WO2013103093A1 - 有機el装置及びその製造方法 - Google Patents

有機el装置及びその製造方法 Download PDF

Info

Publication number
WO2013103093A1
WO2013103093A1 PCT/JP2012/083061 JP2012083061W WO2013103093A1 WO 2013103093 A1 WO2013103093 A1 WO 2013103093A1 JP 2012083061 W JP2012083061 W JP 2012083061W WO 2013103093 A1 WO2013103093 A1 WO 2013103093A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
laser beam
organic
light emitting
layer
Prior art date
Application number
PCT/JP2012/083061
Other languages
English (en)
French (fr)
Inventor
栄史 栗部
鈴木 淳平
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2013552405A priority Critical patent/JP6150733B2/ja
Priority to US14/370,754 priority patent/US9263690B2/en
Publication of WO2013103093A1 publication Critical patent/WO2013103093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/162Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using laser ablation

Definitions

  • the present invention relates to an organic EL (Electro Luminescence) device and a manufacturing method thereof.
  • organic EL devices have attracted attention as a lighting device that can replace incandescent and fluorescent lamps, and many studies have been made.
  • the organic EL device is obtained by laminating an organic EL element on a base material such as a glass substrate or a transparent resin film.
  • the organic EL element is one in which one or both of two electrodes having translucency face each other, and a light emitting layer made of an organic compound is laminated between the electrodes.
  • the organic EL device emits light by the energy of recombination of electrically excited electrons and holes.
  • the organic EL device is a self-luminous device, and can emit light of various wavelengths by appropriately selecting the material of the light emitting layer. Further, since the thickness is extremely thin compared to incandescent lamps and fluorescent lamps, and the light is emitted in a planar shape, there are few restrictions on the installation location.
  • a typical layer structure of the organic EL device is as shown in FIG.
  • the organic EL device 200 shown in FIG. 11 has a configuration called a bottom emission type, and a transparent electrode layer 202, a functional layer (organic light emitting layer) 203, and a back electrode layer 205 are laminated on a substrate 201. These are sealed by the sealing part 206 (for example, patent document 1).
  • the transparent electrode layer 202 is a laminate of thin films such as metal oxides.
  • the functional layer 203 is formed by laminating a plurality of thin films of organic compounds.
  • the functional layer 203 is usually formed with a very thin film thickness of several hundred nm.
  • the back electrode layer 205 is formed by laminating thin films such as metals.
  • a typical functional layer 203 has a layer structure as shown in FIG. 12, and includes a hole injection layer 210, a hole transport layer 211, a light emitting layer 212, and an electron transport layer 213. Further, an electron injection layer is inserted between the electron transport layer 213 and the back electrode layer 205 as necessary.
  • the organic EL device according to the prior art has a layer structure as shown in FIG. 12 as a whole.
  • a current flows from the entire surface of the transparent electrode layer 202 to the entire surface of the back electrode layer 205, and a functional layer (organic layer) sandwiched between them.
  • the light emitting layer 212 of the light emitting layer) 203 is caused to emit light.
  • the surface-emitting organic EL device as described above is applied to a large area illumination, the luminance of each part varies. That is, since the transparent electrode layer 202, the functional layer 203, and the back electrode layer 205 are spread in a planar shape and are thin, it is difficult to flow a current evenly to each part of the surface.
  • the inventors divide the organic EL element into a plurality of small light emitting regions and connect the small light emitting regions in series, thereby integrating the respective resistances of the small light emitting regions and changing the current density. I thought to increase the voltage in the organic EL device. Then, a plurality of organic EL devices having a structure in which the organic EL element is divided into a plurality of small light emitting regions in the plane direction of the thin film by a laser scribing device and the small light emitting regions are connected in series were manufactured as a prototype.
  • a laser beam is irradiated from the substrate 201 side, and an organic EL device (hereinafter, prototype 1) divided into a plurality of unit organic EL elements 220 as shown in FIG. .
  • the layer configuration of the prototyped organic EL device is the same as the basic configuration of the organic EL device described above, and the transparent electrode layer 202, the functional layer 203, and the back electrode layer 205 are sequentially stacked on the substrate 201 as shown in FIG.
  • grooves 215, 216, and 217 are formed in each layer. That is, the transparent electrode layer separation groove 215 is formed in the transparent electrode layer 202, and the transparent electrode layer 202 is divided into a plurality of parts.
  • a functional layer separation groove 216 is formed in the functional layer 203, and the functional layer 203 is divided into a plurality of parts. Further, a part of the back electrode layer 205 enters the functional layer separation groove 216, and a transparent electrode is formed at the bottom of the groove. In contact with layer 202. Further, unit light emitting element isolation grooves 217 communicating with both the functional layer 203 and the back electrode layer 205 are formed in the functional layer 203 and the back electrode layer 205.
  • the “unit organic EL element 220” means a small piece of the transparent electrode layer (first electrode layer) 202 separated by the transparent electrode layer separation groove 215 and a small piece separated by the functional layer separation groove 216. It is constituted by a light emitting region and small pieces of a back electrode layer (second electrode layer) 205 divided by unit light emitting element separation grooves 217, and is precisely a portion indicated by a solid line in FIG.
  • the “unit organic EL element 220” includes a unit light emitting unit 230 in which a functional layer 203 sandwiched between a small piece of the transparent electrode layer (first electrode layer) 202 and a small piece of the back electrode layer (second electrode layer) 205 is provided. And emits light.
  • the organic EL device has a transparent electrode layer separation groove 215 provided in the transparent electrode layer 202 and a unit light emitting element separation groove 217 provided over both the functional layer 203 and the back electrode layer 205.
  • the thin film is divided and the independent unit organic EL element 220 is formed.
  • a part of the back electrode layer 205 enters the functional layer separation groove 215 to form the connection portion 231, and a part of the back electrode layer 205 is in contact with the transparent conductive layer 202. That is, one unit organic EL element 220a is electrically connected in series with the adjacent unit organic EL element 220b. More precisely, the unit light emitting units 230 are electrically connected in series via the connection unit 231.
  • the organic EL device 200 when the organic EL device 200 is energized from an external power source, the current flows from the transparent electrode layer 202 side to the back electrode layer 205 side, but a part of the back electrode layer 205 passes through the functional layer separation groove 216.
  • the current flowing through the first unit EL element is in contact with the transparent electrode layer 202 and flows into the transparent electrode layer 202 of the adjacent unit EL element. Therefore, the resistors are sequentially added, and a high voltage can be applied to the whole.
  • Prototype 1 uses a laser scribing device as shown in FIG. 14A to irradiate a laser beam from the substrate 201 side, and partially removes both the back electrode layer 205 and the functional layer 203 to form a unit light emitting element separation groove. 217 was provided.
  • the functional layer 203 is a film of an organic compound having a very thin film thickness, the adhesiveness with the transparent electrode layer 202 is weak and heat is weak. Therefore, in the organic EL device of Prototype 1, when the unit light emitting element separation groove 217 for separating the unit organic EL element 220 is formed, the functional layer 203 is scraped in a wider range than the back electrode layer 205, and the back electrode layer 205 is removed. Burr occurs. When the burr of the back electrode layer 205 enters the unit light emitting element separation groove 217 and contacts the transparent electrode layer 202, a leakage current may occur. Further, when the processing power is increased depending on the material and film thickness of the back electrode layer 205, the transparent electrode layer 202 may be damaged.
  • the present invention solves the above-described problems, and develops an organic EL device that can be processed without causing leakage current between the electrodes and damaging the transparent electrode layer, and a manufacturing method thereof. This is a problem.
  • At least a first electrode layer, an organic light emitting layer, and a second electrode layer are laminated on a base material, and the first electrode layer has a plurality of small pieces by a first electrode layer separation groove.
  • a unit light emitting element separation groove having a depth that penetrates into the organic light emitting layer from the second electrode layer, and the second electrode layer is separated into a plurality of small pieces by the unit light emitting element separation groove, and the organic light emitting layer is Unit light emission of an organic light emitting layer that has a connecting portion through which the second electrode layer and one electrode layer are connected and is sandwiched between the small piece of the first electrode layer and the small piece of the second electrode layer
  • Another invention for solving the same invention is that at least a first electrode layer, an organic light emitting layer, and a second electrode layer are laminated on a substrate, and the first electrode layer is a first electrode layer separation groove.
  • the organic light emitting layer is divided into a plurality of small light emitting regions by a light emitting separation groove, and further has a unit light emitting element separating groove having a depth from the second electrode layer to the organic light emitting layer,
  • the electrode layer is separated into a plurality of small pieces by a unit light emitting element separation groove, and a unit EL element is constituted by the small piece of the first electrode layer, the small light emitting region, and the small piece of the second electrode layer.
  • the average groove width of the second electrode layer portion of the unit light emitting element separation groove is equal to the average groove width of the organic light emitting layer portion of the unit light emitting element separation groove It is an organic EL device characterized by being wider than that.
  • the average groove width of the second electrode layer portion of the unit light emitting element separation groove is wider than the average groove width of the organic light emitting layer portion of the unit light emitting element separation groove. It is possible to increase the distance between the first electrode layer and the second electrode layer in the vicinity of the groove. Therefore, even if burrs are generated in the vicinity of the second electrode layer portion of the unit light emitting element separation groove and the burrs enter the unit light emitting element separation groove, the distance between the first electrode layer and the second electrode layer. Therefore, the burr can be prevented from reaching the first electrode layer portion of the unit light emitting element separation groove. That is, it can be prevented that the first electrode layer and the second electrode layer are in contact with each other and a leak current is generated.
  • the boundary between the second electrode layer portion and the organic light emitting layer portion of the unit light emitting element separation groove is stepped.
  • the distance between the first electrode layer and the second electrode layer can be reliably separated. That is, a leak current hardly occurs.
  • the average groove width of the second electrode layer portion of the unit light emitting element separation groove is preferably 1.3 to 2.0 times the average groove width of the organic light emitting layer portion of the unit light emitting element separation groove. .
  • the inventors made a prototype of an organic EL device (hereinafter, prototype 2) that was divided into a plurality of unit organic EL elements 220 by irradiating a laser beam from the back electrode layer 205 side.
  • the production method of Prototype 1 and the production method of Prototype 2 differ in the irradiation direction of the laser beam when forming the unit light emitting element separation groove 217 for dividing one organic EL element into a plurality of unit EL elements.
  • a laser scribing apparatus as shown in FIG. 14B is used to irradiate a laser beam from the back electrode layer 205 side, and the back electrode layer 205 and the functional layer 203 are partially formed. Both are removed to provide a unit light emitting element separation groove 217.
  • both the back electrode layer 205 and the functional layer 203 are simultaneously removed when the unit light emitting element separation groove 217 for separating the unit organic EL element 220 is formed.
  • it is necessary to irradiate the laser beam dissolve the back electrode layer 205, and further dissolve the functional layer 203.
  • a laser beam having such energy as to dissolve both the back electrode layer 205 and the functional layer 203 is irradiated from the back electrode layer 205 side, no burr is generated in the back electrode layer 205.
  • the energy excessively applied to the back electrode layer 205 accumulates energy in the back electrode layer 205 in the vicinity of the unit light emitting element isolation groove 217 and generates heat.
  • the back electrode layer 205 is made of a conductor such as metal as described above, heat generated in the vicinity of the unit light emitting element isolation groove 217 is transmitted through the back electrode layer 205. That is, the functional layer 203 is thermally damaged from the back electrode layer 205 at portions other than the unit light emitting element separation grooves 217. Therefore, there is a possibility that the portion of the functional layer 203 that is thermally damaged may promote deterioration.
  • the invention relating to the manufacturing method derived through repeated thought and error based on the above knowledge has a step of forming a unit light emitting element separation groove by irradiating a laser beam twice or more from the second electrode layer side. This is a method for manufacturing an organic EL device.
  • At least a first electrode layer, an organic light emitting layer, and a second electrode layer are laminated on a substrate, and the first electrode layer includes a plurality of first electrode layer separation grooves.
  • a unit of an organic light emitting layer sandwiched between a small piece of the first electrode layer and a small piece of the second electrode layer, having a connection portion through which the second electrode layer and the first electrode layer are connected A method of manufacturing an organic EL device in which a light emitting unit is configured, and the unit light emitting unit is electrically connected in series via the connection unit, wherein the step of forming the unit light emitting element separation groove includes the step of: Performed by irradiating more than twice from the 2 electrode layer side A first laser ir
  • At least a first electrode layer, an organic light emitting layer, and a second electrode layer are laminated on a substrate, and the first electrode layer includes a plurality of first electrode layer separation grooves.
  • the organic light emitting layer is divided into a plurality of small light emitting regions by a light emitting separation groove, and further includes a unit light emitting element separation groove having a depth from the second electrode layer to the organic light emitting layer.
  • the unit light emitting element is separated into a plurality of small pieces by the unit light emitting element separation groove, and the unit EL element is configured by the small piece of the first electrode layer, the small light emitting region, and the small piece of the second electrode layer.
  • the step of forming the unit light-emitting element isolation groove is performed by irradiating the laser beam twice or more from the second electrode layer side, and at least, Groove in second electrode layer A first laser irradiation step to be formed; and a second laser irradiation step of irradiating a laser beam into the groove formed by the first laser irradiation step, wherein the laser beam and the second laser irradiation are used in the first laser irradiation step.
  • the laser beam used in the process is an organic EL device manufacturing method characterized in that the irradiation area is different.
  • the step of forming the unit light emitting element separation groove is performed by irradiating the laser beam twice or more from the second electrode layer side, and at least the groove is formed in the second electrode layer.
  • the laser beam used in the first laser irradiation step and the second laser irradiation step The laser beam used has different irradiation areas. That is, the laser beam used in the second laser irradiation process enters the groove and is irradiated.
  • the second electrode layer and the organic light emitting layer are divided into a plurality of times instead of removing both the second electrode layer and the organic light emitting layer simultaneously when forming the unit light emitting element separation groove. Have been removed.
  • the second electrode layer is removed with energy that does not reach the organic light emitting layer, that is, energy that can be absorbed only by the second electrode layer.
  • the step of forming the unit light emitting element separation groove is performed by irradiating the laser beam twice or more from the second electrode layer side, the unit light emitting element separation groove enters and reaches the first electrode layer. It is possible to prevent the occurrence of burrs. That is, it is possible to prevent the occurrence of leakage current.
  • the laser beam used in the first laser irradiation step and the laser beam used in the second laser irradiation step are different from each other in at least one of wavelength, power, and pulse irradiation time. Is preferred.
  • the power of the laser beam used in the first laser irradiation step is stronger than the laser beam used in the second laser irradiation step.
  • the beam width of the laser beam used for a 1st laser irradiation process is larger than the laser beam used for a 2nd laser irradiation process.
  • the “beam width” represents the width of a portion irradiated with a laser beam on an object to be irradiated such as a substrate.
  • the step of forming the unit light emitting element separation groove is performed by irradiating the laser beam from the second electrode layer side and moving the irradiation position of the laser beam.
  • the laser beam is split into two or more from the source, the irradiation position of the laser beam split into two or more is moved back and forth in the moving direction of the irradiation position, and the first laser irradiation process is performed by the laser beam irradiated first, followed by irradiation.
  • the method of manufacturing an organic EL device is characterized in that the second laser irradiation step is performed with a laser beam to be emitted.
  • the wavelength of the laser beam used in the first laser irradiation step is preferably shorter than the wavelength of the laser beam used in the second laser irradiation step.
  • the wavelength of the laser beam used in the first laser irradiation step is preferably 355 nm
  • the wavelength of the laser beam used in the second laser irradiation step is preferably 532 nm.
  • the laser beam used in the first laser irradiation process and the laser beam used in the second laser irradiation process be irradiated upward in the vertical direction.
  • the laser beam used in the first laser irradiation step and the laser beam used in the second laser irradiation step are irradiated upward in the vertical direction.
  • the second electrode layer is positioned upward in the vertical direction with respect to the light source of the laser beam. Therefore, impurities such as shavings (organic light emitting layer, second electrode layer, etc.) and dust generated when grooves are formed by the first laser irradiation step and the second laser irradiation step are dropped from the substrate by gravity. Is unlikely to remain on the substrate. That is, unevenness is not easily generated on the substrate, and a leak current hardly flows. Therefore, the formation of light emitting defects can be suppressed.
  • the wavelength of the laser beam used in the first laser irradiation process may be outside the visible region.
  • the average groove width of the second electrode layer portion of the unit light emitting element separation groove is wider than the average groove width of the organic light emitting layer portion of the unit light emitting element separation groove. It is possible to prevent the occurrence of leakage current.
  • the manufacturing method of the present invention since it is performed by irradiating the laser beam twice or more from the second electrode layer side, the variability that enters the unit light emitting element separation groove and reaches the first electrode layer is achieved. Can be prevented. That is, it is possible to prevent the occurrence of leakage current.
  • FIG. 1 is a cross-sectional view of an organic EL device according to an embodiment of the present invention observed with its back side facing up.
  • FIG. 2 is a conceptual diagram showing a manufacturing process of the organic EL device of FIG. 1, and (a) to (h) show cross-sectional views of each process.
  • It is a conceptual diagram of the laser scribing apparatus used at the time of manufacture of the organic EL apparatus of FIG.
  • It is explanatory drawing showing the flow of the laser beam of the laser scribing apparatus of FIG. 3, and the 1st optical path is represented by the thick line.
  • FIG. 1 shows an organic EL device 1 according to the first embodiment of the present invention.
  • the organic EL device 1 has substantially the same layer structure as the above-described prototype 1 and prototype 2, as shown in FIG. That is, the first electrode layer 3, the functional layer 5 (organic light emitting layer), and the second electrode layer 6 are laminated in this order on one side of the substrate 2 (base material). Is sealed by a sealing portion (not shown). In addition, what remove
  • the first electrode layer 3 is provided with a first electrode layer separation groove 15 from which the first electrode layer 3 is removed.
  • the functional layer 5 is provided with a functional layer separation groove 16 (light emission separation groove) and a light emitting portion separation groove 17 from which the functional layer 5 has been removed.
  • the second electrode layer 6 is provided with a second electrode layer separation groove 18 from which the second electrode layer 6 has been removed.
  • the light emitting portion separation groove 17 from which the functional layer 5 has been removed and the second electrode layer separation groove 18 from which the second electrode layer 6 has been removed are at the same position and communicate with each other.
  • channel 18 has a step shape, and the one unit light emitting element isolation
  • the depth of the unit light emitting element separation groove 12 extends from the second electrode layer 6 to the functional layer (organic light emitting layer) 5, and further penetrates into the functional layer 5 to reach the first electrode layer 3. Is.
  • each thin film is partitioned by the first electrode layer separation groove 15 and the unit light emitting element separation groove 12, and the independent unit organic EL element 20 is formed, as in the above prototype 1 and prototype 2.
  • the unit organic EL element 20 is precisely the portion indicated by the solid line in FIG. 9, and the function separated by the small piece of the first electrode layer 3 separated by the first electrode layer separation groove 15 and the functional layer separation groove 16. This is a region constituted by a small light emitting region of the layer 5 and small pieces of the second electrode layer 6 separated by the unit light emitting element separation grooves 12.
  • the functional layer 5 sandwiched between the small piece of the first electrode layer 3 and the small piece of the second electrode layer 6 serves as the unit light emitting unit 50 to emit light.
  • a part of the second electrode layer 6a enters the functional layer separation groove 16 to form the connection portion 51, and a part of the second electrode layer 6a is in contact with the adjacent first electrode layer 3b. That is, one unit organic EL element 20 a is electrically connected in series with the adjacent unit organic EL element 20 b via the connection portion 51.
  • the width (string width) in the integration direction of the unit organic EL elements 20a is preferably 2 mm to 40 mm, more preferably 5 mm to 30 mm, and still more preferably 10 to 20 mm.
  • the light emitting portion separation groove 17 and the second electrode layer separation groove 18 will be described in detail.
  • the light emitting part separation groove 17 and the second electrode layer separation groove 18 are also collectively referred to as a unit light emitting element separation groove 12.
  • the average groove width W of the second electrode layer portion (second electrode layer separation groove 18) of the unit light emitting element separation groove 12 is equal to the average groove of the functional layer portion (light emitting portion separation groove 17) of the unit light emitting element separation groove 12. It is larger than the width w.
  • the average groove width W of the second electrode layer separation groove 18 is preferably 1.3 to 2.0 times the average groove width w of the light emitting part separation groove 17.
  • the ratio is more preferably 1.4 times to 1.8 times, and particularly preferably 1.5 times to 1.7 times.
  • the average groove width W of the second electrode layer separation groove 18 is preferably 30 ⁇ m to 80 ⁇ m. More preferably, it is 40 ⁇ m to 70 ⁇ m, and particularly preferably 45 ⁇ m to 60 ⁇ m.
  • the organic EL device 1 is manufactured mainly using a vacuum vapor deposition device, a plasma CVD device, or a laser scribing device (not shown).
  • the first electrode layer 3 is formed on the substrate 2 (FIGS. 2A to 2B).
  • the surface of the substrate 2 to be used has a uniform smoothness over the entire substrate, and even after the first electrode layer 3 is formed, the entire smoothness is uniform.
  • a first laser scribing process is performed to form a first electrode layer separation groove 15 in the first electrode layer 3 (FIGS. 2B to 2C).
  • the laser scribing apparatus performed in the first laser scribing process is a known laser scribing apparatus, and has an XY table, a laser generator, and an optical system member.
  • the first laser scribing step one or a plurality of grooves are formed by placing the substrate 2 on an XY table and linearly moving the substrate 2 at a constant speed in the vertical direction while irradiating a laser beam. Thereafter, the laser beam irradiation is temporarily stopped and returned to the irradiation start position of the groove.
  • the X / Y table is moved in the horizontal direction to shift the irradiation position of the laser beam, and the substrate 2 is linearly moved again in the vertical direction while irradiating the laser beam, thereby forming a groove parallel to the groove.
  • the laser beam for providing the first electrode layer separation groove 15 is arbitrary, but YAG, YVO 4 , YLF, and fiber laser can be employed. Further, a laser beam other than visible light can be adopted as the laser beam for providing the first electrode layer separation groove 15. Specifically, a laser beam having a wavelength of 200 to 380 nm or 780 to 1100 nm is preferable. A laser beam having a wavelength of 355 nm or 1064 nm is more preferable. Further, the energy distribution of the laser beam is not particularly limited. That is, a laser beam having a mountain-shaped energy distribution called a Gaussian type or a laser beam having a uniform beam shape called a top hat type may be used.
  • the laser scribing device used in the first laser scribing process uses pulse oscillation. As described above, the laser beam is fixed while moving the X / Y table between the irradiation position of the laser beam and the relative position of the substrate.
  • the first electrode layer separation groove 15 in which pits having substantially the same shape are connected at a constant pitch is formed by irradiating with the pulse signal.
  • the substrate after the first laser scribing process is cleaned on the surface to remove the scattered film as necessary.
  • a cleaning method a known cleaning method can be applied.
  • the substrate is inserted into a vacuum deposition apparatus, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like are sequentially deposited to form a functional layer 5.
  • a thin second electrode layer 6 is formed on the layer 5 (FIGS. 2C to 2D).
  • the thin second electrode layer 6 it is preferable to form the thin second electrode layer 6 about 1/10 to 1/2 of the total thickness of the second electrode layer 6 when the organic EL device 1 is completed.
  • the 2nd electrode layer 6 functions as a protective layer which protects the functional layer 5 at the time of a 2nd laser scribe process.
  • a second laser scribing step is performed on the substrate taken out from the vacuum deposition apparatus, and functional layer separation grooves 16 are formed in the functional layer 5 (FIGS. 2D to 2E).
  • a laser beam having a wavelength of 200 to 1100 nm can be employed.
  • a laser beam having a wavelength of 200 to 380 nm is preferable.
  • a laser beam having a wavelength of 355 nm is particularly preferable.
  • the laser beam when providing the functional layer separating groove 16 is arbitrary, YAG, can be employed for YVO 4, YLF or fiber laser.
  • nth harmonic laser beam 2 to 3).
  • a laser beam having a uniform beam shape with a uniform energy distribution called a top hat type is preferable. Moreover, it is preferable to irradiate the laser beam at the time of providing the functional layer separation groove
  • substrate is inserted in a vacuum evaporation system, and the 2nd electrode layer 6 is formed on the functional layer 5 (preferably 2nd electrode layer 6 laminated
  • a third laser scribing step for forming the unit light emitting element isolation groove 12 which is a feature of the present invention is performed.
  • the third laser scribing step a light emitting portion separation groove 17 from which the functional layer 5 has been removed and a second electrode layer separation groove 18 from which the second electrode layer 6 has been removed are formed.
  • the third laser scribing step is performed by irradiating the laser beam twice or more from the second electrode layer 6 side. Specifically, it is formed by the first laser irradiation step (FIGS. 2 (f) to 2 (g)) for forming the second electrode layer separation groove 18 in the second electrode layer 6 and the first laser irradiation step.
  • the second electrode layer separation groove 18 includes a second laser irradiation step (FIGS. 2 (g) to 2 (h)) in which a light beam is irradiated to form the light emitting portion separation groove 17.
  • a second laser irradiation step (FIGS. 2 (g) to 2 (h)) in which a light beam is irradiated to form the light emitting portion separation groove 17.
  • the first laser irradiation process and the second laser irradiation process are performed substantially simultaneously. More specifically, it is done slightly later. Note that the laser scribing apparatus 30 used in the third laser scribing process is different from the laser scribing apparatus used in the first and second laser scribing processes.
  • the laser scribing device 30 used in the third laser scribing process is similar to the laser scribing apparatus used in the first and second laser scribing processes, as shown in FIG.
  • the optical system member 33 the laser beam is split into two or more laser beams, the irradiation position of the laser beam split into two or more is fixed in a shifted state, and the X ⁇ Y direction in the direction of the groove forming the substrate to be irradiated
  • the table 31 is moved and scribed.
  • the laser scribing device 30 is as shown in FIG. 3 and is configured by a laser generating device 32 and an optical system member 33.
  • the laser generator 32 is a laser generator that generates a known laser such as YAG, YVO 4 , YLF, or a fiber laser.
  • a laser beam having a wavelength of 200 to 1100 nm can be employed.
  • a laser beam having a wavelength of 200 to 380 nm is preferable.
  • a laser beam having a wavelength of 355 nm is particularly preferable.
  • a top hat type laser beam having a beam shape with a uniform energy distribution is used from the viewpoint that large burrs are not easily generated.
  • the average output of the laser beam is preferably 0.8 W to 2.0 W.
  • the laser generator 32 uses pulse oscillation and generates a laser beam in accordance with a pulse signal having a predetermined frequency.
  • the pulse width of the pulse signal is preferably 200 fsec to 100 nsec. More preferably, it is 10 psec to 10 nsec. It is particularly preferably 2 to 6 nsec. Since the pulse width is relatively small, the energy load applied to the substrate during laser beam irradiation is small.
  • the optical system member 33 is branched into two optical paths via a beam splitter 35.
  • a light reflecting mirror 36 or prism 36
  • a concave lens 37 or prism 36
  • a convex lens 38 or a convex lens 39
  • a first optical path 40 and a second optical path 46 in which a concave lens 41, a convex lens 43, and a convex lens 45 are sequentially arranged from the beam splitter 35 side as shown in FIG.
  • the flow of the laser beam will be described.
  • the laser beam generated from the laser generator 32 as shown in FIGS. 3, 4, and 5 passes through the optical fiber 34 and reaches the beam splitter 35. Then, the beam is split into a first laser beam (transmitted light) that forms the second electrode layer separation groove 18 and a second laser beam (reflected light) that forms the light emitting portion separation groove 17 at a predetermined ratio by the beam splitter 35. And a 1st laser beam is irradiated to a board
  • the direction of the first laser is changed by the light reflecting mirror 36 (or prism 36), enlarged by the concave lens 37, incident on the convex lens 38, and converted into a parallel beam by the convex lens 38.
  • the first laser beam converted into a parallel beam is condensed by a convex lens (objective lens) 39 and irradiated onto the substrate.
  • the second laser beam is applied to the substrate through the second optical path 46 as shown in FIG. Specifically, the second laser beam is redirected by the beam splitter 35 as shown in FIG. 5, magnified by the concave lens 41, enters the convex lens 43, and is converted into a parallel beam by the convex lens 43. Then, the second laser beam converted into a parallel beam is collected by a convex lens (objective lens) 45 and irradiated from above in the top-to-bottom direction on a substrate placed below in the top-to-bottom direction. Then, by moving the XY table 31 in the direction of the arrow in FIG.
  • the first laser beam and the second laser beam are irradiated on the substrate in a line in the groove forming direction.
  • the energy ratio of the first laser beam (transmitted light) and the second laser beam (reflected light) split by the beam splitter 35 is 1/2 when the first laser beam (transmitted light) is 1. Is preferably 1/10, more preferably 1/3 to 1/8, and particularly preferably 1/3 to 1/5. Control is performed such that the second laser beam has a smaller amount of light than the first laser beam, and the first laser beam has a higher power to irradiate the substrate than the second laser beam.
  • the power of the first laser beam is preferably controlled to such a power that only the second electrode layer 6 can be scribed.
  • the laser beam is narrowed by a convex lens (objective lens), and the beam width of the first laser beam is controlled to be larger than the beam width of the second laser beam.
  • the beam width of the first laser beam may be controlled to be larger than the beam width of the second laser beam using a mask or the like.
  • the laser scribing device 30 If the laser scribing device 30 is used, it is possible to scribe the light emitting part separation groove 17 and the second electrode layer separation groove 18 almost simultaneously by a series of operations.
  • the organic EL device 1 is completed.
  • the material of the substrate 2 is not particularly limited, and a substrate having transparency is adopted.
  • a flexible film substrate or a plastic substrate is appropriately selected and used.
  • a glass substrate or a film substrate is particularly preferable from the viewpoints of transparency and workability.
  • thermoplastic resins examples include thermoplastic resins and thermosetting resins.
  • thermoplastic resin examples include acrylic resin, polyester, polycarbonate resin, polyolefin, and cycloolefin polymer.
  • thermosetting resin is polyurethane.
  • a substrate composed mainly of a cycloolefin polymer (COP) having both excellent optical isotropy and water vapor barrier properties is preferred.
  • COP examples include norbornene polymers, copolymers of norbornene and olefins, and polymers of unsaturated alicyclic hydrocarbons such as cyclopentadiene. From the viewpoint of water vapor barrier properties, it is preferable that the main chain and side chain of the constituent molecules do not contain a functional group having a large polarity, such as a carbonyl group or a hydroxyl group.
  • the thickness of the film substrate is preferably about 0.03 mm to 3.0 mm. This film thickness range is preferable from the viewpoint of the strength against bending and scratching of the substrate, in addition to the ease of handling of the substrate and the weight at the time of device fabrication.
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • the material of the first electrode layer 3 is not particularly limited.
  • a metal such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), or zinc oxide (ZnO) is used.
  • An oxide or a metal such as silver (Ag) or chromium (Cr) is employed.
  • ITO or IZO having high transparency can be used particularly preferably.
  • a sputtering method, a CVD method, a vacuum deposition method, or the like can be used for forming the first electrode layer 3.
  • the functional layer 5 has an electron transport layer 25, a light emitting layer 26, a hole transport layer 27, and a hole injection layer 28 stacked in this order from the second electrode layer 6 side. It has a structure.
  • a known substance can be used as the material of the electron transport layer 25 .
  • An azole, an oxadiazole derivative, a bis (10-hydroxybenzo [h] quinolinolato) beryllium complex, a triazole compound, or the like can be used, but the invention is not limited thereto.
  • a known substance can be used as the material of the light emitting layer 26, a known substance can be used.
  • 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetraphenylbutadiene tris (8-quinolinolato) aluminum complex, tris (4-methyl-8-quinolinolato) aluminum Complex, bis (8-quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-8-quinolinolato) aluminum complex, bis (2 -Methyl-5-trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) [4- (4-cyanophenyl) Phenolate] aluminum complex, tris (8-ki Linolato) scandium complex
  • metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine and metal-free phthalocyanines, quinacridone compounds, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N′— Diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N′-di (1-naphthyl) -N, N′-diphenyl-1, Aromatic amine low molecular hole injection and transport materials such as 1'-biphenyl-4,4'-diamine, polyaniline, polythiophene, polyvinylcarbazole, poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid Polymer hole transport layer materials such as mixtures
  • a known substance can be used as the material of the hole injection layer 28 .
  • the constituent layers of these functional layers 5 are appropriately known, such as vacuum deposition, sputtering, CVD, dipping, roll coating (printing), spin coating, bar code, spraying, die coating, and flow coating.
  • the film can be formed by this method.
  • a known substance can be used as the material of the second electrode layer 6.
  • examples thereof include silver and aluminum. These materials are preferably deposited by sputtering or vacuum evaporation.
  • the light emitting part separation groove 17 and the second electrode layer separation groove 18 are scribed almost simultaneously by a series of operations by one laser generator 32, but the present invention is not limited to this. Instead, the light emitting portion separation groove 17 and the second electrode layer separation groove 18 may be formed using a plurality of laser scribing devices. Specifically, the second embodiment will be described below. In addition, the thing similar to 1st Embodiment attaches
  • the first laser irradiation process and the second laser irradiation process are performed independently of each other. In other words, the first laser irradiation step and the second laser irradiation step are performed in two steps.
  • the laser scribing apparatus used in the first laser irradiation process and the second laser irradiation process used in this embodiment is a known laser scribing apparatus, and has an XY table, a laser generator, and an optical system member. .
  • the first laser irradiation step is performed by placing a substrate on which organic EL elements are stacked on an XY table and linearly moving the substrate in a vertical direction at a constant speed while irradiating a laser beam. Then, the X / Y table is moved in the horizontal direction to shift the irradiation position of the laser beam, and the substrate is linearly moved again in the vertical direction while irradiating the laser beam. Further, the first laser beam light source when providing the second electrode layer separating groove 18 is optional, YAG, YVO 4, YLF or fiber laser can be employed.
  • a laser beam having a wavelength of 200 to 1100 nm can be employed.
  • a laser beam having a wavelength of 200 to 380 nm is preferable.
  • a laser beam having a wavelength of 355 nm is particularly preferable.
  • a top hat type laser beam having a beam shape with a uniform energy distribution is used from the viewpoint that large burrs are not easily generated.
  • the laser scribing apparatus used in the third laser scribing process uses pulse oscillation.
  • the laser beam is kept constant while moving the X / Y table between the irradiation position of the laser beam and the relative position of the substrate.
  • a pulse signal By irradiating with a pulse signal, it is possible to form the second electrode layer separation groove 18 in which pits having substantially the same shape are connected at a constant pitch.
  • the average output of the first laser beam is such that only the second electrode layer 6 can be sublimated, and specifically, 0.8 W to 2.0 W is preferable. 1.0 W to 1.8 W is more preferable, and 1.2 W to 1.6 W is particularly preferable.
  • the laser scribing device used in the first laser irradiation step uses pulse oscillation, and generates the first laser beam according to a pulse signal having a predetermined frequency. Specifically, the pulse width of the pulse signal is preferably 200 fsec to 100 nsec. More preferably, it is 10 psec to 10 nsec. It is particularly preferably 2 to 6 nsec.
  • the second laser irradiation step is performed with the same laser scribing apparatus as the first laser irradiation step.
  • the second laser beam follows the trajectory of the first laser beam and is applied to the inside of the second electrode layer separation groove 18 formed by the first laser beam.
  • the light source of the second laser beam when providing the light emitting portion separation groove 17 is arbitrary, but YAG, YVO 4 , YLF, or a fiber laser can be employed.
  • the beam diameter of the second laser beam is smaller than the beam diameter of the first laser beam.
  • the “beam diameter” here is based on ISO standard 11146.
  • the beam width of the first laser beam is controlled to be larger than the beam width of the second laser beam by a lens or the like (not shown).
  • the wavelength of the second laser beam is longer than the wavelength of the first laser beam.
  • a laser beam having a wavelength of 200 to 1100 nm can be employed.
  • a laser beam having a wavelength of 500 to 600 nm is preferable.
  • a laser beam having a wavelength of 532 nm is particularly preferable.
  • a top hat type laser beam having a beam shape with a uniform energy distribution is used.
  • the laser scribing device used in the second laser irradiation step uses pulse oscillation, and as described above, the laser beam is kept constant while moving the X / Y table between the irradiation position of the laser beam and the relative position of the substrate. By irradiating with a pulse signal, it is possible to form the light emitting portion separation groove 17 in which pits having substantially the same shape are connected at a constant pitch.
  • the average output of the second laser beam is smaller than the average output of the first laser beam.
  • the average output is preferably 0.1 W to 1.0 W. 0.2 W to 0.8 W is more preferable, and 0.3 W to 0.5 W is particularly preferable.
  • the laser scribing apparatus used in the second laser irradiation step uses pulse oscillation, generates a second laser beam in accordance with a pulse signal having a predetermined frequency, and the pulse width of the second laser beam is the first laser beam. Shorter than the pulse width.
  • the pulse width of the pulse signal is preferably 200 fsec to 100 nsec. More preferably, it is 1 psec to 10 nsec. Particularly preferred is 10 psec to 50 psec. Since the second laser beam has a very small pulse width, the energy load applied to the substrate when the laser beam is irradiated is small. That is, it is possible to form the light-emitting portion separation groove 17 with almost no heat generated in the second electrode layer 6.
  • the present invention it is possible to form the light emitting part separation groove 17 without generating almost any heat in the second electrode layer 6, so that the functional layer 5 can be prevented from being deteriorated due to heat.
  • the X / Y table 31 is installed below in the vertical direction, and the laser beam is irradiated from above in the vertical direction on the substrate placed on the X / Y table 31.
  • the present invention is not limited to this.
  • an X / Y table 31 is installed above the top and bottom, and a laser beam is applied from below the top and bottom with respect to the substrate fixed to the lower surface of the X / Y table 31. May be irradiated.
  • the laser scribing process is performed as a patterning method in the first laser scribing process, but the present invention is not limited to this, and patterning may be performed by other methods.
  • patterning can be performed by lift-off, reactive ion etching (RIE), photolithography, water jet, and the like.
  • the functional layer separation groove 16 is formed in the functional layer 5 by the second laser scribing process, but the processing applied to the functional layer 5 is not necessarily a “groove”. That is, in the above-described embodiment, the functional layer separation groove 16 is formed by irradiating a laser beam using a constant pulse signal and connecting circular dots by the pulse.
  • the function of the functional layer separation groove 16 is to penetrate the functional layer 5 to allow a part of the second electrode layer 6 to enter therein to form the connection portion 51, and to partially connect the second electrode layer 6 to the first layer. Since it is to be brought into contact with the one electrode layer 3, the circular dots formed by the pulse do not necessarily have to be connected, and independent holes may be arranged.
  • the unit light emitting element separation groove 12 discloses a configuration in which not only the second electrode layer 6 but also the functional layer 5 is completely removed. That is, the unit light emitting element isolation groove 12 described above is illustrated as the functional layer 5 is completely peeled off and the first electrode layer 3 is exposed. However, the unit light-emitting element isolation groove 12 need only reach the functional layer 5 from the second electrode layer 6 side, and does not necessarily have to reach the first electrode layer 3. That is, the depth of the unit light emitting element isolation groove 12 is sufficient if it is deep enough to penetrate the functional layer 5 from the second electrode layer 6, and a part of the functional layer 5 remains at the bottom as shown in FIG. May be.
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • the case where the substrate is installed downward in the vertical direction with respect to the light source and the laser beam is irradiated downward in the vertical direction is referred to as scribe down, and the substrate is directed to the light source.
  • the case where the laser beam is installed upward in the vertical direction and the laser beam is irradiated upward in the vertical direction is referred to as scribe up.
  • Example 1 As a substrate for forming the organic EL device, non-alkali glass (thickness 0.7 mm) in which ITO (indium / tin oxide, film thickness 150 nm) is laminated as a first electrode layer on one side was used. Using this laser scribing device, patterning at intervals of 6 mm was performed on the substrate with a groove width of 50 nm, and the first electrode layer separation grooves 15 were formed. The substrate was washed with a surfactant using a brush, ultrasonically washed with pure water, and then dried in an oven. The substrate was moved to a vacuum deposition apparatus, and the material was deposited in vacuum as follows.
  • NPB 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl
  • a film having a thickness of 10 nm was formed by a vacuum deposition method.
  • NPB and molybdenum trioxide of the hole injection layer were formed by a co-evaporation method so that the film thickness ratio was 9: 1.
  • NPB was formed as a hole transport layer with a film thickness of 50 nm (deposition rate: 0.08 nm / sec to 0.12 nm / sec) by a vacuum evaporation method.
  • Alq3 tris (8-quinolinolato) aluminum (hereinafter abbreviated as Alq3) as a light emitting layer and an electron transporting layer is formed to a thickness of 70 nm (deposition rate: 0.24 nm / sec to 0.28 nm / sec) by vacuum deposition. A film was formed.
  • LiF was used as the electron injection layer, and a film having a thickness of 1 nm (deposition rate: 0.03 nm / sec to 0.05 nm / sec) was formed by vacuum evaporation.
  • Al was deposited in a film thickness of 300 nm (deposition rate: 0.3 nm / sec to 0.5 nm / sec) by a vacuum evaporation method.
  • a functional layer separation groove 16 was formed on the substrate using a laser scribing device.
  • Al was deposited as a second electrode layer with a film thickness of 150 nm (deposition rate: 0.3 nm / sec to 0.5 nm / sec) by vacuum deposition.
  • the substrate was irradiated with laser from the second electrode layer side using a laser scribing device to form second electrode layer separation grooves (first laser irradiation step).
  • the conditions of the laser scribing device at this time were a wavelength of 355 nm, an average output of 1.5 W, a beam diameter of 50 ⁇ m, and a pulse width of 2 nsec. Thereafter, the laser scribing device was used again to irradiate the laser from the second electrode layer side to form a light emitting portion separation groove (second laser irradiation step).
  • the conditions of the laser scribing apparatus at this time were a wavelength of 532 nm, an average output of 0.5 W, a beam diameter of 30 ⁇ m, and a pulse width of 2 nsec.
  • an organic EL element in which unit EL elements having unit shapes of 30 mm ⁇ 30 mm and 6 mm ⁇ 18 mm were arranged in series in three stages was produced.
  • the substrate is installed in the laser scribing apparatus (scribing down) so that the substrate is downward in the vertical direction with respect to the light source of the laser beam.
  • a laser beam was applied to the second electrode layer side from above in the direction.
  • the organic EL element was moved from a vacuum atmosphere to a glove box filled with a nitrogen atmosphere and moved to a plasma CVD apparatus to form a 2 ⁇ m silicon nitride film, which was then sealed.
  • the organic EL device thus formed was designated as Example 1.
  • Example 2 In the procedure of Example 1, one laser beam was split into two during the third laser scribe process, and the first laser irradiation process and the second laser irradiation process were performed simultaneously. Specifically, the substrate was placed in a laser scribing device so that the substrate was positioned downward in the vertical direction with respect to the light source of the laser beam (scribing down), and the split laser beam was irradiated from above in the vertical direction to the second electrode layer side.
  • the conditions of the laser scribing apparatus at this time were a wavelength of 355 nm, an average output of 2.0 W, and a pulse width of 2 nsec. Further, the energy ratio of the first laser beam and the second laser beam was split into 3: 1.
  • the beam diameter of the first laser beam was 50 ⁇ m
  • the beam diameter of the second laser beam was 30 ⁇ m.
  • Example 3 In the third laser scribing step (first laser irradiation step and second laser irradiation step) of the production procedure of Example 1, the substrate is installed in the laser scribing apparatus so that the substrate is in the vertical direction with respect to the light source of the laser beam ( Scribe-up), the second electrode layer side was irradiated with a laser beam from below in the vertical direction.
  • Example 1 In the manufacturing procedure of Example 1, the substrate was irradiated with a single laser beam from the substrate side during the third laser scribing step. And the functional layer and the 2nd electrode layer were removed simultaneously, and the unit light emitting element isolation
  • the organic EL devices of Examples 1 to 3 and Comparative Example 1 were subjected to a high temperature and high humidity light emission test to evaluate light emission defects.
  • the test conditions were an atmosphere of 60 ° C./85% RH and an applied voltage of 5 V, and the evaluation was observed with a stereomicroscope of about 10 times at room temperature, and the number of light emitting defects was evaluated after 1 hour of test time and 1000 hours of test time. The results are shown in Table 1.
  • Example 1 As shown in Table 1, when 1 hour after the test time and 1000 hours after the test time were compared, in Example 1, the number of light emitting defects was changed from 3 to 6, and the number of light emitting defects was increased by 3 pieces. In Example 2, the number of light emitting defects was changed from 5 to 10 and the number of light emitting defects was increased by 5 pieces. In Example 3, the number of light emitting defects was changed from 1 to 3, and the number of light emitting defects was increased by 2 pieces. On the other hand, in Comparative Example 1, the number of light emitting defects was changed from 25 to 41, and the number of light emitting defects increased by 16.
  • the number of light emission defects after 1 hour of the test time of the organic EL devices of Examples 1 to 3 was 1/5 or less of the number of light emission defects of the organic EL device of Comparative Example 1 after 1 hour of the test time. That is, when the manufacturing methods of Examples 1 to 3 of the present invention were used, an organic EL device having a high emission quality with few emission defects could be manufactured. Further, even after the test time of 1000 hours, the number of light emitting defects of the organic EL devices of Examples 1 to 3 of the present invention remained at 1 ⁇ 4 or less of the number of light emitting defects of the organic EL device of Comparative Example 1. That is, when the manufacturing methods of Examples 1 to 3 of the present invention were used, a highly durable organic EL device could be manufactured.
  • Organic EL device 1 Organic EL device 2 Substrate (base material) 3 First electrode layer 5 Functional layer (organic light emitting layer) 6 Second electrode layer 10 Organic EL element (laminated body) 12 Unit light emitting element separation groove 15 First electrode layer separation groove 16 Functional layer separation groove (light emission separation groove) 17 Light emitting part separation groove (organic light emitting layer part) 18 Second electrode layer separation groove (second electrode layer portion) 20 unit organic EL device

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 電極間のリーク電流の発生を防止可能な有機EL装置及びその製造方法を開発する。 基板2上に少なくとも第1電極層3と、機能層5と、第2電極層6とが積層され、第1電極層3は第1電極層分離溝15によって複数の小片に分離され、機能層5は機能層分離溝16によって複数の小発光領域に分割され、さらに第2電極層6から機能層5に至る深さの単位発光素子分離溝12があり、第2電極層は単位発光素子分離溝12によって複数の小片に分離されており、第1電極層3の小片と、小発光領域と、第2電極層6の小片とによって単位有機EL素子20が構成され、当該単位有機EL素子20が電気的に直列に接続されてなる有機EL装置1であり、単位発光素子分離溝12の第2電極層分離溝18の平均の溝幅が、単位発光素子分離溝12の発光部分離溝17の平均の溝幅よりも広い構成とする。

Description

有機EL装置及びその製造方法
 本発明は、有機EL(Electro Luminescence)装置及びその製造方法に関するものである。
 近年、白熱灯や蛍光灯に代わる照明装置として有機EL装置が注目され、多くの研究がなされている。
 ここで、有機EL装置は、ガラス基板や透明樹脂フィルム等の基材に、有機EL素子を積層したものである。有機EL素子は、一方又は双方が透光性を有する2つの電極を対向させ、この電極の間に有機化合物からなる発光層を積層したものである。有機EL装置は、電気的に励起された電子と正孔との再結合のエネルギーによって発光する。
 有機EL装置は、自発光デバイスであり、発光層の材料を適宜選択することにより、種々の波長の光を発光することができる。また、白熱灯や蛍光灯に比べて厚さが極めて薄く、且つ面状に発光するので、設置場所の制約が少ない。
 有機EL装置の代表的な層構成は、図11の通りである。図11に示される有機EL装置200は、ボトムエミッション型と称される構成であり、基板201に、透明電極層202と、機能層(有機発光層)203と、裏面電極層205が積層され、これらが封止部206によって封止されたものである(例えば、特許文献1)。
 また、透明電極層202は、金属酸化物等の薄膜が積層したものである。機能層203は、複数の有機化合物の薄膜が積層されたものである。機能層203の膜厚は通常、数百nmと言う極めて薄い膜厚で形成される。裏面電極層205は、金属等の薄膜が積層されたものである。
 代表的な機能層203の層構成は、図12の通りであり、正孔注入層210、正孔輸送層211、発光層212、及び電子輸送層213を有している。また、必要に応じて電子輸送層213と裏面電極層205の間に電子注入層が挿入される。
 即ち、機能層(有機発光層)203で発光された光が有機EL装置を構成する積層構造を透過して出光され、自発光デバイスとして機能する。
特開2008-244182号公報
 従来技術の有機EL装置は、全体が図12に示す様な層構成であり、透明電極層202の全面から裏面電極層205の全面に向かって電流を流し、中間に挟まれた機能層(有機発光層)203の発光層212を発光させる。
 ところで、大面積の照明に、上記したような面発光の有機EL装置を適用する場合には、各部の輝度にばらつきが生じてしまう。すなわち透明電極層202、機能層203及び裏面電極層205は面状に広がりを有するものであり、且つ薄いものであるから、面の各部に均等に電流を流すことが困難である。そのため、電流が流れ易い部位は、高輝度となり、電流が流れにくい部位は輝度が低い。そのため全体を均一に光らせるためには、全体的に強い電界を加えて、電流密度を全体的に高める必要がある。しかしながら、電流密度を全体的に高めると、有機EL素子内で熱が発生し、その影響により機能層203の劣化が促進される。
 また全体が図12の様な層構成となっている有機EL装置は、透明電極層202と裏面電極層205との間に高電圧を掛けることができず、有機EL装置に給電する際の給電効率が悪いという問題もある。
 そこで、その機能層203の劣化を抑制すると共に給電効率を向上させる有効な方策として、次の方策を検討した。
 即ち、発明者らは、有機EL素子を複数の小発光領域に分割し、当該小発光領域を直列に接続することによって、小発光領域のそれぞれの抵抗を集積していき、電流密度を変えることなく有機EL装置内に電圧を高めることを考えた。そして、有機EL素子をレーザースクライブ装置によって薄膜の面方向に複数の小発光領域に分割し、当該小発光領域を直列に接続した構造を有する複数の有機EL装置を試作した。
 具体的には、図14(a)のように基板201側からレーザー光線を照射し、図13に示す様な複数の単位有機EL素子220に分割した有機EL装置(以下、試作1)を試作した。
 試作した有機EL装置の層構成は、ともに前記した有機EL装置の基本構成と同一であり、図13のように基板201に透明電極層202と機能層203及び裏面電極層205が順次積層されたものであるが、各層に溝215,216,217が形成されている。
 即ち、透明電極層202に透明電極層分離溝215が形成され、透明電極層202が複数に分割されている。また機能層203には機能層分離溝216が形成され、機能層203が複数に分割され、さらに機能層分離溝216の中に裏面電極層205の一部が進入して溝の底部で透明電極層202と接している。
 さらに機能層203と裏面電極層205には、機能層203と裏面電極層205の双方に亘って連通した単位発光素子分離溝217が形成されている。
 なお本明細書において、「単位有機EL素子220」とは、透明電極層分離溝215で区切られた透明電極層(第1電極層)202の小片と、機能層分離溝216で区切られた小発光領域と、単位発光素子分離溝217で区切られた裏面電極層(第2電極層)205の小片とによって構成されるものであり、正確には図15に実線で記載された部分である。
 また「単位有機EL素子220」は透明電極層(第1電極層)202の小片と、裏面電極層(第2電極層)205の小片との間で挟まれた機能層203が単位発光部230となって発光する。
 有機EL装置は、図13のように透明電極層202に設けられた透明電極層分離溝215と、機能層203と裏面電極層205の双方に亘って設けられた単位発光素子分離溝217によって各薄膜が区画され、独立した単位有機EL素子220が形成されている。そして前記したように、機能層分離溝215の中に裏面電極層205の一部が進入して接続部231を構成し、裏面電極層205の一部が透明導電層202と接している。即ち、一つの単位有機EL素子220aは隣接する単位有機EL素子220bと電気的に直列に接続されている。より正確には単位発光部230が接続部231を介して電気的に直列に接続されている。
 即ち、外部電源から有機EL装置200に通電されると、電流は透明電極層202側から裏面電極層205側に向かって流れるが、裏面電極層205の一部が機能層分離溝216を介して透明電極層202と接しており、最初の単位EL素子が流れた電流が隣の単位EL素子の透明電極層202に流れる。そのため抵抗が順次加算され、全体に高い電圧を印加することができる。
 試作1は、図14(a)のようにレーザースクライブ装置を用いて、基板201側からレーザー光線を照射し、部分的に裏面電極層205と機能層203の双方を除去して単位発光素子分離溝217を設けた。
 しかしながら、上記したように、機能層203は、極めて薄い膜厚の有機化合物の膜であるため、透明電極層202との密着性が弱く熱にも弱い。そのため、試作1の有機EL装置では、単位有機EL素子220を分離する単位発光素子分離溝217を形成する際に、機能層203が裏面電極層205よりも広範囲に削れてしまい、裏面電極層205にバリが発生する。そして、裏面電極層205のバリが単位発光素子分離溝217内に進入し、透明電極層202に接触すると、リーク電流が発生することがあった。
 また、裏面電極層205の材質や膜厚により加工パワーを上げていくと、透明電極層202にダメージを与えることがあった。
 そこで、本発明は、上記した問題点を解決するものであり、電極間のリーク電流の発生を防止し、透明電極層にダメージを与えずに加工可能な有機EL装置及びその製造方法を開発することを課題とするものである。
 上記した課題を解決する発明は、基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、第2電極層から有機発光層に食い込む深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、前記有機発光層を貫通して第2電極層と1電極層とが接続された接続部を有し、第1電極層の小片と、第2電極層の小片と両者の間に挟まれた有機発光層の単位発光部が構成され、当該単位発光部が前記接続部を介して電気的に直列に接続されてなる有機EL装置であって、単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広いことを特徴とする有機EL装置である。
 また同様の発明を解決するもう一つの発明は、基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、前記有機発光層は発光分離溝によって複数の小発光領域に分割され、さらに第2電極層から有機発光層に至る深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、第1電極層の小片と、小発光領域と、第2電極層の小片とによって単位EL素子が構成され、当該単位EL素子が電気的に直列に接続されてなる有機EL装置であって、単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広いことを特徴とする有機EL装置である。
 本発明の構成によれば、単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広いため、単位発光素子分離溝近傍の第1電極層と第2電極層との距離を遠ざけることが可能である。それ故に、たとえ、単位発光素子分離溝の第2電極層部分の近傍にバリが発生し、単位発光素子分離溝内にバリが進入したとしても、第1電極層と第2電極層との距離が遠いため、バリは単位発光素子分離溝の第1電極層部分まで到達することを防止できる。即ち、第1電極層と第2電極層とが接触し、リーク電流が発生することを防止できる。
 上記した発明において、単位発光素子分離溝の第2電極層部分と有機発光層部分との境界は段状であることが望ましい。
 かかる構成によれば、第1電極層と第2電極層の距離を確実に離すことができる。即ち、リーク電流が生じにくい。
 また、単位発光素子分離溝の第2電極層部分の平均の溝幅は、単位発光素子分離溝の有機発光層部分の平均の溝幅の1.3倍から2.0倍であることが好ましい。
 ところで、有機EL装置を製造するにあたって、試作1のように基板201側からレーザー光線を照射し、単位発光素子分離溝217を形成するとバリが発生してしまう。そこで、発明者らは、レーザー光線の照射方向を裏面電極層205側から照射することでバリの発生を抑制することを考えた。そして、発明者らは、裏面電極層205側からレーザー光線を照射して複数の単位有機EL素子220に分割した有機EL装置(以下、試作2)を試作した。即ち、試作1の製造方法と試作2の製造方法では、1つの有機EL素子を複数の単位EL素子に分割する単位発光素子分離溝217を形成する時のレーザー光線の照射方向が異なる。
 より詳細には、試作2の製造方法は、図14(b)のようにレーザースクライブ装置を用いて、裏面電極層205側からレーザー光線を照射し、部分的に裏面電極層205と機能層203の双方を除去して単位発光素子分離溝217を設けた。
 試作2の製造方法では、単位有機EL素子220を分離する単位発光素子分離溝217を形成する際に、裏面電極層205と機能層203の双方を同時に除去する。そのためには、レーザー光線を照射し、裏面電極層205を溶解して、さらに機能層203まで溶解する必要がある。裏面電極層205側から裏面電極層205と機能層203の双方を溶解するほどのエネルギーのレーザー光線を照射すると、裏面電極層205にバリが発生しない。ところが、裏面電極層205に過剰に加えられたエネルギーによって、単位発光素子分離溝217近傍の裏面電極層205内でエネルギーが蓄積され、熱が発生する。そして、上記したように裏面電極層205には、金属等の導電体が用いられているため、単位発光素子分離溝217近傍で発生した熱が裏面電極層205内を伝わる。即ち、単位発光素子分離溝217以外の部分で、機能層203は、裏面電極層205から熱ダメージが与えられる。そのため、機能層203の熱ダメージを与えられた部分は、劣化を促進するおそれがあった。
 上記した知見を基に思考錯誤を繰り返して導かれた製造方法に関する発明は、レーザー光線を第2電極層側から2回以上に渡って照射することによって単位発光素子分離溝を形成する工程を有することを特徴とする有機EL装置の製造方法である。
 またもう一つの製造方法に関する発明は、基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、第2電極層から有機発光層に食い込む深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、前記有機発光層を貫通して第2電極層と1電極層とが接続された接続部を有し、第1電極層の小片と、第2電極層の小片と両者の間に挟まれた有機発光層の単位発光部が構成され、当該単位発光部が前記接続部を介して電気的に直列に接続されてなる有機EL装置の製造方法であって、単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われ、少なくとも第2電極層に溝を形成する第1レーザー照射工程と、前記第1レーザー照射工程によって形成された溝内にレーザー光線を照射する第2レーザー照射工程とを含み、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、照射面積が相違するものであることを特徴とする有機EL装置の製造方法である。
 さらにもう一つの製造方法に関する発明は、基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、前記有機発光層は発光分離溝によって複数の小発光領域に分割され、さらに第2電極層から有機発光層に至る深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、第1電極層の小片と、小発光領域と、第2電極層の小片とによって単位EL素子が構成され、当該単位EL素子が電気的に直列に接続されてなる有機EL装置の製造方法であって、単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われ、少なくとも第2電極層に溝を形成する第1レーザー照射工程と、前記第1レーザー照射工程によって形成された溝内にレーザー光線を照射する第2レーザー照射工程とを含み、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、照射面積が相違するものであることを特徴とする有機EL装置の製造方法である。
 上記した各方法によれば、単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われ、少なくとも第2電極層に溝を形成する第1レーザー照射工程と、前記第1レーザー照射工程によって形成された溝内にレーザー光線を照射する第2レーザー照射工程とを含み、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、照射面積が相違する。即ち、第2レーザー照射工程に使用されるレーザー光線は、溝内部に進入して照射される。それ故に、単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広い有機EL装置を製造可能である。
 また、本発明の方法によれば、単位発光素子分離溝の形成時に、第2電極層と有機発光層の双方を同時に除去するのではなく、第2電極層と有機発光層を複数回に分けて除去している。例えば、第1レーザー照射工程では、有機発光層に到達しない程度のエネルギー、即ち、第2電極層のみが吸収可能なエネルギーで第2電極層を除去する。その後、第2レーザー照射工程で、有機発光層のみを除去することで、過剰なエネルギーを第2電極層に与えずに有機EL装置の製造が可能である。そして、過剰なエネルギーを第2電極層に与えずに製造可能であるため、第2電極層内での熱の発生を抑制することが可能である。即ち、熱ダメージを有機発光層に与えることなく、有機EL装置の製造が可能である。言い換えると、本発明の有機EL装置の製造方法を用いれば、有機発光層が劣化しにくい。また、単位発光素子分離溝を形成する工程が、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われるため、単位発光素子分離溝内に進入し、第1電極層まで至るようなバリの発生を防止することが可能である。即ち、リーク電流の発生を防止可能である。
 また、上記した各製造方法において、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、波長、パワー、パルス照射時間の少なくともいずれかが相違するものであることが好ましい。
 また、第1レーザー照射工程に使用されるレーザー光線のパワーは第2レーザー照射工程に使用されるレーザー光線よりも強いことが好ましい。
 また、上記した各製造方法において、第1レーザー照射工程に使用されるレーザー光線のビーム幅は第2レーザー照射工程に使用されるレーザー光線よりも大きいことが好ましい。
 ここでいう「ビーム幅」とは、レーザー光線の基板等の照射対象物への照射部分の幅を表す。
 また上記した製造方法を実現する具体的発明は、単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から照射すると共にレーザー光線の照射位置を移動させることによって行われ、共通のレーザー光線源からレーザー光線を2以上に分光し、当該2以上に分光したレーザー光線の照射位置を照射位置の移動方向に前後させ、先に照射されるレーザー光線によって前記第1レーザー照射工程を実施し、続いて照射されるレーザー光線によって前記第2レーザー照射工程を実施することを特徴とする有機EL装置の製造方法である。
 かかる方法によれば、単位発光素子分離溝の第2電極層部分と単位発光素子分離溝の有機発光層部分を1つの工程で同時に形成することが可能である。
 また、上記した各製造方法において、第1レーザー照射工程に使用されるレーザー光線の波長は第2レーザー照射工程に使用されるレーザー光線の波長よりも短いことが好ましい。
 具体的には、第1レーザー照射工程に使用されるレーザー光線の波長は、355nmであり、第2レーザー照射工程に使用されるレーザー光線の波長は、532nmであることが好ましい。
 また第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、天地方向上方に向けて照射されることが推奨される。
 かかる方法によれば、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、天地方向上方に向けて照射される。即ち、レーザー光線の光源に対して、第2電極層は天地方向上方に位置している。そのため、第1レーザー照射工程と第2レーザー照射工程によって、溝が形成する際に生じる削りカス(有機発光層や第2電極層など)やホコリなどの不純物が、基板から重力落下するため、不純物が基板上に残りにくい。即ち、基板上に凹凸が生じにくく、リーク電流が流れにくい。それ故に発光欠陥の形成を抑制することができる。
  第1レーザー照射工程に使用されるレーザー光線の波長は可視領域を外れたものであってもよい。
 本発明の有機EL装置によれば、単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広いため、電極間のリーク電流の発生を防止可能である。
 本発明の製造方法によれば、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われるため、単位発光素子分離溝内に進入し、第1電極層まで至るようなバリの発生を防止することが可能である。即ち、リーク電流の発生を防止可能である。
本発明の実施形態に係る有機EL装置を裏面側を上にして観察した断面図である。 図1の有機EL装置の製造工程を表す概念図であり、(a)~(h)は各工程の断面図を表す。 図1の有機EL装置の製造時に使用されるレーザースクライブ装置の概念図である。 図3のレーザースクライブ装置のレーザー光線の流れを表す説明図であり、第1光路を太線で表している。 図3のレーザースクライブ装置のレーザー光線の流れを表す説明図であり、第2光路を太線で表している。 図3のレーザースクライブ装置のレーザー光線の流れを表す説明図である。 図1の有機EL装置における有機EL素子の層構造を表す断面図である。 本発明の他の実施形態におけるレーザースクライブ装置の概念図である。 本発明の実施形態に係る有機EL装置における、一つの単位EL素子を実線で示した断面図である。 本発明の他の実施形態に係る有機EL装置を裏面側を上にして観察した断面図である。 従来の有機EL装置を表す断面図である。 従来の有機EL装置における有機EL素子の層構成を表す断面図である。 従来の有機EL装置を裏面側を上にして観察した断面図である。 試作1,試作2の単位発光素子分離溝の形成時の説明図であり、(a)試作1、(b)試作2を表す。 従来の有機EL装置における、一つの単位EL素子を実線で示した断面図である。
 本発明は、有機EL装置と、当該有機EL装置の製造方法に係るものである。図1は、本発明の第1実施形態に係る有機EL装置1を示している。
 有機EL装置1は、図1に示すように、上記した試作1及び試作2とほぼ同じ層構成をしている。即ち、基板2(基材)の片面上に、第1電極層3と、機能層5(有機発光層)と、第2電極層6がこの順番に積層された構造を有しており、これらが図示しない封止部によって封止されている。なお、有機EL装置1の内、封止部材を除いたものを有機EL素子(積層体)と称する。
 また、図1のように、第1電極層3には、第1電極層3を除去した第1電極層分離溝15が設けられている。機能層5には、機能層5を除去した機能層分離溝16(発光分離溝)と発光部分離溝17が設けられている。さらに第2電極層6には、第2電極層6を除去した第2電極層分離溝18が設けられている。
 そして、機能層5を除去した発光部分離溝17と第2電極層6を除去した第2電極層分離溝18は、同じ位置にあり、連通している。そして、発光部分離溝17と第2電極層分離溝18の境界は、段状となっており、全体として、1つの単位発光素子分離溝12が形成されている。即ち、発光部分離溝17の内壁面と第2電極層分離溝18の内壁面は同一平面を形成していない。
 なお本実施形態では、単位発光素子分離溝12の深さは、第2電極層6から機能層(有機発光層)5に至り、さらに機能層5に食い込んで、第1電極層3にまで至るものである。
 そして、上記した試作1及び試作2と同様、有機EL装置1は、第1電極層分離溝15と、単位発光素子分離溝12によって各薄膜が区画され、独立した単位有機EL素子20が形成されている。
 単位有機EL素子20は、正確には図9の実線に示す部位であり、第1電極層分離溝15で区切られた第1電極層3の小片と、機能層分離溝16で区切られた機能層5の小発光領域と、単位発光素子分離溝12で区切られた第2電極層6の小片とによって構成される領域である。
 また本実施形態では、単位有機EL素子20は、第1電極層3の小片と、第2電極層6の小片との間で挟まれた機能層5が単位発光部50となって発光する。
 そして、機能層分離溝16の中に第2電極層6aの一部が進入して接続部51を構成し、第2電極層6aの一部が隣接する第1電極層3bと接している。即ち、一つの単位有機EL素子20aは隣接する単位有機EL素子20bと接続部51を介して電気的に直列に接続されている。
 単位有機EL素子20aの集積方向の幅(ストリング幅)は、2mm~40mmが好ましく、5mm~30mmがより好ましく、10~20mmがさらに好ましい。
 ここで、発光部分離溝17と第2電極層分離溝18について詳説する。
 なお、以下の説明において、発光部分離溝17と第2電極層分離溝18とを合わせて、単位発光素子分離溝12とも称する。
 単位発光素子分離溝12の第2電極層部分(第2電極層分離溝18)の平均の溝幅Wが、単位発光素子分離溝12の機能層部分(発光部分離溝17)の平均の溝幅wよりも大きい。具体的には、第2電極層分離溝18の平均の溝幅Wは、発光部分離溝17の平均の溝幅wの1.3倍から2.0倍であることが好ましい。1.4倍から1.8倍であることがより好ましく、1.5倍から1.7倍であることが特に好ましい。第2電極層分離溝18の平均の溝幅Wは、30μmから80μmであることが好ましい。40μmから70μmであることがより好ましく、45μmから60μmであることが特に好ましい。
 次に、本実施形態に係る有機EL装置1の製造方法について、主に図2を用いて説明する。
 有機EL装置1は、主に図示しない真空蒸着装置やプラズマCVD装置、レーザースクライブ装置を使用して製造される。
 まず、基板2上に第1電極層3を成膜する(図2(a)から図2(b))。
 この時、用いる基板2の表面は基板全体の平滑度が均一であり、第1電極層3を成膜した後でも、全体の平滑度は均一となっている。
 続いて、第1レーザースクライブ工程を行い、第1電極層3に対して第1電極層分離溝15を形成する(図2(b)から図2(c))。
 なお、第1レーザースクライブ工程で行われるレーザースクライブ装置は、公知のレーザースクライブ装置であり、X・Yテーブルと、レーザー発生装置及び光学系部材を有するものである。第1レーザースクライブ工程は、基板2をX・Yテーブル上に設置し、レーザー光線を照射しつつ、基板2を縦方向に一定の速度で直線移動させることによって、1又は複数の溝を形成する。その後、レーザー光線の照射を一旦停止し、当該溝の照射開始位置に戻す。そして、X・Yテーブルを横方向に移動してレーザー光線の照射位置をずらし、レーザー光線を照射しつつ基板2を再度縦方向に直線移動させることによって前記溝と平行な溝を形成する。
 また、第1電極層分離溝15を設ける際のレーザー光線は任意であるが、YAG、YVO、YLFやファイバーレーザーが採用できる。
 また、第1電極層分離溝15を設けるレーザー光線には、可視光以外のレーザー光線が採用できる。具体的には、波長が200~380nm又は780~1100nmのレーザー光線であることが好ましい。波長が355nm又は1064nmのレーザー光線であることがより好ましい。
 また、レーザー光線のエネルギー分布については特に限定されない。即ち、ガウシアン型と呼ばれる山形のエネルギー分布を有したレーザー光線やトップハット型と呼ばれるエネルギー分布が一様なビーム形状を有したレーザー光線であってもよい。
 第1レーザースクライブ工程で使用されるレーザースクライブ装置は、パルス発振を用いており、上記したように、レーザー光線の照射位置と基板との相対的位置をX・Yテーブルを移動させながら、レーザー光線を一定のパルス信号を用いて照射することによって、略同形状のピットが一定ピッチで連なった第1電極層分離溝15を形成する。
 第1レーザースクライブ工程を終えた基板は、必要に応じて飛散した被膜を除去するために、表面を洗浄する。なお、洗浄方法は、公知の洗浄方法が適用できる。
 次に、この基板を真空蒸着装置に挿入し、正孔注入層、正孔輸送層、発光層、電子輸送層等を順次堆積し、機能層5を形成し、その後、必要に応じて、機能層5上に薄い第2電極層6を成膜する(図2(c)から図2(d))。
 具体的には、薄い第2電極層6を有機EL装置1の完成時の第2電極層6の全膜厚の1/10~1/2程度成膜することが好ましい。これにより、第2電極層6は、第2レーザースクライブ工程時に機能層5を守る保護層として機能する。
 そして、真空蒸着装置から取り出した基板に対して、第2レーザースクライブ工程を行い、機能層5に機能層分離溝16を形成する(図2(d)から図2(e))。
 また、波長が200~1100nmのレーザー光線が採用できる。波長が200~380nmのレーザー光線であることが好ましい。波長が355nmのレーザー光線であることが特に好ましい。
 なお、機能層分離溝16を設ける際のレーザー光線は任意であるが、YAG、YVO、YLFやファイバーレーザーの採用できる。例えば、汎用性の高いYAGレーザーの場合、第n高調波のレーザー光線(n=2~3)を用いることが可能である。
 また、大きなバリが発生しにくいという観点から、トップハット型と呼ばれるエネルギー分布が一様なビーム形状を有したレーザー光線であることが好ましい。
 また、機能層分離溝16を設ける際のレーザー光線は、機能層5の劣化を抑制する観点から第2電極層6側(基板2に対向する側)から照射することが好ましい。
 続いて、真空蒸着装置に前記基板を挿入し、機能層5(好ましくは薄く積層した第2電極層6)の上に、第2電極層6を形成する(図2(e)から図2(f))。
 そして、本発明の特徴たる単位発光素子分離溝12を形成する第3レーザースクライブ工程を行う。第3レーザースクライブ工程では、機能層5を除去した発光部分離溝17と、第2電極層6を除去した第2電極層分離溝18とを形成する。
 具体的には、第3レーザースクライブ工程は、レーザー光線を第2電極層6側から2回以上に渡って照射することによって行われる。具体的には、第2電極層6に第2電極層分離溝18を形成する第1レーザー照射工程(図2(f)から図2(g))と、前記第1レーザー照射工程によって形成された第2電極層分離溝18内にレーザー光線を照射し、発光部分離溝17を形成する第2レーザー照射工程(図2(g)から図2(h))を含有している。また、本実施形態の第3レーザースクライブ工程は、第1レーザー照射工程と第2レーザー照射工程をほぼ同時並行で行われる。より詳細には、わずかに時間を空けて行われる。
 なお、第3レーザースクライブ工程に用いるレーザースクライブ装置30は、第1,第2レーザースクライブ工程に用いたレーザースクライブ装置と異なる装置を用いている。
 詳説すると、第3レーザースクライブ工程に用いるレーザースクライブ装置30は、図3のように、第1,第2レーザースクライブ工程に用いたレーザースクライブ装置と同様、X・Yテーブル31と、レーザー発生装置32及び光学系部材33を有するが、レーザー光線を2以上のレーザー光線に分光し、当該2以上に分光したレーザー光線の照射位置をずれた状態で固定し、照射する基板を形成する溝の方向にX・Yテーブル31で移動させてスクライブするものである。
 より具体的には、レーザースクライブ装置30は、図3の通りであり、レーザー発生装置32と光学系部材33によって構成される。
 レーザー発生装置32は、公知のYAG、YVO、YLFやファイバーレーザー等のレーザーを発生するレーザー発生装置である。例えば、汎用性の高いYAGレーザーの場合、第n高調波のレーザー光線(n=2~3)を発生させることが可能である。
 また、波長が200~1100nmのレーザー光線が採用できる。波長が200~380nmのレーザー光線であることが好ましい。波長が355nmのレーザー光線であることが特に好ましい。また、本実施形態では、大きなバリが発生しにくいという観点から、エネルギー分布が一様なビーム形状を有したトップハット型レーザー光線を使用している。
 また、レーザー光線の平均出力は0.8W~2.0Wが好ましい。1.0W~1.8Wがより好ましく、1.2W~1.6Wが特に好ましい。
 また、レーザー発生装置32は、パルス発振を用いており、所定の周波数のパルス信号に従いレーザー光線を発生させるものである。具体的には、パルス信号のパルス幅は、200fsec~100nsecであることが好ましい。10psec~10nsecであることがより好ましい。2nsec~6nsecであることが特に好ましい。パルス幅が比較的小さいため、レーザー光線の照射時に基板にかかるエネルギー負荷が小さい。
 光学系部材33は、ビームスプリッター35を介して2つの光路に分岐されている。光学系部材33は、レーザー光線の流れ方向を基準に、図4のようにビームスプリッター35側から順に、光反射ミラー36(又は、プリズム36)、凹レンズ37、凸レンズ38、凸レンズ39が順次配置された第1光路40と、図5のようにビームスプリッター35側から順に、凹レンズ41、凸レンズ43、凸レンズ45が順次配置された第2光路46を有している。
 レーザー光線の流れについて説明すると、図3、図4、図5のようにレーザー発生装置32から発生されたレーザー光線は、光ファイバー34を通過し、ビームスプリッター35に至る。そしてビームスプリッター35で、所定の比率で、第2電極層分離溝18を形成する第1レーザー光線(透過光)と、発光部分離溝17を形成する第2レーザー光線(反射光)に分光される。
 そして、第1レーザー光線は、図4のように第1光路40を通って第2電極層6側から基板に照射される。具体的には、第1レーザーは、光反射ミラー36(又は、プリズム36)で方向転換され、凹レンズ37によって拡大され、凸レンズ38に入射し、当該凸レンズ38で平行ビームに変換される。そして、平行ビームに変換された第1レーザー光線は凸レンズ(対物レンズ)39で集光されて基板に照射される。
 一方、第2レーザー光線は、図5のように第2光路46を通って基板に照射される。具体的には、第2レーザー光線は、図5のようにビームスプリッター35で方向転換され、凹レンズ41によって拡大され、凸レンズ43に入射し、当該凸レンズ43で平行ビームに変換される。そして、平行ビームに変換された第2レーザー光線は凸レンズ(対物レンズ)45で集光されて天地方向下方に設置された基板に天地方向上方から照射される。そして、図6の矢印の方向にX・Yテーブル31を移動させることで、第1レーザー光線と第2レーザー光線は溝の形成方向に1列に並んで基板に照射される。
 ビームスプリッター35の分光される第1レーザー光線(透過光)と第2レーザー光線(反射光)のエネルギー比は、第1レーザー光線(透過光)を1とすると、第2レーザー光線(反射光)は1/2~1/10であることが好ましく、1/3~1/8であることがより好ましく、1/3~1/5であることが特に好ましい。第1レーザー光線よりも第2レーザー光線の方が、光量が少なく、第1レーザー光線の方が第2レーザー光線よりも基板に照射するパワーが強くなるように制御している。そして、第1レーザー光線のパワーは、第2電極層6のみをスクライブできる程度のパワーに制御することが好ましい。
 また、凸レンズ(対物レンズ)によってレーザー光線を絞り、第1レーザー光線のビーム幅は、第2レーザー光線のビーム幅よりも大きくなるように制御している。なお、マスク等を用いて、第1レーザー光線のビーム幅を、第2レーザー光線のビーム幅よりも大きくなるように制御してもよい。
 レーザースクライブ装置30を用いれば、発光部分離溝17及び第2電極層分離溝18を一連の動作でほぼ同時にスクライブすることが可能である。
 そして、さらに図示しない給電電極の成形や、その外側における分離溝(図示せず)の成形、分離溝の外側部分の第2電極層6等の除去及び窒化珪素膜等の封止部による封止の作業が行われて有機EL装置1が完成する。
 最後に有機EL装置1の構成部材の素材について説明する。
 基板2(基材)の材質は、特に限定されるものではなく、透明性を備えた基板が採用される。例えば、フレキシブルなフィルム基板やプラスチック基板などから適宜選択され採用される。ガラス基板やフィルム基板は透明性や加工性の良さの点から特に好ましい。
 上記フィルム基板としては、熱可塑性樹脂や熱硬化性樹脂があげられる。熱可塑性樹脂としては、アクリル樹脂やポリエステル、ポリカーボネート樹脂、ポリオレフィン、シクロオレフィンポリマーなどが挙げられる。また、熱硬化製性樹脂としてはポリウレタンが挙げられる。特に優れた光学等方性と水蒸気遮断性の両方を有するシクロオレフィンポリマー(COP)を主成分とする基板が好ましい。
 COPとしては、ノルボルネンの重合体やノルボルネンとオレフィンとの共重合体、シクロペンタジエンなどの不飽和脂環式炭化水素の重合体などが挙げられる。水蒸気遮断性の観点から、構成分子の主鎖および側鎖には大きな極性を示す官能基、例えばカルボニル基やヒドロキシル基、を含まないことが好ましい。
 上記フィルム基板の厚みとしては0.03mm~3.0mm程度が好ましい。この膜厚範囲が基板の取り扱いやすさやデバイス作製時の重量の観点に加えて、基板の曲げや引っかきに対する強度の観点から好ましい。その他耐熱性に優れるという観点から、ポリエチレンナフタレート(PEN)やポリエーテルスルホン(PES)なども使用できる。
 第1電極層3の材質は、特に限定されるものではなく、例えば、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化錫(SnO)、酸化亜鉛(ZnO)等の金属酸化物や、銀(Ag)、クロム(Cr)等のような金属などが採用される。機能層5内の発光層から発生した光を効果的に取り出せる点では、透明性が高いITOあるいはIZOを特に好ましく使用することができる。
 第1電極層3の成膜には、スパッタ法やCVD法、真空蒸着法等が使用できる。
 機能層5の構成は、図7に示すように、第2電極層6側から順に、電子輸送層25、発光層26、正孔輸送層27、正孔注入層28がこの順番に積層された構造を有している。
 電子輸送層25の材料としては、公知の物質を使用することができる。例えば、2-(4-ビフィニルイル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、オキサジアゾール誘導体やビス(10-ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体、トリアゾール化合物等を用いることができるが、本発明ではこれらに限定されるわけではない。
 発光層26の材料としては、公知の物質を使用することができる。例えば、9,10-ジアリールアントラセン誘導体、ピレン、コロネン、ペリレン、ルブレン、1,1,4,4-テトラフェニルブタジエン、トリス(8-キノリノラート)アルミニウム錯体、トリス(4-メチル-8-キノリノラート)アルミニウム錯体、ビス(8-キノリノラート)亜鉛錯体、トリス(4-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム錯体、トリス(4-メチル-5-シアノ-8-キノリノラート)アルミニウム錯体、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)[4-(4-シアノフェニル)フェノラート]アルミニウム錯体、ビス(2-メチル-5-シアノ-8-キノリノラート)[4-(4-シアノフェニル)フェノラート]アルミニウム錯体、トリス(8-キノリノラート)スカンジウム錯体、ビス[8-(パラ-トシル)アミノキノリン]亜鉛錯体及びカドミウム錯体、1,2,3,4-テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、ポリ-2,5-ジヘプチルオキシ-パラ-フェニレンビニレン、クマリン系蛍光体、ペリレン系蛍光体、ピラン系蛍光体、アンスロン系蛍光体、ポルフィリン系蛍光体、キナクリドン系蛍光体、N,N’-ジアルキル置換キナクリドン系蛍光体、ナフタルイミド系蛍光体、N,N’-ジアリール置換ピロロピロール系蛍光体等、Ir錯体等の燐光性発光体などの低分子系発光材料や、ポリフルオレン、ポリパラフェニレンビニレン、ポリチオフェン、ポリスピロなどの高分子材料や、これら高分子材料に低分子材料の分散または共重合した材料等を用いることができるが、本発明ではこれらに限定されるわけではない。
 正孔輸送層27の材料としては、公知の物質を使用することができる。例えば、銅フタロシアニン、テトラ(t-ブチル)銅フタロシアニン等の金属フタロシアニン類及び無金属フタロシアニン類、キナクリドン化合物、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン等の芳香族アミン系低分子正孔注入輸送材料や、ポリアニリン、ポリチオフェン、ポリビニルカルバゾール、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物などの高分子正孔輸送層の材料、ポリチオフェンオリゴマー材料等を用いることができるが本発明ではこれらに限定されるわけではない。
 正孔注入層28の材料としては、公知の物質を使用することができる。例えば、1, 3, 5-トリカルバゾリルベンゼン、4, 4’-ビスカルバゾリルビフェニル、ポリビニルカルバゾール、m-ビスカルバゾリルフェニル、4, 4’-ビスカルバゾリル-2, 2’-ジメチルビフェニル、4, 4’, 4”-トリ(N-カルバゾリル)トリフェニルアミン、1, 3, 5-トリ(2-カルバゾリルフェニル)ベンゼン、1, 3, 5-トリス(2-カルバゾリル-5-メトキシフェニル)ベンゼン、ビス(4-カルバゾリルフェニル)シラン、N, N’-ビス(3-メチルフェニル)-N, N’-ジフェニル-[1, 1-ビフェニル]-4, 4’-ジアミン(TPD)、N, N’-ジ(ナフタレン-1-イル)-N, N’-ジフェニルベンジジン(α-NPD)、N, N’-ジフェニル-N, N’-ビス(1-ナフチル)-(1, 1’-ビフェニル)-4, 4’-ジアミン(NPB)、ポリ(9, 9-ジオクチルフルオレン-co-N-(4-ブチルフェニル)ジフェニルアミン)(TFB)またはポリ(9, 9-ジオクチルフルオレン-co-ビス-N, N-フェニル-1, 4-フェニレンジアミン(PFB)等を用いることができるが、本発明はこれらに限定されるわけではない。
 これらの機能層5の構成層は真空蒸着法やスパッタ法、CVD法、ディッピング法、ロールコート法(印刷法)、スピンコート法、バーコード法、スプレー法、ダイコート法、フローコート法など適宜公知の方法によって成膜できる。
 第2電極層6に目を移すと、第2電極層6の材料としては、公知の物質を使用することができる。例えば銀やアルミニウムなどが挙げられる。また、これらの材料はスパッタ法又は真空蒸着法によって堆積されることが好ましい。
 上記した実施形態では、第3スクライブ工程において、1つのレーザー発生装置32によって、発光部分離溝17及び第2電極層分離溝18を一連の動作でほぼ同時にスクライブしたが、本発明はこれに限定されるものではなく、複数のレーザースクライブ装置を用いて、発光部分離溝17及び第2電極層分離溝18を形成してもよい。具体的には、以下に、第2実施形態として説明する。なお、第1実施形態と同様のものは、同じ符号を付して説明を省略する。
 次に、第2実施形態に係る有機EL装置1の製造方法について説明する。なお、第3スクライブ工程以外は、第1実施形態と同様であるため、第3スクライブ工程のみ説明する。
 本発明の第3レーザースクライブ工程は、第1レーザー照射工程と第2レーザー照射工程が互いに独立して行う。言い換えると、第1レーザー照射工程と第2レーザー照射工程を2回に分けて行う。
 本実施形態で用いられる第1レーザー照射工程と第2レーザー照射工程で用いるレーザースクライブ装置は、公知のレーザースクライブ装置であり、X・Yテーブルと、レーザー発生装置及び光学系部材を有するものである。
 第1レーザー照射工程は、有機EL素子を積層した基板をX・Yテーブル上に設置し、レーザー光線を照射しつつ、基板を縦方向に一定の速度で直線移動させることによって行う。そしてX・Yテーブルを横方向に移動してレーザー光線の照射位置をずらし、レーザー光線を照射しつつ基板を再度縦方向に直線移動させることによって行う。
 また、第2電極層分離溝18を設ける際の第1レーザー光線の光源は任意であるが、YAG、YVO、YLFやファイバーレーザーが採用できる。
 また、波長が200~1100nmのレーザー光線が採用できる。波長が200~380nmのレーザー光線であることが好ましい。波長が355nmのレーザー光線であることが特に好ましい。また、本実施形態では、大きなバリが発生しにくいという観点から、エネルギー分布が一様なビーム形状を有したトップハット型レーザー光線を使用している。
 例えば、汎用性の高いYAGレーザーの場合、第n高周波のレーザー光線(n=2~3)を用いることが可能である。第3レーザースクライブ工程で用いられるレーザースクライブ装置は、パルス発振を用いており、上記したように、レーザー光線の照射位置と基板との相対的位置をX・Yテーブルを移動させながら、レーザー光線を一定のパルス信号を用いて照射することによって、略同形状のピットが一定ピッチで連なった第2電極層分離溝18が形成可能である。
 また、第1レーザー光線の平均出力は、第2電極層6のみが昇華可能な程度とされており、具体的には、0.8W~2.0Wが好ましい。1.0W~1.8Wがより好ましく、1.2W~1.6Wが特に好ましい。
 また、第1レーザー照射工程で用いられるレーザースクライブ装置は、パルス発振を用いており、所定の周波数のパルス信号に従い、第1レーザー光線を発生させている。
 具体的には、パルス信号のパルス幅は、200fsec~100nsecであることが好ましい。10psec~10nsecであることがより好ましい。2nsec~6nsecであることが特に好ましい。
 第2レーザー照射工程は、第1レーザー照射工程と同様のレーザースクライブ装置で行う。また、第2レーザー光線は第1レーザー光線の軌跡を辿っており、第1レーザー光線で形成された第2電極層分離溝18の内部に照射されている。
 また、発光部分離溝17を設ける際の第2レーザー光線の光源は任意であるが、YAG、YVO、YLFやファイバーレーザーが採用できる。
 また、第2レーザー光線のビーム径は、第1レーザー光線のビーム径よりも小さい。ここでいう「ビーム径」とは、ISO標準11146に準拠されるものである。また図示しないレンズ等により、第1レーザー光線のビーム幅が、第2レーザー光線のビーム幅よりも大きくなるように制御されている。
 また、第2レーザー光線の波長は、第1レーザー光線の波長よりも長い。具体的には、波長が200~1100nmのレーザー光線が採用できる。波長が500~600nmのレーザー光線であることが好ましい。波長が532nmのレーザー光線であることが特に好ましい。また、本実施形態では、エネルギー負荷が小さいという観点から、エネルギー分布が一様なビーム形状を有したトップハット型レーザー光線を使用している。
 第2レーザー照射工程で用いられるレーザースクライブ装置は、パルス発振を用いており、上記したように、レーザー光線の照射位置と基板との相対的位置をX・Yテーブルを移動させながら、レーザー光線を一定のパルス信号を用いて照射することによって、略同形状のピットが一定ピッチで連なった発光部分離溝17が形成可能である。
 また、第2レーザー光線の平均出力は、第1レーザー光線の平均出力よりも小さい。平均出力は0.1W~1.0Wが好ましい。0.2W~0.8Wがより好ましく、0.3W~0.5Wが特に好ましい。
 また、第2レーザー照射工程で用いられるレーザースクライブ装置は、パルス発振を用いており、所定の周波数のパルス信号に従い、第2レーザー光線を発生させており、第2レーザー光線のパルス幅は、第1レーザー光線のパルス幅よりも短い。
 具体的には、パルス信号のパルス幅は、200fsec~100nsecであることが好ましい。1psec~10nsecであることがより好ましい。10psec~50psecであることが特に好ましい。第2レーザー光線は、パルス幅が非常に小さいため、レーザー光線の照射時に基板にかかるエネルギー負荷が小さい。即ち、第2電極層6で熱をほとんど発生させることなく、発光部分離溝17を形成させることが可能である。
 本発明によれば、第2電極層6で熱をほとんど発生させることなく、発光部分離溝17を形成させることが可能であるため、熱による機能層5の劣化を防止できる。
 上記した実施形態では、第3スクライブ工程において、X・Yテーブル31が天地方向下方に設置され、X・Yテーブル31上に載置された基板に対して天地方向上方からレーザー光線を照射したが、本発明はこれに限定されるものではなく、図8のようにX・Yテーブル31を天地方向上方に設置し、X・Yテーブル31の下面に固定された基板に対して天地方向下方からレーザー光線を照射してもよい。この場合、発光部分離溝17及び第2電極層分離溝18を形成する際に生じる削りカス(機能層5や第2電極層6など)やホコリなどの不純物が基板から重力落下するため、不純物が基板上に残りにくい。即ち、基板上に凹凸が生じにくく、リーク電流が流れにくい。
 上記した実施形態では、第1レーザースクライブ工程では、パターニングの方法としてレーザースクライブ処理を行ったが、本発明ではこれに限定されるものではなく、他の方法によってパターニングを行ってもよい。例えば、リフトオフ、リアクティブイオンエッチング(RIE)、フォトリソグラフィー、ウォータージェットなどでパターニング可能である。
 また上記した実施形態では、第2レーザースクライブ工程によって機能層5に機能層分離溝16を形成せしめたが、機能層5に施す加工は、必ずしも「溝」である必要はない。即ち上記した実施形態では、レーザー光線を一定のパルス信号を用いて照射し、パルスによる円形のドットが繋がって機能層分離溝16が形成されている。ここで機能層分離溝16の機能は、機能層5を貫通してその中に第2電極層6の一部が進入させて接続部51を構成し、第2電極層6の一部を第1電極層3に接触させるものであるから、パルスによる円形のドットは必ずしも繋がっている必要はなく、独立した孔が並んだものであってもよい。
 また上記した実施形態では、単位発光素子分離溝12は、第2電極層6のみならず機能層5までもを完全に除去した構成を開示している。即ち前述した単位発光素子分離溝12は、機能層5が完全に剥離されて第1電極層3が露出するものとして図示されている。しかしながら、単位発光素子分離溝12の深さは、第2電極層6側から機能層5に至っていれば足り、必ずしも第1電極層3に達している必要はない。即ち単位発光素子分離溝12の深さは、第2電極層6から機能層5に食い込む深さであれば足り、図10に示すように、底の部分に機能層5の一部が残っていてもよい。
 以下に、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下の説明において、理解を容易にするため、基板を光源に対して天地方向下方に設置し、レーザー光線を天地方向下方に向けて照射する場合をスクライブダウンと称し、基板を光源に対して天地方向上方に設置し、レーザー光線を天地方向上方に向けて照射する場合をスクライブアップと称する。
 本発明の具体的な実施例および実施例に対する比較例の有機EL装置の作製手順と、これらの評価結果を説明する。
 〔実施例1〕
 有機EL装置を形成するための基板としては、片面に第1電極層としてITO(インジウム・錫酸化物、膜厚150nm)が積層されている無アルカリガラス(厚さ0.7mm)を用いた。この基板にレーザースクライブ装置を用いて、6mm間隔のパターニング形成を溝幅50nmにて行い、第1電極層分離溝15を形成した。
 この基板を界面活性剤によりブラシを用いて洗浄し、純水にて超音波洗浄した後、基板をオーブン中で乾燥した。この基板を真空蒸着装置に移動させ、真空中で以下のように材料を成膜した。
 第1電極層上に、正孔注入層として4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(以下、NPBと略す)と三酸化モリブデンの混合層を用い、真空蒸着法にて10nmの膜厚で成膜した。正孔注入層のNPBと三酸化モリブデンは共蒸着法にて膜厚比率で9:1となるように成膜した。
 次いで、正孔輸送層としてNPBを、真空蒸着法により50nm(蒸着速度0.08nm/sec~0.12nm/sec)の膜厚で成膜した。
 次いで、発光層兼電子輸送層としてトリス(8-キノリノラート)アルミニウム(以下、Alq3と略す)を、真空蒸着法により、70nm(蒸着速度0.24nm/sec~0.28nm/sec)の膜厚で成膜した。
 次いで、電子注入層としてLiFを用い、真空蒸着法にて1nm(蒸着速度0.03nm/sec~0.05nm/sec)の膜厚で成膜した。
 Alを真空蒸着法にて300nm(蒸着速度0.3nm/sec~0.5nm/sec)の膜厚で成膜した。この基板にレーザースクライブ装置を用いて、機能層分離溝16を形成した。
 続いて、第2電極層としてAlを真空蒸着法にて150nm(蒸着速度0.3nm/sec~0.5nm/sec)の膜厚で成膜した。
 この基板にレーザースクライブ装置を用いて、第2電極層側からレーザーを照射し、第2電極層分離溝を形成した(第1レーザー照射工程)。このときのレーザースクライブ装置の条件は、波長355nm,平均出力1.5W,ビーム径50μm,パルス幅2nsecであった。その後、再びレーザースクライブ装置を用いて、第2電極層側からレーザーを照射し、発光部分離溝を形成した(第2レーザー照射工程)。この時のレーザースクライブ装置の条件は、波長532nm,平均出力0.5W,ビーム径30μm,パルス幅2nsecであった。このようにして、単位形状30mm×30mm、6mm×18mmの単位EL素子が3段直列に配列した有機EL素子を作製した。
 なお、第3レーザースクライブ工程(第1レーザー照射工程と第2レーザー照射工程)において、基板がレーザー光線の光源に対して天地方向下方になるようにレーザースクライブ装置内に設置し(スクライブダウン)、天地方向上方から第2電極層側にレーザー光線を照射した。
 その後、この有機EL素子を真空雰囲気から窒素雰囲気で満たされたグローブボックスに移動させて、プラズマCVD装置に移動させて、2μmの窒化珪素膜を形成し、封止を行った。こうして形成された有機EL装置を実施例1とした。
 〔実施例2〕
 実施例1の手順において、第3レーザースクライブ工程時に、1つのレーザー光線を2つに分光して、第1レーザー照射工程、第2レーザー照射工程を同時に行った。具体的には、基板がレーザー光線の光源に対して天地方向下方になるようにレーザースクライブ装置内に設置し(スクライブダウン)、天地方向上方から第2電極層側に分光したレーザー光線を照射した。このときのレーザースクライブ装置の条件は、波長355nm,平均出力2.0W,パルス幅2nsecであった。また、第1レーザー光線と第2レーザー光線のエネルギー比を3:1に分光した。また、第1レーザー光線のビーム径は50μmであり、第2レーザー光線のビーム径は30μmであった。
 〔実施例3〕
 実施例1の作製手順の第3レーザースクライブ工程(第1レーザー照射工程と第2レーザー照射工程)において、基板がレーザー光線の光源に対して天地方向上方になるようにレーザースクライブ装置内に設置し(スクライブアップ)、天地方向下方から第2電極層側にレーザー光線を照射した。
 〔比較例1〕
 実施例1の作製手順において、第3レーザースクライブ工程時に、基板側から単一のレーザー光線を基板に照射した。そして、機能層と第2電極層を同時に除去し、その双方に亘って直線状に連通した単位発光素子分離溝を設けた。具体的には、基板がレーザー光線の光源に対して天地方向下方になるようにレーザースクライブ装置内に設置し(スクライブダウン)、天地方向上方から基板側にレーザー光線を照射した。
 このときのレーザースクライブ装置の条件は、波長355nm,平均出力20W,パルス幅2nsecであった。
 〔発光欠陥測定〕
 実施例1~3及び比較例1の有機EL装置について高温高湿発光試験を行い、発光欠陥を評価した。試験条件は雰囲気60℃/85%RHで印加電圧5Vであり、評価は室温で約10倍の実体顕微鏡で観察し、試験時間1時間後及び試験時間1000時間後の発光欠陥数を評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1のように試験時間1時間後と試験時間1000時間経過後を比較すると、実施例1では、発光欠陥の個数は3コから6コとなり、発光欠陥の個数が3コ増加した。実施例2では、発光欠陥の個数は5コから10コとなり、発光欠陥の個数が5コ増加した。実施例3では、発光欠陥の個数は1コから3コとなり、発光欠陥の個数が2コ増加した。
 一方、比較例1では、発光欠陥の個数は25コから41コとなり、発光欠陥の個数が16コ増加した。
 実施例1~3の有機EL装置の試験時間1時間後における発光欠陥数は、比較例1の有機EL装置の試験時間1時間後における発光欠陥数の1/5以下となった。即ち、本発明の実施例1~3の製造方法を用いると、発光欠陥の少ない発光品質が高い有機EL装置が製造できた。
 また、試験時間1000時間後においても、本発明の実施例1~3の有機EL装置の発光欠陥数は、比較例1の有機EL装置の発光欠陥数の1/4以下に留まっていた。即ち、本発明の実施例1~3の製造方法を用いると、耐久性の高い有機EL装置が製造できた。
 1 有機EL装置
 2 基板(基材)
 3 第1電極層
 5 機能層(有機発光層)
 6 第2電極層
10 有機EL素子(積層体)
12 単位発光素子分離溝
15 第1電極層分離溝
16 機能層分離溝(発光分離溝)
17 発光部分離溝(有機発光層部分)
18 第2電極層分離溝(第2電極層部分)
20 単位有機EL素子

Claims (15)

  1.  基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、第2電極層から有機発光層に食い込む深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、前記有機発光層を貫通して第2電極層と1電極層とが接続された接続部を有し、第1電極層の小片と、第2電極層の小片と両者の間に挟まれた有機発光層の単位発光部が構成され、当該単位発光部が前記接続部を介して電気的に直列に接続されてなる有機EL装置であって、
     単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広いことを特徴とする有機EL装置。
  2.  基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、前記有機発光層は発光分離溝によって複数の小発光領域に分割され、さらに第2電極層から有機発光層に至る深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、第1電極層の小片と、小発光領域と、第2電極層の小片とによって単位EL素子が構成され、当該単位EL素子が電気的に直列に接続されてなる有機EL装置であって、
     単位発光素子分離溝の第2電極層部分の平均の溝幅が、単位発光素子分離溝の有機発光層部分の平均の溝幅よりも広いことを特徴とする有機EL装置。
  3.  単位発光素子分離溝の第2電極層部分と有機発光層部分との境界は段状であることを特徴とする請求項1又は2に記載の有機EL装置。
  4.  単位発光素子分離溝の第2電極層部分の平均の溝幅は、単位発光素子分離溝の有機発光層部分の平均の溝幅の1.3倍から2.0倍であることを特徴とする請求項1乃至3のいずれかに記載の有機EL装置。
  5.  請求項1乃至4のいずれかに記載の有機EL装置を製造する有機EL装置の製造方法であって、レーザー光線を第2電極層側から2回以上に渡って照射することによって単位発光素子分離溝を形成する工程を有することを特徴とする有機EL装置の製造方法。
  6.  基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、第2電極層から有機発光層に食い込む深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、前記有機発光層を貫通して第2電極層と1電極層とが接続された接続部を有し、第1電極層の小片と、第2電極層の小片と両者の間に挟まれた有機発光層の単位発光部が構成され、当該単位発光部が前記接続部を介して電気的に直列に接続されてなる有機EL装置の製造方法であって、
     単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われ、少なくとも第2電極層に溝を形成する第1レーザー照射工程と、前記第1レーザー照射工程によって形成された溝内にレーザー光線を照射する第2レーザー照射工程とを含み、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、照射面積が相違するものであることを特徴とする有機EL装置の製造方法。
  7.  基材上に少なくとも第1電極層と、有機発光層と、第2電極層とが積層され、前記第1電極層は第1電極層分離溝によって複数の小片に分離され、前記有機発光層は発光分離溝によって複数の小発光領域に分割され、さらに第2電極層から有機発光層に至る深さの単位発光素子分離溝があり、第2電極層は単位発光素子分離溝によって複数の小片に分離されており、第1電極層の小片と、小発光領域と、第2電極層の小片とによって単位EL素子が構成され、当該単位EL素子が電気的に直列に接続されてなる有機EL装置の製造方法であって、
     単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から2回以上に渡って照射することによって行われ、少なくとも第2電極層に溝を形成する第1レーザー照射工程と、前記第1レーザー照射工程によって形成された溝内にレーザー光線を照射する第2レーザー照射工程とを含み、第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、照射面積が相違するものであることを特徴とする有機EL装置の製造方法。
  8.  第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、波長、パワー、パルス照射時間の少なくともいずれかが相違するものであることを特徴とする請求項5乃至7のいずれかに記載の有機EL装置の製造方法。
  9.  第1レーザー照射工程に使用されるレーザー光線のパワーは第2レーザー照射工程に使用されるレーザー光線よりも強いことを特徴とする請求項5乃至8のいずれかに記載の有機EL装置の製造方法。
  10.  第1レーザー照射工程に使用されるレーザー光線のビーム幅は第2レーザー照射工程に使用されるレーザー光線よりも大きいことを特徴とする請求項5乃至9のいずれかに記載の有機EL装置の製造方法。
  11.  単位発光素子分離溝を形成する工程は、レーザー光線を第2電極層側から照射すると共にレーザー光線の照射位置を移動させることによって行われ、共通のレーザー光線源からレーザー光線を2以上に分光し、当該2以上に分光したレーザー光線の照射位置を照射位置の移動方向に前後させ、先に照射されるレーザー光線によって前記第1レーザー照射工程を実施し、続いて照射されるレーザー光線によって前記第2レーザー照射工程を実施することを特徴とする請求項5乃至10のいずれかに記載の有機EL装置の製造方法。
  12.  第1レーザー照射工程に使用されるレーザー光線の波長は第2レーザー照射工程に使用されるレーザー光線の波長よりも短いことを特徴とする請求項5乃至11のいずれかに記載の有機EL装置の製造方法。
  13.  第1レーザー照射工程に使用されるレーザー光線の波長は、355nmであり、第2レーザー照射工程に使用されるレーザー光線の波長は、532nmであることを特徴とする請求項12に記載の有機EL装置の製造方法。
  14.  第1レーザー照射工程に使用されるレーザー光線と第2レーザー照射工程に使用されるレーザー光線は、天地方向上方に向けて照射されることを特徴とする請求項5乃至13のいずれかに記載の有機EL装置の製造方法。
  15.  第1レーザー照射工程に使用されるレーザー光線の波長は可視領域を外れたものであることを特徴とする請求項5乃至14のいずれかに記載の有機EL装置の製造方法。
PCT/JP2012/083061 2012-01-05 2012-12-20 有機el装置及びその製造方法 WO2013103093A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013552405A JP6150733B2 (ja) 2012-01-05 2012-12-20 有機el装置の製造方法
US14/370,754 US9263690B2 (en) 2012-01-05 2012-12-20 Organic el device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-000689 2012-01-05
JP2012000689 2012-01-05

Publications (1)

Publication Number Publication Date
WO2013103093A1 true WO2013103093A1 (ja) 2013-07-11

Family

ID=48745155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083061 WO2013103093A1 (ja) 2012-01-05 2012-12-20 有機el装置及びその製造方法

Country Status (3)

Country Link
US (1) US9263690B2 (ja)
JP (1) JP6150733B2 (ja)
WO (1) WO2013103093A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014634A1 (en) * 2013-07-12 2015-01-15 Samsung Display Co.,Ltd. Organic light-emitting diode display and method of manufacturing the same
WO2015014906A1 (de) * 2013-07-31 2015-02-05 Osram Oled Gmbh Optoelektronisches bauelement
WO2017212890A1 (ja) * 2016-06-06 2017-12-14 住友化学株式会社 有機デバイスの製造方法
JP2019153795A (ja) * 2013-11-06 2019-09-12 株式会社半導体エネルギー研究所 剥離方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458606B2 (en) * 2016-05-12 2019-10-29 Nec Lighting, Ltd. Organic EL device
KR102673478B1 (ko) 2016-11-25 2024-06-11 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP6885310B2 (ja) * 2017-11-28 2021-06-09 トヨタ自動車株式会社 電極シート製造装置および蓄電装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024951A1 (ja) * 2009-08-27 2011-03-03 株式会社カネカ 集積化有機発光装置、有機発光装置の製造方法および有機発光装置
JP2011134707A (ja) * 2009-11-26 2011-07-07 Kaneka Corp 発光部材およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904571B2 (ja) * 2004-09-02 2007-04-11 ローム株式会社 半導体発光装置
US7474681B2 (en) * 2005-05-13 2009-01-06 Industrial Technology Research Institute Alternating current light-emitting device
JP4356899B2 (ja) * 2007-03-15 2009-11-04 財団法人山形県産業技術振興機構 有機el発光装置およびその製造方法
JP2008244182A (ja) 2007-03-28 2008-10-09 Kaneka Corp 高輝度発光の有機el発光装置
CN103190199B (zh) * 2010-11-30 2016-03-02 株式会社钟化 有机el装置
WO2012093671A1 (ja) * 2011-01-07 2012-07-12 株式会社カネカ 有機el装置及び有機el装置の製造方法
JP6190803B2 (ja) * 2012-02-20 2017-08-30 株式会社カネカ 有機el装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024951A1 (ja) * 2009-08-27 2011-03-03 株式会社カネカ 集積化有機発光装置、有機発光装置の製造方法および有機発光装置
JP2011134707A (ja) * 2009-11-26 2011-07-07 Kaneka Corp 発光部材およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014634A1 (en) * 2013-07-12 2015-01-15 Samsung Display Co.,Ltd. Organic light-emitting diode display and method of manufacturing the same
US9105877B2 (en) * 2013-07-12 2015-08-11 Samsung Display Co., Ltd. Organic light-emitting diode display and method of manufacturing the same
WO2015014906A1 (de) * 2013-07-31 2015-02-05 Osram Oled Gmbh Optoelektronisches bauelement
US9692004B2 (en) 2013-07-31 2017-06-27 Osram Oled Gmbh Optoelectronic element
DE112014003515B4 (de) 2013-07-31 2021-09-16 Pictiva Displays International Limited Optoelektronisches Bauelement
JP2019153795A (ja) * 2013-11-06 2019-09-12 株式会社半導体エネルギー研究所 剥離方法
WO2017212890A1 (ja) * 2016-06-06 2017-12-14 住友化学株式会社 有機デバイスの製造方法
JPWO2017212890A1 (ja) * 2016-06-06 2019-03-28 住友化学株式会社 有機デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2013103093A1 (ja) 2015-05-11
JP6150733B2 (ja) 2017-06-21
US9263690B2 (en) 2016-02-16
US20140361280A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP6150733B2 (ja) 有機el装置の製造方法
KR101705201B1 (ko) 집적화 유기 발광 장치, 유기 발광 장치의 제조 방법 및 유기 발광 장치
JP4736890B2 (ja) 有機エレクトロルミネッセンス素子
EP2190265B1 (en) Organic electroluminescence device
EP1684550A1 (en) Electric field light emitting element
JP6163483B2 (ja) 有機el装置及びその製造方法
JP2008047340A (ja) 有機エレクトロルミネッセンス素子
JP6342487B2 (ja) 有機電子装置の製造方法
JP5894932B2 (ja) 有機el装置
JP2001035660A (ja) 有機電界発光素子
JP5172402B2 (ja) 有機elデバイス
JP2013251191A (ja) 有機エレクトロルミネッセンス素子
JP5738617B2 (ja) 有機el装置
JP5593901B2 (ja) 有機エレクトロルミネッセンスパネルおよびその製造方法
KR101789151B1 (ko) 적층 유기 발광소자
JP2005216705A (ja) 有機el表示素子およびその製造方法
JP2008294200A (ja) 有機el素子及び光インターコネクションモジュール
JP2001281417A (ja) 屈折率分布レンズ、レンズアレイ、及び光デバイス
JP2016115734A (ja) 有機発光素子及びこれを用いた光源装置
WO2017213262A1 (ja) 有機el素子、並びに有機el素子を利用した照明装置、面状光源及び表示装置
JP2012079515A (ja) 有機el装置及びその製造方法
KR101924577B1 (ko) 레이저빔을 이용한 디스플레이소자의 리페어 방법
JP6996263B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス層用組成物、および有機エレクトロルミネッセンス素子の製造方法
JP2010033984A (ja) 有機発光装置
JP2008085142A (ja) 有機el素子及び光配線モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552405

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14370754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864320

Country of ref document: EP

Kind code of ref document: A1