JP6093137B2 - Optical unit and method of manufacturing optical unit - Google Patents

Optical unit and method of manufacturing optical unit Download PDF

Info

Publication number
JP6093137B2
JP6093137B2 JP2012223449A JP2012223449A JP6093137B2 JP 6093137 B2 JP6093137 B2 JP 6093137B2 JP 2012223449 A JP2012223449 A JP 2012223449A JP 2012223449 A JP2012223449 A JP 2012223449A JP 6093137 B2 JP6093137 B2 JP 6093137B2
Authority
JP
Japan
Prior art keywords
plate
axis direction
optical axis
movable body
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012223449A
Other languages
Japanese (ja)
Other versions
JP2014074861A (en
Inventor
吉博 濱田
吉博 濱田
和出 達貴
達貴 和出
柳沢 一彦
一彦 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2012223449A priority Critical patent/JP6093137B2/en
Publication of JP2014074861A publication Critical patent/JP2014074861A/en
Application granted granted Critical
Publication of JP6093137B2 publication Critical patent/JP6093137B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、板状部材同士が溶接により固定された光学ユニット、光学ユニットの製造方法、板状部材同士が溶接により固定された駆動装置、および駆動装置の製造方法に関するものである。   The present invention relates to an optical unit in which plate-like members are fixed by welding, a method for manufacturing the optical unit, a drive device in which plate-like members are fixed by welding, and a method for manufacturing the drive device.

近年、携帯電話機は、撮影用の光学ユニットが搭載された光学機器として構成されている。かかる光学ユニットにおいては、ユーザーの手振れによる撮影画像の乱れを抑制するために、レンズ等の光学素子を備えた可動体を固定体に支持された状態とし、振れを検出した際、磁気駆動機構によって、振れを補正する方向に可動体を揺動支点周りに揺動させる技術が提案されている(特許文献1参照)。また、固定体に対して板状ストッパ部材を固定しておき、かかる板状ストッパ部材によって、可動体の光軸方向後側への可動範囲を規制する構造も提案されている。   In recent years, mobile phones have been configured as optical devices equipped with an optical unit for photographing. In such an optical unit, in order to suppress disturbance of a photographed image due to a user's camera shake, a movable body provided with an optical element such as a lens is supported by a fixed body, and when a shake is detected, a magnetic drive mechanism A technique for swinging the movable body around the swing fulcrum in the direction of correcting the shake has been proposed (see Patent Document 1). In addition, a structure has been proposed in which a plate-like stopper member is fixed to a fixed body, and the movable range of the movable body to the rear side in the optical axis direction is regulated by the plate-like stopper member.

特開2010−96803号公報JP 2010-96803 A

かかる構成の光学ユニットを構成するには、板状ストッパ部材を固定体の側板部に連結する必要があり、かかる連結を行うにあたっては、図9に示すように、互いの板厚方向が直交するよう、側板部230の光軸方向後側端面231に板状ストッパ部材9を重ね、この状態で、板状ストッパ部材9の被溶接部999にレーザビームを照射して、側板部230と板状ストッパ部材9とを接合した構成が考えられる。   In order to configure the optical unit having such a configuration, it is necessary to connect the plate-like stopper member to the side plate portion of the fixed body, and in performing such connection, as shown in FIG. In this state, the plate-like stopper member 9 is superimposed on the rear end surface 231 in the optical axis direction of the side plate portion 230, and in this state, the welded portion 999 of the plate-like stopper member 9 is irradiated with a laser beam to The structure which joined the stopper member 9 can be considered.

しかしながら、図9に示す構成では、板状ストッパ部材9の側からレーザビームを照射することになるが、被溶接部999が厚いため、側板部230および板状ストッパ部材9の双方を溶融させるには、レーザ出力を大にする必要がある。このため、溶融材料の飛散が大となる結果、周辺の汚染、溶接に寄与する溶融部の縮小、ビードの増大等の問題が発生してしまう。かといって、板状ストッパ部材9の板厚を小とすると、ストッパとしての強度が低下してしまう。なお、図9に示す構成は、本願発明に対する参考例であり、従来技術ではない。   However, in the configuration shown in FIG. 9, the laser beam is irradiated from the plate-like stopper member 9 side. However, since the welded portion 999 is thick, both the side plate portion 230 and the plate-like stopper member 9 are melted. Requires a large laser output. For this reason, as a result of the scattering of the molten material, problems such as contamination of the surroundings, reduction of the melted part contributing to welding, and an increase in beads occur. However, if the plate thickness of the plate-like stopper member 9 is small, the strength as a stopper is lowered. The configuration shown in FIG. 9 is a reference example for the present invention and is not a conventional technique.

以上の問題点に鑑みて、本発明の課題は、板厚方向が互いに直交するように板状部材同士を重ねた状態で溶接を行う場合でも、溶接個所を適正に溶融させることのできる光学ユニット、光学ユニットの製造方法、駆動装置、および駆動装置の製造方法を提供することにある。   In view of the above-described problems, an object of the present invention is to provide an optical unit capable of appropriately melting a welding point even when welding is performed in a state where plate members are stacked so that the plate thickness directions are orthogonal to each other. An optical unit manufacturing method, a driving device, and a driving device manufacturing method are provided.

上記課題を解決するために、本発明は、光学素子を保持する可動体と、該可動体を変位可能に支持する固定体と、前記可動体を前記固定体に対して変位させる駆動機構と、を有する光学ユニットにおいて、前記固定体は、前記可動体の側面に対向する金属製の側板部と、該側板部の光軸方向後側端面に対して互いの板厚方向が直交するように重ねられた状態で当該光軸方向後側端面に溶接により固定され、前記可動体の光軸方向後側への可動範囲を規制する金属製の板状ストッパ部材と、を備え、前記板状ストッパ部材には、光軸方向からみたとき、前記側板部に溶接されずに前記光軸方向後側端面に重なる第1部分と、該第1部分より小の板厚をもって前記光軸方向後側端面に重なって当該光軸方向後側端面と溶接された第2部分と、が設けられていることを特徴とする。   In order to solve the above problems, the present invention includes a movable body that holds an optical element, a fixed body that supports the movable body so as to be displaceable, a drive mechanism that displaces the movable body with respect to the fixed body, In the optical unit, the fixed body is stacked such that the metal side plate portion facing the side surface of the movable body and the thickness direction of the side plate portion are orthogonal to the rear end surface in the optical axis direction of the side plate portion. A metal plate-like stopper member that is fixed to the rear end surface in the optical axis direction by welding and restricts a movable range of the movable body to the rear side in the optical axis direction. When viewed from the optical axis direction, the first portion that overlaps the rear end surface in the optical axis direction without being welded to the side plate portion, and the rear end surface in the optical axis direction with a smaller thickness than the first portion. And the second end portion that is welded to the rear end surface in the optical axis direction overlaps with each other. It is characterized in that is.

また、本発明は、光学素子を保持する可動体と、該可動体を変位可能に支持する固定体と、前記可動体を前記固定体に対して変位させる駆動機構と、を有する光学ユニットの製造方法において、前記固定体において前記可動体の側面に対向する金属製の側板部の光軸方向後側端面に対して、前記可動体の光軸方向後側への可動範囲を規制する金属製の板状ストッパ部材を互いの板厚方向が直交するように重ねた状態で当該板状ストッパ部材を前記光軸方向後側端面に溶接により固定するにあたっては、前記板状ストッパ部材には、光軸方向からみたとき、前記光軸方向後側端面に重なる第1部分と、該第1部分より小の板厚をもって前記光軸方向後側端面に重なる第2部分とを設けておき、当該第2部分にレーザビームを照射して前記光軸方向後側端面と溶接することを特徴とする。   The present invention also provides an optical unit having a movable body that holds an optical element, a fixed body that supports the movable body in a displaceable manner, and a drive mechanism that displaces the movable body relative to the fixed body. In the method, the fixed body is made of a metal that restricts a movable range of the movable body to the rear side in the optical axis direction with respect to the rear end surface in the optical axis direction of the metal side plate portion facing the side surface of the movable body. When fixing the plate-like stopper member to the rear end surface in the optical axis direction by welding in a state where the plate-like stopper members are stacked so that the plate thickness directions are orthogonal to each other, the plate-like stopper member includes an optical axis. When viewed from the direction, a first portion that overlaps the rear end surface in the optical axis direction and a second portion that overlaps the rear end surface in the optical axis direction with a smaller thickness than the first portion are provided. Irradiate the laser beam to the part Characterized by welding the rear end face.

本発明では、固定体の側板部の光軸方向後側端面に対して板状ストッパ部材を互いの板厚方向が直交するように重ねた状態で板状ストッパ部材を溶接により固定する際には、板状ストッパ部材の側からレーザビームを照射することになるが、板状ストッパ部材には、第1部分より小の板厚をもって光軸方向後側端面に重なる第2部分が設けられている。このため、側板部および板状ストッパ部材の双方を溶融させる場合でも、レーザの焦点深度でカバーする範囲が狭くてよいので、レーザ出力を低減することができる。従って、溶接個所を適正に溶融させることができる。それ故、溶融材料の飛散を抑制することができるので、周辺の汚染や、溶接に寄与する溶融部の縮小を抑制することができるとともに、ビードの増大等を抑制することができる。   In the present invention, when the plate-like stopper member is fixed by welding in a state where the plate-like stopper members are overlapped with each other so that the plate thickness directions thereof are orthogonal to the rear end surface in the optical axis direction of the side plate portion of the fixed body. The laser beam is irradiated from the side of the plate-like stopper member, and the plate-like stopper member is provided with a second portion that overlaps the rear end surface in the optical axis direction with a smaller plate thickness than the first portion. . For this reason, even when both the side plate portion and the plate-like stopper member are melted, the range covered by the focal depth of the laser may be narrow, so that the laser output can be reduced. Therefore, it is possible to appropriately melt the welded portion. Therefore, scattering of the molten material can be suppressed, so that contamination of the surroundings and reduction of the molten part contributing to welding can be suppressed, and an increase in beads can be suppressed.

本発明において、前記第1部分の板厚は、例えば、前記側板部の板厚より大である場合に適用すると効果的である。本発明によれば、板状ストッパ部材において溶接個所以外の板厚を大とすることができるので、板状ストッパ部材に大きな強度を確保することができる。   In the present invention, it is effective to apply when the plate thickness of the first portion is larger than the plate thickness of the side plate portion, for example. According to the present invention, it is possible to increase the thickness of the plate-like stopper member other than the welded portion, and thus it is possible to ensure a large strength for the plate-like stopper member.

本発明において、前記駆動機構は、前記可動体の側面に保持された磁石と、前記側板部の内面に保持されたコイルと、該コイルから前記側板部の光軸方向後側から当該側板部の外側に引き出されたフレキシブル配線基板と、を備えている構成を採用することができる。かかる構成の場合でも、本発明では、溶融材料の飛散を抑制することができるので、飛散物がコイルやフレキシブル配線基板に付着しにくいので、飛散物に起因する不具合の発生を抑制することができる。   In the present invention, the drive mechanism includes a magnet held on the side surface of the movable body, a coil held on the inner surface of the side plate portion, and the side plate portion from the coil in the optical axis direction rear side of the side plate portion. The structure provided with the flexible wiring board pulled out outside can be adopted. Even in such a configuration, in the present invention, since the scattering of the molten material can be suppressed, it is difficult for the scattered matter to adhere to the coil and the flexible wiring board, so that it is possible to suppress the occurrence of problems caused by the scattered matter. .

本発明において、前記固定体において前記可動体に光軸方向後側で対向する底板部と、前記可動体との間には、当該可動体を揺動可能に支持する揺動支点が設けられ、前記駆動機構は、前記揺動支点を中心に前記可動体を揺動させる構成を採用することができる。   In the present invention, a swing fulcrum that supports the movable body so as to be swingable is provided between the movable body and a bottom plate portion facing the movable body on the rear side in the optical axis direction in the fixed body. The drive mechanism may employ a configuration that swings the movable body around the swing fulcrum.

本発明において、前記固定体は、該固定体の側に連結された固定体側連結部、前記可動体の側に連結された可動体側連結部、および前記固定体側連結部と前記可動体側連結部とを結ぶアーム部を備えた板状のバネ部材を介して前記可動体を支持している構成を採用することができる。   In the present invention, the fixed body includes a fixed body side connecting portion connected to the fixed body side, a movable body side connecting portion connected to the movable body side, and the fixed body side connecting portion and the movable body side connecting portion. The structure which supports the said movable body through the plate-shaped spring member provided with the arm part which ties can be employ | adopted.

本発明では、固定体の側板部の光軸方向後側端面に対して板状ストッパ部材を互いの板厚方向が直交するように重ねた状態で板状ストッパ部材を溶接により固定する際には、板状ストッパ部材の側からレーザビームを照射することになるが、板状ストッパ部材には、第1部分より小の板厚をもって光軸方向後側端面に重なる第2部分が設けられている。このため、側板部および板状ストッパ部材の双方を溶融させる場合でも、レーザの焦点深度でカバーする範囲が狭くてよいので、レーザ出力を低減することができる。従って、溶接個所を適正に溶融させることができる。それ故、溶融材料の飛散を抑制することができるので、周辺の汚染や、溶接に寄与する溶融部の縮小を抑制することができるとともに、ビードの増大等を抑制することができる。   In the present invention, when the plate-like stopper member is fixed by welding in a state where the plate-like stopper members are overlapped with each other so that the plate thickness directions thereof are orthogonal to the rear end surface in the optical axis direction of the side plate portion of the fixed body. The laser beam is irradiated from the side of the plate-like stopper member, and the plate-like stopper member is provided with a second portion that overlaps the rear end surface in the optical axis direction with a smaller plate thickness than the first portion. . For this reason, even when both the side plate portion and the plate-like stopper member are melted, the range covered by the focal depth of the laser may be narrow, so that the laser output can be reduced. Therefore, it is possible to appropriately melt the welded portion. Therefore, scattering of the molten material can be suppressed, so that contamination of the surroundings and reduction of the molten part contributing to welding can be suppressed, and an increase in beads can be suppressed.

本発明を適用した振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。It is explanatory drawing which shows typically a mode that the optical unit with a shake correction function to which this invention is applied was mounted in optical apparatuses, such as a mobile telephone. 本発明を適用した振れ補正機能付きの光学ユニットの説明図である。It is explanatory drawing of the optical unit with a shake correction function to which this invention is applied. 本発明を適用した振れ補正機能付きの光学ユニットを細かく分解したときの分解斜視図である。It is a disassembled perspective view when the optical unit with a shake correction function to which the present invention is applied is finely disassembled. 本発明を適用した振れ補正機能付きの光学ユニットの断面図である。It is sectional drawing of the optical unit with a shake correction function to which this invention is applied. 本発明を適用した振れ補正機能付きの光学ユニットにおける上カバーへの板状バネ部材および板状ストッパ部材の固定構造を光軸方向後側の斜めからみた様子を示す説明図である。It is explanatory drawing which shows a mode that the fixation structure of the plate-shaped spring member and plate-shaped stopper member to the upper cover in the optical unit with a shake correction function to which the present invention is applied is viewed obliquely from the rear side in the optical axis direction. 本発明を適用した振れ補正機能付きの光学ユニットに用いた上カバー、板状バネ部材および板状ストッパ部材の各部材の説明図である。It is explanatory drawing of each member of the upper cover used for the optical unit with a shake correction function to which this invention is applied, a plate-shaped spring member, and a plate-shaped stopper member. 本発明を適用した振れ補正機能付きの光学ユニットにおける上カバー、板状バネ部材および板状ストッパ部材の位置関係等を示す分解斜視図である。It is a disassembled perspective view which shows the positional relationship of the upper cover, a plate-shaped spring member, and a plate-shaped stopper member in the optical unit with a shake correction function to which the present invention is applied. 本発明を適用した振れ補正機能付きの光学ユニットにおける上カバーへの板状バネ部材および板状ストッパ部材の固定工程を示す説明図である。It is explanatory drawing which shows the fixing process of the plate-shaped spring member and plate-shaped stopper member to the upper cover in the optical unit with a shake correction function to which the present invention is applied. 本発明に対する参考例の説明図である。It is explanatory drawing of the reference example with respect to this invention.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。なお、以下の説明においては、光学ユニットとして撮像ユニットの手振れを防止するための構成を例示する。また、以下の説明では、互いに直交する3方向を各々X軸、Y軸、Z軸とし、光軸L(レンズ光軸)に沿う方向をZ軸とする。また、以下の説明では、各方向の振れのうち、X軸周りの回転は、いわゆるピッチング(縦揺れ)に相当し、Y軸周りの回転は、いわゆるヨーイング(横揺れ)に相当し、Z軸周りの回転は、いわゆるローリングに相当する。また、X軸の一方側には+Xを付し、他方側には−Xを付し、Y軸の一方側には+Yを付し、他方側には−Yを付し、Z軸の一方側(被写体側とは反対側)には+Zを付し、他方側(被写体側)には−Zを付して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings. In the following description, a configuration for preventing camera shake of the imaging unit as an optical unit will be exemplified. In the following description, three directions orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, respectively, and a direction along the optical axis L (lens optical axis) is defined as a Z axis. Further, in the following description, among the shakes in each direction, rotation around the X axis corresponds to so-called pitching (pitch), rotation around the Y axis corresponds to so-called yawing (roll), and Z axis The rotation around corresponds to so-called rolling. Also, + X is attached to one side of the X axis, -X is attached to the other side, + Y is attached to one side of the Y axis, -Y is attached to the other side, and one side of the Z axis is attached. In the following description, + Z is attached to the side (opposite the subject side), and -Z is attached to the other side (subject side).

(光学ユニットの全体構成)
図1は、本発明を適用した振れ補正機能付きの光学ユニットを携帯電話機等の光学機器に搭載した様子を模式的に示す説明図である。図2は、本発明を適用した振れ補正機能付きの光学ユニットの説明図であり、図2(a)、(b)は、外観等を示す斜視図、および分解斜視図である。図3は、本発明を適用した振れ補正機能付きの光学ユニットを細かく分解したときの分解斜視図である。図4は、本発明を適用した振れ補正機能付きの光学ユニットの断面図であり、図4(a)、(b)はYZ断面図およびXZ断面図である。なお、図4(a)、(b)では、撮像ユニットの内部についてはレンズホルダ等の図示を省略してある。
(Overall configuration of optical unit)
FIG. 1 is an explanatory view schematically showing a state in which an optical unit with a shake correction function to which the present invention is applied is mounted on an optical device such as a mobile phone. FIG. 2 is an explanatory diagram of an optical unit with a shake correction function to which the present invention is applied, and FIGS. 2A and 2B are a perspective view and an exploded perspective view showing an external appearance and the like. FIG. 3 is an exploded perspective view when the optical unit with a shake correction function to which the present invention is applied is finely disassembled. FIG. 4 is a cross-sectional view of an optical unit with a shake correction function to which the present invention is applied, and FIGS. 4A and 4B are a YZ cross-sectional view and an XZ cross-sectional view. In FIGS. 4A and 4B, the illustration of the lens holder and the like is omitted for the inside of the imaging unit.

図1に示す光学ユニット100(振れ補正機能付き光学ユニット/駆動装置)は、カメラ付き携帯電話機等の光学機器1000に用いられる薄型カメラであって、光学機器1000のシャーシ1100(機器本体)に支持された状態で搭載される。かかる光学ユニット100では、撮影時に光学機器1000に手振れ等の振れが発生すると、撮像画像に乱れが発生する。そこで、本形態の光学ユニット100には、後述するように、撮像ユニット1を備えた可動体3を固定体200内で揺動可能に支持するとともに、光学ユニット100に搭載したジャイロスコープ(図示せず)、あるいは光学機器1000の本体側に搭載したジャイロスコープ(図示せず)等の振れ検出センサによって手振れを検出した結果に基づいて、可動体3を揺動させる振れ補正用駆動機構(図1では図示せず)が設けられている。   An optical unit 100 (an optical unit / drive device with a shake correction function) shown in FIG. 1 is a thin camera used for an optical device 1000 such as a mobile phone with a camera, and is supported by a chassis 1100 (device main body) of the optical device 1000. It is mounted in the state that was done. In such an optical unit 100, when a shake such as a hand shake occurs in the optical apparatus 1000 during shooting, the captured image is disturbed. Therefore, in the optical unit 100 of the present embodiment, as will be described later, the movable body 3 provided with the imaging unit 1 is supported so as to be swingable within the fixed body 200, and a gyroscope (not shown) mounted on the optical unit 100 is illustrated. 1), or a shake correction drive mechanism (see FIG. 1) that swings the movable body 3 based on the result of detecting hand shake by a shake detection sensor such as a gyroscope (not shown) mounted on the main body side of the optical device 1000. (Not shown).

図1、図2、図3および図4に示すように、光学ユニット100には、撮像ユニット1や、後述する振れ補正用駆動機構500への給電等を行うためのフレキシブル配線基板410、420が引き出されており、かかるフレキシブル配線基板410、420は、光学機器1000の本体側に設けられた上位の制御部等に電気的に接続されている。また、フレキシブル配線基板410は、撮像ユニット1から信号を出力する機能も担っている。このため、フレキシブル配線基板410は、配線数が多いので、フレキシブル配線基板410としては、比較的幅広のものが使用されている。   As shown in FIGS. 1, 2, 3, and 4, the optical unit 100 includes flexible wiring boards 410 and 420 for supplying power to the imaging unit 1 and a shake correction drive mechanism 500 described later. The flexible wiring boards 410 and 420 are drawn out and are electrically connected to an upper control unit or the like provided on the main body side of the optical device 1000. The flexible wiring board 410 also has a function of outputting a signal from the imaging unit 1. For this reason, since the flexible wiring board 410 has a large number of wires, a flexible wiring board 410 having a relatively wide width is used.

図2、図3および図4に示すように、撮像ユニット1は、鋼板等の強磁性板からなる矩形箱状のケース14を有しており、かかるケース14の内側には、レンズ1aを保持するホルダ12やレンズ駆動機構、撮像素子1b(図4参照)等を保持する素子ホルダ等が設けられている。かかる撮像ユニット1の外形はケース14によって規定されている。   As shown in FIGS. 2, 3, and 4, the imaging unit 1 has a rectangular box-shaped case 14 made of a ferromagnetic plate such as a steel plate, and a lens 1 a is held inside the case 14. A holder 12, a lens driving mechanism, an element holder for holding the imaging element 1b (see FIG. 4), and the like are provided. The outer shape of the imaging unit 1 is defined by the case 14.

光学ユニット100は、まず、固定体200と、撮像ユニット1を備えた可動体3と、可動体3が固定体200に変位可能に支持された状態とする板状バネ部材600と、可動体3と固定体200との間で可動体3を固定体200に対して相対変位させる磁気駆動力を発生させる振れ補正用駆動機構500とを有している。   The optical unit 100 includes a fixed body 200, a movable body 3 including the imaging unit 1, a plate spring member 600 in which the movable body 3 is supported by the fixed body 200 so as to be displaceable, and the movable body 3. And a shake correction drive mechanism 500 that generates a magnetic drive force that relatively displaces the movable body 3 with respect to the fixed body 200.

固定体200は上カバー250および下カバー700等を備えており、上カバー250は、撮像ユニット1の周りを囲む角筒部210と、角筒部210の被写体側の開口部を塞ぐ端板部220とを備えている。端板部220には、被写体からの光が入射する窓220aが形成されている。上カバー250において、角筒部210は、光軸方向後側(被写体側とは反対側/Z軸方向の一方側+Z)の端部が開放端になっており、フレキシブル配線基板410、420は、Y軸方向の一方側+Yにおいて角筒部210の光軸方向後側(Z軸方向の一方側+Z)を通って外側に引き出されている。   The fixed body 200 includes an upper cover 250, a lower cover 700, and the like. The upper cover 250 includes a rectangular tube portion 210 that surrounds the imaging unit 1, and an end plate portion that closes an opening on the subject side of the rectangular tube portion 210. 220. The end plate 220 is formed with a window 220a through which light from the subject enters. In the upper cover 250, the square tube portion 210 has an open end at the rear side in the optical axis direction (on the opposite side to the subject side / one side in the Z-axis direction + Z), and the flexible wiring boards 410 and 420 are In the one side + Y in the Y-axis direction, it is drawn outward through the rear side in the optical axis direction of the rectangular tube part 210 (one side in the Z-axis direction + Z).

下カバー700は、金属板に対するプレス加工品であり、略矩形の底板部710と、底板部710の外周縁から被写体側に向けて起立する3枚の側板部720とを備えている。下カバー700において、Y軸方向の一方側+Yには側板部720が形成されておらず、フレキシブル配線基板410を外部に引き出すのに利用されている。下カバー700の底板部710にはその中央位置に、後述する揺動支点180が構成されている。   The lower cover 700 is a press-processed product for a metal plate, and includes a substantially rectangular bottom plate portion 710 and three side plate portions 720 that stand from the outer peripheral edge of the bottom plate portion 710 toward the subject. In the lower cover 700, the side plate portion 720 is not formed on one side + Y in the Y-axis direction, and is used to pull out the flexible wiring board 410 to the outside. The bottom plate portion 710 of the lower cover 700 has a swing fulcrum 180 described later at the center position.

(可動体3の構成)
本形態の光学ユニット100において、可動体3は、撮像ユニット1と、撮像ユニット1のケース14の外周面を囲む矩形枠状のホルダ7とによって構成されている。ホルダ7は、光軸方向前側に位置する矩形枠状の第1ホルダ部材71と、光軸方向後側で第1ホルダ部材71に対向する矩形枠状の第2ホルダ部材72とからなる。本形態において、第1ホルダ部材71と第2ホルダ部材72との間には、振れ補正用駆動機構500に用いた平板状の永久磁石520が保持されている。すなわち、永久磁石520において光軸方向前側の面には第1ホルダ部材71が固定され、永久磁石520において光軸方向後側の面には第2ホルダ部材72が固定されており、永久磁石520、第1ホルダ部材71および第2ホルダ部材72によって角筒状の永久磁石アセンブリ75が構成されている。このため、角筒状の永久磁石アセンブリ75の内側に撮像ユニット1を挿入した後、撮像ユニット1のケース14の外周面と、永久磁石アセンブリ75の内周面(永久磁石520の内面)とを接着剤等により固定すれば、永久磁石520、第1ホルダ部材71、第2ホルダ部材72および撮像ユニット1を一体化して可動体3を構成することができる。
(Configuration of movable body 3)
In the optical unit 100 of the present embodiment, the movable body 3 includes the imaging unit 1 and a rectangular frame-shaped holder 7 that surrounds the outer peripheral surface of the case 14 of the imaging unit 1. The holder 7 includes a rectangular frame-shaped first holder member 71 located on the front side in the optical axis direction and a rectangular frame-shaped second holder member 72 facing the first holder member 71 on the rear side in the optical axis direction. In the present embodiment, a flat permanent magnet 520 used for the shake correction drive mechanism 500 is held between the first holder member 71 and the second holder member 72. That is, the first holder member 71 is fixed to the front surface of the permanent magnet 520 in the optical axis direction, and the second holder member 72 is fixed to the rear surface of the permanent magnet 520 in the optical axis direction. The first holder member 71 and the second holder member 72 constitute a square cylindrical permanent magnet assembly 75. For this reason, after the imaging unit 1 is inserted inside the rectangular cylindrical permanent magnet assembly 75, the outer peripheral surface of the case 14 of the imaging unit 1 and the inner peripheral surface of the permanent magnet assembly 75 (the inner surface of the permanent magnet 520). If fixed with an adhesive or the like, the movable magnet 3 can be configured by integrating the permanent magnet 520, the first holder member 71, the second holder member 72, and the imaging unit 1.

詳しくは後述するように、第2ホルダ部材72は、上カバー250の角筒部210の内側に固定された板状ストッパ部材9に対して光軸方向前側で対向し、板状ストッパ部材9との干渉により、可動体3の光軸方向後側への可動範囲を規定するストッパ機構900を構成している。   As will be described in detail later, the second holder member 72 is opposed to the plate-like stopper member 9 fixed to the inside of the rectangular tube portion 210 of the upper cover 250 on the front side in the optical axis direction. Due to this interference, a stopper mechanism 900 that defines a movable range of the movable body 3 toward the rear side in the optical axis direction is configured.

(板状バネ部材600の構成)
板状バネ部材600は、固定体200側に連結される矩形枠状の固定体側連結部620と、可動体3側に連結される可動体側連結部610と、可動体側連結部610と固定体側連結部620の間で延在する複数本のアーム部630とを備えており、アーム部630の両端は各々、可動体側連結部610および固定体側連結部620に繋がっている。ここで、固定体側連結部620は、詳しくは後述するように、矩形の枠部650と、枠部650の辺部分から外側に向けて突出した凸部660とを備えている。
(Configuration of the plate spring member 600)
The plate-like spring member 600 includes a rectangular frame-like fixed body side connecting portion 620 connected to the fixed body 200 side, a movable body side connecting portion 610 connected to the movable body 3 side, and a movable body side connecting portion 610 and a fixed body side connection. A plurality of arm portions 630 extending between the portions 620, and both ends of the arm portions 630 are connected to the movable body side connecting portion 610 and the fixed body side connecting portion 620, respectively. Here, the fixed body side connecting portion 620 includes a rectangular frame portion 650 and a convex portion 660 protruding outward from the side portion of the frame portion 650, as will be described in detail later.

かかる板状バネ部材600を可動体3と固定体200とに接続するにあたって、本形態では、可動体側連結部610が第2ホルダ部材72の光軸方向後側端面に溶接等の方法で固定されている。また、固定体側連結部620は、後述するように、上カバー250の角筒部210の光軸方向後側端面231(側板部230の光軸方向後側端面231)に溶接により連結されている。かかる板状バネ部材600は、SUS系鋼材等といった金属製であり、所定厚の薄板に対するプレス加工、あるいはフォトリソグラフィ技術を用いたエッチング加工により形成したものである。本形態において、板状バネ部材600は、板厚が50〜100μm、例えば68μmである。   In connecting the plate-like spring member 600 to the movable body 3 and the fixed body 200, in this embodiment, the movable body side connecting portion 610 is fixed to the rear end surface in the optical axis direction of the second holder member 72 by a method such as welding. ing. Moreover, the fixed body side connection part 620 is connected to the optical axis direction rear side end face 231 (the optical axis direction rear side end face 231 of the side plate part 230) of the rectangular tube part 210 of the upper cover 250 by welding, as will be described later. . The plate spring member 600 is made of metal such as SUS steel and is formed by pressing a thin plate having a predetermined thickness or etching using a photolithography technique. In this embodiment, the plate spring member 600 has a plate thickness of 50 to 100 μm, for example 68 μm.

ここで、板状バネ部材600の可動体側連結部610を可動体3に連結する一方、固定体側連結部620を固定体200に固定すると、光学ユニット100では、可動体3が揺動支点180によって光軸方向前側に押し上げられた状態となる。このため、板状バネ部材600において、可動体側連結部610は固定体側連結部620よりも光軸方向前側に押し上げられた状態となり、板状バネ部材600のアーム部630は、可動体3を光軸方向後側に付勢する。従って、可動体3は、板状バネ部材600によって揺動支点180に向けて付勢された状態になり、可動体3は、揺動支点180によって揺動可能な状態に固定体200に支持された状態となる。   Here, when the movable body side coupling portion 610 of the plate spring member 600 is coupled to the movable body 3, and the fixed body side coupling portion 620 is fixed to the stationary body 200, in the optical unit 100, the movable body 3 is moved by the swing fulcrum 180. The state is pushed up to the front side in the optical axis direction. For this reason, in the plate spring member 600, the movable body side connecting portion 610 is pushed up to the front side in the optical axis direction relative to the fixed body side connecting portion 620, and the arm portion 630 of the plate spring member 600 causes the movable body 3 to light. Energize axially rear side. Accordingly, the movable body 3 is urged toward the swing fulcrum 180 by the plate spring member 600, and the movable body 3 is supported by the fixed body 200 so as to be swingable by the swing fulcrum 180. It becomes a state.

(振れ補正用駆動機構500の構成)
本形態の光学ユニット100では、コイル部560と、コイル部560に鎖交する磁界を発生させる永久磁石520と、コイル部560に対する給電用のフレキシブル配線基板420によって、振れ補正用駆動機構500が構成されている。より具体的には、可動体3においてケース14の4つの側面には平板状の永久磁石520が各々固定されており、上カバー250の角筒部210の内面にはコイル部560が固定されている。永久磁石520は、外面側および内面側が異なる極に着磁されている。また、永久磁石520は、光軸L方向に配置された2つの磁石片からなり、かかる磁石片は、コイル部560と対向する側の面が光軸方向で異なる極に着磁されている。また、コイル部560は、略四角形の枠状に形成されており、上下の長辺部分が有効辺として利用される。
(Configuration of shake correction drive mechanism 500)
In the optical unit 100 of this embodiment, the shake correction drive mechanism 500 is configured by the coil unit 560, the permanent magnet 520 that generates a magnetic field linked to the coil unit 560, and the flexible wiring substrate 420 for supplying power to the coil unit 560. Has been. More specifically, in the movable body 3, flat permanent magnets 520 are respectively fixed to four side surfaces of the case 14, and a coil portion 560 is fixed to the inner surface of the rectangular tube portion 210 of the upper cover 250. Yes. Permanent magnet 520 is magnetized with different poles on the outer surface side and inner surface side. The permanent magnet 520 is composed of two magnet pieces arranged in the direction of the optical axis L, and the magnet piece is magnetized to a pole whose surface facing the coil portion 560 is different in the optical axis direction. Moreover, the coil part 560 is formed in the substantially square frame shape, and an upper and lower long side part is utilized as an effective side.

これらの永久磁石520およびコイル部560のうち、可動体3をY軸方向の両側で挟む2箇所に配置された永久磁石520およびコイル部560はY側振れ補正用駆動機構を構成しており、図4(a)に矢印X1で示すように、揺動支点180を通ってX軸方向に延在する軸線を中心にして可動体3を揺動させる。また、撮像ユニット1をX軸方向の両側で挟む2箇所に配置された永久磁石520およびコイル部560はX側振れ補正用駆動機構を構成しており、図4(b)に矢印Y1で示すように、揺動支点180を通ってY軸方向に延在する軸線を中心にして可動体3を揺動させる。なお、本形態では、可動体3の光軸方向後側端部にフォトセンサ310、320が設けられており、振れ補正用駆動機構500を駆動した際の可動体3の傾きを検出し、振れ補正用駆動機構500にフィードバックするようになっている。   Among these permanent magnets 520 and coil portions 560, the permanent magnets 520 and the coil portions 560 disposed at two locations sandwiching the movable body 3 on both sides in the Y-axis direction constitute a Y-side shake correction drive mechanism, As shown by an arrow X1 in FIG. 4A, the movable body 3 is swung around an axis extending in the X-axis direction through the swing fulcrum 180. Further, the permanent magnet 520 and the coil portion 560 disposed at two positions sandwiching the imaging unit 1 on both sides in the X-axis direction constitute an X-side shake correction drive mechanism, and is indicated by an arrow Y1 in FIG. 4B. As described above, the movable body 3 is swung around the axis extending in the Y-axis direction through the swing fulcrum 180. In this embodiment, photosensors 310 and 320 are provided at the rear end of the movable body 3 in the optical axis direction, and the inclination of the movable body 3 when the shake correction driving mechanism 500 is driven is detected. The correction drive mechanism 500 is fed back.

再び、図2、図3および図4において、本形態では、振れ補正用駆動機構500を構成するにあたって、上カバー250の4つの内面に沿って延在するシート状コイル体550が用いられており、シート状コイル体550では、4つのコイル部560が所定の間隔を空けて一体に形成されている。また、シート状コイル体550は展開したときに帯状に延在する形状を備えており、上カバー250の4つの内面に沿うように折り曲げた状態で上カバー250の内面に面接着等の方法で固定されている。シート状コイル体550には、4つのコイル部560から延在する導電層によって複数の端子部が形成されており、かかる端子部に対して、フレキシブル配線基板420が電気的に接続されている。このため、単体の空芯コイルを用いた場合に比して、撮像ユニット1と固定体200との間隔を狭めることができるので、光学ユニット100のサイズを小さくすることができる等の利点がある。   2, 3, and 4 again, in this embodiment, the sheet-shaped coil body 550 that extends along the four inner surfaces of the upper cover 250 is used in configuring the shake correction drive mechanism 500. In the sheet-like coil body 550, four coil portions 560 are integrally formed with a predetermined interval. Further, the sheet-like coil body 550 has a shape that extends in a band shape when unfolded, and is bent onto the four inner surfaces of the upper cover 250 by a method such as surface bonding to the inner surface of the upper cover 250. It is fixed. The sheet-like coil body 550 has a plurality of terminal portions formed of conductive layers extending from the four coil portions 560, and the flexible wiring board 420 is electrically connected to the terminal portions. For this reason, since the space | interval of the imaging unit 1 and the fixed body 200 can be narrowed compared with the case where a single air-core coil is used, there exists an advantage that the size of the optical unit 100 can be made small. .

(揺動支点の構成)
撮像ユニット1に対して光軸方向後側(Z軸方向の一方側+Z)では、撮像ユニット1と固定体200の下カバー700の底板部710との間に、撮像ユニット1を揺動させる際の支点となる揺動支点180が設けられており、撮像ユニット1は、板状バネ部材600によって揺動支点180を介して下カバー700に向けて付勢されている。本形態においては、下カバー700の底板部710に固定されたエラストマー製の弾性部材185と、可動体3の光軸方向後側端部に設けられた支持板19に形成された凸部190とによって揺動支点180が形成されている。かかる構成によれば、可動体3に光軸方向後側に向かう衝撃が加わった際、弾性部材185によって衝撃を吸収できるので、下カバー700(固定体200)の底板部710が変形することがない。また、振れ補正の制御中に可動体3に加わった不要な振動を弾性部材185で吸収することができるので、共振の発生を防止することができる。
(Configuration of swing fulcrum)
When the imaging unit 1 is swung between the imaging unit 1 and the bottom plate portion 710 of the lower cover 700 of the fixed body 200 on the rear side in the optical axis direction with respect to the imaging unit 1 (one side in the Z-axis direction + Z). The imaging unit 1 is urged toward the lower cover 700 via the swinging fulcrum 180 by the plate-like spring member 600. In this embodiment, an elastic member 185 made of elastomer fixed to the bottom plate portion 710 of the lower cover 700, and a convex portion 190 formed on the support plate 19 provided at the rear end portion in the optical axis direction of the movable body 3. Thus, a swing fulcrum 180 is formed. According to this configuration, when an impact toward the rear side in the optical axis direction is applied to the movable body 3, the impact can be absorbed by the elastic member 185, so that the bottom plate portion 710 of the lower cover 700 (fixed body 200) can be deformed. Absent. Further, since unnecessary vibration applied to the movable body 3 during shake correction control can be absorbed by the elastic member 185, the occurrence of resonance can be prevented.

(ストッパ機構900の構成)
本形態の振れ補正機能付きの光学ユニット100では、可動体3の光軸方向後側への可動範囲を規定するストッパ機構900が構成されている。より具体的には、固定体200に用いた上カバー250の角筒部210の内面に矩形枠状の板状ストッパ部材9が固定されており、かかる板状ストッパ部材9は、板状バネ部材600に対して光軸方向後側に位置する。板状ストッパ部材9の外形寸法は、第2ホルダ部材72の外形寸法より大きいが、第2ホルダ部材72の外形寸法は、板状ストッパ部材9の内形寸法より大きい。このため、板状ストッパ部材9は、第2ホルダ部材72に対して板状バネ部材600を介して光軸方向後側で対向している。
(Configuration of stopper mechanism 900)
In the optical unit 100 with a shake correction function of this embodiment, a stopper mechanism 900 that defines a movable range of the movable body 3 to the rear side in the optical axis direction is configured. More specifically, a rectangular frame-shaped plate-like stopper member 9 is fixed to the inner surface of the rectangular tube portion 210 of the upper cover 250 used for the fixed body 200, and the plate-like stopper member 9 is a plate-like spring member. It is located behind 600 in the optical axis direction. The outer dimension of the plate-like stopper member 9 is larger than the outer dimension of the second holder member 72, but the outer dimension of the second holder member 72 is larger than the inner dimension of the plate-like stopper member 9. Therefore, the plate-like stopper member 9 is opposed to the second holder member 72 via the plate-like spring member 600 on the rear side in the optical axis direction.

また、板状バネ部材600のアーム部630は、全体あるいは略全体が、板状ストッパ部材9と光軸方向で重なっている。また、板状バネ部材600のアーム部630は、第2ホルダ部材72と光軸方向で重なっている。このため、板状バネ部材600のアーム部630の一部は、第2ホルダ部材72および板状ストッパ部材9の双方と光軸方向で重なっている。   Further, the arm portion 630 of the plate spring member 600 entirely or substantially entirely overlaps the plate stopper member 9 in the optical axis direction. Further, the arm portion 630 of the plate spring member 600 overlaps the second holder member 72 in the optical axis direction. For this reason, a part of the arm portion 630 of the plate spring member 600 overlaps both the second holder member 72 and the plate stopper member 9 in the optical axis direction.

このようにして構成したストッパ機構900では、可動体3に衝撃が加わって、弾性部材185を圧縮させながら、可動体3が光軸方向後側に変位した際、可動体3の光軸方向後側への変位が板状ストッパ部材9によって阻止される。このため、板状バネ部材600の変形範囲が限定されているので、板状バネ部材600が塑性変形して損傷することがない。また、可動体3が光軸方向後側に変位した際、第2ホルダ部材72と板状ストッパ部材9とは、板状バネ部材600を介して当接する。このため、ストッパ機構900を構成するにあたって、第2ホルダ部材72と板状ストッパ部材9とを板状バネ部材600を避けて当接させるような構造を採用しなくてもよい。従って、板状バネ部材600周辺の構造を簡素化することができる。また、可動体3が光軸方向後側に変位した際、第2ホルダ部材72と板状ストッパ部材9とは、板状バネ部材600のアーム部630を介して当接する。このため、ストッパ機構900が作動した際、アーム部630が第2ホルダ部材72と板状ストッパ部材9とに挟まれて保護されるので、アーム部630が塑性変形することを防止することができる。   In the stopper mechanism 900 configured as described above, when the movable body 3 is displaced rearward in the optical axis direction while an impact is applied to the movable body 3 and the elastic member 185 is compressed, the rear side of the movable body 3 in the optical axis direction is restored. The lateral displacement is prevented by the plate-like stopper member 9. For this reason, since the deformation range of the plate spring member 600 is limited, the plate spring member 600 is not plastically deformed and damaged. Further, when the movable body 3 is displaced rearward in the optical axis direction, the second holder member 72 and the plate-like stopper member 9 come into contact with each other via the plate-like spring member 600. For this reason, in configuring the stopper mechanism 900, it is not necessary to adopt a structure in which the second holder member 72 and the plate-like stopper member 9 are brought into contact with each other while avoiding the plate-like spring member 600. Therefore, the structure around the plate spring member 600 can be simplified. Further, when the movable body 3 is displaced rearward in the optical axis direction, the second holder member 72 and the plate-like stopper member 9 are in contact with each other via the arm portion 630 of the plate-like spring member 600. For this reason, when the stopper mechanism 900 is actuated, the arm portion 630 is protected by being sandwiched between the second holder member 72 and the plate-like stopper member 9, so that the arm portion 630 can be prevented from being plastically deformed. .

さらに、第2ホルダ部材72および板状ストッパ部材9は、光軸周りの全周に設けられているので、第2ホルダ部材72および板状ストッパ部材9の特定個所に大きな力が集中しない。従って、第2ホルダ部材72および板状ストッパ部材9が損傷しにくいとともに、第2ホルダ部材72と板状ストッパ部材9とが当接した際の反動で当接個所とは反対側で可動体3が大きく傾くのを防止することができる。従って、板状バネ部材600の塑性変形を確実に防止することができる。   Furthermore, since the second holder member 72 and the plate-like stopper member 9 are provided all around the optical axis, a large force is not concentrated on specific portions of the second holder member 72 and the plate-like stopper member 9. Accordingly, the second holder member 72 and the plate-like stopper member 9 are not easily damaged, and the movable body 3 is on the opposite side of the contact portion due to the reaction when the second holder member 72 and the plate-like stopper member 9 are in contact with each other. Can be prevented from tilting greatly. Therefore, plastic deformation of the plate spring member 600 can be reliably prevented.

(上カバー250への板状バネ部材600および板状ストッパ部材9の固定構造)
図5は、本発明を適用した振れ補正機能付きの光学ユニット100における上カバー250への板状バネ部材600および板状ストッパ部材9の固定構造を光軸方向後側の斜めからみた様子を示す説明図であり、図5(a)、(b)、(c)は、上カバー250に板状バネ部材600と板状ストッパ部材9とを固定した様子を示す説明図、上カバー250に板状バネ部材600を固定した後、板状ストッパ部材9を固定する前の様子を示す説明図、および上カバー250に板状バネ部材600および板状ストッパ部材9を固定する前の様子を示す説明図である。図6は、本発明を適用した振れ補正機能付きの光学ユニット100に用いた上カバー250、板状バネ部材600および板状ストッパ部材9の各部材の説明図であり、図6(a)、(b)、(c)、(d)、(e)、(f)は、上カバー250の底面図、上カバー250の側面図、板状バネ部材600の底面図、板状バネ部材600の側面図、板状ストッパ部材9の底面図、および板状ストッパ部材9の側面図である。図7は、本発明を適用した振れ補正機能付きの光学ユニット100における上カバー250、板状バネ部材600および板状ストッパ部材9の位置関係等を示す分解斜視図である。なお、図5〜図7において、各部材の形状を溶接前の状態で示してある。また、図5〜図7においては、板状バネ部材600を光学ユニット100に組み込んだ状態で、可動体側連結部610が固定体側連結部620より光軸方向前側に位置するように変形した形状で示してある。
(Fixed structure of the plate spring member 600 and the plate stopper member 9 to the upper cover 250)
FIG. 5 shows a state in which the fixing structure of the plate spring member 600 and the plate stopper member 9 to the upper cover 250 in the optical unit 100 with a shake correction function to which the present invention is applied is viewed obliquely on the rear side in the optical axis direction. FIGS. 5A, 5 </ b> B, and 5 </ b> C are explanatory views showing a state in which the plate spring member 600 and the plate stopper member 9 are fixed to the upper cover 250, and the upper cover 250 has a plate. An explanatory view showing a state before fixing the plate-like stopper member 9 after fixing the plate-like spring member 600, and an explanation showing a state before fixing the plate-like spring member 600 and the plate-like stopper member 9 to the upper cover 250 FIG. FIG. 6 is an explanatory diagram of each member of the upper cover 250, the plate spring member 600, and the plate stopper member 9 used in the optical unit 100 with a shake correction function to which the present invention is applied. (B), (c), (d), (e), and (f) are a bottom view of the upper cover 250, a side view of the upper cover 250, a bottom view of the plate spring member 600, and a plate spring member 600. FIG. 4 is a side view, a bottom view of the plate-like stopper member 9, and a side view of the plate-like stopper member 9. FIG. 7 is an exploded perspective view showing the positional relationship among the upper cover 250, the plate spring member 600, and the plate stopper member 9 in the optical unit 100 with a shake correction function to which the present invention is applied. 5-7, the shape of each member is shown in the state before welding. 5 to 7, in a state where the plate-like spring member 600 is incorporated in the optical unit 100, the movable body side connecting portion 610 is deformed so as to be positioned on the front side in the optical axis direction from the fixed body side connecting portion 620. It is shown.

図5、図6および図7に示すように、本形態の光学ユニット100において、上カバー250は、4枚の側板部230が周方向で繋がった角筒部210を備えており、かかる側板部230の光軸方向後側端面231に対して、板状バネ部材600の固定体側連結部620および板状ストッパ部材9がレーザ溶接により固定されている。かかる上カバー250は、SUS系鋼材等といった金属板に対するプレス加工により製造されている。側板部230の板厚は、例えば100〜150μm程度、例えば110μmである。   As shown in FIGS. 5, 6, and 7, in the optical unit 100 of this embodiment, the upper cover 250 includes a square tube portion 210 in which four side plate portions 230 are connected in the circumferential direction. The fixed body side connecting portion 620 of the plate spring member 600 and the plate stopper member 9 are fixed to the rear end surface 231 in the optical axis direction 230 by laser welding. The upper cover 250 is manufactured by pressing a metal plate such as SUS steel. The plate | board thickness of the side plate part 230 is about 100-150 micrometers, for example, for example, 110 micrometers.

ここで、側板部230の光軸方向後側端面231には、光軸方向前側に凹む切り欠き233が形成されており、かかる切り欠き233は、辺方向の中央部分で最も光軸方向前側(Z軸方向の他方側−Z)に位置する底部234と、底部234の両側で段部235を介して底部234に繋がった中間部236とを有しており、中間部236は、底部234よりわずかに光軸方向後側に位置する。なお、4枚の側板部230のうち、Y軸方向の一方側+Yに位置する側板部230では、底部234の一方側のみに段部235および中間部236が形成されている。ここで、底部234は、板状バネ部材600の固定体側連結部620との溶接に用いられ、中間部236は板状ストッパ部材9との溶接に用いられる。   Here, a notch 233 that is recessed toward the front side in the optical axis direction is formed on the rear end surface 231 in the optical axis direction of the side plate portion 230, and the notch 233 is the front side in the optical axis direction at the center portion in the side direction ( A bottom portion 234 located on the other side in the Z-axis direction -Z), and an intermediate portion 236 connected to the bottom portion 234 via a step portion 235 on both sides of the bottom portion 234. The intermediate portion 236 is formed from the bottom portion 234. Located slightly behind the optical axis. Of the four side plate portions 230, the step portion 235 and the intermediate portion 236 are formed only on one side of the bottom portion 234 in the side plate portion 230 located on one side + Y in the Y-axis direction. Here, the bottom portion 234 is used for welding with the fixed body side connecting portion 620 of the plate-like spring member 600, and the intermediate portion 236 is used for welding with the plate-like stopper member 9.

(板状バネ部材600の詳細構成)
本形態において、板状バネ部材600の固定体側連結部620は、矩形の枠部650と、枠部650の辺部分から外側に向けて突出した複数の凸部660とを備えている。ここで、枠部650の外形寸法は、角筒部210の内形寸法より小であるが、凸部660は、側板部230の外側までわずかに突出しており、光軸方向からみたとき、凸部660は、側板部230の光軸方向後側端面231のうち、底部234に相当する部分に、互いの板厚方向が直交するように重なっている。かかる構成によれば、凸部660と側板部230の光軸方向後側端面231とを確実に重ねることができる。本形態では、凸部660は、矩形の枠部650の辺毎に2以上が形成されている。より具体的には、枠部650の4つの辺のうち、Y軸方向の一方側+Yに位置する辺には2つの凸部660が形成され、他の3つの辺には各々、3つの凸部660が形成されている。
(Detailed configuration of the plate spring member 600)
In this embodiment, the fixed body side connecting portion 620 of the plate spring member 600 includes a rectangular frame portion 650 and a plurality of convex portions 660 that protrude outward from the side portions of the frame portion 650. Here, the outer dimension of the frame part 650 is smaller than the inner dimension of the rectangular tube part 210, but the convex part 660 slightly protrudes to the outside of the side plate part 230, and when viewed from the optical axis direction, the convex part 660 is convex. The portion 660 overlaps the portion corresponding to the bottom portion 234 on the rear end surface 231 in the optical axis direction of the side plate portion 230 so that the plate thickness directions thereof are orthogonal to each other. According to this configuration, the convex portion 660 and the rear end surface 231 in the optical axis direction of the side plate portion 230 can be reliably overlapped. In this embodiment, two or more convex portions 660 are formed for each side of the rectangular frame portion 650. More specifically, of the four sides of the frame portion 650, two convex portions 660 are formed on the side located on one side + Y in the Y-axis direction, and three convex portions are formed on the other three sides. A portion 660 is formed.

本形態では、凸部660と、側板部230の光軸方向後側端面231のうち、底部234とを溶接する。ここで、凸部660同士は離間している。すなわち、凸部660は溶接予定個所に独立して形成されており、凸部660の辺方向(枠部650が延在している方向)の寸法(幅寸法)は小である。本形態では、各辺に形成された2つ以上の凸部660のうち、辺の中央側に位置する凸部661は、凸部661より辺の端に形成された凸部662に比して辺方向(枠部650が延在している方向)の寸法(幅寸法)が大である。   In this embodiment, the convex portion 660 and the bottom portion 234 of the rear end surface 231 in the optical axis direction of the side plate portion 230 are welded. Here, the convex portions 660 are separated from each other. That is, the convex part 660 is formed independently at the planned welding location, and the dimension (width dimension) in the side direction (direction in which the frame part 650 extends) of the convex part 660 is small. In this embodiment, among the two or more convex portions 660 formed on each side, the convex portion 661 located on the center side of the side is more than the convex portion 662 formed on the end of the side from the convex portion 661. The dimension (width dimension) in the side direction (direction in which the frame portion 650 extends) is large.

凸部660のうち、側板部230の光軸方向後側端面231と重なる部分には、光軸方向前側に向けて凹んだ円形の凹部666が形成されている。かかる凹部666は、光軸方向後側から視認可能であり、溶接の際、凹部666を基準にしてレーザビームが照射される。固定体側連結部620の枠部650と、アーム部630とは、枠部650の延在方向の中央付近で接続し、固定体側連結部620の枠部650には、アーム部630の根元付近に複数の穴633が形成されている。かかる穴633はバネ定数の調整に利用される。すなわち、アーム部630の根元付近に対してレーザビームを照射して穴633同士を連結させれば、アーム部630の寸法を変更することができるので、バネ定数を調整することができる。   A circular concave portion 666 that is recessed toward the front side in the optical axis direction is formed in a portion of the convex portion 660 that overlaps the rear end surface 231 in the optical axis direction of the side plate portion 230. The concave portion 666 is visible from the rear side in the optical axis direction, and the laser beam is irradiated on the basis of the concave portion 666 during welding. The frame portion 650 of the fixed body side connecting portion 620 and the arm portion 630 are connected near the center in the extending direction of the frame portion 650, and the frame portion 650 of the fixed body side connecting portion 620 is near the base of the arm portion 630. A plurality of holes 633 are formed. The hole 633 is used for adjusting the spring constant. That is, if the laser beam is irradiated to the vicinity of the base of the arm portion 630 to connect the holes 633 to each other, the dimensions of the arm portion 630 can be changed, so that the spring constant can be adjusted.

(板状ストッパ部材9の詳細構成)
本形態において、板状ストッパ部材9は、矩形の枠部950と、枠部950の辺部分の中央から端にずれた位置で外側に向けて突出した複数の凸部960とを備えている。ここで、枠部950の外形寸法は、角筒部210の内形寸法より小であるが、凸部960は、側板部230の外面と重なる位置まで突出している。このため、板状ストッパ部材9は、凸部960を含めた外形寸法は、角筒部210の外形寸法と同一である。従って、光軸方向からみたとき、凸部960は、側板部230の光軸方向後側端面231のうち、中間部236に相当する部分に互いの板厚方向が直交するように重なっている。かかる凸部960は、枠部950のY軸方向の一方側+Yに位置する辺には1つ形成され、他の3つの辺には2つずつ形成されている。なお、枠部950のY軸方向の一方側+Yに位置する辺には凸部960が1つだけ形成されている。このため、Y軸方向の一方側+Yには、枠部950と側板部230との間に、図2等に示すフレキシブル配線基板420を通すスペースが確保されている。
(Detailed configuration of the plate-like stopper member 9)
In this embodiment, the plate-like stopper member 9 includes a rectangular frame portion 950 and a plurality of convex portions 960 protruding outward at positions shifted from the center of the side portion of the frame portion 950 to the end. Here, the outer dimension of the frame part 950 is smaller than the inner dimension of the rectangular tube part 210, but the convex part 960 protrudes to a position overlapping the outer surface of the side plate part 230. For this reason, the plate-shaped stopper member 9 has the same external dimensions including the convex portion 960 as the external dimensions of the rectangular tube portion 210. Accordingly, when viewed from the optical axis direction, the convex portion 960 overlaps the portion corresponding to the intermediate portion 236 on the rear end surface 231 in the optical axis direction of the side plate portion 230 so that the plate thickness directions thereof are orthogonal to each other. One convex portion 960 is formed on the side located on one side + Y in the Y-axis direction of the frame portion 950, and two convex portions 960 are formed on the other three sides. Note that only one convex portion 960 is formed on the side located on one side + Y in the Y-axis direction of the frame portion 950. Therefore, on one side + Y in the Y-axis direction, a space is secured between the frame portion 950 and the side plate portion 230 to pass the flexible wiring board 420 shown in FIG.

本形態では、凸部960のうち、Y軸方向の一方側+Yに位置する辺に形成された凸部60は、辺方向の端部の一箇所で、側板部230の光軸方向後側端面231(中間部236の光軸方向後側端面231)と溶接され、他の3つの辺に形成された凸部60は、辺方向の両側2箇所で、側板部230の光軸方向後側端面231(中間部236の光軸方向後側端面231)と溶接される。
In this embodiment, among the convex portion 960, the protrusions 9 60 formed on side located on one side + Y in the Y-axis direction, in one part of the edge portion of the side direction, the optical axis direction rear side of the side plate portion 230 is welded to the end face 231 (the optical axis direction rear end face 231 of the intermediate portion 236), the protrusions 9 60 formed on the other three sides, on both sides two places side direction, after the optical axis direction of the side plate portion 230 The side end surface 231 (the rear end surface 231 in the optical axis direction of the intermediate portion 236) is welded.

ここで、凸部960は、光軸方向からみたとき、側板部230に溶接されずに光軸方向後側端面231に重なる第1部分961と、辺方向の端部において第1部分961より小の板厚をもって光軸方向後側端面231に重なる矩形の第2部分962とが設けられており、かかる第2部分962が光軸方向後側端面231と溶接される。本形態において、第2部分962の板厚は、第1部分961の板厚の1/2〜1/3である。例えば、第1部分961の板厚は200μmであり、第2部分962の板厚は80〜100μmである。かかる構成の板状ストッパ部材9は、SUS系鋼材等といった金属板に対するエッチングにより形成され、その際、ハーフエッチングを利用することにより、板厚が異なる第1部分961および第2部分962を形成する。このため、第2部分962の板厚は、第1部分961が位置する側から離間するに伴って徐々に薄くなっている。   Here, when viewed from the optical axis direction, the convex portion 960 is not welded to the side plate portion 230 and overlaps the rear end surface 231 in the optical axis direction and is smaller than the first portion 961 at the end portion in the side direction. A rectangular second portion 962 that overlaps the rear end surface 231 in the optical axis direction with a thickness of 2 mm is provided, and the second portion 962 is welded to the rear end surface 231 in the optical axis direction. In this embodiment, the plate thickness of the second portion 962 is 1/2 to 1/3 of the plate thickness of the first portion 961. For example, the plate thickness of the first portion 961 is 200 μm, and the plate thickness of the second portion 962 is 80 to 100 μm. The plate-shaped stopper member 9 having such a structure is formed by etching a metal plate such as SUS steel, and at this time, the first portion 961 and the second portion 962 having different plate thicknesses are formed by using half etching. . For this reason, the plate thickness of the second portion 962 is gradually reduced as it is separated from the side where the first portion 961 is located.

本形態では、枠部950の辺部分の中央にも、凸部960と同様な凸部970が形成されているが、かかる凸部970は、凸部960の第1部分961と同等の厚さである。ここで、凸部960と凸部970との間は切り欠き975になっており、かかる切り欠き975内に板状バネ部材600の凸部662が位置する。このため、後述するように凸部662で溶接した際に溶接痕によって盛り上がりが発生した場合でも、かかる盛り上がりは切り欠き975内に位置する。従って、板状ストッパ部材9を配置した際、板状ストッパ部材9が上カバー250から浮き上がることがない。   In this embodiment, a convex portion 970 similar to the convex portion 960 is also formed at the center of the side portion of the frame portion 950, but the convex portion 970 has a thickness equivalent to that of the first portion 961 of the convex portion 960. It is. Here, a notch 975 is formed between the projecting portion 960 and the projecting portion 970, and the projecting portion 662 of the plate spring member 600 is located in the notch 975. For this reason, even when a bulge occurs due to welding marks when welding is performed at the convex portion 662 as described later, the bulge is located in the notch 975. Therefore, when the plate-like stopper member 9 is arranged, the plate-like stopper member 9 does not float from the upper cover 250.

(上カバー250への板状バネ部材600および板状ストッパ部材9の固定工程)
図8は、本発明を適用した振れ補正機能付きの光学ユニット100における上カバー250への板状バネ部材600および板状ストッパ部材9の固定工程を示す説明図であり、図8(a)、(b)、(c)、(d)は、上カバー250に板状バネ部材600を固定した状態の底面図、上カバー250に板状バネ部材600を固定した状態の側面図、上カバー250に板状ストッパ部材9を固定した状態の底面図、上カバー250に板状ストッパ部材9を固定した状態の側面図である。なお、図8において、各部材の形状を溶接前の状態で示してある。また、図8においては、板状バネ部材600を光学ユニット100に組み込んだ状態で、可動体側連結部610が固定体側連結部620より光軸方向前側に位置するように変形した形状で示してある。
(Fixing process of the plate spring member 600 and the plate stopper member 9 to the upper cover 250)
FIG. 8 is an explanatory view showing a fixing process of the plate spring member 600 and the plate stopper member 9 to the upper cover 250 in the optical unit 100 with a shake correction function to which the present invention is applied. (B), (c), (d) is a bottom view of the state where the plate spring member 600 is fixed to the upper cover 250, a side view of the state where the plate spring member 600 is fixed to the upper cover 250, and the upper cover 250. FIG. 6 is a bottom view of the state where the plate-like stopper member 9 is fixed to the upper cover 250, and a side view of the state where the plate-like stopper member 9 is fixed to the upper cover 250. In addition, in FIG. 8, the shape of each member is shown in the state before welding. In FIG. 8, the movable body side connecting portion 610 is deformed so as to be positioned on the front side in the optical axis direction from the fixed body side connecting portion 620 in a state where the plate spring member 600 is incorporated in the optical unit 100. .

本形態の光学ユニット100の製造工程において、上カバー250への板状バネ部材600および板状ストッパ部材9の固定工程では、バネ部材固定工程において上カバー250に板状バネ部材600を固定した後、ストッパ部材固定工程において上カバー250に板状ストッパ部材9を固定する。かかる工程は、図2等を参照して説明したコイル部560やフレキシブル配線基板420を上カバー250の設けた後に行うが、図5や図8では、かかる部材の図示を省略してある。また、板状バネ部材600において、可動体側連結部610については可動体3側に設けた第2ホルダ部材72と連結した後、バネ部材固定工程やストッパ部材固定工程を行うが、図5や図8では、かかる部材の図示を省略してある。   In the manufacturing process of the optical unit 100 of this embodiment, in the fixing process of the plate spring member 600 and the plate stopper member 9 to the upper cover 250, after the plate spring member 600 is fixed to the upper cover 250 in the spring member fixing process. The plate-like stopper member 9 is fixed to the upper cover 250 in the stopper member fixing step. This process is performed after the upper cover 250 is provided with the coil portion 560 and the flexible wiring board 420 described with reference to FIG. 2 and the like, but illustration of such members is omitted in FIGS. 5 and 8. Further, in the plate spring member 600, the movable body side connecting portion 610 is connected to the second holder member 72 provided on the movable body 3 side, and then the spring member fixing process and the stopper member fixing process are performed. In FIG. 8, illustration of such members is omitted.

バネ部材固定工程においては、まず、図5(b)および図8(a)、(b)に示すように、上カバー250の内側に板状バネ部材600を配置し、凸部660を側板部230の光軸方向後側端面231のうち、底部234に相当する部分に重ねる。   In the spring member fixing step, first, as shown in FIGS. 5B, 8A, and 8B, the plate-like spring member 600 is disposed inside the upper cover 250, and the convex portion 660 is replaced with the side plate portion. 230 of the rear end surface 231 in the optical axis direction of 230 is overlapped with a portion corresponding to the bottom portion 234.

次に、バネ部材固定工程の第1溶接工程では、複数の凸部660のうち、一部の凸部661を冶具によって側板部230の光軸方向後側端面231に向けて押圧する。その結果、他の凸部662は、側板部230の光軸方向後側端面231に当接する。この状態で、他の凸部662に形成された凹部666の位置を自動検出し、かかる凹部666に向けてレーザビームを照射する。   Next, in the first welding step of the spring member fixing step, some of the convex portions 661 out of the plurality of convex portions 660 are pressed toward the rear end surface 231 in the optical axis direction of the side plate portion 230 by a jig. As a result, the other convex portion 662 contacts the rear end surface 231 of the side plate portion 230 in the optical axis direction. In this state, the position of the concave portion 666 formed in the other convex portion 662 is automatically detected, and the laser beam is irradiated toward the concave portion 666.

その際、凸部661は、溶接予定個所に独立して形成されており、凸部660の辺方向(枠部650が延在している方向)の寸法(幅寸法)は小である。このため、凸部662の先端側全体が溶接による溶融部となる。また、凸部662の全体が溶接による溶融部となる。従って、凸部662の先端側が側板部230から外側に張り出すことがない。すなわち、溶接した際、凸部662の先端側全体が溶接による溶融部になるので、側板部230の外側には溶融部がわずかに突出しているか、側板部230の外側に溶融部が一切、突出しない状態にある。いずれの場合も、凸部660の先端部が溶融せずに残る場合に比して、光学ユニット100の外形寸法を小さくすることができる。   In that case, the convex part 661 is formed independently at the planned welding location, and the dimension (width dimension) in the side direction (direction in which the frame part 650 extends) of the convex part 660 is small. For this reason, the whole front end side of the convex part 662 becomes a molten part by welding. Moreover, the whole convex part 662 turns into the fusion | melting part by welding. Therefore, the tip end side of the convex portion 662 does not protrude outward from the side plate portion 230. That is, when welding, the entire tip end side of the convex portion 662 becomes a melted portion by welding, so that the melted portion slightly protrudes outside the side plate portion 230 or no melted portion protrudes outside the side plate portion 230. Not in a state. In either case, the outer dimension of the optical unit 100 can be reduced as compared with the case where the tip of the convex portion 660 remains without melting.

また、複数の凸部660のうち、一部の凸部661を冶具によって側板部230の光軸方向後側端面231に向けて押圧することにより、他の凸部662を側板部230の光軸方向後側端面231に当接させるため、他の凸部662を側板部230に当接させた状態で他の凸部662に対して光軸方向後側は開放状態にある。それ故、凸部662に対して光軸方向後側からレーザビームを確実に照射することができるので、溶接を確実、かつ、容易に行うことができる。   In addition, by pressing some of the plurality of convex portions 660 toward the rear end surface 231 in the optical axis direction of the side plate portion 230 with a jig, the other convex portions 662 are optical axes of the side plate portion 230. In order to make it contact | abut to the direction rear side end surface 231, the optical axis direction rear side is an open state with respect to the other convex part 662 in the state which made the other convex part 662 contact | abut to the side plate part 230. Therefore, it is possible to reliably irradiate the convex portion 662 with the laser beam from the rear side in the optical axis direction, so that welding can be reliably and easily performed.

また、凸部660には、光軸方向後側から視認可能な凹部666が形成されているので、凹部666の位置を認識した結果に基づいて、レーザビームを確実な位置に照射することができる。   Further, since the concave portion 666 that is visible from the rear side in the optical axis direction is formed on the convex portion 660, the laser beam can be irradiated to a certain position based on the result of recognizing the position of the concave portion 666. .

次に、バネ部材固定工程の第2溶接工程では、図5(a)および図8(c)、(d)に示すように、板状バネ部材600に対して光軸方向後側に板状ストッパ部材9を重ねる。その結果、光軸方向からみたとき、板状ストッパ部材9の凸部960、970は、側板部230の光軸方向後側端面231に重なる。ここで、板状ストッパ部材9の凸部960に形成した第2部分962は、側板部230の光軸方向後側端面231に接するように重なる一方、板状ストッパ部材9の凸部970は、板状バネ部材600の凸部661に接するように重なる。そこで、板状ストッパ部材9の凸部970と板状バネ部材600の凸部661との重なり部分に対して斜め方向あるいは横方向からレーザビームを照射し、板状ストッパ部材9の凸部970と板状バネ部材600の凸部661とを溶接する。その際、板状ストッパ部材9の凸部970と上カバー250の側板部230も溶接される。それ故、板状バネ部材600を上カバー250に連結する工程に連続して、板状ストッパ部材9は、上カバー250に仮固定される。その際、凸部661の先端側全体が溶接による溶融部となるため、凸部661の先端側が側板部230から外側に張り出した状態で残らない。   Next, in the second welding step of the spring member fixing step, as shown in FIGS. 5A, 8C, and 8D, a plate shape is formed on the rear side in the optical axis direction with respect to the plate spring member 600. The stopper member 9 is stacked. As a result, when viewed from the optical axis direction, the convex portions 960 and 970 of the plate-like stopper member 9 overlap with the rear end surface 231 of the side plate portion 230 in the optical axis direction. Here, the second portion 962 formed on the convex portion 960 of the plate-like stopper member 9 overlaps with the rear end surface 231 of the side plate portion 230 in the optical axis direction, while the convex portion 970 of the plate-like stopper member 9 It overlaps so that the convex part 661 of the plate-shaped spring member 600 may be contact | connected. Therefore, a laser beam is irradiated from an oblique direction or a lateral direction to the overlapping portion of the convex portion 970 of the plate-like stopper member 9 and the convex portion 661 of the plate-like spring member 600, and the convex portion 970 of the plate-like stopper member 9 The convex portion 661 of the plate spring member 600 is welded. At that time, the convex portion 970 of the plate-like stopper member 9 and the side plate portion 230 of the upper cover 250 are also welded. Therefore, the plate-like stopper member 9 is temporarily fixed to the upper cover 250 continuously with the step of connecting the plate-like spring member 600 to the upper cover 250. At this time, since the entire tip end side of the convex portion 661 becomes a melted portion by welding, the tip end side of the convex portion 661 does not remain in a state of protruding outward from the side plate portion 230.

また、辺毎に設けられた凸部660のうち、辺の中央側に位置する凸部661の枠部650の延在方向における寸法(幅寸法)は、他の凸部662の幅寸法より大であるため、板状バネ部材600の固定体側連結部620と上カバー250の側板部230とを強固に連結することができる。   Of the protrusions 660 provided for each side, the dimension (width dimension) in the extending direction of the frame part 650 of the protrusion 661 located on the center side of the side is larger than the width dimension of the other protrusions 662. Therefore, the fixed body side connecting portion 620 of the plate spring member 600 and the side plate portion 230 of the upper cover 250 can be firmly connected.

さらに、板状バネ部材600の固定体側連結部620は、四角形の辺毎に溶接用の凸部660を2つ以上備えている。このため、凸部660を溶接個所毎に独立して小さく形成した場合でも、板状バネ部材600の固定体側連結部620と上カバー250の側板部230とを強固に連結することができる。   Furthermore, the fixed body side connecting portion 620 of the plate spring member 600 includes two or more convex portions 660 for welding for each side of the square. For this reason, even when the convex portion 660 is formed to be small for each welded portion, the fixed body side connecting portion 620 of the plate spring member 600 and the side plate portion 230 of the upper cover 250 can be firmly connected.

次に、ストッパ部材固定工程では、板状ストッパ部材9の凸部960に形成した第2部分962に対してレーザビームを照射し、板状ストッパ部材9の凸部960と側板部230とを溶接する。かかる溶接の際、板状ストッパ部材9には、第1部分961より小の板厚をもって光軸方向後側端面231に重なる第2部分962が設けられ、かかる第2部分962で溶接を行う。このため、側板部230および板状ストッパ部材9の双方を溶融させる場合でも、レーザの焦点深度でカバーする範囲が狭くてよいので、レーザ出力を低減することができる。従って、溶接個所を適正に溶融させることができる。それ故、溶融材料の飛散を抑制することができるので、周辺の汚染や、溶接に寄与する溶融部の縮小を抑制することができるとともに、ビードの増大等を抑制することができる。また、コイル部560やフレキシブル配線基板420への溶融材料の飛散を抑制することができるので、飛散物に起因する不具合の発生を抑制することができる。   Next, in the stopper member fixing step, the second portion 962 formed on the convex portion 960 of the plate-like stopper member 9 is irradiated with a laser beam, and the convex portion 960 of the plate-like stopper member 9 and the side plate portion 230 are welded. To do. At the time of such welding, the plate-like stopper member 9 is provided with a second portion 962 that overlaps the rear end surface 231 in the optical axis direction with a smaller plate thickness than the first portion 961, and welding is performed at the second portion 962. For this reason, even when both the side plate portion 230 and the plate-like stopper member 9 are melted, the range covered by the focal depth of the laser may be narrow, so that the laser output can be reduced. Therefore, it is possible to appropriately melt the welded portion. Therefore, scattering of the molten material can be suppressed, so that contamination of the surroundings and reduction of the molten part contributing to welding can be suppressed, and an increase in beads can be suppressed. In addition, since the molten material can be prevented from scattering to the coil portion 560 and the flexible wiring board 420, the occurrence of problems due to the scattered matter can be suppressed.

また、板状ストッパ部材9において溶接個所以外の板厚を大とすることができるので、板状ストッパ部材9においてストッパとして十分に大きな強度を確保することができる。   Further, since the plate thickness of the plate-like stopper member 9 other than the welded portion can be increased, a sufficiently large strength can be secured as a stopper in the plate-like stopper member 9.

(他の実施の形態)
上記実施の形態では、カメラ付き携帯電話機に用いる光学ユニット100に本発明を適用した例を説明したが、薄型のデジタルカメラ等に用いる光学ユニット100に本発明を適用してもよい。また、上記形態では、撮像ユニット1にレンズ駆動機構等が構成されている例を説明したが、撮像ユニット1にレンズ駆動機構が搭載されていない固定焦点タイプの光学ユニットに本発明を適用してもよい。
(Other embodiments)
In the above embodiment, the example in which the present invention is applied to the optical unit 100 used in the camera-equipped mobile phone has been described. However, the present invention may be applied to the optical unit 100 used in a thin digital camera or the like. In the above embodiment, the example in which the lens driving mechanism is configured in the imaging unit 1 has been described. However, the present invention is applied to a fixed focus type optical unit in which the lens driving mechanism is not mounted in the imaging unit 1. Also good.

さらに、本発明を適用した振れ補正機能付きの光学ユニット100は、携帯電話機やデジタルカメラ等の他、冷蔵庫等、一定間隔で振動を有する装置内に固定し、遠隔操作可能にしておくことで、外出先、たとえば買い物の際に、冷蔵庫内部の情報を得ることができるサービスに用いることもできる。かかるサービスでは、姿勢安定化装置付きのカメラシステムであるため、冷蔵庫の振動があっても安定な画像を送信可能である。また、本装置を児童、学生のカバン、ランドセルあるいは帽子等の、通学時に装着するデバイスに固定してもよい。この場合、一定間隔で、周囲の様子を撮影し、あらかじめ定めたサーバへ画像を転送すると、この画像を保護者等が、遠隔地において観察することで、子供の安全を確保することができる。かかる用途では、カメラを意識することなく移動時の振動があっても鮮明な画像を撮影することができる。また、カメラモジュールのほかにGPSを搭載すれば、対象者の位置を同時に取得することも可能となり、万が一の事故の発生時には、場所と状況の確認が瞬時に行える。さらに、本発明を適用した振れ補正機能付きの光学ユニット100を自動車において前方が撮影可能な位置に搭載すれば、ドライブレコーダーとして用いることができる。また、本発明を適用した振れ補正機能付きの光学ユニット100を自動車において前方が撮影可能な位置に搭載して、一定間隔で自動的に周辺の画像を撮影し、決められたサーバに自動転送してもよい。また、カーナビゲーションの道路交通情報通信システム等の渋滞情報と連動させて、この画像を配信することで、渋滞の状況をより詳細に提供することができる。かかるサービスによれば、自動車搭載のドライブレコーダーと同様に事故発生時等の状況を、意図せずに通りがかった第三者が記録し状況の検分に役立てることもできる。また、自動車の振動に影響されることなく鮮明な画像を取得できる。かかる用途の場合、電源をオンにすると、制御部に指令信号が出力され、かかる指令信号に基づいて、振れ制御が開始される。   Furthermore, the optical unit 100 with a shake correction function to which the present invention is applied is fixed in a device having vibrations at regular intervals, such as a refrigerator or the like, in addition to a mobile phone, a digital camera, etc. It can also be used for a service that can obtain information inside the refrigerator when going out, for example, when shopping. In such a service, since it is a camera system with a posture stabilization device, a stable image can be transmitted even if the refrigerator vibrates. Further, the present apparatus may be fixed to a device worn at the time of attending school, such as a student's bag, a student's bag, a school bag, or a hat. In this case, when the surroundings are photographed at regular intervals and the image is transferred to a predetermined server, the guardian or the like can observe the image in a remote place to ensure the safety of the child. In such an application, a clear image can be taken even if there is vibration during movement without being aware of the camera. If a GPS is installed in addition to the camera module, the location of the target person can be acquired at the same time. In the event of an accident, the location and situation can be confirmed instantly. Furthermore, if the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front can be photographed in an automobile, it can be used as a drive recorder. In addition, the optical unit 100 with a shake correction function to which the present invention is applied is mounted at a position where the front of the vehicle can be photographed, and peripheral images are automatically photographed at regular intervals and automatically transferred to a predetermined server. May be. Further, by distributing this image in conjunction with traffic jam information such as a car navigation road traffic information communication system, the traffic jam status can be provided in more detail. According to such a service, the situation at the time of an accident or the like can be recorded unintentionally by a third party who has passed unintentionally as well as a drive recorder mounted on a car, and can be used for inspection of the situation. In addition, a clear image can be acquired without being affected by the vibration of the automobile. In such an application, when the power is turned on, a command signal is output to the control unit, and shake control is started based on the command signal.

また、本発明を適用した振れ補正機能付きの光学ユニット100は、レーザポインタ、携帯用や車載用の投射表示装置や直視型表示装置等、光を出射する光学機器の振れ補正に適用してもよい。また、天体望遠鏡システムあるいは双眼鏡システム等、高倍率での観察において三脚等の補助固定装置を用いることなく観察するのに用いてもよい。また、狙撃用のライフル、あるいは戦車等の砲筒とすることで、トリガ時の振動に対して姿勢の安定化が図れるので、命中精度を高めることができる。   Further, the optical unit 100 with a shake correction function to which the present invention is applied may be applied to shake correction of an optical device that emits light, such as a laser pointer, a portable or vehicle-mounted projection display device, or a direct-view display device. Good. Further, it may be used for observation without using an auxiliary fixing device such as a tripod for observation at a high magnification such as an astronomical telescope system or a binoculars system. In addition, by using a sniper rifle or a gun barrel such as a tank, the posture can be stabilized against vibration at the time of triggering, so that the accuracy of hitting can be improved.

さらに、上記実施の形態では、光学ユニット100に用いた2つの板状部材(上カバー250の側板部230(第1板状部材)および板状ストッパ部材9(第2板状部材))を溶接するにあたって、溶接部(第2部分962)を薄板化したが、モータ等の駆動装置において、コイルを支持するステータコア(第1板状部材)の端面に端板(第2板状部材)等を溶接する場合に溶接部を薄板化してもよい。   Furthermore, in the above embodiment, the two plate-like members used in the optical unit 100 (the side plate portion 230 (first plate-like member) and the plate-like stopper member 9 (second plate-like member) of the upper cover 250) are welded. In order to do this, the welded portion (second portion 962) is thinned. However, in a driving device such as a motor, an end plate (second plate-like member) or the like is attached to the end surface of the stator core (first plate-like member) that supports the coil. When welding, the welded portion may be thinned.

1 撮像ユニット
3 可動体
7 ホルダ
9 板状ストッパ部材
100 振れ補正機能付きの光学ユニット
180 揺動支点
200 固定体
250 上カバー(固定体)
420 フレキシブル配線基板
500 振れ補正用駆動機構
520 永久磁石
600 板状バネ部材
610 可動体側連結部
620 固定体側連結部
630 アーム部
660、661、662 板状バネ部材の凸部
960、970 板状ストッパ部材の凸部
DESCRIPTION OF SYMBOLS 1 Imaging unit 3 Movable body 7 Holder 9 Plate-shaped stopper member 100 Optical unit 180 with a shake correction function Oscillation fulcrum 200 Fixed body 250 Upper cover (fixed body)
420 flexible wiring board 500 shake correction drive mechanism 520 permanent magnet 600 plate spring member 610 movable body side connecting portion 620 fixed body side connecting portion 630 arm portions 660, 661, 662 convex portions 960, 970 of plate spring members Convex part

Claims (6)

光学素子を保持する可動体と、該可動体を変位可能に支持する固定体と、前記可動体を前記固定体に対して変位させる駆動機構と、を有する光学ユニットにおいて、
前記固定体は、前記可動体の側面に対向する金属製の側板部と、該側板部の光軸方向後側端面に対して互いの板厚方向が直交するように重ねられた状態で当該光軸方向後側端面に溶接により固定され、前記可動体の光軸方向後側への可動範囲を規制する金属製の板状ストッパ部材と、を備え、
前記板状ストッパ部材には、光軸方向からみたとき、前記側板部に溶接されずに前記光軸方向後側端面に重なる第1部分と、該第1部分より小の板厚をもって前記光軸方向後側端面に重なって当該光軸方向後側端面と溶接された第2部分と、が設けられていることを特徴とする光学ユニット。
In an optical unit comprising: a movable body that holds an optical element; a fixed body that supports the movable body in a displaceable manner; and a drive mechanism that displaces the movable body relative to the fixed body.
The fixed body is placed in a state where the metal side plate portion facing the side surface of the movable body and the light beam in a state where the plate thickness direction of the side plate portion is perpendicular to the rear end surface in the optical axis direction of the side plate portion. A metal plate-like stopper member fixed to the rear end surface in the axial direction by welding and restricting the movable range of the movable body to the rear side in the optical axis direction,
When viewed from the optical axis direction, the plate-like stopper member includes a first portion that is not welded to the side plate portion and overlaps the rear end surface in the optical axis direction, and the optical axis has a smaller plate thickness than the first portion. An optical unit comprising: a second portion welded to the rear end surface in the optical axis direction so as to overlap the rear end surface in the direction of the optical axis.
前記第1部分の板厚は、前記側板部の板厚より大であることを特徴とする請求項1に記載の光学ユニット。   The optical unit according to claim 1, wherein a thickness of the first portion is larger than a thickness of the side plate portion. 前記駆動機構は、前記可動体の側面に保持された磁石と、前記側板部の内面に保持されたコイルと、該コイルから前記側板部の光軸方向後側から当該側板部の外側に引き出されたフレキシブル配線基板と、を備えていることを特徴とする請求項1または2に記載の光学ユニット。   The drive mechanism is pulled out of the magnet held on the side surface of the movable body, the coil held on the inner surface of the side plate portion, and the outer side of the side plate portion from the rear side in the optical axis direction of the side plate portion. The optical unit according to claim 1, further comprising: a flexible wiring board. 前記固定体において前記可動体に光軸方向後側で対向する底板部と、前記可動体との間には、当該可動体を揺動可能に支持する揺動支点が設けられ、
前記駆動機構は、前記揺動支点を中心に前記可動体を揺動させることを特徴とする請求項1乃至3の何れか一項に記載の光学ユニット。
A swing fulcrum for swingably supporting the movable body is provided between the movable body and the bottom plate portion facing the movable body on the rear side in the optical axis direction in the fixed body.
The optical unit according to any one of claims 1 to 3, wherein the driving mechanism swings the movable body around the swing fulcrum.
前記固定体は、該固定体の側に連結された固定体側連結部、前記可動体の側に連結された可動体側連結部、および前記固定体側連結部と前記可動体側連結部とを結ぶアーム部を備えた板状のバネ部材を介して前記可動体を支持していることを特徴とする請求項1乃至4の何れか一項に記載の光学ユニット。   The fixed body includes a fixed body side connecting portion connected to the fixed body side, a movable body side connecting portion connected to the movable body side, and an arm portion connecting the fixed body side connecting portion and the movable body side connecting portion. 5. The optical unit according to claim 1, wherein the movable body is supported via a plate-like spring member provided with. 光学素子を保持する可動体と、該可動体を変位可能に支持する固定体と、前記可動体を
前記固定体に対して変位させる駆動機構と、を有する光学ユニットの製造方法において、
前記固定体において前記可動体の側面に対向する金属製の側板部の光軸方向後側端面に対して、前記可動体の光軸方向後側への可動範囲を規制する金属製の板状ストッパ部材を互いの板厚方向が直交するように重ねた状態で当該板状ストッパ部材を前記光軸方向後側端面に溶接により固定するにあたっては、
前記板状ストッパ部材には、光軸方向からみたとき、前記光軸方向後側端面に重なる第1部分と、該第1部分より小の板厚をもって前記光軸方向後側端面に重なる第2部分とを設けておき、当該第2部分にレーザビームを照射して前記光軸方向後側端面と溶接することを特徴とする光学ユニットの製造方法。
In a method of manufacturing an optical unit, comprising: a movable body that holds an optical element; a fixed body that supports the movable body in a displaceable manner; and a drive mechanism that displaces the movable body relative to the fixed body.
A metal plate-like stopper that restricts the movable range of the movable body to the rear side in the optical axis direction with respect to the rear end surface in the optical axis direction of the metal side plate portion facing the side surface of the movable body in the fixed body. In fixing the plate stopper member to the rear end surface in the optical axis direction by welding in a state where the members are stacked so that the plate thickness directions are orthogonal to each other,
The plate-like stopper member has a first portion that overlaps the rear end surface in the optical axis direction when viewed from the optical axis direction, and a second portion that overlaps the rear end surface in the optical axis direction with a smaller plate thickness than the first portion. A method of manufacturing an optical unit, wherein the second portion is irradiated with a laser beam and welded to the rear end surface in the optical axis direction.
JP2012223449A 2012-10-05 2012-10-05 Optical unit and method of manufacturing optical unit Expired - Fee Related JP6093137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223449A JP6093137B2 (en) 2012-10-05 2012-10-05 Optical unit and method of manufacturing optical unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223449A JP6093137B2 (en) 2012-10-05 2012-10-05 Optical unit and method of manufacturing optical unit

Publications (2)

Publication Number Publication Date
JP2014074861A JP2014074861A (en) 2014-04-24
JP6093137B2 true JP6093137B2 (en) 2017-03-08

Family

ID=50749033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223449A Expired - Fee Related JP6093137B2 (en) 2012-10-05 2012-10-05 Optical unit and method of manufacturing optical unit

Country Status (1)

Country Link
JP (1) JP6093137B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214247B2 (en) * 2013-07-05 2017-10-18 日本電産サンキョー株式会社 Optical device manufacturing method and optical device
CN204068636U (en) * 2014-07-28 2014-12-31 台湾东电化股份有限公司 Electromagnetic driving module and lens device using same
JP6691001B2 (en) * 2015-07-02 2020-04-28 日本電産サンキョー株式会社 Optical unit with shake correction function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380287B2 (en) * 2003-10-17 2009-12-09 三菱電機株式会社 Lens holder for optical module, optical module, and method for assembling optical module
JP2009075343A (en) * 2007-09-20 2009-04-09 Anritsu Corp Fixing structure for optical component and optical component module equipped with the fixing structure for optical component
JP2010008946A (en) * 2008-06-30 2010-01-14 Nidec Sankyo Corp Lens drive device
JP2010096803A (en) * 2008-10-14 2010-04-30 Nidec Sankyo Corp Optical device for photographing
JP5185088B2 (en) * 2008-11-28 2013-04-17 日本電産サンキョー株式会社 Lens driving device and method of manufacturing lens driving device
JP5295830B2 (en) * 2009-03-17 2013-09-18 アルプス電気株式会社 Lens drive device
JP5698939B2 (en) * 2010-09-07 2015-04-08 日本電産サンキョー株式会社 Optical unit with shake correction function
JP5153916B2 (en) * 2011-05-30 2013-02-27 アルプス電気株式会社 Lens driving device and method of manufacturing lens driving device

Also Published As

Publication number Publication date
JP2014074861A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5893363B2 (en) Optical unit with shake correction function
JP5762087B2 (en) Optical unit with shake correction function
JP5848052B2 (en) Optical unit with shake correction function
JP5828686B2 (en) Optical unit with shake correction function
KR102304583B1 (en) Optical unit with image stabilization functionality
JP5593118B2 (en) Optical unit with shake correction function
WO2015045792A1 (en) Optical unit that has image stabilization functionality
WO2014192538A1 (en) Optical unit with shake correction function
JP6046427B2 (en) Optical unit
JP5993695B2 (en) Optical unit and method of manufacturing optical unit
JP6460745B2 (en) Optical unit with shake correction function
JP6486046B2 (en) Optical unit with shake correction function
JP6483980B2 (en) Optical unit with shake correction function
JP5698939B2 (en) Optical unit with shake correction function
JP6022768B2 (en) Optical unit with shake correction function
JP5755476B2 (en) Optical unit with shake correction function
JP6093137B2 (en) Optical unit and method of manufacturing optical unit
JP5519390B2 (en) Optical unit with shake correction function
JP6182359B2 (en) Optical unit
JP6503172B2 (en) Optical unit with shake correction function, and method of manufacturing optical unit with shake correction function
JP6173695B2 (en) Optical unit
JP5752978B2 (en) Optical unit with shake correction function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6093137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees