WO2013099421A1 - Fibrous carbon-containing resin - Google Patents

Fibrous carbon-containing resin Download PDF

Info

Publication number
WO2013099421A1
WO2013099421A1 PCT/JP2012/077931 JP2012077931W WO2013099421A1 WO 2013099421 A1 WO2013099421 A1 WO 2013099421A1 JP 2012077931 W JP2012077931 W JP 2012077931W WO 2013099421 A1 WO2013099421 A1 WO 2013099421A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous carbon
carbon
resin
containing resin
particles
Prior art date
Application number
PCT/JP2012/077931
Other languages
French (fr)
Japanese (ja)
Inventor
利幸 岡田
英達 戴
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2013099421A1 publication Critical patent/WO2013099421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a fibrous carbon-containing resin.
  • Fibrous carbon includes carbon nanotubes, carbon nanocoils, carbon microtubes, and carbon microcoils.
  • a raw material gas serving as a carbon source is introduced into a reaction tube, and the raw material gas is pyrolyzed and brought into contact with a catalyst-supporting metal, whereby the catalyst-supporting metal has fibrous carbon as a target substance.
  • a chemical vapor deposition (Sodium Vapor Deposition) method that is, a so-called CVD method is known.
  • the carbon nanocoil contained in the electromagnetic wave absorbing sheet is generated on the catalyst-carrying inorganic substrate, and then the catalyst-carrying inorganic substrate (also referred to as a fiber-attached substrate) is used as the machine. It has been peeled off by mechanical or ultrasonic waves. For this reason, when producing carbon nanocoils by CVD, the carbon nanocoils separated from the fiber-attached particles by mechanical or ultrasonic waves, even if the coil length, coil diameter, coil pitch, etc. are controlled.
  • the part has an average length of less than 100 ⁇ m (many less than 40 ⁇ m).
  • the carbon nanocoils thus peeled off from the fiber-attached substrate have a short average length, and are difficult to draw out the original performance of electromagnetic wave absorption (also vibration absorption), and are also expensive materials. There is a problem that the general use range is narrow.
  • an object of the present invention is to provide a fibrous carbon-containing resin that has sufficient electromagnetic wave absorbability and vibration absorbency, which are the original performance, and in which fiber-attached particles are uniformly dispersed in the resin.
  • the fibrous carbon-containing resin of the present invention according to claim 1 is obtained by adding fibrous carbon-attached inorganic particles obtained by generating fibrous carbon to catalyst-supporting inorganic particles by a CVD method. It will be.
  • the fibrous carbon-containing resin of the present invention according to claim 2 is such that the particle diameter of the catalyst-supporting inorganic particles in the fibrous carbon-containing resin of the invention according to claim 1 is 10 ⁇ m or more and 1000 ⁇ m or less.
  • the fibrous carbon-containing resin of the present invention according to claim 3 is such that the fibrous carbon in the fibrous carbon-containing resin of the invention according to claim 1 or 2 is a carbon nanocoil.
  • the fibrous carbon-containing resin of the invention according to claim 1, electromagnetic waves and vibrations can be sufficiently absorbed, and the fibrous carbon-adhered inorganic particles in the fibrous carbon-containing resin are interspersed in the fibrous carbon layer. In other words, it becomes a sponge-like arrangement, and the “apparent specific gravity” becomes small. And there exists an effect of disperse
  • the fibrous carbon-containing resin of the invention according to claim 2 when the particle size is smaller than 10 ⁇ m, it becomes difficult to handle the particles, and the synthesis of the fibrous carbon is hindered. Further, when the particle size is larger than 1000 ⁇ m, the weight of the particles becomes larger than the surface area on which the fibrous carbon is growing, and the particles are likely to precipitate, and it is difficult to uniformly disperse them.
  • the carbon nanocoils are less likely to aggregate, have better dispersibility, and better resin impregnation properties than other fibrous carbons such as carbon nanotubes.
  • the resin since the resin easily penetrates into the carbon nanocoil, the anchor effect can be expected.
  • FIG. 1 is an enlarged conceptual diagram of the fibrous carbon-containing resin 1
  • FIG. 2 is an enlarged photograph of the fibrous carbon-containing resin 1.
  • the fibrous carbon-containing resin 1 is composed of a resin 3 in which a large number of fibrous carbon-attached inorganic particles (hereinafter referred to as fiber-attached particles 2) are dispersed and mixed in a generally uniform manner. Is.
  • the resin 3 used for the fibrous carbon-containing resin 1 may be, for example, either a thermoplastic resin or a thermosetting resin, or may be an elastomer that is an elastic material.
  • examples of the resin 3 include polyvinyl alcohol (PVA), polyethylene (PE), polycarbonate (PC), and polypropylene (PP) in addition to styrene resin, acrylic resin, and urethane resin.
  • the specific gravity of the resin 3 is 0.9 to 1.1 for SBES (styrene elastomer), polyurethane, and epoxy.
  • FIG. 3 is a partially cutaway enlarged conceptual diagram
  • FIG. 4A is an electron micrograph (1000 times)
  • FIG. 4B is an electron micrograph (2000 times) for each of the fiber-attached particles 2.
  • the fiber-attached particles 2 are composed of catalyst-supporting inorganic particles 21 (core inorganic particles supported on a spherical inorganic particle) 21 and carbides formed on the surfaces of the catalyst-supporting inorganic particles 21.
  • the layer 22 is composed of a large number of fibrous carbons 23 formed in the carbide layer 22. As shown in FIG. 3 and FIG. 4A, since the many fibrous carbons 23 are generated so as to cover the surface of the carbide layer 22, each of the fiber-attached particles 2 is formed in a hair shape. .
  • the fibrous carbon 23 is a carbon nanotube, a carbon nanocoil, a carbon microtube, a carbon microcoil, or the like (FIGS. 3 and 4 show a carbon nanocoil as an example).
  • iron, cobalt, nickel, molybdenum or the like is used as the catalyst metal.
  • iron, indium, tin is used as the catalyst metal.
  • Nickel or the like is used.
  • alumina, silicon carbide, silicon nitride, quartz, or silicon is used for the inorganic particles. The specific gravity of the inorganic particles is 3.9 for alumina, 3.2 for silicon carbide and silicon nitride, 2.65 for quartz, and 2.3 for silicon.
  • the inorganic particles preferably have a particle size of 10 ⁇ m or more and 1000 ⁇ m or less. This is because if the particle size is smaller than 10 ⁇ m, it becomes difficult to handle the particles, which hinders the synthesis of carbon nanocoils. Further, when the particle diameter is larger than 1000 ⁇ m, the weight of the particles becomes larger than the surface area on which the coil is growing, the particles are likely to precipitate, and it is difficult to uniformly disperse them.
  • the said inorganic particle is not limited to a spherical form, A particle shape and flat form like a board
  • FIG. 5A and 5B show cross sections of the fiber-attached particles 2 when the fibrous carbon-containing resin 1 shown in FIG. 2 is frozen and cleaved.
  • FIG. 6 shows a cross section of the fiber-attached particle 2 when the fibrous carbon-containing resin 1 shown in FIG. 2 is cut and partially pulled with force.
  • the fibrous carbon 23 in these cases is a carbon nanocoil.
  • a base carbide layer (not fibrous carbon 23) 22 having a thickness of about several ⁇ m is formed around the catalyst-supporting inorganic particles 21.
  • a layer of fibrous carbon 23 (shown as a carbon nanocoil layer in FIGS. 5 and 6) is formed around the carbide layer 22.
  • the carbide layer 22 includes a part of the fibrous carbon 23, but unlike the layer of the fibrous carbon 23, the carbide layer 22 is not a fibrous but a dense mass.
  • the carbide layer 22 is not intentionally formed, but is naturally formed in the process of generating the fibrous carbon 23 on the catalyst-supporting inorganic particles 21 by the CVD method. That is, the fibrous carbon-attached inorganic particles (fiber-attached particles 2) are obtained by forming the fibrous carbon 23 on the catalyst-supporting inorganic particles 21 through the carbide layer 22.
  • a large number of fiber-adhered particles 2 are produced in advance by a CVD method using a flow reactor or the like. Specifically, a large number of catalyst-supported inorganic particles 21 in which a catalyst metal is supported on a large number of inorganic particles are fluidized using a raw material gas containing hydrocarbons and heated, whereby each catalyst-supported inorganic particle 21 The carbide layer 22 is formed, and a large number of fibrous carbons 23 are generated and grown on the carbide layer 22 to form a large number of fiber-attached particles 2.
  • the shape of the fibrous carbon 23 can be appropriately changed by controlling the catalyst composition, growth time, heating temperature, hydrocarbon type, concentration, flow rate, and the like.
  • these many fiber-adhered particles 2 are intermediate products obtained in equipment for producing fibrous carbon 23 by the CVD method. Therefore, in comparison with the production of the fibrous carbon 23 which is the final product of this equipment, the production of the large number of fiber-attached particles 2 does not require a step of peeling the fibrous carbon 23 from the catalyst-supporting inorganic particles 21. , Less man-hours and less costly.
  • a solution in which a resin is dissolved in a solvent (hereinafter referred to as a resin solution) is prepared. And the said many fiber adhesion particle
  • grains 2 are thrown into a resin solution, and are stirred with a stirring apparatus.
  • the resin solution is poured into a mold, dried at room temperature to 80 ° C. for several tens of minutes to several hours, and cured to contain fibrous carbon. Resin 1 is completed.
  • the manufacturing process of the fibrous carbon-containing resin 1 includes the process of generating the fibrous carbon-attached inorganic particles (fiber-attached particles 2) by generating the fibrous carbon 23 on the catalyst-supporting inorganic particles 21 by the CVD method, The step of mixing the carbon-attached inorganic particles into the resin solution, the step of stirring the resin solution containing the fibrous carbon-attached inorganic particles with a stirring device, the step of defoaming the resin solution, and the defoamed resin solution as a mold And a step of drying and curing the resin solution poured into the mold at room temperature to 80 ° C.
  • the solvent may be an organic solvent that can dissolve the resin 3.
  • the organic solvent include chloroform, methyl ethyl ketone (MEK), toluene, terahydrofuran (THF) and the like.
  • the produced fibrous carbon-containing resin 1 is not one in which the fibrous carbon 23 contained is peeled off mechanically or by ultrasonic waves, the average length of the fibrous carbon 23 is long (that is, long). In other words, a space that is not impregnated with the resin 3 is formed in the fibrous carbon 23, so that the fiber-adhered particles 2 can be uniformly dispersed and mixed in the resin 3.
  • the catalyst-carrying inorganic particles 21 from which the fibrous carbon 23 has been peeled have been discarded.
  • the catalyst-carrying inorganic particles 21 produced by the fibrous carbon 23 are used.
  • the recycling process of the catalyst-supporting inorganic particles 21 can be omitted, and the solvent and power required in these processes are greatly reduced, and the waste discharged in these processes is also greatly reduced. The cost can be reduced.
  • the fibrous carbon-containing resin 1 not only absorbs electromagnetic waves and vibrations but also has thermal conductivity, heat resistance, conductivity, lubricity, chemical stability, and water repellency. For this reason, the fibrous carbon-containing resin 1 has a wide range of uses.
  • an electromagnetic wave absorbing material utilizing electromagnetic wave absorbability and conductivity
  • a vibration absorbing material utilizing vibration absorbing property and thermal conductivity
  • Thermal conductive sheet using thermal conductivity and heat resistance
  • Coating material using chemical stability, water repellency and heat resistance anti-seize coating such as frying pan coating) Etc.
  • the fibrous carbon-containing resin 1 has a sponge-like structure as well as a large number of fiber-adhered particles 2 dispersed uniformly in the resin 3.
  • electromagnetic wave absorbability and vibration absorbability can be improved.
  • the conductivity and thermal conductivity of the fibrous carbon-containing resin 1 can be further improved.
  • the mechanical structure is also stable.
  • alumina-supported indium / tin / iron-based metal which is a catalyst metal for producing carbon nanocoils, was supported on alumina particles to obtain catalyst-supported alumina particles.
  • the catalyst-carrying alumina particles are heated to about 700 ° C. in a fluidized bed reactor, and a mixed gas of acetylene gas (an example of a raw material gas) and an inert gas is sprayed onto the heated catalyst-carrying alumina particles.
  • acetylene gas an example of a raw material gas
  • inert gas an inert gas
  • alumina particles to which a large number of carbon nanocoils are attached that is, fiber-attached particles 2 are put into a resin solution in which chloroform solvent is dissolved in SEBS resin (styrene-based thermoplastic elastomer) and mixed, and this resin solution is stirred. Stir in the apparatus.
  • the resin solution was degassed with a centrifugal device or a vacuum device. When the defoamed resin solution was poured into a desired mold and molded, and dried and cured at 50 ° C. for 3 hours, the desired fibrous carbon-containing resin 1 was completed.
  • FIG. 7 the case where only the alumina particle which is an inorganic particle is thrown into the resin 3 and mixed is shown.
  • the specific gravity of the alumina particles is 3.9, whereas the specific gravity of the resin is 0.9 to 1.1. Therefore, as shown in FIG. I confirmed that it would.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Catalysts (AREA)

Abstract

A fibrous carbon-containing resin (1) obtained by introducing fiber-coated particles (2), which are formed by adhering fibrous carbon (23) to catalyst-holding inorganic particles (21) by the CVD method, into a resin (3), wherein the particle diameter of the catalyst-holding inorganic particles (21) is 10-1000 μm inclusive.

Description

繊維状カーボン含有樹脂Fibrous carbon-containing resin
 本発明は、繊維状カーボン含有樹脂に関するものである。 The present invention relates to a fibrous carbon-containing resin.
 繊維状カーボンには、カーボンナノチューブ、カーボンナノコイル、カーボンマイクロチューブ、カーボンマイクロコイルなどがある。繊維状カーボンの製造方法として、炭素源となる原料ガスを反応管内に導入し、この原料ガスを熱分解して触媒担持金属に接触させることで、当該触媒担持金属に目的物質である繊維状カーボンを成長させる化学気相成長(Chemical Vapor Deposition)法、所謂CVD法が知られている。 Fibrous carbon includes carbon nanotubes, carbon nanocoils, carbon microtubes, and carbon microcoils. As a method for producing fibrous carbon, a raw material gas serving as a carbon source is introduced into a reaction tube, and the raw material gas is pyrolyzed and brought into contact with a catalyst-supporting metal, whereby the catalyst-supporting metal has fibrous carbon as a target substance. A chemical vapor deposition (Sodium Vapor Deposition) method, that is, a so-called CVD method is known.
 上記製造方法により製造されたカーボンナノコイルの用途として、カーボンナノコイルおよび樹脂を含有してなる電磁波吸収シートが提案されており(例えば、特許文献1参照)、この電磁波吸収シートは数GHz~数十GHzの電磁波の吸収に対応可能である。 As an application of the carbon nanocoil produced by the above production method, an electromagnetic wave absorbing sheet containing carbon nanocoils and a resin has been proposed (see, for example, Patent Document 1). It can cope with absorption of electromagnetic waves of 10 GHz.
特開2009-60060号公報JP 2009-60060 A
 ところで、上記特許文献1に記載の電磁波吸収シートだと、電磁波吸収シートに含有するカーボンナノコイルは、触媒担持無機基板に生成させた後に、当該触媒担持無機基板(繊維付着基板ともいう)から機械的または超音波などで剥離されたものである。このため、CVD法によってカーボンナノコイルを製造する際に、それらのコイル長さ、コイル径、コイルピッチなどを制御しても、機械的または超音波などで繊維付着粒子から剥離されたカーボンナノコイル部は、平均長さが100μm未満(多くは40μm未満)となる。このように繊維付着基板から剥離されたカーボンナノコイルは平均長さが短くなり、本来の性能である電磁波吸収性を(振動吸収性も)十分に引き出しにくく、また高価な材料でもあるので、工業的な利用範囲が狭いという課題を有する。 By the way, in the electromagnetic wave absorbing sheet described in Patent Document 1, the carbon nanocoil contained in the electromagnetic wave absorbing sheet is generated on the catalyst-carrying inorganic substrate, and then the catalyst-carrying inorganic substrate (also referred to as a fiber-attached substrate) is used as the machine. It has been peeled off by mechanical or ultrasonic waves. For this reason, when producing carbon nanocoils by CVD, the carbon nanocoils separated from the fiber-attached particles by mechanical or ultrasonic waves, even if the coil length, coil diameter, coil pitch, etc. are controlled. The part has an average length of less than 100 μm (many less than 40 μm). The carbon nanocoils thus peeled off from the fiber-attached substrate have a short average length, and are difficult to draw out the original performance of electromagnetic wave absorption (also vibration absorption), and are also expensive materials. There is a problem that the general use range is narrow.
 そこで、本発明者らは上記の課題に鑑み鋭意研究を重ねた結果、本発明を完成するに至った。すなわち、本発明は、本来の性能である電磁波吸収性および振動吸収性を十分に有し、繊維付着粒子が樹脂内で均一に分散する繊維状カーボン含有樹脂を提供することを目的とする。 Therefore, as a result of intensive studies in view of the above problems, the present inventors have completed the present invention. That is, an object of the present invention is to provide a fibrous carbon-containing resin that has sufficient electromagnetic wave absorbability and vibration absorbency, which are the original performance, and in which fiber-attached particles are uniformly dispersed in the resin.
 上記課題を解決するため、請求項1に係る本発明の繊維状カーボン含有樹脂は、CVD法により触媒担持無機粒子に繊維状カーボンを生成させた繊維状カーボン付着無機粒子を、樹脂に含有させてなるものである。 In order to solve the above-mentioned problem, the fibrous carbon-containing resin of the present invention according to claim 1 is obtained by adding fibrous carbon-attached inorganic particles obtained by generating fibrous carbon to catalyst-supporting inorganic particles by a CVD method. It will be.
 また、請求項2に係る本発明の繊維状カーボン含有樹脂は、請求項1に係る発明の繊維状カーボン含有樹脂における触媒担持無機粒子の粒径が10μm以上1000μm以下であるものである。 Further, the fibrous carbon-containing resin of the present invention according to claim 2 is such that the particle diameter of the catalyst-supporting inorganic particles in the fibrous carbon-containing resin of the invention according to claim 1 is 10 μm or more and 1000 μm or less.
 また、請求項3に係る本発明の繊維状カーボン含有樹脂は、請求項1または2に係る発明の繊維状カーボン含有樹脂における繊維状カーボンがカーボンナノコイルであるものである。 The fibrous carbon-containing resin of the present invention according to claim 3 is such that the fibrous carbon in the fibrous carbon-containing resin of the invention according to claim 1 or 2 is a carbon nanocoil.
 請求項1に係る発明の繊維状カーボン含有樹脂によると、電磁波および振動を十分に吸収することができ、また、繊維状カーボン含有樹脂における繊維状カーボン付着無機粒子は、繊維状カーボンの層に空間が生じた配置、つまりスポンジ状になり、「見掛けの比重」が小さくなる。そして、樹脂内で均一に分散するという効果を奏する。 According to the fibrous carbon-containing resin of the invention according to claim 1, electromagnetic waves and vibrations can be sufficiently absorbed, and the fibrous carbon-adhered inorganic particles in the fibrous carbon-containing resin are interspersed in the fibrous carbon layer. In other words, it becomes a sponge-like arrangement, and the “apparent specific gravity” becomes small. And there exists an effect of disperse | distributing uniformly within resin.
 また、請求項2に係る発明の繊維状カーボン含有樹脂によると、粒径が10μmより小さくなると、粒子の取り扱いが困難となり、繊維状カーボンの合成に支障を生じる。また、粒径が1000μmより大きくなると繊維状カーボンが成長している表面積に比べ粒子の重量が大きくなり、沈殿しやすくなり、均一に分散させることが難しくなるからである。 In addition, according to the fibrous carbon-containing resin of the invention according to claim 2, when the particle size is smaller than 10 μm, it becomes difficult to handle the particles, and the synthesis of the fibrous carbon is hindered. Further, when the particle size is larger than 1000 μm, the weight of the particles becomes larger than the surface area on which the fibrous carbon is growing, and the particles are likely to precipitate, and it is difficult to uniformly disperse them.
 さらに、請求項3に係る発明の繊維状カーボン含有樹脂によると、カーボンナノコイルはカーボンナノチューブなどの他繊維状カーボンに比べ、凝集しにくく、分散性に優れ、樹脂の含浸性が良い。また、カーボンナノコイルの中に樹脂が浸透し易いので、アンカー効果も期待できるという効果を奏する Furthermore, according to the fibrous carbon-containing resin of the invention according to claim 3, the carbon nanocoils are less likely to aggregate, have better dispersibility, and better resin impregnation properties than other fibrous carbons such as carbon nanotubes. In addition, since the resin easily penetrates into the carbon nanocoil, the anchor effect can be expected.
本発明の実施の形態に係る繊維状カーボン含有樹脂の拡大概念図である。It is an expansion conceptual diagram of the fibrous carbon containing resin which concerns on embodiment of this invention. 同繊維状カーボン含有樹脂の拡大写真である。It is an enlarged photograph of the fibrous carbon-containing resin. 同繊維状カーボン含有樹脂に混合した繊維付着粒子の一部切欠拡大概念図である。It is a partial notch expansion conceptual diagram of the fiber adhesion particle mixed with the fibrous carbon containing resin. 同繊維付着粒子を1000倍に拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the fiber adhesion particle 1000 times. 同繊維付着粒子を2000倍に拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the fiber adhesion particle 2000 times. 同繊維状カーボン含有樹脂を凍結させて割断した場合の繊維付着粒子の断面を1000倍に拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the cross section of the fiber adhesion particle at the time of freezing and cleaving the fibrous carbon containing resin 1000 times. 同繊維状カーボン含有樹脂を凍結させて割断した場合の繊維付着粒子の断面を5000倍に拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the cross section of the fiber adhesion particle at the time of freezing and cleaving the fibrous carbon containing resin 5000 times. 同繊維状カーボン含有樹脂を切断して部分的に力を加えて引っ張った場合の繊維付着粒子の断面を5000倍に拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the cross section of the fiber adhesion particle | grains at the time of cut | disconnecting the fibrous carbon containing resin and applying a force partially, and pulling it 5000 times. アルミナ粒子が混合された樹脂溶液の拡大写真である。It is an enlarged photograph of the resin solution with which alumina particles were mixed.
 以下、本発明の実施の形態に係る繊維状カーボン含有樹脂について図1~図6に基づき説明する。 Hereinafter, the fibrous carbon-containing resin according to the embodiment of the present invention will be described with reference to FIGS.
 図1は上記繊維状カーボン含有樹脂1の拡大概念図、図2は上記繊維状カーボン含有樹脂1の拡大写真を示す図である。図1および図2に示すように、上記繊維状カーボン含有樹脂1は、多数の繊維状カーボン付着無機粒子(以下、繊維付着粒子2という)が概ね均一に分散して混合された樹脂3からなるものである。 FIG. 1 is an enlarged conceptual diagram of the fibrous carbon-containing resin 1, and FIG. 2 is an enlarged photograph of the fibrous carbon-containing resin 1. As shown in FIGS. 1 and 2, the fibrous carbon-containing resin 1 is composed of a resin 3 in which a large number of fibrous carbon-attached inorganic particles (hereinafter referred to as fiber-attached particles 2) are dispersed and mixed in a generally uniform manner. Is.
 ところで、繊維状カーボン含有樹脂1に使用する樹脂3は、例えば、熱可塑性樹脂および熱硬化性樹脂のいずれでもよく、また、弾性材料であるエラストマーであってもよい。具体的には、樹脂3の例として、スチレン系樹脂、アクリル系樹脂、ウレタン系樹脂のほか、ポリビニルアルコール(PVA)、ポリエチレン(PE)、ポリカーボネート(PC)、ポリプロピレン(PP)などが挙げられる。なお、樹脂3の比重は、SBES(スチレン系エラストマー)・ポリウレタン・エポキシが0.9~1.1となる。 Incidentally, the resin 3 used for the fibrous carbon-containing resin 1 may be, for example, either a thermoplastic resin or a thermosetting resin, or may be an elastomer that is an elastic material. Specifically, examples of the resin 3 include polyvinyl alcohol (PVA), polyethylene (PE), polycarbonate (PC), and polypropylene (PP) in addition to styrene resin, acrylic resin, and urethane resin. The specific gravity of the resin 3 is 0.9 to 1.1 for SBES (styrene elastomer), polyurethane, and epoxy.
 上記各繊維付着粒子2について、図3に一部切欠拡大概念図、図4Aに電子顕微鏡写真(1000倍)、図4Bに電子顕微鏡写真(2000倍)を示す。図3に示すように、繊維付着粒子2は、核となる触媒担持無機粒子(球形の無機粒子に触媒金属を担持させたもの)21と、この触媒担持無機粒子21の表面に形成された炭化物層22と、この炭化物層22に生成した多数の繊維状カーボン23とから構成されている。図3および図4Aに示すように、上記多数の繊維状カーボン23は、炭化物層22の表面を覆うように生成しているので、上記各繊維付着粒子2は、毛毬状に形成されている。 FIG. 3 is a partially cutaway enlarged conceptual diagram, FIG. 4A is an electron micrograph (1000 times), and FIG. 4B is an electron micrograph (2000 times) for each of the fiber-attached particles 2. As shown in FIG. 3, the fiber-attached particles 2 are composed of catalyst-supporting inorganic particles 21 (core inorganic particles supported on a spherical inorganic particle) 21 and carbides formed on the surfaces of the catalyst-supporting inorganic particles 21. The layer 22 is composed of a large number of fibrous carbons 23 formed in the carbide layer 22. As shown in FIG. 3 and FIG. 4A, since the many fibrous carbons 23 are generated so as to cover the surface of the carbide layer 22, each of the fiber-attached particles 2 is formed in a hair shape. .
 ところで、上記繊維状カーボン23は、カーボンナノチューブ、カーボンナノコイル、カーボンマイクロチューブ、カーボンマイクロコイルなどである(図3および図4には一例としてカーボンナノコイルを示す)。また、繊維状カーボン23がカーボンナノチューブの場合、触媒金属には、鉄、コバルト、ニッケル、モリブデンなどが用いられ、繊維状カーボン23がカーボンナノコイルの場合、触媒金属には、鉄、インジウム、スズ、ニッケルなどが用いられる。さらに、上記無機粒子には、アルミナ、炭化珪素、窒化珪素、石英、シリコンが用いられる。なお、無機粒子の比重は、アルミナが3.9、炭化珪素、窒化珪素が3.2、石英が2.65、シリコンが2.3である。 Incidentally, the fibrous carbon 23 is a carbon nanotube, a carbon nanocoil, a carbon microtube, a carbon microcoil, or the like (FIGS. 3 and 4 show a carbon nanocoil as an example). When the fibrous carbon 23 is a carbon nanotube, iron, cobalt, nickel, molybdenum or the like is used as the catalyst metal. When the fibrous carbon 23 is a carbon nanocoil, iron, indium, tin is used as the catalyst metal. Nickel or the like is used. Furthermore, alumina, silicon carbide, silicon nitride, quartz, or silicon is used for the inorganic particles. The specific gravity of the inorganic particles is 3.9 for alumina, 3.2 for silicon carbide and silicon nitride, 2.65 for quartz, and 2.3 for silicon.
 また、上記無機粒子は、粒径が10μm以上1000μm以下のものが好ましい。なぜなら、粒径が10μmより小さくなると、粒子の取り扱いが困難となり、カーボンナノコイルの合成に支障を生じる。また、粒径が1000μmより大きくなるとコイルが成長している表面積に比べ粒子の重量が大きくなり、沈殿しやすくなり、均一に分散させることが難しくなるからである。なお、上記無機粒子は、球形に限定されるものではなく、粒子形状や、基板のような平板形状であってもよい。 The inorganic particles preferably have a particle size of 10 μm or more and 1000 μm or less. This is because if the particle size is smaller than 10 μm, it becomes difficult to handle the particles, which hinders the synthesis of carbon nanocoils. Further, when the particle diameter is larger than 1000 μm, the weight of the particles becomes larger than the surface area on which the coil is growing, the particles are likely to precipitate, and it is difficult to uniformly disperse them. In addition, the said inorganic particle is not limited to a spherical form, A particle shape and flat form like a board | substrate may be sufficient.
 図5AおよびBには、図2に示す繊維状カーボン含有樹脂1を凍結させて割断した場合の繊維付着粒子2の断面を示す。また、図6には、図2に示す繊維状カーボン含有樹脂1を切断して部分的に力を加えて引っ張った場合の繊維付着粒子2の断面を示す。なお、これらの場合の繊維状カーボン23は、カーボンナノコイルである。 5A and 5B show cross sections of the fiber-attached particles 2 when the fibrous carbon-containing resin 1 shown in FIG. 2 is frozen and cleaved. FIG. 6 shows a cross section of the fiber-attached particle 2 when the fibrous carbon-containing resin 1 shown in FIG. 2 is cut and partially pulled with force. In addition, the fibrous carbon 23 in these cases is a carbon nanocoil.
 図5AおよびB並びに図6に示すように、触媒担持無機粒子21の周囲には、数μm程度の厚みの下地の炭化物層(繊維状カーボン23ではない)22が形成されている。そして、炭化物層22の周囲に、繊維状カーボン23の層(図5および図6にはカーボンナノコイルの層として示す)が形成されている。厳密に説明すると、炭化物層22は、繊維状カーボン23の一部を含むが、繊維状カーボン23の層とは異なり、繊維状ではなく密な固まりである。なお、炭化物層22は、意図的に形成させるものではなく、CVD法により触媒担持無機粒子21に繊維状カーボン23を生成する過程で、自然に形成されるものである。すなわち、繊維状カーボン付着無機粒子(繊維付着粒子2)は、触媒担持無機粒子21に炭化物層22を介して繊維状カーボン23を生成させたものである。 As shown in FIGS. 5A and 5 and FIG. 6, a base carbide layer (not fibrous carbon 23) 22 having a thickness of about several μm is formed around the catalyst-supporting inorganic particles 21. A layer of fibrous carbon 23 (shown as a carbon nanocoil layer in FIGS. 5 and 6) is formed around the carbide layer 22. Strictly speaking, the carbide layer 22 includes a part of the fibrous carbon 23, but unlike the layer of the fibrous carbon 23, the carbide layer 22 is not a fibrous but a dense mass. The carbide layer 22 is not intentionally formed, but is naturally formed in the process of generating the fibrous carbon 23 on the catalyst-supporting inorganic particles 21 by the CVD method. That is, the fibrous carbon-attached inorganic particles (fiber-attached particles 2) are obtained by forming the fibrous carbon 23 on the catalyst-supporting inorganic particles 21 through the carbide layer 22.
 一方、図6に示すように、繊維状カーボン23の層には、樹脂3が含浸しにくいため、樹脂3が含浸しない空間が生じている。このようなスポンジ状の構造によって、上記繊維状カーボン含有樹脂1における繊維付着粒子2は、「見掛けの比重」が小さくなり、樹脂3内で均一に分散する。 On the other hand, as shown in FIG. 6, since the resin 3 is difficult to be impregnated in the layer of the fibrous carbon 23, a space not impregnated with the resin 3 is generated. With such a spongy structure, the fiber-attached particles 2 in the fibrous carbon-containing resin 1 have a smaller “apparent specific gravity” and are uniformly dispersed in the resin 3.
 次に、上記繊維状カーボン含有樹脂1の製造方法について説明する。 Next, a method for producing the fibrous carbon-containing resin 1 will be described.
 予め、多数の繊維付着粒子2を、流動反応装置などを使用してCVD法で製造しておく。具体的には、触媒金属を多数の無機粒子に担持させた多数の触媒担持無機粒子21を、炭化水素を含む原料ガスを用いて流動化させるとともに加熱することで、各触媒担持無機粒子21に炭化物層22を形成するとともに、炭化物層22に多数の繊維状カーボン23を生成および成長させて、多数の繊維付着粒子2とする。なお、CVD法では、触媒組成、成長時間、加熱温度、並びに炭化水素の種類、濃度および流量などを制御することによって、繊維状カーボン23の形状を適宜変更することができる。 A large number of fiber-adhered particles 2 are produced in advance by a CVD method using a flow reactor or the like. Specifically, a large number of catalyst-supported inorganic particles 21 in which a catalyst metal is supported on a large number of inorganic particles are fluidized using a raw material gas containing hydrocarbons and heated, whereby each catalyst-supported inorganic particle 21 The carbide layer 22 is formed, and a large number of fibrous carbons 23 are generated and grown on the carbide layer 22 to form a large number of fiber-attached particles 2. In the CVD method, the shape of the fibrous carbon 23 can be appropriately changed by controlling the catalyst composition, growth time, heating temperature, hydrocarbon type, concentration, flow rate, and the like.
 ところで、これら多数の繊維付着粒子2は、正確にいえば、CVD法で繊維状カーボン23を製造する設備で得られる中間生成物である。したがって、この設備の最終製品である繊維状カーボン23の製造に比べて、上記多数の繊維付着粒子2の製造は、繊維状カーボン23を触媒担持無機粒子21から剥離する工程などが不要であるから、工数が少なく、より低コストで行われる。 By the way, these many fiber-adhered particles 2 are intermediate products obtained in equipment for producing fibrous carbon 23 by the CVD method. Therefore, in comparison with the production of the fibrous carbon 23 which is the final product of this equipment, the production of the large number of fiber-attached particles 2 does not require a step of peeling the fibrous carbon 23 from the catalyst-supporting inorganic particles 21. , Less man-hours and less costly.
 一方で、樹脂を溶剤に溶解させた溶液(以下、樹脂溶液という)を準備しておく。そして、上記多数の繊維付着粒子2を樹脂溶液に投入して、攪拌装置で攪拌する。次に、樹脂溶液を遠心装置や真空装置で脱泡(気泡を除去)した上で、型に流し込み、室温~80℃で数十分~数時間、乾燥させて硬化させると、繊維状カーボン含有樹脂1が完成する。 Meanwhile, a solution in which a resin is dissolved in a solvent (hereinafter referred to as a resin solution) is prepared. And the said many fiber adhesion particle | grains 2 are thrown into a resin solution, and are stirred with a stirring apparatus. Next, after defoaming (removing bubbles) with a centrifuge or vacuum device, the resin solution is poured into a mold, dried at room temperature to 80 ° C. for several tens of minutes to several hours, and cured to contain fibrous carbon. Resin 1 is completed.
 すなわち、繊維状カーボン含有樹脂1の製造工程は、CVD法により触媒担持無機粒子21に繊維状カーボン23を生成させて繊維状カーボン付着無機粒子(繊維付着粒子2)を製造する工程と、繊維状カーボン付着無機粒子を樹脂溶液に混合させる工程と、繊維状カーボン付着無機粒子を含有する樹脂溶液を攪拌装置で攪拌する工程と、樹脂溶液を脱泡する工程と、脱泡された樹脂溶液を型に流し込む工程と、型に流し込まれた樹脂溶液を室温~80℃で乾燥させて硬化させる工程とを有する。 That is, the manufacturing process of the fibrous carbon-containing resin 1 includes the process of generating the fibrous carbon-attached inorganic particles (fiber-attached particles 2) by generating the fibrous carbon 23 on the catalyst-supporting inorganic particles 21 by the CVD method, The step of mixing the carbon-attached inorganic particles into the resin solution, the step of stirring the resin solution containing the fibrous carbon-attached inorganic particles with a stirring device, the step of defoaming the resin solution, and the defoamed resin solution as a mold And a step of drying and curing the resin solution poured into the mold at room temperature to 80 ° C.
 ところで、上記溶剤は、樹脂3を溶解させ得る有機溶媒であればよい。有機溶媒の例として、クロロホルム、メチルエチルケトン(MEK)、トルエン、テラヒドロフラン(THF)などが挙げられる。 By the way, the solvent may be an organic solvent that can dissolve the resin 3. Examples of the organic solvent include chloroform, methyl ethyl ketone (MEK), toluene, terahydrofuran (THF) and the like.
 このように、製造された繊維状カーボン含有樹脂1は、含有する繊維状カーボン23が機械的または超音波などで剥離されたものではないため、繊維状カーボン23の平均長さが長く(つまり長尺であり)、繊維状カーボン23において樹脂3が含浸しない空間が生ずることで、繊維付着粒子2を樹脂3に均一に分散して混合することができる。 Thus, since the produced fibrous carbon-containing resin 1 is not one in which the fibrous carbon 23 contained is peeled off mechanically or by ultrasonic waves, the average length of the fibrous carbon 23 is long (that is, long). In other words, a space that is not impregnated with the resin 3 is formed in the fibrous carbon 23, so that the fiber-adhered particles 2 can be uniformly dispersed and mixed in the resin 3.
 また、従来では、繊維状カーボン23が剥離された触媒担持無機粒子21が廃棄されていたが、本発明では、繊維状カーボン23が生成した触媒担持無機粒子21を使用するので、繊維状カーボン23の剥離工程および触媒担持無機粒子21のリサイクル工程を省略でき、これらの工程で必要な溶剤および電力が大幅に減少するとともに、これらの工程で排出される廃棄物も大幅に減少するので、全体的にコストダウンすることができる。 Conventionally, the catalyst-carrying inorganic particles 21 from which the fibrous carbon 23 has been peeled have been discarded. However, in the present invention, the catalyst-carrying inorganic particles 21 produced by the fibrous carbon 23 are used. And the recycling process of the catalyst-supporting inorganic particles 21 can be omitted, and the solvent and power required in these processes are greatly reduced, and the waste discharged in these processes is also greatly reduced. The cost can be reduced.
 さらに、上記繊維状カーボン含有樹脂1は、電磁波および振動を吸収するだけでなく、熱伝導性、耐熱性、導電性、潤滑性、化学安定性および撥水性を有するものである。このため、上記繊維状カーボン含有樹脂1は用途が広く、例えば、(1)電磁波吸収性および導電性を利用した電磁波吸収材、(2)振動吸収性および熱伝導性を利用した振動吸収材、(3)熱伝導性および耐熱性を利用した熱伝導シート、(4)熱伝導性、耐熱性、潤滑性および振動吸収性を利用した摩擦低減用または安定摩擦用の摺動材(摩擦低減用摺動材としては敷居すべり、安定摩擦用摺動材としてはブレーキパッドやクラッチプレートなど)、(5)化学安定性、撥水性および耐熱性を利用したコート材(フライパンコートのような焼付防止コートなど)、(6)電磁波吸収性、化学安定性、撥水性および耐熱性を利
用した加熱容器(電子レンジ用容器など)に用いられることができる。
Further, the fibrous carbon-containing resin 1 not only absorbs electromagnetic waves and vibrations but also has thermal conductivity, heat resistance, conductivity, lubricity, chemical stability, and water repellency. For this reason, the fibrous carbon-containing resin 1 has a wide range of uses. For example, (1) an electromagnetic wave absorbing material utilizing electromagnetic wave absorbability and conductivity, (2) a vibration absorbing material utilizing vibration absorbing property and thermal conductivity, (3) Thermal conductive sheet using thermal conductivity and heat resistance, (4) Sliding material for friction reduction or stable friction using thermal conductivity, heat resistance, lubricity and vibration absorption (for friction reduction) Sliding material as sliding material, and brake pad and clutch plate as sliding material for stable friction), (5) Coating material using chemical stability, water repellency and heat resistance (anti-seize coating such as frying pan coating) Etc.), (6) It can be used for heating containers (such as microwave oven containers) utilizing electromagnetic wave absorption, chemical stability, water repellency and heat resistance.
 また、上記繊維状カーボン含有樹脂1は、その多数の繊維付着粒子2が、樹脂3内で均一に分散するだけでなく、スポンジ状の構造をしているので、従来の繊維状カーボン含有樹脂よりも、電磁波吸収性および振動吸収性を向上させることができる。 In addition, the fibrous carbon-containing resin 1 has a sponge-like structure as well as a large number of fiber-adhered particles 2 dispersed uniformly in the resin 3. In addition, electromagnetic wave absorbability and vibration absorbability can be improved.
 さらに、樹脂3内の繊維付着粒子2を互いに繊維状カーボン23で接触させることで、繊維状カーボン含有樹脂1については、導電性および熱伝導性を一層向上させることができ、繊維付着粒子2の機械的な構造も安定する。 Furthermore, by bringing the fiber-attached particles 2 in the resin 3 into contact with each other with the fibrous carbon 23, the conductivity and thermal conductivity of the fibrous carbon-containing resin 1 can be further improved. The mechanical structure is also stable.
 以下、上記実施の形態をより具体的に示した実施例に係る繊維状カーボン含有樹脂1について説明する。なお、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the fibrous carbon-containing resin 1 according to an example showing the above embodiment more specifically will be described. The present invention is not limited to the following examples.
 本実施例では、繊維状カーボン23としてカーボンナノコイルを製造し、無機粒子にアルミナ粒子を用いた場合について説明する。 In this example, a case where a carbon nanocoil is manufactured as the fibrous carbon 23 and alumina particles are used as inorganic particles will be described.
 まず、アルミナ粒子に、カーボンナノコイルを製造するための触媒金属であるインジウム・スズ・鉄系の金属を担持させて、触媒担持アルミナ粒子とした。 First, alumina-supported indium / tin / iron-based metal, which is a catalyst metal for producing carbon nanocoils, was supported on alumina particles to obtain catalyst-supported alumina particles.
 次に、触媒担持アルミナ粒子を流動層反応装置で700℃程度に加熱し、これら加熱された触媒担持アルミナ粒子に、アセチレンガス(原料ガスの一例である)と不活性ガスとの混合ガスを吹き付けて(つまりCVD法により)、好適にカーボンナノコイルを製造した。 Next, the catalyst-carrying alumina particles are heated to about 700 ° C. in a fluidized bed reactor, and a mixed gas of acetylene gas (an example of a raw material gas) and an inert gas is sprayed onto the heated catalyst-carrying alumina particles. Thus, carbon nanocoils were suitably manufactured (by CVD method).
 そして、これら多数のカーボンナノコイルが付着したアルミナ粒子、すなわち繊維付着粒子2を、SEBS樹脂(スチレン系熱可塑性エラストマー)にクロロホルム溶媒を溶かした樹脂溶液に投入して混合し、この樹脂溶液を攪拌装置で攪拌した。次に、樹脂溶液を遠心装置や真空装置で脱泡した。脱泡された樹脂溶液を所望の型に流し込んで成形するとともに、50℃で3時間乾燥させて硬化させると、所望の繊維状カーボン含有樹脂1が完成した。 Then, alumina particles to which a large number of carbon nanocoils are attached, that is, fiber-attached particles 2 are put into a resin solution in which chloroform solvent is dissolved in SEBS resin (styrene-based thermoplastic elastomer) and mixed, and this resin solution is stirred. Stir in the apparatus. Next, the resin solution was degassed with a centrifugal device or a vacuum device. When the defoamed resin solution was poured into a desired mold and molded, and dried and cured at 50 ° C. for 3 hours, the desired fibrous carbon-containing resin 1 was completed.
比較例Comparative example
 図7には、無機粒子であるアルミナ粒子のみを樹脂3に投入して混合した場合を示す。この場合、アルミナ粒子の比重が3.9であるのに対して、樹脂の比重が0.9~1.1であるため、図7に示すように、樹脂内のアルミナ粒子が比重差で沈殿してしまうことを確認した。
 
 
In FIG. 7, the case where only the alumina particle which is an inorganic particle is thrown into the resin 3 and mixed is shown. In this case, the specific gravity of the alumina particles is 3.9, whereas the specific gravity of the resin is 0.9 to 1.1. Therefore, as shown in FIG. I confirmed that it would.

Claims (3)

  1.  CVD法により触媒担持無機粒子に繊維状カーボンを生成させた繊維状カーボン付着無機粒子を、樹脂に含有させてなることを特徴とする繊維状カーボン含有樹脂。 A fibrous carbon-containing resin comprising fibrous carbon-attached inorganic particles obtained by forming fibrous carbon in catalyst-supporting inorganic particles by a CVD method.
  2.  触媒担持無機粒子の粒径が10μm以上1000μm以下であることを特徴とする請求項1に記載の繊維状カーボン含有樹脂。 2. The fibrous carbon-containing resin according to claim 1, wherein the particle diameter of the catalyst-supporting inorganic particles is 10 μm or more and 1000 μm or less.
  3.  繊維状カーボンがカーボンナノコイルであることを特徴とする請求項1または2に記載の繊維状カーボン含有樹脂。
     
    The fibrous carbon-containing resin according to claim 1 or 2, wherein the fibrous carbon is a carbon nanocoil.
PCT/JP2012/077931 2011-12-26 2012-10-30 Fibrous carbon-containing resin WO2013099421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011282568A JP2013135005A (en) 2011-12-26 2011-12-26 Fibrous carbon-containing resin
JP2011-282568 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099421A1 true WO2013099421A1 (en) 2013-07-04

Family

ID=48696923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077931 WO2013099421A1 (en) 2011-12-26 2012-10-30 Fibrous carbon-containing resin

Country Status (3)

Country Link
JP (1) JP2013135005A (en)
TW (1) TW201326273A (en)
WO (1) WO2013099421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406145A (en) * 2020-09-27 2021-02-26 江苏海美新材料有限公司 High-uniformity preparation process of PVC (polyvinyl chloride) antibacterial film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076980B2 (en) * 2017-10-13 2022-05-30 株式会社Kri Thermal storage heat conductive particles and resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082829A1 (en) * 2005-02-02 2006-08-10 Otsuka Chemical Co., Ltd. Carbon nanotube-loaded inorganic particle
JP2007314776A (en) * 2006-04-24 2007-12-06 Osaka Gas Co Ltd Electroconductive composition using carbon coil and electroconductive film therefrom
WO2007148820A1 (en) * 2006-06-23 2007-12-27 Sakai Ovex Co., Ltd. Resin material
WO2008035730A1 (en) * 2006-09-22 2008-03-27 Otsuka Chemical Co., Ltd. Metal oxide particles carrying carbon nanotubes and granular carbon nanotubes
JP2009060060A (en) * 2007-09-03 2009-03-19 Osaka Industrial Promotion Organization Electromagnetic wave absorbing sheet
JP2009214021A (en) * 2008-03-11 2009-09-24 Japan Fine Ceramics Center Catalyst for producing carbon nanocoil, its manufacturing method, and method for producing carbon nanocoil
WO2010101215A1 (en) * 2009-03-05 2010-09-10 昭和電工株式会社 Carbon fiber agglomerates and process for production of same
JP2011132362A (en) * 2009-12-24 2011-07-07 Nippon Kayaku Co Ltd Electroconductive resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082829A1 (en) * 2005-02-02 2006-08-10 Otsuka Chemical Co., Ltd. Carbon nanotube-loaded inorganic particle
JP2007314776A (en) * 2006-04-24 2007-12-06 Osaka Gas Co Ltd Electroconductive composition using carbon coil and electroconductive film therefrom
WO2007148820A1 (en) * 2006-06-23 2007-12-27 Sakai Ovex Co., Ltd. Resin material
WO2008035730A1 (en) * 2006-09-22 2008-03-27 Otsuka Chemical Co., Ltd. Metal oxide particles carrying carbon nanotubes and granular carbon nanotubes
JP2009060060A (en) * 2007-09-03 2009-03-19 Osaka Industrial Promotion Organization Electromagnetic wave absorbing sheet
JP2009214021A (en) * 2008-03-11 2009-09-24 Japan Fine Ceramics Center Catalyst for producing carbon nanocoil, its manufacturing method, and method for producing carbon nanocoil
WO2010101215A1 (en) * 2009-03-05 2010-09-10 昭和電工株式会社 Carbon fiber agglomerates and process for production of same
JP2011132362A (en) * 2009-12-24 2011-07-07 Nippon Kayaku Co Ltd Electroconductive resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406145A (en) * 2020-09-27 2021-02-26 江苏海美新材料有限公司 High-uniformity preparation process of PVC (polyvinyl chloride) antibacterial film

Also Published As

Publication number Publication date
JP2013135005A (en) 2013-07-08
TW201326273A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
CN102084045B (en) Carbon fiber and composite material
JP2007115854A (en) Electromagnetic wave absorber
Tang et al. Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils
KR100682445B1 (en) Composite material
JP2008248457A (en) Carbon fiber composite and method for producing the carbon fiber composite
Ago et al. Roles of metal− support interaction in growth of single-and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO
JP2008163535A (en) Carbon fiber composite structure and method for producing the carbon fiber composite structure
WO2006100877A1 (en) Carbon fiber conjugate and composite material using the same
CN103041758B (en) Magnetic hollow multihole carbon ball with core-shell structure and preparation method of magnetic hollow multihole carbon ball
JP2008045124A (en) Cnt/polymer composite material
JP2012512118A (en) Tightly bonded carbon nanotube array grown directly on a substrate and method for producing the same
KR20080030064A (en) Electromagnetic wave absorber
WO2007058300A1 (en) Composite material
WO2007058298A1 (en) Recycled composite material
WO2013099421A1 (en) Fibrous carbon-containing resin
WO2007049748A1 (en) Composite material
KR101894139B1 (en) Heat dissipating substrate and manufacturing method thereof
WO2007058299A1 (en) Composite material
WO2007049592A1 (en) Synthetic fiber
JP2009057407A (en) Method for improving electrical conductivity of carbon nanotube-containing resin molded body by lamination heating and pressurization
CN106633666B (en) A kind of preparation method of carbon nanotube and resin composite materials
JP2006183227A (en) Carbon fiber structure
CN106633667B (en) A kind of preparation method of carbon nanotube and polymer composites
CN111922334B (en) Microwave-based carbon-coated powder and preparation method thereof
Wang et al. Low-Temperature catalytic graphitization of phenolic resin using a co-ni bimetallic catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861412

Country of ref document: EP

Kind code of ref document: A1