WO2013099617A1 - Optical unit provided with shake correction function - Google Patents

Optical unit provided with shake correction function Download PDF

Info

Publication number
WO2013099617A1
WO2013099617A1 PCT/JP2012/082283 JP2012082283W WO2013099617A1 WO 2013099617 A1 WO2013099617 A1 WO 2013099617A1 JP 2012082283 W JP2012082283 W JP 2012082283W WO 2013099617 A1 WO2013099617 A1 WO 2013099617A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
movable body
shake correction
allowable range
shake
Prior art date
Application number
PCT/JP2012/082283
Other languages
French (fr)
Japanese (ja)
Inventor
柳澤克重
濱田吉博
唐澤敏行
石原久寛
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2013099617A1 publication Critical patent/WO2013099617A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur

Definitions

  • the present invention relates to an optical unit with a shake correction function mounted on a mobile phone with a camera or the like.
  • An imaging device such as a digital camera or a camera-equipped mobile phone is configured as an optical unit with a shake correction function having a shake correction function in order to suppress disturbance of a captured image due to a shake of a user's hand shake or the like.
  • the movable body 3 holding the lens is supported by the spring member 600 so as to be displaceable with respect to the fixed body 200, and the detection result of the shake is obtained.
  • the movable body 3 is swung to correct the shake (see, for example, Patent Document 1). Further, as shown in FIG.
  • the movable body 3 holding the lens is supported by the spring member 600 so as to be displaceable with respect to the fixed body 200.
  • the movable body 3 may be moved in a direction orthogonal to the optical axis to correct the shake (see, for example, Patent Document 2).
  • the movable range of the movable body is determined by the position where the movable body and the fixed body abut when the movable body is displaced. At that time, assuming that the movable range of the movable body may fluctuate due to tolerances or the like, a configuration in which the target position of the lens at the time of shake correction is accurately obtained by writing the movable range of the movable body in an EEPROM or the like. It has been proposed (see, for example, Patent Document 3).
  • an object of the present invention is to provide an optical unit with a shake correction function that can prevent image blurring caused by a movable body coming into contact with a fixed body during shake correction. .
  • an optical unit with a shake correction function includes a movable body that holds an optical element, a fixed body that supports the movable body so as to be displaceable, and a shake detection unit that detects shake.
  • a drive mechanism for shake correction that displaces the movable body relative to the fixed body, and a drive control unit that drives the drive mechanism for shake correction based on a detection result of the shake detection means, and the drive
  • the control unit is characterized in that a drive current maximum value that defines a movable allowable range is set within a range in which the movable body and the fixed body do not contact each other.
  • the drive control unit when shake occurs in the optical unit with shake correction function, if the shake detection unit detects the shake of the entire optical unit with shake correction function or the shake of the movable body, the drive control unit cancels the shake. Then, the shake correction driving mechanism is driven to displace the movable body to correct the shake of the movable body.
  • the drive control unit since the drive current maximum value that defines the movable allowable range is set within a range where the movable body and the fixed body do not contact, when the shake is corrected, the movable body becomes the fixed body. The contact can be prevented. Accordingly, it is possible to prevent the occurrence of image blurring or the like due to the movable body swinging in the reverse direction due to the reaction when the movable body comes into contact with the fixed body.
  • the movable allowable range includes the first movable allowable range located on the center side of the movable allowable range, the first movable allowable range, and an outer edge of the movable allowable range, and the movable allowable range. It is preferable that a second movable allowable range in which a body displacement speed is set slower than the first movable allowable range is provided. According to such a configuration, when the movable body is displaced to correct the shake, it is possible to prevent the movable body from overshooting due to inertial force and coming into contact with the fixed body.
  • a configuration is adopted in which the difference between the displacement speed of the movable body in the first movable allowable range and the displacement speed of the movable body in the second movable allowable range is set by a difference in drive current waveform. be able to.
  • the drive control unit can set the displacement speed of the movable body in the first movable allowable range and the movable displacement speed in the second movable allowable range. It is not necessary to provide a special member for the purpose of setting the movable displacement speed in the two movable allowable ranges.
  • the outer edge of the first movable allowable range can be set to a configuration defined by a ratio to the maximum drive current value.
  • the drive control unit can set the first movable allowable range and the second movable allowable range, and a special member for the purpose of setting the first movable allowable range and the second movable allowable range. There is no need to provide it.
  • the second movable permissible range may be configured by a buffer member provided on at least one of the movable body and the fixed body. According to such a configuration, the second movable allowable range can be set by providing a buffer member such as rubber, and there is no need to provide an expensive member. Further, the second movable allowable range can be set to a range according to the purpose depending on the thickness and material of the buffer member.
  • the maximum value of the drive current is a value when the movable body is displaced in one direction by the shake correction drive mechanism, and a side opposite to the one direction by the shake correction drive mechanism. It is preferable that the value at the time of displacement is different. According to this configuration, even when the movable body is displaced in one of the displacement directions by gravity, the movable allowable range on the side where the movable body is displaced by gravity can be narrowed depending on the posture of the optical unit with shake correction function. In this case, the movable body can be prevented from coming into contact with the fixed body during shake correction.
  • the drive current maximum value is set by a ratio to a drive current when the movable body abuts the fixed body when the movable body is displaced by the shake correction drive mechanism.
  • the movable allowable range can be set only by setting the ratio, and the movable body can be prevented from coming into contact with the fixed body.
  • the shake correction drive mechanism is controlled to displace the movable body to correct the shake of the movable body.
  • the drive control unit since a drive current maximum value that defines a movable allowable range set within a range where the movable body and the fixed body do not contact each other is set, when the shake is corrected, the movable body Since it can be prevented from coming into contact with the fixed body, it is possible to prevent the occurrence of image blurring caused by the movable body swinging in the reverse direction due to the reaction when the movable body comes into contact with the fixed body. .
  • the optical unit with a shake correction function it is an explanatory diagram of a first movable allowable range and a second movable allowable range set in the movable allowable range of the movable body. It is explanatory drawing of the drive current waveform at the time of making a movable body rock
  • rotation around the X axis corresponds to so-called pitching (pitch)
  • rotation around the Y axis corresponds to so-called yawing (roll)
  • Z axis The rotation around corresponds to so-called rolling.
  • + X is attached to one side of the X axis
  • -X is attached to the other side
  • + Y is attached to one side of the Y axis
  • -Y is attached to the other side
  • one side of the Z axis is attached.
  • + Z is attached to the side (opposite the subject side)
  • -Z is attached to the other side (subject side).
  • FIG. 1 is an explanatory view schematically showing a state in which an optical unit with a shake correction function according to Embodiment 1 of the present invention is mounted on an optical device such as a mobile phone.
  • FIG. 2 is a perspective view showing an appearance and the like of the optical unit with a shake correction function according to the first embodiment of the present invention.
  • FIGS. 2A and 2B show the optical unit on the subject side (in the optical axis direction).
  • FIG. 4 is a perspective view when viewed from the front side and a perspective view when the optical unit is viewed from the side opposite to the subject side (the rear side in the optical axis direction).
  • FIGS. 3 is a cross-sectional view of the optical unit according to Embodiment 1 of the present invention
  • FIGS. 3 (a) and 3 (b) are a YZ cross-sectional view and an XZ cross-sectional view.
  • FIGS. 3A and 3B the illustration of the lens holder and the like is omitted for the inside of the imaging unit.
  • An optical unit 100 (an optical unit with a shake correction function) illustrated in FIG. 1 is a thin camera used for an optical device 1000 such as a mobile phone with a camera, and is supported by a chassis 1100 (device main body) of the optical device 1000. It is mounted with. In such an optical unit 100, when a shake such as a hand shake occurs in the optical apparatus 1000 during shooting, the captured image is disturbed.
  • the movable body 3 including the imaging unit 1 is supported in a displaceable manner within the fixed body 200, and the movable body 3, the fixed body 200, or Based on the result of detecting hand shake by a shake detection sensor 170 (shake detection means) such as a gyroscope provided outside the fixed body 200, a shake correction drive mechanism that corrects the shake by displacing the movable body 3 (FIG. 1). (Not shown).
  • a shake detection sensor 170 such as a gyroscope provided outside the fixed body 200
  • a shake correction drive mechanism that corrects the shake by displacing the movable body 3 (FIG. 1). (Not shown).
  • flexible wiring boards 410 and 420 for supplying power to the imaging unit 1 and the shake correction drive mechanism are drawn out from the optical unit 100.
  • the connector 490 is electrically connected to a drive control unit 900 (see FIG. 1) provided outside the fixed body 200.
  • the flexible wiring board 410 also has a function of outputting a signal from the imaging unit 1 and is electrically connected to an image processing unit provided on the main body side of the optical device 1000 via the connector 490.
  • the imaging unit 1 has a rectangular box-shaped case 14 made of a ferromagnetic plate such as a steel plate, and a holder 12 (FIG. 2) that holds the lens 1 a inside the case 14.
  • a cylindrical sleeve 13 that holds the holder 12, a lens driving mechanism 5 that drives the lens 1a in the focusing direction, an image sensor 1b, an element holder 16 that supports the image sensor 1b, and the like.
  • the outer peripheral portion of the imaging unit 1 includes a case 14.
  • the optical unit 100 includes a fixed body 200, a movable body 3 including the imaging unit 1, a spring member 600 in which the movable body 3 is supported by the fixed body 200 so as to be displaceable, and the movable body 3 and the optical unit 100.
  • a shake correction drive mechanism 500 that generates a magnetic drive force that moves the movable body 3 relative to the fixed body 200 relative to the body 200 is provided.
  • the fixed body 200 includes an upper cover 250, a lower cover 700, and the like.
  • the upper cover 250 includes a rectangular tubular body 210 that surrounds the imaging unit 1, and an opening on the subject side of the rectangular tubular body 210. And an end plate portion 220 to be closed.
  • the end plate 220 is formed with a window 220a through which light from the subject enters.
  • the end of the rectangular tubular body 210 opposite to the subject (+ Z side) is an open end.
  • the lower cover 700 is a press-processed product for a metal plate, and includes a substantially rectangular bottom plate portion 710 and four side plate portions 720 that stand from the outer peripheral edge of the bottom plate portion 710 toward the subject.
  • a swing fulcrum 180 is formed at the center of the bottom plate portion 710 of the lower cover 700.
  • the swing fulcrum 180 is constituted by a convex portion 182 that protrudes from the bottom plate portion 710 of the lower cover 700 to the other side in the Z-axis direction, and a receiving portion 19 a of the plate 19 provided at the bottom portion of the movable body 3.
  • the inner surface of the bottom plate portion 710 is substantially a mirror surface, and is used as a reflecting surface for the pair of photo reflectors 590 mounted on the substrate 15 provided at the rear end portion in the optical axis direction of the imaging unit 1.
  • the movable body 3 includes the imaging unit 1, a rectangular frame-shaped holder 7 surrounding the outer peripheral surface of the case 14 of the imaging unit 1, and a rectangular frame-shaped stopper member 8.
  • the stopper member 8 is fixed to the rear surface of the holder 7 in the optical axis direction by a method such as welding.
  • the holder 7 includes a rectangular frame-shaped first holder member 71 positioned on the front side in the optical axis direction, and a rectangular frame-shaped second holder member 72 facing the first holder member 71 on the rear side in the optical axis direction. Become.
  • a flat permanent magnet 520 used for the shake correction drive mechanism 500 is held between the first holder member 71 and the second holder member 72. More specifically, the first holder member 71 is fixed to the front surface of the permanent magnet 520 in the optical axis direction, and the second holder member 72 is fixed to the rear surface of the permanent magnet 520 in the optical axis direction.
  • the permanent magnet 520, the first holder member 71, and the second holder member 72 constitute a rectangular tubular permanent magnet assembly 75. For this reason, after the imaging unit 1 is inserted inside the rectangular cylindrical permanent magnet assembly 75, the outer peripheral surface of the case 14 of the imaging unit 1 and the inner peripheral surface of the permanent magnet assembly 75 (the inner surface of the permanent magnet 520). If fixed by an adhesive, the movable body 3 can be configured by integrating the permanent magnet 520, the first holder member 71, the second holder member 72, the stopper member 8, and the imaging unit 1.
  • the spring member 600 extends between a rectangular frame-shaped fixed side connecting portion connected to the fixed body 200 side, a movable side connecting portion connected to the movable body 3 side, and the movable side connecting portion and the fixed side connecting portion. It is a plate-like spring member provided with a plurality of existing arm portions, and both ends of the arm portions are respectively connected to the movable side connecting portion and the fixed side connecting portion.
  • the movable side connecting portion is fixed to the rear end surface in the optical axis direction of the stopper member 8 by a method such as welding.
  • the fixed side connecting portion is fixed to the front end surfaces of the notches 218 and 219 of the upper cover 250 by welding or the like in a state of being fitted in the notches 218 and 219 of the upper cover 250.
  • the spring member 600 is made of a nonmagnetic metal such as beryllium copper or a nonmagnetic SUS steel material, and is formed by pressing a thin plate having a predetermined thickness or etching using a photolithography technique.
  • the movable side coupling portion of the spring member 600 when the movable side coupling portion of the spring member 600 is coupled to the movable body 3, while the stationary side coupling portion is fixed to the stationary body 200, the movable body 3 is pushed up to the front side in the optical axis direction by the swing fulcrum 180. It becomes a state.
  • the spring member 600 the movable side connecting portion is pushed up to the front side in the optical axis direction relative to the fixed side connecting portion, and the arm portion of the spring member 600 biases the movable body 3 to the rear side in the optical axis direction. To do. Therefore, the movable body 3 is biased toward the swing fulcrum 180 by the spring member 600, and the movable body 3 is supported by the fixed body 200 so as to be swingable by the swing fulcrum 180. It becomes.
  • the shake correction drive mechanism 500 is configured by the coil unit 560 and the permanent magnet 520 that generates a magnetic field linked to the coil unit 560. More specifically, in the movable body 3, flat permanent magnets 520 are respectively fixed to the four outer surfaces of the case 14. In the fixed body 200, a coil is formed on the inner surface of the rectangular tubular body 210 of the upper cover 250. A portion 560 is provided. Permanent magnet 520 is magnetized with different poles on the outer surface side and inner surface side.
  • the permanent magnet 520 is composed of two magnet pieces arranged in the direction of the optical axis L, and the magnet piece is magnetized to a pole whose surface facing the coil portion 560 is different in the optical axis direction. Moreover, the coil part 560 is formed in the square frame shape, and an upper and lower long side part is utilized as an effective side.
  • the permanent magnets 520 and the coil portions 560 disposed at two positions sandwiching the movable body 3 on both sides in the Y-axis direction constitute a Y-side shake correction drive mechanism 500y.
  • the movable body 3 is swung in the Y-axis direction around an axis line X0 extending in the X-axis direction through the swing fulcrum 180.
  • the permanent magnet 520 and the coil unit 560 disposed at two positions sandwiching the imaging unit 1 on both sides in the X-axis direction constitute an X-side shake correction drive mechanism 500x, as indicated by arrows Y1 and Y2.
  • the movable body 3 is swung in the X-axis direction around the axis line Y0 extending in the Y-axis direction through the rocking fulcrum 180.
  • a sheet-like coil body 550 extending along the four inner surfaces of the upper cover 250 is used.
  • the sheet-like coil body 550 four coil portions 560 are integrally formed with a predetermined interval.
  • the sheet-like coil body 550 has a shape that extends in a band shape when unfolded, and is bent onto the four inner surfaces of the upper cover 250 by a method such as surface bonding to the inner surface of the upper cover 250. It is fixed.
  • the sheet-like coil body 550 has a structure in which a coil portion 560 made of fine copper wiring is formed on a printed circuit board by using a conductive wiring technique, and a plurality of layers of copper wiring (coil portion 560) is an insulating film. Are formed in multiple layers. The surface of the copper wiring (coil portion 560) is also covered with an insulating film.
  • an FP coil Fe Pattern Coil (registered trademark) manufactured by Asahi Kasei Electronics Corporation can be exemplified.
  • the sheet coil body 550 and the flexible wiring board 420 are electrically connected by solder or the like, and the bent portion of the flexible wiring board 420 is reinforced by a plate 429.
  • the movable body 3 is in a state of being supported by the fixed body 200 so as to be swingable by the swing support point 180. Therefore, when the imaging unit 1 is largely displaced due to a large force applied from the outside, the arm portion of the spring member 600 may be plastically deformed. Therefore, in this embodiment, a stopper mechanism described below is provided.
  • a rectangular frame-shaped stopper member 8 is fixed to the rear end surface in the optical axis direction of the holder 7 by a method such as welding.
  • the stopper member 8 includes a rectangular frame-shaped main body portion 81 and a convex portion 810 protruding outward from the main body portion 81, and the convex portion 810 protrudes outward from the permanent magnet 520.
  • two convex portions 810 are formed on each of the four side portions of the main body portion 81.
  • the convex portion 810 is opposed to the sheet-like coil body 550 provided on the fixed body 200 side through a narrow gap. Accordingly, the convex portion 810 and the sheet-like coil body 550 are movable when the movable body 3 is displaced in a direction orthogonal to the optical axis direction between the shake correction drive mechanism 500 and the swing fulcrum 180 in the optical axis direction.
  • a stopper mechanism 810 that defines the range is configured.
  • the sheet-like coil body 550 cannot be unwound even if it contacts the permanent magnet 520.
  • the portion where the convex portion 810 contacts may be any of the portion where the coil portion 560 is formed and the portion where the coil portion 560 is not formed in the sheet-like coil body 550.
  • the part with which the part 810 contacts is set in a part of the sheet-like coil body 550 where the coil part 560 is not configured.
  • the sheet-like coil body 550 and the permanent magnet 520 face each other through a narrow gap, and this gap is slightly larger than the gap between the convex portion 810 and the sheet-like coil body 550. Therefore, the sheet-like coil body 550 and the permanent magnet 520 constitute a stopper mechanism 820 that defines a swing range when the imaging unit 1 swings greatly due to a large force applied from the outside.
  • the location where the permanent magnet 520 contacts may be either the location where the coil portion 560 is configured or the location where the coil portion 560 is not configured in the sheet-like coil body 550, in this embodiment, the location is permanent. The location where the magnet 520 abuts is set in the location where the coil portion 560 is configured in the sheet-like coil body 550.
  • FIGS. 4A and 4B are explanatory diagrams of the drive control unit of the optical unit 100 according to Embodiment 1 of the present invention.
  • FIGS. 4A and 4B are a block diagram of the drive control unit and a drive current of the drive control unit. It is explanatory drawing of a limiter part.
  • FIGS. 5A and 5B are explanatory diagrams showing a shake correction operation in the optical unit 100 according to Embodiment 1 of the present invention.
  • FIGS. 5A and 5B are explanatory diagrams of a state before shake occurs, and FIG. It is explanatory drawing which shows a mode that shake correction was performed.
  • shakes in the X-axis direction and the Y-axis direction are detected outside the movable body 3, the fixed body 200, or the fixed body 200.
  • a shake detection sensor 170 (shake detection means) composed of a two-axis gyroscope is mounted, and the drive control unit 900 shown in FIG. 4A is configured to cancel the shake detected by the shake detection sensor 170.
  • the shake correction drive mechanism 500 is driven.
  • the timing for executing the shake correction is defined by a command signal from the outside of the optical unit 100 (optical apparatus main body).
  • the drive control unit 900 includes two sets for camera shake correction around the X axis (pitching direction) and camera shake correction around the Y axis (yaw direction). It has the same configuration. Therefore, in the following description, it demonstrates without distinguishing them.
  • the drive control unit 900 generally includes an A / D conversion circuit 920, a digital low-pass filter 930, a gain adjustment unit 940, a phase compensation unit 950, and a D / A conversion circuit 960.
  • the angular velocity signal detected by the shake detection sensor 170 is converted into a digital signal by the A / D conversion circuit 920, and then input to the gain adjustment unit 940 through the digital low-pass filter 930.
  • Unit 940 and phase compensation unit 950 convert the digital signal into a control signal. Thereafter, the control signal is converted into a control signal composed of an analog signal by the D / A conversion circuit 960 and output to the drive circuit 970.
  • the drive circuit 970 supplies a drive current for shake correction to the coil unit 560 of the shake correction drive mechanism 500 via the flexible wiring board 420 drawn out from the fixed body 200.
  • the A / D conversion circuit 920 is not used.
  • the drive control unit 900 may include a high-pass filter (not shown) that removes a DC component from the angular velocity signal detected by the shake detection sensor 170.
  • the drive control unit 900 having such a configuration, when the optical device 1000 and the optical unit 100 illustrated in FIG. 5A are shaken as illustrated in FIG. 5B due to camera shake or the like, such shake is detected by the shake detection sensor 170. Then, the drive control unit 900 supplies a drive current that cancels the shake to the shake correction drive mechanism 500. As a result, the shake correction drive mechanism 500 swings the movable body 3 (imaging unit 1) around the swing fulcrum 180 to correct the shake. More specifically, the X-side shake correction drive mechanism 500x described with reference to FIG. 3 oscillates the imaging unit 1 around the Y axis around the swing fulcrum 180 to correct the shake in the X direction.
  • the Y-side shake correction drive mechanism 500 y swings the imaging unit 1 around the X axis about the swing fulcrum 180 and corrects the shake in the Y direction. Further, if the swinging around the X axis and the swinging around the Y axis of the imaging unit 1 are combined, the imaging unit 1 is displaced with respect to the entire XY plane. Therefore, all shakes assumed in the optical unit 100 can be reliably corrected.
  • the imaging unit 1 is driven, the displacement of the imaging unit 1 is monitored by the photo reflector 590.
  • the drive control unit 900 shown in FIG. 4A is provided with a drive current limiter unit 980, and the drive current limiter unit 980 performs shake correction.
  • a memory 985 is provided that stores a drive current maximum value that defines a movable allowable range within a range where the movable body 3 and the fixed body 200 do not contact each other. Therefore, when correcting the shake, an upper limit value is set for the drive current supplied to the shake correction drive mechanism 500.
  • the drive current maximum value is stored in the memory 985 before shipment.
  • the maximum value of the drive current is the drive current when the permanent magnet 520 on the movable body 3 side and the sheet-like coil body 550 on the fixed body 200 side abut when the movable body 3 is displaced by the shake correction drive mechanism 500. Is a value multiplied by a coefficient such as 0.8 or 0.9. For this reason, when correcting the shake, the range in which the movable body 3 can be displaced is limited to the movable allowable range Li indicated by alternate long and short dashed lines Lix and Liy in FIG.
  • the alternate long and short dash line Lix indicates the allowable movement range of the movable body 3 in the X-axis direction
  • the alternate long and short dash line Liy indicates the allowable movement range of the movable body 3 in the Y-axis direction.
  • the movable allowable range Li defines the position of the outer surface of the permanent magnet 520 of the shake correction drive mechanism 500 at the time of shake correction, and when the movable body 3 is swung in the X-axis direction, and In any case where the movable body 3 is swung in the Y-axis direction, the permanent magnet 520 on the movable body 3 side is set so as not to contact the sheet-like coil body 550 on the fixed body 200 side. Therefore, as shown in FIG. 5B, even when the movable body 3 is swung when correcting the shake, the permanent magnet 520 on the movable body 3 side contacts the sheet-like coil body 550 on the fixed body 200 side. There is no contact.
  • the drive control unit 900 sets the drive current maximum value that defines the movable allowable range Li set within the range where the movable body 3 and the fixed body 200 do not contact each other. Therefore, when the shake is corrected, the movable body 3 can be prevented from coming into contact with the fixed body 200. Accordingly, it is possible to prevent the occurrence of image blurring or the like due to the movable body 3 swinging in the reverse direction due to the reaction when the movable body 3 comes into contact with the fixed body 200.
  • the maximum drive current is determined when the movable magnet 3 is displaced by the shake correction drive mechanism 500 and the permanent magnet 520 on the movable body 3 side and the sheet-like coil body 550 on the fixed body 200 abut on each other. It is a value obtained by multiplying the current by a coefficient such as 0.8 or 0.9. For this reason, the movable allowable range Li can be set only by setting the ratio, and the movable body can be prevented from coming into contact with the fixed body.
  • FIG. 6 is an explanatory diagram of the first movable allowable range and the second movable allowable range set in the movable allowable range Li of the movable body 3 in the optical unit 100 with a shake correction function according to the second embodiment of the present invention.
  • FIGS. 6A, 6B, 6C, and 6D are explanatory views of the state before the movable body 3 is swung, and how the movable body 3 is swung within the first movable allowable range.
  • FIG. 4 is an explanatory diagram illustrating a state in which the movable body 3 is swung within a second movable allowable range, and an explanatory diagram illustrating a planar positional relationship between the first movable allowable range and the second movable allowable range.
  • FIG. 7 is an explanatory diagram of a drive current waveform when the movable body 3 is swung in the optical unit 100 with a shake correction function according to the second embodiment of the present invention
  • FIGS. (C) is an explanatory view of a drive current waveform when the movable body 3 is swung within the first movable allowable range, and a drive current waveform when the movable body 3 is swung within the second movable allowable range.
  • the drive control unit 900 sets the movable allowable range Li set within a range in which the movable body 3 and the fixed body 200 do not come into contact as in the first embodiment.
  • the specified drive current maximum value is set.
  • the movable allowable range Li includes a first movable allowable range Lia located on the center side of the movable allowable range Li, and an outer edge of the first movable allowable range Lia and the movable allowable range Li. And a second movable allowable range Lib (buffer region) positioned between the two.
  • the first movable allowable range Lia causes the movable body 3 to swing relatively small as shown in FIG. 6B from the state before swing (before shake correction) shown in FIG. 6A.
  • the second movable allowable range Lib is a state in which the movable body 3 is swung relatively small as shown in FIG. 6 (b), and the movable body 3 is moved as shown in FIG.
  • the outer edge of the first movable allowable range Lia is defined by, for example, a ratio such as 0.5 times or 0.6 times the maximum drive current value that defines the movable allowable range Li.
  • the speed (displacement speed) at which the movable body 3 is swung within the second movable allowable range Lib is swung within the first movable allowable range Lia. It is set slower than the speed (displacement speed).
  • a configuration set by the waveform of the drive current can be adopted. For example, when the movable body 3 is swung within the first allowable movement range Lia, as shown in FIG. 7A, while the rising of the current supplied from the drive control unit 900 to the coil unit 560 is steep, When the movable body 3 is swung within the second movable allowable range Lib, as shown in FIG.
  • the rise of the current supplied from the drive control unit 900 to the coil unit 560 is started from the middle by a time constant circuit or the like. It can be realized by gentle.
  • the rise of the current supplied from the drive control unit 900 to the coil unit 560 is stepped from the middle. This can also be realized.
  • the movable body 3 when the movable body 3 is displaced to correct the shake, the movable body 3 overshoots due to inertial force and hits the fixed body 200. It is possible to prevent contact.
  • the first movable allowable range Lia and the second movable allowable range Lib are set according to the drive current value, a special member for setting the first movable allowable range Lia and the second movable allowable range Lib is provided. There is no need.
  • the first movable allowable range Lia and the second movable allowable range Lib are set as follows. There is no need to provide a special member for setting. Further, since the outer edge of the first movable allowable range Lia is defined by a ratio such as 0.5 times or 0.6 times the maximum drive current value that defines the movable allowable range Li, the first movable allowable range Lia and the first movable allowable range Lia 2 There is no need to provide a special member for setting the movable allowable range Lib.
  • FIG. 8 is an explanatory diagram of an optical unit 100 with a shake correction function according to a modification of the second embodiment of the present invention.
  • the speed (displacement speed) at which the movable body 3 is swung within the second movable allowable range Lib is made slower than the speed (displacement speed) at which the movable body 3 is swung within the first movable allowable range Lia.
  • the drive current having the waveform described with reference to FIG. 7 is used, in this embodiment, as shown in FIG. 8, the buffer member 70 is provided on at least one of the movable body 3 and the fixed body 200.
  • the second movable allowable range Lib may be set.
  • a buffer member 70 such as rubber is provided on the fixed body 200 side, and when the movable body 3 is swung within the second movable allowable range Lib, the movable body 3 is swung while compressing the buffer member 70. Has been. For this reason, the speed (displacement speed) at which the movable body 3 is swung within the second allowable movement range Lib is slower than the speed (displacement speed) at which the movable body 3 is swung within the first allowable movement range Lia.
  • the movable body 3 when the movable body 3 is displaced in order to correct the shake, it is possible to prevent the movable body 3 from overshooting due to inertial force and coming into contact with the fixed body 200.
  • the buffer member 70 such as rubber
  • the second movable allowable range Lib can be set to a range according to the purpose depending on the thickness, material, and the like of the buffer member 70.
  • the buffer member 70 since the buffer member 70 is provided on the fixed body 200 side, the movable body 3 can be reduced in weight, so that there is an advantage that it can be swung with a small driving current.
  • FIG. 9 is an explanatory diagram of the optical unit 100 with a shake correction function according to the third embodiment of the present invention, and FIGS. 9A and 9B illustrate the movable allowable range Li set in the optical unit 100.
  • the movable allowable range Li is set with the same width on the one side + X and the other side ⁇ X in the X-axis direction, and the same width on the one side + Y and the other side ⁇ Y in the Y-axis direction.
  • the movable allowable range Li has different widths on the one side + X and the other side ⁇ X in the X-axis direction.
  • the movable allowable range Li has different widths on the one side + Y and the other side -Y in the Y-axis direction.
  • the movable allowable range Li is one side + Y in the Y-axis direction and the other side ⁇ with respect to the optical axis in a state where the movable body 3 is not affected by gravity. Y is equivalent. Therefore, even when the movable body 3 is shaken to one side + Y and the other side ⁇ Y in the Y-axis direction due to camera shake, the shake correction can be sufficiently performed.
  • one side + X in the X-axis direction may face downward and the other side ⁇ X may face upward, as shown in FIG. 9A.
  • the movable allowable range Li is narrow on one side + X in the X-axis direction and wide on the other side -X. Therefore, when taking an image with the optical device 1000, when the one side + X in the X-axis direction of the optical device 1000 is directed downward and the other side -X is directed upward, the movable body 3 is one side in the X-axis direction due to gravity.
  • the movable allowable range Li is equivalent on the one side + X and the other side ⁇ X in the X-axis direction with the optical axis in a state where the movable body 3 is not affected by gravity. Therefore, even when the movable body 3 is shaken to one side + X and the other side ⁇ X in the X-axis direction due to camera shake, sufficient shake correction can be performed.
  • FIG. 10 is an explanatory diagram of an optical unit 100 with a shake correction function according to another embodiment of the present invention.
  • FIGS. 10 (a), 10 (b), and 10 (c) are states before shake occurs.
  • FIG. 6 is an explanatory diagram showing a state in which shake correction is performed, and an explanatory diagram showing a state in which a buffer member 70 is provided.
  • the movable body 3 is swung around the fulcrum 180 to perform shake correction.
  • the movable body 3 holding the lens 1a is replaced by a spring member.
  • the movable body 3 is placed in a state in which the movable body 3 is supported by the movable body 600 so as to be displaceable, and the movable body 3 is orthogonal to the optical axis by the shake correction drive mechanism 500, as shown in FIG.
  • the present invention may be applied to the optical unit 100 that corrects shake by moving in the moving direction.
  • the buffer member 70 described in the modification of the second embodiment is used in the optical unit 100 that corrects the shake by moving the movable body 3 in the direction orthogonal to the optical axis. It may be provided.
  • the shake detection sensor 170 made of a gyroscope is used as the shake detection unit.
  • the optical unit 100 uses the system that detects the shake by the shift of the image obtained by the image sensor 1b as the shake detection unit.
  • the present invention may be applied to.
  • the drive current maximum value when setting the drive current maximum value, is stored in the memory 985 so that the drive current value does not exceed the drive current maximum value by digital processing.
  • the drive current value may not exceed the drive current maximum value.
  • the movable body 3 having the lens 1a as the optical element is displaced and shake correction is performed.
  • the movable body 3 having the imaging element 1b as the optical element is displaced in a direction perpendicular to the optical axis.
  • the present invention may be applied to the optical unit 100 that performs shake correction.
  • the optical unit 100 with a shake correction function to which the present invention is applied is fixed in a device having vibration at regular intervals, such as a refrigerator, in addition to a mobile phone, a digital camera, etc. It can also be used for a service that can obtain information inside the refrigerator when going out, for example, when shopping. In such a service, since it is a camera system with a posture stabilization device, a stable image can be transmitted even if the refrigerator vibrates. Further, the present apparatus may be fixed to a device worn at the time of attending school, such as a student's bag, a student's bag, a school bag, or a hat.
  • the guardian or the like can observe the image in a remote place to ensure the safety of the child.
  • a clear image can be taken even if there is vibration during movement without being aware of the camera.
  • a GPS is installed in addition to the camera module, the location of the target person can be acquired at the same time. In the event of an accident, the location and situation can be confirmed instantly.
  • the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front can be photographed in an automobile, it can be used as a drive recorder.
  • the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front of the vehicle can be photographed, and peripheral images are automatically photographed at regular intervals and automatically transferred to a predetermined server. Also good. Further, by distributing this image in conjunction with traffic jam information such as a car navigation road traffic information communication system, the traffic jam status can be provided in more detail. According to such a service, the situation at the time of an accident or the like can be recorded unintentionally by a third party who has passed unintentionally as well as a drive recorder mounted on a car, and can be used for inspection of the situation. In addition, a clear image can be acquired without being affected by the vibration of the automobile. In such an application, when the power is turned on, a command signal is output to the control unit, and shake control is started based on the command signal.
  • the optical unit 100 with a shake correction function to which the present invention is applied may be applied to shake correction of an optical device that emits light, such as a laser pointer, a portable or vehicle-mounted projection display device, or a direct-view display device. Good. Further, it may be used for observation without using an auxiliary fixing device such as a tripod for observation at a high magnification such as an astronomical telescope system or a binoculars system. In addition, by using a sniper rifle or a gun barrel such as a tank, the posture can be stabilized against vibration at the time of triggering, so that the accuracy of hitting can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

Provided is an optical unit provided with a shake correction function capable of preventing blurring of an image due to contact of a movable body with a fixed body during shake correction. An optical unit (100) provided with a shake correction function, wherein, when a movable body (3) is displaced by a shake correction drive mechanism (500) to perform shake correction, a drive current maximum value for specifying an allowable movement range (Li) which is set within a range in which the movable body (3) and a fixed body (200) do not make contact, is set in a drive control unit (900) for controlling the driving of the shake correction drive mechanism (500). Therefore, when shaking is corrected, since the movable body (3) can be prevented from coming in contact with the fixed body (200), it is possible to prevent effects such as blurring of the image due to the movable body (3) being made to shake in the opposite direction by rebound that occurs when the movable body (3) comes in contact with the fixed body (200).

Description

振れ補正機能付き光学ユニットOptical unit with shake correction function
 本発明は、カメラ付き携帯電話機等に搭載される振れ補正機能付き光学ユニットに関するものである。 The present invention relates to an optical unit with a shake correction function mounted on a mobile phone with a camera or the like.
 デジタルカメラやカメラ付き携帯電話機等の撮像装置は、ユーザーの手振れ等の振れによる撮影画像の乱れを抑制するために、振れ補正機能を備えた振れ補正機能付き光学ユニットとして構成されている。かかる振れ補正機能付き光学ユニットでは、図11(a)に示すように、レンズを保持した可動体3をバネ部材600によって固定体200に対して変位可能に支持した状態としておき、振れの検出結果に基づいて、図11(b)に示すように、可動体3を揺動させて振れの補正を行う(例えば、特許文献1参照)。また、図11(c)に示すように、レンズを保持した可動体3をバネ部材600によって固定体200に対して変位可能に支持した状態としておき、振れの検出結果に基づいて、図11(d)に示すように、可動体3を光軸に直交する方向に移動させて振れの補正を行うこともある(例えば、特許文献2参照)。 An imaging device such as a digital camera or a camera-equipped mobile phone is configured as an optical unit with a shake correction function having a shake correction function in order to suppress disturbance of a captured image due to a shake of a user's hand shake or the like. In such an optical unit with a shake correction function, as shown in FIG. 11A, the movable body 3 holding the lens is supported by the spring member 600 so as to be displaceable with respect to the fixed body 200, and the detection result of the shake is obtained. Based on the above, as shown in FIG. 11B, the movable body 3 is swung to correct the shake (see, for example, Patent Document 1). Further, as shown in FIG. 11C, the movable body 3 holding the lens is supported by the spring member 600 so as to be displaceable with respect to the fixed body 200. Based on the detection result of the shake, FIG. As shown in d), the movable body 3 may be moved in a direction orthogonal to the optical axis to correct the shake (see, for example, Patent Document 2).
 ここで、可動体の可動範囲は、可動体が変位した際に可動体と固定体とが当接する位置によって定まる。その際、公差等の影響で可動体の可動範囲が変動することがあるとして、可動体の可動範囲をEEPROM等に書き込んでおくことによって、振れ補正時のレンズの目標位置を正確に求める構成が提案されている(例えば、特許文献3参照)。 Here, the movable range of the movable body is determined by the position where the movable body and the fixed body abut when the movable body is displaced. At that time, assuming that the movable range of the movable body may fluctuate due to tolerances or the like, a configuration in which the target position of the lens at the time of shake correction is accurately obtained by writing the movable range of the movable body in an EEPROM or the like. It has been proposed (see, for example, Patent Document 3).
 また、可動体を目標位置に変位させる際、可動体が目標位置から離れているときには、可動体を高速で変位させ、可動体が目標位置に接近したときには、可動体を低速で変位させる構成が提案されている(例えば、特許文献4参照)。 Further, when the movable body is displaced to the target position, the movable body is displaced at a high speed when the movable body is away from the target position, and the movable body is displaced at a low speed when the movable body approaches the target position. It has been proposed (see, for example, Patent Document 4).
特開2011-39273号公報JP 2011-39273 A 特開2009-288770号公報JP 2009-288770 A 特開平9-80562号公報Japanese Patent Laid-Open No. 9-80562 特開2009-282444号公報JP 2009-282444 A
 しかしながら、大きな振れが発生した際、かかる振れを補正するために可動体を大きく変位させると、図11(b)、(d)に示すように、可動体3が固定体200に当接し、その反動で可動体3が逆方向に変位することになる。その結果、撮像画像に大きなブレが発生することになるが、かかる変位は、手振れ等と周波数帯域が異なる等の理由から、特許文献1~4に記載の構成では対処することができないという問題点がある。 However, when a large shake occurs, if the movable body is greatly displaced in order to correct the shake, the movable body 3 comes into contact with the fixed body 200 as shown in FIGS. The movable body 3 is displaced in the reverse direction by the reaction. As a result, a large blur occurs in the captured image. However, such a displacement cannot be dealt with by the configurations described in Patent Documents 1 to 4 because the frequency band is different from camera shake or the like. There is.
 以上の問題点に鑑みて、本発明の課題は、振れ補正時に可動体が固定体に当接することに起因する画像のブレを防止することのできる振れ補正機能付き光学ユニットを提供することにある。 In view of the above problems, an object of the present invention is to provide an optical unit with a shake correction function that can prevent image blurring caused by a movable body coming into contact with a fixed body during shake correction. .
 上記課題を解決するために、本発明に係る振れ補正機能付き光学ユニットは、光学素子を保持する可動体と、前記可動体を変位可能に支持する固定体と、振れを検出する振れ検出手段と、前記固定体に対して前記可動体を変位させる振れ補正用駆動機構と、前記振れ検出手段の検出結果に基づいて前記振れ補正用駆動機構を駆動する駆動制御部と、を有し、前記駆動制御部では、前記可動体と前記固定体とが当接しない範囲内に可動許容範囲を規定する駆動電流最大値が設定されていることを特徴とする。 In order to solve the above problems, an optical unit with a shake correction function according to the present invention includes a movable body that holds an optical element, a fixed body that supports the movable body so as to be displaceable, and a shake detection unit that detects shake. A drive mechanism for shake correction that displaces the movable body relative to the fixed body, and a drive control unit that drives the drive mechanism for shake correction based on a detection result of the shake detection means, and the drive The control unit is characterized in that a drive current maximum value that defines a movable allowable range is set within a range in which the movable body and the fixed body do not contact each other.
 本発明では、振れ補正機能付き光学ユニットにおいて振れが発生した際、振れ検出手段が振れ補正機能付き光学ユニット全体の振れ、あるいは可動体の振れを検出すると、駆動制御部は、かかる振れを打ち消すように振れ補正用駆動機構を駆動して可動体を変位させ、可動体の振れを補正する。ここで、駆動制御部では、可動体と固定体とが当接しない範囲内に可動許容範囲を規定する駆動電流最大値が設定されているため、振れを補正した際、可動体が固定体に当接することを防止することができる。従って、可動体が固定体に当接した際の反動で可動体が逆方向に振れることに起因する画像のブレ等の発生を防止することができる。 In the present invention, when shake occurs in the optical unit with shake correction function, if the shake detection unit detects the shake of the entire optical unit with shake correction function or the shake of the movable body, the drive control unit cancels the shake. Then, the shake correction driving mechanism is driven to displace the movable body to correct the shake of the movable body. Here, in the drive control unit, since the drive current maximum value that defines the movable allowable range is set within a range where the movable body and the fixed body do not contact, when the shake is corrected, the movable body becomes the fixed body. The contact can be prevented. Accordingly, it is possible to prevent the occurrence of image blurring or the like due to the movable body swinging in the reverse direction due to the reaction when the movable body comes into contact with the fixed body.
 本発明において、前記可動許容範囲には、当該可動許容範囲の中心側に位置する第1可動許容範囲と、前記第1可動許容範囲と前記可動許容範囲の外縁との間に位置し、前記可動体の変位速度が前記第1可動許容範囲より遅く設定された第2可動許容範囲と、が設けられていることが好ましい。かかる構成によれば、振れを補正するために可動体を変位させた際、慣性力で可動体がオーバーシュートして固定体に当接することを防止することができる。 In the present invention, the movable allowable range includes the first movable allowable range located on the center side of the movable allowable range, the first movable allowable range, and an outer edge of the movable allowable range, and the movable allowable range. It is preferable that a second movable allowable range in which a body displacement speed is set slower than the first movable allowable range is provided. According to such a configuration, when the movable body is displaced to correct the shake, it is possible to prevent the movable body from overshooting due to inertial force and coming into contact with the fixed body.
 本発明において、前記第1可動許容範囲における前記可動体の変位速度と前記第2可動許容範囲における前記可動体の変位速度との差は、駆動電流波形の差により設定されている構成を採用することができる。かかる構成によれば、駆動制御部によって第1可動許容範囲における可動体の変位速度および第2可動許容範囲における可動の変位速度を設定することができ、可動許容範囲における可動体の変位速度および第2可動許容範囲における可動の変位速度を設定することを目的に特別な部材を設ける必要がない。 In the present invention, a configuration is adopted in which the difference between the displacement speed of the movable body in the first movable allowable range and the displacement speed of the movable body in the second movable allowable range is set by a difference in drive current waveform. be able to. According to this configuration, the drive control unit can set the displacement speed of the movable body in the first movable allowable range and the movable displacement speed in the second movable allowable range. It is not necessary to provide a special member for the purpose of setting the movable displacement speed in the two movable allowable ranges.
 本発明において、前記第1可動許容範囲の外縁は、前記駆動電流最大値に対する比により規定されている構成を設定することができる。かかる構成によれば、駆動制御部によって第1可動許容範囲および第2可動許容範囲を設定することができ、第1可動許容範囲および第2可動許容範囲を設定することを目的に特別な部材を設ける必要がない。 In the present invention, the outer edge of the first movable allowable range can be set to a configuration defined by a ratio to the maximum drive current value. According to such a configuration, the drive control unit can set the first movable allowable range and the second movable allowable range, and a special member for the purpose of setting the first movable allowable range and the second movable allowable range. There is no need to provide it.
 本発明において、前記第2可動許容範囲は、可動体および前記固定体のうちの少なくとも一方に設けられた緩衝部材によって設定されている構成を採用してもよい。かかる構成によれば、ゴム等の緩衝部材を設けることによって第2可動許容範囲を設定することができ、高価な部材を設ける必要がない。また、緩衝部材の厚さや材質等によって第2可動許容範囲を目的に応じた範囲に設定することができる。 In the present invention, the second movable permissible range may be configured by a buffer member provided on at least one of the movable body and the fixed body. According to such a configuration, the second movable allowable range can be set by providing a buffer member such as rubber, and there is no need to provide an expensive member. Further, the second movable allowable range can be set to a range according to the purpose depending on the thickness and material of the buffer member.
 本発明において、前記駆動電流最大値は、前記振れ補正用駆動機構によって前記可動体を一方方向に変位させる際の値と、前記振れ補正用駆動機構によって前記可動体を前記一方方向とは反対側に変位させる際の値とが相違していることが好ましい。かかる構成によれば、振れ補正機能付き光学ユニットの姿勢によって、可動体が重力により変位方向の一方に変位している場合でも、可動体が重力により変位する側の可動許容範囲を狭くしておけば、振れ補正の際、可動体が固定体に当接することを防止することができる。 In the present invention, the maximum value of the drive current is a value when the movable body is displaced in one direction by the shake correction drive mechanism, and a side opposite to the one direction by the shake correction drive mechanism. It is preferable that the value at the time of displacement is different. According to this configuration, even when the movable body is displaced in one of the displacement directions by gravity, the movable allowable range on the side where the movable body is displaced by gravity can be narrowed depending on the posture of the optical unit with shake correction function. In this case, the movable body can be prevented from coming into contact with the fixed body during shake correction.
 本発明において、前記駆動電流最大値は、前記振れ補正用駆動機構によって前記可動体を変位させた際に当該可動体と前記固定体とが当接するときの駆動電流に対する比により設定されている構成を採用することができる。かかる構成によれば、比の設定のみで、可動許容範囲を設定することができ、可動体が固定体に当接することを防止することができる。 In the present invention, the drive current maximum value is set by a ratio to a drive current when the movable body abuts the fixed body when the movable body is displaced by the shake correction drive mechanism. Can be adopted. According to such a configuration, the movable allowable range can be set only by setting the ratio, and the movable body can be prevented from coming into contact with the fixed body.
 本発明では、振れ補正機能付き光学ユニットおいて振れが発生した際に、振れ検出手段が振れ補正機能付き光学ユニットの振れ、あるいは可動体の振れを検出すると、駆動制御部は、かかる振れを打ち消すように振れ補正用駆動機構を制御して可動体を変位させ、可動体の振れを補正する。ここで、駆動制御部では、可動体と固定体とが当接しない範囲内に設定された可動許容範囲を規定する駆動電流最大値が設定されているため、振れを補正した際、可動体が固定体に当接することを防止することができるので、可動体が固定体に当接した際の反動で可動体が逆方向に振れることに起因する画像のブレ等の発生を防止することができる。 In the present invention, when shake occurs in the optical unit with shake correction function, if the shake detection means detects the shake of the optical unit with shake correction function or the shake of the movable body, the drive control unit cancels the shake. In this way, the shake correction drive mechanism is controlled to displace the movable body to correct the shake of the movable body. Here, in the drive control unit, since a drive current maximum value that defines a movable allowable range set within a range where the movable body and the fixed body do not contact each other is set, when the shake is corrected, the movable body Since it can be prevented from coming into contact with the fixed body, it is possible to prevent the occurrence of image blurring caused by the movable body swinging in the reverse direction due to the reaction when the movable body comes into contact with the fixed body. .
本発明の実施の形態1に係る振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the optical unit with a shake correction function which concerns on Embodiment 1 of this invention was mounted in optical apparatuses, such as a mobile telephone. 本発明の実施の形態1に係る振れ補正機能付きの光学ユニットの外観等を示す斜視図である。It is a perspective view which shows the external appearance etc. of the optical unit with a shake correction function which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学ユニットの断面図である。It is sectional drawing of the optical unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学ユニットの駆動制御部の説明図である。It is explanatory drawing of the drive control part of the optical unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学ユニットにおける振れ補正動作を示す説明図である。It is explanatory drawing which shows the shake correction operation | movement in the optical unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る振れ補正機能付きの光学ユニットにおいて、可動体の可動許容範囲に設定した第1可動許容範囲および第2可動許容範囲の説明図である。In the optical unit with a shake correction function according to the second embodiment of the present invention, it is an explanatory diagram of a first movable allowable range and a second movable allowable range set in the movable allowable range of the movable body. 本発明の実施の形態2に係る振れ補正機能付きの光学ユニットにおいて、可動体を揺動させる際の駆動電流波形の説明図である。It is explanatory drawing of the drive current waveform at the time of making a movable body rock | fluctuate in the optical unit with a shake correction function which concerns on Embodiment 2 of this invention. 本発明の実施の形態2の変形例に係る振れ補正機能付きの光学ユニットの説明図である。It is explanatory drawing of the optical unit with a shake correction function which concerns on the modification of Embodiment 2 of this invention. 本発明の実施の形態3に係る振れ補正機能付きの光学ユニットの説明図である。It is explanatory drawing of the optical unit with a shake correction function which concerns on Embodiment 3 of this invention. 本発明の他の実施の形態に係る振れ補正機能付きの光学ユニットの説明図である。It is explanatory drawing of the optical unit with a shake correction function which concerns on other embodiment of this invention. 従来の振れ補正機能付きの光学ユニットの説明図である。It is explanatory drawing of the optical unit with the conventional shake correction function.
1 撮像ユニット
3 可動体
70 緩衝部材
100 振れ補正機能付きの光学ユニット
180 揺動支点
200 固定体
500 振れ補正用駆動機構
500x X側振れ補正用駆動機構
500y Y側振れ補正用駆動機構
520 永久磁石
550 シート状コイル体
560 コイル部
600 バネ部材
900 駆動制御部
Li 可動許容範囲
Lia 第1可動許容範囲
Lib 第2可動許容範囲
DESCRIPTION OF SYMBOLS 1 Imaging unit 3 Movable body 70 Buffer member 100 Optical unit 180 with shake correction function Swing fulcrum 200 Fixed body 500 Shake correction drive mechanism 500x X side shake correction drive mechanism 500y Y side shake correction drive mechanism 520 Permanent magnet 550 Sheet-like coil body 560 Coil part 600 Spring member 900 Drive control part Li Movable allowable range Lia 1st movable allowable range Lib 2nd movable allowable range
 以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、以下の説明においては、光学ユニットとして撮像ユニットの手振れを防止するための構成を例示する。また、以下の説明では、互いに直交する3方向を各々X軸、Y軸、Z軸とし、光軸L(レンズ光軸)に沿う方向をZ軸とする。また、以下の説明では、各方向の振れのうち、X軸周りの回転は、いわゆるピッチング(縦揺れ)に相当し、Y軸周りの回転は、いわゆるヨーイング(横揺れ)に相当し、Z軸周りの回転は、いわゆるローリングに相当する。また、X軸の一方側には+Xを付し、他方側には-Xを付し、Y軸の一方側には+Yを付し、他方側には-Yを付し、Z軸の一方側(被写体側とは反対側)には+Zを付し、他方側(被写体側)には-Zを付して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. In the following description, a configuration for preventing camera shake of the imaging unit as an optical unit will be exemplified. In the following description, three directions orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, respectively, and a direction along the optical axis L (lens optical axis) is defined as a Z axis. Further, in the following description, among the shakes in each direction, rotation around the X axis corresponds to so-called pitching (pitch), rotation around the Y axis corresponds to so-called yawing (roll), and Z axis The rotation around corresponds to so-called rolling. Also, + X is attached to one side of the X axis, -X is attached to the other side, + Y is attached to one side of the Y axis, -Y is attached to the other side, and one side of the Z axis is attached. In the following description, + Z is attached to the side (opposite the subject side), and -Z is attached to the other side (subject side).
 [実施の形態1]
 (光学ユニットの全体構成)
 図1は、本発明の実施の形態1に係る振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。図2は、本発明の実施の形態1に係る振れ補正機能付きの光学ユニットの外観等を示す斜視図であり、図2(a)、(b)は、光学ユニットを被写体側(光軸方向前側)からみたときの斜視図、および光学ユニットを被写体側とは反対側(光軸方向後側)からみたときの斜視図である。図3は、本発明の実施の形態1に係る光学ユニットの断面図であり、図3(a)、(b)はYZ断面図およびXZ断面図である。なお、図3(a)、(b)では、撮像ユニットの内部についてはレンズホルダ等の図示を省略してある。
[Embodiment 1]
(Overall configuration of optical unit)
FIG. 1 is an explanatory view schematically showing a state in which an optical unit with a shake correction function according to Embodiment 1 of the present invention is mounted on an optical device such as a mobile phone. FIG. 2 is a perspective view showing an appearance and the like of the optical unit with a shake correction function according to the first embodiment of the present invention. FIGS. 2A and 2B show the optical unit on the subject side (in the optical axis direction). FIG. 4 is a perspective view when viewed from the front side and a perspective view when the optical unit is viewed from the side opposite to the subject side (the rear side in the optical axis direction). 3 is a cross-sectional view of the optical unit according to Embodiment 1 of the present invention, and FIGS. 3 (a) and 3 (b) are a YZ cross-sectional view and an XZ cross-sectional view. In FIGS. 3A and 3B, the illustration of the lens holder and the like is omitted for the inside of the imaging unit.
 図1に示す光学ユニット100(振れ補正機能付き光学ユニット)は、カメラ付き携帯電話機等の光学機器1000に用いられる薄型カメラであって、光学機器1000のシャーシ1100(機器本体)に支持された状態で搭載される。かかる光学ユニット100では、撮影時に光学機器1000に手振れ等の振れが発生すると、撮像画像に乱れが発生する。そこで、本形態の光学ユニット100には、後述するように、撮像ユニット1を備えた可動体3を固定体200内で変位可能に支持した状態とするとともに、可動体3、固定体200、あるいは固定体200の外側に設けたジャイロスコープ等の振れ検出センサ170(振れ検出手段)によって手振れを検出した結果に基づいて、可動体3を変位させて振れを補正する振れ補正用駆動機構(図1では図示せず)が設けられている。 An optical unit 100 (an optical unit with a shake correction function) illustrated in FIG. 1 is a thin camera used for an optical device 1000 such as a mobile phone with a camera, and is supported by a chassis 1100 (device main body) of the optical device 1000. It is mounted with. In such an optical unit 100, when a shake such as a hand shake occurs in the optical apparatus 1000 during shooting, the captured image is disturbed. Therefore, in the optical unit 100 of the present embodiment, as described later, the movable body 3 including the imaging unit 1 is supported in a displaceable manner within the fixed body 200, and the movable body 3, the fixed body 200, or Based on the result of detecting hand shake by a shake detection sensor 170 (shake detection means) such as a gyroscope provided outside the fixed body 200, a shake correction drive mechanism that corrects the shake by displacing the movable body 3 (FIG. 1). (Not shown).
 図2および図3に示すように、光学ユニット100には、撮像ユニット1や振れ補正用駆動機構への給電等を行うためのフレキシブル配線基板410、420が引き出されており、フレキシブル配線基板420は、コネクタ490を介して固定体200の外側に設けられた駆動制御部900(図1参照)に電気的に接続されている。また、フレキシブル配線基板410は、撮像ユニット1から信号を出力する機能も担っており、コネクタ490を介して光学機器1000の本体側に設けられた画像処理部に電気的に接続されている。 As shown in FIGS. 2 and 3, flexible wiring boards 410 and 420 for supplying power to the imaging unit 1 and the shake correction drive mechanism are drawn out from the optical unit 100. The connector 490 is electrically connected to a drive control unit 900 (see FIG. 1) provided outside the fixed body 200. The flexible wiring board 410 also has a function of outputting a signal from the imaging unit 1 and is electrically connected to an image processing unit provided on the main body side of the optical device 1000 via the connector 490.
 図3に示すように、撮像ユニット1は、鋼板等の強磁性板からなる矩形箱状のケース14を有しており、かかるケース14の内側には、レンズ1aを保持するホルダ12(図2参照)、ホルダ12を保持する円筒状のスリーブ13、レンズ1aをフォーカシング方向に駆動するレンズ駆動機構5、撮像素子1b、撮像素子1bを支持する素子ホルダ16等が設けられている。かかる撮像ユニット1の外周部分はケース14からなる。 As shown in FIG. 3, the imaging unit 1 has a rectangular box-shaped case 14 made of a ferromagnetic plate such as a steel plate, and a holder 12 (FIG. 2) that holds the lens 1 a inside the case 14. A cylindrical sleeve 13 that holds the holder 12, a lens driving mechanism 5 that drives the lens 1a in the focusing direction, an image sensor 1b, an element holder 16 that supports the image sensor 1b, and the like. The outer peripheral portion of the imaging unit 1 includes a case 14.
 (光学ユニット100の構成)
 光学ユニット100は、まず、固定体200と、撮像ユニット1を備えた可動体3と、可動体3が固定体200に変位可能に支持された状態とするバネ部材600と、可動体3と固定体200との間で可動体3を固定体200に対して相対変位させる磁気駆動力を発生させる振れ補正用駆動機構500とを有している。
(Configuration of optical unit 100)
The optical unit 100 includes a fixed body 200, a movable body 3 including the imaging unit 1, a spring member 600 in which the movable body 3 is supported by the fixed body 200 so as to be displaceable, and the movable body 3 and the optical unit 100. A shake correction drive mechanism 500 that generates a magnetic drive force that moves the movable body 3 relative to the fixed body 200 relative to the body 200 is provided.
 固定体200は上カバー250および下カバー700等を備えており、上カバー250は、撮像ユニット1の周りを囲む角筒状胴部210と、角筒状胴部210の被写体側の開口部を塞ぐ端板部220とを備えている。端板部220には、被写体からの光が入射する窓220aが形成されている。上カバー250において、角筒状胴部210は、被写体側(光軸Lが延在している側)とは反対側(+Z側)の端部が開放端になっている。 The fixed body 200 includes an upper cover 250, a lower cover 700, and the like. The upper cover 250 includes a rectangular tubular body 210 that surrounds the imaging unit 1, and an opening on the subject side of the rectangular tubular body 210. And an end plate portion 220 to be closed. The end plate 220 is formed with a window 220a through which light from the subject enters. In the upper cover 250, the end of the rectangular tubular body 210 opposite to the subject (the side on which the optical axis L extends) (+ Z side) is an open end.
 下カバー700は、金属板に対するプレス加工品であり、略矩形の底板部710と、底板部710の外周縁から被写体側に向けて起立する4つの側板部720とを備えている。下カバー700の底板部710にはその中央位置に、揺動支点180が構成されている。本形態において、揺動支点180は、下カバー700の底板部710からZ軸方向の他方側に突出した凸部182と、可動体3の底部に設けたプレート19の受け部19aとによって構成されている。また、底板部710の内面は略鏡面になっており、撮像ユニット1の光軸方向後側端部に設けられた基板15に実装された一対のフォトリフレクタ590に対する反射面として利用される。 The lower cover 700 is a press-processed product for a metal plate, and includes a substantially rectangular bottom plate portion 710 and four side plate portions 720 that stand from the outer peripheral edge of the bottom plate portion 710 toward the subject. A swing fulcrum 180 is formed at the center of the bottom plate portion 710 of the lower cover 700. In this embodiment, the swing fulcrum 180 is constituted by a convex portion 182 that protrudes from the bottom plate portion 710 of the lower cover 700 to the other side in the Z-axis direction, and a receiving portion 19 a of the plate 19 provided at the bottom portion of the movable body 3. ing. Further, the inner surface of the bottom plate portion 710 is substantially a mirror surface, and is used as a reflecting surface for the pair of photo reflectors 590 mounted on the substrate 15 provided at the rear end portion in the optical axis direction of the imaging unit 1.
 (可動体3の構成)
 本形態の光学ユニット100において、可動体3は、撮像ユニット1と、撮像ユニット1のケース14の外周面を囲む矩形枠状のホルダ7と、矩形枠状のストッパ部材8とによって構成されており、ストッパ部材8はホルダ7の光軸方向後側の面に溶接等の方法で固定されている。ここで、ホルダ7は、光軸方向前側に位置する矩形枠状の第1ホルダ部材71と、光軸方向後側で第1ホルダ部材71に対向する矩形枠状の第2ホルダ部材72とからなる。本形態において、第1ホルダ部材71と第2ホルダ部材72との間には、振れ補正用駆動機構500に用いた平板状の永久磁石520が保持されている。より具体的には、永久磁石520において光軸方向前側の面には第1ホルダ部材71が固定され、永久磁石520において光軸方向後側の面には第2ホルダ部材72が固定されており、永久磁石520、第1ホルダ部材71および第2ホルダ部材72によって角筒状の永久磁石アセンブリ75が構成されている。このため、角筒状の永久磁石アセンブリ75の内側に撮像ユニット1を挿入した後、撮像ユニット1のケース14の外周面と、永久磁石アセンブリ75の内周面(永久磁石520の内面)とを接着剤により固定すれば、永久磁石520、第1ホルダ部材71、第2ホルダ部材72、ストッパ部材8および撮像ユニット1を一体化して可動体3を構成することができる。
(Configuration of movable body 3)
In the optical unit 100 of the present embodiment, the movable body 3 includes the imaging unit 1, a rectangular frame-shaped holder 7 surrounding the outer peripheral surface of the case 14 of the imaging unit 1, and a rectangular frame-shaped stopper member 8. The stopper member 8 is fixed to the rear surface of the holder 7 in the optical axis direction by a method such as welding. Here, the holder 7 includes a rectangular frame-shaped first holder member 71 positioned on the front side in the optical axis direction, and a rectangular frame-shaped second holder member 72 facing the first holder member 71 on the rear side in the optical axis direction. Become. In the present embodiment, a flat permanent magnet 520 used for the shake correction drive mechanism 500 is held between the first holder member 71 and the second holder member 72. More specifically, the first holder member 71 is fixed to the front surface of the permanent magnet 520 in the optical axis direction, and the second holder member 72 is fixed to the rear surface of the permanent magnet 520 in the optical axis direction. The permanent magnet 520, the first holder member 71, and the second holder member 72 constitute a rectangular tubular permanent magnet assembly 75. For this reason, after the imaging unit 1 is inserted inside the rectangular cylindrical permanent magnet assembly 75, the outer peripheral surface of the case 14 of the imaging unit 1 and the inner peripheral surface of the permanent magnet assembly 75 (the inner surface of the permanent magnet 520). If fixed by an adhesive, the movable body 3 can be configured by integrating the permanent magnet 520, the first holder member 71, the second holder member 72, the stopper member 8, and the imaging unit 1.
 (バネ部材600の構成)
 バネ部材600は、固定体200側に連結される矩形枠状の固定側連結部と、可動体3側に連結される可動側連結部と、可動側連結部と固定側連結部の間で延在する複数本のアーム部とを備えた板状バネ部材であり、アーム部の両端は各々、可動側連結部および固定側連結部に繋がっている。かかるバネ部材600を可動体3と固定体200とに接続するにあたって、本形態では、可動側連結部がストッパ部材8の光軸方向後側端面に溶接等の方法で固定されている。また、固定側連結部は、上カバー250の切り欠き218、219内に嵌った状態で、上カバー250の切り欠き218、219の前側端面に溶接等の方法で固定されている。かかるバネ部材600は、ベリリウム銅や非磁性のSUS系鋼材等といった非磁性の金属製であり、所定厚の薄板に対するプレス加工、あるいはフォトリソグラフィ技術を用いたエッチング加工により形成したものである。
(Configuration of the spring member 600)
The spring member 600 extends between a rectangular frame-shaped fixed side connecting portion connected to the fixed body 200 side, a movable side connecting portion connected to the movable body 3 side, and the movable side connecting portion and the fixed side connecting portion. It is a plate-like spring member provided with a plurality of existing arm portions, and both ends of the arm portions are respectively connected to the movable side connecting portion and the fixed side connecting portion. In connecting the spring member 600 to the movable body 3 and the fixed body 200, in this embodiment, the movable side connecting portion is fixed to the rear end surface in the optical axis direction of the stopper member 8 by a method such as welding. Further, the fixed side connecting portion is fixed to the front end surfaces of the notches 218 and 219 of the upper cover 250 by welding or the like in a state of being fitted in the notches 218 and 219 of the upper cover 250. The spring member 600 is made of a nonmagnetic metal such as beryllium copper or a nonmagnetic SUS steel material, and is formed by pressing a thin plate having a predetermined thickness or etching using a photolithography technique.
 ここで、バネ部材600の可動側連結部を可動体3に連結する一方、固定側連結部を固定体200に固定すると、可動体3は、揺動支点180によって光軸方向前側に押し上げられた状態となる。このため、バネ部材600において、可動側連結部は固定側連結部よりも光軸方向前側に押し上げられた状態となり、バネ部材600のアーム部は、可動体3を光軸方向後側に付勢する。従って、可動体3は、バネ部材600によって揺動支点180に向けて付勢された状態になり、可動体3は、揺動支点180によって揺動可能な状態に固定体200に支持された状態となる。 Here, when the movable side coupling portion of the spring member 600 is coupled to the movable body 3, while the stationary side coupling portion is fixed to the stationary body 200, the movable body 3 is pushed up to the front side in the optical axis direction by the swing fulcrum 180. It becomes a state. For this reason, in the spring member 600, the movable side connecting portion is pushed up to the front side in the optical axis direction relative to the fixed side connecting portion, and the arm portion of the spring member 600 biases the movable body 3 to the rear side in the optical axis direction. To do. Therefore, the movable body 3 is biased toward the swing fulcrum 180 by the spring member 600, and the movable body 3 is supported by the fixed body 200 so as to be swingable by the swing fulcrum 180. It becomes.
 (振れ補正用駆動機構の構成)
 本形態の光学ユニット100では、コイル部560と、コイル部560に鎖交する磁界を発生させる永久磁石520とによって、振れ補正用駆動機構500が構成されている。より具体的には、可動体3においてケース14の4つの外面には平板状の永久磁石520が各々固定されており、固定体200では、上カバー250の角筒状胴部210の内面にコイル部560が設けられている。永久磁石520は、外面側および内面側が異なる極に着磁されている。また、永久磁石520は、光軸L方向に配置された2つの磁石片からなり、かかる磁石片は、コイル部560と対向する側の面が光軸方向で異なる極に着磁されている。また、コイル部560は、四角形の枠状に形成されており、上下の長辺部分が有効辺として利用される。
(Configuration of shake correction drive mechanism)
In the optical unit 100 of the present embodiment, the shake correction drive mechanism 500 is configured by the coil unit 560 and the permanent magnet 520 that generates a magnetic field linked to the coil unit 560. More specifically, in the movable body 3, flat permanent magnets 520 are respectively fixed to the four outer surfaces of the case 14. In the fixed body 200, a coil is formed on the inner surface of the rectangular tubular body 210 of the upper cover 250. A portion 560 is provided. Permanent magnet 520 is magnetized with different poles on the outer surface side and inner surface side. The permanent magnet 520 is composed of two magnet pieces arranged in the direction of the optical axis L, and the magnet piece is magnetized to a pole whose surface facing the coil portion 560 is different in the optical axis direction. Moreover, the coil part 560 is formed in the square frame shape, and an upper and lower long side part is utilized as an effective side.
 これらの永久磁石520およびコイル部560のうち、可動体3をY軸方向の両側で挟む2箇所に配置された永久磁石520およびコイル部560はY側振れ補正用駆動機構500yを構成しており、矢印X1、X2で示すように、揺動支点180を通ってX軸方向に延在する軸線X0を中心にして可動体3をY軸方向に揺動させる。また、撮像ユニット1をX軸方向の両側で挟む2箇所に配置された永久磁石520およびコイル部560はX側振れ補正用駆動機構500xを構成しており、矢印Y1、Y2で示すように、揺動支点180を通ってY軸方向に延在する軸線Y0を中心にして可動体3をX軸方向に揺動させる。 Among these permanent magnets 520 and the coil portion 560, the permanent magnets 520 and the coil portions 560 disposed at two positions sandwiching the movable body 3 on both sides in the Y-axis direction constitute a Y-side shake correction drive mechanism 500y. As indicated by arrows X1 and X2, the movable body 3 is swung in the Y-axis direction around an axis line X0 extending in the X-axis direction through the swing fulcrum 180. In addition, the permanent magnet 520 and the coil unit 560 disposed at two positions sandwiching the imaging unit 1 on both sides in the X-axis direction constitute an X-side shake correction drive mechanism 500x, as indicated by arrows Y1 and Y2. The movable body 3 is swung in the X-axis direction around the axis line Y0 extending in the Y-axis direction through the rocking fulcrum 180.
 かかるY側振れ補正用駆動機構500yおよびX側振れ補正用駆動機構500xを構成するにあたって、本形態では、上カバー250の4つの内面に沿って延在するシート状コイル体550が用いられており、シート状コイル体550では、4つのコイル部560が所定の間隔を空けて一体に形成されている。また、シート状コイル体550は展開したときに帯状に延在する形状を備えており、上カバー250の4つの内面に沿うように折り曲げた状態で上カバー250の内面に面接着等の方法で固定されている。 In configuring the Y-side shake correction drive mechanism 500y and the X-side shake correction drive mechanism 500x, in this embodiment, a sheet-like coil body 550 extending along the four inner surfaces of the upper cover 250 is used. In the sheet-like coil body 550, four coil portions 560 are integrally formed with a predetermined interval. Further, the sheet-like coil body 550 has a shape that extends in a band shape when unfolded, and is bent onto the four inner surfaces of the upper cover 250 by a method such as surface bonding to the inner surface of the upper cover 250. It is fixed.
 シート状コイル体550は、導電配線技術を利用して微細な銅配線からなるコイル部560をプリント基板上に形成した構造を有しており、複数層の銅配線(コイル部560)が絶縁膜を介して多層に形成されている。また、銅配線(コイル部560)の表面も絶縁膜で覆われている。かかるシート状コイル体550としては、例えば、旭化成エレクトロニクス株式会社製のFPコイル(ファインパターンコイル(登録商標))を挙げることができる。シート状コイル体550とフレキシブル配線基板420とがハンダ等により電気的に接続されており、フレキシブル配線基板420の折れ曲がり部分は、プレート429によって補強されている。 The sheet-like coil body 550 has a structure in which a coil portion 560 made of fine copper wiring is formed on a printed circuit board by using a conductive wiring technique, and a plurality of layers of copper wiring (coil portion 560) is an insulating film. Are formed in multiple layers. The surface of the copper wiring (coil portion 560) is also covered with an insulating film. As this sheet-like coil body 550, for example, an FP coil (Fine Pattern Coil (registered trademark)) manufactured by Asahi Kasei Electronics Corporation can be exemplified. The sheet coil body 550 and the flexible wiring board 420 are electrically connected by solder or the like, and the bent portion of the flexible wiring board 420 is reinforced by a plate 429.
 (ストッパ機構の構成)
 本形態の光学ユニット100において、可動体3は、揺動支点180によって揺動可能な状態に固定体200に支持された状態にある。従って、外部から大きな力が加わって撮像ユニット1が大きく変位すると、バネ部材600のアーム部が塑性変形するおそれがある。そこで、本形態では、以下に説明するストッパ機構が設けられている。
(Configuration of stopper mechanism)
In the optical unit 100 of this embodiment, the movable body 3 is in a state of being supported by the fixed body 200 so as to be swingable by the swing support point 180. Therefore, when the imaging unit 1 is largely displaced due to a large force applied from the outside, the arm portion of the spring member 600 may be plastically deformed. Therefore, in this embodiment, a stopper mechanism described below is provided.
 まず、可動体3では、ホルダ7の光軸方向後側端面に矩形枠状のストッパ部材8が溶接等の方法により固定されている。かかるストッパ部材8は、矩形枠状の本体部分81と、本体部分81から外側に向けて突出した凸部810を備えており、かかる凸部810は、永久磁石520より外側に突出している。本形態において、凸部810は、本体部分81の4つの辺部分の各々に2つずつ形成されている。 First, in the movable body 3, a rectangular frame-shaped stopper member 8 is fixed to the rear end surface in the optical axis direction of the holder 7 by a method such as welding. The stopper member 8 includes a rectangular frame-shaped main body portion 81 and a convex portion 810 protruding outward from the main body portion 81, and the convex portion 810 protrudes outward from the permanent magnet 520. In this embodiment, two convex portions 810 are formed on each of the four side portions of the main body portion 81.
 ここで、凸部810は、固定体200の側に設けられたシート状コイル体550と狭い隙間を介して対向している。従って、凸部810およびシート状コイル体550は、光軸方向における振れ補正用駆動機構500と揺動支点180との間において、可動体3が光軸方向に直交する方向に変位した際の可動範囲を規定するストッパ機構810を構成している。ここで、シート状コイル体550は、空芯コイルと違って、永久磁石520と当接しても巻線が解けることがない。従って、凸部810が当接する箇所は、シート状コイル体550のうち、コイル部560が構成されている箇所、およびコイル部560が構成されていない箇所のいずれでもよいが、本形態では、凸部810が当接する箇所は、シート状コイル体550のうち、コイル部560が構成されていない箇所に設定されている。 Here, the convex portion 810 is opposed to the sheet-like coil body 550 provided on the fixed body 200 side through a narrow gap. Accordingly, the convex portion 810 and the sheet-like coil body 550 are movable when the movable body 3 is displaced in a direction orthogonal to the optical axis direction between the shake correction drive mechanism 500 and the swing fulcrum 180 in the optical axis direction. A stopper mechanism 810 that defines the range is configured. Here, unlike the air-core coil, the sheet-like coil body 550 cannot be unwound even if it contacts the permanent magnet 520. Therefore, the portion where the convex portion 810 contacts may be any of the portion where the coil portion 560 is formed and the portion where the coil portion 560 is not formed in the sheet-like coil body 550. The part with which the part 810 contacts is set in a part of the sheet-like coil body 550 where the coil part 560 is not configured.
 また、シート状コイル体550と永久磁石520とは狭い隙間を介して対向し、かかる隙間は、凸部810とシート状コイル体550との隙間よりわずかに大である。従って、シート状コイル体550と永久磁石520とは、外部から大きな力が加わって撮像ユニット1が大きく揺動した際の揺動範囲を規定するストッパ機構820を構成している。なお、永久磁石520が当接する箇所は、シート状コイル体550のうち、コイル部560が構成されている箇所、およびコイル部560が構成されていない箇所のいずれでもよいが、本形態では、永久磁石520が当接する箇所は、シート状コイル体550のうち、コイル部560が構成されている箇所に設定されている。 Further, the sheet-like coil body 550 and the permanent magnet 520 face each other through a narrow gap, and this gap is slightly larger than the gap between the convex portion 810 and the sheet-like coil body 550. Therefore, the sheet-like coil body 550 and the permanent magnet 520 constitute a stopper mechanism 820 that defines a swing range when the imaging unit 1 swings greatly due to a large force applied from the outside. In addition, although the location where the permanent magnet 520 contacts may be either the location where the coil portion 560 is configured or the location where the coil portion 560 is not configured in the sheet-like coil body 550, in this embodiment, the location is permanent. The location where the magnet 520 abuts is set in the location where the coil portion 560 is configured in the sheet-like coil body 550.
 (駆動制御部の構成)
 図4は、本発明の実施の形態1に係る光学ユニット100の駆動制御部の説明図であり、図4(a)、(b)は駆動制御部のブロック図、および駆動制御部の駆動電流リミッタ部の説明図である。図5は、本発明の実施の形態1に係る光学ユニット100における振れ補正動作を示す説明図であり、図5(a)、(b)は、振れが発生する前の状態の説明図、および振れ補正を行った様子を示す説明図である。
(Configuration of drive control unit)
4A and 4B are explanatory diagrams of the drive control unit of the optical unit 100 according to Embodiment 1 of the present invention. FIGS. 4A and 4B are a block diagram of the drive control unit and a drive current of the drive control unit. It is explanatory drawing of a limiter part. FIGS. 5A and 5B are explanatory diagrams showing a shake correction operation in the optical unit 100 according to Embodiment 1 of the present invention. FIGS. 5A and 5B are explanatory diagrams of a state before shake occurs, and FIG. It is explanatory drawing which shows a mode that shake correction was performed.
 本形態の振れ補正機能付き光学ユニット100では、図1を参照して説明したように、可動体3、固定体200、あるいは固定体200の外側に、X軸方向およびY軸方向の振れを検出する2軸のジャイロスコープからなる振れ検出センサ170(振れ検出手段)が搭載されており、図4(a)に示す駆動制御部900は、振れ検出センサ170により検出された振れを打ち消すように、振れ補正用駆動機構500を駆動する。ここで、振れ補正を実行するタイミングは、光学ユニット100の外部(光学機器本体)からの指令信号により規定される。具体的なタイミングとしては、シャッタボタン等の撮影開始スイッチが半分だけ押し込まれた時に指令信号が出力される場合、撮影開始スイッチが半分だけ押し込まれ、オートフォーカス動作が行われて完了した時に指令信号が出力される場合、撮影開始スイッチが深く押し込まれた時に指令信号が出力される場合がある。また、カメラによって取り込まれた映像がモニター部に表示されている間、常時、手振れ補正が実行される場合もある。ここで、駆動制御部900は、X軸周り(ピッチング方向)の手振れ補正用、およびY軸周り(ヨーイング方向)の手振れ補正用の2組構成されているが、2組の駆動制御部900は同一の構成を有している。従って、以下の説明では、それらを区別せずに説明する。 In the optical unit 100 with shake correction function of this embodiment, as described with reference to FIG. 1, shakes in the X-axis direction and the Y-axis direction are detected outside the movable body 3, the fixed body 200, or the fixed body 200. A shake detection sensor 170 (shake detection means) composed of a two-axis gyroscope is mounted, and the drive control unit 900 shown in FIG. 4A is configured to cancel the shake detected by the shake detection sensor 170. The shake correction drive mechanism 500 is driven. Here, the timing for executing the shake correction is defined by a command signal from the outside of the optical unit 100 (optical apparatus main body). Specifically, when a command signal is output when the shooting start switch such as the shutter button is pressed halfway, the command signal is output when the shooting start switch is pressed halfway and the autofocus operation is completed. Is output, the command signal may be output when the imaging start switch is pressed deeply. In addition, camera shake correction may be always performed while an image captured by the camera is displayed on the monitor unit. Here, the drive control unit 900 includes two sets for camera shake correction around the X axis (pitching direction) and camera shake correction around the Y axis (yaw direction). It has the same configuration. Therefore, in the following description, it demonstrates without distinguishing them.
 本形態において、駆動制御部900は、概ね、A/D変換回路920、デジタルローパスフィルタ930、ゲイン調整部940、位相補償部950、およびD/A変換回路960を有している。かかる駆動制御部900において、振れ検出センサ170が検出した角速度信号は、A/D変換回路920によってデジタル信号に変換された後、デジタルローパスフィルタ930を介してゲイン調整部940に入力され、ゲイン調整部940および位相補償部950によって、デジタル信号からなる制御信号に変換される。しかる後に、制御信号は、D/A変換回路960によって、アナログ信号からなる制御信号に変換されて駆動回路970に出力される。そして、駆動回路970は、固定体200から引き出されたフレキシブル配線基板420を介して振れ補正用駆動機構500のコイル部560に振れ補正用の駆動電流を供給する。なお、振れ検出センサ170によって出力される角速度信号がデジタル信号の場合は、A/D変換回路920は使用しない。また、駆動制御部900は、振れ検出センサ170が検出した角速度信号からDC成分を除去するハイパスフィルタ(図示せず)を有する場合もある。 In this embodiment, the drive control unit 900 generally includes an A / D conversion circuit 920, a digital low-pass filter 930, a gain adjustment unit 940, a phase compensation unit 950, and a D / A conversion circuit 960. In the drive control unit 900, the angular velocity signal detected by the shake detection sensor 170 is converted into a digital signal by the A / D conversion circuit 920, and then input to the gain adjustment unit 940 through the digital low-pass filter 930. Unit 940 and phase compensation unit 950 convert the digital signal into a control signal. Thereafter, the control signal is converted into a control signal composed of an analog signal by the D / A conversion circuit 960 and output to the drive circuit 970. Then, the drive circuit 970 supplies a drive current for shake correction to the coil unit 560 of the shake correction drive mechanism 500 via the flexible wiring board 420 drawn out from the fixed body 200. When the angular velocity signal output from the shake detection sensor 170 is a digital signal, the A / D conversion circuit 920 is not used. The drive control unit 900 may include a high-pass filter (not shown) that removes a DC component from the angular velocity signal detected by the shake detection sensor 170.
 かかる構成の駆動制御部900によれば、図5(a)に示す光学機器1000および光学ユニット100が手振れ等によって図5(b)に示すように振れると、かかる振れは振れ検出センサ170によって検出され、駆動制御部900は、振れを打ち消すような駆動電流を振れ補正用駆動機構500に供給する。その結果、振れ補正用駆動機構500は、揺動支点180を中心に可動体3(撮像ユニット1)を揺動させ、振れを補正する。より具体的には、図3を参照して説明したX側振れ補正用駆動機構500xは、揺動支点180を中心に撮像ユニット1をY軸周りに揺動させ、X方向の振れを補正し、Y側振れ補正用駆動機構500yは、揺動支点180を中心に撮像ユニット1をX軸周りに揺動させ、Y方向の振れを補正する。また、撮像ユニット1のX軸周りの揺動、およびY軸周りの揺動を合成すれば、XY面全体に対して撮像ユニット1を変位させる。それ故、光学ユニット100で想定される全ての振れを確実に補正することができる。かかる撮像ユニット1に対する駆動の際、撮像ユニット1の変位は、フォトリフレクタ590によって監視される。 According to the drive control unit 900 having such a configuration, when the optical device 1000 and the optical unit 100 illustrated in FIG. 5A are shaken as illustrated in FIG. 5B due to camera shake or the like, such shake is detected by the shake detection sensor 170. Then, the drive control unit 900 supplies a drive current that cancels the shake to the shake correction drive mechanism 500. As a result, the shake correction drive mechanism 500 swings the movable body 3 (imaging unit 1) around the swing fulcrum 180 to correct the shake. More specifically, the X-side shake correction drive mechanism 500x described with reference to FIG. 3 oscillates the imaging unit 1 around the Y axis around the swing fulcrum 180 to correct the shake in the X direction. The Y-side shake correction drive mechanism 500y swings the imaging unit 1 around the X axis about the swing fulcrum 180 and corrects the shake in the Y direction. Further, if the swinging around the X axis and the swinging around the Y axis of the imaging unit 1 are combined, the imaging unit 1 is displaced with respect to the entire XY plane. Therefore, all shakes assumed in the optical unit 100 can be reliably corrected. When the imaging unit 1 is driven, the displacement of the imaging unit 1 is monitored by the photo reflector 590.
 このように構成した光学ユニット100において、本形態では、図4(a)に示す駆動制御部900には、駆動電流リミッタ部980が設けられており、駆動電流リミッタ部980は、振れ補正を行う場合でも可動体3と固定体200とが当接しない範囲内に可動許容範囲を規定する駆動電流最大値を記憶しておくメモリ985を備えている。このため、振れを補正する際、振れ補正用駆動機構500に供給される駆動電流には上限値が設定されている。本形態において、メモリ985には、出荷前に駆動電流最大値を記憶させておく。かかる駆動電流最大値は、振れ補正用駆動機構500によって可動体3を変位させた際に可動体3側の永久磁石520と固定体200側のシート状コイル体550とが当接するときの駆動電流に対して、0.8や0.9などの係数を乗じた値である。このため、振れを補正する際、可動体3が変位可能な範囲は、図4(b)に一点鎖線Lix、Liyで示す可動許容範囲Liに制限されている。ここで、一点鎖線Lixは、可動体3のX軸方向の可動許容範囲を示し、一点鎖線Liyは、可動体3のY軸方向の可動許容範囲を示している。 In the optical unit 100 configured as above, in this embodiment, the drive control unit 900 shown in FIG. 4A is provided with a drive current limiter unit 980, and the drive current limiter unit 980 performs shake correction. Even in such a case, a memory 985 is provided that stores a drive current maximum value that defines a movable allowable range within a range where the movable body 3 and the fixed body 200 do not contact each other. Therefore, when correcting the shake, an upper limit value is set for the drive current supplied to the shake correction drive mechanism 500. In this embodiment, the drive current maximum value is stored in the memory 985 before shipment. The maximum value of the drive current is the drive current when the permanent magnet 520 on the movable body 3 side and the sheet-like coil body 550 on the fixed body 200 side abut when the movable body 3 is displaced by the shake correction drive mechanism 500. Is a value multiplied by a coefficient such as 0.8 or 0.9. For this reason, when correcting the shake, the range in which the movable body 3 can be displaced is limited to the movable allowable range Li indicated by alternate long and short dashed lines Lix and Liy in FIG. Here, the alternate long and short dash line Lix indicates the allowable movement range of the movable body 3 in the X-axis direction, and the alternate long and short dash line Liy indicates the allowable movement range of the movable body 3 in the Y-axis direction.
 本形態において、可動許容範囲Liは、振れ補正の際の振れ補正用駆動機構500の永久磁石520の外面の位置を規定しており、可動体3をX軸方向に揺動させた際、および可動体3をY軸方向に揺動させた際のいずれにおいても、可動体3側の永久磁石520が、固定体200側のシート状コイル体550に当接しないように設定されている。従って、図5(b)に示すように、振れを補正する際に可動体3を揺動させても、可動体3側の永久磁石520が、固定体200側のシート状コイル体550に当接することがない。 In this embodiment, the movable allowable range Li defines the position of the outer surface of the permanent magnet 520 of the shake correction drive mechanism 500 at the time of shake correction, and when the movable body 3 is swung in the X-axis direction, and In any case where the movable body 3 is swung in the Y-axis direction, the permanent magnet 520 on the movable body 3 side is set so as not to contact the sheet-like coil body 550 on the fixed body 200 side. Therefore, as shown in FIG. 5B, even when the movable body 3 is swung when correcting the shake, the permanent magnet 520 on the movable body 3 side contacts the sheet-like coil body 550 on the fixed body 200 side. There is no contact.
 (本形態の主な効果)
 以上説明したように、光学ユニット100において、駆動制御部900では、可動体3と固定体200とが当接しない範囲内に設定された可動許容範囲Liを規定する駆動電流最大値が設定されているため、振れを補正した際、可動体3が固定体200に当接することを防止することができる。従って、可動体3が固定体200に当接した際の反動で可動体3が逆方向に振れることに起因する画像のブレ等の発生を防止することができる。
(Main effects of this form)
As described above, in the optical unit 100, the drive control unit 900 sets the drive current maximum value that defines the movable allowable range Li set within the range where the movable body 3 and the fixed body 200 do not contact each other. Therefore, when the shake is corrected, the movable body 3 can be prevented from coming into contact with the fixed body 200. Accordingly, it is possible to prevent the occurrence of image blurring or the like due to the movable body 3 swinging in the reverse direction due to the reaction when the movable body 3 comes into contact with the fixed body 200.
 また、駆動電流最大値は、振れ補正用駆動機構500によって可動体3を変位させた際に可動体3側の永久磁石520と固定体200側のシート状コイル体550とが当接するときの駆動電流に対して、0.8や0.9などの係数を乗じた値である。このため、比の設定のみで、可動許容範囲Liを設定することができ、可動体が固定体に当接することを防止することができる。 The maximum drive current is determined when the movable magnet 3 is displaced by the shake correction drive mechanism 500 and the permanent magnet 520 on the movable body 3 side and the sheet-like coil body 550 on the fixed body 200 abut on each other. It is a value obtained by multiplying the current by a coefficient such as 0.8 or 0.9. For this reason, the movable allowable range Li can be set only by setting the ratio, and the movable body can be prevented from coming into contact with the fixed body.
 [実施の形態2]
 図6は、本発明の実施の形態2に係る振れ補正機能付きの光学ユニット100において、可動体3の可動許容範囲Liに設定した第1可動許容範囲および第2可動許容範囲の説明図であり、図6(a)、(b)、(c)、(d)は、可動体3を揺動させる前の状態の説明図、可動体3を第1可動許容範囲内で揺動させる様子を示す説明図、可動体3を第2可動許容範囲内で揺動させる様子を示す説明図、および第1可動許容範囲と第2可動許容範囲との平面的な位置関係を示す説明図である。図7は、本発明の実施の形態2に係る振れ補正機能付きの光学ユニット100において、可動体3を揺動させる際の駆動電流波形の説明図であり、図7(a)、(b)、(c)は、可動体3を第1可動許容範囲内で揺動させる際の駆動電流波形の説明図、および可動体3を第2可動許容範囲内で揺動させる際の駆動電流波形の説明図である。なお、本形態の基本的な構成、および以下に説明する実施の形態の基本的な構成は、実施の形態1と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
[Embodiment 2]
FIG. 6 is an explanatory diagram of the first movable allowable range and the second movable allowable range set in the movable allowable range Li of the movable body 3 in the optical unit 100 with a shake correction function according to the second embodiment of the present invention. FIGS. 6A, 6B, 6C, and 6D are explanatory views of the state before the movable body 3 is swung, and how the movable body 3 is swung within the first movable allowable range. FIG. 4 is an explanatory diagram illustrating a state in which the movable body 3 is swung within a second movable allowable range, and an explanatory diagram illustrating a planar positional relationship between the first movable allowable range and the second movable allowable range. FIG. 7 is an explanatory diagram of a drive current waveform when the movable body 3 is swung in the optical unit 100 with a shake correction function according to the second embodiment of the present invention, and FIGS. (C) is an explanatory view of a drive current waveform when the movable body 3 is swung within the first movable allowable range, and a drive current waveform when the movable body 3 is swung within the second movable allowable range. It is explanatory drawing. The basic configuration of the present embodiment and the basic configuration of the embodiment described below are the same as those of the first embodiment, and therefore, common portions are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
 本形態の振れ補正機能付きの光学ユニット100においても、実施の形態1と同様、駆動制御部900では、可動体3と固定体200とが当接しない範囲内に設定された可動許容範囲Liを規定する駆動電流最大値が設定されている。 Also in the optical unit 100 with the shake correction function of the present embodiment, the drive control unit 900 sets the movable allowable range Li set within a range in which the movable body 3 and the fixed body 200 do not come into contact as in the first embodiment. The specified drive current maximum value is set.
 ここで、可動許容範囲Liは、図6(d)に示すように、可動許容範囲Liの中心側に位置する第1可動許容範囲Liaと、第1可動許容範囲Liaと可動許容範囲Liの外縁との間に位置する第2可動許容範囲Lib(緩衝領域)とを備えている。第1可動許容範囲Liaは、可動体3が、図6(a)に示す揺動前(振れ補正前)の状態から図6(b)に示すように可動体3を比較的小さく揺動させるまでの範囲であり、第2可動許容範囲Libは、図6(b)に示すように可動体3を比較的小さく揺動させた状態から、図6(c)に示すように可動体3を可動許容範囲Liで設定された限界まで揺動させる範囲である。かかる第1可動許容範囲Liaの外縁は、例えば、可動許容範囲Liを規定する駆動電流最大値に対する0.5倍や0.6倍等の比によって規定される。 Here, as shown in FIG. 6D, the movable allowable range Li includes a first movable allowable range Lia located on the center side of the movable allowable range Li, and an outer edge of the first movable allowable range Lia and the movable allowable range Li. And a second movable allowable range Lib (buffer region) positioned between the two. The first movable allowable range Lia causes the movable body 3 to swing relatively small as shown in FIG. 6B from the state before swing (before shake correction) shown in FIG. 6A. The second movable allowable range Lib is a state in which the movable body 3 is swung relatively small as shown in FIG. 6 (b), and the movable body 3 is moved as shown in FIG. 6 (c). This is a range that is swung to the limit set by the movable allowable range Li. The outer edge of the first movable allowable range Lia is defined by, for example, a ratio such as 0.5 times or 0.6 times the maximum drive current value that defines the movable allowable range Li.
 このように設定した可動許容範囲Liにおいて、本形態では、可動体3を第2可動許容範囲Libで揺動させる速度(変位速度)は、可動体3を第1可動許容範囲Liaで揺動させる速度(変位速度)より遅く設定されている。かかる変位速度の差は、駆動電流の波形により設定されている構成を採用することができる。例えば、可動体3を第1可動許容範囲Liaで揺動させる際は、図7(a)に示すように、駆動制御部900からコイル部560に供給される電流の立ち上がりを急峻にする一方、可動体3を第2可動許容範囲Libで揺動させる際は、図7(b)に示すように、駆動制御部900からコイル部560に供給される電流の立ち上がりを時定数回路等によって途中からなだらかにすることによって実現することができる。なお、可動体3を第2可動許容範囲Libで揺動させる際は、図7(c)に示すように、駆動制御部900からコイル部560に供給される電流の立ち上がりを途中から階段状にすることによっても実現することができる。 In the movable allowable range Li set in this way, in this embodiment, the speed (displacement speed) at which the movable body 3 is swung within the second movable allowable range Lib is swung within the first movable allowable range Lia. It is set slower than the speed (displacement speed). For the difference in displacement speed, a configuration set by the waveform of the drive current can be adopted. For example, when the movable body 3 is swung within the first allowable movement range Lia, as shown in FIG. 7A, while the rising of the current supplied from the drive control unit 900 to the coil unit 560 is steep, When the movable body 3 is swung within the second movable allowable range Lib, as shown in FIG. 7B, the rise of the current supplied from the drive control unit 900 to the coil unit 560 is started from the middle by a time constant circuit or the like. It can be realized by gentle. When the movable body 3 is swung within the second movable allowable range Lib, as shown in FIG. 7C, the rise of the current supplied from the drive control unit 900 to the coil unit 560 is stepped from the middle. This can also be realized.
 図7(b)、(c)のいずれの波形を用いた場合も、振れを補正するために可動体3を変位させた際、慣性力で可動体3がオーバーシュートして固定体200に当接することを防止することができる。また、本形態では、駆動電流値によって第1可動許容範囲Liaおよび第2可動許容範囲Libを設定したため、第1可動許容範囲Liaおよび第2可動許容範囲Libを設定するための特別な部材を設ける必要がない。また、駆動電流の波形の違いを利用して、第1可動許容範囲Liaにおける変位速度および第2可動許容範囲Libにおける変位速度を設定したため、第1可動許容範囲Liaおよび第2可動許容範囲Libを設定するための特別な部材を設ける必要がない。また、第1可動許容範囲Liaの外縁は、可動許容範囲Liを規定する駆動電流最大値に対する0.5倍や0.6倍といった比によって規定されているので、第1可動許容範囲Liaおよび第2可動許容範囲Libを設定するための特別な部材を設ける必要がない。 7B and 7C, when the movable body 3 is displaced to correct the shake, the movable body 3 overshoots due to inertial force and hits the fixed body 200. It is possible to prevent contact. In the present embodiment, since the first movable allowable range Lia and the second movable allowable range Lib are set according to the drive current value, a special member for setting the first movable allowable range Lia and the second movable allowable range Lib is provided. There is no need. Further, since the displacement speed in the first movable allowable range Lia and the displacement speed in the second movable allowable range Lib are set using the difference in the waveform of the drive current, the first movable allowable range Lia and the second movable allowable range Lib are set as follows. There is no need to provide a special member for setting. Further, since the outer edge of the first movable allowable range Lia is defined by a ratio such as 0.5 times or 0.6 times the maximum drive current value that defines the movable allowable range Li, the first movable allowable range Lia and the first movable allowable range Lia 2 There is no need to provide a special member for setting the movable allowable range Lib.
 [実施の形態2の変形例]
 図8は、本発明の実施の形態2の変形例に係る振れ補正機能付きの光学ユニット100の説明図である。
[Modification of Embodiment 2]
FIG. 8 is an explanatory diagram of an optical unit 100 with a shake correction function according to a modification of the second embodiment of the present invention.
 実施の形態2では、可動体3を第2可動許容範囲Libで揺動させる速度(変位速度)を、可動体3を第1可動許容範囲Liaで揺動させる速度(変位速度)より遅くするにあたって、図7を参照して説明した波形の駆動電流を利用したが、本形態においては、図8に示すように、可動体3および固定体200のうちの少なくとも一方に設けられた緩衝部材70によって第2可動許容範囲Libを設定してもよい。例えば、固定体200の側にゴム等の緩衝部材70を設け、可動体3を第2可動許容範囲Libで揺動させる際、可動体3が緩衝部材70を圧縮しながら揺動するように構成されている。このため、可動体3を第2可動許容範囲Libで揺動させる速度(変位速度)は、可動体3を第1可動許容範囲Liaで揺動させる速度(変位速度)より遅い。 In the second embodiment, the speed (displacement speed) at which the movable body 3 is swung within the second movable allowable range Lib is made slower than the speed (displacement speed) at which the movable body 3 is swung within the first movable allowable range Lia. Although the drive current having the waveform described with reference to FIG. 7 is used, in this embodiment, as shown in FIG. 8, the buffer member 70 is provided on at least one of the movable body 3 and the fixed body 200. The second movable allowable range Lib may be set. For example, a buffer member 70 such as rubber is provided on the fixed body 200 side, and when the movable body 3 is swung within the second movable allowable range Lib, the movable body 3 is swung while compressing the buffer member 70. Has been. For this reason, the speed (displacement speed) at which the movable body 3 is swung within the second allowable movement range Lib is slower than the speed (displacement speed) at which the movable body 3 is swung within the first allowable movement range Lia.
 それ故、振れを補正するために可動体3を変位させた際、慣性力で可動体3がオーバーシュートして固定体200に当接することを防止することができる。また、本形態では、ゴム等の緩衝部材70を利用したため、高価な部材を設ける必要がない。また、ゴム等の緩衝部材70であれば、緩衝部材70の厚さや材質等によって第2可動許容範囲Libを目的に応じた範囲に設定することができる。また、固定体200の側に緩衝部材70を設けたため、可動体3については軽量化することができるので、小さな駆動電流で揺動させることができるという利点がある。 Therefore, when the movable body 3 is displaced in order to correct the shake, it is possible to prevent the movable body 3 from overshooting due to inertial force and coming into contact with the fixed body 200. In this embodiment, since the buffer member 70 such as rubber is used, it is not necessary to provide an expensive member. Further, in the case of the buffer member 70 such as rubber, the second movable allowable range Lib can be set to a range according to the purpose depending on the thickness, material, and the like of the buffer member 70. Further, since the buffer member 70 is provided on the fixed body 200 side, the movable body 3 can be reduced in weight, so that there is an advantage that it can be swung with a small driving current.
 [実施の形態3]
 図9は、本発明の実施の形態3に係る振れ補正機能付きの光学ユニット100の説明図であり、図9(a)、(b)は、光学ユニット100に設定した可動許容範囲Liの説明図、および光学ユニット100のY方向の一方側+Yを下向きにしたときの可動許容範囲Liの説明図である。
[Embodiment 3]
FIG. 9 is an explanatory diagram of the optical unit 100 with a shake correction function according to the third embodiment of the present invention, and FIGS. 9A and 9B illustrate the movable allowable range Li set in the optical unit 100. FIG. It is explanatory drawing of the movable tolerance | permissible_range Li when the one side + Y of the Y direction of the optical unit 100 is made downward.
 実施の形態1等において、可動許容範囲Liは、X軸方向の一方側+Xと他方側-Xとにおいて同一の幅をもって設定され、Y軸方向の一方側+Yおよび他方側-Yで同一の幅をもって設定されていたが、本形態では、図9(a)に示すように、可動許容範囲Liは、X軸方向の一方側+Xと他方側-Xとにおいて幅が相違している。また、可動許容範囲Liは、Y軸方向の一方側+Yと他方側-Yとにおいて幅が相違している。 In the first embodiment and the like, the movable allowable range Li is set with the same width on the one side + X and the other side −X in the X-axis direction, and the same width on the one side + Y and the other side −Y in the Y-axis direction. However, in this embodiment, as shown in FIG. 9A, the movable allowable range Li has different widths on the one side + X and the other side −X in the X-axis direction. Further, the movable allowable range Li has different widths on the one side + Y and the other side -Y in the Y-axis direction.
 より具体的には、本形態では、光学ユニット100を備えた光学機器1000で撮像する際、Y軸方向の一方側+Yを下向きにし、他方側-Yを上向きとされることから、可動許容範囲Liは、Y軸方向の一方側+Yで狭く、他方側-Yで広くなっている。このため、光学機器1000で撮像する際、光学機器1000のY軸方向の一方側+Yを下向きにし、他方側-Yを上向きにした際、図9(b)に示すように、可動体3が重力でY軸方向の一方側+Yに変位するので、可動許容範囲Liは、可動体3が重力の影響を受けない状態の光軸を中心にして、Y軸方向の一方側+Yと他方側-Yで同等となる。従って、手振れによって可動体3がY軸方向の一方側+Yおよび他方側-Yのいずれの側に振れた場合でも、十分に振れ補正を行うことができる。 More specifically, in this embodiment, when an image is picked up by the optical apparatus 1000 including the optical unit 100, one side + Y in the Y-axis direction is directed downward and the other side −Y is directed upward. Li is narrow on one side + Y in the Y-axis direction and wide on the other side -Y. Therefore, when imaging with the optical device 1000, when the one side + Y in the Y-axis direction of the optical device 1000 is directed downward and the other side −Y is directed upward, as shown in FIG. Since it is displaced to one side + Y in the Y-axis direction by gravity, the movable allowable range Li is one side + Y in the Y-axis direction and the other side − with respect to the optical axis in a state where the movable body 3 is not affected by gravity. Y is equivalent. Therefore, even when the movable body 3 is shaken to one side + Y and the other side −Y in the Y-axis direction due to camera shake, the shake correction can be sufficiently performed.
 また、光学ユニット100を備えた光学機器1000で撮像する際、X軸方向の一方側+Xを下向きにし、他方側-Xを上向きにすることもあることから、図9(a)に示すように、可動許容範囲Liは、X軸方向の一方側+Xで狭く、他方側-Xで広くなっている。このため、光学機器1000で撮像する際、光学機器1000のX軸方向の一方側+Xを下向きにし、他方側-Xを上向きにした場合には、可動体3が重力でX軸方向の一方側+Xに変位するので、可動許容範囲Liは、可動体3が重力の影響を受けない状態の光軸を中心にして、X軸方向の一方側+Xと他方側-Xで同等となる。従って、手振れによって可動体3がX軸方向の一方側+Xおよび他方側-Xのいずれの側に振れた場合でも、十分に振れ補正を行うことができる。 Further, when an image is picked up by the optical apparatus 1000 including the optical unit 100, one side + X in the X-axis direction may face downward and the other side −X may face upward, as shown in FIG. 9A. The movable allowable range Li is narrow on one side + X in the X-axis direction and wide on the other side -X. Therefore, when taking an image with the optical device 1000, when the one side + X in the X-axis direction of the optical device 1000 is directed downward and the other side -X is directed upward, the movable body 3 is one side in the X-axis direction due to gravity. Since it is displaced to + X, the movable allowable range Li is equivalent on the one side + X and the other side −X in the X-axis direction with the optical axis in a state where the movable body 3 is not affected by gravity. Therefore, even when the movable body 3 is shaken to one side + X and the other side −X in the X-axis direction due to camera shake, sufficient shake correction can be performed.
 [他の実施の形態]
 図10は、本発明の他の実施の形態に係る振れ補正機能付きの光学ユニット100の説明図であり、図10(a)、(b)、(c)は、振れが発生する前の状態の説明図、振れ補正を行った様子を示す説明図、および緩衝部材70を設けた様子を示す説明図である。
[Other embodiments]
FIG. 10 is an explanatory diagram of an optical unit 100 with a shake correction function according to another embodiment of the present invention. FIGS. 10 (a), 10 (b), and 10 (c) are states before shake occurs. FIG. 6 is an explanatory diagram showing a state in which shake correction is performed, and an explanatory diagram showing a state in which a buffer member 70 is provided.
 上記実施の形態1~3では、可動体3を支点180を中心に揺動させて振れ補正を行ったが、図10(a)に示すように、レンズ1aを保持した可動体3をバネ部材600によって固定体200に対して変位可能に支持した状態としておき、振れの検出結果に基づいて、図10(b)に示すように、振れ補正用駆動機構500により可動体3を光軸に直交する方向に移動させて振れの補正を行う光学ユニット100に対して本発明を適用してもよい。また、図10(c)に示すように、可動体3を光軸に直交する方向に移動させて振れの補正を行う光学ユニット100において、実施の形態2の変形例で説明した緩衝部材70を設けてもよい。 In the first to third embodiments, the movable body 3 is swung around the fulcrum 180 to perform shake correction. However, as shown in FIG. 10A, the movable body 3 holding the lens 1a is replaced by a spring member. The movable body 3 is placed in a state in which the movable body 3 is supported by the movable body 600 so as to be displaceable, and the movable body 3 is orthogonal to the optical axis by the shake correction drive mechanism 500, as shown in FIG. The present invention may be applied to the optical unit 100 that corrects shake by moving in the moving direction. Further, as shown in FIG. 10C, in the optical unit 100 that corrects the shake by moving the movable body 3 in the direction orthogonal to the optical axis, the buffer member 70 described in the modification of the second embodiment is used. It may be provided.
 [他の実施の形態]
 上記実施の形態では、振れ検出手段として、ジャイロスコープからなる振れ検出センサ170を用いたが、撮像素子1bによって得られた画像のシフトによって振れを検出するシステムを振れ検出手段として用いた光学ユニット100に本発明を適用してもよい。
[Other embodiments]
In the above-described embodiment, the shake detection sensor 170 made of a gyroscope is used as the shake detection unit. However, the optical unit 100 uses the system that detects the shake by the shift of the image obtained by the image sensor 1b as the shake detection unit. The present invention may be applied to.
 また、上記実施の形態では、駆動電流最大値を設定するにあたって、メモリ985に駆動電流最大値を記憶させておき、デジタル処理によって、駆動電流値が駆動電流最大値を超えないようにしたが、駆動回路970に電流制限回路を設けることにより、駆動電流値が駆動電流最大値を超えないようにしてもよい。 In the above embodiment, when setting the drive current maximum value, the drive current maximum value is stored in the memory 985 so that the drive current value does not exceed the drive current maximum value by digital processing. By providing a current limiting circuit in the drive circuit 970, the drive current value may not exceed the drive current maximum value.
 上記実施の形態では、光学素子としてレンズ1aを備えた可動体3を変位させて振れ補正を行ったが、光学素子として撮像素子1bを備えた可動体3を光軸と直交する方向に変位させて振れ補正を行う光学ユニット100に本発明を適用してもよい。 In the above embodiment, the movable body 3 having the lens 1a as the optical element is displaced and shake correction is performed. However, the movable body 3 having the imaging element 1b as the optical element is displaced in a direction perpendicular to the optical axis. The present invention may be applied to the optical unit 100 that performs shake correction.
 また、本発明を適用した振れ補正機能付きの光学ユニット100は、携帯電話機やデジタルカメラ等の他、冷蔵庫等、一定間隔で振動を有する装置内に固定し、遠隔操作可能にしておくことで、外出先、たとえば買い物の際に、冷蔵庫内部の情報を得ることができるサービスに用いることもできる。かかるサービスでは、姿勢安定化装置付きのカメラシステムであるため、冷蔵庫の振動があっても安定な画像を送信可能である。また、本装置を児童、学生のカバン、ランドセルあるいは帽子等の、通学時に装着するデバイスに固定してもよい。この場合、一定間隔で、周囲の様子を撮影し、あらかじめ定めたサーバへ画像を転送すると、この画像を保護者等が、遠隔地において観察することで、子供の安全を確保することができる。かかる用途では、カメラを意識することなく移動時の振動があっても鮮明な画像を撮影することができる。また、カメラモジュールのほかにGPSを搭載すれば、対象者の位置を同時に取得することも可能となり、万が一の事故の発生時には、場所と状況の確認が瞬時に行える。さらに、本発明を適用した振れ補正機能付き光学ユニット100を自動車において前方が撮影可能な位置に搭載すれば、ドライブレコーダーとして用いることができる。また、本発明を適用した振れ補正機能付き光学ユニット100を自動車において前方が撮影可能な位置に搭載して、一定間隔で自動的に周辺の画像を撮影し、決められたサーバに自動転送してもよい。また、カーナビゲーションの道路交通情報通信システム等の渋滞情報と連動させて、この画像を配信することで、渋滞の状況をより詳細に提供することができる。かかるサービスによれば、自動車搭載のドライブレコーダーと同様に事故発生時等の状況を、意図せずに通りがかった第三者が記録し状況の検分に役立てることもできる。また、自動車の振動に影響されることなく鮮明な画像を取得できる。かかる用途の場合、電源をオンにすると、制御部に指令信号が出力され、かかる指令信号に基づいて、振れ制御が開始される。 In addition, the optical unit 100 with a shake correction function to which the present invention is applied is fixed in a device having vibration at regular intervals, such as a refrigerator, in addition to a mobile phone, a digital camera, etc. It can also be used for a service that can obtain information inside the refrigerator when going out, for example, when shopping. In such a service, since it is a camera system with a posture stabilization device, a stable image can be transmitted even if the refrigerator vibrates. Further, the present apparatus may be fixed to a device worn at the time of attending school, such as a student's bag, a student's bag, a school bag, or a hat. In this case, when the surroundings are photographed at regular intervals and the image is transferred to a predetermined server, the guardian or the like can observe the image in a remote place to ensure the safety of the child. In such an application, a clear image can be taken even if there is vibration during movement without being aware of the camera. If a GPS is installed in addition to the camera module, the location of the target person can be acquired at the same time. In the event of an accident, the location and situation can be confirmed instantly. Furthermore, if the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front can be photographed in an automobile, it can be used as a drive recorder. In addition, the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front of the vehicle can be photographed, and peripheral images are automatically photographed at regular intervals and automatically transferred to a predetermined server. Also good. Further, by distributing this image in conjunction with traffic jam information such as a car navigation road traffic information communication system, the traffic jam status can be provided in more detail. According to such a service, the situation at the time of an accident or the like can be recorded unintentionally by a third party who has passed unintentionally as well as a drive recorder mounted on a car, and can be used for inspection of the situation. In addition, a clear image can be acquired without being affected by the vibration of the automobile. In such an application, when the power is turned on, a command signal is output to the control unit, and shake control is started based on the command signal.
 また、本発明を適用した振れ補正機能付きの光学ユニット100は、レーザポインタ、携帯用や車載用の投射表示装置や直視型表示装置等、光を出射する光学機器の振れ補正に適用してもよい。また、天体望遠鏡システムあるいは双眼鏡システム等、高倍率での観察において三脚等の補助固定装置を用いることなく観察するのに用いてもよい。また、狙撃用のライフル、あるいは戦車等の砲筒とすることで、トリガ時の振動に対して姿勢の安定化が図れるので、命中精度を高めることができる。 Further, the optical unit 100 with a shake correction function to which the present invention is applied may be applied to shake correction of an optical device that emits light, such as a laser pointer, a portable or vehicle-mounted projection display device, or a direct-view display device. Good. Further, it may be used for observation without using an auxiliary fixing device such as a tripod for observation at a high magnification such as an astronomical telescope system or a binoculars system. In addition, by using a sniper rifle or a gun barrel such as a tank, the posture can be stabilized against vibration at the time of triggering, so that the accuracy of hitting can be improved.

Claims (7)

  1.  光学素子を保持する可動体と、
     前記可動体を変位可能に支持する固定体と、
     振れを検出する振れ検出手段と、
     前記固定体に対して前記可動体を変位させる振れ補正用駆動機構と、
     前記振れ検出手段の検出結果に基づいて前記振れ補正用駆動機構を駆動する駆動制御部と、
     を有し、
     前記駆動制御部では、前記可動体と前記固定体とが当接しない範囲内に可動許容範囲を規定する駆動電流最大値が設定されていることを特徴とする振れ補正機能付き光学ユニット。
    A movable body holding an optical element;
    A fixed body that displaceably supports the movable body;
    Shake detection means for detecting shake;
    A shake correction drive mechanism for displacing the movable body with respect to the fixed body;
    A drive control unit that drives the shake correction drive mechanism based on a detection result of the shake detection unit;
    Have
    In the drive control unit, an optical unit with a shake correction function, wherein a drive current maximum value that defines a movable allowable range is set within a range in which the movable body and the fixed body do not contact each other.
  2.  前記可動許容範囲には、当該可動許容範囲の中心側に位置する第1可動許容範囲と、前記第1可動許容範囲と前記可動許容範囲の外縁との間に位置し、前記可動体の変位速度が前記第1可動許容範囲より遅く設定された第2可動許容範囲と、が設けられていることを特徴とする請求項1に記載の振れ補正機能付き光学ユニット。 The movable allowable range is located between the first movable allowable range located on the center side of the movable allowable range, and between the first movable allowable range and an outer edge of the movable allowable range, and the displacement speed of the movable body The optical unit with a shake correction function according to claim 1, further comprising: a second movable allowable range that is set later than the first movable allowable range.
  3.  前記第1可動許容範囲における前記可動体の変位速度と前記第2可動許容範囲における前記可動体の変位速度との差は、駆動電流波形の差により設定されていることを特徴とする請求項2に記載の振れ補正機能付き光学ユニット。 3. The difference between the displacement speed of the movable body in the first movable allowable range and the displacement speed of the movable body in the second movable allowable range is set by a difference in drive current waveform. An optical unit with a shake correction function described in 1.
  4.  前記第1可動許容範囲の外縁は、前記駆動電流最大値に対する比により規定されていることを特徴とする請求項3に記載の振れ補正機能付き光学ユニット。 The optical unit with a shake correction function according to claim 3, wherein an outer edge of the first movable allowable range is defined by a ratio to the maximum drive current value.
  5.  前記第2可動許容範囲は、前記可動体および前記固定体のうちの少なくとも一方に設けられた緩衝部材によって設定されていることを特徴とする請求項2に記載の振れ補正機能付き光学ユニット。 The optical unit with a shake correction function according to claim 2, wherein the second movable allowable range is set by a buffer member provided in at least one of the movable body and the fixed body.
  6.  前記駆動電流最大値は、前記振れ補正用駆動機構によって前記可動体を一方方向に変位させる際の値と、前記振れ補正用駆動機構によって前記可動体を前記一方方向とは反対側に変位させる際の値とが相違していることを特徴とする請求項1乃至5の何れか一項に記載の振れ補正機能付き光学ユニット。 The maximum value of the drive current is a value when the movable body is displaced in one direction by the shake correction drive mechanism, and a value when the movable body is displaced in the opposite direction to the one direction by the shake correction drive mechanism. 6. The optical unit with a shake correction function according to claim 1, wherein the optical unit has a value different from the first value.
  7.  前記駆動電流最大値は、前記振れ補正用駆動機構によって前記可動体を変位させた際に当該可動体と前記固定体とが当接するときの駆動電流に対する比により設定されていることを特徴とする請求項1乃至6の何れか一項に記載の振れ補正機能付き光学ユニット。 The maximum drive current value is set by a ratio to a drive current when the movable body and the fixed body abut when the movable body is displaced by the shake correction drive mechanism. The optical unit with a shake correction function according to claim 1.
PCT/JP2012/082283 2011-12-26 2012-12-13 Optical unit provided with shake correction function WO2013099617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-283435 2011-12-26
JP2011283435A JP2013134310A (en) 2011-12-26 2011-12-26 Optical unit with deflection correction function

Publications (1)

Publication Number Publication Date
WO2013099617A1 true WO2013099617A1 (en) 2013-07-04

Family

ID=48697109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082283 WO2013099617A1 (en) 2011-12-26 2012-12-13 Optical unit provided with shake correction function

Country Status (2)

Country Link
JP (1) JP2013134310A (en)
WO (1) WO2013099617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669564A (en) * 2020-04-30 2021-11-19 新思考电机有限公司 Two-axis tilting device, camera device, and electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291346B2 (en) * 2014-05-19 2018-03-14 日本電産サンキョー株式会社 PHOTOGRAPHIC OPTICAL DEVICE AND METHOD FOR CONTROLLING PHOTOGRAPHIC OPTICAL DEVICE
JP7023691B2 (en) * 2017-12-07 2022-02-22 キヤノン株式会社 Image pickup device and its control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347879A (en) * 1993-06-04 1994-12-22 Nikon Corp Camera with movable lens
JPH10213834A (en) * 1997-01-28 1998-08-11 Canon Inc Optical equipment provided with image shaking correcting function
JP2000330154A (en) * 1999-05-19 2000-11-30 Canon Inc Image blurring correction device
JP2010078941A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Image blur correction device and image blur correction method
JP2010091947A (en) * 2008-10-10 2010-04-22 Nikon Corp Shake correcting device and optical equipment
JP2011039295A (en) * 2009-08-11 2011-02-24 Nikon Corp Shake correcting device and optical equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163595A (en) * 2005-12-09 2007-06-28 Canon Inc Optical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347879A (en) * 1993-06-04 1994-12-22 Nikon Corp Camera with movable lens
JPH10213834A (en) * 1997-01-28 1998-08-11 Canon Inc Optical equipment provided with image shaking correcting function
JP2000330154A (en) * 1999-05-19 2000-11-30 Canon Inc Image blurring correction device
JP2010078941A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Image blur correction device and image blur correction method
JP2010091947A (en) * 2008-10-10 2010-04-22 Nikon Corp Shake correcting device and optical equipment
JP2011039295A (en) * 2009-08-11 2011-02-24 Nikon Corp Shake correcting device and optical equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669564A (en) * 2020-04-30 2021-11-19 新思考电机有限公司 Two-axis tilting device, camera device, and electronic apparatus

Also Published As

Publication number Publication date
JP2013134310A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5762087B2 (en) Optical unit with shake correction function
JP5893363B2 (en) Optical unit with shake correction function
JP5848052B2 (en) Optical unit with shake correction function
JP5593118B2 (en) Optical unit with shake correction function
US11089221B2 (en) Lens driving device, camera module and camera-mounted device
JP5755414B2 (en) Optical unit with shake correction function
JP5771373B2 (en) Optical unit with shake correction function
KR102170626B1 (en) Optical unit with shake correction function
JP5828686B2 (en) Optical unit with shake correction function
CN102576180B (en) Optical unit with shake correction function
WO2011155315A1 (en) Optical unit with blur correction function
JP6460745B2 (en) Optical unit with shake correction function
JP6483980B2 (en) Optical unit with shake correction function
JP5698939B2 (en) Optical unit with shake correction function
WO2014054347A1 (en) Optical unit and method for producing same
JP5755476B2 (en) Optical unit with shake correction function
JP5519390B2 (en) Optical unit with shake correction function
WO2013099617A1 (en) Optical unit provided with shake correction function
JP6182359B2 (en) Optical unit
JP6173695B2 (en) Optical unit
JP6093137B2 (en) Optical unit and method of manufacturing optical unit
JP2016061956A (en) Optical unit with tremor correction function, and manufacturing method of optical unit with tremor correction function
JP5752978B2 (en) Optical unit with shake correction function
JP2022181059A (en) Optical unit and smartphone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861229

Country of ref document: EP

Kind code of ref document: A1