第二下行子帧用于指示传输所述上行数据的物理混 合重传指示信道 PHICH信息的定时; 在与所述第二下行子帧对应的所述主调小区的子帧为下行子帧 的情况下,在与所述第二下行子帧对应的所述主调小区的子帧上传输 所述 PHICH信息, 其中所述在与所述第一下行子帧对应的所述主调小区的子帧上 传输所述上行调度授权信息,包括: 在与所述第二下行子帧对应的所述主调小区的子帧为下行子帧 的情况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输 所述上行调度授权信息。
34、 根据权利要求 33所述的可读介质,其特征在于, 如果所述参考上下行配置的第二下行子帧上定义了用于多个上 行子帧的 PHICH ,并且与所述第二下行子帧对应的所述主调小区的 子帧上也定义了 PHICH ,则所述多个上行子帧之一使用所述主调小 区的子帧上定义的 PHICH ,或者所述多个上行子帧均使用所述主调 小区的子帧上定义的 PHICH。
35、 根据权利要求 33所述的可读介质,其特征在于,所述在与 所述第一下行子帧对应的所述主调小区的子帧上传输所述上行调度 授权信息,包括:在与所述第二下行子帧对应的所述主调小区的子帧 为下行子帧并且定义了 PHICH的情况下,在与所述第一下行子帧对 应的所述主调小区的子帧上传输所述上行调度授权信息。
36、 根据权利要求 28至 35中的任一项所述的可读介质,其特 征在于,还包括:
根据所述参考上下行配置的上行 HARQ的定时关系,确定第二 上行子帧,所述第二上行子帧用于指示重传所述上行数据的定时; 在与所述第二上行子帧对应的所述被调小区的子帧为上行子帧 的情况下,在与所述第二上行子帧对应的所述被调小区的子帧上重传 所述上行数据, 其中所述在与所述第一下行子帧对应的所述主调小区的子帧上 传输所述上行调度授权信息,包括:
在与所述第二上行子帧对应的所述被调小区的子帧为上行子帧 的情况下,在与所述第一下行子帧对应的所述主调小区的子帧上传输 所述上行调度授权信息。
37、 根据权利要求 28至 36中的任一项所述的可读介质,其特 征在于,所述参考上下行配置通过高层信令通知,或者,所述参考上 下行配置被预先配置。
PCT/CN2013/070749 2012-01-20 2013-01-21 基于跨载波调度的数据传输方法、用户设备和基站 WO2013107399A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2013211301A AU2013211301B2 (en) 2012-01-20 2013-01-21 Data transmission method based on cross-carrier scheduling, user equipment, and base station
SG11201508976VA SG11201508976VA (en) 2012-01-20 2013-01-21 Data transmission method based on cross-carrier scheduling, user equipment, and base station
ES13738988.8T ES2627496T3 (es) 2012-01-20 2013-01-21 Método de transmisión de datos basado en una programación de portadoras cruzadas, equipo de usuario y estación base
EP13738988.8A EP2712258B1 (en) 2012-01-20 2013-01-21 Cross-carrier scheduling based data transmission method, user equipment and base station
US14/145,078 US9584242B2 (en) 2012-01-20 2013-12-31 Data transmission method based on cross-carrier scheduling, user equipment, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210018938.7A CN103096494B (zh) 2012-01-20 2012-01-20 基于跨载波调度的数据传输方法、用户设备和基站
CN201210018938.7 2012-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/145,078 Continuation US9584242B2 (en) 2012-01-20 2013-12-31 Data transmission method based on cross-carrier scheduling, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2013107399A1 true WO2013107399A1 (zh) 2013-07-25

Family

ID=48208461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070749 WO2013107399A1 (zh) 2012-01-20 2013-01-21 基于跨载波调度的数据传输方法、用户设备和基站

Country Status (7)

Country Link
US (1) US9584242B2 (zh)
EP (1) EP2712258B1 (zh)
CN (1) CN103096494B (zh)
AU (1) AU2013211301B2 (zh)
ES (1) ES2627496T3 (zh)
SG (2) SG10201605925YA (zh)
WO (1) WO2013107399A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891348A (zh) 2012-09-29 2014-06-25 华为技术有限公司 高速媒体接入控制实体的重置方法及相关装置
US9603100B2 (en) * 2013-05-09 2017-03-21 Sharp Kabushiki Kaisha Terminal device, communication method, and integrated circuit
CA2912255C (en) 2013-05-10 2018-11-20 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for signaling in dynamic time division duplex systems
CN104283653B (zh) * 2013-07-11 2017-07-28 普天信息技术研究院有限公司 传输反馈方法
DK3036856T3 (da) * 2013-08-23 2019-11-04 Ericsson Telefon Ab L M Knude og fremgangsmåde til uplink-planlægning og til timing af hybrid automatisk gentagelsesanmodning
WO2015042835A1 (en) 2013-09-26 2015-04-02 Qualcomm Incorporated METHOD AND APPARATUS FOR EFFICIENT USAGE OF DAI BITS FOR eIMTA IN LTE
MX364204B (es) * 2013-09-26 2019-04-16 Huawei Tech Co Ltd Metodo de retroalimentacion de informacion de control, equipo de usuario, y estacion base.
KR102545989B1 (ko) * 2016-02-04 2023-06-20 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 비허가 반송파 상에서 업링크 정보를 전송하는 방법 및 장치
CN111585716B (zh) * 2016-05-14 2022-03-29 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959319A (zh) * 2009-07-17 2011-01-26 鼎桥通信技术有限公司 一种辅载波时隙0上的信息传输方法
CN102158978A (zh) * 2011-04-22 2011-08-17 中兴通讯股份有限公司 一种下行控制信息的处理方法和***
CN102263627A (zh) * 2011-08-11 2011-11-30 中兴通讯股份有限公司 一种载波聚合配置方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051752A1 (zh) * 2008-11-04 2010-05-14 大唐移动通信设备有限公司 一种实现多载波聚合传输的方法和装置
KR101750371B1 (ko) * 2009-12-24 2017-07-03 삼성전자 주식회사 크로스 캐리어 스케쥴링을 지원하는 tdd 통신시스템에서 물리채널의 송수신 타이밍을 정의하는 방법
US9042312B2 (en) 2010-04-16 2015-05-26 Qualcomm Incorporated Heterogeneous network partition in TDD beyond radio frame
CN102075949B (zh) 2010-12-22 2013-03-20 大唐移动通信设备有限公司 一种基于ca技术进行数据传输的方法及装置
US9191180B2 (en) * 2011-03-21 2015-11-17 Lg Electronics Inc. Method and device for executing HARQ in TDD-based wireless communication system
WO2012139301A1 (en) * 2011-04-15 2012-10-18 Renesas Mobile Corporation Lte carrier aggregation configuration on tv white space bands
CN103493392B (zh) * 2011-04-29 2016-08-17 英特尔公司 Mimo通信***中的秩自适应的***和方法
GB2486926B (en) * 2011-06-02 2013-10-23 Renesas Mobile Corp Frequency hopping in license-exempt/shared bands
CN102355731B (zh) 2011-08-01 2017-10-27 中兴通讯股份有限公司 Tdd***中进行数据传输的基站、终端、***及方法
US9258086B2 (en) * 2011-08-03 2016-02-09 Qualcomm Incorporated Allocating physical hybrid ARQ indicator channel (PHICH) resources
CN102916789B (zh) * 2011-08-05 2016-01-13 财团法人工业技术研究院 时分双工无线通信***与混合自动重复请求确认回报方法
CN103037527B (zh) * 2011-09-29 2016-09-07 财团法人工业技术研究院 为通信设备提供下行链路控制信令的方法和无线通信***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959319A (zh) * 2009-07-17 2011-01-26 鼎桥通信技术有限公司 一种辅载波时隙0上的信息传输方法
CN102158978A (zh) * 2011-04-22 2011-08-17 中兴通讯股份有限公司 一种下行控制信息的处理方法和***
CN102263627A (zh) * 2011-08-11 2011-11-30 中兴通讯股份有限公司 一种载波聚合配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2712258A4 *

Also Published As

Publication number Publication date
US20140112219A1 (en) 2014-04-24
CN103096494B (zh) 2015-01-21
EP2712258A1 (en) 2014-03-26
EP2712258A4 (en) 2014-09-03
ES2627496T3 (es) 2017-07-28
EP2712258B1 (en) 2017-04-19
AU2013211301B2 (en) 2017-01-05
SG11201508976VA (en) 2015-12-30
SG10201605925YA (en) 2016-09-29
US9584242B2 (en) 2017-02-28
CN103096494A (zh) 2013-05-08
AU2013211301A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
WO2019091233A1 (zh) 一种带宽切换方法及装置
JP2024023591A (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
JP6500088B2 (ja) ロングタームエボリューションシステムにおける時分割複信のためのカバレッジ拡張および拡張型干渉軽減およびトラフィック適応
JP6174810B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
TWI540870B (zh) 載波聚合系統中之上行鏈路控制頻道資源衝突解決方案
WO2013107399A1 (zh) 基于跨载波调度的数据传输方法、用户设备和基站
WO2019097301A1 (en) Determining transport block generation timing of an uplink transmission
WO2014068891A1 (en) Systems and methods for carrier aggregation
CN112994866B (zh) 借助时分双工的多发射时间间隔协调
EP4054264A1 (en) Method for ack/nack transmission and reception in wireless communication system and apparatus therefor
EP3745630B1 (en) Method and apparatus
US10237863B2 (en) Device and method of handling a hybrid automatic repeat request process in a licensed assisted access secondary cell
CN111602435B (zh) 报告功率余量信息
CN112655268B (zh) 消息3缓冲区中的媒体访问控制协议数据单元
KR20150023626A (ko) 피드백 정보를 송신 및 수신하는 디바이스
EP3044894A1 (en) Method for avoiding collisions between open discovery and cellular resource
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
WO2017129081A1 (zh) 一种帧格式配置方法、装置和***
KR20170097726A (ko) 자동 재송신 요청(arq) 피드백 정보를 처리하기 위한 네트워크 노드, 무선 장치 및 그 방법들
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
US11483097B2 (en) Wireless communication method, network device, terminal device, and readable storage medium
EP3386254B1 (en) Cross-carrier scheduling methods, and apparatuses
WO2013157865A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
WO2019191954A1 (zh) 传输信息的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738988

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013738988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013738988

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028028

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013211301

Country of ref document: AU

Date of ref document: 20130121

Kind code of ref document: A

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112015028028

Country of ref document: BR

Free format text: PEDIDO RETIRADO POR NAO APRESENTACAO DE RECURSO CONTRA O DESPACHO 1.4.1 PUBLICADO NA RPI 2472 DE 22/05/2018.