WO2013099783A1 - Cable - Google Patents

Cable Download PDF

Info

Publication number
WO2013099783A1
WO2013099783A1 PCT/JP2012/083182 JP2012083182W WO2013099783A1 WO 2013099783 A1 WO2013099783 A1 WO 2013099783A1 JP 2012083182 W JP2012083182 W JP 2012083182W WO 2013099783 A1 WO2013099783 A1 WO 2013099783A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
cable
signal line
signal
Prior art date
Application number
PCT/JP2012/083182
Other languages
French (fr)
Japanese (ja)
Inventor
勝雄 下沢
裕 松原
和年 嘉代
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Publication of WO2013099783A1 publication Critical patent/WO2013099783A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • H01B11/1008Features relating to screening tape per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines

Definitions

  • the present invention relates to a cable having a shield layer.
  • the high-speed differential cable includes two signal lines having an inner conductor and an insulator layer disposed on the outer periphery of the inner conductor and disposed in parallel; a drain line disposed adjacent to the signal line; And a shield layer formed so as to spirally wind the signal line and the drain line.
  • a shield layer a member such as an aluminum polyester tape formed by adhering a thin metal plate formed by rolling and an insulating resin member is used. Loss characteristics of transmission lines such as high-speed differential cables are evaluated using eye patterns. The eye pattern is obtained by synchronizing and displaying pulse signals having a predetermined frequency that have passed through the transmission line.
  • a high-speed differential cable having a signal line formed so as to attenuate a low-frequency component of a pulse signal is known (Japanese Patent Laid-Open No. 2010). -73463).
  • the signal line of the high-speed differential cable described in this document has an inner conductor and a dielectric layer disposed on the outer periphery of the inner conductor.
  • the inner conductor has a core material made of a magnetic material having a relatively large specific resistance, and a highly conductive coating layer formed around the core material.
  • the high-speed differential cable described in the above document shows a relatively good eye pattern and can transmit a high-frequency pulse signal with high quality.
  • the cable disclosed in the embodiment is configured such that a signal line having an inner conductor and a dielectric layer disposed on the outer periphery of the inner conductor is at least partially in contact with the outer periphery of the signal line.
  • the shield layer has an insulator layer and a conductive layer, and the thickness of the conductive layer is 2.0 ⁇ m or less. According to the disclosed cable, since the thickness of the conductive layer of the shield layer is 2.0 ⁇ m or less, it is possible to provide a cable having good transmission characteristics.
  • FIG. 1 is a diagram illustrating an example of a cable according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating another example of the cable according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing insertion loss characteristics of the cable shown in FIG. 1 and other cables to be compared.
  • FIG. 4 is a diagram illustrating an example of eye pattern characteristics of a cable according to an embodiment of the present invention and another cable to be compared.
  • FIG. 5 is a diagram showing another example of eye pattern characteristics of the cable according to the embodiment of the present invention and another cable to be compared.
  • FIG. 6 is a diagram showing another example of eye pattern characteristics of the cable according to the embodiment of the present invention and another cable to be compared.
  • FIG. 7 is a diagram showing another example of eye pattern characteristics of the cable according to the embodiment of the present invention and other cables to be compared.
  • FIG. 8 is a diagram showing another example of the cable according to the embodiment of the present invention.
  • the thickness of the conductive coating is suppressed to about the skin depth, so that the low frequency component is attenuated, but there is a relatively thick conductive substrate, Eventually, the presence of low-frequency components flowing through them proved that the attenuation of the low-frequency components was not perfect. Therefore, in the present invention, in order to attenuate the low frequency component to the limit, the conductive layer corresponding to the conductive coating is made extremely thin, and a conductive substrate (for example, iron, nickel) is not used. When the body layer was provided, the excellent high frequency transmission characteristics described later were confirmed.
  • FIG. 1A is a cross-sectional view showing the cable 1.
  • FIG.1 (b) is the elements on larger scale of the part enclosed with the broken line shown by the arrow A of the cable 2 shown to Fig.1 (a).
  • the cable 1 includes a first signal line 10, a second signal line 20, a shield layer 30, a drain line 40, and a jacket 50.
  • the first signal line 10 includes an inner conductor 11 and a dielectric layer 12 disposed on the outer periphery of the inner conductor 11.
  • the inner conductor 11 is formed of a core material made of a magnetic material having a relatively large specific resistance such as iron, and a highly conductive metal having a relatively small specific resistance such as silver, copper, gold, or aluminum and around the core material. And a coating layer disposed on the substrate.
  • the dielectric layer 12 is made of a fluororesin such as porous polytetrafluoroethylene (ePTFE).
  • the second signal line 20 includes an inner conductor 21 corresponding to the inner conductor 11 and the dielectric layer 12 of the first signal line 10, and a dielectric layer 22.
  • the shield layer 30 is spirally wound and disposed so that at least a part thereof is in contact with the outer periphery of the first signal line 10 and the second signal line 20.
  • the shield layer 30 includes a conductive layer 31 and an insulator layer 32 disposed inside the conductive layer 31.
  • the thickness of the conductive layer 31 is a thickness that attenuates a signal component having a frequency lower than a predetermined frequency.
  • the thickness of the conductive layer 31 is a thickness corresponding to the skin depth ⁇ determined based on the frequency f of the transmitted signal and the specific resistance ⁇ of the material forming the conductive layer 31. It is formed.
  • Expression (1) is an expression indicating the skin depth ⁇ [mm].
  • is a specific resistance [ ⁇ ⁇ cm] of the material forming the conductive layer 31
  • f is a frequency [MHz] of a signal transmitted through the first and second signal lines 10 and 20
  • ⁇ 0 is the vacuum magnetic permeability, that is, 4 [pi] ⁇ 10 -7 [H / m]
  • the mu r is the relative permeability.
  • Table 1 shows specific resistances of various metals at a temperature of 20 ° C., that is, volume specific resistance, relative magnetic permeability ⁇ r and density.
  • Equation (1) and Table 1 the relationship between the frequency f of the signal to be transmitted, the specific resistance ⁇ of the material forming the conductive layer 31, and the thickness d of the conductive layer 31 corresponding to the skin depth ⁇ . Is calculated.
  • silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is 1 [ ⁇ m].
  • the frequency f calculated from the equation (1) and Table 1 is the fundamental frequency 4.1 [GHz].
  • a signal having a fundamental frequency of 4.1 [GHz] corresponds to a signal having a bit rate of 8.2 [Gbps].
  • the attenuation amount of the signal component having a frequency of 8.2 [Gbps] or more can be made substantially equal to that of the conventional cable having a conductive layer having a thickness of about 10 [ ⁇ m], while 8.2 [Gbps].
  • the amount of attenuation of signal components having the following bit rates can be made relatively large. Since the shield layer has such a configuration, the attenuation of a signal component having a bit rate of 8.2 [Gbps] or less can be made relatively large, so that the signal is transmitted at a bit rate of 8.2 [Gbps]. The transmission characteristics of the signal will be improved.
  • the thickness d of the conductive layer 31 is set to 1. It is set to about 65 [ ⁇ m].
  • the thickness d of the conductive layer 31 shall be about 1.70 [micrometers].
  • the thickness d of the conductive layer 31 is set to about 2.13 [ ⁇ m].
  • the thickness d of the conductive layer 31 is 1.17. About [ ⁇ m].
  • the thickness d of the conductive layer 31 is set to about 1.20 [ ⁇ m].
  • the thickness d of the conductive layer 31 is set to about 1.50 [ ⁇ m].
  • silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is set to 0.91.
  • the thickness d of the conductive layer 31 is set to about 0.93 [ ⁇ m]. Further, when aluminum is used as a material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 1.16 [ ⁇ m]. Further, in order to improve the transmission characteristics of a signal transmitted at a bit rate of 20.0 [Gbps], silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is set to 0.64. About [ ⁇ m]. Further, when copper is used as the material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 0.66 [ ⁇ m].
  • the thickness d of the conductive layer 31 is set to about 0.82 [ ⁇ m]. In this way, the transmission characteristics of signals transmitted at a bit rate of 3.0 to 20.0 [Gbps] are improved by using any one metal of silver, copper or aluminum as a material for forming the conductive layer 31.
  • the thickness d of the conductive layer 31 is preferably about 2.00 [ ⁇ m] or less.
  • reducing the thickness d of the conductive layer 31 increases the electrical resistance of the conductive layer 31, which may deteriorate the signal transmission characteristics. Therefore, it is desirable to set it to 0.50 [ ⁇ m] or more.
  • the insulator layer 32 is disposed so that at least a part thereof is in contact with the outer periphery of the dielectric layer 12 of the signal line 10 and the dielectric layer 22 of the signal line 20.
  • the insulator layer 32 is formed of polyethylene terephthalate (PET) or the like.
  • PET polyethylene terephthalate
  • the drain line 40 is arranged in parallel with the shield layer 30 so that one end of the outer periphery of the conductive layer 31 is in contact.
  • the drain wire 40 is formed of a silver plated annealed copper wire.
  • the jacket 50 is composed of a tetrafluoroethylene-hexafluoropropylene copolymer (Tetrafluoroethylene-Hexafluoropropylene Copolymer, FEP), an ethylene-tetrafluoroethylene (ETFE), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (TFE), and a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (TFE).
  • a tetrafluoroethylene-hexafluoropropylene copolymer (Tetrafluoroethylene-Hexafluoropropylene Copolymer, FEP)
  • ETFE ethylene-tetrafluoroethylene
  • ETFE tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • TFE tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • Copolymer, PFA) or other fluororesin, polyester or polyester tape winding Next, a method for manufacturing the cable 1 will be described. First, a method for manufacturing the inner conductors 11 and 21 of the first signal line 10 and the second signal line 20 will be described. The internal conductors 11 and 21 are manufactured by forming a coating layer around the core made of a magnetic material by plating or the like. Next, the dielectric material is extruded in an extruder (not shown), and the outer circumferences of the inner conductors 11 and 21 are covered with the dielectric layers 12 and 22, respectively, and the first signal line 10 and the second signal line 20 are formed. Each is formed.
  • the shield layer 30 is formed by depositing a metal that forms the conductive layer 31 on one surface of the insulator layer 32.
  • a conductive layer metal material formed by rolling is used as the conventional conductive layer having a thickness of about 5 to 10 [ ⁇ m].
  • a conductive layer metal material formed by rolling is used.
  • PVC polyvinyl chloride
  • This metal tape is generally also referred to as Alpet.
  • the shield layer 30 is formed by vapor-depositing a metal on the insulator layer 32.
  • the shield layer 30 is spirally wound around the outer periphery of the dielectric layers 12 and 22 of the first signal line 10 and the second signal line 20 so that the conductive layer 31 is outside the insulator layer 32.
  • the jacket 50 is covered outside the shield layer 30 and the drain line 40 so that the central axes of the first signal line 10 and the second signal line and the central axis of the drain line 40 are located on the same plane.
  • An extruder (not shown) is used for covering the jacket 50.
  • FIG. 2A is a cross-sectional view showing the cable 2.
  • the 2B is a partially enlarged view of a portion surrounded by a broken line indicated by an arrow B of the cable 2 shown in FIG.
  • the cable 2 includes a first signal line 10, a second signal line 20, a shield layer 30, and a drain line 40.
  • the shield layer 30 includes a conductive layer 31 and an insulator layer 32 disposed outside the conductive layer 31.
  • the conductive layer 31 is arranged in parallel with the drain line 40 so that one end of the outer periphery is in contact with the drain line 40.
  • the thickness of the conductive layer 31 is a thickness that attenuates a signal component having a frequency lower than a predetermined frequency, and is formed to have a thickness corresponding to the skin depth ⁇ .
  • the insulator layer 32 is disposed so that at least a part thereof is in contact with the outer periphery of the dielectric layer 12 of the signal line 10.
  • the cable 2 shown in FIG. 2 shows that the drain line 40 is arranged adjacent to the first signal line 10 and the second signal line 20 and that the conductive layer 31 is arranged inside. Different from the cable 1 shown. In the cable 2, the drain line 40 in which a low-frequency signal component easily flows is disposed adjacent to the first signal line 10 and the second signal line 20, and thus the low-frequency signal component is transmitted through the drain line 40. It becomes easy to flow. For this reason, in the cable 2, the attenuation amount of the low frequency signal component is smaller than the attenuation amount of the low frequency signal component in the cable 1 shown in FIG.
  • FIG. 3 is a diagram illustrating insertion loss characteristics of the cable 1 and other cables to be compared.
  • 4 to 7 are diagrams showing other examples of eye pattern characteristics of the cable 1 and other cables to be compared.
  • Samples 1 to 4 are all 2-core cables having two signal lines with a diameter of 0.98 [mm].
  • the diameters of the inner conductors of the signal lines of Samples 1 to 4 are all 0.404 [mm].
  • the drain wires and jackets of Samples 1 to 4 were all formed of the same material having the same diameter. Specifically, the diameter of the drain wire is 0.254 [mm], and the material is silver-plated annealed copper. Further, the thickness of the jacket is 0.08 [mm], and the material is FEP. Table 2 shows the configuration of the inner conductor and the shield layer of Samples 1 to 4 used in the test. In sample 1, the inner conductor is made of silver-plated annealed copper, and the shield layer is made of aluminum polyester containing aluminum having a thickness of 10 [ ⁇ m]. In Sample 2, the inner conductor is formed of silver-plated annealed copper, and the shield layer is formed of copper-deposited polyester containing copper having a thickness of 1 [ ⁇ m].
  • the inner conductor is formed of silver-plated iron wire plated with silver having a thickness of 1.5 [ ⁇ m]
  • the shield layer is formed of aluminum polyester containing aluminum having a thickness of 10 [ ⁇ m].
  • the inner conductor is formed of a silver-plated iron wire plated with silver having a thickness of 1.5 [ ⁇ m]
  • the shield layer is formed of copper-deposited polyester containing copper having a thickness of 1 [ ⁇ m]. Is done.
  • Aluminum forming the shield layer of Samples 1 and 3 and copper forming the shield layer of Samples 2 and 4 are respectively arranged outside the insulator layer. As shown in Table 2, a conventional shield layer is used for samples 1 and 3, and a shield layer formed by depositing copper is used for samples 2 and 4.
  • Sample 1 and sample 2 use the same configuration signal line, and sample 3 and sample 4 use the same configuration signal line.
  • Table 3 shows the insertion loss characteristics of Samples 1 to 4 having a cable length of 10 [m].
  • Samples 1 to 4 in Table 3 correspond to Samples 1 to 4 in Table 2, respectively.
  • FIG. 3 shows a graph corresponding to Table 3.
  • a curve 101 indicated by a dashed line indicates the insertion loss characteristic of the sample 1
  • a curve 102 indicated by a broken line indicates the insertion loss characteristic of the sample 2
  • a curve 103 indicated by a two-dot broken line indicates the insertion loss characteristic of the sample 3.
  • the curve 104 shown by the solid line shows the insertion loss characteristic of Sample 1.
  • the insertion loss of the sample 2 is larger than that of the sample 1 in the low frequency region. Therefore, the sample 2 has a signal with a lower frequency component attenuated than the sample 1. Further, comparing the insertion loss characteristic of the sample 3 having the signal line having the same configuration with the insertion loss characteristic of the sample 4, the insertion loss of the sample 4 is larger than that of the sample 3 in the low frequency region. Therefore, the sample 4 has a lower frequency component of the signal attenuated than the sample 3.
  • Tables 4 and 5 show the peak-to-peak jitter (PPJi) [ps] and eye height (EyeH) [mV] of the eye patterns of Samples 1 to 4, respectively.
  • the peak-to-peak jitter indicates the width of the intersection in the eye pattern in the time axis direction, and the smaller the peak-to-peak jitter value, the better the loss characteristic.
  • the eye height indicates the width of the opening portion of the eye pattern in the voltage axis direction, and the larger the eye height value, the better the loss characteristics.
  • Table 4 shows experimental results using a cable having a cable length of 5 [m]
  • Table 5 shows experimental results using a cable having a cable length of 10 [m].
  • Tables 4 and 5 items that could not be measured are indicated by “ ⁇ ”. As shown in Tables 4 and 5, when comparing sample 1 and sample 2, regardless of the measurement frequency, the peak-to-peak jitter is smaller in sample 2 than in sample 1, and the eye height is lower than in sample 1. 2 is larger. Further, when comparing the sample 3 and the sample 4, regardless of the magnitude of the measurement frequency, the peak-to-peak jitter is smaller in the sample 4 than in the sample 3, and the eye height is larger in the sample 4 than in the sample 3. 4 to 7, eye patterns corresponding to Tables 4 and 5 are shown. 4 (A) to 4 (C) are patterns of the sample 1 with a cable length of 5 [m], and FIGS.
  • 4 (D) to 4 (F) are the patterns of the sample 2 with a cable length of 5 [m]. It is a pattern.
  • the frequency of the measurement signal is 3.125 [Gbps] in FIGS. 4 (A) and 4 (D), 6.250 [Gbps] in FIGS. 4 (B) and 4 (E), and FIG. ) And 4 (F) are 12.500 [Gbps].
  • 5 (A) to 5 (C) are patterns of the sample 3 with a cable length of 5 [m]
  • FIGS. 5 (D) to 5 (F) are the patterns of the sample 4 with a cable length of 5 [m]. It is a pattern.
  • the frequency of the measurement signal is 3.125 [Gbps] in FIGS. 5 (A) and 5 (D), 6.250 [Gbps] in FIGS.
  • FIGS. 6 (A) to 6 (C) are patterns of the sample 1 with a cable length of 10 [m]
  • FIGS. 6 (D) to 6 (F) are the patterns of the sample 2 with a cable length of 10 [m]. It is a pattern.
  • the frequency of the measurement signal is 3.125 [Gbps] in FIGS. 6 (A) and 6 (D), 6.250 [Gbps] in FIGS. 6 (B) and 6 (E), and FIG. ) And 6 (F) are 12.500 [Gbps].
  • 7A to 7C are patterns of the sample 3 with a cable length of 10 [m], and FIGS.
  • 7D to 7F are the patterns of the sample 4 with a cable length of 10 [m]. It is a pattern.
  • the frequency of the measurement signal is 3.125 [Gbps] in FIGS. 7 (A) and 7 (D), 6.250 [Gbps] in FIGS. 7 (B) and 7 (E), and FIG. ) And 7 (F) are 12.500 [Gbps].
  • the eye pattern of sample 2 is more open than the eye pattern of sample 1
  • the eye pattern of sample 4 is more eye-open than the eye pattern of sample 3. is open.
  • the cable 3 includes a signal line 10, a shield layer 30, a drain line 40, and a jacket 50.
  • the shield layer 30 includes a conductive layer 31 and an insulator layer 32 disposed inside the conductive layer 31.
  • the conductive layer 31 is arranged in parallel with the drain line 40 so that one end of the outer periphery is in contact with the drain line 40.
  • the thickness of the conductive layer 31 is a thickness that attenuates a signal component having a frequency lower than a predetermined frequency, and is formed to have a thickness corresponding to the skin depth ⁇ .
  • the insulator layer 32 is disposed so that at least a part thereof is in contact with the outer periphery of the dielectric layer 12 of the signal line 10.
  • the cable 1 shown in FIG. 1 is a twin cable having two signal lines 10 and 20, and the cable 1 shown in FIG. 8 is a coaxial cable having one signal line 10.
  • the present invention can also be applied to a cable having one or a plurality of signal lines such as a quad cable having four signal lines.
  • the inner conductors 11 and 12 of the first signal lines 10 and 20 are each formed of a core material formed of a magnetic material and a coating layer disposed around the core material. You may form with another conductor.
  • the cable according to the present invention has the drain line 40.
  • the shield layer 30 may be provided along the vertical direction.

Abstract

High-speed cables have been required to have further improved transmission characteristics. A cable of the present invention is provided with: signal lines (10, 20) which respectively comprise inner conductors (11, 21) and dielectric layers (12, 22) that are respectively arranged on the outer circumferences of the inner conductors; and a shielding layer (30) that is arranged such that at least a part of the shielding layer is in contact with the outer circumferences of the signal lines. The shielding layer comprises an insulating layer (32) and a conductive layer (31), and the conductive layer has a thickness of 2.0 μm or less.

Description

ケーブルcable
 本発明は、シールド層を有するケーブルに関するものである。 The present invention relates to a cable having a shield layer.
 高速ビットレートでデータ伝送が行われる場合に用いられる伝送線路として、高速差動ケーブルがある。高速差動ケーブルは、内部導体と、内部導体の外周に配置される絶縁体層とを有し且つ並列に配置される2つの信号線と、信号線に隣接して配置されるドレイン線と、信号線及びドレイン線を螺旋巻きするように形成されるシールド層とを有する。シールド層は、圧延処理で形成された金属薄板と絶縁樹脂部材とを接着して形成されるアルミポリエステルテープなどの部材が使用されている。
 高速差動ケーブルなどの伝送路の損失特性はアイパターンを使用して評価されている。アイパターンは、伝送路を通過させた所定の周波数を有するパルス信号を同期して重ね合わせて表示することにより得られる。良好なアイパターンを示す損失特性を有する高速差動ケーブルを形成するために、パルス信号の低周波成分を減衰させるように形成される信号線を有する高速差動ケーブルが知られる(特開第2010−73463号公報を参照)。この文献に記載される高速差動ケーブルの信号線は、内部導体と内部導体の外周に配置される誘電体層とを有する。内部導体は、比較的固有抵抗が大きい磁性体で形成される芯材と、芯材の周囲に形成される良導電性の被覆層とを有する。
 一般によく知られるように、信号線に高周波電流が流れるとき、低周波数では導体内を一様に流れていた電流が表皮効果により徐々に導体表面付近を流れるようになる。このため、パルス信号を伝送する場合、パルス信号の周波数が上昇するに従い、信号の高周波成分は内部導体の外側を流れ、信号の低周波成分は内部導体の内側を流れるようになる。
 前記文献に記載される高速差動ケーブルの信号線では、信号の高周波成分は良導電性の被覆層を流れ、信号の低周波成分は比較的固有抵抗が大きい芯材を流れるようになるので、信号の高周波成分と比較して信号の低周波成分の減衰量が大きくなる。この結果、前記文献に記載される高速差動ケーブルは、比較的良好なアイパターンを示し、高周波パルス信号を高品質で伝送することが可能になる。
There is a high-speed differential cable as a transmission line used when data transmission is performed at a high bit rate. The high-speed differential cable includes two signal lines having an inner conductor and an insulator layer disposed on the outer periphery of the inner conductor and disposed in parallel; a drain line disposed adjacent to the signal line; And a shield layer formed so as to spirally wind the signal line and the drain line. As the shield layer, a member such as an aluminum polyester tape formed by adhering a thin metal plate formed by rolling and an insulating resin member is used.
Loss characteristics of transmission lines such as high-speed differential cables are evaluated using eye patterns. The eye pattern is obtained by synchronizing and displaying pulse signals having a predetermined frequency that have passed through the transmission line. In order to form a high-speed differential cable having loss characteristics exhibiting a good eye pattern, a high-speed differential cable having a signal line formed so as to attenuate a low-frequency component of a pulse signal is known (Japanese Patent Laid-Open No. 2010). -73463). The signal line of the high-speed differential cable described in this document has an inner conductor and a dielectric layer disposed on the outer periphery of the inner conductor. The inner conductor has a core material made of a magnetic material having a relatively large specific resistance, and a highly conductive coating layer formed around the core material.
As is generally well known, when a high frequency current flows through a signal line, the current that has been flowing uniformly in the conductor at a low frequency gradually flows near the conductor surface due to the skin effect. For this reason, when transmitting a pulse signal, as the frequency of the pulse signal increases, the high frequency component of the signal flows outside the inner conductor, and the low frequency component of the signal flows inside the inner conductor.
In the signal line of the high-speed differential cable described in the above document, the high-frequency component of the signal flows through a highly conductive coating layer, and the low-frequency component of the signal flows through a core material having a relatively large specific resistance. The attenuation amount of the low frequency component of the signal is larger than that of the high frequency component of the signal. As a result, the high-speed differential cable described in the above document shows a relatively good eye pattern and can transmit a high-frequency pulse signal with high quality.
 しかしながら、パルス信号などによりデータを高速伝送するために使用されるケーブルでは、伝送特性のさらなる向上が求められているという課題がある。そこで、本発明は、この課題を解決することが可能なケーブルを提供することを目的とする。
 上記課題を解決するために、実施形態に開示されるケーブルは、内部導体と内部導体の外周上に配置される誘電体層とを有する信号線と、信号線の外周に少なくとも一部が接するように配置されるシールド層とを備え、シールド層は、絶縁体層と導電層とを有し、導電層の厚さは、2.0μm以下である。
 開示されるケーブルによれば、シールド層の導電層の厚さは、2.0μm以下であるので、良好な伝送特性を有するケーブルを提供することが可能となった。
However, a cable used for high-speed transmission of data using a pulse signal or the like has a problem that further improvement in transmission characteristics is required. Then, an object of this invention is to provide the cable which can solve this subject.
In order to solve the above-described problem, the cable disclosed in the embodiment is configured such that a signal line having an inner conductor and a dielectric layer disposed on the outer periphery of the inner conductor is at least partially in contact with the outer periphery of the signal line. The shield layer has an insulator layer and a conductive layer, and the thickness of the conductive layer is 2.0 μm or less.
According to the disclosed cable, since the thickness of the conductive layer of the shield layer is 2.0 μm or less, it is possible to provide a cable having good transmission characteristics.
図1は、本発明に係る実施形態に従うケーブルの一例を示す図である。
図2は、本発明に係る実施形態に従うケーブルの他の例を示す図である。
図3は、図1に示すケーブル及び比較される他のケーブルの挿入損失特性を示す図である。
図4は、本発明に係る実施形態に従うケーブル及び比較される他のケーブルのアイパターン特性の一例を示す図である。
図5は、本発明に係る実施形態に従うケーブル及び比較される他のケーブルのアイパターン特性の他の例を示す図である。
図6は、本発明に係る実施形態に従うケーブル及び比較される他のケーブルのアイパターン特性の他の例を示す図である。
図7は、本発明に係る実施形態に従うケーブル及び比較される他のケーブルのアイパターン特性の他の例を示す図である。
図8は、本発明に係る実施形態に従うケーブルの他の例を示す図である。
FIG. 1 is a diagram illustrating an example of a cable according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating another example of the cable according to the embodiment of the present invention.
FIG. 3 is a diagram showing insertion loss characteristics of the cable shown in FIG. 1 and other cables to be compared.
FIG. 4 is a diagram illustrating an example of eye pattern characteristics of a cable according to an embodiment of the present invention and another cable to be compared.
FIG. 5 is a diagram showing another example of eye pattern characteristics of the cable according to the embodiment of the present invention and another cable to be compared.
FIG. 6 is a diagram showing another example of eye pattern characteristics of the cable according to the embodiment of the present invention and another cable to be compared.
FIG. 7 is a diagram showing another example of eye pattern characteristics of the cable according to the embodiment of the present invention and other cables to be compared.
FIG. 8 is a diagram showing another example of the cable according to the embodiment of the present invention.
 以下、本発明に係る実施形態に従うケーブルについて、図面を参照して詳細に説明する。なお、本発明の開示において提供される図は、本発明の説明を意図したものであり、構成素子の大きさの比率を示すことを意図したものではないことを理解されたい。また、それぞれの図面において、同一、又は類似する機能を有する構成要素には、同一、又は類似する符号が付される。したがって、先に説明した構成要素と同一、又は類似する機能を有する構成要素に関しては、改めて説明をしないことがある。
 高周波信号減衰の改良に関する従来の技術として、特開平9−102217号公報(その他には、特開平6−267341号公報)には、導電性基体とその上に導電性被覆を設けた外部導体が開示されているが、近年の高速伝送ケーブル分野では更なる性能の向上が望まれていた。上記公報の技術について詳細に検討したところ、その導電性被覆の厚さを表皮深さ程度に抑えることで、低周波成分を減衰させてはいるものの、比較的厚めの導電性基体があるため、結局そこを流れる低周波成分が存在することで、低周波成分の減衰が完全ではないとわかった。そこで、本発明では、低周波成分を極限まで減衰させるために、上記導電性被覆に相当する導電層を極めて薄くしたうえで、導電性基体(例えば、鉄、ニッケル)は用いず、代わりに絶縁体層を設けるようにしたところ、後述する優れた高周波伝送特性が確認された。
 従来のケーブルのシールド層の金属薄板は圧延処理(圧延処理では、比較的厚めの金属層に仕上がりやすい。)で形成されており、ドレイン線を介して接地されるときの接地抵抗の上昇を抑えるため、シールド層を形成する導電層の厚さは厚くすることが好ましいとされており、5~10〔μm〕程度の板厚を有していたが、本発明は、その全く逆の結果をとることになった。
 以下、図1を参照して、本発明に係る第1実施形態に従うケーブルについて説明する。図1(a)は、ケーブル1を示す断面図である。図1(b)は、図1(a)に示すケーブル2の矢印Aで示される破線で囲まれた部分の部分拡大図である。
 ケーブル1は、第1信号線10と、第2信号線20と、シールド層30と、ドレイン線40と、ジャケット50とを有する。第1信号線10は、内部導体11と、内部導体11の外周に配置される誘電体層12とを有する。内部導体11は、鉄など固有抵抗が比較的大きい磁性体材料で形成される芯材と、銀、銅、金又はアルミニウムなど固有抵抗が比較的小さい良導電性金属で形成され且つ芯材の周囲に配置される被覆層とを有する。誘電体層12は、多孔質ポリテトラフルオロエチレン(expanded polytetrafluoroethylene、ePTFE)等のフッ素樹脂で形成される。第2信号線20は、第1信号線10の内部導体11及び誘電体層12にそれぞれ対応する内部導体21と、誘電体層22とを有する。
 シールド層30は、第1信号線10及び第2信号線20の外周に少なくとも一部が接するように螺旋状に巻回され配置される。図1(b)に示すように、シールド層30は、導電層31と導電層31の内側に配置される絶縁体層32とを有する。
 導電層31の厚さは、所定の周波数よりも低い周波数を有する信号成分を減衰させる厚さである。すなわち、導電層31の厚さは、伝送される信号の周波数fと、導電層31を形成する材料の固有抵抗ρとに基づいて決定される表皮深さδに相当する厚さになるように形成される。
 式(1)は、表皮深さδ〔mm〕を示す式である。
Figure JPOXMLDOC01-appb-M000002
 ここで、ρは、導電層31を形成する材料の固有抵抗〔Ω・cm〕であり、fは第1及び第2信号線10及び20により伝送される信号の周波数〔MHz〕であり、μは真空の透磁率、すなわち4π×10−7〔H/m〕であり、μは比透磁率である。表1に種々の金属の20度の温度での固有抵抗、すなわち体積固有抵抗と、比透磁率μと密度とを示す。
Figure JPOXMLDOC01-appb-T000003
 式(1)及び表1を参照することにより、伝送する信号の周波数f及び導電層31を形成する材料の固有抵抗ρと、表皮深さδに相当する導電層31の厚さdとの関係が演算される。例えば、導電層31を形成する材料として銀を使用し、導電層31の厚さdを1〔μm〕とする。この場合、式(1)及び表1から演算される周波数fは、基本周波数4.1〔GHz〕となる。基本周波数が4.1〔GHz〕である信号は、ビットレートが8.2〔Gbps〕である信号に相当する。このため、8.2〔Gbps〕以上の周波数を有する信号成分の減衰量は、10〔μm〕程度の厚さを有する導電層を有する従来のケーブルとほぼ同等にできる一方、8.2〔Gbps〕以下のビットレートを有する信号成分の減衰量は比較的大きくできる。これから、シールド層をこのような構成にすることにより、8.2〔Gbps〕以下のビットレートを有する信号成分の減衰量は比較的大きくできるので、8.2〔Gbps〕のビットレートで伝送される信号の伝送特性が改善されることになる。
 同様に、3.0〔Gbps〕のビットレートで伝送される信号の伝送特性を改善するためには、導電層31を形成する材料として銀を使用し、導電層31の厚さdを1.65〔μm〕程度とする。また、導電層31を形成する材料として銅を使用する場合は、導電層31の厚さdを1.70〔μm〕程度とする。さらに、導電層31を形成する材料としてアルミニウムを使用する場合は、導電層31の厚さdを2.13〔μm〕程度とする。
 また、6.0〔Gbps〕のビットレートで伝送される信号の伝送特性を改善するためには、導電層31を形成する材料として銀を使用し、導電層31の厚さdを1.17〔μm〕程度とする。また、導電層31を形成する材料として銅を使用する場合は、導電層31の厚さdを1.20〔μm〕程度とする。さらに、導電層31を形成する材料としてアルミニウムを使用する場合は、導電層31の厚さdを1.50〔μm〕程度とする。
 また、10.0〔Gbps〕のビットレートで伝送される信号の伝送特性を改善するためには、導電層31を形成する材料として銀を使用し、導電層31の厚さdを0.91〔μm〕程度とする。また、導電層31を形成する材料として銅を使用する場合は、導電層31の厚さdを0.93〔μm〕程度とする。さらに、導電層31を形成する材料としてアルミニウムを使用する場合は、導電層31の厚さdを1.16〔μm〕程度とする。
 また、20.0〔Gbps〕のビットレートで伝送される信号の伝送特性を改善するためには、導電層31を形成する材料として銀を使用し、導電層31の厚さdを0.64〔μm〕程度とする。また、導電層31を形成する材料として銅を使用する場合は、導電層31の厚さdを0.66〔μm〕程度とする。さらに、導電層31を形成する材料としてアルミニウムを使用する場合は、導電層31の厚さdを0.82〔μm〕程度とする。
 このように、導電層31を形成する材料として銀、銅又はアルミニウムのいずれか1つの金属を使用して3.0~20.0〔Gbps〕のビットレートで伝送される信号の伝送特性を改善するためには、導電層31の厚さdを2.00〔μm〕程度以下の厚さとすることが好ましい。しかしながら、一方で導電層31の厚さdを薄くすることにより導電層31の電気抵抗が大きくなり、信号の伝送特性が悪化するおそれがある。そこで、0.50〔μm〕以上とすることが望ましい。
 絶縁体層32は、信号線10の誘電体層12及び信号線20の誘電体層22の外周に少なくとも一部が接するように配置される。絶縁体層32は、ポリエチレンテフタレート(Polyethylene terephthalate、PET)などにより形成される。
 ドレイン線40は、導電層31の外周の一端が接するようにシールド層30に並行して配置される。ドレイン線40は、銀めっき軟銅線で形成される。ケーブル長に基づいてドレイン線40の口径を適切に選択することにより、導電層31の厚さを薄い場合でもケーブル1は接地抵抗を低くすることができる
 ジャケット50は、第1信号線10及び第2信号線20の外周に巻回されるシールド層30と、ドレイン線40との外側を被覆するように配置される。ジャケット50は、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(Tetrafluoroetylene−Hexafluoropropylen Copolymer、FEP)、エチレン−テトラフルオロエチレン(Ethylene tetrafluoroethylene、ETFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(Tetrafluoroetylene−Perfluoroalkylvinylether Copolymer、PFA)等のフッ素樹脂、ポリエステル又はポリエステルテープ巻きで形成される。
 次に、ケーブル1の製造方法について説明する。まず、第1信号線10及び第2信号線20の内部導体11及び21の製造方法について説明する。内部導体11及び21は、磁性体材料で形成される芯材の周囲に被覆層をメッキ処理等により形成することにより製造される。次いで、押出機(図示せず)において誘電体素材が押出されて、内部導体11及び21の外周に誘電体層12及び22がそれぞれ被覆されて、第1信号線10及び第2信号線20がそれぞれ形成される。
 シールド層30は、絶縁体層32の一方の面に導電層31を形成する金属を蒸着させることにより形成される。5~10〔μm〕程度の厚さを有する従来の導電層は、圧延処理により形成された導電層用金属素材が使用される。具体的には、従来のケーブルのシールド層では、圧延処理により形成されたアルミ箔とポリエチレンテフタレートとを、ポリ塩化ビニル(polyvinylchloride、PVC)を介して積層してテープ状に形成した金属化テープが使用される。この金属テープは、一般にアルペット(ALPET)とも称される。しかしながら、0.50~2.00〔μm〕程度の厚さを有する金属層を圧延処理で形成することは容易でないため、シールド層30は、絶縁体層32に金属を蒸着することにより形成される。
 シールド層30は、導電層31が絶縁体層32の外側になるように第1信号線10及び第2信号線20の誘電体層12及び22の外周に螺旋状に巻回される。次いで、第1信号線10及び第2信号線の中心軸と、ドレイン線40の中心軸が同一平面上に位置するように、ジャケット50がシールド層30及びドレイン線40の外側に被覆される。ジャケット50の被覆には、押出機(図示せず)が使用される。
 次に、図2を参照して、本発明に係る第2実施形態に従うケーブルについて説明する。図2(a)は、ケーブル2を示す断面図である。図2(b)は、図2(a)に示すケーブル2の矢印Bで示される破線で囲まれた部分の部分拡大図である。
 ケーブル2は、第1信号線10と、第2信号線20と、シールド層30と、ドレイン線40とを有する。シールド層30は、導電層31と導電層31の外側に配置される絶縁体層32とを有する。導電層31は、外周の一端がドレイン線40に接するようにドレイン線40と並列に配置される。導電層31の厚さは、所定の周波数よりも低い周波数を有する信号成分を減衰させる厚さであり、表皮深さδに相当する厚さになるように形成される。絶縁体層32は、信号線10の誘電体層12の外周に少なくとも一部が接するように配置される。
 図2に示されるケーブル2は、ドレイン線40が第1信号線10及び第2信号線20に隣接して配置されること、及び導電層31が内側に配置されていることが、図1に示されるケーブル1と相違する。ケーブル2では、低周波の信号成分が流れやすいドレイン線40が第1信号線10及び第2信号線20に隣接して配置されるため、ドレイン線40を介して低周波の信号成分がケーブル2を流れやすくなる。このため、ケーブル2では、低周波の信号成分の減衰量は、図1に示されるケーブル1における低周波の信号成分の減衰量よりも小さくなる。したがって、図1に示すケーブル1とケーブル2とを比較すると、図1に示されるケーブル1の方が好ましい高周波パルス信号伝送特性を得られやすい構成である。
 次に、図3~7を参照して、ケーブル1及び比較される他のケーブルのアイパターン特性試験の結果について説明する。図3は、ケーブル1及び比較される他のケーブルの挿入損失(Insertion Loss)特性を示す図である。図4~7は、ケーブル1及び比較される他のケーブルのアイパターン特性の他の例を示す図である。
 この試験では、4つの試料1~4が使用された。試料1~4は全て口径が0.98〔mm〕の2本の信号線を有する2芯ケーブルである。試料1~4の信号線の内部導体の口径は全て0.404〔mm〕である。また、試料1~4のドレイン線及びジャケットは全て同一口径を有する同一素材で形成された。具体的には、ドレイン線の口径は0.254〔mm〕であり、素材は銀めっき軟銅である。また、ジャケットの厚さは0.08〔mm〕であり、素材はFEPである。
 表2に試験に使用された試料1~4の内部導体及びシールド層の構成を示す。
Figure JPOXMLDOC01-appb-T000004
 試料1では、内部導体は銀めっき軟銅で形成され、シールド層は厚さが10〔μm〕であるアルミニウムを含むアルミポリエステルで形成される。試料2では、内部導体は銀めっき軟銅で形成され、シールド層は厚さが1〔μm〕である銅を含む銅蒸着ポリエステルで形成される。試料3では、内部導体は厚さが1.5〔μm〕である銀でめっきされた銀めっき鉄線で形成され、シールド層は厚さが10〔μm〕であるアルミニウムを含むアルミポリエステルで形成される。試料4では、内部導体は厚さが1.5〔μm〕である銀でめっきされた銀めっき鉄線で形成され、シールド層は厚さが1〔μm〕である銅を含む銅蒸着ポリエステルで形成される。試料1及び3のシールド層を形成するアルミニウム並びに試料2及び4のシールド層を形成する銅はそれぞれ絶縁体層の外側に配置される。
 表2に示すように、試料1及び3は従来のシールド層が使用され、試料2及び4は銅を蒸着することにより形成されるシールド層が使用される。また、試料1と試料2とは同一構成の信号線が使用され、試料3と試料4とは同一構成の信号線が使用される。
 表3において、ケーブル長が10〔m〕である試料1~4の挿入損失特性を示す。表3の試料1~4はそれぞれ、表2の試料1~4に対応する。
Figure JPOXMLDOC01-appb-T000005
 図3に、表3に対応するグラフを示す。図3において、一点破線で示す曲線101が試料1の挿入損失特性を示し、破線で示す曲線102が試料2の挿入損失特性を示し、二点破線で示す曲線103が試料3の挿入損失特性を示し、実線で示す曲線104が試料1の挿入損失特性を示す。同一構成の信号線を有する試料1の挿入損失特性と試料2の挿入損失特性とを比較すると、試料2は、低周波数領域で試料1よりも挿入損失が大きくなっている。したがって、試料2は、試料1よりも信号の低周波成分が減衰されている。また、同一構成の信号線を有する試料3の挿入損失特性と試料4の挿入損失特性とを比較すると、試料4は、低周波数領域で試料3よりも挿入損失が大きくなっている。したがって、試料4は、試料3よりも信号の低周波成分が減衰されている。
 表4及び5において試料1~4のアイパターンのピークツーピークジッタ(Peak to Peak Jitter、PPJi)〔ps〕及びアイハイト(Eye Height、EyeH)〔mV〕をそれぞれ示す。ピークツーピークジッタは、アイパターンにおける交差点の時間軸方向の幅を示し、ピークツーピークジッタの値が小さいほど良好な損失特性を有することを示す。一方、アイハイトは、アイパターンの開口部の電圧軸方向の幅を示し、アイハイトの値が大きいほど良好な損失特性を有することを示す。表4は、ケーブル長が5〔m〕であるケーブルを使用した実験結果であり、表5は、ケーブル長が10〔m〕であるケーブルを使用した実験結果である。表4及び5において、測定ができなかった項目は「−」で示される。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4及び5に示すように、試料1と試料2を比較すると、測定周波数の大きさに関わらず、ピークツーピークジッタは試料1よりも試料2の方が小さく、アイハイトは試料1よりも試料2の方が大きい。また、試料3と試料4を比較すると、測定周波数の大きさに関わらず、ピークツーピークジッタは試料3よりも試料4の方が小さく、アイハイトは試料3よりも試料4の方が大きい。
 図4~7において、表4及び5にそれぞれ対応するアイパターンを示す。図4(A)~4(C)は、ケーブル長が5〔m〕の試料1のパターンであり、図4(D)~4(F)は、ケーブル長が5〔m〕の試料2のパターンである。測定信号の周波数は、図4(A)及び4(D)が3.125〔Gbps〕であり、図4(B)及び4(E)が6.250〔Gbps〕であり、図4(C)及び4(F)が12.500〔Gbps〕である。
 図5(A)~5(C)は、ケーブル長が5〔m〕の試料3のパターンであり、図5(D)~5(F)は、ケーブル長が5〔m〕の試料4のパターンである。測定信号の周波数は、図5(A)及び5(D)が3.125〔Gbps〕であり、図5(B)及び5(E)が6.250〔Gbps〕であり、図5(C)及び5(F)が12.500〔Gbps〕である。
 図6(A)~6(C)は、ケーブル長が10〔m〕の試料1のパターンであり、図6(D)~6(F)は、ケーブル長が10〔m〕の試料2のパターンである。測定信号の周波数は、図6(A)及び6(D)が3.125〔Gbps〕であり、図6(B)及び6(E)が6.250〔Gbps〕であり、図6(C)及び6(F)が12.500〔Gbps〕である。
 図7(A)~7(C)は、ケーブル長が10〔m〕の試料3のパターンであり、図7(D)~7(F)は、ケーブル長が10〔m〕の試料4のパターンである。測定信号の周波数は、図7(A)及び7(D)が3.125〔Gbps〕であり、図7(B)及び7(E)が6.250〔Gbps〕であり、図7(C)及び7(F)が12.500〔Gbps〕である。
 いずれのケーブルの長さ及び測定信号の周波数においても、試料2のアイパターンは、試料1のアイパターンよりもアイが開いており、試料4のアイパターンは、試料3のアイパターンよりもアイが開いている。
 次に、図8を参照して、本発明に係る第3実施形態に従うケーブルについて説明する。図8は、ケーブル3を示す断面図である。
 ケーブル3は、信号線10と、シールド層30と、ドレイン線40と、ジャケット50とを有する。シールド層30は、導電層31と導電層31の内側に配置される絶縁体層32とを有する。導電層31は、外周の一端がドレイン線40に接するようにドレイン線40と並列に配置される。導電層31の厚さは、所定の周波数よりも低い周波数を有する信号成分を減衰させる厚さであり、表皮深さδに相当する厚さになるように形成される。絶縁体層32は、信号線10の誘電体層12の外周に少なくとも一部が接するように配置される。
 以上、図1~8を参照して、本発明に係る実施形態を説明してきた。しかしながら、本発明の精神、及び範囲を逸脱しない範囲内で、様々な変化及び変形を行うことができることが理解されるであろう。
 例えば、図1に示されるケーブル1は2本の信号線10及び20を有するツインケーブルであり、図8に示されるケーブル1は1本の信号線10を有する同軸ケーブルである。しかしながら、本発明は、4本の信号線を有するクワッドケーブルなど単数又は複数の信号線を有するケーブルにも適用可能である。また、第1信号線10及び20の内部導体11及び12はそれぞれ、磁性体材料で形成される芯材と、芯材の周囲に配置される被覆層とで形成されるが、銀めっき軟銅など他の導体で形成されてもよい。
 また、図1、2及び8に示されるケーブル1~3は、ドレイン線40をそれぞれ有するが、ケーブル長が短いなど接地抵抗の上昇が考慮されない場合などでは、本発明に係るケーブルは、ドレイン線40は有さなくてもよい。さらに、シールド層30は、縦沿えに設けてもよい。
Hereinafter, a cable according to an embodiment of the present invention will be described in detail with reference to the drawings. It should be understood that the figures provided in the disclosure of the present invention are intended to illustrate the present invention and are not intended to indicate the proportions of component sizes. Moreover, in each drawing, the same or similar code | symbol is attached | subjected to the component which has the same or similar function. Therefore, a component having the same or similar function as the component described above may not be described again.
As a conventional technique for improving high-frequency signal attenuation, Japanese Patent Laid-Open No. 9-102217 (in addition, Japanese Patent Laid-Open No. 6-267341) discloses a conductive substrate and an outer conductor provided with a conductive coating thereon. Although disclosed, in the recent high-speed transmission cable field, further improvement in performance has been desired. When the technique of the above publication is examined in detail, the thickness of the conductive coating is suppressed to about the skin depth, so that the low frequency component is attenuated, but there is a relatively thick conductive substrate, Eventually, the presence of low-frequency components flowing through them proved that the attenuation of the low-frequency components was not perfect. Therefore, in the present invention, in order to attenuate the low frequency component to the limit, the conductive layer corresponding to the conductive coating is made extremely thin, and a conductive substrate (for example, iron, nickel) is not used. When the body layer was provided, the excellent high frequency transmission characteristics described later were confirmed.
The metal thin plate of the shield layer of the conventional cable is formed by a rolling process (in the rolling process, it is easy to finish a relatively thick metal layer), and suppresses an increase in grounding resistance when grounded via a drain wire. For this reason, it is considered preferable to increase the thickness of the conductive layer forming the shield layer, and it has a plate thickness of about 5 to 10 [μm]. I decided to take it.
Hereinafter, a cable according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1A is a cross-sectional view showing the cable 1. FIG.1 (b) is the elements on larger scale of the part enclosed with the broken line shown by the arrow A of the cable 2 shown to Fig.1 (a).
The cable 1 includes a first signal line 10, a second signal line 20, a shield layer 30, a drain line 40, and a jacket 50. The first signal line 10 includes an inner conductor 11 and a dielectric layer 12 disposed on the outer periphery of the inner conductor 11. The inner conductor 11 is formed of a core material made of a magnetic material having a relatively large specific resistance such as iron, and a highly conductive metal having a relatively small specific resistance such as silver, copper, gold, or aluminum and around the core material. And a coating layer disposed on the substrate. The dielectric layer 12 is made of a fluororesin such as porous polytetrafluoroethylene (ePTFE). The second signal line 20 includes an inner conductor 21 corresponding to the inner conductor 11 and the dielectric layer 12 of the first signal line 10, and a dielectric layer 22.
The shield layer 30 is spirally wound and disposed so that at least a part thereof is in contact with the outer periphery of the first signal line 10 and the second signal line 20. As shown in FIG. 1B, the shield layer 30 includes a conductive layer 31 and an insulator layer 32 disposed inside the conductive layer 31.
The thickness of the conductive layer 31 is a thickness that attenuates a signal component having a frequency lower than a predetermined frequency. That is, the thickness of the conductive layer 31 is a thickness corresponding to the skin depth δ determined based on the frequency f of the transmitted signal and the specific resistance ρ of the material forming the conductive layer 31. It is formed.
Expression (1) is an expression indicating the skin depth δ [mm].
Figure JPOXMLDOC01-appb-M000002
Here, ρ is a specific resistance [Ω · cm] of the material forming the conductive layer 31, f is a frequency [MHz] of a signal transmitted through the first and second signal lines 10 and 20, and μ 0 is the vacuum magnetic permeability, that is, 4 [pi] × 10 -7 [H / m], the mu r is the relative permeability. Table 1 shows specific resistances of various metals at a temperature of 20 ° C., that is, volume specific resistance, relative magnetic permeability μ r and density.
Figure JPOXMLDOC01-appb-T000003
By referring to Equation (1) and Table 1, the relationship between the frequency f of the signal to be transmitted, the specific resistance ρ of the material forming the conductive layer 31, and the thickness d of the conductive layer 31 corresponding to the skin depth δ. Is calculated. For example, silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is 1 [μm]. In this case, the frequency f calculated from the equation (1) and Table 1 is the fundamental frequency 4.1 [GHz]. A signal having a fundamental frequency of 4.1 [GHz] corresponds to a signal having a bit rate of 8.2 [Gbps]. For this reason, the attenuation amount of the signal component having a frequency of 8.2 [Gbps] or more can be made substantially equal to that of the conventional cable having a conductive layer having a thickness of about 10 [μm], while 8.2 [Gbps]. The amount of attenuation of signal components having the following bit rates can be made relatively large. Since the shield layer has such a configuration, the attenuation of a signal component having a bit rate of 8.2 [Gbps] or less can be made relatively large, so that the signal is transmitted at a bit rate of 8.2 [Gbps]. The transmission characteristics of the signal will be improved.
Similarly, in order to improve the transmission characteristics of a signal transmitted at a bit rate of 3.0 [Gbps], silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is set to 1. It is set to about 65 [μm]. Moreover, when using copper as a material which forms the conductive layer 31, the thickness d of the conductive layer 31 shall be about 1.70 [micrometers]. Further, when aluminum is used as a material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 2.13 [μm].
Further, in order to improve the transmission characteristics of a signal transmitted at a bit rate of 6.0 [Gbps], silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is 1.17. About [μm]. When copper is used as the material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 1.20 [μm]. Further, when aluminum is used as a material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 1.50 [μm].
Further, in order to improve the transmission characteristics of signals transmitted at a bit rate of 10.0 [Gbps], silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is set to 0.91. About [μm]. In addition, when copper is used as a material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 0.93 [μm]. Further, when aluminum is used as a material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 1.16 [μm].
Further, in order to improve the transmission characteristics of a signal transmitted at a bit rate of 20.0 [Gbps], silver is used as a material for forming the conductive layer 31, and the thickness d of the conductive layer 31 is set to 0.64. About [μm]. Further, when copper is used as the material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 0.66 [μm]. Further, when aluminum is used as a material for forming the conductive layer 31, the thickness d of the conductive layer 31 is set to about 0.82 [μm].
In this way, the transmission characteristics of signals transmitted at a bit rate of 3.0 to 20.0 [Gbps] are improved by using any one metal of silver, copper or aluminum as a material for forming the conductive layer 31. In order to achieve this, the thickness d of the conductive layer 31 is preferably about 2.00 [μm] or less. However, on the other hand, reducing the thickness d of the conductive layer 31 increases the electrical resistance of the conductive layer 31, which may deteriorate the signal transmission characteristics. Therefore, it is desirable to set it to 0.50 [μm] or more.
The insulator layer 32 is disposed so that at least a part thereof is in contact with the outer periphery of the dielectric layer 12 of the signal line 10 and the dielectric layer 22 of the signal line 20. The insulator layer 32 is formed of polyethylene terephthalate (PET) or the like.
The drain line 40 is arranged in parallel with the shield layer 30 so that one end of the outer periphery of the conductive layer 31 is in contact. The drain wire 40 is formed of a silver plated annealed copper wire. By appropriately selecting the aperture of the drain line 40 based on the cable length, the cable 1 can reduce the ground resistance even when the conductive layer 31 is thin. The jacket 50 is formed of the first signal line 10 and the first signal line 10. It arrange | positions so that the outer side of the shield layer 30 wound around the outer periphery of the 2 signal wire | line 20 and the drain wire 40 may be coat | covered. The jacket 50 is composed of a tetrafluoroethylene-hexafluoropropylene copolymer (Tetrafluoroethylene-Hexafluoropropylene Copolymer, FEP), an ethylene-tetrafluoroethylene (ETFE), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (TFE), and a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (TFE). Copolymer, PFA) or other fluororesin, polyester or polyester tape winding.
Next, a method for manufacturing the cable 1 will be described. First, a method for manufacturing the inner conductors 11 and 21 of the first signal line 10 and the second signal line 20 will be described. The internal conductors 11 and 21 are manufactured by forming a coating layer around the core made of a magnetic material by plating or the like. Next, the dielectric material is extruded in an extruder (not shown), and the outer circumferences of the inner conductors 11 and 21 are covered with the dielectric layers 12 and 22, respectively, and the first signal line 10 and the second signal line 20 are formed. Each is formed.
The shield layer 30 is formed by depositing a metal that forms the conductive layer 31 on one surface of the insulator layer 32. As the conventional conductive layer having a thickness of about 5 to 10 [μm], a conductive layer metal material formed by rolling is used. Specifically, in a conventional cable shield layer, a metallized tape formed by laminating an aluminum foil and polyethylene terephthalate formed by a rolling process via polyvinyl chloride (PVC) to form a tape shape. Is used. This metal tape is generally also referred to as Alpet. However, since it is not easy to form a metal layer having a thickness of about 0.50 to 2.00 [μm] by rolling, the shield layer 30 is formed by vapor-depositing a metal on the insulator layer 32. The
The shield layer 30 is spirally wound around the outer periphery of the dielectric layers 12 and 22 of the first signal line 10 and the second signal line 20 so that the conductive layer 31 is outside the insulator layer 32. Next, the jacket 50 is covered outside the shield layer 30 and the drain line 40 so that the central axes of the first signal line 10 and the second signal line and the central axis of the drain line 40 are located on the same plane. An extruder (not shown) is used for covering the jacket 50.
Next, a cable according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2A is a cross-sectional view showing the cable 2. FIG. 2B is a partially enlarged view of a portion surrounded by a broken line indicated by an arrow B of the cable 2 shown in FIG.
The cable 2 includes a first signal line 10, a second signal line 20, a shield layer 30, and a drain line 40. The shield layer 30 includes a conductive layer 31 and an insulator layer 32 disposed outside the conductive layer 31. The conductive layer 31 is arranged in parallel with the drain line 40 so that one end of the outer periphery is in contact with the drain line 40. The thickness of the conductive layer 31 is a thickness that attenuates a signal component having a frequency lower than a predetermined frequency, and is formed to have a thickness corresponding to the skin depth δ. The insulator layer 32 is disposed so that at least a part thereof is in contact with the outer periphery of the dielectric layer 12 of the signal line 10.
The cable 2 shown in FIG. 2 shows that the drain line 40 is arranged adjacent to the first signal line 10 and the second signal line 20 and that the conductive layer 31 is arranged inside. Different from the cable 1 shown. In the cable 2, the drain line 40 in which a low-frequency signal component easily flows is disposed adjacent to the first signal line 10 and the second signal line 20, and thus the low-frequency signal component is transmitted through the drain line 40. It becomes easy to flow. For this reason, in the cable 2, the attenuation amount of the low frequency signal component is smaller than the attenuation amount of the low frequency signal component in the cable 1 shown in FIG. Therefore, when the cable 1 and the cable 2 shown in FIG. 1 are compared, the cable 1 shown in FIG.
Next, with reference to FIGS. 3 to 7, the results of eye pattern characteristic tests of the cable 1 and other cables to be compared will be described. FIG. 3 is a diagram illustrating insertion loss characteristics of the cable 1 and other cables to be compared. 4 to 7 are diagrams showing other examples of eye pattern characteristics of the cable 1 and other cables to be compared.
In this test, four samples 1 to 4 were used. Samples 1 to 4 are all 2-core cables having two signal lines with a diameter of 0.98 [mm]. The diameters of the inner conductors of the signal lines of Samples 1 to 4 are all 0.404 [mm]. The drain wires and jackets of Samples 1 to 4 were all formed of the same material having the same diameter. Specifically, the diameter of the drain wire is 0.254 [mm], and the material is silver-plated annealed copper. Further, the thickness of the jacket is 0.08 [mm], and the material is FEP.
Table 2 shows the configuration of the inner conductor and the shield layer of Samples 1 to 4 used in the test.
Figure JPOXMLDOC01-appb-T000004
In sample 1, the inner conductor is made of silver-plated annealed copper, and the shield layer is made of aluminum polyester containing aluminum having a thickness of 10 [μm]. In Sample 2, the inner conductor is formed of silver-plated annealed copper, and the shield layer is formed of copper-deposited polyester containing copper having a thickness of 1 [μm]. In sample 3, the inner conductor is formed of silver-plated iron wire plated with silver having a thickness of 1.5 [μm], and the shield layer is formed of aluminum polyester containing aluminum having a thickness of 10 [μm]. The In Sample 4, the inner conductor is formed of a silver-plated iron wire plated with silver having a thickness of 1.5 [μm], and the shield layer is formed of copper-deposited polyester containing copper having a thickness of 1 [μm]. Is done. Aluminum forming the shield layer of Samples 1 and 3 and copper forming the shield layer of Samples 2 and 4 are respectively arranged outside the insulator layer.
As shown in Table 2, a conventional shield layer is used for samples 1 and 3, and a shield layer formed by depositing copper is used for samples 2 and 4. Sample 1 and sample 2 use the same configuration signal line, and sample 3 and sample 4 use the same configuration signal line.
Table 3 shows the insertion loss characteristics of Samples 1 to 4 having a cable length of 10 [m]. Samples 1 to 4 in Table 3 correspond to Samples 1 to 4 in Table 2, respectively.
Figure JPOXMLDOC01-appb-T000005
FIG. 3 shows a graph corresponding to Table 3. In FIG. 3, a curve 101 indicated by a dashed line indicates the insertion loss characteristic of the sample 1, a curve 102 indicated by a broken line indicates the insertion loss characteristic of the sample 2, and a curve 103 indicated by a two-dot broken line indicates the insertion loss characteristic of the sample 3. The curve 104 shown by the solid line shows the insertion loss characteristic of Sample 1. Comparing the insertion loss characteristic of the sample 1 having the signal line with the same configuration with the insertion loss characteristic of the sample 2, the insertion loss of the sample 2 is larger than that of the sample 1 in the low frequency region. Therefore, the sample 2 has a signal with a lower frequency component attenuated than the sample 1. Further, comparing the insertion loss characteristic of the sample 3 having the signal line having the same configuration with the insertion loss characteristic of the sample 4, the insertion loss of the sample 4 is larger than that of the sample 3 in the low frequency region. Therefore, the sample 4 has a lower frequency component of the signal attenuated than the sample 3.
Tables 4 and 5 show the peak-to-peak jitter (PPJi) [ps] and eye height (EyeH) [mV] of the eye patterns of Samples 1 to 4, respectively. The peak-to-peak jitter indicates the width of the intersection in the eye pattern in the time axis direction, and the smaller the peak-to-peak jitter value, the better the loss characteristic. On the other hand, the eye height indicates the width of the opening portion of the eye pattern in the voltage axis direction, and the larger the eye height value, the better the loss characteristics. Table 4 shows experimental results using a cable having a cable length of 5 [m], and Table 5 shows experimental results using a cable having a cable length of 10 [m]. In Tables 4 and 5, items that could not be measured are indicated by “−”.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
As shown in Tables 4 and 5, when comparing sample 1 and sample 2, regardless of the measurement frequency, the peak-to-peak jitter is smaller in sample 2 than in sample 1, and the eye height is lower than in sample 1. 2 is larger. Further, when comparing the sample 3 and the sample 4, regardless of the magnitude of the measurement frequency, the peak-to-peak jitter is smaller in the sample 4 than in the sample 3, and the eye height is larger in the sample 4 than in the sample 3.
4 to 7, eye patterns corresponding to Tables 4 and 5 are shown. 4 (A) to 4 (C) are patterns of the sample 1 with a cable length of 5 [m], and FIGS. 4 (D) to 4 (F) are the patterns of the sample 2 with a cable length of 5 [m]. It is a pattern. The frequency of the measurement signal is 3.125 [Gbps] in FIGS. 4 (A) and 4 (D), 6.250 [Gbps] in FIGS. 4 (B) and 4 (E), and FIG. ) And 4 (F) are 12.500 [Gbps].
5 (A) to 5 (C) are patterns of the sample 3 with a cable length of 5 [m], and FIGS. 5 (D) to 5 (F) are the patterns of the sample 4 with a cable length of 5 [m]. It is a pattern. The frequency of the measurement signal is 3.125 [Gbps] in FIGS. 5 (A) and 5 (D), 6.250 [Gbps] in FIGS. 5 (B) and 5 (E), and FIG. ) And 5 (F) are 12.500 [Gbps].
6 (A) to 6 (C) are patterns of the sample 1 with a cable length of 10 [m], and FIGS. 6 (D) to 6 (F) are the patterns of the sample 2 with a cable length of 10 [m]. It is a pattern. The frequency of the measurement signal is 3.125 [Gbps] in FIGS. 6 (A) and 6 (D), 6.250 [Gbps] in FIGS. 6 (B) and 6 (E), and FIG. ) And 6 (F) are 12.500 [Gbps].
7A to 7C are patterns of the sample 3 with a cable length of 10 [m], and FIGS. 7D to 7F are the patterns of the sample 4 with a cable length of 10 [m]. It is a pattern. The frequency of the measurement signal is 3.125 [Gbps] in FIGS. 7 (A) and 7 (D), 6.250 [Gbps] in FIGS. 7 (B) and 7 (E), and FIG. ) And 7 (F) are 12.500 [Gbps].
At any cable length and measurement signal frequency, the eye pattern of sample 2 is more open than the eye pattern of sample 1, and the eye pattern of sample 4 is more eye-open than the eye pattern of sample 3. is open.
Next, a cable according to a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view showing the cable 3.
The cable 3 includes a signal line 10, a shield layer 30, a drain line 40, and a jacket 50. The shield layer 30 includes a conductive layer 31 and an insulator layer 32 disposed inside the conductive layer 31. The conductive layer 31 is arranged in parallel with the drain line 40 so that one end of the outer periphery is in contact with the drain line 40. The thickness of the conductive layer 31 is a thickness that attenuates a signal component having a frequency lower than a predetermined frequency, and is formed to have a thickness corresponding to the skin depth δ. The insulator layer 32 is disposed so that at least a part thereof is in contact with the outer periphery of the dielectric layer 12 of the signal line 10.
The embodiment according to the present invention has been described above with reference to FIGS. However, it will be understood that various changes and modifications can be made without departing from the spirit and scope of the invention.
For example, the cable 1 shown in FIG. 1 is a twin cable having two signal lines 10 and 20, and the cable 1 shown in FIG. 8 is a coaxial cable having one signal line 10. However, the present invention can also be applied to a cable having one or a plurality of signal lines such as a quad cable having four signal lines. The inner conductors 11 and 12 of the first signal lines 10 and 20 are each formed of a core material formed of a magnetic material and a coating layer disposed around the core material. You may form with another conductor.
Further, the cables 1 to 3 shown in FIGS. 1, 2 and 8 each have the drain line 40. However, when the increase in grounding resistance is not taken into account, such as the cable length is short, the cable according to the present invention has the drain line 40. 40 may not be present. Further, the shield layer 30 may be provided along the vertical direction.

Claims (9)

  1.  内部導体と該内部導体の外周上に配置される誘電体層とを有する信号線と、前記信号線の外周に少なくとも一部が接するように配置されるシールド層と、を備え、前記シールド層は、絶縁体層と導電層とを有し、前記導電層の厚さは、2.0μm以下である、ことを特徴とするケーブル。 A signal line having an inner conductor and a dielectric layer disposed on the outer periphery of the inner conductor; and a shield layer disposed so that at least a part thereof is in contact with the outer periphery of the signal line, the shield layer comprising: The cable has an insulator layer and a conductive layer, and the thickness of the conductive layer is 2.0 μm or less.
  2.  前記導電層の厚さは、0.5μm以上である請求項1に記載のケーブル。 The cable according to claim 1, wherein the conductive layer has a thickness of 0.5 μm or more.
  3.  前記導電層は、前記絶縁体層に蒸着された金属層である請求項1に記載のケーブル。 The cable according to claim 1, wherein the conductive layer is a metal layer deposited on the insulator layer.
  4.  前記導電層は、前記絶縁体層の外側に配置されている請求項1に記載のケーブル。 The cable according to claim 1, wherein the conductive layer is disposed outside the insulator layer.
  5.  前記導電層に外周の一端が接するように並設されるドレイン線をさらに有する請求項1に記載のケーブル。 The cable according to claim 1, further comprising a drain wire arranged in parallel so that one end of the outer periphery is in contact with the conductive layer.
  6.  前記導電層を形成する金属は、銀、銅又はアルミニウムである請求項1に記載のケーブル。 The cable according to claim 1, wherein the metal forming the conductive layer is silver, copper, or aluminum.
  7.  内部導体は、磁性体材料で形成される芯材と該芯材の周囲に配置される被覆層とを有する請求項1に記載のケーブル。 The cable according to claim 1, wherein the inner conductor includes a core material formed of a magnetic material and a covering layer disposed around the core material.
  8.  内部導体と該内部導体の外周上に配置される誘電体層とを有する信号線と、前記信号線の外周に少なくとも一部が接するように配置されるシールド層と、を備え、前記シールド層は、絶縁体層と導電層とを有し、前記導電層は、
    Figure JPOXMLDOC01-appb-M000001
     により演算される表皮深さδ〔mm〕に相当する厚さを有し、ここで、ρは、前記導電層を形成する材料の固有抵抗〔Ω・cm〕であり、fは前記信号線により伝送される信号の周波数〔MHz〕であり、μは真空の透磁率4π×10−7〔H/m〕であり、μは比透磁率である、ことを特徴とするケーブル。
    A signal line having an inner conductor and a dielectric layer disposed on the outer periphery of the inner conductor; and a shield layer disposed so that at least a part thereof is in contact with the outer periphery of the signal line, the shield layer comprising: And an insulating layer and a conductive layer, and the conductive layer is
    Figure JPOXMLDOC01-appb-M000001
    Has a thickness corresponding to the skin depth δ [mm] calculated by: where ρ is the specific resistance [Ω · cm] of the material forming the conductive layer, and f is determined by the signal line A cable having a frequency [MHz] of a signal to be transmitted, μ 0 having a vacuum permeability of 4π × 10 −7 [H / m], and μ r having a relative permeability.
  9.  前記導電層は、前記絶縁体層に蒸着された金属層である請求項8に記載のケーブル。 The cable according to claim 8, wherein the conductive layer is a metal layer deposited on the insulator layer.
PCT/JP2012/083182 2011-12-28 2012-12-17 Cable WO2013099783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-287495 2011-12-28
JP2011287495A JP2013137897A (en) 2011-12-28 2011-12-28 Cable

Publications (1)

Publication Number Publication Date
WO2013099783A1 true WO2013099783A1 (en) 2013-07-04

Family

ID=48697270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083182 WO2013099783A1 (en) 2011-12-28 2012-12-17 Cable

Country Status (2)

Country Link
JP (1) JP2013137897A (en)
WO (1) WO2013099783A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960587B2 (en) * 2014-12-10 2018-05-01 Konnectronix, Inc. Cord reel including a conductive polymeric sheath with a conductive EMI drain

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234025A (en) * 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd Metal cable for transmission
JP2005093368A (en) * 2003-09-19 2005-04-07 Hitachi Cable Ltd Coaxial cable, apparatus for manufacturing coaxial cable and method of manufacturing coaxial cable
JP2010073463A (en) * 2008-09-18 2010-04-02 Junkosha Co Ltd High-speed differential cable
JP2010287337A (en) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd Twisted pair cable and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234025A (en) * 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd Metal cable for transmission
JP2005093368A (en) * 2003-09-19 2005-04-07 Hitachi Cable Ltd Coaxial cable, apparatus for manufacturing coaxial cable and method of manufacturing coaxial cable
JP2010073463A (en) * 2008-09-18 2010-04-02 Junkosha Co Ltd High-speed differential cable
JP2010287337A (en) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd Twisted pair cable and method for manufacturing the same

Also Published As

Publication number Publication date
JP2013137897A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
TWI278871B (en) Differential signal transmission cable
US20060254801A1 (en) Shielded electrical transmission cables and methods for forming the same
US8178785B2 (en) Flexible electric cable
JP4933344B2 (en) Shielded twisted pair cable
JP6760392B2 (en) Shielded cable for communication
JP2008027914A (en) Superfine coaxial cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP2006294551A (en) Coaxial cable
JP2022103384A (en) Coaxial cable and cable assembly
JP3994698B2 (en) Semi-flexible micro coaxial cable and its terminal connection method
JP2010244931A (en) High-speed differential cable
KR20090105922A (en) Coaxial cable
JP5010300B2 (en) Coaxial cable and method of manufacturing inner conductor for coaxial cable
JP4591094B2 (en) Coaxial cable and multi-core coaxial cable
KR102207956B1 (en) Manufacturing method of audio cable having magnetic high shield and high insulating property, and audio cable manufactured by the same
WO2013099783A1 (en) Cable
JP4686931B2 (en) Ultra-fine coaxial cable
KR100751664B1 (en) Differential Signal Transmission Cable
JP2010073463A (en) High-speed differential cable
JP2000057863A (en) Coaxial cable
JP5095272B2 (en) Electromagnetic wire
JP2000138014A (en) Coaxial cable
JP6261229B2 (en) coaxial cable
JP2003031046A (en) Two-core parallel extra-file coaxial cable with longitudinally added deposited tape
KR101120365B1 (en) Micro coaxial cable comprising coated metallic shield and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862866

Country of ref document: EP

Kind code of ref document: A1