WO2013094877A1 - Thermal print head and method for manufacturing same - Google Patents

Thermal print head and method for manufacturing same Download PDF

Info

Publication number
WO2013094877A1
WO2013094877A1 PCT/KR2012/009384 KR2012009384W WO2013094877A1 WO 2013094877 A1 WO2013094877 A1 WO 2013094877A1 KR 2012009384 W KR2012009384 W KR 2012009384W WO 2013094877 A1 WO2013094877 A1 WO 2013094877A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
layer
common electrode
recording element
thermal recording
Prior art date
Application number
PCT/KR2012/009384
Other languages
French (fr)
Korean (ko)
Inventor
홍석경
박동연
이동수
Original Assignee
지멕주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120123968A external-priority patent/KR101390153B1/en
Application filed by 지멕주식회사 filed Critical 지멕주식회사
Publication of WO2013094877A1 publication Critical patent/WO2013094877A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/3353Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/3351Electrode layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/33515Heater layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3354Structure of thermal heads characterised by geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3355Structure of thermal heads characterised by materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33555Structure of thermal heads characterised by type
    • B41J2/3357Surface type resistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3359Manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides

Definitions

  • the present invention relates to a thermal recording element and a method of manufacturing the thermal recording element. More specifically, the present invention is thermal paper or conventional printing paper The present invention relates to a thermal recording element for printing a print medium, and the like and a method of manufacturing the thermal recording element.
  • the thermal recording element may record information such as letters and figures by using a phenomenon in which the thermal recording paper is colored by thermal energy generated in the heat generating resistive film in response to an electrical signal sent from a control circuit of the printer.
  • European Patent Publication No. 2058134 discloses a hybrid thermal recording element manufactured by combining a thick film process and a thin film process.
  • FIG. 1 is a cross-sectional view of a conventional hybrid thermal recording element disclosed in the European Patent Publication
  • FIG. 2 is an enlarged plan view of a heat generating resistor of the conventional thermal recording element of FIG.
  • a conventional hybrid thermosensitive recording device includes an insulating substrate 1, a partial glaze layer 2, a plurality of individual electrodes 3A and 3B, an insulating layer pattern 4, and heat generation.
  • the resistive film 5 and the protective layer 6 are provided.
  • a common electrode (not shown) is connected to one side of the individual electrodes 3A and 3B.
  • the plurality of individual electrodes 3A and 3B are typically formed on the insulating substrate 1 and the partial glaze layer 2 using a thick film wiring forming method including a photolithography process. Is formed. That is, a paste of a metal such as gold (Au) is applied onto the insulating substrate 1 and the partial glaze layer 2 through a screen printing process, and then patterned by using a photolithography process. Individual electrodes 3A, 3B are formed. Thereafter, the insulating substrate 1 on which the individual electrodes 3A and 3B are formed at a temperature between the transition temperature of the glaze and the softening temperature is held for a predetermined time, so as to separate the individual electrodes 3A. End portions 31A and 31B of 3B are embedded in the partial glaze layer 2 by their own weight.
  • a paste of a metal such as gold (Au) is applied onto the insulating substrate 1 and the partial glaze layer 2 through a screen printing process, and then patterned by using a photolithography process.
  • the protective layer 6 covering the heat generating resistive film 5 has a generally flat upper surface on the heat generating resistive portion 5a. Therefore, when information is printed on the thermal paper using a conventional thermal recording element, the adhesion between the thermal paper contacting the heat generating resistor portion 5a and the protective layer 6 is improved, thereby reducing the energy required for printing and It is possible to increase the feed rate.
  • the common electrode is placed on one side of the individual electrodes 3A and 3B through a thick film screen printing process using a paste of a metal such as silver (Ag) to reduce the resistance of the common wiring of the thermal recording element.
  • a paste of a metal such as silver (Ag) to reduce the resistance of the common wiring of the thermal recording element.
  • the pattern is dried and sintered to form the common electrode.
  • the heat generating resistor portion 5a of the heat generating resistive film 5 generates heat and cools at a high speed in response to the on / off operation of the driving circuit.
  • the insulating layer pattern 4 is formed in the heat generating resistor portion 5a of the heat generating resistive film 5 in order to suppress cracking due to thermal shock in the glaze layer 2 of the glass component.
  • the insulating layer may be sputtered on the entire surface of the insulating substrate 1 on which the individual electrodes 3A and 3B and the common electrode are formed.
  • the heat generating resisting portion 5a is formed on the insulating layer pattern 4 using a photolithography process. To form.
  • the conventional hybrid thermal recording element described above has advantages such as improved corrosion resistance of the individual electrodes 3A and 3B, improved adhesion between the protective layer 6 and the thermal paper, and the like.
  • an additional photolithography process is required to form the insulating layer pattern 4 between the heat generating resistor portion 5a and the glaze layer 2, and the insulating layer pattern 4 Has a disadvantage in that the glaze layer 2 below is etched during the etching process of forming a).
  • the width of the heat generating resistive film 5 is narrower than the width of the insulating layer pattern 4 and the individual electrodes 3A and 3B, so that the area where heat is generated is narrowed, so that the printing dots ( A problem may occur that the size of the dot) becomes small, and there is a disadvantage in that the factor energy must be increased to compensate for this. Furthermore, there is a problem in that the manufacturing process is complicated because a process for forming the individual electrodes 3A and 3B and a process for forming the common electrode must be performed separately in order to manufacture a conventional hybrid thermal recording element.
  • An object of the present invention is to provide a thermal recording element capable of high speed and high precision printing while reducing printing energy, and ensuring improved durability and reliability.
  • Another object of the present invention is to provide a method for manufacturing a thermal recording element which can simplify the manufacturing process and reduce the cost by arranging an insulating film and forming electrode wirings simultaneously in a self-aligning manner.
  • a thermal recording element a substrate, a glaze layer disposed on the substrate, an insulating film disposed on the glaze layer, the insulating film and A plurality of first electrodes and a plurality of second electrodes embedded in the glaze layer, respectively, disposed on the insulating layer between the first electrodes and the second electrodes, and disposed on the first and second electrodes, respectively.
  • Each of the plurality of resistive film patterns connected to each other may include a protective layer covering the first electrodes, the resistive film patterns, and the second electrodes.
  • the thermal recording element may be embedded in the insulating layer and the glaze layer, and may further include a common electrode that is substantially integrally formed with the first electrodes.
  • First and second recesses may be disposed in the insulating layer and the glaze layer, the first electrodes and the common electrode may be disposed in the first recess, and the second electrodes may be disposed in the first recess. It can be placed in two recesses.
  • the insulating layer may have a thickness of about 0.05 ⁇ m to about 0.2 ⁇ m, and each of the first and second recesses may have a thickness of about 0.5 ⁇ m to about 10 ⁇ m.
  • the first electrodes, the common electrode, and the second electrodes may each include gold, silver, copper, an alloy containing gold, an alloy containing silver, an alloy containing copper, and the like.
  • a plurality of protrusions may be disposed in the first recess, each of the glaze layer and a portion of the insulating layer, and the common electrode may include a plurality of protrusions substantially corresponding to the protrusions. May comprise openings.
  • each of the resistive layer patterns may have a width substantially greater than that of the first electrodes and the second electrodes.
  • the insulating layer may include a metal oxide or a silicon compound.
  • the resistive layer patterns may be ruthenium (Ru) -metal (M) -oxygen (O), iridium (Ir) -metal (M) -oxygen (O), platinum (Pt) -metal (M) -oxygen ( O), tantalum (Ta)-silicon (Si)-oxygen (O), chromium (Cr)-silicon (Si)-oxygen (O) or niobium (Nb)-silicon (Si)-oxygen (O) It may be composed of a binary compound including a ternary compound or tantalum (Ta) -nitrogen (N) or ruthenium (Ru) -oxygen (O).
  • an insulating film is formed on the glaze layer Can be.
  • the insulating layer and the glaze layer may be partially etched to form first recesses having a plurality of protrusions and a plurality of second recesses.
  • a conductive layer may be formed on the insulating layer by filling the first recess and the second recess, and then the conductive layer on the insulating layer may be removed to form a plurality of first electrodes and a common electrode in the first recess.
  • the plurality of second electrodes may be formed in the second recesses.
  • a plurality of resistive layer patterns may be formed on the insulating layer to be connected to the first electrodes and the second electrodes, respectively.
  • a protective layer may be formed on the insulating layer, the first electrodes, the common electrode, the second electrodes, and the resistive layer patterns.
  • a plurality of protrusions each of the glaze layer and a portion of the insulating layer may be formed in the first recess, and the plurality of openings may be formed in the common electrode according to the protrusions.
  • the conductive paste may be filled on the insulating layer and filled with the first recess and the second recess, and then the conductive paste may be dried and sintered. have.
  • the first electrodes, the common electrode and the second electrodes may be formed using a chemical mechanical polishing process.
  • a resistance of the insulating layer pattern through a photolithography process which is a problem of the conventional hybrid thermal recording element manufacturing process, may be omitted, and the resistance may be simply maintained by a self alignment method. Since the insulating film and the electrode wirings can be formed under the film patterns, the width of the resistive film patterns can be increased to improve the printing energy efficiency, durability, reliability, and the like of the thermal recording element. In addition, by simultaneously forming the plurality of first and second electrodes and the common electrode, the manufacturing process of the thermal recording element can be simplified and the manufacturing cost can be reduced.
  • 1 is a cross-sectional view of a conventional hybrid thermal recording element.
  • FIG. 2 is an enlarged plan view of a heat generating resistor of the conventional thermal recording element of FIG. 1.
  • FIG. 3 is a plan view illustrating a thermal recording element according to exemplary embodiments of the present invention.
  • FIG. 4 is a cross-sectional view of the thermal recording element taken along the line II of FIG. 3.
  • 5 to 16 are cross-sectional views and plan views illustrating a method of manufacturing a thermal recording element according to exemplary embodiments of the present invention.
  • FIG. 17 is a plan view showing a thermal recording element according to other exemplary embodiments of the present invention.
  • FIG. 18 is a cross-sectional view taken along the line XII-XIII of FIG. 17.
  • FIG. 19 is an enlarged plan view of a portion “XIV” of FIG. 17.
  • thermal recording element and the method of manufacturing the thermal recording element according to exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • present invention is not limited to the following embodiments. Those skilled in the art may implement the present invention in various other forms without departing from the technical spirit of the present invention.
  • first and second may be used to describe various components, but such components are not limited by the terms. The terms are used to distinguish one component from another component.
  • first component may be called a second component, and similarly, the second component may be alternatively named.
  • FIG. 3 is a plan view illustrating a thermosensitive recording element according to exemplary embodiments of the present invention
  • FIG. 4 is a cross-sectional view of the thermosensitive recording element illustrated in FIG. 3.
  • the thermal recording element 100 may include a substrate 110, a glaze layer 115, an insulating film 120, a plurality of first electrodes 125, A plurality of second electrodes 130, a plurality of resistive film patterns 135, a protective layer 140, and a common electrode 145 may be provided.
  • the first electrodes 125, the second electrodes 130, the resistive layer patterns 135, and the like on the center of the substrate 110 are not shown for convenience.
  • the substrate 110 may be made of an insulating material.
  • the substrate 110 may be made of aluminum oxide (AlOx).
  • the glaze layer 115 is disposed on the substrate 110.
  • the glaze layer 115 may have a substantially uniform thickness on the entire surface of the substrate 100.
  • the glaze layer 115 may be composed of a mixture including silicon oxide (SiOx), aluminum oxide (AlOx), barium oxide (BaOx), calcium oxide (CaOx), and the like as a main component, such as glass.
  • the glaze layer 115 may be formed by applying a paste of silicon oxide, aluminum oxide, barium oxide, and calcium oxide in a predetermined ratio onto the substrate 100, and then applying the paste.
  • the oxide paste may be formed by performing a drying process, a sintering process, or the like.
  • the insulating film 120 is disposed on the glaze layer 115.
  • the insulating layer 120 may be formed of a material having a relatively high hardness and a relatively high thermal conductivity as compared with the material of the glaze layer 115.
  • the insulating layer 120 may include a metal oxide or a silicon compound such as aluminum oxide (AlOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), silicon oxycarbide (SiOxCy), or the like.
  • the insulating layer 120 may have a relatively small thickness of about 0.05 ⁇ m to about 0.2 ⁇ m from the upper surface of the glaze layer 115.
  • the insulating layer 120 may be formed of the first electrodes 125, the second electrodes 130, and the common electrode 145 on the glaze layer 115 using a chemical mechanical polishing (CMP) process. ) May serve as a polishing stop layer to protect the glaze layer 115 having a relatively low hardness.
  • CMP chemical mechanical polishing
  • the insulating layer 120 generates / cools at a high speed in response to the ON / OFF operation signal of the resistive pattern 135 of the thermal recording element 100 of a driving circuit (not shown).
  • the glaze layer 115 having a relatively low thermal conductivity may function as a thermal stress buffer layer that prevents a phenomenon in which a crack is generated due to thermal shock.
  • the first electrodes 125, the second electrodes 130, and the common electrode 145 may be substantially buried in the insulating layer 120 and the glaze layer 115.
  • the first electrodes 125, the second electrodes 130, and the common electrode 145 each contain gold (Au), silver (Ag), copper (Cu), and gold. Alloys, alloys containing silver, alloys containing copper and the like.
  • the common electrode 145 may be substantially disposed on the periphery of the glaze layer 115, and the first electrodes 125 and the second electrodes 130 may be disposed on the common electrode 145. It may be located on the center portion of the glaze layer 115 of the area defined by (). That is, the second electrodes 130 may be substantially surrounded by the common electrode 145 and the first electrodes 125.
  • the common electrode 145 may have a structure in which both side portions are bent from the center portion.
  • the common electrode 145 may have a planar shape such as a shape of a substantially inverted "U" or a shape of a substantially rotated "c".
  • the plurality of first electrodes 125 may be spaced apart from each other at first intervals, and may extend from the central portion of the common electrode 145 onto the glaze layer 115. In this case, the first electrodes 125 may be integrally formed with the common electrode 145.
  • Both sides of the common electrode 145 and one side of the plurality of second electrodes 130 may be electrically connected to the driving circuit of the thermal recording element 100, respectively.
  • the plurality of second electrodes 130 may be disposed to substantially correspond to the plurality of first electrodes 125, respectively.
  • Each resistive film pattern 135 is disposed between the first electrode 125 and the second electrode 130 to cover an end portion of each first electrode 125 and an end portion of each second electrode 130 spaced at a predetermined interval. It may have a length substantially longer than the interval of. Accordingly, the resistive layer patterns 135 may be in contact with the first and second electrodes 125 and 130, respectively.
  • each resistive film pattern 135 may be disposed on each first electrode 125, and the other side of each resistive film pattern 135 is positioned on one side of each second electrode 130. can do.
  • each of the resistive film patterns 135 may have a width substantially larger than the width of each first electrode 125 and / or the width of one side of each second electrode 130.
  • the first recess 150 and the second recess 155 may pass through the insulating layer 120 on the glaze layer 115.
  • the first electrode 125 and the common electrode 145 may fill the first recess 150, and the second electrode 130 may be buried in the second recess 155.
  • the first recess 150 and the second recess 155 may have a relatively deep depth.
  • the first and second recesses 150 and 155 may each have a depth of about 0.5 ⁇ m to about 10.0 ⁇ m from the top surface of the insulating layer 120.
  • the first electrodes 125, the second electrodes 130, and the common electrode 145 have a thick thickness that is substantially the same as or substantially similar to the depth of the first and second recesses 150 and 155, respectively. It can have for example, the first electrodes 125, the second electrodes 130, and the common electrode 145 may each have a thickness of about 0.5 ⁇ m to about 10.0 ⁇ m.
  • the first electrodes 125, the second electrodes 130, and the common electrode 145 having the above-described structures may include the glaze layer 115 and the insulating layer 120 having the first and second recesses 150 and 155.
  • the conductive paste may be formed by coating a conductive paste on the substrate, performing a drying process and a sintering process, and then removing the conductive paste located on the insulating layer 120.
  • the resistive layer patterns 135 may extend from the insulating layer 120 onto one sides of the first electrodes 125 and the second electrodes 130, respectively. That is, the center portion of each resistive layer pattern 135 may be positioned on the insulating layer 120, and both side portions of each resistive layer pattern 135 may have one side of each of the first electrode 125 and the second electrode 130. It can be placed on.
  • the center portion of each of the resistive film patterns 135 on the insulating film 120 may correspond to the heat generating resistor portion of the thermal recording element 100.
  • each of the resistive layer patterns 135 may be formed of a ternary compound.
  • each resist layer pattern 135 includes ruthenium (Ru)-metal (M)-oxygen (O), iridium (Ir)-metal (M)-oxygen (O), and platinum (Pt)-metal (M It may be made of a ternary compound including) -oxygen (O) and the like.
  • the metal (M) may include silicon (Si), tantalum (Ta), titanium (Ti), or the like.
  • each resist layer pattern 135 may include tantalum (Ta) -silicon (Si) -oxygen (O), chromium (Cr) -silicon (Si) -oxygen (O), and niobium (Nb). It may be made of a tertiary compound such as) -silicon (Si) -oxygen (O) and the like.
  • the resistive layer patterns 135 may be formed of two-component compounds, respectively.
  • each of the resistive film patterns 135 may include tantalum (Ta) -nitrogen (N), ruthenium (Ru) -oxygen (O), or the like.
  • a resistive film positioned between each of the first and second electrodes 125 and 130 selected by the driving circuit of the thermal recording element 100.
  • the pattern 135 generates heat, and heat is generated by the heat, or the ink of the ink ribbon is melted or sublimed and transferred to a print medium, thereby printing.
  • the insulating film 120 is interposed between the resistive film patterns 135 and the glaze layer 115, the resistive film patterns 135 do not directly contact the glaze layer 115. Accordingly, thermal damage to the glaze layer 115 may be prevented due to the resistive layer patterns 135 while the thermal recording element 100 is operating, thereby improving durability, reliability, and the like of the thermal recording element 100.
  • the thermal recording element 100 may be used to print on the print medium. During printing, the size of the printing dot is increased to enable clear printing with less printing energy.
  • the protective layer 140 may include the resistive layer patterns 135, the first electrodes 125, a part of the common electrode 145, and a part of the second electrodes 130. It is disposed on the insulating film 120 while covering. For example, the other sides of the second electrodes 130 and both sides of the common electrode 140 may be exposed by the protective layer 140.
  • the protective layer 140 not only prevents the resistive patterns 135, the common electrode 145, the first electrodes 125, and the second electrodes 130 from directly contacting the thermal paper or a conventional printing paper.
  • the common electrode 145, the first electrodes 125, and the second electrodes may serve to protect against damage such as scratches generated during corrosion or electrochemical corrosion.
  • the protective layer 140 may have a relatively smooth surface to reduce the friction with the thermal paper or the ink ribbon when printing using the thermal recording element 100 to enable smooth printing.
  • the protective layer 140 may be formed of a silicon compound, a metal compound, or the like.
  • the protective layer 140 may include silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), silicon carbide (SiCx), silicon-aluminum oxynitride (SiAlxOyNz), tantalum oxide (TaOx), Titanium nitride (TiNx) and the like.
  • the protective layer 140 may have a relatively thick thickness of about 3.0 ⁇ m to about 7.0 ⁇ m.
  • the protective layer 140 may be a single layer structure or a multilayer structure made of the above-described silicon compound and / or metal compound, depending on characteristics required for the thermal recording element 100 such as oxidation resistance, wear resistance, antistatic, and the like. It may have a structure.
  • 5 to 16 are cross-sectional views and plan views illustrating a method of manufacturing a thermal recording element according to exemplary embodiments of the present invention.
  • 5 to 16 exemplarily illustrate a method of manufacturing a thermal recording element having a configuration substantially the same as that of the thermal recording element described with reference to FIGS. 3 and 4, the self-evident name of the mask pattern for forming the recesses is illustrated.
  • the thermal recording element illustrated in Figs. 17 to 19 can also be manufactured as described later.
  • FIG. 5 is a cross-sectional view for describing processes of forming the glaze layer 205 and the insulating layer 210 on the substrate 200.
  • the glaze layer 205 is formed on the substrate 200.
  • the substrate 200 may be formed using an insulating material such as a metal oxide.
  • the substrate 200 may be formed using aluminum oxide.
  • the glaze layer 205 may be formed to have a substantially uniform thickness on the entire surface of the substrate 200.
  • the glaze layer 205 may be formed using silicon oxide, aluminum oxide, barium oxide, calcium oxide, or the like.
  • the oxide paste may be uniformly applied onto the substrate 200 to provide a substrate ( It is possible to form an oxide layer on the surface 200) having a smooth surface, such as glass.
  • a paste in which silicon oxide, aluminum oxide, barium oxide, and calcium oxide oxide is mixed may be applied onto the substrate 200 using a printing process, a spin coating process, or the like. After drying the oxide layer, the oxide layer may be sintered at a predetermined temperature to form a glaze layer 205 on the substrate 200.
  • the insulating film 210 is formed on the glaze layer 205.
  • the insulating layer 210 may be formed using a material having a relatively high hardness and a relatively high thermal conductivity compared to the material of the glaze layer 205.
  • the insulating layer 210 may be formed using a silicon compound, a metal oxide, or the like.
  • the insulating layer 210 may be formed using silicon oxynitride (SiOxNy), silicon oxycarbide (SiOxCy), aluminum oxide (AlOx), or the like.
  • the insulating layer 210 may be formed using a chemical vapor deposition process, an atomic layer deposition process, a plasma enhanced chemical vapor deposition process, a sputtering process, a vacuum deposition process, or the like.
  • the insulating layer 210 may be formed with a relatively small thickness of about 0.05 ⁇ m to about 0.2 ⁇ m from the upper surface of the glaze layer 205.
  • FIG. 6 is a plan view illustrating a process of forming the first recess 220 and the second recess 225 in the glaze layer 205 and the insulating layer 210
  • FIG. 7 is a line III-IV of FIG. 6. The cross section is cut along the side.
  • a first mask pattern 215 is formed on the insulating layer 210.
  • the first mask pattern 215 may be formed using a material having an etch selectivity with respect to the insulating layer 210 and the glaze layer 205, such as a photoresist. For example, after forming a photoresist film (not shown) on the insulating film 210, an exposure process and a developing process may be performed on the photoresist film to form a first mask pattern 215.
  • the first mask pattern 215 may expose the insulating layer 210 of portions where the first and second recesses 220 and 225 are subsequently formed.
  • the first and second recesses 220 and 225 may have a relatively large depth of about 0.5 ⁇ m to about 10.0 ⁇ m from the top surface of the insulating layer 210, respectively.
  • the first recess 220 may be formed in the glaze layer 205 on the periphery of the substrate 200, and the second recess 225 may be formed in the first recess 220. It can be formed in the glaze layer 205 on the central portion of the substrate 200 defined by.
  • the first recess 220 may have a structure substantially surrounding the second recess 225.
  • the first recess 220 may have a structure in which both sides thereof are bent and extended from the center portion.
  • the first recess 220 may have a planar shape such as a substantially reverse shape of a “U” shape or a substantially rotated “c” shape. In this case, a plurality of first electrodes 235 (see FIG.
  • each of the protrusions of the first recess 220 may protrude toward the center portion of the substrate 200, and may be spaced apart at predetermined intervals through the insulating layer 210.
  • the protrusions of the first recess 220 may each have a predetermined width.
  • the second recesses 225 may have one sides corresponding to the protrusions of the first recess 220, respectively. One side of the plurality of second recesses 225 may be spaced apart from each other at substantially the same or substantially similar intervals between the protrusions of the first recess 220.
  • FIG. 8 is a cross-sectional view for describing a process of forming the conductive layer 230 on the glaze layer 205 and the insulating layer 210.
  • the first mask pattern 215 on the insulating layer 210 is removed.
  • the first mask pattern 215 may be removed from the insulating film 210 through an ashing process and / or a stripping process. have.
  • the conductive layer 230 is formed on the insulating layer 210 while substantially filling the first and second recesses 220 and 225.
  • a conductive paste (not shown) may be formed on the insulating layer 210 while filling the first and second recesses 220 and 225.
  • the conductive paste may be formed using gold, silver, copper, an alloy containing gold, an alloy containing silver, an alloy containing copper, and the like.
  • the conductive paste may be provided on the insulating layer 210 using a printing process, a spin coating process, or the like.
  • the conductive paste 230 may be formed on the insulating layer 210 by performing a drying process or a sintering process on the conductive paste.
  • the conductive layer 230 may extend onto the insulating layer 210 while substantially filling the first and second recesses 220 and 225.
  • FIG. 9 is a plan view illustrating a process of forming the first electrodes 235, the common electrode 240, and the second electrodes 245, and FIG. 10 is a cross-sectional view taken along the line V-VI of FIG. 9. .
  • the conductive layer 230 is partially removed to form the plurality of first electrodes 235, the common electrode 240, and the plurality of second electrodes 245. That is, the conductive layers 230 on the insulating layer 210 are removed to form the first electrodes 235, the common electrode 240, and the second electrodes 245.
  • Each of the first electrodes 235 may be formed in the protrusions of the first recess 220, and the common electrode 240 may fill the center and both sides of the first recess 220.
  • the second electrodes 245 may fill the second recesses 225, respectively. Accordingly, each first electrode 235 may have a dimension substantially the same as or substantially similar to that of the protrusion of the first recess 220.
  • Each second electrode 245 may also be formed with substantially the same or substantially similar dimensions as each second recess 225. Accordingly, the first electrodes 235, the second electrodes 245, and the common electrode 240 may each have a thickness of about 0.5 ⁇ m to about 10.0 ⁇ m from the top surface of the insulating layer 210.
  • the first electrodes 235, the common electrode 240, and the second electrodes 245 may be formed using a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • the conductive layers 230 are polished until the insulating layer 210 is exposed, so that the first electrodes 235 and the common electrodes 240 are buried in the first recesses 220 and the second recesses 225.
  • second electrodes 245 may be formed.
  • the insulating film 210 may serve as a polishing stopper film of the chemical mechanical polishing process.
  • the insulating film 210 is a material having a relatively low hardness during the chemical mechanical polishing process of forming the first electrodes 235, the common electrode 240, and the second electrodes 245 on the glaze layer 205. It is possible to protect the glaze layer 205 made of. Therefore, the top surfaces of the first electrodes 235, the common electrode 240, and the second electrodes 245 and the top surface of the insulating layer 210 may be positioned on substantially the same plane.
  • the manufacturing process of the thermal recording element is greatly simplified. You can.
  • the relatively low hardness when the insulating layer 210 removes the unnecessary conductive layer 230 positioned on the insulating layer 210 in addition to the conductive layer 230 filling the first and second recesses 220 and 225.
  • the glaze layer 205 having the structure may prevent the polishing damage from occurring, and the phenomenon in which the difference in the degree of polishing of the conductive layer 230 depending on the position of the substrate 200 may be suppressed.
  • the insulating layer 210 may be formed on the glaze layer 205 of the remaining portions except for the portions in which the first and second electrodes 235 and 245 and the common electrode 240 are formed. Because it is located at, the insulating layer 210 may be disposed under a self alignment method under the resistive pattern 255 (see FIG. 16) without an additional etching process.
  • first and second electrodes 235 and 245 and the common electrode 240 may also be formed in the first and second recesses 220 and 225, respectively, in a self-aligned manner with respect to the insulating layer 210. .
  • the insulating layer 210 and the glaze layer 205 are partially etched to form first and second recesses 220 and 225, and the first and second recesses 220 and 225 are formed in the first and second recesses 220 and 225. Since the first and second electrodes 235 and 245 and the common electrode 240 are formed in the second and second electrodes 235 and 245 and the common electrode 240, the first and second recesses may be formed in a self-aligned manner. 220, 225 may be disposed.
  • FIG. 11 is a cross-sectional view for describing a process of forming the resistive film 250.
  • a resistive film 250 is formed on the first electrodes 235, the common electrode 240, the second electrodes 245, and the insulating film 210.
  • the resistive film 250 includes ruthenium (Ru)-metal (M)-oxygen (O), iridium (Ir)-metal (M)-oxygen (O), platinum (Pt)-metal (M)-oxygen (O) It may be formed using a ternary compound including the like.
  • the metal may include silicon (Si), tantalum (Ta), titanium (Ti), or the like.
  • the resistive film 250 may include ruthenium-silicon oxide (Ru-SiOx), ruthenium-tantalum oxide (Ru-TaOx), ruthenium-titanium oxide (Ru-TiOx), iridium-silicon oxide (Ir-SiOx), Iridium-tantalum oxide (Ir-TaOx), iridium-titanium oxide (Ir-TiOx), platinum-silicon oxide (Pt-SiOx), platinum-tantalum oxide (Pt-TaOx), platinum-titanium oxide (Pt-TiOx), etc. It can be formed using.
  • the resistive film 250 may include tantalum-silicon oxide (Ta-SiOx), chromium-silicon oxide (Cr-SiOx), niobium-silicon oxide (Nb-SiOx), and tantalum nitride (TiNx). , Ruthenium oxide (RuOx) and the like can be formed.
  • the resistive film 250 may be formed using a sputtering process, a printing process, a chemical vapor deposition process, a vacuum deposition process, or the like. According to exemplary embodiments, when the resistive film 250 is formed of the tri-component compound, the resistance value of the resistive film 250 may be adjusted by changing the content ratio of the metal and the oxide in the resistive film 250. In addition, when the resistive film 250 includes an oxide, oxidation resistance of the resistive film 250 may also be improved.
  • the resistive film 250 may be formed to a relatively thin thickness. For example, the resistive film 250 may have a thickness of about 0.05 ⁇ m to about 0.2 ⁇ m from an upper surface of the insulating film 210.
  • FIG. 12 is a plan view illustrating a process of forming the resistive film pattern 255
  • FIG. 13 is a cross-sectional view taken along the line VII-VIII of FIG. 12
  • FIG. 14 is an enlarged plan view of the portion “IX” of FIG. 12. to be.
  • a second mask pattern (not shown) such as a photoresist pattern or a hard mask pattern is formed on the resistive layer 250, and then the second mask pattern is used as an etching mask.
  • the resistive film patterns 255 may be formed on portions of the insulating film 210 between the first electrodes 235 and the second electrodes 245.
  • each of the resistive film patterns 255 may have a length substantially greater than a distance between each of the first and second electrodes 235 and 245. have. Accordingly, both side portions of each of the resistive film patterns 255 may be connected to one side of the first electrode 235 and the second electrode 245. That is, both sides of the resistive layer patterns 245 may substantially overlap one sides of the first electrodes 235 and the second electrodes 245, respectively.
  • the insulating layer 210 may be positioned below the center portion corresponding to the heat generating resistor portion 260 of each resistive layer pattern 255.
  • the resistive layer patterns 255 may have a substantially larger width than the widths of the first and second electrodes 235 and 245, respectively.
  • FIG. 15 is a plan view illustrating a process of forming the protective layer 265, and FIG. 16 is a cross-sectional view taken along the line X-XI of FIG. 15.
  • a protective layer 265 is formed on the insulating film 210 to cover the first electrodes 235, the second electrodes 245, and the common electrode 240.
  • the protective layer 265 may prevent the resist pattern 255 from directly contacting a print medium such as thermal paper, an ink ribbon, or a conventional printing paper, and may be in common with the first and second electrodes 235 and 245.
  • the electrode 240 may be prevented from being electrochemically corroded or physically damaged.
  • the protective layer 265 may reduce the friction with the print media to facilitate the printing.
  • the protective layer 265 may be formed using a silicon compound, a metal compound, or the like.
  • the protective layer 265 may be formed using silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon-aluminum oxynitride, tantalum oxide, titanium nitride, or the like.
  • the protective layer 265 may be formed to a relatively thick thickness.
  • the protective layer 265 may have a thickness of about 3.0 ⁇ m to about 7.0 ⁇ m from the upper surface of the resistive layer pattern 255.
  • the protective layer 265 may be formed using a sputtering process, a printing process, a chemical vapor deposition process, a spin coating process, or the like.
  • the first electrodes 235 and the resistive layer patterns 255 may be completely covered by the passivation layer 265, and the common electrode 240 and the second electrodes 245 may be provided.
  • the insulating layer 210 may be partially exposed by the protective layer 265. For example, both ends of the common electrode 240 and the other sides of the second electrodes 245 and the insulating layer 210 adjacent thereto may be exposed after the protective layer 265 is formed.
  • the thermal recording element is manufactured by electrically connecting a driving circuit to the other sides of the second electrodes 245 and both sides of the common electrode 240 using a bonding process such as wire bonding.
  • FIG. 17 is a plan view illustrating a thermal recording element according to another exemplary embodiment of the present invention
  • FIG. 18 is a cross-sectional view taken along the line XII-XIII of FIG. 17, and
  • FIG. 19 is an enlarged “XIV” portion of FIG. 17.
  • the thermal recording element 300 may include a substrate 305, a glaze layer 310, an insulating film 315, a plurality of first electrodes 335, and a plurality of second electrodes ( 345, a common electrode 340, a plurality of protrusions 350, resistance layer patterns (not shown), a protective layer (not shown), and the like.
  • the thermal recording element 100 described with reference to FIGS. 3 and 4 is described. It may have a configuration substantially the same as or substantially similar to.
  • a plurality of openings 320 exposing the plurality of protrusions 350 are formed in the common electrode 340.
  • Each of the plurality of protrusions 350 may include an insulating layer 315 and a portion of the glaze layer 310, and may include electrode wirings including first electrodes 335, a common electrode 340, and second electrodes 345. As described later, the dishing phenomenon can be prevented from occurring.
  • the protrusions 350 may each have a variety of planar shapes, such as a substantially square shape, a substantially rectangular shape, a substantially ellipse shape, a substantially circle shape, and the like.
  • the protrusions 350 and the common electrode 340 having such structures may change the shape of a mask pattern for forming the first and second recesses 325 and 330 in the insulating layer 315 and the glaze layer 310.
  • the insulating layer 315 may have predetermined regions corresponding to the plurality of protrusions 350.
  • the first recess 325 and the second recesses 330 may be formed by partially etching the insulating layer 315 and the glaze layer 310 using the mask pattern.
  • a plurality of protrusions 350 including the glaze layer 310 and the insulating layer 315 may be formed in the first recess 325 substantially corresponding to the regions of the mask pattern.
  • the protrusions 350 may be provided by remaining of the insulating layer 315 and the glaze layer 310 in the first recess 325. Forming a conductive layer (not shown) on the insulating film 315 while filling the first and second recesses 325 and 330, and removing the conductive layer on the insulating film 315 using a chemical mechanical polishing process. First electrodes 335, protrusions 350, common electrode 340, and second electrodes 345 may be formed in the first and second recesses 325 and 330. Since the conductive layer on the protrusions 350 in the first recess 325 is also removed, a plurality of openings 320 exposing the protrusions 350 may be formed in the common electrode 340. have. For example, the openings 320 may have substantially the same dimensions and shapes as the protrusions 350, and may be arranged at substantially uniform intervals at the center and both sides of the common electrode 340.
  • the first electrode 335, the common electrode 340, and the second electrodes 345 may be formed to fill the insulating layer 315 and the glaze layer 310.
  • the conductive layer is filled in the recesses 325 and the second recesses 330 and the chemical mechanical polishing process is performed, the surfaces of the conductive layers filled in the first and second recesses 325 and 330 are smoothly polished. Therefore, the center and both sides of the common electrode 340 are compared with the first electrodes 335 and the second electrodes 345. Deeper polishing may result in dishing. This dishing phenomenon is more likely to occur in the common electrode 340 formed in the first recess 325 having a relatively wide width.
  • a plurality of protrusions 350 having a predetermined shape and area are formed in the first recess 325 to form the widths of the central portion and both sides of the common electrode 340.
  • the width between the portions of the common electrode 340 having the opening 320 along the protrusions 350 may be substantially equal to the width of each first electrode 335 or the width of each second electrode 345. May be identical or substantially similar.
  • adjacent openings 320 may be formed by forming openings 320 exposing the projections 350 in the common electrode 340 having a relatively wide width, typically about 1.0 mm to about 3.0 mm.
  • the width of each portion of the common electrode 340 in between may be reduced to about 50 ⁇ m to about 300 ⁇ m. Since the common electrode 340 having the openings 320 has a flat surface without dishing when the conductive layer is polished by a chemical mechanical process, the electrical characteristics of the thermal recording element 300 may be improved.
  • the resistive layer patterns and the protective layer may be more easily formed thereon.
  • the protrusions 350 and the openings 320 are illustrated as having substantially rectangular planar shapes, respectively, but the protrusions 350 and the openings 320 are substantially square in shape. It may have a variety of planar shapes, such as a substantially oval shape, a substantially circular shape, a substantially rhombus shape, and the like.
  • the resistive film pattern 135 since the resistive film pattern 135 has a relatively thin thickness, the resistive film pattern 135 may have a relatively small heat capacity as compared with a conventional thick film resistive film. Accordingly, the heat generating portion of the resistive film pattern 135 which is energized by the driving circuit generates heat, and the temperature may be rapidly increased to a temperature suitable for printing. On the other hand, even when the current is stopped by the driving circuit, the temperature of the resistive film pattern 135 can be lowered quickly. As described above, since the heat generating response and the cooling response of the resistive film pattern 1350 are high, even if the ON / OFF energization speed made by the driving circuit is switched at a high speed, the printed dots are tailed. The possibility of producing defects such as drag and white streaks is reduced, and high speed and high precision printing can be performed.
  • the resistive film pattern 135 is a thin film having a substantially thin thickness, unlike the case where the resistive film is a thick film as in the conventional thermal recording element, the heat generating portion of the resistive film pattern 135 protrudes upward. It does not have a shape. Accordingly, when printing using the thermal recording element 100 according to the exemplary embodiments, the protective layer 140 covering the resistive film pattern 135 is not pressed against the printing medium such as thermal paper or ink ribbon with excessive force. This prevents phenomena such as unstable transfer of the thermal paper, occurrence of unwanted noise, sticking of the thermal paper, and the like, which are commonly generated in the thick film type thermal recording element.
  • the protective layer 140 covering the resistive layer pattern 135 is made of a material having a smooth surface and a relatively low coefficient of friction, the protective layer 140 reduces friction between the protective layer 140 and the printing medium, thereby reducing the friction between the printing medium and the printing medium. Sticking phenomenon of can be suppressed.
  • the insulating film 120 which can serve as a thermal stress relaxation layer, is disposed between the heat-generating portion of the resistive film pattern 135 and the glaze layer 115 in a self-aligned manner, a conventional hybrid thermal recording element.
  • the resistive layer pattern 135 may have a width greater than the width of the first electrode 125 and / or the width of the second electrode 130. As a result, the size of the printing dot increases at the time of printing, thereby enabling clear printing even with less printing energy.
  • the first and second electrodes 125 and 130 and the common electrode 145 are embedded in the glaze layer 115 and the insulating layer 120, the first and second electrodes 125 and 130 and the common electrode 145 are common to the first and second electrodes 125 and 130. Even after the electrode 145 is formed, the substrate 110 may have a relatively flat upper surface as a whole. Therefore, the upper surface of the protective layer 140 covering the heat generating portion of the resistive film pattern 135 may have a shape that protrudes substantially convexly, unlike the protective layer of the conventional thin film type thermal recording element. The adhesion between the positioned protective layer 104 and the thermal paper or ink ribbon is greatly improved to enable faster printing with less printing energy.
  • the plurality of first and second electrodes 125 and 130 and the common electrode 145 are thick films containing substantially gold, silver or copper, excellent corrosion resistance compared to aluminum-based electrodes of conventional thin film type thermal recording elements. Can have Thus, even if the thermal recording element 100 according to the exemplary embodiments is exposed to an environment that is susceptible to electrochemical corrosion for a long time, the first and second electrodes 125 and 130 and the common electrode 145 may be corroded. The likelihood of the printing quality is deteriorated or the printing operation becomes unstable due to poor contact or disconnection of the wirings including the first and second electrodes 125 and 130 and the common electrode 145. It is possible to prevent and improve the durability and reliability of the thermal printer having the thermal recording element 100 installed.
  • the thermal recording element according to the exemplary embodiments of the present invention may have greatly improved characteristics as compared with the conventional thermal recording element as described above, the thermal recording element may be applied to a device such as a thermal printer or the like. Various characteristics such as electrical characteristics, durability, reliability can be improved. In addition, since the thermal recording element according to the exemplary embodiments of the present invention can be manufactured at a low cost through simplified processes, it is possible to reduce the manufacturing cost, management cost, etc. of the apparatus having such a thermal recording element. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electronic Switches (AREA)

Abstract

A thermal print head comprises: a substrate; a glaze layer which is disposed on the substrate; an insulating film which is disposed on the glaze layer; a plurality of first electrodes and a plurality of second electrodes which are buried in the insulating film and the glaze layer; a plurality of resistant film patterns which are each disposed on the insulating film between the first and second electrodes and each connected to the first and second electrodes; and a protective layer which covers the first electrodes, the resistant film patterns, and the second electrodes. Since the insulating film and electrode wires can be disposed below the resistant film patterns in a self-aligned manner, the width of the resistant film patterns can be increased for higher printing energy efficiency, durability, and reliability of the thermal print head. The first and second electrodes and common electrodes can be formed at the same time to manufacture the thermal print head through a simplified process and at a reduced manufacturing cost.

Description

감열 기록 소자 및 감열 기록 소자의 제조 방법Method of manufacturing a thermosensitive recording element and a thermosensitive recording element
본 발명은 감열 기록 소자 및 감열 기록 소자의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 감열지나 통상적인 인쇄 용지 등과 같은 인쇄 매체의 인쇄를 위한 감열 기록 소자 및 이러한 감열 기록 소자의 제조 방법에 관한 것이다.The present invention relates to a thermal recording element and a method of manufacturing the thermal recording element. More specifically, the present invention is thermal paper or conventional printing paper The present invention relates to a thermal recording element for printing a print medium, and the like and a method of manufacturing the thermal recording element.
통상적으로 감열 기록 소자는 프린터의 제어 회로에서 보내는 전기적 신호에 대응하여 발열 저항막에서 발생되는 열에너지에 의해 감열 기록지가 발색하는 현상을 이용하여 문자나 도형 등의 정보를 기록할 수 있다. 종래의 감열 기록 소자로서는, 예를 들면, 유럽 공개 특허 제2058134호에 후막 공정과 박막 공정을 조합하여 제조되는 혼성형(混成型) 감열 기록 소자가 개시되어 있다.In general, the thermal recording element may record information such as letters and figures by using a phenomenon in which the thermal recording paper is colored by thermal energy generated in the heat generating resistive film in response to an electrical signal sent from a control circuit of the printer. As a conventional thermal recording element, for example, European Patent Publication No. 2058134 discloses a hybrid thermal recording element manufactured by combining a thick film process and a thin film process.
도 1은 상기 유럽 공개 특허에 개시된 종래의 혼성형 감열 기록 소자의 단면도이며, 도 2는 도 1의 종래의 감열 기록 소자의 발열 저항부를 확대한 평면도이다.FIG. 1 is a cross-sectional view of a conventional hybrid thermal recording element disclosed in the European Patent Publication, and FIG. 2 is an enlarged plan view of a heat generating resistor of the conventional thermal recording element of FIG.
도 1을 참조하면, 종래의 혼성형 감열기록 소자는 절연 기판(1), 부분 글레이즈층(glaze layer)(2), 복수의 개별 전극들(3A, 3B), 절연층 패턴(4), 발열 저항막(5) 및 보호층(6)을 구비한다. 여기서, 개별 전극들(3A, 3B)의 일측에는 공통 전극(도시되지 않음)이 접속된다.Referring to FIG. 1, a conventional hybrid thermosensitive recording device includes an insulating substrate 1, a partial glaze layer 2, a plurality of individual electrodes 3A and 3B, an insulating layer pattern 4, and heat generation. The resistive film 5 and the protective layer 6 are provided. Here, a common electrode (not shown) is connected to one side of the individual electrodes 3A and 3B.
종래의 감열 기록 소자에 있어서, 복수의 개별 전극들(3A, 3B)은 통상적으로 사진 식각(photolithography) 공정을 포함하는 후막 배선 형성 방법을 사용하여 절연 기판(1)과 부분 글레이즈층(2) 상에 형성된다. 즉, 금(Au)과 같은 금속의 페이스트(paste)를 스크린 인쇄 공정을 통해 절연 기판(1)과 부분 글레이즈층(2) 상에 도포한 다음, 사진 식각 공정을 이용하여 도포된 페이스트를 패터닝함으로써 개별 전극들(3A, 3B)을 형성한다. 이 후에, 글레이즈의 전이 온도(transition temperature)와 연화 온도(softening temperature) 사이의 온도에서 개별 전극들(3A, 3B)이 형성된 절연 기판(1)을 소정의 시간동안 유지하여, 개별 전극들(3A, 3B)의 단부들(31A, 31B)을 자중(自重)에 의해 부분 글레이즈층(2) 내에 매립시킨다.In the conventional thermosensitive recording element, the plurality of individual electrodes 3A and 3B are typically formed on the insulating substrate 1 and the partial glaze layer 2 using a thick film wiring forming method including a photolithography process. Is formed. That is, a paste of a metal such as gold (Au) is applied onto the insulating substrate 1 and the partial glaze layer 2 through a screen printing process, and then patterned by using a photolithography process. Individual electrodes 3A, 3B are formed. Thereafter, the insulating substrate 1 on which the individual electrodes 3A and 3B are formed at a temperature between the transition temperature of the glaze and the softening temperature is held for a predetermined time, so as to separate the individual electrodes 3A. End portions 31A and 31B of 3B are embedded in the partial glaze layer 2 by their own weight.
개별 전극들(3A, 3B)의 단부들(31A, 31B)을 부분 글레이즈층(2) 속으로 매립시킬 경우에는 발열 저항부(5a)에서 개별 전극들(3A, 3B) 두께로 인한 단차(step)가 생성되지 않기 때문에, 발열 저항막(5)을 커버하는 보호층(6)이 발열 저항부(5a) 상에서 대체로 평탄한 상면을 가지게 된다. 따라서, 종래의 감열 기록 소자를 사용하여 감열지에 정보를 인쇄할 경우, 발열 저항부(5a)에 접촉되는 감열지와 보호층(6) 사이에 밀착성이 향상되어 인쇄에 요구되는 에너지를 감소시키고 감열지의 이송 속도를 증가시킬 수 있게 된다. 그 후에, 상기 감열 기록 소자의 공통 배선의 저항을 감소시키기 위하여 상기 공통 전극을 은(Ag)과 같은 금속의 페이스트를 사용하는 후막 스크린 인쇄 공정을 통해 개별 전극(3A, 3B)의 일측 상에 소정의 두께를 갖는 띠 모양의 패턴을 형성한 다음, 이러한 패턴을 건조 및 소결하여 상기 공통 전극을 형성한다.When the end portions 31A and 31B of the individual electrodes 3A and 3B are embedded into the partial glaze layer 2, a step due to the thickness of the individual electrodes 3A and 3B in the heat generating resistor portion 5a is performed. ) Is not generated, the protective layer 6 covering the heat generating resistive film 5 has a generally flat upper surface on the heat generating resistive portion 5a. Therefore, when information is printed on the thermal paper using a conventional thermal recording element, the adhesion between the thermal paper contacting the heat generating resistor portion 5a and the protective layer 6 is improved, thereby reducing the energy required for printing and It is possible to increase the feed rate. Thereafter, the common electrode is placed on one side of the individual electrodes 3A and 3B through a thick film screen printing process using a paste of a metal such as silver (Ag) to reduce the resistance of the common wiring of the thermal recording element. After forming a strip-shaped pattern having a thickness of, the pattern is dried and sintered to form the common electrode.
상술한 종래의 감열 기록 소자에 있어서, 구동 회로의 온(ON)/오프(OFF) 동작에 대응하여 발열 저항막(5)의 발열 저항부(5a)가 빠른 속도로 발열과 냉각을 반복함에 따라, 유리 성분의 글레이즈층(2)에 열 충격에 의한 균열(crack)이 발생하는 것을 억제하기 위해서 절연층 패턴(4)을 발열 저항막(5)의 발열 저항부(5a)에 형성한다. 절연층 패턴(4)을 발열 저항부(5a) 아래에만 국부적으로 배치하기 위하여, 개별 전극들(3A, 3B)과 상기 공통 전극이 형성된 절연 기판(1)의 전면 상에 스퍼터링 공정으로 절연층(도시되지 않음)을 형성한 다음, 사진 식각 공정을 이용하여 상기 절연층을 패터닝함으로써, 개별 전극들(3A, 3B)의 단부들(31A, 31B) 사이에 절연층 패턴(4)을 형성한다. 발열 저항막(5)을 절연층 패턴(4)이 형성된 절연 기판(1) 상에 스퍼터링 공정으로 전면 증착한 후, 사진 식각 공정을 이용하여 발열 저항부(5a)를 절연층 패턴(4) 상에 형성한다.In the above-described conventional thermal recording element, the heat generating resistor portion 5a of the heat generating resistive film 5 generates heat and cools at a high speed in response to the on / off operation of the driving circuit. The insulating layer pattern 4 is formed in the heat generating resistor portion 5a of the heat generating resistive film 5 in order to suppress cracking due to thermal shock in the glaze layer 2 of the glass component. In order to locally place the insulating layer pattern 4 only under the heat generating resistor portion 5a, the insulating layer may be sputtered on the entire surface of the insulating substrate 1 on which the individual electrodes 3A and 3B and the common electrode are formed. (Not shown), and then patterning the insulating layer using a photolithography process to form the insulating layer pattern 4 between the ends 31A and 31B of the individual electrodes 3A and 3B. After depositing the heat generating resistive film 5 on the insulating substrate 1 on which the insulating layer pattern 4 is formed by a sputtering process, the heat generating resisting portion 5a is formed on the insulating layer pattern 4 using a photolithography process. To form.
전술한 종래의 혼성형 감열 기록 소자는 개별 전극들(3A, 3B)의 내부식성이 향상되고, 보호층(6)과 감열지 사이의 밀착성이 향상되는 등과 같은 장점을 가진다. 그러나, 종래의 혼성형 감열 기록 소자에 있어서, 발열 저항부(5a)와 글레이즈층(2) 사이에 절연층 패턴(4)을 형성하기 위하여 추가적인 사진 식각 공정이 요구되는 점, 절연층 패턴(4)을 형성하는 식각 공정 동안 아래의 글레이즈층(2)이 식각 손상을 입는 점 등의 단점을 가진다. 또한, 종래의 혼성형 감열 기록 소자는 절연층 패턴(4)과 개별 전극들(3A, 3B)의 폭보다 발열 저항막(5)의 폭이 좁기 때문에 열이 발생하는 면적이 좁아짐으로써 인자 도트(dot)의 크기가 작아지는 문제가 발생할 수 있으며 이를 보상하기 위해서 인자 에너지를 증가시켜야 하는 단점이 있다. 더욱이, 종래의 혼성형 감열 기록 소자를 제조하기 위하여 개별전극들(3A, 3B)을 형성하기 위한 공정과 상기 공통 전극을 형성하는 공정을 별도로 진행해야 하기 때문에 그 제조 과정이 복잡해지는 문제점이 있다.The conventional hybrid thermal recording element described above has advantages such as improved corrosion resistance of the individual electrodes 3A and 3B, improved adhesion between the protective layer 6 and the thermal paper, and the like. However, in the conventional hybrid thermal recording element, an additional photolithography process is required to form the insulating layer pattern 4 between the heat generating resistor portion 5a and the glaze layer 2, and the insulating layer pattern 4 Has a disadvantage in that the glaze layer 2 below is etched during the etching process of forming a). In addition, in the conventional hybrid thermal recording element, the width of the heat generating resistive film 5 is narrower than the width of the insulating layer pattern 4 and the individual electrodes 3A and 3B, so that the area where heat is generated is narrowed, so that the printing dots ( A problem may occur that the size of the dot) becomes small, and there is a disadvantage in that the factor energy must be increased to compensate for this. Furthermore, there is a problem in that the manufacturing process is complicated because a process for forming the individual electrodes 3A and 3B and a process for forming the common electrode must be performed separately in order to manufacture a conventional hybrid thermal recording element.
본 발명의 일 목적은 인자 에너지를 저감시키면서 고속 및 고정밀 인쇄가 가능하며, 향상된 내구성과 신뢰성을 확보할 수 있는 감열 기록 소자를 제공하는 것이다.An object of the present invention is to provide a thermal recording element capable of high speed and high precision printing while reducing printing energy, and ensuring improved durability and reliability.
본 발명의 다른 목적은 자기 정렬 방식으로 절연막을 배치하고 전극 배선들을 동시에 형성하여 제조 공정을 간략화하고 비용을 감소시킬 수 있는 감열 기록 소자의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a thermal recording element which can simplify the manufacturing process and reduce the cost by arranging an insulating film and forming electrode wirings simultaneously in a self-aligning manner.
그러나, 본 발명이 해결하고자 하는 과제가 상술한 과제들에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-described problems, and may be variously expanded within a range without departing from the spirit and scope of the present invention.
전술한 본 발명의 일 목적을 달성하기 위하여, 본 발명의 예시적인 실시예들에 따른 감열 기록 소자는, 기판, 상기 기판 상에 배치되는 글레이즈층, 상기 글레이즈층 상에 배치되는 절연막, 상기 절연막 및 상기 글레이즈층에 매립되는 복수의 제1 전극들 및 복수의 제2 전극들, 상기 제1 전극들과 상기 제2 전극들 사이의 상기 절연막 상에 각기 배치되며, 상기 제1 및 제2 전극들에 각기 접속되는 복수의 저항막 패턴들, 그리고 상기 제1 전극들, 상기 저항막 패턴들 및 상기 제2 전극들을 덮는 보호층을 포함할 수 있다.In order to achieve the above object of the present invention, a thermal recording element according to exemplary embodiments of the present invention, a substrate, a glaze layer disposed on the substrate, an insulating film disposed on the glaze layer, the insulating film and A plurality of first electrodes and a plurality of second electrodes embedded in the glaze layer, respectively, disposed on the insulating layer between the first electrodes and the second electrodes, and disposed on the first and second electrodes, respectively. Each of the plurality of resistive film patterns connected to each other may include a protective layer covering the first electrodes, the resistive film patterns, and the second electrodes.
예시적인 실시예들에 있어서, 상기 감열 기록 소자는 상기 절연막 및 상기 글레이즈층에 매립될 수 있으며, 상기 제1 전극들과 실질적으로 일체로 형성되는 공통 전극을 추가적으로 포함할 수 있다. 상기 절연막 및 상기 글레이즈층에는 제1 리세스 및 제2 리세스들이 배치될 수 있고, 상기 제1 전극들과 상기 공통 전극은 상기 제1 리세스 내에 배치될 수 있으며, 상기 제2 전극들은 상기 제2 리세스들 내에 배치될 수 있다. 예를 들면, 상기 절연막은 약 0.05㎛ 내지 약 0.2㎛ 정도의 두께를 가질 수 있고, 상기 제1 리세스 및 상기 제2 리세스는 각기 약 0.5㎛ 내지 약 10㎛의 두께를 가질 수 있다.In example embodiments, the thermal recording element may be embedded in the insulating layer and the glaze layer, and may further include a common electrode that is substantially integrally formed with the first electrodes. First and second recesses may be disposed in the insulating layer and the glaze layer, the first electrodes and the common electrode may be disposed in the first recess, and the second electrodes may be disposed in the first recess. It can be placed in two recesses. For example, the insulating layer may have a thickness of about 0.05 μm to about 0.2 μm, and each of the first and second recesses may have a thickness of about 0.5 μm to about 10 μm.
예를 들면, 상기 제1 전극들, 상기 공통 전극 및 상기 제2 전극들은 각기 금, 은, 구리, 금을 함유하는 합금, 은을 함유하는 합금, 구리를 함유하는 합금 등을 포함할 수 있다. For example, the first electrodes, the common electrode, and the second electrodes may each include gold, silver, copper, an alloy containing gold, an alloy containing silver, an alloy containing copper, and the like.
다른 예시적인 실시예들에 따르면, 상기 제1 리세스 내에는 각기 상기 글레이즈층과 상기 절연막의 일부로 구성되는 복수의 돌기들이 배치될 수 있으며, 상기 공통 전극은 상기 돌기들에 각기 실질적으로 대응하는 복수의 개구들을 포함할 수 있다.In example embodiments, a plurality of protrusions may be disposed in the first recess, each of the glaze layer and a portion of the insulating layer, and the common electrode may include a plurality of protrusions substantially corresponding to the protrusions. May comprise openings.
예시적인 실시예들에 있어서, 상기 저항막 패턴들은 각기 상기 제1 전극들 및 상기 제2 전극들 보다 실질적으로 큰 폭을 가질 수 있다.In example embodiments, each of the resistive layer patterns may have a width substantially greater than that of the first electrodes and the second electrodes.
예시적인 실시예들에 있어서, 상기 절연막은 금속 산화물 또는 실리콘 화합물을 포함할 수 있다. 또한, 상기 저항막 패턴들은 각기 루테늄(Ru)-금속(M)-산소(O), 이리듐(Ir)-금속(M)-산소(O), 백금(Pt)-금속(M)-산소(O), 탄탈륨(Ta)-실리콘(Si)-산소(O), 크롬(Cr)-실리콘(Si)-산소(O) 또는 니오븀(Nb)-실리콘(Si)-산소(O)를 포함하는 삼성분계 화합물이나 탄탈륨(Ta)-질소(N) 또는 루테늄(Ru)-산소(O)를 포함하는 이성분계 화합물로 구성될 수 있다.In example embodiments, the insulating layer may include a metal oxide or a silicon compound. In addition, the resistive layer patterns may be ruthenium (Ru) -metal (M) -oxygen (O), iridium (Ir) -metal (M) -oxygen (O), platinum (Pt) -metal (M) -oxygen ( O), tantalum (Ta)-silicon (Si)-oxygen (O), chromium (Cr)-silicon (Si)-oxygen (O) or niobium (Nb)-silicon (Si)-oxygen (O) It may be composed of a binary compound including a ternary compound or tantalum (Ta) -nitrogen (N) or ruthenium (Ru) -oxygen (O).
상술한 본 발명의 다른 목적을 달성하기 위하여, 본 발명의 예시적인 실시예들에 따른 감열 기록 소자의 제조 방법에 있어서, 기판 상에 글레이즈층을 형성한 후, 상기 글레이즈층 상에 절연막을 형성할 수 있다. 상기 절연막 및 상기 글레이즈층을 부분적으로 식각하여 복수의 돌출부들을 갖는 제1 리세스 및 복수의 제2 리세스들을 형성할 수 있다. 상기 제1 리세스 및 상기 제2 리세스들을 채우며 상기 절연막 상에 도전층을 형성한 다음, 상기 절연막 상의 도전층을 제거하여 상기 제1 리세스 내에 복수의 제1 전극들과 공통 전극을 형성할 수 있으며, 상기 제2 리세스들 내에 복수의 제2 전극들을 형성할 수 있다. 상기 절연막 상에 상기 제1 전극들 및 상기 제2 전극들에 각기 접속되는 복수의 저항막 패턴들을 형성할 수 있다. 상기 절연막, 상기 제1 전극들, 상기 공통 전극, 상기 제2 전극들 및 상기 저항막 패턴들 상에 보호층을 형성할 수 있다.In order to achieve the above object of the present invention, in the method of manufacturing a thermal recording element according to the exemplary embodiments of the present invention, after forming a glaze layer on a substrate, an insulating film is formed on the glaze layer Can be. The insulating layer and the glaze layer may be partially etched to form first recesses having a plurality of protrusions and a plurality of second recesses. A conductive layer may be formed on the insulating layer by filling the first recess and the second recess, and then the conductive layer on the insulating layer may be removed to form a plurality of first electrodes and a common electrode in the first recess. The plurality of second electrodes may be formed in the second recesses. A plurality of resistive layer patterns may be formed on the insulating layer to be connected to the first electrodes and the second electrodes, respectively. A protective layer may be formed on the insulating layer, the first electrodes, the common electrode, the second electrodes, and the resistive layer patterns.
다른 예시적인 실시예들에 있어서, 상기 제1 리세스 내에는 각기 상기 글레이즈층과 상기 절연막의 일부로 이루어진 복수의 돌기들이 형성될 수 있으며, 상기 돌기들에 따라 상기 공통 전극에는 복수의 개구들이 형성될 수 있다.In another exemplary embodiment, a plurality of protrusions each of the glaze layer and a portion of the insulating layer may be formed in the first recess, and the plurality of openings may be formed in the common electrode according to the protrusions. Can be.
예시적인 실시예들에 따른 상기 도전층을 형성하는 과정에 있어서, 상기 제1 리세스 및 상기 제2 리세스들을 채우며 상기 절연막 상에 도전성 페이스트를 도포한 후, 상기 도전성 페이스트를 건조 및 소결할 수 있다.In the process of forming the conductive layer, the conductive paste may be filled on the insulating layer and filled with the first recess and the second recess, and then the conductive paste may be dried and sintered. have.
예시적인 실시예들에 있어서, 상기 제1 전극들, 상기 공통 전극 및 상기 제2 전극들은 화학적 기계적 연마 공정을 이용하여 형성될 수 있다.In example embodiments, the first electrodes, the common electrode and the second electrodes may be formed using a chemical mechanical polishing process.
본 발명의 예시적인 실시예들에 따르면, 종래의 혼성형 감열 기록 소자의 제조 공정의 문제점인 사진 식각 공정을 통한 절연층 패턴의 형성 공정을 생략하고, 자기 정렬(self alignment) 방식으로 간단하게 저항막 패턴들 아래에 절연막과 전극 배선들을 형성할 수 있으므로, 저항막 패턴들의 폭을 증가시켜 감열 기록 소자의 인자 에너지 효율, 내구성, 신뢰성 등을 향상시킬 수 있다. 또한, 복수의 제1 및 제2 전극들과 공통 전극을 동시에 형성함으로써, 감열 기록 소자의 제조 공정을 단순화시킬 수 있으며, 제조 비용을 절감할 수 있다.According to exemplary embodiments of the present invention, a resistance of the insulating layer pattern through a photolithography process, which is a problem of the conventional hybrid thermal recording element manufacturing process, may be omitted, and the resistance may be simply maintained by a self alignment method. Since the insulating film and the electrode wirings can be formed under the film patterns, the width of the resistive film patterns can be increased to improve the printing energy efficiency, durability, reliability, and the like of the thermal recording element. In addition, by simultaneously forming the plurality of first and second electrodes and the common electrode, the manufacturing process of the thermal recording element can be simplified and the manufacturing cost can be reduced.
도 1은 종래의 혼성형 감열 기록 소자의 단면도이다.1 is a cross-sectional view of a conventional hybrid thermal recording element.
도 2는 도 1의 종래의 감열 기록 소자의 발열 저항부를 확대한 평면도이다.FIG. 2 is an enlarged plan view of a heat generating resistor of the conventional thermal recording element of FIG. 1.
도 3은 본 발명의 예시적인 실시예들에 따른 감열 기록 소자를 나타내는 평면도이다.3 is a plan view illustrating a thermal recording element according to exemplary embodiments of the present invention.
도 4는 도 3의 I-II 선을 따라 자른 감열 기록 소자의 단면도이다.FIG. 4 is a cross-sectional view of the thermal recording element taken along the line II of FIG. 3.
도 5 내지 도 16은 본 발명의 예시적인 실시예들에 따른 감열 기록 소자의 제조 방법을 설명하기 위한 단면도들 및 평면도들이다.5 to 16 are cross-sectional views and plan views illustrating a method of manufacturing a thermal recording element according to exemplary embodiments of the present invention.
도 17은 본 발명의 다른 예시적인 실시예들에 따른 감열 기록 소자를 나타내는 평면도이다.17 is a plan view showing a thermal recording element according to other exemplary embodiments of the present invention.
도 18은 도 17의 XII-XIII 선을 따라 자른 단면도이다.FIG. 18 is a cross-sectional view taken along the line XII-XIII of FIG. 17.
도 19는 도 17의 "XIV" 부분을 확대한 평면도이다.FIG. 19 is an enlarged plan view of a portion “XIV” of FIG. 17.
이하, 본 발명의 예시적인 실시예들에 따른 감열 기록 소자와 감열 기록소자의 제조 방법에 대하여 첨부된 도면들을 참조하여 상세하게 설명하지만, 본 발명이 하기 실시예들에 의해 제한되는 것은 아니며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다.Hereinafter, the thermal recording element and the method of manufacturing the thermal recording element according to exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments. Those skilled in the art may implement the present invention in various other forms without departing from the technical spirit of the present invention.
본 명세서에 있어서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예들을 설명하기 위한 목적으로 예시된 것이며, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 어떤 구성 요소가 다른 구성 요소에 "연결", "접촉" 또는 "접속"되어 있다고 기재된 경우, 다른 구성 요소에 직접적으로 연결되나 접촉되거나 또는 접속되어 있을 수도 있지만, 중간에 또 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 구성 요소들 간의 관계를 설명하는 다른 표현들, 예를 들면, "~사이에"와 "~에 인접하는" 등도 마찬가지로 해석될 수 있다.In this specification, specific structural to functional descriptions are merely illustrated for the purpose of describing embodiments of the present invention, and embodiments of the present invention may be embodied in various forms and are limited to the embodiments described herein. It is not to be understood that the present invention is to be construed as including all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. If a component is described as being "connected", "contacted" or "connected" to another component, it may be directly connected to or in contact with or connected to another component, but another component may be present in between. It should be understood that. Other expressions describing the relationship between the components, such as "between" and "adjacent to", may also be interpreted as well.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지는 않는다.The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to designate that there is a feature, number, step, action, component, part, or combination thereof that is practiced, and that one or the same. It is to be understood that the present invention does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, operations, components, parts, or combinations thereof. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Does not.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 이러한 구성 요소들은 상기 용어들에 의해 한정되는 것은 아니다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로 사용된다. 예를 들어, 본 발명의 권리 범위로부터 벗어나지 않고, 제1 구성 요소가 제2 구성 요소로 명명될 수 있으며, 유사하게 제2 구성 요소도 교호적으로 명명될 수 있다.Terms such as first and second may be used to describe various components, but such components are not limited by the terms. The terms are used to distinguish one component from another component. For example, without departing from the scope of the present invention, the first component may be called a second component, and similarly, the second component may be alternatively named.
도 3은 본 발명의 예시적인 실시예들에 따른 감열 기록 소자를 나타내는 평면도이며, 도 4는 도 3에 도시한 감열 기록 소자의 단면도이다.3 is a plan view illustrating a thermosensitive recording element according to exemplary embodiments of the present invention, and FIG. 4 is a cross-sectional view of the thermosensitive recording element illustrated in FIG. 3.
도 3 및 도 4를 참조하면, 예시적인 실시예들에 따른 감열 기록 소자(100)는, 기판(110), 글레이즈층(115), 절연막(120), 복수의 제1 전극들(125), 복수의 제2 전극들(130), 복수의 저항막 패턴들(135), 보호층(140), 공통 전극(145) 등을 구비할 수 있다. 도 3에 있어서, 기판(110)의 중심부 상의 제1 전극들(125), 제2 전극들(130), 저항막 패턴들(135) 등은 편의상 도시되지 않는다.3 and 4, the thermal recording element 100 according to the exemplary embodiments may include a substrate 110, a glaze layer 115, an insulating film 120, a plurality of first electrodes 125, A plurality of second electrodes 130, a plurality of resistive film patterns 135, a protective layer 140, and a common electrode 145 may be provided. In FIG. 3, the first electrodes 125, the second electrodes 130, the resistive layer patterns 135, and the like on the center of the substrate 110 are not shown for convenience.
기판(110)은 절연 물질로 구성될 수 있다. 예를 들면, 기판(110)은 알루미늄 산화물(AlOx)로 구성될 수 있다. 글레이즈층(115)은 기판(110) 상에 배치된다. 글레이즈층(115)은 기판(100)의 전면(全面) 상에서 실질적으로 균일한 두께를 가질 수 있다. 글레이즈층(115)은 유리와 같은 실리콘 산화물(SiOx), 알루미늄 산화물(AlOx), 바륨 산화물(BaOx), 칼슘 산화물(CaOx) 등을 주성분으로 포함하는 혼합물로 구성될 수 있다. 예시적인 실시예들에 있어서, 글레이즈층(115)은 실리콘 산화물, 알루미늄 산화물, 바륨 산화물 및 칼슘 산화물이 소정의 비율로 혼합된 페이스트(paste)를 기판(100) 상에 도포한 후, 도포된 상기 산화물 페이스트에 대해 건조 공정, 소결 공정 등을 수행하여 형성될 수 있다.The substrate 110 may be made of an insulating material. For example, the substrate 110 may be made of aluminum oxide (AlOx). The glaze layer 115 is disposed on the substrate 110. The glaze layer 115 may have a substantially uniform thickness on the entire surface of the substrate 100. The glaze layer 115 may be composed of a mixture including silicon oxide (SiOx), aluminum oxide (AlOx), barium oxide (BaOx), calcium oxide (CaOx), and the like as a main component, such as glass. In example embodiments, the glaze layer 115 may be formed by applying a paste of silicon oxide, aluminum oxide, barium oxide, and calcium oxide in a predetermined ratio onto the substrate 100, and then applying the paste. The oxide paste may be formed by performing a drying process, a sintering process, or the like.
절연막(120)은 글레이즈층(115) 상에 배치된다. 절연막(120)은 글레이즈층(115)의 구성 물질에 비하여 상대적으로 높은 경도(hardness)와 상대적으로 큰 열전도도(thermal conductivity)를 갖는 물질로 이루어질 수 있다. 예를 들면, 절연막(120)은 알루미늄 산화물(AlOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiOxNy), 실리콘 산탄화물(SiOxCy) 등과 같은 금속 산화물이나 실리콘 화합물을 포함할 수 있다. 또한, 절연막(120)은 글레이즈층(115)의 상면으로부터 약 0.05㎛ 내지 약 0.2㎛ 정도의 상대적으로 작은 두께를 가질 수 있다.The insulating film 120 is disposed on the glaze layer 115. The insulating layer 120 may be formed of a material having a relatively high hardness and a relatively high thermal conductivity as compared with the material of the glaze layer 115. For example, the insulating layer 120 may include a metal oxide or a silicon compound such as aluminum oxide (AlOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), silicon oxycarbide (SiOxCy), or the like. In addition, the insulating layer 120 may have a relatively small thickness of about 0.05 μm to about 0.2 μm from the upper surface of the glaze layer 115.
예시적인 실시예들에 있어서, 절연막(120)은 화학적 기계적 연마(CMP) 공정을 이용하여 글레이즈층(115) 상에 제1 전극들(125), 제2 전극들(130) 및 공통 전극(145)을 형성하는 동안 상대적으로 낮은 경도를 갖는 글레이즈층(115)을 보호하는 연마 저지막(polishing stop layer)의 역할을 할 수 있다. 또한, 절연막(120)은 감열 기록 소자(100)의 저항막 패턴들(135)이 구동 회로(도시되지 않음)의 온(ON)/오프(OFF) 동작신호에 대응하여 빠른 속도로 발열/냉각될 경우에 상대적으로 낮은 열전도도를 갖는 글레이즈층(115)에 열 충격으로 인한 균열(crack)이 발생되는 현상을 방지하는 열응력 완화막(thermal stress buffer layer)으로 기능할 수 있다.In example embodiments, the insulating layer 120 may be formed of the first electrodes 125, the second electrodes 130, and the common electrode 145 on the glaze layer 115 using a chemical mechanical polishing (CMP) process. ) May serve as a polishing stop layer to protect the glaze layer 115 having a relatively low hardness. In addition, the insulating layer 120 generates / cools at a high speed in response to the ON / OFF operation signal of the resistive pattern 135 of the thermal recording element 100 of a driving circuit (not shown). In this case, the glaze layer 115 having a relatively low thermal conductivity may function as a thermal stress buffer layer that prevents a phenomenon in which a crack is generated due to thermal shock.
제1 전극들(125), 제2 전극들(130) 및 공통 전극(145)은 절연막(120)과 글레이즈층(115)에 실질적으로 매립될 수 있다. 예시적인 실시예들에 있어서, 제1 전극들(125), 제2 전극들(130) 및 공통 전극(145)은 각기 금(Au), 은(Ag), 구리(Cu), 금을 함유하는 합금, 은을 함유하는 합금, 구리를 함유하는 합금 등으로 구성될 수 있다.The first electrodes 125, the second electrodes 130, and the common electrode 145 may be substantially buried in the insulating layer 120 and the glaze layer 115. In example embodiments, the first electrodes 125, the second electrodes 130, and the common electrode 145 each contain gold (Au), silver (Ag), copper (Cu), and gold. Alloys, alloys containing silver, alloys containing copper and the like.
도 3에 도시한 바와 같이, 공통 전극(145)은 실질적으로 글레이즈층(115)의 주변부 상에 배치될 수 있으며, 제1 전극들(125)과 제2 전극들(130)은 공통 전극(145)에 의해 한정되는 영역의 글레이즈층(115)의 중앙부 상에 위치할 수 있다. 즉, 제2 전극들(130)은 공통 전극(145)과 제1 전극들(125)에 의해 실질적으로 둘러싸일 수 있다. 공통 전극(145)은 양측부가 중앙부로부터 절곡되는 구조를 가질 수 있다. 예를 들면, 공통 전극(145)은 실질적으로 역상의 "U"자의 형상 또는 실질적으로 회전한 "ㄷ"자의 형상과 같은 평면 형상을 가질 수 있다. 복수의 제1 전극들(125)은 서로 제1 간격들로 이격될 수 있으며, 공통 전극(145)의 중앙부로부터 글레이즈층(115) 상으로 연장될 수 있다. 이 경우, 제1 전극들(125)은 공통 전극(145)과 일체로 형성될 수 있다.As shown in FIG. 3, the common electrode 145 may be substantially disposed on the periphery of the glaze layer 115, and the first electrodes 125 and the second electrodes 130 may be disposed on the common electrode 145. It may be located on the center portion of the glaze layer 115 of the area defined by (). That is, the second electrodes 130 may be substantially surrounded by the common electrode 145 and the first electrodes 125. The common electrode 145 may have a structure in which both side portions are bent from the center portion. For example, the common electrode 145 may have a planar shape such as a shape of a substantially inverted "U" or a shape of a substantially rotated "c". The plurality of first electrodes 125 may be spaced apart from each other at first intervals, and may extend from the central portion of the common electrode 145 onto the glaze layer 115. In this case, the first electrodes 125 may be integrally formed with the common electrode 145.
공통 전극(145)의 양측부들과 복수의 제2 전극들(130)의 일측들은 각기 감열 기록 소자(100)의 구동 회로에 전기적으로 접속될 수 있다. 복수의 제2 전극들(130)은 각기 복수의 제1 전극들(125)에 실질적으로 대응하여 배치될 수 있다. 각 저항막 패턴(135)은 소정의 간격으로 이격된 각 제1 전극(125)의 단부와 각 제2 전극(130)의 단부를 덮도록 제1 전극(125)과 제2 전극(130) 사이의 간격 보다 실질적으로 긴 길이를 가질 수 있다. 이에 따라 저항막 패턴들(135)은 각기 제1 및 제2 전극들(125, 130)에 접촉될 수 있다. 예를 들면, 각 제1 전극(125) 상에 각 저항막 패턴(135)의 일측이 배치될 수 있고, 각 제2 전극(130)의 일측 상에 각 저항막 패턴(135)의 타측이 위치할 수 있다. 한편, 각 저항막 패턴(135)은 각 제1 전극(125)의 폭 및/또는 각 제2 전극(130)의 일측의 폭과 실질적으로 큰 폭을 가질 수 있다.Both sides of the common electrode 145 and one side of the plurality of second electrodes 130 may be electrically connected to the driving circuit of the thermal recording element 100, respectively. The plurality of second electrodes 130 may be disposed to substantially correspond to the plurality of first electrodes 125, respectively. Each resistive film pattern 135 is disposed between the first electrode 125 and the second electrode 130 to cover an end portion of each first electrode 125 and an end portion of each second electrode 130 spaced at a predetermined interval. It may have a length substantially longer than the interval of. Accordingly, the resistive layer patterns 135 may be in contact with the first and second electrodes 125 and 130, respectively. For example, one side of each resistive film pattern 135 may be disposed on each first electrode 125, and the other side of each resistive film pattern 135 is positioned on one side of each second electrode 130. can do. Meanwhile, each of the resistive film patterns 135 may have a width substantially larger than the width of each first electrode 125 and / or the width of one side of each second electrode 130.
예시적인 실시예들에 따르면, 도 2에 도시한 바와 같이, 글레이즈층(115) 상에는 절연막(120)을 관통하는 제1 리세스(150)와 제2 리세스(155)가 제공될 수 있다. 제1 전극(125)과 공통 전극(145)은 제1 리세스(150)를 채울 수 있으며, 제2 전극(130)은 제2 리세스(155)에 매립될 수 있다. 제1 리세스(150)와 제2 리세스(155)는 상대적으로 깊은 깊이를 가질 수 있다. 예를 들면, 제1 및 제2 리세스(150, 155)는 절연막(120)의 상면으로부터 각기 약 0.5㎛ 내지 약 10.0㎛ 정도의 깊이를 가질 수 있다. 이에 따라, 제1 전극들(125), 제2 전극들(130) 및 공통 전극(145)은 각기 제1 및 제2 리세스(150, 155)의 깊이와 실질적으로 동일하거나 실질적으로 유사한 두꺼운 두께를 가질 수 있다. 예를 들면, 제1 전극들(125), 제2 전극들(130) 및 공통 전극(145)은 각기 0.5㎛ 내지 약 10.0㎛ 정도의 두께를 가질 수 있다. 전술한 구조들을 갖는 제1 전극들(125), 제2 전극들(130) 및 공통 전극(145)은 제1 및 제2 리세스(150, 155)를 갖는 글레이즈층(115)과 절연막(120) 상에 도전성 페이스트를 도포하고, 건조 공정 및 소결 공정을 수행한 다음, 절연막(120) 상에 위치하는 도전성 페이스트를 제거하여 형성될 수 있다.According to example embodiments, as shown in FIG. 2, the first recess 150 and the second recess 155 may pass through the insulating layer 120 on the glaze layer 115. The first electrode 125 and the common electrode 145 may fill the first recess 150, and the second electrode 130 may be buried in the second recess 155. The first recess 150 and the second recess 155 may have a relatively deep depth. For example, the first and second recesses 150 and 155 may each have a depth of about 0.5 μm to about 10.0 μm from the top surface of the insulating layer 120. Accordingly, the first electrodes 125, the second electrodes 130, and the common electrode 145 have a thick thickness that is substantially the same as or substantially similar to the depth of the first and second recesses 150 and 155, respectively. It can have For example, the first electrodes 125, the second electrodes 130, and the common electrode 145 may each have a thickness of about 0.5 μm to about 10.0 μm. The first electrodes 125, the second electrodes 130, and the common electrode 145 having the above-described structures may include the glaze layer 115 and the insulating layer 120 having the first and second recesses 150 and 155. The conductive paste may be formed by coating a conductive paste on the substrate, performing a drying process and a sintering process, and then removing the conductive paste located on the insulating layer 120.
상술한 바와 같이, 저항막 패턴들(135)은 절연막(120) 상으로부터 각기 제1 전극들(125)과 제2 전극들(130)의 일측들 상으로 연장될 수 있다. 즉, 각 저항막 패턴(135)의 중앙부는 절연막(120) 상에 위치할 수 있으며, 각 저항막 패턴(135)의 양측부는 각 제1 전극(125)과 각 제2 전극(130)의 일측 상에 배치될 수 있다. 여기서, 절연막(120) 상에 위치하는 각 저항막 패턴(135)의 중앙부가 감열 기록 소자(100)의 발열 저항부에 해당될 수 있다.As described above, the resistive layer patterns 135 may extend from the insulating layer 120 onto one sides of the first electrodes 125 and the second electrodes 130, respectively. That is, the center portion of each resistive layer pattern 135 may be positioned on the insulating layer 120, and both side portions of each resistive layer pattern 135 may have one side of each of the first electrode 125 and the second electrode 130. It can be placed on. Here, the center portion of each of the resistive film patterns 135 on the insulating film 120 may correspond to the heat generating resistor portion of the thermal recording element 100.
예시적인 실시예들에 있어서, 저항막 패턴들(135)은 각기 삼성분계 화합물로 구성될 수 있다. 예를 들면, 각 저항막 패턴(135)은 루테늄(Ru)-금속(M)-산소(O),이리듐(Ir)-금속(M)-산소(O), 백금(Pt)-금속(M)-산소(O) 등을 포함하는 삼성분계 화합물로 이루어질 수 있다. 여기서, 상기 금속(M)은 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti) 등을 포함할 수 있다. In example embodiments, each of the resistive layer patterns 135 may be formed of a ternary compound. For example, each resist layer pattern 135 includes ruthenium (Ru)-metal (M)-oxygen (O), iridium (Ir)-metal (M)-oxygen (O), and platinum (Pt)-metal (M It may be made of a ternary compound including) -oxygen (O) and the like. Here, the metal (M) may include silicon (Si), tantalum (Ta), titanium (Ti), or the like.
다른 예시적인 실시예들에 따르면, 각 저항막 패턴(135)은 탄탈륨(Ta)-실리콘(Si)-산소(O), 크롬(Cr)-실리콘(Si)-산소(O), 니오븀(Nb)-실리콘(Si)-산소(O) 등과 같은 삼성분계 화합물로 이루어질 수 있다. 또 다른 예시적인 실시예들에 있어서, 저항막 패턴들(135)은 각기 이성분계 화합물로 구성될 수도 있다. 예를 들면, 각 저항막 패턴(135)은 탄탈륨(Ta)-질소(N), 루테늄(Ru)-산소(O) 등을 포함할 수 있다.According to other exemplary embodiments, each resist layer pattern 135 may include tantalum (Ta) -silicon (Si) -oxygen (O), chromium (Cr) -silicon (Si) -oxygen (O), and niobium (Nb). It may be made of a tertiary compound such as) -silicon (Si) -oxygen (O) and the like. In another exemplary embodiment, the resistive layer patterns 135 may be formed of two-component compounds, respectively. For example, each of the resistive film patterns 135 may include tantalum (Ta) -nitrogen (N), ruthenium (Ru) -oxygen (O), or the like.
감열 기록 소자(100)의 구동 회로에 의해 선택되는 각 제1 및 제2 전극(125, 130) 사이에 전압이 인가되면, 각 제1 및 제2 전극(125, 130) 사이에 위치하는 저항막 패턴(135)이 발열하며, 이러한 열에 의해 감열지가 발색하거나 잉크 리본의 잉크가 용융 또는 승화하여 인쇄 매체에 전사됨으로써 인쇄가 이루어진다. 이 경우, 각 저항막 패턴(135)과 글레이즈층(115) 사이에 절연막(120)이 개재되기 때문에 각 저항막 패턴(135)이 글레이즈층(115)에 직접 접촉되지 않게 된다. 따라서 감열 기록 소자(100)가 동작하는 동안 저항막 패턴들(135)로 인하여 글레이즈층(115)에 열적 손상이 발생하는 것을 방지할 수 있으므로 감열 기록 소자(100)의 내구성, 신뢰성 등을 향상시킬 수 있다. 또한, 저항막 패턴(135)들이 각기 제1 전극들(125) 및/또는 제2 전극들(130) 보다 실질적으로 큰 폭을 가질 수 있기 때문에, 감열 기록 소자(100)를 사용하여 인쇄 매체에 인쇄를 수행하는 동안 인자 도트(dot)의 크기가 증가하여 보다 적은 인자 에너지로도 선명한 인쇄가 가능하게 된다.When a voltage is applied between each of the first and second electrodes 125 and 130 selected by the driving circuit of the thermal recording element 100, a resistive film positioned between each of the first and second electrodes 125 and 130. The pattern 135 generates heat, and heat is generated by the heat, or the ink of the ink ribbon is melted or sublimed and transferred to a print medium, thereby printing. In this case, since the insulating film 120 is interposed between the resistive film patterns 135 and the glaze layer 115, the resistive film patterns 135 do not directly contact the glaze layer 115. Accordingly, thermal damage to the glaze layer 115 may be prevented due to the resistive layer patterns 135 while the thermal recording element 100 is operating, thereby improving durability, reliability, and the like of the thermal recording element 100. Can be. In addition, since the resistive film patterns 135 may have a substantially larger width than the first electrodes 125 and / or the second electrodes 130, the thermal recording element 100 may be used to print on the print medium. During printing, the size of the printing dot is increased to enable clear printing with less printing energy.
다시 도 3 및 도 4를 참조하면, 보호층(140)은 저항막 패턴들(135), 제1 전극들(125), 공통 전극(145)의 일부 및 제2 전극들(130)의 일부들을 커버하면서 절연막(120) 상에 배치된다. 예를 들면, 보호층(140)에 의해 제2 전극들(130)의 타측들과 공통 전극(140)의 양측부들이 노출될 수 있다. 보호층(140)은 저항막 패턴들(135), 공통 전극(145), 제1 전극들(125) 및 제2 전극들(130)이 감열지 또는 통상적인 인쇄 용지와 직접 접촉되지 않도록 할 뿐만 아니라, 공통 전극(145), 제1 전극들(125) 및 제2 전극들이 전기 화학적으로 부식되거나 사용하는 동안 발생되는 스크래치와 같은 손상으로부터 보호하는 역할을 수행할 수 있다. 보호층(140)은 감열 기록 소자(100)를 이용하는 인쇄 시에 감열지나 잉크 리본과의 마찰을 감소시켜 원활한 인쇄가 가능하도록 상대적으로 매끄러운 표면을 가질 수 있다. 이와 같은 점들을 고려하여, 보호층(140)은 실리콘 화합물, 금속 화합물 등으로 구성될 수 있다. 예를 들면, 보호층(140)은 실리콘 산화물(SiOx), 실리콘 질화물(SiNx), 실리콘 산질화물(SiOxNy), 실리콘 탄화물(SiCx), 실리콘-알루미늄 산질화물(SiAlxOyNz), 탄탈륨 산화물(TaOx), 티타늄 질화물(TiNx) 등을 포함할 수 있다. 또한, 보호층(140)은 약 3.0㎛ 내지 약 7.0㎛ 정도의 상대적으로 두꺼운 두께를 가질 수 있다. 예시적인 실시예들에 따르면, 보호층(140)은 내산화성, 내마모성, 정전기 방지 등과 같은 감열 기록 소자(100)에 요구되는 특성에 따라 전술한 실리콘 화합물 및/또는 금속 화합물로 이루어진 단층 구조 또는 다층 구조를 가질 수 있다.Referring to FIGS. 3 and 4 again, the protective layer 140 may include the resistive layer patterns 135, the first electrodes 125, a part of the common electrode 145, and a part of the second electrodes 130. It is disposed on the insulating film 120 while covering. For example, the other sides of the second electrodes 130 and both sides of the common electrode 140 may be exposed by the protective layer 140. The protective layer 140 not only prevents the resistive patterns 135, the common electrode 145, the first electrodes 125, and the second electrodes 130 from directly contacting the thermal paper or a conventional printing paper. The common electrode 145, the first electrodes 125, and the second electrodes may serve to protect against damage such as scratches generated during corrosion or electrochemical corrosion. The protective layer 140 may have a relatively smooth surface to reduce the friction with the thermal paper or the ink ribbon when printing using the thermal recording element 100 to enable smooth printing. In consideration of such points, the protective layer 140 may be formed of a silicon compound, a metal compound, or the like. For example, the protective layer 140 may include silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), silicon carbide (SiCx), silicon-aluminum oxynitride (SiAlxOyNz), tantalum oxide (TaOx), Titanium nitride (TiNx) and the like. In addition, the protective layer 140 may have a relatively thick thickness of about 3.0㎛ to about 7.0㎛. According to exemplary embodiments, the protective layer 140 may be a single layer structure or a multilayer structure made of the above-described silicon compound and / or metal compound, depending on characteristics required for the thermal recording element 100 such as oxidation resistance, wear resistance, antistatic, and the like. It may have a structure.
도 5 내지 도 16은 본 발명의 예시적인 실시예들에 따른 감열 기록 소자의 제조 방법을 설명하기 위한 단면도들 및 평면도들이다. 도 5 내지 도 16에 있어서, 도 3 및 도 4를 참조하여 설명한 감열 기록 소자와 실질적으로 동일한 구성을 가지는 감열 기록 소자의 제조 방법을 예시적으로 설명하지만, 리세스들을 형성하기 위한 마스크 패턴의 자명한 구조 변경에 따라 후술하는 바와 같이 도 17 내지 도 19에 예시한 감열 기록 소자도 제조될 수 있다.5 to 16 are cross-sectional views and plan views illustrating a method of manufacturing a thermal recording element according to exemplary embodiments of the present invention. 5 to 16 exemplarily illustrate a method of manufacturing a thermal recording element having a configuration substantially the same as that of the thermal recording element described with reference to FIGS. 3 and 4, the self-evident name of the mask pattern for forming the recesses is illustrated. According to one structural change, the thermal recording element illustrated in Figs. 17 to 19 can also be manufactured as described later.
도 5는 기판(200) 상에 글레이즈층(205)과 절연막(210)을 형성하는 과정들을 설명하기 위한 단면도이다.5 is a cross-sectional view for describing processes of forming the glaze layer 205 and the insulating layer 210 on the substrate 200.
도 5를 참조하면, 기판(200) 상에 글레이즈층(205)이 형성된다. 기판(200)은 금속 산화물과 같은 절연 물질을 사용하여 형성될 수 있다. 예를 들면, 기판(200)은 알루미늄 산화물을 사용하여 형성될 수 있다.Referring to FIG. 5, the glaze layer 205 is formed on the substrate 200. The substrate 200 may be formed using an insulating material such as a metal oxide. For example, the substrate 200 may be formed using aluminum oxide.
글레이즈층(205)은 기판(200)의 전면 상에 실질적으로 균일한 두께로 형성될 수 있다. 글레이즈층(205)은 실리콘 산화물, 알루미늄 산화물, 바륨 산화물, 칼슘 산화물 등을 사용하여 형성될 수 있다. 예시적인 실시예들에 있어서, 유리와 같은 실리콘 산화물, 알루미늄 산화물, 바륨 산화물 및 칼슘 산화물이 소정의 비율로 혼합된 페이스트를 마련한 후, 이러한 산화물 페이스트를 기판(200) 상에 균일하게 도포하여 기판(200) 상에 유리와 같이 매끈한 표면을 갖는 산화물층을 형성할 수 있다. 예를 들면, 실리콘 산화물, 알루미늄 산화물, 바륨 산화물 및 칼슘 산화물 산화물이 혼합된 페이스트는 프린팅 공정, 스핀 코팅 공정 등을 이용하여 기판(200) 상에 도포될 수 있다. 상기 산화물층을 건조한 후, 소정의 온도에서 소결하여 기판(200) 상에 글레이즈층(205)을 형성할 수 있다.The glaze layer 205 may be formed to have a substantially uniform thickness on the entire surface of the substrate 200. The glaze layer 205 may be formed using silicon oxide, aluminum oxide, barium oxide, calcium oxide, or the like. In example embodiments, after preparing a paste in which silicon oxide, aluminum oxide, barium oxide, and calcium oxide, such as glass, are mixed in a predetermined ratio, the oxide paste may be uniformly applied onto the substrate 200 to provide a substrate ( It is possible to form an oxide layer on the surface 200) having a smooth surface, such as glass. For example, a paste in which silicon oxide, aluminum oxide, barium oxide, and calcium oxide oxide is mixed may be applied onto the substrate 200 using a printing process, a spin coating process, or the like. After drying the oxide layer, the oxide layer may be sintered at a predetermined temperature to form a glaze layer 205 on the substrate 200.
글레이즈층(205) 상에 절연막(210)을 형성한다. 절연막(210)은 글레이즈층(205)의 구성 물질에 비하여 상대적으로 높은 경도와 상대적으로 큰 열전도도를 갖는 물질을 사용하여 형성될 수 있다. 예시적인 실시예들에 있어서, 절연막(210)은 실리콘 화합물, 금속 산화물 등을 사용하여 형성될 수 있다. 예를 들면, 절연막(210)은 실리콘 산질화물(SiOxNy), 실리콘 산탄화물(SiOxCy), 알루미늄 산화물(AlOx) 등을 사용하여 형성될 수 있다. 또한, 절연막(210)은 화학 기상 증착 공정, 원자층 적층 공정, 플라즈마 증대 화학 기상 증착 공정, 스퍼터링 공정, 진공 증착 공정 등을 이용하여 형성될 수 있다. 절연막(210)은 글레이즈층(205)의 상면으로부터 약 0.05㎛ 내지 약 0.2㎛ 정도의 상대적으로 작은 두께로 형성될 수 있다.The insulating film 210 is formed on the glaze layer 205. The insulating layer 210 may be formed using a material having a relatively high hardness and a relatively high thermal conductivity compared to the material of the glaze layer 205. In example embodiments, the insulating layer 210 may be formed using a silicon compound, a metal oxide, or the like. For example, the insulating layer 210 may be formed using silicon oxynitride (SiOxNy), silicon oxycarbide (SiOxCy), aluminum oxide (AlOx), or the like. In addition, the insulating layer 210 may be formed using a chemical vapor deposition process, an atomic layer deposition process, a plasma enhanced chemical vapor deposition process, a sputtering process, a vacuum deposition process, or the like. The insulating layer 210 may be formed with a relatively small thickness of about 0.05 μm to about 0.2 μm from the upper surface of the glaze layer 205.
도 6은 글레이즈층(205)과 절연막(210)에 제1 리세스(220)와 제2 리세스(225)를 형성하는 과정을 설명하기 위한 평면도이며, 도 7은 도 6의 III-IV 선을 따라 자른 단면도이다.FIG. 6 is a plan view illustrating a process of forming the first recess 220 and the second recess 225 in the glaze layer 205 and the insulating layer 210, and FIG. 7 is a line III-IV of FIG. 6. The cross section is cut along the side.
도 6 및 도 7을 참조하면, 절연막(210) 상에 제1 마스크 패턴(215)을 형성한다. 제1 마스크 패턴(215)은 포토레지스트와 같이 절연막(210)과 글레이즈층(205)에 대해 식각 선택비를 갖는 물질을 사용하여 형성될 수 있다. 예를 들면, 절연막(210) 상에 포토레지스트막(도시되지 않음)을 형성한 다음, 상기 포토레지스트막에 대해 노광 공정 및 현상 공정을 수행하여 제1 마스크 패턴(215)을 형성할 수 있다. 제1 마스크 패턴(215)은 후속하여 제1 및 제2 리세스(220, 225)가 형성될 부분들의 절연막(210)을 노출시킬 수 있다. 6 and 7, a first mask pattern 215 is formed on the insulating layer 210. The first mask pattern 215 may be formed using a material having an etch selectivity with respect to the insulating layer 210 and the glaze layer 205, such as a photoresist. For example, after forming a photoresist film (not shown) on the insulating film 210, an exposure process and a developing process may be performed on the photoresist film to form a first mask pattern 215. The first mask pattern 215 may expose the insulating layer 210 of portions where the first and second recesses 220 and 225 are subsequently formed.
제1 마스크 패턴(215)을 식각 마스크로 이용하여 절연막(210)과 글레이즈층(205)을 부분적으로 식각함으로써, 글레이즈층(205) 상에 절연막(210)을 관통하는 제1 및 제2 리세스(220, 225)를 형성한다. 예를 들면, 제1 및 제2 리세스(220, 225)는 각기 절연막(210)의 상면으로부터 약 0.5㎛ 내지 약 10.0㎛ 정도의 상대적으로 큰 깊이를 가질 수 있다.First and second recesses penetrating the insulating film 210 on the glaze layer 205 by partially etching the insulating film 210 and the glaze layer 205 using the first mask pattern 215 as an etching mask. (220, 225). For example, the first and second recesses 220 and 225 may have a relatively large depth of about 0.5 μm to about 10.0 μm from the top surface of the insulating layer 210, respectively.
도 6에 도시한 바와 같이, 제1 리세스(220)는 기판(200)의 주변부 상의 글레이즈층(205)에 형성될 수 있으며, 제2 리세스(225)는 제1 리세스(220)에 의해 한정되는 기판(200)의 중앙부 상의 글레이즈층(205)에 형성될 수 있다. 예를 들면, 제1 리세스(220)가 제2 리세스(225)를 실질적으로 둘러싸는 구조를 가질 수 있다. 예시적인 실시예들에 있어서, 제1 리세스(220)는 양측부가 중앙부로부터 절곡되어 연장되는 구조를 가질 수 있다. 예를 들면, 제1 리세스(220)는 실질적으로 역상의 "U"자의 형상 또는 실질적으로 회전한 "ㄷ"자의 형상 등과 같은 평면 형상을 가질 수 있다. 이 경우, 제1 리세스(220)의 중앙부에는 복수의 제1 전극들(235)(도 9 참조)이 형성될 위치에 돌출부들이 형성된다. 제1 리세스(220)의 돌출부들은 각기 기판(200)의 중앙부를 향하여 돌출될 수 있으며, 절연막(210)을 개재하여 소정의 간격으로 이격될 수 있다. 또한, 제1 리세스(220)의 돌출부들은 각기 소정의 폭을 가질 수 있다.As shown in FIG. 6, the first recess 220 may be formed in the glaze layer 205 on the periphery of the substrate 200, and the second recess 225 may be formed in the first recess 220. It can be formed in the glaze layer 205 on the central portion of the substrate 200 defined by. For example, the first recess 220 may have a structure substantially surrounding the second recess 225. In example embodiments, the first recess 220 may have a structure in which both sides thereof are bent and extended from the center portion. For example, the first recess 220 may have a planar shape such as a substantially reverse shape of a “U” shape or a substantially rotated “c” shape. In this case, a plurality of first electrodes 235 (see FIG. 9) are formed at a central portion of the first recess 220. Protrusions are formed. Each of the protrusions of the first recess 220 may protrude toward the center portion of the substrate 200, and may be spaced apart at predetermined intervals through the insulating layer 210. In addition, the protrusions of the first recess 220 may each have a predetermined width.
제2 리세스들(225)은 제1 리세스(220)의 돌출부들에 각기 대응하는 일측들을 구비할 수 있다. 복수의 제2 리세스들(225)의 일측들은 각기 제1 리세스(220)의 돌출부들 사이의 간격과 실질적으로 동일하거나 실질적으로 유사한 간격으로 이격될 수 있다.The second recesses 225 may have one sides corresponding to the protrusions of the first recess 220, respectively. One side of the plurality of second recesses 225 may be spaced apart from each other at substantially the same or substantially similar intervals between the protrusions of the first recess 220.
도 8은 글레이즈층(205)과 절연막(210) 상에 도전층(230)을 형성하는 과정을 설명하기 위한 단면도이다.8 is a cross-sectional view for describing a process of forming the conductive layer 230 on the glaze layer 205 and the insulating layer 210.
도 8을 참조하면, 전술한 바와 같이 제1 및 제2 리세스(220, 225)를 형성한 후, 절연막(210) 상의 제1 마스크 패턴(215)을 제거한다. 예를 들면, 제1 마스크 패턴(215)이 포토레지스트를 포함할 경우, 제1 마스크 패턴(215)은 애싱(ashing) 공정 및/또는 스트리핑(stripping) 공정을 통해 절연막(210)으로부터 제거될 수 있다.Referring to FIG. 8, after the first and second recesses 220 and 225 are formed as described above, the first mask pattern 215 on the insulating layer 210 is removed. For example, when the first mask pattern 215 includes a photoresist, the first mask pattern 215 may be removed from the insulating film 210 through an ashing process and / or a stripping process. have.
제1 및 제2 리세스(220, 225)를 실질적으로 채우면서 절연막(210) 상에 도전층(230)을 형성한다. 예시적인 실시예들에 있어서, 제1 및 제2 리세스(220, 225)를 매립하면서 절연막(210) 상에 도전성 페이스트(도시되지 않음)를 형성할 수 있다. 여기서, 상기 도전성 페이스트는 금, 은, 구리, 금을 함유하는 합금, 은을 함유하는 합금, 구리를 함유하는 합금 등을 사용하여 형성될 수 있다. 또한, 상기 도전성 페이스트는 프린팅 공정, 스핀 코팅 공정 등을 이용하여 절연막(210) 상에 제공될 수 있다. 상기 도전성 페이스트에 대하여 건조 공정, 소결 공정 등을 수행하여 절연막(210) 상에 도전층(230)을 형성할 수 있다. 도전층(230)은 실질적으로 제1 및 제2 리세스(220, 225)를 완전히 채우면서 절연막(210) 상으로 연장될 수 있다.The conductive layer 230 is formed on the insulating layer 210 while substantially filling the first and second recesses 220 and 225. In example embodiments, a conductive paste (not shown) may be formed on the insulating layer 210 while filling the first and second recesses 220 and 225. Here, the conductive paste may be formed using gold, silver, copper, an alloy containing gold, an alloy containing silver, an alloy containing copper, and the like. In addition, the conductive paste may be provided on the insulating layer 210 using a printing process, a spin coating process, or the like. The conductive paste 230 may be formed on the insulating layer 210 by performing a drying process or a sintering process on the conductive paste. The conductive layer 230 may extend onto the insulating layer 210 while substantially filling the first and second recesses 220 and 225.
도 9는 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)을 형성하는 과정을 설명하기 위한 평면도이며, 도 10은 도 9의 V-VI 선을 따라 자른 단면도이다.9 is a plan view illustrating a process of forming the first electrodes 235, the common electrode 240, and the second electrodes 245, and FIG. 10 is a cross-sectional view taken along the line V-VI of FIG. 9. .
도 9 및 도 10을 참조하면, 도전층(230)을 부분적으로 제거하여 복수의 제1 전극들(235), 공통 전극(240) 및 복수의 제2 전극들(245)을 형성한다. 즉, 절연막(210) 상의 도전층(230)을 제거하여 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)을 형성한다. 제1 전극들(235)은 각기 제1 리세스(220)의 돌출부들 내에 형성될 수 있고, 공통 전극(240)은 제1 리세스(220)의 중앙부와 양측부를 채울 수 있다. 또한, 제2 전극들(245)은 각기 제2 리세스들(225)을 매립할 수 있다. 따라서 각 제1 전극(235)은 제1 리세스(220)의 돌출부와 실질적으로 동일하거나 실질적으로 유사한 치수를 가질 수 있다. 각 제2 전극(245)도 각 제2 리세스(225)와 실질적으로 동일하거나 실질적으로 유사한 치수로 형성될 수 있다. 따라서, 제1 전극들(235), 제2 전극들(245) 및 공통 전극(240)은 각기 절연막(210)의 상면으로부터 약 0.5㎛ 내지 약 10.0㎛ 정도의 두께를 가질 수 있다.9 and 10, the conductive layer 230 is partially removed to form the plurality of first electrodes 235, the common electrode 240, and the plurality of second electrodes 245. That is, the conductive layers 230 on the insulating layer 210 are removed to form the first electrodes 235, the common electrode 240, and the second electrodes 245. Each of the first electrodes 235 may be formed in the protrusions of the first recess 220, and the common electrode 240 may fill the center and both sides of the first recess 220. In addition, the second electrodes 245 may fill the second recesses 225, respectively. Accordingly, each first electrode 235 may have a dimension substantially the same as or substantially similar to that of the protrusion of the first recess 220. Each second electrode 245 may also be formed with substantially the same or substantially similar dimensions as each second recess 225. Accordingly, the first electrodes 235, the second electrodes 245, and the common electrode 240 may each have a thickness of about 0.5 μm to about 10.0 μm from the top surface of the insulating layer 210.
예시적인 실시예들에 있어서, 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)은 화학적 기계적 연마(CMP) 공정을 이용하여 형성될 수 있다. 즉, 절연막(210)이 노출될 때까지 도전층(230)을 연마하여 제1 리세스(220) 및 제2 리세스들(225)에 매립되는 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)을 형성할 수 있다. 이 경우, 절연막(210)은 상기 화학적 기계적 연마 공정의 연마 저지막의 역할을 수행할 수 있다. 즉, 절연막(210)은 글레이즈층(205) 상에 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)을 형성하는 화학적 기계적 연마 공정 동안 상대적으로 낮은 경도를 갖는 물질로 이루어진 글레이즈층(205)을 보호할 수 있다. 따라서, 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)의 상면들과 절연막(210)의 상면은 실질적으로 동일한 평면 상에 위치할 수 있다.In example embodiments, the first electrodes 235, the common electrode 240, and the second electrodes 245 may be formed using a chemical mechanical polishing (CMP) process. In other words, the conductive layers 230 are polished until the insulating layer 210 is exposed, so that the first electrodes 235 and the common electrodes 240 are buried in the first recesses 220 and the second recesses 225. ) And second electrodes 245 may be formed. In this case, the insulating film 210 may serve as a polishing stopper film of the chemical mechanical polishing process. That is, the insulating film 210 is a material having a relatively low hardness during the chemical mechanical polishing process of forming the first electrodes 235, the common electrode 240, and the second electrodes 245 on the glaze layer 205. It is possible to protect the glaze layer 205 made of. Therefore, the top surfaces of the first electrodes 235, the common electrode 240, and the second electrodes 245 and the top surface of the insulating layer 210 may be positioned on substantially the same plane.
본 발명의 예시적인 실시예들에 따르면, 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)을 동시에 형성할 수 있기 때문에, 상기 감열 기록 소자의 제조 공정들을 크게 단순화시킬 수 있다. 이 경우, 절연막(210)이 제1 및 제2 리세스(220, 225)를 채우는 도전층(230) 이외에 절연막(210) 상에 위치하는 불필요한 도전층(230)을 제거할 때 상대적으로 낮은 경도를 갖는 글레이즈층(205)이 연마 손상이 발생하는 것을 방지할 수 있으며, 기판(200)의 위치에 따라 도전층(230)이 연마되는 정도에 차이가 발생하는 현상도 억제할 수 있다. 종래의 혼성형 감열 기록 소자를 제조하는 방법에 있어서, 발열 저항막의 발열 부분 아래에 열응력 완화층의 역할을 하는 절연층을 배치하기 위해서는 별도의 사진 식각 공정이 요구되었다. 그러나, 본 발명의 예시적인 실시예들에 따르면, 절연막(210)이 제1 및 제2 전극들(235, 245)과 공통 전극(240)이 형성된 부분들을 제외한 나머지 부분들의 글레이즈층(205) 상에 위치하기 때문에, 추가적인 식각 공정 없이 저항막 패턴(255)(도 16 참조) 아래에 자기 정렬(self alignment) 방식으로 절연막(210)이 배치될 수 있다. 또한, 제1 및 제2 전극들(235, 245)과 공통 전극(240)도 절연막(210)에 대해 자기 정렬되는 방식으로 각기 제1 및 제2 리세스(220, 225) 내에 형성될 수 있다. 즉, 절연막(210)과 글레이즈층(205)을 부분적으로 식각하여 제1 및 제2 리세스(220, 225)를 형성하고, 이러한 제1 및 제2 리세스(220, 225) 내에 제1 및 제2 전극들(235, 245)과 공통 전극(240)에 형성하기 때문에 제1 및 제2 전극들(235, 245)과 공통 전극(240)이 자기 정렬 방식으로 제1 및 제2 리세스(220, 225) 내에 배치될 수 있다.According to exemplary embodiments of the present invention, since the first electrodes 235, the common electrode 240, and the second electrodes 245 can be formed at the same time, the manufacturing process of the thermal recording element is greatly simplified. You can. In this case, the relatively low hardness when the insulating layer 210 removes the unnecessary conductive layer 230 positioned on the insulating layer 210 in addition to the conductive layer 230 filling the first and second recesses 220 and 225. The glaze layer 205 having the structure may prevent the polishing damage from occurring, and the phenomenon in which the difference in the degree of polishing of the conductive layer 230 depending on the position of the substrate 200 may be suppressed. In the conventional method of manufacturing a hybrid thermal recording element, a separate photolithography process is required to arrange an insulating layer serving as a thermal stress relaxation layer under a heat generating portion of the heat generating resistive film. However, according to exemplary embodiments of the present invention, the insulating layer 210 may be formed on the glaze layer 205 of the remaining portions except for the portions in which the first and second electrodes 235 and 245 and the common electrode 240 are formed. Because it is located at, the insulating layer 210 may be disposed under a self alignment method under the resistive pattern 255 (see FIG. 16) without an additional etching process. In addition, the first and second electrodes 235 and 245 and the common electrode 240 may also be formed in the first and second recesses 220 and 225, respectively, in a self-aligned manner with respect to the insulating layer 210. . In other words, the insulating layer 210 and the glaze layer 205 are partially etched to form first and second recesses 220 and 225, and the first and second recesses 220 and 225 are formed in the first and second recesses 220 and 225. Since the first and second electrodes 235 and 245 and the common electrode 240 are formed in the second and second electrodes 235 and 245 and the common electrode 240, the first and second recesses may be formed in a self-aligned manner. 220, 225 may be disposed.
도 11은 저항막(250)을 형성하는 과정을 설명하기 위한 단면도이다.11 is a cross-sectional view for describing a process of forming the resistive film 250.
도 11을 참조하면, 제1 전극들(235), 공통 전극(240) 및 제2 전극들(245)과 절연막(210) 상에 저항막(250)을 형성한다. 저항막(250)은 루테늄(Ru)-금속(M)-산소(O), 이리듐(Ir)-금속(M)-산소(O), 백금(Pt)-금속(M)-산소(O) 등을 포함하는 삼성분계 화합물을 사용하여 형성될 수 있다. 이 경우, 상기 금속은 실리콘(Si), 탄탈륨(Ta), 티타늄(Ti) 등을 포함할 수 있다. 예를 들면, 저항막(250)은 루테늄-실리콘 산화물(Ru-SiOx), 루테늄-탄탈륨 산화물(Ru-TaOx), 루테늄-티타늄 산화물(Ru-TiOx), 이리듐-실리콘 산화물(Ir-SiOx), 이리듐-탄탈륨 산화물(Ir-TaOx), 이리듐-티타늄 산화물(Ir-TiOx), 백금-실리콘 산화물(Pt-SiOx), 백금-탄탈륨 산화물(Pt-TaOx), 백금-티타늄 산화물(Pt-TiOx) 등을 사용하여 형성될 수 있다. 다른 예시적인 실시예들에 있어서, 저항막(250)은 탄탈륨-실리콘 산화물(Ta-SiOx), 크롬-실리콘 산화물(Cr-SiOx), 니오븀-실리콘 산화물(Nb-SiOx), 탄탈륨 질화물(TiNx), 루테늄 산화물(RuOx) 등을 사용하여 형성될 수 있다.Referring to FIG. 11, a resistive film 250 is formed on the first electrodes 235, the common electrode 240, the second electrodes 245, and the insulating film 210. The resistive film 250 includes ruthenium (Ru)-metal (M)-oxygen (O), iridium (Ir)-metal (M)-oxygen (O), platinum (Pt)-metal (M)-oxygen (O) It may be formed using a ternary compound including the like. In this case, the metal may include silicon (Si), tantalum (Ta), titanium (Ti), or the like. For example, the resistive film 250 may include ruthenium-silicon oxide (Ru-SiOx), ruthenium-tantalum oxide (Ru-TaOx), ruthenium-titanium oxide (Ru-TiOx), iridium-silicon oxide (Ir-SiOx), Iridium-tantalum oxide (Ir-TaOx), iridium-titanium oxide (Ir-TiOx), platinum-silicon oxide (Pt-SiOx), platinum-tantalum oxide (Pt-TaOx), platinum-titanium oxide (Pt-TiOx), etc. It can be formed using. In another exemplary embodiment, the resistive film 250 may include tantalum-silicon oxide (Ta-SiOx), chromium-silicon oxide (Cr-SiOx), niobium-silicon oxide (Nb-SiOx), and tantalum nitride (TiNx). , Ruthenium oxide (RuOx) and the like can be formed.
또한, 저항막(250)은 스퍼터링 공정, 프린팅 공정, 화학 기상 증착 공정, 진공 증착 공정, 등을 이용하여 형성될 수 있다. 예시적인 실시예들에 따라 저항막(250)이 상기 삼성분계 화합물로 구성될 경우, 저항막(250) 내의 금속과 산화물의 함량비를 변화시켜 저항막(250)의 저항값을 조절할 수 있다. 또한, 저항막(250)이 산화물을 포함할 경우에는 저항막(250)의 내산화성도 향상시킬 수 있다. 저항막(250)은 상대적으로 얇은 두께로 형성될 수 있다. 예를 들면, 저항막(250)은 절연막(210)의 상면으로부터 약 0.05㎛ 내지 약 0.2㎛ 정도의 두께를 가질 수 있다.In addition, the resistive film 250 may be formed using a sputtering process, a printing process, a chemical vapor deposition process, a vacuum deposition process, or the like. According to exemplary embodiments, when the resistive film 250 is formed of the tri-component compound, the resistance value of the resistive film 250 may be adjusted by changing the content ratio of the metal and the oxide in the resistive film 250. In addition, when the resistive film 250 includes an oxide, oxidation resistance of the resistive film 250 may also be improved. The resistive film 250 may be formed to a relatively thin thickness. For example, the resistive film 250 may have a thickness of about 0.05 μm to about 0.2 μm from an upper surface of the insulating film 210.
도 12는 저항막 패턴(255)을 형성하는 과정을 설명하기 위한 평면도이고, 도 13은 도 12의 VII-VIII 선을 따라 자른 단면도이며, 도 14는 도 12의 "IX" 부분을 확대한 평면도이다.FIG. 12 is a plan view illustrating a process of forming the resistive film pattern 255, FIG. 13 is a cross-sectional view taken along the line VII-VIII of FIG. 12, and FIG. 14 is an enlarged plan view of the portion “IX” of FIG. 12. to be.
도 12 및 도 13을 참조하면, 저항막(250) 상에 포토레지스트 패턴이나 하드 마스크 패턴과 같은 제2 마스크 패턴(도시되지 않음)를 형성한 다음, 이러한 제2 마스크 패턴을 식각 마스크로 이용하여 저항막(250)을 패터닝함으로써, 제1 전극들(235)과 제2 전극들(245) 사이의 절연막(210)의 부분들 상에 저항막 패턴들(255)을 형성할 수 있다.12 and 13, a second mask pattern (not shown) such as a photoresist pattern or a hard mask pattern is formed on the resistive layer 250, and then the second mask pattern is used as an etching mask. By patterning the resistive film 250, the resistive film patterns 255 may be formed on portions of the insulating film 210 between the first electrodes 235 and the second electrodes 245.
예시적인 실시예들에 있어서, 도 14에 도시한 바와 같이, 각 저항막 패턴(255)은 각 제1 전극(235)과 각 제2 전극(245) 사이의 간격보다 실질적으로 큰 길이를 가질 수 있다. 이에 따라 각 저항막 패턴(255)의 양측부는 제1 전극(235)과 제2 전극(245)의 일측에 접속될 수 있다. 즉, 저항막 패턴들(245)의 양측부들은 각기 제1 전극들(235) 및 제2 전극들(245)의 일측부들과 실질적으로 중첩될 수 있다. 각 저항막 패턴(255)의 발열 저항부(260)에 해당되는 중앙부 아래에는 전술한 바와 같이 절연막(210)이 위치할 수 있다. 또한, 저항막 패턴들(255)은 각기 제1 및 제2 전극들(235, 245)의 폭에 비하여 실질적으로 큰 폭을 가질 수 있다.In example embodiments, as illustrated in FIG. 14, each of the resistive film patterns 255 may have a length substantially greater than a distance between each of the first and second electrodes 235 and 245. have. Accordingly, both side portions of each of the resistive film patterns 255 may be connected to one side of the first electrode 235 and the second electrode 245. That is, both sides of the resistive layer patterns 245 may substantially overlap one sides of the first electrodes 235 and the second electrodes 245, respectively. As described above, the insulating layer 210 may be positioned below the center portion corresponding to the heat generating resistor portion 260 of each resistive layer pattern 255. In addition, the resistive layer patterns 255 may have a substantially larger width than the widths of the first and second electrodes 235 and 245, respectively.
도 15는 보호층(265)을 형성하는 과정을 설명하기 위한 평면도이며, 도 16은 도 15의 X-XI 선을 따라 자른 단면도이다.15 is a plan view illustrating a process of forming the protective layer 265, and FIG. 16 is a cross-sectional view taken along the line X-XI of FIG. 15.
도 15 및 도 16을 참조하면, 절연막(210) 상에 제1 전극들(235), 제2 전극들(245) 및 공통 전극(240)을 커버하는 보호층(265)을 형성한다. 보호층(265)은 저항막 패턴들(255)이 감열지, 잉크 리본, 통상적인 인쇄 용지 등의 인쇄 매체와 직접 접촉되지 않도록 할 수 있고, 제1 및 제2 전극들(235, 245)과 공통 전극(240)이 전기 화학적으로 부식되거나 물리적인 손상을 입는 것을 방지할 수 있다. 또한, 보호층(265)은 인쇄 매체와의 마찰을 감소시켜 인쇄가 원활히 이루어지게 할 수 있다. 이러한 기능들을 고려하여 보호층(265)은 실리콘 화합물, 금속 화합물 등을 사용하여 형성될 수 있다. 예를 들면, 보호층(265)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 실리콘 탄화물, 실리콘-알루미늄 산질화물, 탄탈륨 산화물, 티타늄 질화물 등을 사용하여 형성될 수 있다. 보호층(265)은 상대적으로 두꺼운 두께로 형성될 수 있다. 예를 들면, 보호층(265)은 저항막 패턴(255)의 상면으로부터 약 3.0㎛ 내지 약 7.0㎛ 정도의 두께를 가질 수 있다. 또한, 보호층(265)은 스퍼터링 공정, 프린팅 공정, 화학 기상 증착 공정, 스핀 코팅 공정, 등을 이용하여 형성될 수 있다.15 and 16, a protective layer 265 is formed on the insulating film 210 to cover the first electrodes 235, the second electrodes 245, and the common electrode 240. The protective layer 265 may prevent the resist pattern 255 from directly contacting a print medium such as thermal paper, an ink ribbon, or a conventional printing paper, and may be in common with the first and second electrodes 235 and 245. The electrode 240 may be prevented from being electrochemically corroded or physically damaged. In addition, the protective layer 265 may reduce the friction with the print media to facilitate the printing. In consideration of these functions, the protective layer 265 may be formed using a silicon compound, a metal compound, or the like. For example, the protective layer 265 may be formed using silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon-aluminum oxynitride, tantalum oxide, titanium nitride, or the like. The protective layer 265 may be formed to a relatively thick thickness. For example, the protective layer 265 may have a thickness of about 3.0 μm to about 7.0 μm from the upper surface of the resistive layer pattern 255. In addition, the protective layer 265 may be formed using a sputtering process, a printing process, a chemical vapor deposition process, a spin coating process, or the like.
예시적인 실시예들에 있어서, 제1 전극들(235)과 저항막 패턴들(255)은 보호층(265)에 의해 완전히 커버될 수 있고, 공통 전극(240), 제2 전극들(245) 및 절연막(210)은 보호층(265)에 의해 부분적으로 노출될 수 있다. 예를 들면, 공통 전극(240)의 양측 단부들 및 제2 전극들(245)의 타측들과 이에 인접하는 절연막(210)이 보호층(265)을 형성한 후에 노출될 수 있다.In example embodiments, the first electrodes 235 and the resistive layer patterns 255 may be completely covered by the passivation layer 265, and the common electrode 240 and the second electrodes 245 may be provided. The insulating layer 210 may be partially exposed by the protective layer 265. For example, both ends of the common electrode 240 and the other sides of the second electrodes 245 and the insulating layer 210 adjacent thereto may be exposed after the protective layer 265 is formed.
도시하지는 않았으나, 와이어 본딩과 같은 본딩 공정을 이용하여 제2 전극들(245)의 타측들과 공통 전극(240)의 양측부들에 구동 회로를 전기적으로 연결하여 상기 감열 기록 소자를 제조한다.Although not shown, the thermal recording element is manufactured by electrically connecting a driving circuit to the other sides of the second electrodes 245 and both sides of the common electrode 240 using a bonding process such as wire bonding.
도 17은 본 발명의 다른 예시적인 실시예들에 따른 감열 기록 소자는 나타내는 평면도이고, 도 18은 도 17 의 XII-XIII 선을 따라 자른 단면도이며, 도 19는 도 17의 "XIV" 부분을 확대한 평면도이다.FIG. 17 is a plan view illustrating a thermal recording element according to another exemplary embodiment of the present invention, FIG. 18 is a cross-sectional view taken along the line XII-XIII of FIG. 17, and FIG. 19 is an enlarged “XIV” portion of FIG. 17. One floor plan.
도 17 및 도18을 참조하면, 감열 기록 소자(300)는, 기판(305), 글레이즈층(310), 절연막(315), 복수의 제1 전극들(335), 복수의 제2 전극들(345), 공통 전극(340), 복수의 돌기들(350), 저항막 패턴들(도시되지 않음), 보호층(도시되지 않음) 등을 구비할 수 있다. 도 17 및 도 18에 예시한 감열 기록 소자(300)에 있어서, 복수의 돌기들(350)과 공통 전극(340)의 형상을 제외하면 도 3 및 도 4를 참조하여 설명한 감열 기록 소자(100)와 실질적으로 동일하거나 실질적으로 유사한 구성을 가질 수 있다.17 and 18, the thermal recording element 300 may include a substrate 305, a glaze layer 310, an insulating film 315, a plurality of first electrodes 335, and a plurality of second electrodes ( 345, a common electrode 340, a plurality of protrusions 350, resistance layer patterns (not shown), a protective layer (not shown), and the like. In the thermal recording element 300 illustrated in FIGS. 17 and 18, except for the shapes of the plurality of protrusions 350 and the common electrode 340, the thermal recording element 100 described with reference to FIGS. 3 and 4 is described. It may have a configuration substantially the same as or substantially similar to.
도 17 및 도 19에 도시한 바와 같이, 공통 전극(340)에는 복수의 돌기들(350)을 노출시키는 복수의 개구들(320)이 형성된다. 복수의 돌기들(350)은 각기 절연막(315)과 글레이즈층(310)의 일부로 구성되며, 제1 전극들(335), 공통 전극(340) 및 제2 전극들(345)을 포함하는 전극 배선들에 후술하는 바와 같이 디싱(dishing) 현상이 발생하는 것을 방지할 수 있다. 예를 들면, 돌기들(350)은 각기 실질적으로 정사각형의 형상, 실질적으로 직사각형의 형상, 실질적으로 타원의 형상, 실질적으로 원의 형상 등과 같이 다양한 평면 형상을 가질 수 있다. 이러한 구조들을 갖는 돌기들(350)과 공통 전극(340)은 절연막(315)과 글레이즈층(310)에 제1 및 제2 리세스(325, 330)를 형성하기 위한 마스크 패턴의 형상을 변경하여 형성될 수 있다. 예를 들면, 절연막(315) 상에 복수의 돌기들(350)에 대응되는 소정의 영역들을 갖는 마스크 패턴을 배치한 후, 상기 마스크 패턴을 이용하여 절연막(315)과 글레이즈층(310)을 부분적으로 식각하여 제1 리세스(325)와 제2 리세스들(330)을 형성할 수 있다. 이 경우, 제1 리세스(325)에는 상기 마스크 패턴의 영역들에 실질적으로 대응하여 글레이즈층(310)과 절연막(315)으로 이루어진 복수의 돌기들(350)이 형성될 수 있다. 즉, 제1 리세스(325) 내에 절연막(315)과 글레이즈층(310)의 일부가 잔류하여 돌기들(350)이 제공될 수 있다. 제1 및 제2 리세스(325, 330)를 채우면서 절연막(315) 상에 도전층(도시되지 않음)을 형성하고, 화학적 기계적 연마 공정을 이용하여 절연막(315) 상의 상기 도전층을 제거하면 제1 및 제2 리세스(325, 330) 내에 제1 전극들(335), 돌기들(350), 공통 전극(340) 및 제2 전극들(345)이 형성될 수 있다. 여기서, 제1 리세스(325) 내의 돌기들(350) 상의 상기 도전층도 함께 제거되기 때문에, 공통 전극(340)에는 돌기들(350)을 노출시키는 복수의 개구들(320)이 형성될 수 있다. 예를 들면, 개구들(320)은 돌기들(350)과 실질적으로 동일한 치수들과 형상들을 가질 수 있으며, 공통 전극(340)의 중앙부와 양측부에 실질적으로 균일한 간격으로 배열될 수 있다.As shown in FIGS. 17 and 19, a plurality of openings 320 exposing the plurality of protrusions 350 are formed in the common electrode 340. Each of the plurality of protrusions 350 may include an insulating layer 315 and a portion of the glaze layer 310, and may include electrode wirings including first electrodes 335, a common electrode 340, and second electrodes 345. As described later, the dishing phenomenon can be prevented from occurring. For example, the protrusions 350 may each have a variety of planar shapes, such as a substantially square shape, a substantially rectangular shape, a substantially ellipse shape, a substantially circle shape, and the like. The protrusions 350 and the common electrode 340 having such structures may change the shape of a mask pattern for forming the first and second recesses 325 and 330 in the insulating layer 315 and the glaze layer 310. Can be formed. For example, the insulating layer 315 may have predetermined regions corresponding to the plurality of protrusions 350. After the mask pattern is disposed, the first recess 325 and the second recesses 330 may be formed by partially etching the insulating layer 315 and the glaze layer 310 using the mask pattern. In this case, a plurality of protrusions 350 including the glaze layer 310 and the insulating layer 315 may be formed in the first recess 325 substantially corresponding to the regions of the mask pattern. That is, the protrusions 350 may be provided by remaining of the insulating layer 315 and the glaze layer 310 in the first recess 325. Forming a conductive layer (not shown) on the insulating film 315 while filling the first and second recesses 325 and 330, and removing the conductive layer on the insulating film 315 using a chemical mechanical polishing process. First electrodes 335, protrusions 350, common electrode 340, and second electrodes 345 may be formed in the first and second recesses 325 and 330. Since the conductive layer on the protrusions 350 in the first recess 325 is also removed, a plurality of openings 320 exposing the protrusions 350 may be formed in the common electrode 340. have. For example, the openings 320 may have substantially the same dimensions and shapes as the protrusions 350, and may be arranged at substantially uniform intervals at the center and both sides of the common electrode 340.
예시적인 실시예들에 있어서, 절연막(315)과 글레이즈층(310)에 매립되는 제1 전극들(335), 공통 전극(340) 및 제2 전극들(345)을 형성하기 위하여, 제1 리세스(325)와 제2 리세스들(330) 내에 도전층을 채우고 화학적 기계적 연마 공정을 수행할 경우, 제1 및 제2 리세스(325, 330)에 충진된 도전층의 표면이 평탄하게 연마되지 않아서 공통 전극(340)의 중앙부 및 양측부가 제1 전극들(335) 및 제2 전극들(345)에 비해서 보다 깊게 연마되는 디싱 현상이 발생될 수 있다. 이와 같은 디싱 현상은 상대적으로 넓은 폭을 갖는 제1 리세스(325) 내에 형성되는 공통 전극(340)에 발생할 가능성이 높다. 따라서 제1 리세스(325) 내에 소정의 형상과 면적을 갖는 복수의 돌기들(350)을 형성하여 공통 전극(340)의 중앙부와 양측부의 폭을 제1 및 제2 전극들(335, 345)의 폭들과 실질적으로 유사하게 좁은 폭으로 세분화함으로써, 제1 리세스(325)에 충진된 상기 도전층을 화학적 기계적 연마하는 동안 발생될 수 있는 디싱 현상을 방지할 수 있다. 이 경우, 돌기들(350)에 따라 개구(320)가 마련된 공통 전극(340)의 각 부분들 사이의 폭은 각 제1 전극(335)의 폭 또는 각 제2 전극(345)의 폭과 실질적으로 동일하거나 실질적으로 유사할 수 있다. 예를 들면, 통상적으로 약 1.0㎜ 내지 약 3.0㎜ 정도의 상대적으로 넓은 폭을 갖는 공통 전극(340)에 돌기들(350)을 노출시키는 개구들(320)을 형성하여 인접하는 개구들(320) 사이의 공통 전극(340)의 각 부분의 폭이 약 50㎛ 내지 약 300㎛ 정도가 되도록 감소시킬 수 있다. 이러한 개구들(320)을 구비하는 공통 전극(340)은 상기 도전층을 화학적 기계적 공정으로 연마할 때 디싱이 발생하지 않은 평탄한 표면을 가지므로 감열 기록 소자(300)의 전기적인 특성을 향상시킬 수 있으며, 그 상부에 상기 저항막 패턴들과 상기 보호층을 보다 용이하게 형성할 수 있다.In some example embodiments, the first electrode 335, the common electrode 340, and the second electrodes 345 may be formed to fill the insulating layer 315 and the glaze layer 310. When the conductive layer is filled in the recesses 325 and the second recesses 330 and the chemical mechanical polishing process is performed, the surfaces of the conductive layers filled in the first and second recesses 325 and 330 are smoothly polished. Therefore, the center and both sides of the common electrode 340 are compared with the first electrodes 335 and the second electrodes 345. Deeper polishing may result in dishing. This dishing phenomenon is more likely to occur in the common electrode 340 formed in the first recess 325 having a relatively wide width. Accordingly, a plurality of protrusions 350 having a predetermined shape and area are formed in the first recess 325 to form the widths of the central portion and both sides of the common electrode 340. By subdividing it into a narrow width substantially similar to the widths of the metal oxide, which may occur during chemical mechanical polishing of the conductive layer filled in the first recess 325 Dishes can be prevented. In this case, the width between the portions of the common electrode 340 having the opening 320 along the protrusions 350 may be substantially equal to the width of each first electrode 335 or the width of each second electrode 345. May be identical or substantially similar. For example, adjacent openings 320 may be formed by forming openings 320 exposing the projections 350 in the common electrode 340 having a relatively wide width, typically about 1.0 mm to about 3.0 mm. The width of each portion of the common electrode 340 in between may be reduced to about 50 μm to about 300 μm. Since the common electrode 340 having the openings 320 has a flat surface without dishing when the conductive layer is polished by a chemical mechanical process, the electrical characteristics of the thermal recording element 300 may be improved. The resistive layer patterns and the protective layer may be more easily formed thereon.
도 17 및 도 19에 있어서, 돌기들(350)과 개구들(320)이 각기 실질적으로 직사각형의평면 형상을 가지는 것으로 예시하였으나, 돌기들(350)과 개구들(320)은 실질적으로 정사각형의 형상, 실질적으로 타원형의 형상, 실질적으로 원형의 형상, 실질적으로 마름모의 형상 등과 같은 다양한 평면 형상을 가질 수도 있다.17 and 19, the protrusions 350 and the openings 320 are illustrated as having substantially rectangular planar shapes, respectively, but the protrusions 350 and the openings 320 are substantially square in shape. It may have a variety of planar shapes, such as a substantially oval shape, a substantially circular shape, a substantially rhombus shape, and the like.
이하, 도 3 및 도 4를 참조하여 본 발명의 예시적인 실시예들에 따른 감열 기록 소자의 동작 특성들에 대하여 설명한다.3 and 4, the operating characteristics of the thermal recording element according to the exemplary embodiments of the present invention will be described.
전술한 바와 같이 저항막 패턴(135)이 상대적으로 얇은 두께를 가지기 때문에, 종래의 두꺼운 두께를 갖는 후막 저항막에 비교하여 상대적으로 작은 열 용량을 가질 수 있다. 이에 따라, 상기 구동 회로에 의해 통전되는 저항막 패턴(135)의 발열부가 발열하며, 인쇄에 적합한 온도까지 승온이 빠르게 이루어질 수 있다. 한편, 상기 구동 회로에 의해 통전이 정지된 경우에도, 저항막 패턴(135)의 온도의 하강이 빠르게 이루어질 수 있다. 이와 같이, 저항막 패턴(1350의 발열 응답성 및 냉각 응답성이 높기 때문에, 상기 구동 회로에 의해 이루어지는 온(ON)/오프(OFF) 통전 속도를 고속으로 전환하여도 인쇄 도트(dot)에 꼬리 끌림이나 흰색 줄과 같은 결함을 발생시킬 가능성이 감소하며, 고속 및 고정밀 인쇄를 수행할 수 있다.As described above, since the resistive film pattern 135 has a relatively thin thickness, the resistive film pattern 135 may have a relatively small heat capacity as compared with a conventional thick film resistive film. Accordingly, the heat generating portion of the resistive film pattern 135 which is energized by the driving circuit generates heat, and the temperature may be rapidly increased to a temperature suitable for printing. On the other hand, even when the current is stopped by the driving circuit, the temperature of the resistive film pattern 135 can be lowered quickly. As described above, since the heat generating response and the cooling response of the resistive film pattern 1350 are high, even if the ON / OFF energization speed made by the driving circuit is switched at a high speed, the printed dots are tailed. The possibility of producing defects such as drag and white streaks is reduced, and high speed and high precision printing can be performed.
또한, 저항막 패턴(135)이 실질적으로 얇은 두께를 갖는 박막이기 때문에, 종래의 감열 기록 소자와 같이 저항막이 후막으로 된 경우와는 달리, 저항막 패턴(135)의 발열부가 상방 방향으로 돌출된 형상을 갖지 않는다. 따라서 예시적인 실시예들에 따른 감열 기록 소자(100)를 사용하여 인쇄할 경우, 저항막 패턴(135)을 덮는 보호층(140)이 감열지 또는 잉크 리본과 같은 인쇄 매체에 과도한 힘으로 눌려지지 않게 되어, 후막형 감열 기록 소자에서 흔히 발생되는 감열지의 이송의 불안정이나, 원치 않는 소음의 발생, 감열지의 들러붙음 등과 같은 현상을 방지할 수 있다. 특히, 저항막 패턴(135)을 커버하는 보호층(140)은 표면이 매끄럽고 상대적으로 마찰 계수가 작은 물질로 구성되기 때문에, 보호층(140)과 상기 인쇄 매체 사이의 마찰을 감소시켜 상기 인쇄 매체의 들러붙음 현상을 억제할 수 있다.Further, since the resistive film pattern 135 is a thin film having a substantially thin thickness, unlike the case where the resistive film is a thick film as in the conventional thermal recording element, the heat generating portion of the resistive film pattern 135 protrudes upward. It does not have a shape. Accordingly, when printing using the thermal recording element 100 according to the exemplary embodiments, the protective layer 140 covering the resistive film pattern 135 is not pressed against the printing medium such as thermal paper or ink ribbon with excessive force. This prevents phenomena such as unstable transfer of the thermal paper, occurrence of unwanted noise, sticking of the thermal paper, and the like, which are commonly generated in the thick film type thermal recording element. In particular, since the protective layer 140 covering the resistive layer pattern 135 is made of a material having a smooth surface and a relatively low coefficient of friction, the protective layer 140 reduces friction between the protective layer 140 and the printing medium, thereby reducing the friction between the printing medium and the printing medium. Sticking phenomenon of can be suppressed.
한편, 열응력 완화층의 역할을 수행할 수 있는 절연막(120)이 자기 정렬 방식으로 저항막 패턴(135)의 발열부와 글레이즈층(115) 사이에 배치되기 때문에, 종래의 혼성형 감열 기록 소자의 경우에 비해 저항막 패턴(135)이 제1 전극(125)의 폭 및/또는 제2 전극(130) 폭보다 큰 폭을 가질 수 있다. 이에 따라, 인쇄 시에 인자 도트의 크기가 증가함으로써, 보다 적은 인자 에너지로도 선명한 인쇄가 가능하다. 또한, 제1 및 제2 전극들(125, 130)과 공통 전극(145)이 글레이즈층(115)과 절연막(120)에 매립되기 때문에, 제1 및 제2 전극들(125, 130)과 공통전극(145)이 형성된 이후에도 기판(110)은 전체적으로 상대적으로 평탄한 상면을 가질 수 있다. 따라서 저항막 패턴(135)의 발열부를 커버하는 보호층(140)의 상면이 종래의 박막형 감열 기록 소자의 보호층과는 달리 실질적으로 볼록하게 돌출된 형상을 가질 수 있으며, 이로 인하여 아래에 발열부가 위치하는 보호층(104)과 감열지 또는 잉크 리본과의 밀착성이 크게 향상되어 보다 적은 인자 에너지로도 보다 빠른 인쇄가 가능하다.On the other hand, since the insulating film 120, which can serve as a thermal stress relaxation layer, is disposed between the heat-generating portion of the resistive film pattern 135 and the glaze layer 115 in a self-aligned manner, a conventional hybrid thermal recording element. Compared to the case, the resistive layer pattern 135 may have a width greater than the width of the first electrode 125 and / or the width of the second electrode 130. As a result, the size of the printing dot increases at the time of printing, thereby enabling clear printing even with less printing energy. In addition, since the first and second electrodes 125 and 130 and the common electrode 145 are embedded in the glaze layer 115 and the insulating layer 120, the first and second electrodes 125 and 130 and the common electrode 145 are common to the first and second electrodes 125 and 130. Even after the electrode 145 is formed, the substrate 110 may have a relatively flat upper surface as a whole. Therefore, the upper surface of the protective layer 140 covering the heat generating portion of the resistive film pattern 135 may have a shape that protrudes substantially convexly, unlike the protective layer of the conventional thin film type thermal recording element. The adhesion between the positioned protective layer 104 and the thermal paper or ink ribbon is greatly improved to enable faster printing with less printing energy.
더욱이, 복수의 제1 및 제2 전극들(125, 130)과 공통 전극(145)이 실질적으로 금, 은 또는 구리 함유하는 후막들이기 때문에, 종래의 박막형 감열 기록 소자의 알루미늄계 전극에 비하여 우수한 내식성을 가질 수 있다. 따라서, 예시적인 실시예들에 따른 감열 기록 소자(100)가 장기간 동안 전기 화학적으로 부식되기 쉬운 환경에 노출되어도, 제1 및 제2 전극들(125, 130)과 공통 전극(145)이 부식될 가능성이 감소하며, 이로 인하여 제1 및 제2 전극들(125, 130)과 공통 전극(145)을 포함하는 배선들의 접촉 불량이나 단선 등으로 인해 인쇄 품질이 저하되거나 인쇄 동작이 불안정하게 되는 현상을 방지할 수 있고, 감열 기록 소자(100)가 설치된 감열 방식의 프린터의 내구성과 신뢰성을 향상시킬 수 있다. Furthermore, since the plurality of first and second electrodes 125 and 130 and the common electrode 145 are thick films containing substantially gold, silver or copper, excellent corrosion resistance compared to aluminum-based electrodes of conventional thin film type thermal recording elements. Can have Thus, even if the thermal recording element 100 according to the exemplary embodiments is exposed to an environment that is susceptible to electrochemical corrosion for a long time, the first and second electrodes 125 and 130 and the common electrode 145 may be corroded. The likelihood of the printing quality is deteriorated or the printing operation becomes unstable due to poor contact or disconnection of the wirings including the first and second electrodes 125 and 130 and the common electrode 145. It is possible to prevent and improve the durability and reliability of the thermal printer having the thermal recording element 100 installed.
상술한 바에 있어서는, 본 발명의 예시적인 실시예들을 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.In the foregoing description, the present invention has been described with reference to exemplary embodiments of the present invention, but a person of ordinary skill in the art does not depart from the spirit and scope of the present invention as set forth in the claims below. It will be understood that various modifications and changes can be made.
본 발명의 예시적인 실시예들에 따른 감열 기록 소자는 전술한 바와 같이 종래의 감열 기록 소자에 비하여 크게 향상된 특성들을 가질 수 있으므로, 이러한 감열 기록 소자를 감열 방식의 프린터 등과 같은 기기에 적용하여 상기 기기들의 전기적 특성, 내구성, 신뢰성 등의 다양한 특성들을 개선할 수 있다. 또한, 본 발명의 예시적인 실시예들에 따른 감열 기록 소자는 단순화된 공정들을 통해 저렴한 비용으로 제조될 수 있으므로, 이와 같은 감열 기록 소자를 구비하는 기기들의 제조 비용, 관리 비용 등을 절감할 수 있다.Since the thermal recording element according to the exemplary embodiments of the present invention may have greatly improved characteristics as compared with the conventional thermal recording element as described above, the thermal recording element may be applied to a device such as a thermal printer or the like. Various characteristics such as electrical characteristics, durability, reliability can be improved. In addition, since the thermal recording element according to the exemplary embodiments of the present invention can be manufactured at a low cost through simplified processes, it is possible to reduce the manufacturing cost, management cost, etc. of the apparatus having such a thermal recording element. .

Claims (14)

  1. 기판;Board;
    상기 기판 상에 배치되는 글레이즈층;A glaze layer disposed on the substrate;
    상기 글레이즈층 상에 배치되는 절연막;An insulating film disposed on the glaze layer;
    상기 절연막 및 상기 글레이즈층에 매립되는 복수의 제1 전극들 및 복수의 제2 전극들;A plurality of first electrodes and a plurality of second electrodes embedded in the insulating film and the glaze layer;
    상기 제1 전극들과 상기 제2 전극들 사이의 상기 절연막 상에 각기 배치되며, 상기 제1 및 제2 전극들에 각기 접속되는 복수의 저항막 패턴들; 및A plurality of resistance layer patterns respectively disposed on the insulating layer between the first electrodes and the second electrodes, and connected to the first and second electrodes, respectively; And
    상기 제1 전극들, 상기 저항막 패턴들 및 상기 제2 전극들을 덮는 보호층을 포함하는 감열 기록 소자.And a protective layer covering the first electrodes, the resistive film patterns, and the second electrodes.
  2. 제 1 항에 있어서, 상기 절연막 및 상기 글레이즈층에 매립되며, 상기 제1 전극들과 일체로 형성되는 공통 전극을 더 포함하는 것을 특징으로 하는 감열 기록 소자.The thermal recording element of claim 1, further comprising a common electrode embedded in the insulating layer and the glaze layer and integrally formed with the first electrodes.
  3. 제 2 항에 있어서, 상기 절연막 및 상기 글레이즈층에는 제1 리세스 및 제2 리세스들이 배치되고, 상기 제1 전극들과 상기 공통 전극은 상기 제1 리세스 내에 배치되며, 상기 제2 전극들은 상기 제2 리세스들 내에 배치되는 것을 특징으로 하는 감열 기록 소자.3. The display device of claim 2, wherein first and second recesses are disposed in the insulating layer and the glaze layer, the first electrodes and the common electrode are disposed in the first recess, and the second electrodes are disposed in the first recess. A thermal recording element disposed in said second recesses.
  4. 제 2 항에 있어서, 상기 절연막의 두께는 0.05㎛ 내지 0.2㎛인 것을 특징으로 하는 감열 기록 소자.3. The thermal recording element as claimed in claim 2, wherein the insulating film has a thickness of 0.05 µm to 0.2 µm.
  5. 제 2 항에 있어서, 상기 제1 전극들, 상기 공통 전극 및 상기 제2 전극들은 각기 금, 은, 구리, 금을 함유하는 합금, 은을 함유하는 합금 또는 구리를 함유하는 합금을 포함하는 것을 특징으로 하는 감열 기록 소자.3. The method of claim 2, wherein the first electrodes, the common electrode and the second electrodes each comprise gold, silver, copper, an alloy containing gold, an alloy containing silver, or an alloy containing copper. A thermal recording element.
  6. 제 2 항에 있어서, 상기 제1 리세스 내에는 각기 상기 글레이즈층과 상기 절연막의 일부로 구성되는 복수의 돌기들이 배치되며, 상기 공통 전극은 상기 돌기들에 각기 대응하는 복수의 개구들을 포함하는 것을 특징으로 하는 감열 기록 소자.3. The plurality of protrusions of claim 2, wherein the plurality of protrusions, each of the glaze layer and a portion of the insulating layer, are disposed in the first recess, and the common electrode includes a plurality of openings corresponding to the protrusions, respectively. A thermal recording element.
  7. 제 1 항에 있어서, 상기 저항막 패턴들은 각기 상기 제1 전극들 및 상기 제2 전극들 보다 큰 폭을 갖는 것을 특징으로 하는 감열 기록 소자.The thermosensitive recording device of claim 1, wherein each of the resistive film patterns has a width greater than that of the first electrodes and the second electrodes.
  8. 제 1 항에 있어서, 상기 절연막은 금속 산화물 또는 실리콘 화합물을 포함하는 것을 특징으로 하는 감열 기록 소자.2. The thermal recording element of claim 1, wherein the insulating film includes a metal oxide or a silicon compound.
  9. 제 1 항에 있어서, 상기 저항막 패턴들은 각기 루테늄-금속-산소, 이리듐-금속-산소, 백금-금속-산소, 탄탈륨-실리콘-산소, 크롬-실리콘-산소 또는 니오븀-실리콘-산소를 포함하는 삼성분계 화합물로 구성되는 것을 특징으로 하는 감열 기록 소자.The method of claim 1, wherein the resistive pattern comprises ruthenium-metal-oxygen, iridium-metal-oxygen, platinum-metal-oxygen, tantalum-silicon-oxygen, chromium-silicon-oxygen or niobium-silicon-oxygen. A thermal recording element, characterized by being composed of a ternary compound.
  10. 제 1 항에 있어서, 상기 저항막 패턴들은 각기 탄탈륨-질소 또는 루테늄-산소를 포함하는 이성분계 화합물로 구성되는 것을 특징으로 하는 감열 기록 소자.2. The thermal recording element of claim 1, wherein the resistive film patterns are made of a binary compound containing tantalum-nitrogen or ruthenium-oxygen, respectively.
  11. 기판 상에 글레이즈층을 형성하는 단계;Forming a glaze layer on the substrate;
    상기 글레이즈층 상에 절연막을 형성하는 단계;Forming an insulating film on the glaze layer;
    상기 절연막 및 상기 글레이즈층을 부분적으로 식각하여 복수의 돌출부들을 갖는 제1 리세스 및 복수의 제2 리세스들을 형성하는 단계;Partially etching the insulating film and the glaze layer to form a first recess having a plurality of protrusions and a plurality of second recesses;
    상기 제1 리세스 및 상기 제2 리세스들을 채우며 상기 절연막 상에 도전층을 형성하는 단계;Forming a conductive layer on the insulating layer, filling the first and second recesses;
    상기 절연막 상의 도전층을 제거하여 상기 제1 리세스 내에 복수의 제1 전극들과 공통 전극을 형성하고, 상기 제2 리세스들 내에 복수의 제2 전극들을 형성하는 단계;Removing the conductive layer on the insulating layer to form a plurality of first electrodes and a common electrode in the first recess, and forming a plurality of second electrodes in the second recesses;
    상기 절연막 상에 상기 제1 전극들 및 상기 제2 전극들에 각기 접속되는 복수의 저항막 패턴들을 형성하는 단계; 및Forming a plurality of resistive film patterns respectively connected to the first electrodes and the second electrodes on the insulating film; And
    상기 절연막, 상기 제1 전극들, 상기 공통 전극, 상기 제2 전극들 및 상기 저항막 패턴들 상에 보호층을 형성하는 단계를 포함하는 감열 기록 소자의 제조 방법.And forming a protective layer on the insulating film, the first electrodes, the common electrode, the second electrodes, and the resistive film patterns.
  12. 제 11 항에 있어서, 상기 제1 리세스를 형성하는 단계는, 상기 제1 리세스 내에 각기 상기 글레이즈층과 상기 절연막의 일부로 이루어진 복수의 돌기들을 형성하는 단계를 더 포함하며, 상기 돌기들에 따라 상기 공통 전극에는 복수의 개구들이 형성되는 것을 특징으로 하는 감열 기록 소자의 제조 방법.The method of claim 11, wherein the forming of the first recess further comprises forming a plurality of protrusions in the first recess, each of the glaze layer and a portion of the insulating layer. And a plurality of openings are formed in the common electrode.
  13. 제 11 항에 있어서, 상기 도전층을 형성하는 단계는,The method of claim 11, wherein the forming of the conductive layer,
    상기 제1 리세스 및 상기 제2 리세스들을 채우며 상기 절연막 상에 도전성 페이스트를 도포하는 단계; 및Applying a conductive paste on the insulating film while filling the first and second recesses; And
    상기 도전성 페이스트를 건조 및 소결하는 단계를 더 포함하는 것을 특징으로 하는 감열 기록 소자의 제조 방법.And drying and sintering the conductive paste.
  14. 제 11 항에 있어서, 상기 제1 전극들, 상기 공통 전극 및 상기 제2 전극들을 형성하는 단계는 화학적 기계적 연마 공정을 포함하는 것을 특징으로 하는 감열 기록 소자의 제조 방법.12. The method of claim 11, wherein forming the first electrodes, the common electrode, and the second electrodes comprises a chemical mechanical polishing process.
PCT/KR2012/009384 2011-12-22 2012-11-08 Thermal print head and method for manufacturing same WO2013094877A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110139839 2011-12-22
KR10-2011-0139839 2011-12-22
KR10-2012-0123968 2012-11-05
KR1020120123968A KR101390153B1 (en) 2011-12-22 2012-11-05 Thermo-sensitive recording device and method of manufacturing a thermo-sensitive recording device

Publications (1)

Publication Number Publication Date
WO2013094877A1 true WO2013094877A1 (en) 2013-06-27

Family

ID=48668723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009384 WO2013094877A1 (en) 2011-12-22 2012-11-08 Thermal print head and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013094877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386470A (en) * 2020-03-11 2021-09-14 深圳市博思得科技发展有限公司 Thermal print head and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270029A (en) * 1992-03-26 1993-10-19 Fuji Xerox Co Ltd Thermal head
JPH05345435A (en) * 1992-06-15 1993-12-27 Fuji Xerox Co Ltd Manufacture of thermal head
JPH06135034A (en) * 1992-10-23 1994-05-17 Fuji Xerox Co Ltd Fabrication of thermal head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270029A (en) * 1992-03-26 1993-10-19 Fuji Xerox Co Ltd Thermal head
JPH05345435A (en) * 1992-06-15 1993-12-27 Fuji Xerox Co Ltd Manufacture of thermal head
JPH06135034A (en) * 1992-10-23 1994-05-17 Fuji Xerox Co Ltd Fabrication of thermal head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386470A (en) * 2020-03-11 2021-09-14 深圳市博思得科技发展有限公司 Thermal print head and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4777583A (en) Thermal head
KR100910679B1 (en) Thermal print head and method for manufacturing same
US7876343B2 (en) Thermal print head and method for manufacturing same
WO2013094877A1 (en) Thermal print head and method for manufacturing same
US6812944B2 (en) Thermal head
JP3451008B2 (en) Thermal head
KR101390153B1 (en) Thermo-sensitive recording device and method of manufacturing a thermo-sensitive recording device
US7697020B2 (en) Thermal print head and method for manufacturing same
JP4227799B2 (en) Thermal head and manufacturing method thereof
JP3124870B2 (en) Thermal head and method of manufacturing the same
US6330014B1 (en) Thermal head manufactured by sequentially laminating conductive layer, layer insulating layer and heater element on heat insulating layer
JP2003080754A (en) Thermal head and production method therefor
JP3298794B2 (en) Thermal head and method of manufacturing the same
JP3824246B2 (en) Manufacturing method of thermal head
JP3844155B2 (en) Manufacturing method of thermal head
EP0955171A2 (en) Thermal head
JP2008080525A (en) Thermal head and its manufacturing process
JPS6024965A (en) Manufacture of end face type thermal head
JP3683745B2 (en) Thermal head
JPS6072752A (en) Thermal head
JPH09109428A (en) Thermal head and production thereof
JP3261145B2 (en) Manufacturing method of thermal head
JP2004181788A (en) False end face type thermal head and its manufacturing method
JPH04249164A (en) Manufacture of thermal head
JP3365530B2 (en) Thermal head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859034

Country of ref document: EP

Kind code of ref document: A1