WO2013157865A1 - 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2013157865A1
WO2013157865A1 PCT/KR2013/003290 KR2013003290W WO2013157865A1 WO 2013157865 A1 WO2013157865 A1 WO 2013157865A1 KR 2013003290 W KR2013003290 W KR 2013003290W WO 2013157865 A1 WO2013157865 A1 WO 2013157865A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink
terminal
harq
base station
Prior art date
Application number
PCT/KR2013/003290
Other languages
English (en)
French (fr)
Inventor
이승민
서한별
김학성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/389,249 priority Critical patent/US9705645B2/en
Priority to CN201380020642.1A priority patent/CN104272633B/zh
Priority to KR1020147026486A priority patent/KR20140144189A/ko
Publication of WO2013157865A1 publication Critical patent/WO2013157865A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for performing hybrid automatic repeat and reQuest (HARQ) for direct communication between terminals in a wireless communication system.
  • HARQ hybrid automatic repeat and reQuest
  • a 3GPP LTE (3rd Generat ion Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS UMTSCUniversal Mobile Telecommunications unicat ions System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE), a base station (eNode B; eNB), and a network (E-UTRAN) and is connected to an external network (Access Gateway). AG).
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.44, 3, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (hybrid automatic repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a TACTracking Area consisting of a plurality of cells.
  • a method of performing a HARQ (Hybrid Automatic Repeat and reQuest) for direct communication between terminals in a wireless communication system includes scheduling for signal transmission from a base station to a second terminal. Receiving information; Transmitting data to the feature terminal in a first subframe according to the scheduling information; And transmitting the data or new data from the third subframe to the second terminal according to the voting signal for the data, wherein the response signal is between the first subframe and the third subframe.
  • HARQ Hybrid Automatic Repeat and reQuest
  • the second terminal transmits to the base station in a second subframe located, between the terminals
  • the interval between the first subframe and the third subframe, which is the HARQ period of direct communication, is set to a multiple of the HARQ period between the first terminal and the base station.
  • the base station transmits scheduling information for reception of the data on a fourth subframe to the second terminal.
  • the second subframe may be an uplink subframe linked with the nearest downlink subframe after the first subframe in an HARQ process interworking with the first subframe.
  • the second subframe may be the nearest uplink subframe after the first subframe.
  • the closest uplink subframe is an uplink subframe scheduled to transmit ACK (Acknowledgeiiient) / NACK (Negative-AC10) signal to the base station in the uplink / downlink subframe configuration configured in the first terminal It features.
  • a predetermined time offset value is applied to the HARQ process between the first terminal and the base station.
  • the predetermined time offset is characterized in that half of the HARQ period of the direct communication between the terminals.
  • the method may further include receiving information on uplink / downlink subframe configuration for the direct communication between the terminals from the base station.
  • the uplink subframe set of the uplink / downlink subframe configuration for the direct communication between the terminal is included in the uplink subframe set of the uplink / downlink subframe configuration for communication between the terminal and the base station; It is characterized by the same.
  • the information on the uplink / downlink subframe configuration for the communication between the terminal and the base station is characterized in that it is set in advance through the system information.
  • the HARQ process may be efficiently performed for direct communication between terminals in a wireless communication system.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 6 illustrates a structure of a radio frame in an LTE TDD system.
  • 7 is a conceptual diagram of direct communication between terminals.
  • FIG 8 illustrates an example in which a HARQ period of direct communication between terminals is set to a multiple of an uplink communication HARQ period between a terminal and a base station according to the first embodiment of the present invention.
  • FIG. 9 illustrates an example of sharing a specific HARQ process used for direct communication between terminals in uplink communication between a terminal and a base station according to a third embodiment of the present invention in a form in which a time offset value is applied.
  • FIG. 10 illustrates another example of sharing a specific HARQ process used for direct communication between terminals in uplink communication between a terminal and a base station according to a third embodiment of the present invention in a time offset value applied thereto.
  • 11 and 12 illustrate an uplink grant transmission downlink subframe in which scheduling information for direct communication between terminals is transmitted, according to a fourth embodiment of the present invention.
  • 13 is a diagram illustrating uplink HARQ operation according to the fifth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating an uplink HARQ operation according to a sixth embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this is an example embodiment of the present invention can be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the frequency division duplex (FDD) method, which is an exemplary embodiment of the present invention is a hybrid-FDD (H-FDD) method or a time division duplex (TDD) method. It can be easily modified and applied to the manner.
  • FDD frequency division duplex
  • H-FDD hybrid-FDD
  • TDD time division duplex
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is in the downlink Modulated by Orthogonal Frequency Division Multiple Access (FDMA) scheme and modulated by Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • FDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the functions of the RIX layer may be implemented as functional blocks inside the MAC.
  • the 12-layer Packet Data Convergence Protocol (PDCP) layer performs header compression to reduce unnecessary control information for efficient transmission of IP packets such as IPv4 and IPv6 over narrow bandwidth interfaces.
  • PDCP Packet Data Convergence Protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-conf igurat ion, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other.
  • RRC connection RRC Connected
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station (e NB) is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20M z to provide downlink or uplink transmission services to various terminals. Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a UE is a downlink channel (BCH) for transmitting system information, a downlink shared channel (SCH) for transmitting a paging channel (PCH) user traffic or a control message for transmitting a paging message.
  • BCH downlink channel
  • SCH downlink shared channel
  • PCH paging channel
  • the downlink SCH It may be transmitted through or may be transmitted through a separate downlink MCH (mult icast channel).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCHdulticast Control Channel MTCH
  • MTCH MTCH
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the terminal If the terminal is powered on or enters a new cell, the terminal performs an initial cell search operation such as synchronization with the base station (S301). To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. On the other hand, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE which has completed the initial cell search receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the information carried on the PDCCH for a more specific system.
  • Information can be obtained (S302).
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the terminal may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and may receive a response message for the preamble through the PDCCH and the corresponding PDSCH. (S304 and S306).
  • PRACH physical random access channel
  • S303 and S305 physical random access channel
  • S304 and S306 In case of contention based RACH, additional collision A content ion resolution procedure can be performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel as a general uplink / downlink signal transmission procedure.
  • Physical Uplink Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station is a downlink / uplink ACK / NACK signal, CQI (Channel Quality Indicator), PMI (Precoding Matrix Index), RI (Rank Indicator) and the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe includes 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13-11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RS) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region enhancement.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • PCFICH has four REGs Element group), and each REG is distributed in the control region based on the cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • RE represents a minimum physical resource defined by one subcarrier and one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • PHICH is a physical HARQ Hybrid-Automatic Repeat and request (EIQ) indicator channel and used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled (ceU-specific).
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs embedded in the same resource constitute a PHICH group. The number of PHICHs multiplied in the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to a subframe and the first n OFDM symbols.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • HARQ information Paging channel
  • PCH downlink shared channel
  • the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted. For example, a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) where a particular PDCCH is "A".
  • CRC cyclic redundancy check
  • RTI Radio Network Temporary Identity
  • the terminal in the sal monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 5 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes AC / NACK used for HARQ, CQKChannel Quality Indicator indicating downlink channel state, RKRank Indicator for MIM0, and SR (Scheduling Request), which is an uplink resource allocation request.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • FIG. 6 illustrates a structure of a radio frame in an LTE TDD system.
  • a radio frame is composed of two half frames.
  • Each half frame includes four general subframes including two slots, a downlink pilot time slot (DwPTS), and a guard period (GP). ) And a special subframe including an UpPTSOJplink Pilot Time Slot.
  • DwPTS downlink pilot time slot
  • GP guard period
  • DwPTS is used for initial cell search, synchronization, or channel estimation in the UE.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. That is, DwPTS is downlink transmission, and UpPTS is uplink.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard interval is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • uplink / downlink subframe configuration (UL / DL configuration) is shown in Table 2 below.
  • Table 4 below shows a PHICH timeline for each uplink / downlink subframe configuration.
  • the UE transmits a PUSCH in subframe #n based on uplink scheduling information received from the base station, for example, an uplink grant
  • the PHICH associated with the corresponding PUSCH is received in subframe # (n +).
  • K PHICH is given in Table 4 below.
  • Table 5 below shows a PUSCH (re) transmission timeline, and based on the conditions 1) to 4) below, a PUSCH (re) transmission time point of a UE is determined.
  • a PDCCH ie, an uplink grant
  • a PHICH PHICH
  • PDCCH ie, uplink grant
  • / or PHICH is detected in subframe #n, and UL index of the uplink grant is determined.
  • uplink / downlink subframe configuration # 0 if the MSB and LSB of the UL index of the uplink grant are both 1, the corresponding PUSCH transmission or retransmission is performed in subframe # (n + k). And subframe # (n + 7), k is likewise given in Table 5 below.
  • Table 6 shows an uplink ACK / NACK timeline, if the UE is scheduled by the PDCCH and the corresponding PDCCH from the base station in subframe # (nk). If the PDSCH is received, this means that uplink ACK / NACK for the received PDSCH is transmitted in subframe #n.
  • FIG. 7 is a conceptual diagram of direct communication between terminals.
  • FIG. 7 illustrates an example of a situation in which communication between UE #A and a base station and direct communication between terminals between UE # and UE #B are simultaneously performed.
  • a direct communication between terminals and a communication between a terminal and a base station are performed separately in a time resource domain (eg, in a subframe unit) from the viewpoint of a specific terminal.
  • a signal transmitted by a specific terminal to a base station and a signal transmitted by a corresponding terminal to another terminal may be performed at different times.
  • the contents of the present invention may be extended to be applied even when the direct communication between terminals and the communication between the terminal and the base station are performed separately in the frequency resource region side or the time / frequency resource region side in view of a specific terminal.
  • the uplink communication between the base station and the base station is performed in consideration of the amount of (average) interference when the corresponding communication is performed, and not in the time / frequency resource region in which the downlink communication is performed between the base station and the terminal. Using time / frequency resources is efficient.
  • uplink communication between a base station and a base station is performed based on a relatively low transmission power than downlink communication between a base station and a terminal. This is because the amount of (average) interference generated due to the uplink communication between the terminal and the base station is stochastic less than the amount generated due to the downlink communication between the base station and the terminal.
  • the direct communication between terminals is performed using a time / frequency resource designated for uplink communication between the terminal and the base station, the direct communication between the terminals from the viewpoint of the base station or the terminal is a new type of interference, for example, Interference with respect to uplink data reception, or interference with a terminal receiving data in direct communication between terminals.
  • the base station may directly control the direct communication between the terminals.
  • the base station may perform scheduling information transmission and transmission power control to support direct communication between terminals, and terminals participating in the communication may successfully receive data in order to efficiently perform such an operation of the base station.
  • ACK / NACK information or channel measurement information indicating whether or not may be reported to the base station.
  • the 3GPP LTE system uses a synchronous HARQ scheme for uplink HARQ operation.
  • the synchronous HARQ scheme when the initial transmission fails, subsequent retransmission is performed at a point in time determined by the system. That is, the position (or time point) at which the transmission / retransmission of a specific HARQ process (black is an uplink grant / PHICH timeline or an uplink ACK / NACK timeline) occurs in advance and means that it cannot be arbitrarily changed.
  • direct communication between terminals requires an additional HARQ operation method different from the existing HARQ operation. For example, briefly describing a direct communication procedure between UE # / and UE #B, the base station transmits scheduling information for direct communication between UE # / ⁇ and UE #B to UE #A and receives the received UE. ⁇ Transmits data to UE #B based on previously received scheduling information at a specific point in time.
  • the corresponding information is used for direct communication between UE # and UE #B.
  • An indicator black indicating that the transmission may include an indicator indicating direct communication between UE # ⁇ and IE #B.
  • UE ⁇ reports ACK / NACK information indicating whether demodulation of data received from UE #A is successful to a base station at a specific time point after a predetermined time.
  • the base station may instruct the UE #A whether to retransmit the corresponding data based on the ACK / NACK information received from the UE #B.
  • the scheduling information transmission for example, , Uplink grant / PHICH
  • data transmission and ACK / NACK transmission are performed based on a predefined time point.
  • the following schemes propose a method in which a specific terminal efficiently operates the HARQ operation of the terminal under direct communication between the terminal as well as the communication between the terminal and the base station.
  • the TDD system is described, but the HARQ timeline (for example, PUSCH transmission ⁇ PHICH reception, PHICH / uplink grant reception ⁇ PUSCH (re) transmission, PDSCH reception ⁇ uplink ACK / NACK transmission) 4ms If it is modified to FDD system, it can be extended.
  • a specific terminal is connected to the HARQ processes used for uplink communication between the terminal and the base station of the terminal under direct communication between the terminal as well as terminal-to-base station direct communication.
  • the HARQ period of direct communication between terminals is 20ms
  • the uplink / downlink subframe configuration # 0 is 140ms in HARQ period of direct communication between terminals.
  • the link / downlink subframe configuration # 6 may set HARQ periods of direct communication between terminals to 120ms, respectively.
  • FIG. 8 illustrates an example in which a HARQ period of direct communication between terminals is set as a multiple of an uplink communication HARQ period between a terminal and a base station according to the first embodiment of the present invention.
  • FIG. 8 assumes that uplink / downlink subframe configuration # 1 having 4 uplink HARQ processes is applied.
  • the IE # 2 receives a signal from UE # 1 in subframe # 11 and then receives a signal from UE # 1 in subframe # 31 again.
  • the direct communication HARQ period between terminals is set to 20 ms, which is twice the uplink communication HARQ period between the terminal and the base station, and the number of HARQ processes used for the uplink communication between the terminal and the base station affected by the direct communication between the terminals is It can be seen that one (ie, uplink HARQ process # 0).
  • ACK / NACK information on data received by the specific terminal from a counterpart terminal of direct communication between terminals satisfies the following conditions.
  • the subframe may report to the base station (or counterpart terminal of direct communication between terminals).
  • Uplink subframe interworking with the nearest downlink subframe including (or not including) the data reception point on a specific HARQ process interworking with the data reception point of direct communication between terminals; .
  • the nearest uplink subframe including subframe ⁇ which is a data reception time point (not including black), and subsequent subframe # (n + 4).
  • the uplink subframe includes all uplink subframes on the corresponding uplink / downlink subframe configuration, an uplink subframe used for transmitting ACK / NACK information, and a higher layer signal or physical layer in advance. It may be defined as a specific (position) subframe specified through the layer signal.
  • Uplink subframe associated with the nearest downlink subframe including (or not including) a data reception time point on a predefined HARQ process.
  • the terminal In a situation in which a specific terminal performs direct communication between terminals as well as communication between a terminal and a base station, the terminal is configured to apply a predetermined time offset value to a specific HARQ process used for direct communication between terminals.
  • Uplink communication between base stations can also be used in parallel (black is shared).
  • the period of the specific HARQ process used for uplink communication between the terminal and the base station may be set to the same value or multiple of the period of the specific HARQ process used for the direct communication between the terminals.
  • Uplink communication between base stations may use (or share) specific HARQ processes at different timings based on a preset time offset value.
  • the information on the specific HARQ process and the time offset value shared by the direct communication between the terminals and the communication between the terminal and the base station is higher layer signal or physical layer signal to the terminals participating in the communication in advance. You can also tell through.
  • the time offset value applied between the terminal-to-terminal direct communication and the terminal-to-base station may be defined as a 1/2 value of a preset inter-terminal direct communication HARQ period.
  • 10 ms in uplink / downlink subframe configuration # 1 to # 5 uplink / downlink subframe configuration # 0 is 70ms, and uplink / downlink subframe configuration # 0 is Can be set to 60ms each.
  • FIG. 9 illustrates an example of sharing a specific HARQ process used for direct communication between terminals in uplink communication between a terminal and a base station according to a third embodiment of the present invention in the form of a time offset value.
  • FIG. 9 assumes a situation in which uplink / downlink subframe configuration # 1 having four uplink HARQ processes is applied.
  • a time offset value applied between direct communication between terminals and communication between a terminal and a base station is set to 10 ms (that is, a 1/2 value of 20 ms, which is a direct communication HARQ period between terminals).
  • the direct communication between the UE (UE # 1 ⁇ UE # 2) and the uplink communication (UE # 1 ⁇ eNB) between the terminal and the base station (UE # 1 ⁇ eNB) has a preset time offset of 10ms Based on this, it can be seen that uplink HARQ process # 0 is used (or shared) at different timings.
  • FIG. 10 illustrates another example of sharing a specific HARQ process used for direct communication between terminals in uplink communication between a terminal and a base station according to a third embodiment of the present invention in the form of a time offset value applied thereto.
  • FIG. 10 also assumes a situation in which uplink / downlink subframe configuration # 1 having 4 uplink HARQ processes is applied.
  • the time offset value applied between the direct communication between the terminals and the communication between the terminal and the base station is set to 10 ms (that is, a 1/2 value of 20 ms, which is a direct communication HARQ period between terminals).
  • the direct communication between the UE (UE # 1 UE # 2) and the uplink communication (UE # 2 eNB) between the terminal and the base station (UE # 2 eNB) is based on a preset time offset of 10 ms, different timing for the uplink HARQ process # 0 You can see that we are using (or sharing) with.
  • FIG. 10 assumes that UE # 2 has a PUSCH and a PUCCH simultaneous transmission capability (CAPABLITY), and activation of such capability should be set.
  • CABLITY PUCCH simultaneous transmission capability
  • a terminal that receives data from another specific terminal among terminals participating in the direct communication between the terminals is scheduling information about the corresponding data.
  • scheduling information about the corresponding data.
  • MCS Modulation and Coding Scheme
  • NDI new data indicator
  • the rule may be set in advance.
  • the downlink only subframe indicates a subframe in which an uplink grant for uplink data transmission at a specific time point is not transmitted.
  • a terminal that receives data from a specific terminal may perform blind decoding (BD) in specific rule-based subframes set in advance for receiving scheduling information about the corresponding data.
  • BD blind decoding
  • a specific terminal corresponds to scheduling information (for example, information about a terminal transmitting / receiving data; Data is received from other terminals based on resource area / location information used for data transmission).
  • the subject transmitting the scheduling information may be a base station controlling direct communication between terminals or another terminal transmitting data to a specific terminal.
  • the category for the uplink grant transmission subframe in which the above-described scheduling information is transmitted is limited to uplink grant transmission downlink subframes belonging to a specific HARQ process timeline used for direct communication between terminals, or It may be all uplink grant downlink subframes determined by a preset uplink / downlink subframe configuration.
  • FIG. 8 to FIG. 10 are examples of the case of limited to uplink grant transmission downlink subframes belonging to the former scheme, that is, a specific HARQ process timeline used for direct communication between terminals. '
  • FIGS. 11 and 12 are diagrams illustrating an uplink grant transmission downlink subframe in which scheduling information for direct communication between terminals is transmitted according to the fourth embodiment of the present invention.
  • FIGS. 11 and 12 assume a situation in which uplink / downlink subframe configuration # 1 having four uplink HARQ processes is applied.
  • FIG. 11 illustrates a case in which a base station informs a terminal receiving data from a specific terminal, scheduling information about the corresponding data in a previous downlink single subframe, including a corresponding data reception time point. Therefore, it can be seen that the scheduling information for UE # 2 to receive data in direct communication between UEs from UE # 1 is transmitted in subframe # 5 and subframe # 25.
  • Figure 12 is a base station to the terminal that receives data from a specific terminal, the scheduling information for the data, including the time of receiving the data to the previous most The case shown in the downlink subframe (all on the uplink / downlink subframe configuration) is shown.
  • subframe # 6 is the uplink grant receiving downlink subframe closest to subframe # 7.
  • the scheduling information for UE # 2 receiving data in direct communication between UEs from UE # 1 is transmitted in subframe # 6 and subframe # 26.
  • the base station sets uplink / downlink subframes for communication between the terminal and the base station and direct communication between the terminals to the specific terminal.
  • the uplink / downlink subframe configuration may be independently informed through a higher layer signal black or a physical layer signal.
  • the uplink / downlink subframe configuration for the communication between the terminal and the base station may be defined to be considered implicit as an uplink / downlink subframe configuration configured through the system information block (SIB).
  • SIB system information block
  • the base station can independently inform the terminal of only uplink / downlink subframe configuration for direct communication between terminals through an upper layer signal or a physical layer signal.
  • the uplink / downlink subframe configuration for direct communication between terminals may be used only for a specific terminal receiving data from another terminal or reporting ACK / NACK information on the corresponding data reception.
  • the terminal transmits data to another terminal it may be operated based on uplink / downlink subframe configuration for communication between the base stations. This is particularly efficient in a situation where the base station controls direct communication between terminals (i.e., a situation in which the base station (directly) controls data transmission from one terminal to another terminal).
  • uplink / downlink subframe configuration for direct communication between terminals between uplink / downlink subframe configuration for direct communication between terminals and uplink / downlink subframe configuration for communication between terminal and base station, uplink / downlink for direct communication between terminals Of subframe settings
  • the uplink subframe set may belong to an uplink subframe set of uplink / downlink subframe configuration for communication between the terminal and the base station or may be configured to satisfy the same relationship.
  • the downlink subframe set of the uplink / downlink subframe configuration for the communication between the terminal and the base station belongs to or has the same relationship as the downlink subframe set of the uplink / downlink subframe configuration for the direct communication between the terminals. It may be set to be satisfied.
  • the terminal receiving data from a specific terminal, the base station using the HARQ timeline based on the uplink / downlink subframe configuration for direct communication between the terminal, the ACK / NACK information for the corresponding data reception, (Or a target terminal for direct communication between terminals).
  • the subframe category in which direct communication between terminals is performed is an uplink subframe in uplink / downlink subframe configuration for communication between a terminal and a base station, and is used for uplink / downlink for direct communication between terminals.
  • the subframe configuration it may be limited to a start point (or a position) which is a downlink subframe.
  • a specific terminal receives data from another terminal in subframe #n based on uplink / downlink subframe configuration for terminal-to-terminal communication, and the corresponding terminal serves In the frame # (n + l), if it is necessary to transmit uplink data to a base station or perform data transmission to a specific terminal based on the uplink / downlink subframe configuration for communication between the terminal and the base station, the subframe # ⁇ is prearranged.
  • the receive-transmit switching time black for the data transmission in the following subframe # (n + l) is black.
  • the special subframe or the shortened downlink subframe means a predefined subframe in which the number of OFDM symbols used for downlink data transmission is relatively smaller than that of the normal downlink subframe.
  • uplink / downlink for communication between the terminal and the base station set in advance It can be operated based on the subframe configuration, and when performing data transmission from another subframe to a subsequent subframe, uplink / downlink subframe configuration (or previously configured UE) Uplink / downlink subframe configuration for communication between base stations).
  • a specific UE receives data from another UE in subframe #n (eg, an uplink subframe #n or a downlink subframe #n), and the following subframe # (n + l)
  • the subframe # (n + l) may set a rule in advance such that the subframe # (n + l) is not used for the UL data transmission of the UE.
  • the subframe # (n + l) is the point of (non) periodic SRS transmission time or (non) periodic channel state information (CSI) reporting, exceptionally perform SRS, CSI transmission, or SRS, CSI transmission may be omitted, or black may be (re) transmitted in a later available uplink subframe.
  • the category of an uplink subframe in which (non) periodic SRS (re) transmission is performed may be limited to all subframes configured for uplink use or an uplink subframe used for (non) periodic SRS transmission.
  • the base station additionally informs the terminal of uplink / downlink subframe configuration for the direct communication between the terminals, or direct communication between the terminal and the base station and direct communication between the terminals based on one uplink / downlink subframe configuration. Extension is applicable even if this is done.
  • uplink / downlink subframe configuration for direct communication between terminals and uplink / downlink subframe configuration for communication between the terminal and the base station and uplink / for communication between the terminal and the base station
  • the uplink subframe set of the downlink subframe configuration may be included in the uplink subframe set of the uplink / downlink subframe configuration for direct communication between terminals or may be set identically.
  • the downlink subframe set of the uplink / downlink subframe configuration for direct communication between the terminal is set to be included or the same in the downlink subframe of the uplink / downlink subframe configuration for communication between the terminal and the base station Can also be.
  • the aggregation relationship in the above proposed schemes simply means an inclusion relationship between uplink / downlink subframe positions (or numbers) or On an HARQ timeline consisting of uplink / downlink subframes . It may mean a coverage relationship (eg, an uplink ACK / NACK timeline, a PHICH / uplink grant timeline, etc.).
  • the configuration for (non-) periodic SRS transmission is determined by the terminal. Defined based on uplink / downlink subframe configuration configured for communication between base stations, or uplink / downlink subframe configuration for direct communication between terminals and uplink / downlink subframe for communication between terminal and base stations
  • the frame configuration may be defined based on a time point simultaneously configured as an uplink subframe.
  • FIG. 13 is a diagram illustrating an uplink HARQ. Operation according to the fifth embodiment of the present invention.
  • FIG. 13 illustrates that an uplink subframe set of uplink / downlink subframe configuration for communication between a terminal and a base station is included in an uplink subframe set of uplink / downlink subframe configuration for direct communication between terminals. Assume the case that is set to be equal or.
  • the uplink / downlink subframe configuration for the communication between the terminal and the base station is set to the uplink / downlink subframe configuration # 3 having three uplink HARQ process, the uplink for direct communication between terminals It is assumed that / downlink subframe configuration is set to uplink / downlink subframe configuration # 4 having two uplink HARQ processes.
  • UE # 2 when UE # 2 receives data from UE # 1, it transmits ACK / NACK information on the corresponding data to the base station using the uplink / downlink subframe configuration # 4 based HARQ timeline.
  • the communication between the UE # 1 and the UE # 2 is the uplink / downlink subframe configuration for the communication between the terminal and the base station is an uplink subframe and the terminal A rule is set such that uplink / downlink subframe configuration for direct communication between nodes is performed only when a downlink subframe is set.
  • the number of HARQ processes used for the uplink communication between the terminal and the base station affected by the direct communication between the terminals from the perspective of UE # 1 is one, and the data communication period, that is, the direct communication between the terminals
  • the data reception period of is 10ms.
  • the base station transmits HARQ timeline information (eg, an uplink ACK / NACK timeline) for direct communication between terminals to a specific terminal.
  • HARQ timeline information eg, an uplink ACK / NACK timeline
  • the corresponding HARQ timeline information may be set independently of the uplink / downlink subframe configuration configured in advance for direct communication between terminals, HARQ time for direct communication between the terminals that the base station additionally informs
  • the line is a black part of the candidates configurable by the uplink / downlink subframe configuration (for example, uplink / downlink subframe configuration # 0 ⁇ uplink / downlink subframe configuration # 6) is part of the HARQ timeline. It may be reused or implemented as a previously defined HARQ timeline.
  • the remaining HARQ timelines other than the additionally informed HARQ timeline may be defined as implicitly following an HARQ timeline of an uplink / downlink subframe configuration configured for direct communication between terminals in advance. have.
  • FIG. 14 is a diagram illustrating an uplink HARQ operation according to a sixth embodiment of the present invention.
  • FIG. 14 illustrates a situation in which uplink / downlink subframe configuration # 1 having 4 uplink HARQ processes is set.
  • the base station receives data from another terminal to a specific terminal, ACK / NACK information for the corresponding data reception
  • ACK / NACK information for the corresponding data reception
  • the uplink ACK / NACK timeline of uplink / downlink subframe configuration # 2 having two uplink HARQ processes additionally through a higher layer signal Assume that it is signaled.
  • the uplink ACK / NACK timeline of the uplink / downlink subframe configuration # 1 ie, a sub Based on the uplink ACK / NACK timeline of uplink / downlink subframe configuration # 2 (not frame # 18)
  • the uplink ACK / NACK for data reception is transmitted to the base station in subframe # 22.
  • the data communication period that is, the data reception period of the direct communication between terminals is 10ms based on the uplink HA Q process # 1.
  • a deliberately defined subframe unit (or previously defined specific unit) is established between uplink / downlink subframe configuration for communication between the UE and the base station and uplink / downlink subframe configuration for direct communication between UEs.
  • a time offset in units of two units two types of communication can be efficiently performed.
  • the communication between the terminal and the base station and the direct communication between the terminals may be operated based on a time offset set for the corresponding communication in advance.
  • the base station additionally informs the user equipment of the uplink / downlink subframe configuration for the direct communication between the terminals or direct communication between the terminal and the base station based on one uplink / downlink subframe configuration. Extension is also applicable when communication is performed.
  • a black or black component carrier may communicate between a terminal and a base station.
  • the other component carriers (or cells) can be extended to be used for direct communication between terminals.
  • embodiments of the present invention are also applicable when expanded expansion carrier (carrier extension) the base to 'be a direct communication carried out between UE under carrier aggregation environment this method is applied.
  • the above-described embodiments of the present invention can be extended and applied not only to a situation in which a base station controls direct communication between terminals, but also to a situation in which direct communication between terminals is performed without control of a base station based on a predetermined rule.
  • the proposed schemes can be extended to a case where a specific terminal receives data transmitted from a base station through a relay node or a predefined terminal (ie, a UE relay method). It is possible.
  • FIG. 15 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1500 includes a processor 1510, a memory 1520, an RF module 1530, a display modules 1540, and a user interface modules 1550.
  • the communication device 1500 is shown for convenience of description and some models may be omitted. In addition, the communication device 1500 may further include necessary modules. In addition, some modules in the communication device 1500 may be classified into more granular modules.
  • the processor 1510 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1510 may refer to the contents described with reference to FIGS. 1 to 14.
  • the memory 1520 is connected to the processor 1510 and stores an operating system, an application, a program code, data, and the like.
  • the RF module 1530 is connected to the processor 1510 and performs a function of converting a baseband signal into a wireless signal or converting a wireless signal into a baseband signal. For this purpose, the RF modules 1530 perform analog conversion, amplification, filtering and frequency up-conversion or their reverse processes.
  • Display modules 1540 are connected to the processor 1510 and display various information.
  • the display module 1540 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and a zero light emitting diode (0LED).
  • the user interface module 1550 is connected to the processor 1510 and may be configured with a combination of well-known user interfaces such as a keypad, a touch screen, and the like.
  • an embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more ASICs, icat ion specific integrated circuits (DSPs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PUs), and FPGAs ( f ield programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 제 1 단말이 단말 간 직접 통신을 위한 HARQ (Hybrid Automatic Repeat and reQuest)를 수행하는 방법이 개시된다. 구체적으로, 상기 방법은, 기지국으로부터 제 2 단말로 신호 송신을 위한 스케줄링 정보를 수신하는 단계; 상기 스케줄링 정보에 따라, 제 1 서브프레임에서 상기 특징 단말로 데이터를 송신하는 단계; 및 상기 데이터에 대한 응답 신호에 따라 제 3 서브프레임에서 상기 제 2 단말로 상기 데이터 또는 신규 데이터를 송신하는 단계를 포함하고, 상기 응답 신호는 상기 제 1 서브프레임과 상기 제 3 서브프레임 사이에 위치한 제 2 서브프레임에서 상기 제 2 단말이 상기 기지국으로 송신하고, 상기 단말 간 직접 통신의 HARQ 주기인 상기 제 1 서브프레임과 상기 제 3 서브프레임 간의 간격은 상기 제 1 단말과 상기 기지국 간의 HARQ 주기의 배수로 설정되는 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 단말 간 직접 통신을 위한 HARQ 수행 방법 및 이를 위한 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말 간 직접 통신을 위한 HARQ (Hybrid Automatic Repeat and reQuest) 수행 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
[2] 본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generat ion Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
[3] 도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E— UMTS (Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTSCUniversal Mobile Teleco隱 unicat ions System)에서 진화한 시스템으로서 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E—UMTS의 기술 규격 (technical sped f icat ion)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification 그룹 Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
[4] 도 1을 참조하면, E-UMTS는 단말 (User Equipment; UE)과 기지국 (eNode B; eNB), 네트워크 (E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이 (Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및 /또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
[5] 한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.44, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크 (Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간 /주파수 영역, 부호화, 데이터 크기, HARQ( Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크 (Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간 /주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망 (Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TACTracking Area) 단위로 단말의 이동성을 관리한다.
[6] 무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한ᅳ 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다. 【발명의 상세한 설명】
【기술적 과제】
[7] 상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 단말 간 직접 통신을 위한 HARQ 수행 방법 및 이를 위한 장치를 제안하고자 한다.
【기술적 해결방법】
[8] 본 발명의 실시예에 따른, 무선 통신 시스템에서 제 1 단말이 단말 간 직접 통신을 위한 HARQ (Hybrid Automatic Repeat and reQuest)를 수행하는 방법은, 기지국으로부터 제 2 단말로 신호 송신을 위한 스케줄링 정보를 수신하는 단계; 상기 스케줄링 정보에 따라, 제 1 서브프레임에서 상기 특징 단말로 데이터를 송신하는 단계; 및 상기 데이터에 대한 웅답 신호에 따라 제 3 서브프레임에서 상기 제 2 단말로 상기 데이터 또는 신규 데이터를 송신하는 단계를 포함하고, 상기 응답 신호는, 상기 제 1 서브프레임과 상기 제 3 서브프레임 사이에 위치한 제 2 서브프레임에서 상기 제 2 단말이 상기 기지국으로 송신하고, 상기 단말 간 직접 통신의 HARQ 주기인 상기 게 1 서브프레임과 상기 제 3 서브프레임 간의 간격은, 상기 제 1 단말과 상기 기지국 간의 HARQ 주기의 배수로 설정되는 것을 특징으로 한다.
[9] 바람직하게는, 상기 기지국은 상기 제 2 단말로, 제 4 서브프레임 상에서 상기 데이터의 수신을 위한 스케줄링 정보를 송신하는 것을 특징으로 한다.
[10] 보다 바람직하게는, 상기 제 2 서브프레임은, 상기 제 1 서브프레임과 연동된 HARQ 프로세스에서, 상기 제 1 서브프레임 이후 가장 가까운 하향링크 서브프레임과 연동된 상향링크 서브프레임일 수 있다.
[11] 또는, 상기 제 2 서브프레임은, 상기 제 1 서브프레임 이후 가장 가까운 상향링크 서브프레임일 수도 있다. 이 경우 상기 가장 가까운 상향링크 서브프레임은 상기 제 1 단말에 설정된 상향링크 /하향링크 서브프레임 설정에서 상기 기지국으로 ACK(Acknowledgeiiient)/NACK(Negative-AClO 신호를 송신하는 것으로 예정된 상향링크 서브프레임인 것을 특징으로 한다.
[12] 또는, 상기 단말 간 직접 통신의 HARQ 프로세스는, 상기 제 1 단말과 상기 기지국 간의 HARQ 프로세스에 대하여 소정의 시간 오프셋 값이 적용된 것을 특징으로 한다. 여기서, 상기 소정의 시간 오프셋은 상기 단말 간 직접 통신의 HARQ 주기의 절반인 것을 특징으로 한다.
[13] 한편, 상기 기지국으로부터 상기 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정에 관한 정보를 수신하는 단계를 더 포함할 수 있다. 이 경우, 상기 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합은, 단말과 기지국 간 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합에 포함되거나 동일한 것을 특징으로 한다. 또한, 상기 단말과 기지국 간 통신을 위한 상향링크 /하향링크 서브프레임 설정에 관한 정보는 시스템 정보를 통하여 미리 설정되는 것을 특징으로 한다.
【유리한 효과】
[14] 본 발명의 실시예에 따르면 무선 통신 시스템에서 단말 간 직접 통신을 위하여 HARQ 과정을 효율적으로 수행할 수 있다. [15] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[16] 도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
[17] 도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol)의 제어평면 (Control Plane) 및 사용자평면 (User Plane) 구조를 나타내는 도면이다.
[18] 도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
[19] 도 4는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
[20] 도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
[21] 도 6은 LTE TDD 시스템에서 무선 프레임의 구조를 예시한다.
[22] 도 7은 단말 간 직접 통신의 개념도이다.
[23] 도 8은 본 발명의 제 1 실시예에 따라, 단말 간 직접 통신의 HARQ 주기를 단말-기지국 간의 상향링크 통신 HARQ 주기의 배수로 설정한 예를 도시한다.
[24] 도 9는 본 발명의 제 3 실시예에 따라, 단말 간 직접 통신으로 이용되는 특정 HARQ 프로세스를 시간 오프셋 값이 적용된 형태로 단말-기지국 간의 상향링크 통신에 공용하는 예를 도시한다.
[25] 도 10는 본 발명의 제 3 실시예에 따라, 단말 간 직접 통신으로 이용되는 특정 HARQ 프로세스를 시간 오프셋 값이 적용된 형태로 단말-기지국 간의 상향링크 통신에 공용하는 다른 예를 도시한다.
[26] 도 11과 도 12는 본 발명의 제 4 실시예에 따라, 단말 간 직접 통신을 위한 스케줄링 정보가 전송되는 상향링크 그랜트 전송 하향링크 서브프레임을 예시하는 도면들이다. [27] 도 13은 본 발명의 제 5 실시예에 따른 상향링크 HARQ 동작을 예시하는 도면이다ᅳ
[28] 도 14는 본 발명의 제 6 실시예에 따른 상향링크 HARQ 동작을 예시하는 도면이다.
[29] 도 15는 본 발명의 실시예에 따른 통신 장치의 블록 구성도를 예시한다. 【발명의 실시를 위한 형태】
[30] 이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
[31] 본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD (Frequency Division Duplex)방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD (Hybrid-FDD) 방식 또는 TDD (Time Division Duplex) 방식에도 용이하게 변형되어 적용될 수 있다.
[32] 도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol)의 제어평면 (Control Plane) 및 사용자평면 (User Plane) 구조를 나타내는 도면이다. 제어평면은 단말 (User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패¾ 데이터 등이 전송되는 통로를 의미한다.
[33] 제 1계층인 물리계층은 물리채널 (Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스 (Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어 (Medium Access Control) 계층과는 전송채널 (Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 0FDMA( Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA( Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
[34] 제 2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 논리채널 (Logical Channel)을 통해 상위계층인 무선링크제어 (Radio Link Control; RLC) 계층에 서비스를 제공한다. 제 2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RIX 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 거 12계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축 (Header Compression) 기능을 수행한다.
[35] 제 3계층의 최하부에 위치한 무선 자원제어 (Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러 (Radio Bearer; RB)들의 설정 (Configuration), 재설정 (Re-conf igurat ion) 및 해제 (Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제 2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결 (RRC Connected)이 있을 경우, 단말은 RRC 연결 상태 (Connected Mode)에 있게 되고, 그렇지 못할 경우 R C 휴지 상태 (Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리 (Session Management)와 이동성 관리 (Mobility Management ) 등의 기능을 수행한다.
[36] 기지국 (eNB)을 구성하는 하나의 샐은 1.4, 3, 5, 10, 15, 20M z 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
[37] 네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH( Paging Channel) 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Mult icast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널 (Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH( Paging Control Channel), CCCH( Common Control Channel), MCCHdulticast Control Channel), MTCH(Mult icast Traffic Channel) 등이 있다.
[38] 도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
[39] 단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다 (S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널 (Primary Synchronization Channel; P-SCH) 및 부 동기 채널 (Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널 (Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. ' .
[40] 초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널 (Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널 (Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다 (S302).
[41] 한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정 (Random Access Procedure; RACH)을 수행할 수 있다 (단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널 (Physical Random Access Channel; PRACH)을 통해 특정 시뭔스를 프리앰블로 전송하고 (S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다 (S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차 (Content ion Resolution Procedure)를 수행할 수 있다.
[42] 상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 (S307) 및 물리 상향링크 공유 채널 (Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널 (Physical Uplink Control Channel; PUCCH) 전송 (S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보 (Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
[43] 한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크 /상향링크 ACK/NACK 신호, CQI (Channel Quality Indicator), PMI (Precoding Matrix 인텍스), RI (Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH및 /또는 PUCCH를 통해 전송할 수 있다.
[44] 도 4는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
[45] 도 4를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13-11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호 (Reference Signal (RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 증에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH( Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
[46] PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element 그룹)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파 X하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
[47] PHICH는 물리 HARQ Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 샐 특정 (ceU-specific)하게 스크램블 (scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산 인자 (Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매큉되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다증화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및 /또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복 (repetition)된다.
[48] PDCCH는 물리 하향링크 제어 채널로서 서브프레임와 처음 n개의 OFDM심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE(Control Channel Element)로 구성된다. PDCCH는 전송 채널인 PCH( Paging channel) 및 DL-SCH (Down link-shared channel)의 자원 할당과 관련된 정보, 상향링크 스케줄링 그랜트 (Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH( Paging channel) 및 DL-SCH (Down link- shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
[49] PDSCH의 데이터가 어떤 단말 (하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩 (decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI (Radio Network Temporary Identity)로 CRC(cycl ic redundancy check) 마스킹 (masking)되어 있고, "B"라는 무선자원 (예, 주파수 위치) 및 "C"라는 전송형식정보 (예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 샐 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
[50] 도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
[51] 도 5를 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 AC /NACK, 하향링크 채널 상태를 나타내는 CQKChannel Quality Indicator), MIM0를 위한 RKRank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑 (frequency hopping)된다. 특히, 도 5는 m=0인 PUCCH, m=l인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
[52] 도 6은 LTE TDD 시스템에서 무선 프레임의 구조를 예시한다. LTE TDD 시스템에서 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며ᅳ 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간 (Guard Period, GP) 및 UpPTSOJplink Pilot Time Slot)을 포함하는 특별 서브프레임 (special subframe)으로 구성된다.
[53] 상기 특별 서브프레임에세 DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
[54] 상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1과 같이 설정을 정의하고 있다. 표 1에서 rs = 1/(15000x2048)인 경우 DwPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
[55] 【표 1】
Figure imgf000013_0001
[56] 한편, LTE TDD 시스템에서 상향링크 /하향링크 서브프레임 설정 (UL/DL configuration)은 아래의 표 2과 같다.
[57] 【표 2】
Figure imgf000013_0002
[58 ¾ "기 표 2에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2는 각각의 시스템에서 상향링크 /하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.
[59] 또한, TDD 시스템에서 상향링크 /하향링크 서브프레임 설정 별 상향링크 동기 HARQ 프로세스 (synchronous UL HARQ process)의 개수는 아래 표 3과 같다.
[60] 【표 3】
Figure imgf000014_0001
[61] 또한, 아래 표 4는 상향링크 /하향링크 서브프레임 설정 별 PHICH 타임라인을 나타낸다. 표 4에서는, 단말이 기지국으로부터 수신한 상향링크 스케줄링 정보, 예를 들어 상향링크 그랜트를 기반으로 PUSCH를 서브프레임 #n에서 전송하였다면, 해당 PUSCH와 연동된 PHICH를 서브프레임 #(n+ 에서 수신하게 됨을 의미하며, kPHICH는 아래 표 4에서 주어진다.
[62] 【표 4】
Figure imgf000014_0002
[63] 또한, 아래 표 5는 PUSCH (재)전송 타임라인을 나타내며, 아래 1) 내지 4)의 조건들을 기반으로, 단말의 PUSCH (재)전송 시점이 결정된다. [64] 1) 상향링크 /하향링크 서브프레임 설정 #1 내지 #6에서는, 서브프레임 #n에서 PDCCH (즉, 상향링크 그랜트) 및 /또는 PHICH를 검출하였다면, 대웅하는 PUSCH 전송 또는 재전송이 서브프레임 #(n+k)에서 이루어지며, k는 아래 표 5에서 주어진다.
[65] 2) 상향링크 /하향링크 서브프레임 설정 #0에서는, 서브프레임 #n에서 PDCCH (즉, 상향링크 그랜트) 및 /또는 PHICH를 검출하고, 상향링크 그랜트의 UL 인덱스의
MSB (Most Significant Bit)가 1이거나, PHICH가 =o에 대응하는 자원 상에서 서브프레임 #0 또는 서브프레임 #5에서 수신되었다면, 대응하는 PUSCH 전송 또는 재전송이 서브프레임 #(n+k)에서 이루어지며, k는 마찬가지로 아래 표 5에서 주어진다.
[66] 3) 또한, 상향링크 /하향링크 서브프레임 설정 #0에서는, 상향링크 그랜트의
UL 인덱스의 LSB (Least Significant Bit)가 1이거나, PHICH가 ^WOT =1에 대웅하는 자원 상에서 서브프레임 #0 또는 서브프레임 #5에서 수신되거나, PHICH가 서브프레임 #1 또는 서브프레임 #6에서 수신되었다면, 대응하는 PUSCH 전송 또는 재전송이 서브프레임 #(n+7)에서 이투어진다.
[67] 4) 마지막으로, 상향링크 /하향링크 서브프레임 설정 #0에서는, 상향링크 그랜트의 UL 인덱스의 MSB 및 LSB 가 모두 1이라면, 대응하는 PUSCH 전송 또는 재전송이 서브프레임 #(n+k) 및 서브프레임 #(n+7)에서 이루어지며, k는 마찬가지로 아래 표 5에서 주어진다.
[68] 【표 5】
Figure imgf000015_0001
[69] 또한, 아래 표 6은 상향링크 ACK/NACK 타임라인을 나타내며, 만약 단말 o 서브프레임 #(n-k)에서 기지국으로부터 PDCCH와 해당 PDCCH에 의해서 스케줄링된 PDSCH를 수신하였다면, 수신한 PDSCH에 대한 상향링크 ACK/NACK 을 서브프레임 #n에서 전송하게 됨을 의미한다.
[70] 【표 6】
Figure imgf000016_0001
[71] 도 7은 단말 간 직접 통신의 개념도이다. 특히, 도 7에서는, UE #A와 기지국 간의 통신과 UE # 와 UE #B 간의 단말 간 직접 통신을 동시에 수행하는 상황에 대한 일례를 나타낸다.
[72] 도 7을 참조하면, 특정 단말의 관점에서 단말 간 직접 통신과 단말-기지국 간의 통신은 시간 자원 영역 측면 (예를 들어, 서브프레임 단위)에서 분리되어 수행된다고 가정하였으며, 이와 같은 동작은 특정 단말이 기지국에게 전송하는 신호와 해당 단말이 다른 단말에게 전송하는 신호는 서로 다른 시점에서 수행됨올 의미한다. 추가적으로 본 발명의 내용은 특정 단말의 관점에서 단말 간 직접 통신과 단말-기지국 간의 통신이 주파수 자원 영역 측면 흑은 시간 /주파수 자원 영역 측면에서 분리되어 수행되는 경우에도 확장 적용될 수 가 있다.
[73] 단말 간 직접 통신은 해당 통신이 수행될 경우에 들어오는 (평균) 간섭 양을 고려하여, 기지국 -단말 간의 하향링크 통신이 이루어지는 시간 /주파수 자원 영역이 아난 단말-기지국 간의 상향링크 통신이 이루어지는 시간 /주파수 자원을 사용하는 것이 효율적이다.
[74] 일반적으로 기지국 -단말 간의 하향링크 통신보다 상대적으로 낮은 전송 전력을 기반으로 단말-기지국 간의 상향링크 통신이 이루어지며, 이로 인해서 단말-기지국 간의 상향링크 통신으로 인해 발생되는 (평균) 간섭 양이 기지국 -단말 간의 하향링크 통신으로 인해 발생되는 간섭 양보다 확률적으로 적기 때문이다. 반면에 단말 간 직접 통신이 단말-기지국 간의 상향링크 통신을 목적으로 지정된 시간 /주파수 자원을 사용하여 수행될 경우, 기지국 혹은 단말의 관점에서 단말 간 직접 통신은 새로운 유형의 간섭, 예를 들어 기지국의 상향링크 데이터 수신에 대한 간섭, 단말 간의 직접 통신에서 데이터를 수신하는 단말에 대한 간섭으로 나타날 수 있다.
[75] 따라서, 단말-기지국 간의 상향링크 통신과 단말 간 직접 통신 사이에 발생되는 간섭을 효율적으로 완화시키기 위하여, 기지국이 직접적으로 단말 간 직접 통신을 제어할 수 있다. 예를 들어, 기지국이 단말 간 직접 통신을 지원하기 위해 스케줄링 정보 전송 및 전송 전력 제어를 수행할 수 있으며, 해당 통신에 참여하는 단말들은 기지국의 이와 같은 동작이 효율적으로 수행되도록 하기 위해서 데이터 수신의 성공 여부를 나타내는 ACK/NACK 정보 혹은 채널 측정 정보를 기지국에게 보고할 수 도 있다.
[76] 한편, 3GPP LTE 시스템은 상향링크 HARQ 동작을 위해서 동기적 (synchronous) HARQ 방식을 사용하고 있다. 동기적 HARQ 방식은 초기 전송이 실패했을 경우, 이 후의 재전송이 시스템에 의해 정해진 시점에서 이루어지는 방식이다. 즉, 특정 HARQ 프로세스의 전송 /재전송 (흑은 상향링크 그랜트 /PHICH 타임라인 혹은 상향링크 ACK/NACK 타임라인)이 일어나는 위치 (혹은 시점)는 사전에 정의되며, 임의로 변경될 수가 없다는 것을 의미한다.
[77] 기지국이 단말 간 직접 통신을 스케줄링하는 경우, 단말 간 직접 통신은 기존의 HARQ 동작과는 다른, 추가적인 HARQ 동작 방법이 요구된다. 예를 들어, UE #/와 UE #B 간의 직접 통신 절차에 대해서 간단히 설명하면, 기지국이 UE #A에게 UE #/\와 UE #B 간의 직접 통신을 위한 스케줄링 정보를 전송하고, 이를 수신한 UE ^는 사전에 정해진 이후의 특정 시점에서 이전에 수신한 스케줄링 정보를 바탕으로 UE #B로 데이터를 전송하게 된다.
[78] 여기서, 기지국이 UE #A에게 전송하는 UE #A와 UE #B 간의 직접 통신을 위한 스케줄링 정보에는 해당 정보가 UE # 와 UE #B 간의 직접 통신을 위해서 전송되었음을 알려주는 지시자 (indicator) 흑은 UE #八와 IE #B 간의 직접 통신 수행을 지시하는 지시자 등이 포함되어 있을 수 도 있다.
[79] UE ^는 UE #A로부터 수신한 데이터의 복조 성공 여부를 나타내는 ACK/NACK 정보를 사전에 정해진 이후의 특정 시점에서 기지국으로 보고하게 된다. 여기서, 기지국은 UE #B로부터 수신한 ACK/NACK 정보를 기반으로 UE #A에게 해당 데이터의 재전송 여부를 지시할 수 있으며, 특히, 동기적 HARQ 방식이 이용될 경우에는 스케줄링 정보 전송 (예를 들어, 상향링크 그랜트 /PHICH), 데이터 전송, ACK/NACK 전송 등이 사전에 정의된 시점을 기반으로 수행된다.
[80] 아래 제안 방식들은, 특정 단말이 단말-기지국 간의 통신뿐만 아니라 단말 간 직접 통신 하에서 해당 단말의 HARQ 동작을 효율적으로 운영하는 방법을 제안한다. 이하에서는, TDD 시스템을 기반으로 설명하지만, HARQ 타임라인 (예를 들어, PUSCH 송신 ^ PHICH 수신, PHICH/상향링크 그랜트 수신 ^ PUSCH (재)송신, PDSCH 수신 ^상향링크 ACK/NACK 송신)을 4ms로 수정한다면 FDD 시스템에서도 확장 적용될 수 가 있다.
[81] <제 1 실시예 >
[82] 본 발명의 제 1 실시예에서는, 특정 단말이 단말—기지국 간의 통신뿐만 아니라 단말 간 직접 통신 하에서, 단말 간 직접 통신이 해당 단말의 단말-기지국 간의 상향링크 통신에 이용되는 HARQ 프로세스들에 미치는 영향을 최소화하기 위해, 단말 간 직접 통신의 HARQ 주기를 단말-기지국 간의 상향링크 통신 HARQ 주기의 배수로 설정하는 것을 제안한다.
[83] 여기서, HARQ 주기는 초기 전송이 수행된 서브프레임을 서브프레임 #n이라고 가정할 경우, '서브프레임 m modulo 10) = 서브프레임 #(n modulo 10)' 을 만족시키는 서브프레임 #n 이후의 서브프레임 #m에서 재전송이 수행될 때까지 요구되는 시간을 의미한다. 예를 들어, 상향링크 /하향링크 서브프레임 설정 #1~#5에서는 단말 간 직접 통신의 HARQ 주기를 20ms, 상향링크 /하향링크 서브프레임 설정 #0은 단말 간 직접 통신의 HARQ 주기를 140ms, 상향링크 /하향링크 서브프레임 설정 #6은 단말 간 직접 통신의 HARQ 주기를 120ms로 각각 설정할 수 있다. [84] 도 8은 본 발명의 제 1 실시예에 따라, 단말 간 직접 통신의 HARQ 주기를 단말-기지국 간의 상향링크 통신 HARQ 주기의 배수로 설정한 예를 도시한다. 특히, 도 8은 상향링크 HARQ 프로세스가 4개인 상향링크 /하향링크 서브프레임 설정 #1이 적용된 것으로 가정하였다.
[85] 도 8을 참조하면, IE #2 입장에서는, 서브프레임 #11에서 UE #1으로부터 신호를 수신하고, 이후 서브프레임 #31에서 다시 UE #1으로부터 신호를 수신하는 것을 알 수 있다. 따라서, 단말 간 직접 통신 HARQ 주기는 단말-기지국 간의 상량링크 통신 HARQ 주기의 2배인 20ms로 설정되었으며, 해당 단말 간 직접 통신으로 인해서 영향을 받는 단말-기지국 간의 상향링크 통신에 이용되는 HARQ 프로세스 개수는 1개 (즉, 상향링크 HARQ 프로세스 #0)임을 알수 있다.
[86] <제 2 실시예 >
[87] 특정 단말이 단말ᅳ기지국 간의 통신뿐만 아니라 단말 간 직접 통신을 수행하는 상황 하에서, 상기 특정 단말이 단말 간 직접 통신의 상대 단말로부터 수신한 데이터에 대한 ACK/NACK 정보는 아래의 조건을 만족하는 서브프레임을 통해서 기지국 (혹은 단말 간 직접 통신의 상대 단말)에게 보고할 수 있다.
[88] (1) 단말 간 직접 통신의 데이터 수신 시점과 연동된 특정 HARQ 프로세스 상에서 데이터 수신 시점을 포함하여 (혹은 포함하지 않고), 그 이후에 가장 가까운 하향링크 서브프레임과 연동된 상향링크 서브프레임.
[89] (2) 데이터 수신 시점인 서브프레임 ^을 포함하여 (흑은 포함하지 않고), 그 이후에 서브프레임 #(n+4)를 포함하여 그 이후의 가장 가까운 상향링크 서브프레임. 특히, 여기서 상향링크 서.브프레임은, 해당 상향링크 /하향링크 서브프레임 설정 상의 모든 상향링크 서브프레임, 기존에 ACK/NACK 정보 전송 용도로 사용되는 상향링크 서브프레임 및 사전에 상위 계층 신호 혹은 물리 계층 신호를 통해서 지정된 특정 (위치의) 서브프레임 등으로 정의될 수 있다.
[90] (3) 사전에 정의된 특정 HARQ 프로세스 상에서 데이터 수신 시점을 포함하여 (혹은 포함하지 않고), 그 이후에 가장 가까운 하향링크 서브프레임과 연동된 상향링크 서브프레임.
[91] 도 8은 상기 (1)의 서브프레임에서 ACK/NACK을 송신하는 경우를 도시한 것이며, 이하에서는 제안 방식에 대한 설명의 편의를 위해서 특별한 언급이 없을 경우에는 상기 (1)의 서브프레임에서 ACK/NACK을 송신하는 경우를 가정한다.
[92] <제 3 실시예 >
[93] 특정 단말이 단말-기지국 간의 통신뿐만 아니라 단말 간 직접 통신을 수행하는 상황 하에서, 단말 간 직접 통신으로 이용되는 특정 HARQ 프로세스를 사전에 설정된 시간 오프셋 (time offset) 값이 적용된 형태로 단말-기지국 간의 상향링크 통신에도 병렬적 (parallel)으로 (흑은 공유하여) 이용할 수 있다.
[94] 특히, 단말-기지국 간의 상향링크 통신에 이용되는 특정 HARQ 프로세스의 주기는 단말 간 직접 통신에 이용되는 특정 HARQ 프로세스의 주기와 동일한 값 흑은 배수로 설정될 수 있으며, 단말 간 직접 통신과 단말-기지국 간의 상향링크 통신은 사전에 설정된 시간 오프셋 값을 기반으로 서로 다른 타이밍에 특정 HARQ 프로세스를 사용 (혹은 공유)할 수 가 있다. 여기서, 상기의 단말 간 직접 통신과 단말-기지국 간의 통신이 공유하는 특정 HARQ 프로세스에 대한 정보 및 시간 오프셋 값에 대한 정보는 사전에 기지국이 해당 통신에 참여하는 단말들에게 상위 계층 신호 혹은 물리 계층 신호를 통해서 알려줄 수 도 있다.
[95] 또한, 단말 간 직접 통신과 단말-기지국 간의 통신 사이에 적용되는 시간 오프셋 값은 사전에 설정된 단말 간 직접 통신 HARQ 주기의 1/2 값으로 정의될 수 가 있다. 일례로 상기 제 1 실시예가 적용된 상황에서 상향링크 /하향링크 서브프레임 설정 #1~#5에서는 10ms, 상향링크 /하향링크 서브프레임 설정 #0은 70ms, 상향링크 /하향링크 서브프레임 설정 #0은 60ms로 각각 설정될 수 있다.
[96] 도 9는 본 발명의 제 3 실시예에 따라, 단말 간 직접 통신으로 이용되는 특정 HARQ 프로세스를 시간 오프셋 값이 적용된 형태로 단말-기지국 간의 상향링크 통신에 공용하는 예를 도시한다. 특히, 도 9는 상향링크 HARQ 프로세스가 4개인 상향링크 /하향링크 서브프레임 설정 #1가 적용된 상황을 가정한다.
[97] 도 9를 참조하면, 단말 간 직접 통신과 단말 -기지국 간의 통신 사이에 적용되는 시간 오프셋 값은 10ms (즉, 단말 간 직접 통신 HARQ 주기인 20ms의 1/2 값)로 설정한 것을 알 수 있다. 또한, 단말 간 직접 통신 (UE #1ᅳ UE #2)과 단말ᅳ 기지국 간의 상향링크 통신 (UE #1ᅳ eNB)은 사전에 설정된 10ms의 시간 오프셋을 기반으로, 상향링크 HARQ 프로세스 #0을 서로 다른 타이밍에 사용 (혹은 공유)하고 있음을 볼 수 있다.
[98] 도 10는 본 발명의 제 3 실시예에 따라, 단말 간 직접 통신으로 이용되는 특정 HARQ 프로세스를 시간 오프셋 값이 적용된 형태로 단말-기지국 간의 상향링크 통신에 공용하는 다른 예를 도시한다. 마찬가지로, 도 10도 상향링크 HARQ 프로세스가 4개인 상향링크 /하향링크 서브프레임 설정 #1가 적용된 상황을 가정한다.
[99] 도 10을 참조하면, 단말 간 직접 통신과 단말-기지국 간의 통신 사이에 적용되는 시간 오프셋 값은 10ms (즉, 단말 간 직접 통신 HARQ 주기인 20ms의 1/2 값)로 설정한 것을 알 수 있다. 또한, 단말 간 직접 통신 (UE #1 UE #2)과 단말- 기지국 간의 상향링크 통신 (UE #2 eNB)은 사전에 설정된 10ms의 시간 오프셋을 기반으로, 상향링크 HARQ 프로세스 #0을 서로 다른 타이밍에 사용 (혹은 공유)하고 있음을 볼 수 있다. 다만, 도 10은, UE #2가 PUSCH 와 PUCCH 동시 전송 능력 (CAPABLITY)이 있고, 그러한 능력의 활성화가 설정되어 있어야 하는 것이 전제된다.
[100] <제 4 실시예 >
[101] 특정 단말이 단말-기지국 간의 통신뿐만 아니라 단말 간 직접 통신을 수행하는 상황 하에서, 단말 간 직접 통신에 참여하는 단말들 중 다른 특정 단말로부터 데이터를 수신하게 되는 단말은 해당 데이터에 대한 스케줄링 정보 (예를 들어ᅳ 무선 자원 위치 정보, MCS( Modulation and Coding Scheme) 정보, 송신 데이터의 RV( redundancy version) 정보, NDI(new data indicator) 정보, 안테나 포트 정보 등)를 "해당 데이터 수신 시점을 포함하여 그 이전의 (혹은 포함하지 않고 그 이전의) 가장 가까운 상향링크 그랜트 전송 서브프레임 혹은 하향링크 단독 (DL standalone) 서브프레임 혹은 (상향링크 /하향링크 서브프레임 설정 상의 모든) 하향링크 서브프레임" 또는 "기지국이 데이터 송신 단말에게 단말 간 직접 통신을 위한 스케줄링 정보를 알려주는 시점" 에서 수신하도록 사전에 규칙을 설정할 수 도 있다ᅳ 여기서, 하향링크 단독 서브프레임이란, 특정 시점의 상향링크 데이터 전송을 위한 상향링크 그랜트가 전송되지 않는 서브프레임을 지시한다. [102] 또한, 특정 단말로부터 데이터를 수신하게 되는 단말은, 해당 데이터에 대한 스케즐링 정보 수신을 위해서 사전에 설정된 규칙 기반의 특정 서브프레임들에서 블라인드 디코딩 (blind decoding; BD)을 수행할 수 가 있다. 블라인드 디코딩 수행 과정에서 단말 간 직접 통신에 대한 스케줄링 정보를 의미하는 지시자가 포함된 스케즐링 정보가 검출되었을 경우, 특정 단말은 해당 스케줄링 정보 (예를 들어, 데이터를 전송 /수신하는 단말에 대한 정보, 데이터 전송에 사용되는 자원 영역 /위치에 대한 정보)를 기반으로 다른 단말로부터 데이터를 수신하게 된다. 나아가 상기의 스케줄링 정보를 전송하는 주체는 단말 간 직접 통신을 제어하는 기지국 혹은 특정 단말로 데이터를 전송하는 또 다른 단말이 될 수 도 있다.
[103] 추가적으로, 상기 설명한 스케줄링 정보가 전송되는 상향링크 그랜트 전송 서브프레임에 대한 범주는, 단말 간 직접 통신에 이용되는 특정 HARQ 프로세스 타임라인에 속하는 상향링크 그랜트 전송 하향링크 서브프레임들로 한정되거나 혹은 사전에 설정된 상향링크 /하향링크 서브프레임 설정에 의해서 정해진 모든 상향링크 그랜트 하향링크 서브프레임들이 될 수 있다. 특히, 상기 도 8 내지 도 10은 전자의 방식, 즉 단말 간 직접 통신에 이용되는 특정 HARQ 프로세스 타임라인에 속하는 상향링크 그랜트 전송 하향링크 서브프레임들로 한정된 경우에 대한 예시들이다. '
[104] 도 11과 도 12는 본 발명의 제 4 실시예에 따라, 단말 간 직접 통신을 위한 스케줄링 정보가 전송되는 상향링크 그랜트 전송 하향링크 서브프레임을 예시하는 도면들이다. 특히, 도 11 및 도 12는 상향링크 HARQ 프로세스가 4개인 상향링크 /하향링크 서브프레임 설정 #1이 적용된 상황을 가정하였다.
[105] 도 11 은 기지국이 특정 단말로부터 데이터를 수신하는 단말에게, 해당 데이터에 대한 스케줄링 정보를, 해당 데이터 수신 시점을 포함하여 이전의 가장 가까운 하향링크 단독 서브프레임에서 알려주는 경우를 도시한다. 따라서, UE #2가 UE #1으로부터 단말 간 직접 통신으로 데이터를 수신하기 위한 스케줄링 정보는, eNB가 서브프레임 #5 및 서브프레임 #25 에서 송신되는 것을 알 수 있다.
[106] 또한, 도 12는 기지국이 특정 단말로부터 데이터를 수신하는 단말에게, 해당 데이터에 대한 스케줄링 정보를, 해당 데이터 수신 시점을 포함하여 이전의 가장 가까운, (상향링크 /하향링크 서브프레임 설정 상의 모든) 하향링크 서브프레임에서 알려주는 경우를 도시한다. 특히, 도 12에서는 서브프레임 #6이 서브프레임 #7에서 가장 가까운 상향링크 그랜트 수신 하향링크 서브프레임이라는 것을 알 수 있다. 따라서, UE #2가 UE #1으로부터 단말 간 직접 통신으로 데이터를 수신하기 위한 스케즐링 정보는, eNB가 서브프레임 #6 및 서브프레임 #26에서 송신되는 것을 알 수 있다.
[107] <제 5 실시예 >
[108] 특정 단말이 단말-기지국 간의 통신뿐만 아니라 단말 간 직접 통신을 수행하는 상황 하에서, 기지국은 특정 단말에게 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정과 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정을, 각각 독립적으로 상위 계층 신호 흑은 물리 계층 신호를 통해서 알려줄 수 있다.
[109] 또는, 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정은 시스템 정보 블록 (SIB)을 통해서 설정된 상향링크 /하향링크 서브프레임 설정으로 암묵적 (implicit)으로 간주하도록 정의할 수도 있다. 이와 같은 경우에는 기지국이 단말에게 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정만을 상위 계층 신호 혹은 물리 계층 신호를 통해서 독립적으로 알려줄 수 가 있다.
[110] 한편, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정은, 특정 단말이 다른 단말로부터 데이터를 수신하거나 해당 데이터 수신에 대한 ACK/NACK 정보를 보고하는 용도로만 이용될 수 있으며, 해당 단말이 다른 단말 (혹은 기지국)로 데이터를 전송하는 경우에는 기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정을 기반으로 동작될 수 있다. 이는, 특히 기지국이 단말 간 직접 통신을 제어하는 상황 (즉, 특정 단말의 다른 단말로의 데이터 전송을 기지국이 (직접적으로) 제어하는 상황)에서 효율적이다.
[111] 구체적으로, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정과 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정 사이에는, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합이 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합에 속하거나 동일한 관계가 만족되도록 설정될 수 있다. 혹은, 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정의 하향링크 서브프레임 집합이 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 하향링크 서브프레임 집합에 속하거나 동일한 관계가 만족되도록 설정될 수도 있다.
[112] 여기서, 특정 단말로부터 데이터를 수신하는 단말은, 해당 데이터 수신에 대한 ACK/NACK 정보를, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정 기반의 HARQ 타임라인을 이용하여, 기지국 (혹은 단말 간 직접 통신의 대상 단말)로 전송할 수 있다.
[113] 추가적으로, 단말 간 직접 통신이 수행되는 서브프레임 범주를, 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정에서 상향링크 서브프레임으로서, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정에서는 하향링크 서브프레임인 시점 (또는 위치)으로 제한을 할 수 있다. 이와 같은 방법에 의하면, 단말 간 직접 통신에서 특정 단말이 서브프레임 #n에서, 단말-단말간의 통신을 위한 상향링크 /하향링크 서브프레임 설정에 기반하여 다른 단말로부터 데이터를 수신하고, 해당 단말이 서브프레임 #(n+l)에서 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정에 기반하여 기지국으로 상향링크 데이터 전송하거나 특정 단말에게 데이터 전송을 수행해야 할 경우, 서브프레임 #η을 사전에 정의된 TDD 시스템의 특별 서브프레임 (혹은 단축 (shortened) 하향링크 서브프레임)으로 설정함으로써, 후행하는 서브프레임 #(n+l)에서의 데이터 전송을 위한 수신 -송신 스위칭 타임 흑은 TA timing advance)을 보장받을 수 있다. 여기서, 특별 서브프레임 혹은 단축 하향링크 서브프레임은 정상적인 (normal) 하향링크 서브프레임에 비하여 하향링크 데이터 전송 용도로 사용되는 OFDM 심볼의 수가 상대적으로 적은 사전에 정의된 서브프레임을 의미한다.
[114] 한편, 특정 단말이 후행하는 서브프레임에서 기지국으로 상향링크 데이터를 전송할 경우, 사전에 설정된 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정을 기반으로 동작할 수 가 있으며, 후행하는 서브프레임에서 다른 단말로 데이터 전송을 수행할 때에는 사전에 설정된 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정 (혹은 사전에 설정된 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정)을 기반으로 동작할 수 가 있다.
[115] 또는, 특정 단말이 서브프레임 #n (예를 들어, 상향링크서브프레임 #n 혹은 하향링크 서브프레임 #n)에서 다른 단말로부터 데이터를 수신하고, 후행하는 서브프레임 #(n+l)이 상향링크 데이터 전송 용도로 설정되어 있을 경우, 서브프레임 #(n+l)은 해당 단말의 상향링크 데이터 전송의 용도로 사용되지 않도록 규칙을 사전에 설정할 수 있다. 여기서, 서브프레임 #(n+l)이 (비)주기적 SRS 전송 시점 혹은 (비)주기적 채널 상태 정보 (CSI) 보고가 수행되는 시점일 경우, 예외적으로 SRS, CSI 전송을 수행하거나, 혹은 SRS, CSI 전송을 생략하거나, 흑은 이후의 사용 가능한 상향링크 서브프레임에서 (재)전송 할 수 도 있다. 또한, (비)주기적 SRS (재)전송이 수행되는 상향링크 서브프레임의 범주는 상향링크 용도로 설정된 모든 서브프레임 혹은 (비)주기적 SRS 전송의 용도로 사용되는 상향링크 서브프레임으로 한정할 수 도 있다. 이러한 방법은 기지국이 단말에게 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정을 추가적으로 알려주는 경우 혹은 하나의 상향링크 /하향링크 서브프레임 설정을 기반으로 단말- 기지국 간의 통신과 단말 간 직접 통신이 수행되는 경우에도 확장 적용 가능하다.
[116] 나아가, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정과 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정 사이의 관계를, 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합이 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합에 포함되거나 동일하도톡 설정할 수 도 있다. 흑은, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 하향링크 서브프레임 집합이 단말ᅳ기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정의 하향링크 서브프레임에 포함되거나 동일하도록 설정할 수 도 있다.
[117] 상기의 제안 방식들에서의 집합 관계는 단순히 상향링크 /하향링크 서브프레임 위치 (혹은 개수) 간의 포함 관계를 의미하거나 혹은 해당 상향링크 /하향링크 서브프레임으로 이루어지는 HARQ 타임라인 상의 .포함 관계 (예를 들어, 상향링크 ACK/NACK 타임라인, PHICH/상향링크 그랜트 타임라인 등)를 의미할 수도 있다.
[118] 또한, 기지국이 단말에게 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정을 추가적으로 알려주는 경우, (비)주기적 SRS 전송 (흑은 (비)주기적 CSI 보고)에 대한 설정은 단말-기지국 간의 통신을 위해 설정된 상향링크 /하향링크 서브프레임 설정을 기반으로 정의되거나, 혹은 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정과 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정이 동시에 상향링크 서브프레임으로 설정된 시점을 기반으로 정의될 수 도 있다.
[119] 도 13은 본 발명의 제 5 실시예에 따른 상향링크 HARQ .동작을 예시하는 도면이다. 특히, 도 13은, 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합이 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합에 포함되거나 동일하도록 설정된 경우를 가정한다.
[120] 또한, 단말-기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정은 상향링크 HARQ 프로세스가 3개인 상향링크 /하향링크 서브프레임 설정 #3으로 설정되고, 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정은 상향링크 HARQ 프로세스가 2개인 상향링크 /하향링크 서브프레임 설정 #4로 설정한 상황을 가정하였다.
[121] 도 13을 참조하면, UE #1이 UE #2에게 데이터를 전송할 때에는 상향링크 /하향링크 서브프레임 설정 #3를 기반으로 동작하며, UE #2가 UE #1로부터 데이터를 수신할 경우에는 상향링크 /하향링크 서브프레임 설정 #4를 기반으로 동작한는 것을 알 수 있다.
[122] 또한, UE #2가 UE #1으로부터 데이터를 수신할 경우, 해당 데이터에 대한 ACK/NACK 정보를 상향링크 /하향링크 서브프레임 설정 #4 기반의 HARQ 타임라인을 이용하여 기지국으로 전송하게 되며, UE #1과 UE #2 간의 통신은 단말ᅳ기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정이 상향링크 서브프레임이고 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정이 하향링크 서브프레임인 시점에서만 수행되도록 규칙을 설정하였다. 특히, 제 5 실시예가 적용될 경우, UE #1의 관점에서 단말 간 직접 통신으로 영향을 받는 단말-기지국 간의 상향링크 통신에 이용되는 HARQ 프로세스 개수는 1개이며, 데이터 통신 주기 즉, 단말 간 직접 통신의 데이터 수신 주기는 10ms가 된다.
[123] <제 6 실시예 >
[124] 특정 단말이 단말-기지국 간의 통신뿐만 아니라 단말 간 직접 통신을 수행하는 상황 하에서, 기지국은 특정 단말에게 단말 간 직접 통신을 위한 HARQ 타임라인 정보 (예를 들어, 상향링크 ACK/NACK 타임라인, PHICH/상향링크 그랜트 타임라인, PUSCH (재)전송 타임라인 등)를 추가적으로 상위 계층 신호 혹은 물리 계층 신호를 통해서 알려줄 수 도 있다.
[125] 여기서, 해당 HARQ 타임라인 정보는 사전에 단말 간 직접 통신을 위해 설정된 상향링크 /하향링크 서브프레임 설정과는 독립적으로 설정될 수 있으며, 기지국이 추가적으로 알려주는 단말 간 직접 통신을 위한 HARQ 타임라인은 상향링크 /하향링크 서브프레임 설정으로 설정 가능한 후보들 (예를 들어, 상향링크 /하향링크 서브프레임 설정 #0~ 상향링크 /하향링크 서브프레임 설정 #6)의 전체 흑은 일부 HARQ 타임라인을 재사용하거나 또는 사전에 새롭게 정의된 HARQ 타임라인으로 구현될 수 도 있다.
[126] 또한, 추가적으로 알려주는 HARQ 타임라인을 제외한 나머지 HARQ 타임라인들은 사전에 단말 간 직접 통신을 위해 설정된 상향링크 /하향링크 서브프레임 설정의 HARQ 타임라인을 암묵적 (implicit)으로 따르는 것으로 정의할 수 있다.
[127] 도 14는 본 발명의 제 6 실시예에 따른 상향링크 HARQ 동작을 예시하는 도면이다. 특히, 도 14는 상향링크 HARQ 프로세스가 4개인 상향링크 /하향링크 서브프레임 설정 #1로 설정된 상황으로서, 기지국이 특정 단말에게 다른 단말로부터 데이터를 수신하였을 경우에 해당 데이터 수신에 대한 ACK/NACK 정보를 상향링크 HARQ 프로세스가 2개인 상향링크 /하향링크 서브프레임 설정 #2의 상향링크 ACK/NACK 타임라임을 따르도록 상위 계층 신호를 통해서 추가적으로 시그널링한 것으로 가정한다 .
[128] 도 14를 참조하면, UE #2가 UE #1으로부터 서브프레임 #8에서 데이터를 수신하였을 경우, 상향링크 /하향링크 서브프레임 설정 #1의 상향링크 ACK/NACK 타임라인 (즉, 서브프레임 #18)이 아닌 상향링크 /하향링크 서브프레임 설정 #2의 상향링크 ACK/NACK 타임라인을 기반으로 서브프레임 #22에서 해당 데이터 수신에 대한 상향링크 ACK/NACK을 기지국으로 전송함을 알 수 있다. 따라서, 제 6 실시예를 적용할 경우, 상향링크 HA Q 프로세스 #1을 기반으로 데이터 통신 주기 즉, 단말 간 직접 통신의 데이터 수신 주기는 10ms가 된다.
[129] 추가적인 방법으로 단말ᅳ기지국 간의 통신을 위한 상향링크 /하향링크 서브프레임 설정과 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정 사이에 의도적으로 서브프레임 단위 (혹은 사전에 정의된 특정 단위)의 시간 오프셋 (time offset)을 설정해줌으로써 두 가지 종류의 통신이 효율적으로 수행되도록 할 수 도 있다. 예를 들어, 단말-기지국 간의 통신과 단말 간 직접 통신은 각각 사전에 해당 통신을 위해 설정된 시간 오프셋을 기반으로 동작될 수 가 있다. 이와 같은 방식은 기지국이 단말에게 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정을 추가적으로 알려주는 경우 혹은 하나의 상향링크 /하향링크 서브프레임 설정을 기반으로 단말-기지국 간의 통신과 단말 간 직접 통신이 수행되는 경우에도 확장 적용 가능하다.
[130] 상술한 본 발명의 실시예들은 반송파 집성 기법이 적용된 환경 하에서, 특정 콤포넌트 반송파 (혹은 셀)를 단말 간 직접 통신에 이용할 경우, 흑은 특정 콤포넌트 반송파 (혹은 셀)는 단말-기지국 간의 통신에 이용하고 다른 콤포년트 반송파 (혹은 셀)는 단말 간 직접 통신에 이용할 경우에도 확장 적용 가능하다. 또한, 상술한 본 발명의 실시예들은 반송파 집성 기법이 적용된 환경 하에서 확장 반송파 (extension carrier)를 기반으로 단말 간 직접 통신이 수행될 '경우에도 확장 적용 가능하다.
[131] 상술한 본 발명의 실시예들은 기지국이 단말 간 직접 통신을 제어하는 상황뿐만 아니라 단말 간 직접 통신이 사전에 정해진 규칙을 기반으로 기지국의 제어 없이 수행되는 상황에서도 확장 적용 가능하다. [132] 추가적으로 상기의 제안 방식들은 특정 단말이 기지국으로부터 전송되는 데이터를 중계기 (relay node)를 통해서 수신하는 경우나 사전에 정의된 특정 단말을 통해서 수신 받는 경우 (즉, UE 릴레이 방식)에도 확장 적용 가능하다.
[133] 도 15는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
[134] 도 15를 참조하면, 통신 장치 (1500)는 프로세서 (1510), 메모리 (1520), RF 모듈 (1530), 디스플레이 모들 (1540) 및 사용자 인터페이스 모들 (1550)을 포함한다.
[135] 통신 장치 (1500)는 설명의 편의를 위해 도시된 것으로서 일부 모들은 생략될 수 있다. 또한, 통신 장치 (1500)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치 (1500)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 았다. 프로세서 (1510)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서 (1510)의 자세한 동작은 도 1 내지 도 14에 기재된 내용을 참조할 수 있다.
[136] 메모리 (1520)는 프로세서 (1510)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈 (1530)은 프로세서 (1510)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모들 (1530)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모들 (1540)은 프로세서 (1510)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈 (1540)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), 0LED(0rganic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈 (1550)은 프로세서 (1510)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
[137] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다 .
[138] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firaware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICsCappl icat ion specific integrated circuits) , DSPs(digital signal processors) , DSPDs(digital signal processing devices) , PUs( programmable logic devices) , FPGAs(f ield programmable gate arrays) , 프로세서, 콘트를러 , 마이크로 콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[139] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다. ,
[140] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다론 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
[141] 상술한 바와 같은 무선 통신 시스템에서 단말 간 직접 통신을 위한 HARQ 수행 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims

【청구의 범위】
【청구항 1】
무선 통신 시스템에서 제 1 단말이 단말 간 직접 통신을 위한 HARQ (Hybrid Automatic Repeat and reQuest)를 수행하는 방법으로서,
기지국으로부터 제 2 단말로 신호 송신을 위한 스케줄링 정보를 수신하는 단계;
상기 스케줄링 정보에 따라, 제 1 서브프레임에서 상기 특징 단말로 데이터를 송신하는 단계; 및
상기 데이터에 대한 웅답 신호에 따라 제 3 서브프레임에서 상기 제 2 단말로 상기 데이터 또는 신규 데이터를 송신하는 단계를 포함하고,
상기 웅답 신호는, 상기 제 1 서브프레임과 상기 제 3 서브프레임 사이에 위치한 제 2 서브프레임에서 상기 제 2 단말이 상기 기지국으로 송신하고,
상기 단말 간 직접 통신의 HARQ 주기인 상기 게 1 서브프레임과 상기 제 3 서브프레임 간의 간격은,
상기 제 1 단말과 상기 기지국 간의 HARQ 주기의 배수로 설정되는 것을 특징으로 하는,
HARQ 수행 방법 .
【청구항 2】
제 1 항에 있어서,
상기 제 2서브프레임은,
상기 제 1 서브프레임과 연동된 HARQ 프로세스에서, 상기 제 1 서브프레임 이후 가장 가까운 하향링크 서브프레임과 연동된 상향링크 서브프레임인 것을 특징으로 하는,
HARQ 수행 방법 .
【청구항 3】
게 1 항에 있어서,
상기 제 2 서브프레임은,
상기 제 1 서브프레임 이후 가장 가까운 상향링크 서브프레임인 것을 특징으로 하는,
HARQ 수행 방법 .
【청구항 4】 ' .
제 3 항에 있어서,
상기 가장 가까운 상향링크 서브프레임은,
상기 제 1 단말에 설정된 상향링크 /하향링크 서브프레 임 설정에서 상기 기지국으로 ACK(Acknowl edgement )/NACK(Nega1: ive-AClO 신호를 송신하는 것으로 예정된 상향링크 서브프레임 인 것을 특징으로 하는,
HARQ 수행 방법 .
【청구항 5】
제 1 항에 있어서,
상기 단말 간 직접 통신의 HARQ 프로세스는 ,
상기 제 1 단말과 상기 기지국 간의 HARQ 프로세스에 대하여 소정의 시간 오프셋 값이 적용된 것을 특징으로 하는,
HARQ 수행 방법 .
【청구항 6】
제 5 항에 있어서,
상기 소정의 시간 오프셋은,
상기 단말 간 직접 통신의 HARQ 주기의 절반인 것을 특징으로 하는,
HARQ 수행 방법 ·
【청구항 7]
제 1 항에 있어서,
상기 기지국은 상기 제 2 단말로, 제 4 서브프레임 상에서 상기 데이 터의 수신을 위한 스케줄링 정보를 송신하는 것을 특징으로 하는,
HARQ 수행 방법 ᅳ
【청구항 8】
제 1 항에 있어서 ,
상기 기지국으로부터 상기 단말 간 직 접 통신을 위 한 상향링크 /하향링크 서브프레임 설정에 관한 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는,
HARQ수행 방법 .
【청구항 9】
제 8 항에 있어서,
상기 단말 간 직접 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합은,
단말과 기지국 간 통신을 위한 상향링크 /하향링크 서브프레임 설정의 상향링크 서브프레임 집합에 포함되거나 동일한 것을 특징으로 하는,
HARQ수행 방법 .
【청구항 10]
제 9 항에 있어서,
상기 단말과 기지국 간 통신을 위한 상향링크 /하향링크 서브프레임 설정에 관한 정보는 시스템 정보를 통하여 미리 설정되는 것을 특징으로 하는,
HARQ 수행 방법 .
PCT/KR2013/003290 2012-04-18 2013-04-18 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치 WO2013157865A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/389,249 US9705645B2 (en) 2012-04-18 2013-04-18 Method for performing HARQ for device-to-device communication in wireless communication system and device for same
CN201380020642.1A CN104272633B (zh) 2012-04-18 2013-04-18 在无线通信***中针对装置到装置通信执行harq的方法以及用于该方法的装置
KR1020147026486A KR20140144189A (ko) 2012-04-18 2013-04-18 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261635271P 2012-04-18 2012-04-18
US61/635,271 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013157865A1 true WO2013157865A1 (ko) 2013-10-24

Family

ID=49383743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003290 WO2013157865A1 (ko) 2012-04-18 2013-04-18 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US9705645B2 (ko)
KR (1) KR20140144189A (ko)
CN (1) CN104272633B (ko)
WO (1) WO2013157865A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182390B2 (en) * 2013-07-29 2019-01-15 Blackberry Limited Communicating an indicator extending an area scope of system information
JP6404344B2 (ja) 2013-10-28 2018-10-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける装置対装置端末の信号送受信方法及び装置
JP2016532334A (ja) * 2013-11-22 2016-10-13 富士通株式会社 装置間データチャネルシグナリング
EP3113559B1 (en) * 2014-03-21 2023-07-26 Huawei Technologies Co., Ltd. Device and method for data transmission in direct communication
CN108702739B (zh) * 2016-02-04 2022-12-09 联想创新有限公司(香港) 传输确认
US10069603B2 (en) 2016-02-09 2018-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient HARQ feedback
US10356740B2 (en) 2016-11-29 2019-07-16 Huawei Technologies Co., Ltd. System and scheme for uplink synchronization for small data transmissions
US11558851B2 (en) * 2018-04-23 2023-01-17 Kyocera Corporation Broadcast transmission by relay node
CN110582067B (zh) * 2018-06-08 2022-04-05 华为技术有限公司 一种应答信息的发送和接收方法、通信设备及网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069033A1 (en) * 2006-09-15 2008-03-20 Qualcomm Incorporated Methods and apparatus related to peer to peer device
US20100136997A1 (en) * 2008-11-19 2010-06-03 Qualcomm Incorporated Peer-to-peer communication using a wide area network air interface
JP2010283843A (ja) * 2004-04-01 2010-12-16 Panasonic Corp 再送に対する干渉制限
KR20110083488A (ko) * 2010-01-12 2011-07-20 한국전자통신연구원 전력절약을 위한 단말기, 그의 전력절약 방법 및 전력절약을 위한 무선 통신 시스템
WO2012047928A1 (en) * 2010-10-06 2012-04-12 Qualcomm Incorporated Methods and apparatus for joint scheduling of peer-to-peer links and wireless wide area network links in cellular networks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340071B2 (en) * 2005-10-26 2012-12-25 Intel Corporation Systems for communicating using multiple frequency bands in a wireless network
CN101155392B (zh) * 2006-09-28 2010-09-08 大唐移动通信设备有限公司 高速分组接入中获取调度控制信息的方法、基站和用户终端
CN101174878B (zh) * 2006-11-02 2011-09-07 鼎桥通信技术有限公司 一种实现混合自适应重传的方法和***
US8407549B2 (en) * 2008-04-30 2013-03-26 Industrial Technology Research Institute Method for operation of synchronous HARQ in a wireless communication system
PL2494832T3 (pl) * 2009-10-30 2020-11-02 Nokia Technologies Oy Planowanie komunikacji bezpośrednie-do-bezpośredniego
US8634780B2 (en) 2010-01-12 2014-01-21 Electronics And Telecommunications Research Institute Terminal, method, and wireless communication for power saving
US9538566B2 (en) * 2012-02-21 2017-01-03 Lg Electronics Inc. Method and device for transmitting reception acknowledgement response in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283843A (ja) * 2004-04-01 2010-12-16 Panasonic Corp 再送に対する干渉制限
US20080069033A1 (en) * 2006-09-15 2008-03-20 Qualcomm Incorporated Methods and apparatus related to peer to peer device
US20100136997A1 (en) * 2008-11-19 2010-06-03 Qualcomm Incorporated Peer-to-peer communication using a wide area network air interface
KR20110083488A (ko) * 2010-01-12 2011-07-20 한국전자통신연구원 전력절약을 위한 단말기, 그의 전력절약 방법 및 전력절약을 위한 무선 통신 시스템
WO2012047928A1 (en) * 2010-10-06 2012-04-12 Qualcomm Incorporated Methods and apparatus for joint scheduling of peer-to-peer links and wireless wide area network links in cellular networks

Also Published As

Publication number Publication date
CN104272633B (zh) 2018-01-23
US9705645B2 (en) 2017-07-11
US20150063247A1 (en) 2015-03-05
CN104272633A (zh) 2015-01-07
KR20140144189A (ko) 2014-12-18

Similar Documents

Publication Publication Date Title
US10212746B2 (en) Method for resource allocation for device-to- device direct communication in wireless communication system, and apparatus therefor
CN107819554B (zh) 无线通信***中的动态子帧设置的重传方法及其设备
KR102011821B1 (ko) 무선 통신 시스템에서 단말이 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
KR102057865B1 (ko) 무선 통신 시스템에서 무선 자원의 동적 할당 방법 및 이를 위한 장치
KR102032848B1 (ko) 무선 통신 시스템에서 동적 서브프레임 변경을 위한 harq 버퍼 운용 방법 및 이를 위한 장치
US9467272B2 (en) Method for transmitting/receiving downlink control information in wireless communication system and device therefor
WO2013157870A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 제어 정보 송신 방법 및 이를 위한 장치
WO2014007580A1 (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 버퍼 운영 방법 및 이를 위한 장치
WO2013157865A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치
US9419767B2 (en) Method for device-to-device communication in wireless communication system, and apparatus therefor
KR20140142231A (ko) 무선 통신 시스템에서 무선 자원의 동적 자원 변경을 위한 harq 수행 방법 및 이를 위한 장치
US20140029559A1 (en) Method for terminal to receive downlink signal from base station in wireless communication system and device therefor
WO2013119052A1 (ko) 무선 통신 시스템에서 송신 전력 제공 방법 및 이를 위한 장치
WO2013009035A2 (ko) 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 송신하는 방법 및 이를 위한 장치
JP6117913B2 (ja) 無線通信システムにおいて無線リソース動的変更に基づくharq実行方法及びそのための装置
WO2012153922A2 (ko) 다중 안테나 무선 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치
EP3410622B1 (en) Method for receiving downlink signal by terminal in wireless communication system, and device therefor
CN106664696B (zh) 在无线通信***中分配用于设备对设备直接通信的控制信号的资源的方法及其设备
WO2015170924A1 (ko) 무선 통신 시스템에서 d2d 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026486

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14389249

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778215

Country of ref document: EP

Kind code of ref document: A1