WO2013094574A1 - Mixed valence copper compound-loaded tungsten oxide and method for producing same - Google Patents

Mixed valence copper compound-loaded tungsten oxide and method for producing same Download PDF

Info

Publication number
WO2013094574A1
WO2013094574A1 PCT/JP2012/082708 JP2012082708W WO2013094574A1 WO 2013094574 A1 WO2013094574 A1 WO 2013094574A1 JP 2012082708 W JP2012082708 W JP 2012082708W WO 2013094574 A1 WO2013094574 A1 WO 2013094574A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten oxide
copper
mixed
supported
compound
Prior art date
Application number
PCT/JP2012/082708
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 細木
靖 黒田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2013094574A1 publication Critical patent/WO2013094574A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/34Copper; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • B01J35/23
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Definitions

  • the present invention relates to tungsten oxide carrying a mixed valence copper compound, a method for producing the same, an antiviral agent, and a photocatalyst. More specifically, it has high photocatalytic activity for antibacterial, antiviral, deodorizing, deodorizing, air purification, water purification, etc. under irradiation of visible light having a wavelength of 400 nm or more, and antibacterial and antiviral in the dark.
  • the present invention relates to a useful tungsten oxide supporting a mixed valence copper compound, a method for producing the same, an antiviral agent, and a photocatalyst.
  • a photocatalyst using tungsten oxide particles alone generates holes and electrons in the valence band and the conduction band by photoexcitation when irradiated with visible light, but the conduction band is lower than the redox level of oxygen. Therefore, oxygen cannot be reduced by electrons excited in the conduction band. Therefore, the amount of active oxygen species produced is insufficient, and does not exhibit photocatalytic activity in an environment where visible light is irradiated.
  • a catalyst having a promoter supported on the surface of tungsten oxide has been proposed.
  • a tungsten oxide photocatalyst carrying copper hydroxide or copper oxide can exhibit photocatalytic activity under irradiation with visible light (Patent Documents 1 and 2).
  • tungsten oxide supporting a noble metal such as platinum functions as an antiviral agent (Patent Document 3).
  • these photocatalysts have excellent functions such as deodorization, their catalytic functions as antiviral agents are not so high. Furthermore, there is no catalytic function as an antiviral agent under dark conditions.
  • An object of the present invention is to provide a copper compound-supported tungsten oxide having a deodorizing function under visible light irradiation and high antiviral activity under dark conditions, and a method for producing the same.
  • the present inventors have carried out a high deodorizing function under visible light irradiation by supporting a mixed valence copper iodide as a copper compound on tungsten oxide particles. It has been found that a copper compound-supported tungsten oxide having high antiviral properties under dark conditions can be obtained.
  • the present invention has been completed based on such findings.
  • a photocatalyst is a substance having a semiconductor property, which generates holes and electrons by absorbing light of a band gap or more and exhibits a catalytic action by participating in a chemical reaction.
  • the co-catalyst refers to a substance that captures holes or electrons generated by the photocatalyst, increases the amount of adsorption of the reaction substrate, or lowers the activation energy of the chemical reaction that occurs on the photocatalyst surface.
  • the divalent component of the copper compound functions as a promoter for the tungsten oxide photocatalyst.
  • a compound having a mixed valence means a compound that does not follow the law of constant proportion, such as an interstitial compound or a lattice defect compound such as an oxide, sulfide, hydride, carbide, boride, etc. of a transition metal.
  • the virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter also abbreviated as “phage”) which is a virus that infects bacteria. In general, it refers to animal viruses, plant viruses, and bacterial viruses, and is not particularly limited.
  • the present invention provides the following [1] to [13].
  • [1] A mixed valence copper compound-supported tungsten oxide comprising tungsten oxide supporting monovalent and divalent mixed valence copper iodide.
  • [2] The mixed valence copper compound-supported tungsten oxide according to [1], wherein the composition ratio of the copper iodide is CuIx (1 ⁇ x ⁇ 2).
  • [3] The mixed valence copper compound-supported tungsten oxide according to [2], wherein the composition ratio of the copper iodide is CuIx (1.05 ⁇ x ⁇ 1.8).
  • [4] The mixed valence copper compound supported according to any one of [1] to [3], wherein the crystal structure of the copper iodide is at least one of zinc blende structure, wurtzite structure, and sodium chloride structure Tungsten oxide.
  • [5] The mixed valence copper compound-supported tungsten oxide according to any one of [1] to [4], wherein the copper iodide has a particle size of 100 nm or less.
  • the amount of the mixed-valence copper compound supported is 0.1 to 50 parts by mass in terms of copper metal with respect to 100 parts by mass of the tungsten oxide, according to any one of [1] to [5].
  • a mixed valence copper compound-supported tungsten oxide is 0.1 to 50 parts by mass in terms of copper metal with respect to 100 parts by mass of the tungsten oxide, according to any one of [1] to [5].
  • tungsten oxide powder and copper (II) chloride are added to a polar solvent and mixed, and sodium iodide is added to precipitate copper iodide on the tungsten oxide surface.
  • a virus inactivation and deodorization method wherein the mixed valence copper compound-supported tungsten oxide according to any one of [1] to [6] is used to inactivate and deodorize a virus.
  • the present invention it is possible to provide a mixed valence copper compound-supported tungsten oxide excellent in virus inactivation (antiviral properties) in the dark and photocatalytic activity in visible light, and a method for producing the same.
  • FIG. 2 is an X-ray diffraction pattern of mixed oxide copper compound-supported tungsten oxide of Example 1.
  • FIG. 2 is an electron image photograph of the mixed valence copper compound-supported tungsten oxide of Example 1 using a scanning electron microscope. The white part is a mixed-valence copper compound.
  • FIG. 3 is a diagram showing the antiviral performance of Example 1.
  • the mixed valence copper compound-supported tungsten oxide of the present invention (simply referred to as “copper compound-supported tungsten oxide”) will be described.
  • the copper compound-supported tungsten oxide of the present invention is made of tungsten oxide supporting monovalent and divalent mixed valence copper iodide.
  • the mixed valence copper compound-supported tungsten oxide of the present invention since monovalent and divalent mixed valence copper iodide is supported on the surface of tungsten oxide, copper has both a monovalent component and a divalent component. Have. Therefore, it has excellent antiviral properties in the dark due to the monovalent copper component, and the copper in the divalent state functions as a promoter for the tungsten oxide photocatalyst, so that it also has a photocatalytic function such as deodorization by visible light absorption. Excellent.
  • Monovalent and divalent mixed valence copper iodides may be supported as a single compound, that is, as a compound in a mixed valence state. Supporting as one compound is preferable because it is simple in the production process. In addition to the compound in the mixed valence state, a monovalent copper compound and / or a divalent copper compound may be further supported. Next, each component of the mixed valence copper compound-supported tungsten oxide will be described.
  • copper iodide is known to have a zinc blend structure, a wurtzite structure, and a sodium chloride structure
  • copper iodide having any crystal structure may be supported.
  • a zinc-blende structure is preferably used because of the simplicity of the manufacturing method.
  • a solid solution of a compound having the same structure such as ZnO or GaN and copper iodide may be formed.
  • the molar ratio of Cu to I (I / Cu) is not particularly limited. That is, monovalent and divalent mixed valence copper iodide is a zinc blende structure, a wurtzite structure structure, or a sodium chloride structure, but has a 1: 1 ratio of Cu to I. It is preferable that the mixed valence copper compound CuIx (1 ⁇ x ⁇ 2) deviates from the copper compound CuI which is (molar ratio). Although the state of excess iodine is unknown, it may be substituted or penetrated into the crystal structure of CuI or may be adsorbed on the surface.
  • the crystal structure of the mixed valence compound CuIx (1 ⁇ x ⁇ 2) can be identified by XRD. If a diffraction peak is observed in the vicinity of 25.5 ° in addition to the X-ray diffraction peak of WO 3 , it can be confirmed that CuIx having a zinc flash structure exists. Further, when the amount of copper iodide supported is small, an X-ray diffraction peak may not be observed. However, by detecting Cu and I in elemental analysis such as fluorescent X-ray and SEM-EDX, CuIx (1 ⁇ X ⁇ 2) exists and the value of x can be verified.
  • the size of CuIx (1 ⁇ x ⁇ 2) particles supported on tungsten oxide is not particularly limited, but is preferably 1 ⁇ m or less, more preferably 500 nm or less, and even more preferably 100 nm or less. preferable. When the thickness is 100 nm or less, the contact probability of CuIx (1 ⁇ x ⁇ 2) with a virus increases, and high antiviral performance is exhibited.
  • the supported amount of CuIx (1 ⁇ x ⁇ 2) is preferably 0.1 to 50 parts by mass, and 0.3 to 20 parts by mass in terms of copper metal with respect to 100 parts by mass of tungsten oxide. More preferred is 1 to 5 parts by mass.
  • the presence of 0.1 part by mass or more is preferable because the abundance ratio of CuIx (1 ⁇ x ⁇ 2) is increased and high antiviral performance is exhibited.
  • the amount is 50 parts by mass or less, inhibition of light absorption by CuIx (1 ⁇ x ⁇ 2) occurs, and the photocatalytic activity is prevented from being lowered.
  • the monovalent component of CuIx (1 ⁇ x ⁇ 2) supported on the surface of tungsten oxide exhibits high inactivation performance against viruses, and the covalent divalent Cu is present.
  • the component supplements the excited electrons of WO 3 and exhibits high photocatalytic performance.
  • x should be larger than 1 and smaller than 2, more preferably from 1.05 to 1.8, still more preferably from 1.1 to 1.7, and from 1.15 to 1.6. Is even more preferable.
  • the copper compound-supported tungsten oxide of the present invention is one in which monovalent and divalent mixed valence copper iodide is supported on tungsten oxide (WO 3 ). These components may be supported. However, from the viewpoint of improving antiviral performance and photocatalytic performance, the amount of other components supported is preferably 10 parts by mass or less, more preferably 100 parts by mass relative to the amount of mixed valence copper iodide supported by 100 parts by mass. It is 5 parts by mass or less, more preferably 1 part by mass or less, and it is further preferred that no other components are supported.
  • the specific surface area of the tungsten oxide particles constituting the copper compound-supported tungsten oxide is not particularly limited, but is preferably 3 to 100 m 2 / g. When it is 100 m 2 / g or less, handleability is excellent, and when it is 3 m 2 / g or more, antiviral properties and photocatalytic performance are excellent. From this point of view, the particle size of the tungsten oxide is more preferably 5 ⁇ 80m 2 / g, 7 ⁇ 40m 2 / g is more preferable.
  • support tungsten oxide of this invention includes the process of suspending a tungsten oxide in the solution which melt
  • Methods for supporting copper iodide on tungsten oxide include a kneading method in which WO 3 powder and CuI powder are mixed, a colloid adsorption method in which CuI colloid is adsorbed on WO 3 powder, and a copper salt is reacted with iodine in a liquid phase. Any of the liquid phase precipitation methods for depositing on WO 3 may be used, but a simple liquid phase precipitation method is preferred in terms of the production method.
  • tungsten oxide powder and a copper divalent salt (copper chloride, copper acetate, copper sulfate, copper nitrate, etc.), preferably copper (II) chloride
  • a copper divalent salt copper chloride, copper acetate, copper sulfate, copper nitrate, etc.
  • copper (II) chloride preferably copper (II) chloride
  • an iodine compound hydrogen iodide, iodate
  • sodium, ammonium iodide, sodium iodide, potassium iodide, etc. preferably sodium iodide is added to deposit copper iodide on the tungsten oxide surface.
  • the Cu: I ratio deviates from the stoichiometric ratio of CuI, and the mixed-valence copper-supported tungsten oxide coexists with monovalent and divalent copper.
  • the polar solvent only needs to dissolve the copper divalent salt and the iodine compound, and is, for example, water.
  • the amount of iodine ion added is preferably 1.1 times or more, more preferably 1.2 times or more, and further preferably 1.5 times or more with respect to the number of moles of copper. By adding 1.1 times or more, crystalline copper iodide can be efficiently produced on tungsten oxide. On the other hand, when the amount of iodine ion added is large, there is no problem if x of CuIx (1 ⁇ x ⁇ 2) is less than 2.
  • a solution in which tungsten oxide powder and a copper divalent salt (copper chloride, copper acetate, copper sulfate, copper nitrate, etc.), preferably copper (II) chloride, are added to a polar solvent causes aggregation of the formed CuI.
  • the pH of the solution is preferably 2 to 8, and more preferably 3 to 7. When the pH is 8 or less, the dissolution of tungsten oxide is satisfactorily prevented.
  • the pH of the solution is an alkaline component (sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, lime water, sodium carbonate aqueous solution, ammonia aqueous solution, triethylamine aqueous solution, pyridine aqueous solution, ethylenediamine aqueous solution, sodium hydrogen carbonate aqueous solution, etc. ), Acidic components (hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, etc.) can be added to obtain a desired value. Further, a dispersing agent such as gelatin or glucose may coexist.
  • a dispersing agent such as gelatin or glucose may coexist.
  • the application form of the mixed valence copper compound-supported tungsten oxide of the present invention thus obtained is not particularly limited, and can be used in a dark place in the presence of an arbitrary light beam.
  • the mixed valence copper compound-supported tungsten oxide of the present invention can be used in the presence of water (for example, in water or seawater), in a dry state (for example, in a low humidity state in winter), in a high humidity state, or in an organic matter. Even in the presence of coexistence, it has high virus inactivating ability and photocatalytic ability such as deodorization, and can inactivate viruses continuously.
  • buildings such as hospitals and factories, machine tools and measuring devices, interiors and parts of electrical appliances (inside refrigerators, washing machines, dishwashers, etc. It can be applied to any object such as a filter.
  • dark places include the inside of machines, storage rooms for refrigerators, and hospital facilities (waiting rooms, operating rooms, etc.) that become dark places at night or when not in use, but are limited to these. There is no.
  • a product incorporating a light source for irradiating ultraviolet rays by coating titanium oxide on a ceramic filter of an air washer has been proposed.
  • the present invention also provides a virus inactivation and deodorization method in which a mixed valence copper compound-supported tungsten oxide is used to inactivate and deodorize a virus.
  • the present invention also provides the use of mixed valence copper compound-supported tungsten oxide as an antiviral agent.
  • the present invention provides the use of mixed valence copper compound-supported tungsten oxide as a photocatalyst. Further, in order to improve the activity of the mixed valence copper compound-supported tungsten oxide, it may be used in combination with an adsorption aid such as TiO 2 or zeolite.
  • the mixed valence copper compound-supported tungsten oxide of the present invention when there are substances that adversely affect the environment, such as organic compounds such as aldehydes, the mixed valence copper compound-supported tungsten oxide of the present invention has a concentration of organic matter when compared with a dark place under light irradiation. And increase the concentration of carbon dioxide, which is an oxidative decomposition product. In addition, when brought into contact with bacteriophage, it can inactivate the bacteriophage in both dark and light places.
  • Carbon dioxide generation rate (deodorization function)
  • a glass petri dish having a diameter of 1.5 cm was placed in a sealed glass reaction vessel (capacity 0.5 L), and 0.3 g of the powder obtained in each of the examples and comparative examples was placed on the petri dish. .
  • the inside of the reaction vessel was replaced with a mixed gas having a volume ratio of oxygen and nitrogen of 1: 4, and 5.2 ⁇ L of water (corresponding to a relative humidity of 50% (25 ° C.)) and 5.1% acetaldehyde (25 ° C. ⁇ 5.0 mL) was sealed and irradiated with visible light from the outside of the reaction vessel.
  • a light source in which a filter (trade name: L-42, Asahi Techno Glass Co., Ltd.) that cuts ultraviolet rays having a wavelength of 400 nm or less was attached to a xenon lamp was used.
  • the evolution rate of carbon dioxide which is an oxidative decomposition product of acetaldehyde, was measured over time by gas chromatography.
  • the photocatalytic activity was evaluated by the amount of carbon dioxide generated per hour.
  • a glass plate having a thickness of about 5 mm was placed on the filter paper, and a glass plate (50 mm ⁇ 50 mm ⁇ 1 mm) coated with the powder obtained in each example and comparative example was placed thereon.
  • the powder is dispersed in an ethanol solvent, and the dispersion is prepared so that the solid content is 2.0 mg / 25 (cm) 2 over the entire surface of the glass plate (50 mm ⁇ 50 mm ⁇ 1 mm). What applied and evaporated the solvent on a glass plate was used.
  • a white fluorescent lamp is used as a light source, light of 400 nm or less is cut by an ultraviolet cut filter (N-113 manufactured by Nitto Resin Industry Co., Ltd.), and the illuminance is 800 lux (illuminance meter manufactured by Topcon Corporation: TOPCON IM A plurality of sets for measurement were allowed to stand at the position of (measured at -5). After a predetermined time, the phage concentration of the sample on the glass plate was measured.
  • the phage concentration was measured by the following method.
  • the sample on the glass plate was infiltrated into 10 mL of a recovery liquid (SM Buffer) and shaken for 10 minutes with a shaker.
  • the phage recovery solution was appropriately diluted, mixed with a separately cultured culture solution of E. coli (NBRC13965) (OD 600 > 1.0, 1 ⁇ 10 8 CFU / mL), and then stirred at 37 ° C.
  • the phages were infected with E. coli by standing in a thermostatic chamber for 10 minutes. This solution was spread on an agar medium and cultured at 37 ° C. for 15 hours, and the number of phage plaques was visually measured.
  • the phage concentration N was determined by multiplying the number of plaques obtained by the dilution factor of the phage recovery solution.
  • the relative phage concentration (LOG (N / N 0 )) was determined from the initial phage concentration N 0 and the phage concentration N after a predetermined time.
  • the apparatus used for the measurement was X'pert PRO made by Panallytical.
  • Example 1 5 g of tungsten oxide powder was added to 200 mL of an aqueous copper chloride solution having a concentration of 0.125% by mass (corresponding to 5 parts by mass as copper with respect to tungsten oxide). Next, NaOHaq was added to adjust the pH to 5.5, and then a 2-fold molar amount of sodium iodide was added to copper, followed by stirring for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a copper compound-supported tungsten oxide powder. X measured by elemental analysis was 1.3. The results are shown in Table 1.
  • Example 2 A tungsten compound-supported tungsten oxide powder was obtained in the same manner as in Example 1 except that the equivalent of 1 part by mass of copper as tungsten was used. The x measured by elemental analysis was 1.2.
  • Example 3 A copper compound-supported tungsten oxide powder of the present invention was obtained in the same manner as in Example 2 except that HClaq was added instead of NaOHaq to adjust the pH to 2.1.
  • the x measured by elemental analysis was 1.2.
  • Example 4 5 g of tungsten oxide powder was added to 200 mL of a copper chloride aqueous solution having a concentration of 0.025 mass% (corresponding to 1 mass part as copper with respect to tungsten oxide) to obtain a mixed solution having a pH of 4.4. To this mixed solution, without adjusting the pH, a 2-fold molar amount of sodium iodide was added to copper and stirred for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a copper compound-supported tungsten oxide powder. The x measured by elemental analysis was 1.2.
  • Example 5 A copper compound-supported tungsten oxide powder was obtained in the same manner as in Example 1 except that the equivalent of 20 parts by mass of copper as tungsten was used. X measured by elemental analysis was 1.5.
  • Comparative Example 1 5 g of tungsten oxide powder was added to 200 mL of a copper chloride aqueous solution having a concentration of 0.0025% by mass (equivalent to 0.1 part by mass as copper with respect to tungsten oxide). Next, after heat treatment at 90 ° C. for 1 hour with stirring, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a tungsten oxide powder modified with copper ions. .
  • Comparative Example 3 5 g of tungsten oxide powder was added to 200 mL of a copper chloride aqueous solution having a concentration of 0.025 mass% (corresponding to 1 mass part as copper with respect to tungsten oxide) to obtain a mixed solution having a pH of 4.4. Without adjusting the pH to this mixed solution, an equimolar amount of sodium iodide was added to copper and stirred for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a tungsten oxide photocatalyst supported on CuIx (x ⁇ 1) 1%. X measured by elemental analysis was 0.9.
  • Comparative Example 4 5 g of tungsten oxide powder was added to 200 mL of an aqueous copper chloride solution having a concentration of 0.125% by mass (corresponding to 5 parts by mass as copper with respect to tungsten oxide) to obtain a mixed solution having a pH of 4.4. Without adjusting the pH to this mixed solution, an equimolar amount of sodium iodide was added to copper and stirred for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a tungsten oxide photocatalyst supported on CuIx (x ⁇ 1) 5%. X measured by elemental analysis was 1.0.
  • Comparative Example 5 5 g of titanium oxide powder is added to 200 mL of an aqueous copper chloride solution having a concentration of 0.0125% by mass (corresponding to 0.5 parts by mass as copper with respect to tungsten oxide), and 4 times the amount of glucose and 8 times the amount of mol of copper. Of NaOH was added and stirred at 90 degrees for 1 hour (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 80 ° C. for one day and night, and then pulverized in an agate mortar to obtain a CuxO-supported titanium oxide photocatalyst.
  • Table 1 shows the evaluation results of carbon dioxide generation rate (deodorizing function) and anti-phage performance (antiviral activity) obtained for the photocatalyst powders of Examples 1 to 5 and Comparative Examples 1 to 4 described above.
  • the mixed valence copper compound-supported tungsten oxide of the present invention is a copper ion-supported tungsten oxide photocatalyst (Comparative Example 1), a stoichiometric compound CuI-supported tungsten oxide photocatalyst.
  • the generation rate of carbon dioxide was almost the same level, but the antiviral performance was up to 3 times higher under visible light irradiation.
  • the mixed valence copper compound-supported tungsten oxide of the present invention (Examples 1 to 5) exhibited high antiviral performance even in the dark.
  • Comparative Examples 1, 3, and 4 show almost no antiviral performance in the dark. This is because Comparative Example 1 does not contain any copper monovalent component, and Comparative Examples 3 and 4 are insufficient in generating CuIx (1 ⁇ x ⁇ 2).
  • Comparative Example 2 shows high antiviral performance at the same level as Example 1 in both the dark place and the light place, but shows almost no activity in the decomposition of acetaldehyde. This indicates that CuI alone does not show visible light responsive photocatalysis.
  • Example 5 the antiviral performance was lower than that of Example 1 in both the dark place and the light place, and the acetaldehyde degradation activity was about 60% lower than that of the Example. This indicates that the photocatalytic action of CuxO / TiO 2 is lower than that of the mixed-valence copper compound-supported tungsten oxide of the present invention.
  • the mixed valence copper compound-supported tungsten oxide of the present invention has high productivity, can exhibit high catalytic activity under visible light irradiation, and can exhibit high antiviral performance in the dark. Recognize.
  • the mixed valence copper compound-carrying tungsten oxide of the present invention is a photocatalyst that can express high catalytic activity under irradiation with visible light, and a catalyst that can express antiviral performance in the dark. Effective for deodorization, deodorization, air purification, water quality purification, etc.

Abstract

The present invention provides: a mixed valence copper compound-loaded tungsten oxide which is composed of tungsten oxide that supports mixed valence copper iodide of monovalence and divalence; and a method for producing the mixed valence copper compound-loaded tungsten oxide, which comprises a step wherein tungsten oxide is suspended in a solution, in which copper ions are dissolved, and iodine ions are added thereto.

Description

混合原子価銅化合物担持酸化タングステンおよびその製造方法Mixed-valence copper compound-supported tungsten oxide and method for producing the same
 本発明は、混合原子価銅化合物を担持した酸化タングステン及びその製造方法、抗ウイルス剤、及び光触媒に関する。さらに詳しく言えば、波長400nm以上の可視光線の照射下における抗菌、抗ウィルス、消臭、防臭、大気の浄化、水質の浄化等に対する光触媒活性が高く、かつ、暗所下での抗菌、抗ウイルスに対する触媒作用を併せ持つ、有用な、混合原子価銅化合物を担持した酸化タングステン及びその製造方法、抗ウイルス剤、並びに光触媒に関する。 The present invention relates to tungsten oxide carrying a mixed valence copper compound, a method for producing the same, an antiviral agent, and a photocatalyst. More specifically, it has high photocatalytic activity for antibacterial, antiviral, deodorizing, deodorizing, air purification, water purification, etc. under irradiation of visible light having a wavelength of 400 nm or more, and antibacterial and antiviral in the dark. The present invention relates to a useful tungsten oxide supporting a mixed valence copper compound, a method for producing the same, an antiviral agent, and a photocatalyst.
 酸化タングステン粒子を単独で使用した光触媒は、可視光線が照射されると、光励起により価電子帯と伝導帯にそれぞれ正孔と電子が生成するが、伝導帯が酸素の酸化還元準位よりも低いので、伝導帯に励起された電子では酸素の還元ができない。そのため、活性酸素種の生成量が不十分なものとなり、可視光線が照射される環境下では光触媒活性を示さない。 A photocatalyst using tungsten oxide particles alone generates holes and electrons in the valence band and the conduction band by photoexcitation when irradiated with visible light, but the conduction band is lower than the redox level of oxygen. Therefore, oxygen cannot be reduced by electrons excited in the conduction band. Therefore, the amount of active oxygen species produced is insufficient, and does not exhibit photocatalytic activity in an environment where visible light is irradiated.
 そこで、可視光線照射下での触媒活性を向上させる試みとして、酸化タングステン表面に助触媒を担持した触媒が提案されている。例えば、水酸化銅や酸化銅を担持させた酸化タングステン光触媒が、可視光照射下で光触媒活性を発現できると提案されている(特許文献1、特許文献2)。また、白金などの貴金属を担持させた酸化タングステンは、抗ウイルス剤として機能すると提案されている(特許文献3)。しかし、これらの光触媒は消臭などの機能は優れているものの、抗ウイルス剤としての触媒機能はそれほど高いものではない。さらに、暗所下の条件において、抗ウイルス剤としての触媒機能はない。 Therefore, as an attempt to improve the catalytic activity under visible light irradiation, a catalyst having a promoter supported on the surface of tungsten oxide has been proposed. For example, it has been proposed that a tungsten oxide photocatalyst carrying copper hydroxide or copper oxide can exhibit photocatalytic activity under irradiation with visible light (Patent Documents 1 and 2). In addition, it has been proposed that tungsten oxide supporting a noble metal such as platinum functions as an antiviral agent (Patent Document 3). However, although these photocatalysts have excellent functions such as deodorization, their catalytic functions as antiviral agents are not so high. Furthermore, there is no catalytic function as an antiviral agent under dark conditions.
 一方で、Cu、Ag、Znなどの金属、イオン、またはそれらを含む化合物が、抗ウイルス剤として機能することが古くから知られている。その中でも、1価のCu化合物であるCu2O、Cu2S、CuIなどが高い抗ウイルス機能を有することが明らかとなっている(特許文献4)。しかし、これらの化合物は、光触媒機能を有していないため、変性させたウイルスの残骸などが残留することによって、長期の抗ウイルス機能維持が期待できず、かつ、脱臭機能には用いることができないという問題がある。
 最近、1価銅と2価銅化合物とを含む混合物とTiO2光触媒を組み合わせることで、1価銅に由来する高い抗ウイルス機能と2価銅とTiO2との界面電荷移動に由来する脱臭機能を有する光触媒系が見出された(特許文献5)。しかし、界面電荷移動による可視光吸収は、その励起確率が低いために可視光応答性が低いという問題がある。
On the other hand, it has long been known that metals such as Cu, Ag, and Zn, ions, or compounds containing them function as antiviral agents. Among them, it has been clarified that monovalent Cu compounds such as Cu 2 O, Cu 2 S, and CuI have a high antiviral function (Patent Document 4). However, since these compounds do not have a photocatalytic function, long-term antiviral function maintenance cannot be expected due to residual denatured virus residues and cannot be used for a deodorizing function. There is a problem.
Recently, by combining a mixture containing monovalent copper and a divalent copper compound and a TiO 2 photocatalyst, a high antiviral function derived from monovalent copper and a deodorizing function derived from interfacial charge transfer between divalent copper and TiO 2 A photocatalyst system having the following was found (Patent Document 5). However, visible light absorption by interfacial charge transfer has a problem of low visible light responsiveness due to its low excitation probability.
特開2009-226299号公報JP 2009-226299 A 特開2008-149312号公報JP 2008-149312 A 特開2011-136984号公報JP 2011-136984 A 特開2010-239897号公報JP 2010-239897 A WO2011/078203A1WO2011 / 0708203A1
 特許文献5の手法に従って、酸化タングステンに1価銅と2価銅の混合物を担持するには、液性雰囲気をアルカリ性にする必要がある。しかし、液性をアルカリ性にすると酸化タングステンが溶解してしまうため、結果として銅化合物を担持できないという問題がある。
 従って、生産性が高く、可視光照射下での脱臭機能と暗所下での抗ウイルス活性が高い銅化合物担持酸化タングステン触媒の開発が望まれている。
In order to carry a mixture of monovalent copper and divalent copper on tungsten oxide according to the technique of Patent Document 5, it is necessary to make the liquid atmosphere alkaline. However, when the liquid property is made alkaline, tungsten oxide is dissolved, and as a result, there is a problem that a copper compound cannot be supported.
Therefore, it is desired to develop a copper compound-supported tungsten oxide catalyst having high productivity, high deodorizing function under visible light irradiation and high antiviral activity in the dark.
 本発明は、このような状況下において可視光照射下での脱臭機能と暗所下での抗ウイルス活性が高い銅化合物担持酸化タングステン、及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a copper compound-supported tungsten oxide having a deodorizing function under visible light irradiation and high antiviral activity under dark conditions, and a method for producing the same.
 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、酸化タングステン粒子に混合原子価のヨウ化銅を銅化合物として担持することによって、可視光照射下での高い脱臭機能を持ちながら、暗所下での高い抗ウイルス特性を併せ持つ銅化合物担持酸化タングステンが得られることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have carried out a high deodorizing function under visible light irradiation by supporting a mixed valence copper iodide as a copper compound on tungsten oxide particles. It has been found that a copper compound-supported tungsten oxide having high antiviral properties under dark conditions can be obtained.
The present invention has been completed based on such findings.
 なお、本明細書において、光触媒とは、半導体の性質を有し、バンドギャップ以上の光を吸収することによって正孔と電子を生成し、それらが化学反応に関与することにより触媒作用を示す物質を指す。また、助触媒とは、光触媒により生成する正孔または電子を捕捉したり、反応基質の吸着量を増加させたり、または光触媒表面で起こる化学反応の活性化エネルギーを下げたりする物質を指す。銅化合物の2価成分は、酸化タングステン光触媒の助触媒として機能する。また、混合原子価の化合物とは、定比例の法則に従わない化合物を指し、侵入型化合物や格子欠損化合物,たとえば遷移金属の酸化物,硫化物,水素化物,炭化物,ホウ化物などで,その原子比が一定の簡単な整数比にならないようなものをいう。
 また、ウイルスとは、DNAウイルス及びRNAウイルスを意昧するが、細菌に感染するウイルスであるバクテリオファージ(以下、「ファージ」と略記することもある)も包含する。一般的に、動物ウイルス、植物ウイルス、細菌ウイルスと言われるものを指し、特に限定されるものではない。
In this specification, a photocatalyst is a substance having a semiconductor property, which generates holes and electrons by absorbing light of a band gap or more and exhibits a catalytic action by participating in a chemical reaction. Point to. The co-catalyst refers to a substance that captures holes or electrons generated by the photocatalyst, increases the amount of adsorption of the reaction substrate, or lowers the activation energy of the chemical reaction that occurs on the photocatalyst surface. The divalent component of the copper compound functions as a promoter for the tungsten oxide photocatalyst. A compound having a mixed valence means a compound that does not follow the law of constant proportion, such as an interstitial compound or a lattice defect compound such as an oxide, sulfide, hydride, carbide, boride, etc. of a transition metal. An atomic ratio that does not become a simple integer ratio.
The virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter also abbreviated as “phage”) which is a virus that infects bacteria. In general, it refers to animal viruses, plant viruses, and bacterial viruses, and is not particularly limited.
 すなわち、本発明は、次の[1]~[13]を提供する。
[1]1価及び2価の混合原子価ヨウ化銅を担持した酸化タングステンからなる、混合原子価銅化合物担持酸化タングステン。
[2]前記ヨウ化銅の組成比がCuIx(1<x<2)である、[1]に記載の混合原子価銅化合物担持酸化タングステン。
[3]前記ヨウ化銅の組成比がCuIx(1.05≦x≦1.8)である、[2]に記載の混合原子価銅化合物担持酸化タングステン。
[4]前記ヨウ化銅の結晶構造が、閃亜鉛構造、ウルツ鉱型構造、塩化ナトリウム構造の少なくとも1種である、[1]~[3]のいずれかに記載の混合原子価銅化合物担持酸化タングステン。
[5]前記ヨウ化銅の粒径が100nm以下である、[1]~[4]のいずれかに記載の混合原子価銅化合物担持酸化タングステン。
[6]前記混合原子価銅化合物の担持量が、前記酸化タングステン100質量部に対して、銅金属換算で0.1~50質量部である、[1]~[5]のいずれかに記載の混合原子価銅化合物担持酸化タングステン。
[7][1]~[6]のいずれかに記載の混合原子価銅化合物担持酸化タングステンを含有する、抗ウイルス剤。
[8][1]~[6]のいずれかに記載の混合原子価銅化合物担持酸化タングステンを含有する、光触媒。
[9]銅イオンを溶解させた溶液に酸化タングステンを懸濁させ、ヨウ素イオンを添加する工程を含む、[1]~[6]のいずれかに記載の混合原子価銅化合物担持酸化タングステンの製造方法。
[10]前記ヨウ素イオンを添加する工程で、ヨウ素の銅に対するモル比(I/Cu)が1.1以上となるようにヨウ素イオンを添加することを特徴とする、[9]に記載の混合原子価銅化合物担持酸化タングステンの製造方法。
[11]前記銅イオンを溶解させた溶液のpHが1~8であることを特徴とする、[9]又は[10]に記載の混合原子価銅化合物担持酸化タングステンの製造方法。
[12]前記ヨウ素イオンを添加する工程で、酸化タングステン粉末と、塩化銅(II)とを極性溶媒に加え混合し、ヨウ化ナトリウムを添加して、酸化タングステン表面にヨウ化銅を析出させることを特徴とする、[9]~[11]のいずれかに記載の混合原子価銅化合物担持酸化タングステンの製造方法。
[13][1]~[6]のいずれかに記載の混合原子価銅化合物担持酸化タングステンを用いてウイルスの不活化及び脱臭を行う、ウイルス不活性化及び脱臭方法。
That is, the present invention provides the following [1] to [13].
[1] A mixed valence copper compound-supported tungsten oxide comprising tungsten oxide supporting monovalent and divalent mixed valence copper iodide.
[2] The mixed valence copper compound-supported tungsten oxide according to [1], wherein the composition ratio of the copper iodide is CuIx (1 <x <2).
[3] The mixed valence copper compound-supported tungsten oxide according to [2], wherein the composition ratio of the copper iodide is CuIx (1.05 ≦ x ≦ 1.8).
[4] The mixed valence copper compound supported according to any one of [1] to [3], wherein the crystal structure of the copper iodide is at least one of zinc blende structure, wurtzite structure, and sodium chloride structure Tungsten oxide.
[5] The mixed valence copper compound-supported tungsten oxide according to any one of [1] to [4], wherein the copper iodide has a particle size of 100 nm or less.
[6] The amount of the mixed-valence copper compound supported is 0.1 to 50 parts by mass in terms of copper metal with respect to 100 parts by mass of the tungsten oxide, according to any one of [1] to [5]. A mixed valence copper compound-supported tungsten oxide.
[7] An antiviral agent comprising the mixed valence copper compound-supported tungsten oxide according to any one of [1] to [6].
[8] A photocatalyst comprising the mixed valence copper compound-supported tungsten oxide according to any one of [1] to [6].
[9] Production of mixed-valence copper compound-supported tungsten oxide according to any one of [1] to [6], including a step of suspending tungsten oxide in a solution in which copper ions are dissolved and adding iodine ions Method.
[10] The mixing according to [9], wherein in the step of adding iodine ions, iodine ions are added so that a molar ratio (I / Cu) of iodine to copper is 1.1 or more. A method for producing a valence copper compound-supported tungsten oxide.
[11] The method for producing a mixed valence copper compound-supported tungsten oxide according to [9] or [10], wherein the pH of the solution in which the copper ions are dissolved is 1 to 8.
[12] In the step of adding iodine ions, tungsten oxide powder and copper (II) chloride are added to a polar solvent and mixed, and sodium iodide is added to precipitate copper iodide on the tungsten oxide surface. The method for producing a mixed valence copper compound-supported tungsten oxide according to any one of [9] to [11].
[13] A virus inactivation and deodorization method, wherein the mixed valence copper compound-supported tungsten oxide according to any one of [1] to [6] is used to inactivate and deodorize a virus.
 本発明によれば、暗所下でのウイルス不活化性(抗ウイルス性)及び可視光下での光触媒活性に優れる混合原子価銅化合物担持酸化タングステン及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a mixed valence copper compound-supported tungsten oxide excellent in virus inactivation (antiviral properties) in the dark and photocatalytic activity in visible light, and a method for producing the same.
実施例1の混合原子価銅化合物担持酸化タングステンのX線回折パターンである。2 is an X-ray diffraction pattern of mixed oxide copper compound-supported tungsten oxide of Example 1. FIG. 実施例1の混合原子価銅化合物担持酸化タングステンの走査型電子顕微鏡による電子像写真である。白い部分が混合原子価の銅化合物である。2 is an electron image photograph of the mixed valence copper compound-supported tungsten oxide of Example 1 using a scanning electron microscope. The white part is a mixed-valence copper compound. 実施例1の抗ウイルス性能を示す図である。FIG. 3 is a diagram showing the antiviral performance of Example 1.
[混合原子価銅化合物担持酸化タングステン]
 まず、本発明の混合原子価銅化合物担持酸化タングステン(単に「銅化合物担持酸化タングステン」ということがある)について説明する。
 本発明の銅化合物担持酸化タングステンは、1価及び2価の混合原子価ヨウ化銅を担持した酸化タングステンからなるものである。
[Tungsten oxide supporting mixed valence copper compound]
First, the mixed valence copper compound-supported tungsten oxide of the present invention (simply referred to as “copper compound-supported tungsten oxide”) will be described.
The copper compound-supported tungsten oxide of the present invention is made of tungsten oxide supporting monovalent and divalent mixed valence copper iodide.
 本発明の混合原子価銅化合物担持酸化タングステンによると、酸化タングステンの表面に1価及び2価の混合原子価ヨウ化銅が担持されているため、銅は1価成分と2価成分の両方を有する。そのため、1価銅成分によって暗所下での抗ウイルス特性に優れ、また、2価状態の銅が、酸化タングステン光触媒の助触媒として機能することによって、可視光吸収による脱臭などの光触媒機能にも優れる。 According to the mixed valence copper compound-supported tungsten oxide of the present invention, since monovalent and divalent mixed valence copper iodide is supported on the surface of tungsten oxide, copper has both a monovalent component and a divalent component. Have. Therefore, it has excellent antiviral properties in the dark due to the monovalent copper component, and the copper in the divalent state functions as a promoter for the tungsten oxide photocatalyst, so that it also has a photocatalytic function such as deodorization by visible light absorption. Excellent.
 1価及び2価の混合原子価ヨウ化銅は1つの化合物の状態、つまり、混合原子価状態の化合物として担持されていてもよい。1つの化合物として担持するのが、製法上簡便であるために、好ましい。なお、混合原子価状態の化合物に加えて、更に1価銅化合物及び/又は2価銅化合物を担持してもよい。
 次に、混合原子価銅化合物担持酸化タングステンの各成分について説明する。
Monovalent and divalent mixed valence copper iodides may be supported as a single compound, that is, as a compound in a mixed valence state. Supporting as one compound is preferable because it is simple in the production process. In addition to the compound in the mixed valence state, a monovalent copper compound and / or a divalent copper compound may be further supported.
Next, each component of the mixed valence copper compound-supported tungsten oxide will be described.
 ヨウ化銅は閃亜鉛構造、ウルツ鉱型構造、塩化ナトリウム構造を持つことが知られているが、どの結晶構造のヨウ化銅を担持してもよい。製造手法の簡便性から、閃亜鉛構造のものが好適に用いられる。また、ZnOやGaNなどの同一の構造を持つ化合物とヨウ化銅との固溶体を形成していてもよい。 Although copper iodide is known to have a zinc blend structure, a wurtzite structure, and a sodium chloride structure, copper iodide having any crystal structure may be supported. A zinc-blende structure is preferably used because of the simplicity of the manufacturing method. Further, a solid solution of a compound having the same structure such as ZnO or GaN and copper iodide may be formed.
 閃亜鉛構造、ウルツ鉱型構造、または、塩化ナトリウム構造を保っていれば、CuとIのモル比(I/Cu)は特に制限はない。
 すなわち、1価及び2価の混合原子価ヨウ化銅は、閃亜鉛鉱構造、ウルツ鉱型構造、または、塩化ナトリウム構造のヨウ化銅でありながら、CuとIの量論比が1:1(モル比)である銅化合物CuIからくずれた混合原子価銅化合物CuIx(1<x<2)であることが好ましい。
 過剰のヨウ素の状態は不明であるが、CuIの結晶構造内に置換または侵入していてもよく、または、表面に吸着した状態であってもよい。
If the zinc blende structure, the wurtzite structure, or the sodium chloride structure is maintained, the molar ratio of Cu to I (I / Cu) is not particularly limited.
That is, monovalent and divalent mixed valence copper iodide is a zinc blende structure, a wurtzite structure structure, or a sodium chloride structure, but has a 1: 1 ratio of Cu to I. It is preferable that the mixed valence copper compound CuIx (1 <x <2) deviates from the copper compound CuI which is (molar ratio).
Although the state of excess iodine is unknown, it may be substituted or penetrated into the crystal structure of CuI or may be adsorbed on the surface.
 混合原子価の化合物CuIx(1<x<2)の結晶構造は、XRDによって同定できる。WO3のX線回折ピーク以外に、25.5°付近に回折ピークが観測されれば、閃亜鉛構造のCuIxが存在していることを確かめれる。また、ヨウ化銅の担持量が少ないときは、X線回折ピークが観測されないことがあるが、蛍光X線やSEM-EDX等の元素分析において、CuとIを検出することにより、CuIx(1<x<2)が存在していること、及びxの値を確かめられる。 The crystal structure of the mixed valence compound CuIx (1 <x <2) can be identified by XRD. If a diffraction peak is observed in the vicinity of 25.5 ° in addition to the X-ray diffraction peak of WO 3 , it can be confirmed that CuIx having a zinc flash structure exists. Further, when the amount of copper iodide supported is small, an X-ray diffraction peak may not be observed. However, by detecting Cu and I in elemental analysis such as fluorescent X-ray and SEM-EDX, CuIx (1 <X <2) exists and the value of x can be verified.
 酸化タングステンに担持されたCuIx(1<x<2)粒子の大きさは特に制限はないが、1μm以下であることが好ましく、500nm以下であることがより好ましく、100nm以下であることがより更に好ましい。100nm以下であることで、CuIx(1<x<2)のウイルスとの接触確率が高くなり、高い抗ウイルス性能が発現する。 The size of CuIx (1 <x <2) particles supported on tungsten oxide is not particularly limited, but is preferably 1 μm or less, more preferably 500 nm or less, and even more preferably 100 nm or less. preferable. When the thickness is 100 nm or less, the contact probability of CuIx (1 <x <2) with a virus increases, and high antiviral performance is exhibited.
 CuIx(1<x<2)の担持量は、酸化タングステン100質量部に対して、銅メタル換算で0.1~50質量部であることが好ましく、0.3~20質量部であることがより好ましく、1~5質量部であることがより更に好ましい。0.1質量部以上あることで、CuIx(1<x<2)の存在比が多くなるため高い抗ウイルス性能を発揮するため好ましい。一方、50質量部以下であると、CuIx(1<x<2)による光吸収の阻害が生じて光触媒活性が低下してしまうことが防止される。 The supported amount of CuIx (1 <x <2) is preferably 0.1 to 50 parts by mass, and 0.3 to 20 parts by mass in terms of copper metal with respect to 100 parts by mass of tungsten oxide. More preferred is 1 to 5 parts by mass. The presence of 0.1 part by mass or more is preferable because the abundance ratio of CuIx (1 <x <2) is increased and high antiviral performance is exhibited. On the other hand, when the amount is 50 parts by mass or less, inhibition of light absorption by CuIx (1 <x <2) occurs, and the photocatalytic activity is prevented from being lowered.
 本発明の銅化合物担持酸化タングステンにおいて、酸化タングステンの表面に担持されたCuIx(1<x<2)のうちの1価成分がウイルスに対して高い不活化性能を示し、共存するCuの2価成分がWO3の励起電子を補足し、高い光触媒性能を発揮する。xは、1より大きく2より小さければよく、1.05~1.8であることがより好ましく、1.1~1.7であることが更に好ましく、1.15~1.6であることがより更に好ましい。 In the copper compound-supported tungsten oxide of the present invention, the monovalent component of CuIx (1 <x <2) supported on the surface of tungsten oxide exhibits high inactivation performance against viruses, and the covalent divalent Cu is present. The component supplements the excited electrons of WO 3 and exhibits high photocatalytic performance. x should be larger than 1 and smaller than 2, more preferably from 1.05 to 1.8, still more preferably from 1.1 to 1.7, and from 1.15 to 1.6. Is even more preferable.
 本発明の銅化合物担持酸化タングステンは、酸化タングステン(WO3)に1価及び2価の混合原子価ヨウ化銅が担持されたものであるが、本発明の目的を阻害しない範囲内において、その他の成分が担持されていてもよい。ただし、抗ウイルス性能及び光触媒性能の向上の観点から、その他の成分の担持量は、混合原子価ヨウ化銅の担持量100質量部に対して、好ましくは10質量部以下であり、より好ましくは5質量部以下であり、更に好ましくは1質量部以下であり、その他の成分は担持されていないことが更に好ましい。 The copper compound-supported tungsten oxide of the present invention is one in which monovalent and divalent mixed valence copper iodide is supported on tungsten oxide (WO 3 ). These components may be supported. However, from the viewpoint of improving antiviral performance and photocatalytic performance, the amount of other components supported is preferably 10 parts by mass or less, more preferably 100 parts by mass relative to the amount of mixed valence copper iodide supported by 100 parts by mass. It is 5 parts by mass or less, more preferably 1 part by mass or less, and it is further preferred that no other components are supported.
 銅化合物担持酸化タングステンを構成する酸化タングステンの粒子の比表面積は特に制限はないが、3~100m2/gであることが好ましい。100m2/g以下であると取扱い性に優れ、3m2/g以上であると、抗ウイルス性及び光触媒性能に優れる。当該観点から、酸化タングステンの粒子の大きさは、5~80m2/gがより好ましく、7~40m2/gが更に好ましい。 The specific surface area of the tungsten oxide particles constituting the copper compound-supported tungsten oxide is not particularly limited, but is preferably 3 to 100 m 2 / g. When it is 100 m 2 / g or less, handleability is excellent, and when it is 3 m 2 / g or more, antiviral properties and photocatalytic performance are excellent. From this point of view, the particle size of the tungsten oxide is more preferably 5 ~ 80m 2 / g, 7 ~ 40m 2 / g is more preferable.
[銅化合物担持酸化タングステンの製造方法] [Method for producing copper compound-supported tungsten oxide]
 本発明の混合原子価銅化合物担持酸化タングステンの製造方法は、銅イオンを溶解させた溶液に、酸化タングステンを懸濁させ、ヨウ素イオンを添加する工程を含むものである。
 酸化タングステンにヨウ化銅を担持する方法としては、WO3粉末とCuI粉末を混合する混練法、CuIコロイドをWO3粉に吸着させるコロイド吸着法、液相中で銅塩をヨウ素と反応させて、WO3上に析出させる液相析出法のどれを用いてもよいが、製造法上簡便な液相析出法が好ましい。
 例えば、銅イオンを含む水溶液中に酸化タングステンを分散させた後に、過剰のヨウ素イオンを加えることで、WO3上にCuIx(1<x<2)を析出させる。これにより、高い光触媒活性を発現しうる混合原子価の銅化合物担持酸化タングステンを製造することができる。
The manufacturing method of the mixed valence copper compound carrying | support tungsten oxide of this invention includes the process of suspending a tungsten oxide in the solution which melt | dissolved the copper ion, and adding an iodine ion.
Methods for supporting copper iodide on tungsten oxide include a kneading method in which WO 3 powder and CuI powder are mixed, a colloid adsorption method in which CuI colloid is adsorbed on WO 3 powder, and a copper salt is reacted with iodine in a liquid phase. Any of the liquid phase precipitation methods for depositing on WO 3 may be used, but a simple liquid phase precipitation method is preferred in terms of the production method.
For example, after dispersing tungsten oxide in an aqueous solution containing copper ions, CuIx (1 <x <2) is deposited on WO 3 by adding excess iodine ions. As a result, a mixed-valence copper compound-supported tungsten oxide capable of exhibiting high photocatalytic activity can be produced.
 例えば酸化タングステン粉末と、銅二価塩(塩化銅、酢酸銅、硫酸銅、硝酸銅など)、好ましくは塩化銅(II)とを極性溶媒に加え混合し、ヨウ素化合物(ヨウ化水素、ヨウ素酸ナトリウム、ヨウ化アンモニウム、ヨウ化ナトリウム、ヨウ化カリウムなど)、好ましくはヨウ化ナトリウムを添加して、酸化タングステン表面にヨウ化銅を析出させる方法を用いることができる。
 この場合、2価銅イオンが、ヨウ素イオンにより還元される反応は、例えばI/Cu=2である場合、下記の式に従って進むと考えられる。
   2CuCl2+4NaI→2CuIx+(2-x)I2+4NaCl
 得られた混合原子価の銅担持酸化タングステンにおいて、Cu:Iの比率は、CuIの量論比からくずれており、1価、2価銅が共存した、混合原子価の銅担持酸化タングステンである。
 極性溶媒は、銅2価塩、ヨウ素化合物が溶解するものであればよく、例えば、水である。
For example, tungsten oxide powder and a copper divalent salt (copper chloride, copper acetate, copper sulfate, copper nitrate, etc.), preferably copper (II) chloride, are added to a polar solvent and mixed, and an iodine compound (hydrogen iodide, iodate) (Sodium, ammonium iodide, sodium iodide, potassium iodide, etc.), preferably sodium iodide is added to deposit copper iodide on the tungsten oxide surface.
In this case, the reaction in which divalent copper ions are reduced by iodine ions is considered to proceed according to the following formula when, for example, I / Cu = 2.
2CuCl 2 + 4NaI → 2CuIx + (2-x) I 2 + 4NaCl
In the obtained mixed-valence copper-supported tungsten oxide, the Cu: I ratio deviates from the stoichiometric ratio of CuI, and the mixed-valence copper-supported tungsten oxide coexists with monovalent and divalent copper. .
The polar solvent only needs to dissolve the copper divalent salt and the iodine compound, and is, for example, water.
 ヨウ素イオンの添加量は、銅のモル数に対して、1.1倍以上であることが好ましく、1.2倍以上であることがより好ましく、1.5倍以上であることが更に好ましい。1.1倍以上添加することで、結晶質のヨウ化銅を効率よく酸化タングステン上に生成することができる。一方、ヨウ素イオンの添加量が多い場合については、CuIx(1<x<2)のxが2未満であれば問題はない。 The amount of iodine ion added is preferably 1.1 times or more, more preferably 1.2 times or more, and further preferably 1.5 times or more with respect to the number of moles of copper. By adding 1.1 times or more, crystalline copper iodide can be efficiently produced on tungsten oxide. On the other hand, when the amount of iodine ion added is large, there is no problem if x of CuIx (1 <x <2) is less than 2.
 ここで、酸化タングステン粉末と、銅二価塩(塩化銅、酢酸銅、硫酸銅、硝酸銅など)、好ましくは塩化銅(II)とを極性溶媒に加えた溶液は、生成したCuIの凝集を抑制するために、溶液のpHを2~8とすることが好ましく、3~7とすることがより好ましい。pH8以下であると、酸化タングステンの溶解が良好に防止される。
 ここで、溶液のpHは、アルカリ成分(水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、石灰水、炭酸ナトリウム水溶液、アンモニア水溶液、トリエチルアミン水溶液、ピリジン水溶液、エチレンジアミン水溶液、炭酸水素ナトリウム水溶液など)、酸性成分(塩酸、硫酸、硝酸、クエン酸、シュウ酸など)を加えることで所望の値とすることができる。また、ゼラチン、グルコース等の分散剤を共存させても良い。
Here, a solution in which tungsten oxide powder and a copper divalent salt (copper chloride, copper acetate, copper sulfate, copper nitrate, etc.), preferably copper (II) chloride, are added to a polar solvent causes aggregation of the formed CuI. In order to suppress it, the pH of the solution is preferably 2 to 8, and more preferably 3 to 7. When the pH is 8 or less, the dissolution of tungsten oxide is satisfactorily prevented.
Here, the pH of the solution is an alkaline component (sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, lime water, sodium carbonate aqueous solution, ammonia aqueous solution, triethylamine aqueous solution, pyridine aqueous solution, ethylenediamine aqueous solution, sodium hydrogen carbonate aqueous solution, etc. ), Acidic components (hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, etc.) can be added to obtain a desired value. Further, a dispersing agent such as gelatin or glucose may coexist.
 このようにして得られる本発明の混合原子価銅化合物担持酸化タングステンの適用形態は特に限定されず、任意の光線の存在下の他、暗所においても使用することができる。また、本発明の混合原子価銅化合物担持酸化タングステンは、水の存在下(例えば水中や海水中など)、乾燥状態(例えば冬季などにおける低湿度の状態など)、高湿度の状態、あるいは有機物の共存下においても高いウイルス不活化能、かつ、脱臭などの光触媒能を有し、持続的にウイルスを不活化できる。例えは壁、床、天井などのほか、病院や工場などの建築物、工作機械や測定装置類、電化製品の内部や部品(冷蔵庫内、洗濯機内、食器洗浄機などの内部や空気洗浄機のフィルターなど)など、任意の対象物に適用可能である。暗所の例として、機械内部や冷蔵庫の収納室、夜間又は不使用時に暗所となる病院施設(待合室や手術室など)への適用が好適な例として挙げられるが、これらに限定されることはない。また、例えば、インフルエンザ対策のーつとして空気洗浄機のセラミックフィルターに酸化チタンをコーティングして紫外線照射するための光源を組み込んだ製品が提案されているが、本発明の混合原子価の銅化合物担持酸化タングステンをフィルターに適用することにより紫外線光源が必須ではなくなり、コストを低減できるばかりでなく、安全性も高めることができる。
 上記のとおり、本発明は、混合原子価銅化合物担持酸化タングステンを用いてウイルスの不活化及び脱臭を行う、ウイルス不活性化及び脱臭方法をも提供する。また、本発明は、混合原子価銅化合物担持酸化タングステンの抗ウイルス剤としての使用を提供する。更に、本発明は、混合原子価銅化合物担持酸化タングステンの光触媒としての使用を提供する。
 また、混合原子価銅化合物担持酸化タングステンの活性を向上させるために、TiO2やゼオライトなどの吸着助剤と組み合わせて使用してもよい。
The application form of the mixed valence copper compound-supported tungsten oxide of the present invention thus obtained is not particularly limited, and can be used in a dark place in the presence of an arbitrary light beam. In addition, the mixed valence copper compound-supported tungsten oxide of the present invention can be used in the presence of water (for example, in water or seawater), in a dry state (for example, in a low humidity state in winter), in a high humidity state, or in an organic matter. Even in the presence of coexistence, it has high virus inactivating ability and photocatalytic ability such as deodorization, and can inactivate viruses continuously. For example, in addition to walls, floors, ceilings, etc., buildings such as hospitals and factories, machine tools and measuring devices, interiors and parts of electrical appliances (inside refrigerators, washing machines, dishwashers, etc. It can be applied to any object such as a filter. Examples of dark places include the inside of machines, storage rooms for refrigerators, and hospital facilities (waiting rooms, operating rooms, etc.) that become dark places at night or when not in use, but are limited to these. There is no. In addition, for example, as a countermeasure against influenza, a product incorporating a light source for irradiating ultraviolet rays by coating titanium oxide on a ceramic filter of an air washer has been proposed. By applying tungsten oxide to the filter, an ultraviolet light source is not essential, and not only the cost can be reduced but also safety can be improved.
As described above, the present invention also provides a virus inactivation and deodorization method in which a mixed valence copper compound-supported tungsten oxide is used to inactivate and deodorize a virus. The present invention also provides the use of mixed valence copper compound-supported tungsten oxide as an antiviral agent. Furthermore, the present invention provides the use of mixed valence copper compound-supported tungsten oxide as a photocatalyst.
Further, in order to improve the activity of the mixed valence copper compound-supported tungsten oxide, it may be used in combination with an adsorption aid such as TiO 2 or zeolite.
 特に、アルデヒド類等の有機化合物等の環境に悪影響を与える物質が存在したときに、本願発明の混合原子価銅化合物担持酸化タングステンは、光照射下において、暗所と比較した場合に有機物の濃度を低下させ、酸化分解物である二酸化炭素濃度を増加させる。また、バクテリオファージと接触させたときに、暗所、明所ともに、バクテリオファージを不活化できる。 In particular, when there are substances that adversely affect the environment, such as organic compounds such as aldehydes, the mixed valence copper compound-supported tungsten oxide of the present invention has a concentration of organic matter when compared with a dark place under light irradiation. And increase the concentration of carbon dioxide, which is an oxidative decomposition product. In addition, when brought into contact with bacteriophage, it can inactivate the bacteriophage in both dark and light places.
 以下、本発明を参考例、実施例及び比較例により具体的に説明するが、本発明はこれらの例に限定されるものではない。
 なお、各例で得られた光触媒粉末の諸特性を以下に示す方法に従って求めた。
Hereinafter, although a reference example, an example, and a comparative example explain the present invention concretely, the present invention is not limited to these examples.
In addition, various characteristics of the photocatalyst powder obtained in each example were determined according to the following methods.
(1)二酸化炭素発生速度(脱臭機能)
 密閉式のガラス製反応容器(容量0.5L)内に、直径1.5cmのガラス製シャーレを配置し、そのシャーレ上に、各実施例、比較例で得られた粉末0.3gを置いた。反応容器内を酸素と窒素との体積比が1:4である混合ガスで置換し、5.2μLの水(相対湿度50%相当(25℃))と、5.1%アセトアルデヒド(25℃・1気圧の標準状態の窒素との混合ガスとして)5.0mLとを封入し、反応容器の外から可視光線を照射した。可視光線の照射には、キセノンランプに、波長400nm以下の紫外線をカットするフィルター(商品名:L-42,旭テクノグラス株式会社)を装着した光源を用いた。アセトアルデヒドの酸化分解生成物である二酸化炭素の発生速度をガスクロマトグラフィーで経時的に測定した。光触媒活性の評価は1時間あたりの二酸化炭素の発生量で行った。
(1) Carbon dioxide generation rate (deodorization function)
A glass petri dish having a diameter of 1.5 cm was placed in a sealed glass reaction vessel (capacity 0.5 L), and 0.3 g of the powder obtained in each of the examples and comparative examples was placed on the petri dish. . The inside of the reaction vessel was replaced with a mixed gas having a volume ratio of oxygen and nitrogen of 1: 4, and 5.2 μL of water (corresponding to a relative humidity of 50% (25 ° C.)) and 5.1% acetaldehyde (25 ° C. · 5.0 mL) was sealed and irradiated with visible light from the outside of the reaction vessel. For irradiation with visible light, a light source in which a filter (trade name: L-42, Asahi Techno Glass Co., Ltd.) that cuts ultraviolet rays having a wavelength of 400 nm or less was attached to a xenon lamp was used. The evolution rate of carbon dioxide, which is an oxidative decomposition product of acetaldehyde, was measured over time by gas chromatography. The photocatalytic activity was evaluated by the amount of carbon dioxide generated per hour.
(2)抗ウイルス性能(バクテリオファージの不活化)
≪ウイルス不活化能の評価:LOG(N/N0)の測定≫
 ウイルス不活化能は、バクテリオファージを用いたモデル実験により以下の方法で確認した。なお、バクテリオファージに対する不活化能をウイルス不活化能のモデルとして利用する方法は、例えばAppl.Microbiol Biotechnol.,79,pp.127-133,2008に記載されており、信頼性のある結果が得られることが知られている。
 深型シャーレ内にろ紙を敷き、少量の滅菌水を加えた。ろ紙の上に厚さ5mm程度のガラス製の台を置き、その上に各実施例、比較例で得られた粉末を塗布したガラス板(50mm×50mm×1mm)を置いた。粉末を塗布したガラス板としては、粉末をエタノール溶媒に分散させ、ガラス板(50mm×50mm×1mm)の表面全面に固形分が2.0mg/25(cm)2になるように、分散液を塗布し、ガラス板上の溶媒を蒸発させたものを用いた。この上にあらかじめ馴化しておき濃度も明らかとなっているQBファージ(NBRC20012)懸濁液を100μL滴下し、試料表面とファージを接触させるためにPET(ポリエチレンテレフタレート)製のOHPフィルムを被せた。この深型シャーレにガラス板で蓋をしたものを測定用セットとした。同様の測定用セットを複数個用意した。
 また、光源として白色蛍光灯を用い、紫外線カットフィルター(日東樹脂工業株式会社製、N-113)にて400nm以下の光をカットし、照度が800ルクス(株式会社トプコン製の照度計:TOPCON IM-5にて測定)になる位置に複数個の測定用セットを静置した。所定時間経過後にガラス板上のサンプルのファージ濃度測定を行った。
(2) Antiviral performance (inactivation of bacteriophage)
≪Evaluation of virus inactivation ability: Measurement of LOG (N / N 0 ) ≫
The virus inactivation ability was confirmed by the following method by a model experiment using bacteriophage. The method of using the inactivation ability against bacteriophage as a model of virus inactivation ability is described in, for example, Appl. Microbiol Biotechnol., 79, pp. 127-133, 2008, and reliable results are obtained. It is known that
A filter paper was laid in the deep petri dish, and a small amount of sterilized water was added. A glass plate having a thickness of about 5 mm was placed on the filter paper, and a glass plate (50 mm × 50 mm × 1 mm) coated with the powder obtained in each example and comparative example was placed thereon. As a glass plate coated with the powder, the powder is dispersed in an ethanol solvent, and the dispersion is prepared so that the solid content is 2.0 mg / 25 (cm) 2 over the entire surface of the glass plate (50 mm × 50 mm × 1 mm). What applied and evaporated the solvent on a glass plate was used. On top of this, 100 μL of a suspension of QB phage (NBRC20012), which had been acclimated in advance and whose concentration was clear, was dropped, and an OHP film made of PET (polyethylene terephthalate) was covered to bring the sample surface into contact with the phage. This deep petri dish covered with a glass plate was used as a measurement set. A plurality of similar measurement sets were prepared.
In addition, a white fluorescent lamp is used as a light source, light of 400 nm or less is cut by an ultraviolet cut filter (N-113 manufactured by Nitto Resin Industry Co., Ltd.), and the illuminance is 800 lux (illuminance meter manufactured by Topcon Corporation: TOPCON IM A plurality of sets for measurement were allowed to stand at the position of (measured at -5). After a predetermined time, the phage concentration of the sample on the glass plate was measured.
 ファージ濃度の測定は以下の方法で行った。ガラス板上のサンプルを10mLの回収液(SM Buffer)に浸透し、振とう機にて10分間振とうさせた。このファージ回収液を適宣希釈し、別に培養しておいた大腸菌(NBRC13965)の培養液(OD600>1.0、1×108CFU/mL)と混合して撹拌した後、37℃の恒温庫内に10分間静置して大腸菌にファージを感染させた。この液を寒天培地にまき、37℃で15時間培養した後にファージのプラーク数を目視で計測した。得られたプラーク数にファージ回収液の希釈倍率を乗じることによってファージ濃度Nを求めた。
 初期ファージ濃度N0と、所定時間後のファージ濃度Nとから、ファージ相対濃度(LOG(N/N0))を求めた。
The phage concentration was measured by the following method. The sample on the glass plate was infiltrated into 10 mL of a recovery liquid (SM Buffer) and shaken for 10 minutes with a shaker. The phage recovery solution was appropriately diluted, mixed with a separately cultured culture solution of E. coli (NBRC13965) (OD 600 > 1.0, 1 × 10 8 CFU / mL), and then stirred at 37 ° C. The phages were infected with E. coli by standing in a thermostatic chamber for 10 minutes. This solution was spread on an agar medium and cultured at 37 ° C. for 15 hours, and the number of phage plaques was visually measured. The phage concentration N was determined by multiplying the number of plaques obtained by the dilution factor of the phage recovery solution.
The relative phage concentration (LOG (N / N 0 )) was determined from the initial phage concentration N 0 and the phage concentration N after a predetermined time.
(3)ヨウ化銅の存否及び組成比の測定
 WO3にCuIxが担持されているか否かはXRD測定で評価した。また、担持されたCuIxの元素比は、SEM-EDXによって元素分析を行うことで求めた。
 SEM-EDX測定に使用した装置は、株式会社日立テクノロジーズ製S5500と株式会社堀場製作所製EMAX7000であった。
(3) Measurement of presence / absence of copper iodide and composition ratio Whether or not CuIx is supported on WO 3 was evaluated by XRD measurement. The element ratio of supported CuIx was determined by conducting elemental analysis with SEM-EDX.
The apparatuses used for the SEM-EDX measurement were S5500 manufactured by Hitachi Technologies, Ltd. and EMAX7000 manufactured by Horiba, Ltd.
 XRD測定は、銅ターゲットを使用し、Cu-Kα1線を用いて、管電圧が45kV、管電流が40mA、測定範囲が2θ=20~80deg、サンプリング幅が0.0167deg、走査速度が1.1deg/minで行った。
 測定に使用した装置は、Panalytical社製のX‘pertPROであった。
XRD measurement uses a copper target, Cu-Kα1 wire, tube voltage is 45 kV, tube current is 40 mA, measurement range is 2θ = 20-80 deg, sampling width is 0.0167 deg, scanning speed is 1.1 deg. / Min.
The apparatus used for the measurement was X'pert PRO made by Panallytical.
実施例1
 酸化タングステン粉末5gを濃度0.125質量%の塩化銅水溶液200mL(酸化タングステンに対して銅として5質量部相当)に添加した。次いで、NaOHaqを加え、pHを5.5にした後、銅に対して2倍モル量のヨウ化ナトリウムを添加し、30分間攪拌した(ヨウ素イオン添加工程)。その後、吸引ろ過にて洗浄回収し、120℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、銅化合物担持酸化タングステン粉末を得た。元素分析によって測定されたxは、1.3であった。結果を表1に示す。
Example 1
5 g of tungsten oxide powder was added to 200 mL of an aqueous copper chloride solution having a concentration of 0.125% by mass (corresponding to 5 parts by mass as copper with respect to tungsten oxide). Next, NaOHaq was added to adjust the pH to 5.5, and then a 2-fold molar amount of sodium iodide was added to copper, followed by stirring for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a copper compound-supported tungsten oxide powder. X measured by elemental analysis was 1.3. The results are shown in Table 1.
実施例2
 酸化タングステンに対して銅として1質量部相当にした以外は、実施例1と同様に行い、銅化合物担持酸化タングステン粉末を得た。元素分析によって測定されたxは、1.2であった。
Example 2
A tungsten compound-supported tungsten oxide powder was obtained in the same manner as in Example 1 except that the equivalent of 1 part by mass of copper as tungsten was used. The x measured by elemental analysis was 1.2.
実施例3
 NaOHaqの代わりにHClaqを加え、pHを2.1にした以外は、実施例2と同様に行い、本発明の銅化合物担持酸化タングステン粉末を得た。元素分析によって測定されたxは、1.2であった。
Example 3
A copper compound-supported tungsten oxide powder of the present invention was obtained in the same manner as in Example 2 except that HClaq was added instead of NaOHaq to adjust the pH to 2.1. The x measured by elemental analysis was 1.2.
実施例4
 酸化タングステン粉末5gを濃度0.025質量%の塩化銅水溶液200mL(酸化タングステンに対して銅として1質量部相当)に添加し、pH4.4の混合溶液を得た。この混合溶液に対して、pH調製を行わずに、銅に対して2倍モル量のヨウ化ナトリウムを添加し、30分間攪拌した(ヨウ素イオン添加工程)。その後、吸引ろ過にて洗浄回収し、120℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、銅化合物担持酸化タングステン粉末を得た。元素分析によって測定されたxは、1.2であった。
Example 4
5 g of tungsten oxide powder was added to 200 mL of a copper chloride aqueous solution having a concentration of 0.025 mass% (corresponding to 1 mass part as copper with respect to tungsten oxide) to obtain a mixed solution having a pH of 4.4. To this mixed solution, without adjusting the pH, a 2-fold molar amount of sodium iodide was added to copper and stirred for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a copper compound-supported tungsten oxide powder. The x measured by elemental analysis was 1.2.
実施例5
 酸化タングステンに対して銅として20質量部相当にした以外は、実施例1と同様に行い、銅化合物担持酸化タングステン粉末を得た。元素分析によって測定されたxは、1.5であった。
Example 5
A copper compound-supported tungsten oxide powder was obtained in the same manner as in Example 1 except that the equivalent of 20 parts by mass of copper as tungsten was used. X measured by elemental analysis was 1.5.
比較例1
 酸化タングステン粉末5gを濃度0.0025質量%の塩化銅水溶液200mL(酸化タングステンに対して銅として0.1質量部相当)に添加した。次いで、攪拌しながら90℃1時間加熱処理を行った後、吸引ろ過にて洗浄回収し、120℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、銅イオンを修飾した酸化タングステン粉末を得た。
Comparative Example 1
5 g of tungsten oxide powder was added to 200 mL of a copper chloride aqueous solution having a concentration of 0.0025% by mass (equivalent to 0.1 part by mass as copper with respect to tungsten oxide). Next, after heat treatment at 90 ° C. for 1 hour with stirring, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a tungsten oxide powder modified with copper ions. .
比較例2
 CuCl2・2H2O粉末3gを溶かした200mLの水溶液に、銅に対して2倍モル量のヨウ化ナトリウムを添加し、室温で30分間攪拌した(ヨウ素イオン添加工程)。その後、吸引ろ過にて洗浄回収し、120℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、CuIx粉末を得た。元素分析によって測定されたxは、1.1であった。
Comparative Example 2
To 200 mL of an aqueous solution in which 3 g of CuCl 2 · 2H 2 O powder was dissolved, a 2-fold molar amount of sodium iodide was added to copper and stirred at room temperature for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain CuIx powder. X measured by elemental analysis was 1.1.
比較例3
 酸化タングステン粉末5gを濃度0.025質量%の塩化銅水溶液200mL(酸化タングステンに対して銅として1質量部相当)に添加し、pH4.4の混合溶液を得た。この混合溶液に対して、pH調製を行わずに、銅に対して等モル量のヨウ化ナトリウムを添加し、30分間攪拌した(ヨウ素イオン添加工程)。その後、吸引ろ過にて洗浄回収し、120℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、CuIx(x≦1)1%担持酸化タングステン光触媒を得た。元素分析によって測定されたxは、0.9であった。
Comparative Example 3
5 g of tungsten oxide powder was added to 200 mL of a copper chloride aqueous solution having a concentration of 0.025 mass% (corresponding to 1 mass part as copper with respect to tungsten oxide) to obtain a mixed solution having a pH of 4.4. Without adjusting the pH to this mixed solution, an equimolar amount of sodium iodide was added to copper and stirred for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a tungsten oxide photocatalyst supported on CuIx (x ≦ 1) 1%. X measured by elemental analysis was 0.9.
比較例4
 酸化タングステン粉末5gを濃度0.125質量%の塩化銅水溶液200mL(酸化タングステンに対して銅として5質量部相当)に添加し、pH4.4の混合溶液を得た。この混合溶液に対して、pH調製を行わずに、銅に対して等モル量のヨウ化ナトリウムを添加し、30分間攪拌した(ヨウ素イオン添加工程)。その後、吸引ろ過にて洗浄回収し、120℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、CuIx(x≦1)5%担持酸化タングステン光触媒を得た。元素分析によって測定されたxは、1.0であった。
Comparative Example 4
5 g of tungsten oxide powder was added to 200 mL of an aqueous copper chloride solution having a concentration of 0.125% by mass (corresponding to 5 parts by mass as copper with respect to tungsten oxide) to obtain a mixed solution having a pH of 4.4. Without adjusting the pH to this mixed solution, an equimolar amount of sodium iodide was added to copper and stirred for 30 minutes (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 120 ° C. for one day and night, and then pulverized in an agate mortar to obtain a tungsten oxide photocatalyst supported on CuIx (x ≦ 1) 5%. X measured by elemental analysis was 1.0.
比較例5
 酸化チタン粉末5gを濃度0.0125質量%の塩化銅水溶液200mL(酸化タングステンに対して銅として0.5質量部相当)に添加し、銅に対して4倍モル量のグルコースと8倍モル量のNaOHを加え、90度で1時間攪拌した(ヨウ素イオン添加工程)。その後、吸引ろ過にて洗浄回収し、80℃で1昼夜乾燥後、メノウ乳鉢にて粉砕し、CuxO担持酸化チタン光触媒を得た。
Comparative Example 5
5 g of titanium oxide powder is added to 200 mL of an aqueous copper chloride solution having a concentration of 0.0125% by mass (corresponding to 0.5 parts by mass as copper with respect to tungsten oxide), and 4 times the amount of glucose and 8 times the amount of mol of copper. Of NaOH was added and stirred at 90 degrees for 1 hour (iodine ion addition step). Then, it was washed and collected by suction filtration, dried at 80 ° C. for one day and night, and then pulverized in an agate mortar to obtain a CuxO-supported titanium oxide photocatalyst.
 以上の実施例1~5及び比較例1~4の光触媒粉末について得られた二酸化炭素発生速度(脱臭機能)、抗ファージ性能(抗ウイルス活性)の評価結果を表1に示す。 Table 1 shows the evaluation results of carbon dioxide generation rate (deodorizing function) and anti-phage performance (antiviral activity) obtained for the photocatalyst powders of Examples 1 to 5 and Comparative Examples 1 to 4 described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の表1に示すとおり、本発明(実施例1~5)の混合原子価銅化合物担持酸化タングステンは、銅イオン担持酸化タングステン光触媒(比較例1)、化学量論的化合物CuI担持酸化タングステン光触媒(比較例4)と比べて、二酸化炭素の発生速度はほぼ同レベルでありながら、可視光照射下において、最大で3倍もの高い抗ウイルス性能を示した。さらに、本発明(実施例1~5)の混合原子価銅化合物担持酸化タングステンは、暗所下においても高い抗ウイルス性能を示した。比較例1、3、4の光触媒においては、暗所下においては、ほとんど抗ウイルス性能を示さない。これは、比較例1は銅1価成分を全く含まないためであり、比較例3,4はCuIx(1<x<2)の生成が不十分なためである。 As shown in Table 1 above, the mixed valence copper compound-supported tungsten oxide of the present invention (Examples 1 to 5) is a copper ion-supported tungsten oxide photocatalyst (Comparative Example 1), a stoichiometric compound CuI-supported tungsten oxide photocatalyst. Compared to (Comparative Example 4), the generation rate of carbon dioxide was almost the same level, but the antiviral performance was up to 3 times higher under visible light irradiation. Furthermore, the mixed valence copper compound-supported tungsten oxide of the present invention (Examples 1 to 5) exhibited high antiviral performance even in the dark. The photocatalysts of Comparative Examples 1, 3, and 4 show almost no antiviral performance in the dark. This is because Comparative Example 1 does not contain any copper monovalent component, and Comparative Examples 3 and 4 are insufficient in generating CuIx (1 <x <2).
 また、比較例2では、暗所、明所共に実施例1と同レベルの高い抗ウイルス性能を示すが、アセトアルデヒドの分解にほとんど活性を示さない。これは、CuI単独では可視光応答性の光触媒作用を示していないことを示している。 Further, Comparative Example 2 shows high antiviral performance at the same level as Example 1 in both the dark place and the light place, but shows almost no activity in the decomposition of acetaldehyde. This indicates that CuI alone does not show visible light responsive photocatalysis.
 また、比較例5では、暗所、明所共に実施例1よりも低い抗ウイルス性能を示し、またアセトアルデヒドの分解活性が実施例と比べると約6割程度に低いものであった。これは、CuxO/TiO2の光触媒作用が、本発明の混合原子価の銅化合物担持酸化タングステンよりも低いことを示している。 In Comparative Example 5, the antiviral performance was lower than that of Example 1 in both the dark place and the light place, and the acetaldehyde degradation activity was about 60% lower than that of the Example. This indicates that the photocatalytic action of CuxO / TiO 2 is lower than that of the mixed-valence copper compound-supported tungsten oxide of the present invention.
 以上から、本発明の混合原子価銅化合物担持酸化タングステンは、生産性が高く、可視光照射下において高い触媒活性を発現し得る、かつ、暗所下において高い抗ウイルス性能を発現し得ることがわかる。 From the above, the mixed valence copper compound-supported tungsten oxide of the present invention has high productivity, can exhibit high catalytic activity under visible light irradiation, and can exhibit high antiviral performance in the dark. Recognize.
 本発明の混合原子価銅化合物担持酸化タングステンは、可視光線照射下における触媒活性を高く発現し得る光触媒、かつ、暗所下における抗ウイルス性能を発現し得る触媒であって、抗菌、抗ウィルス、消臭、防臭、大気の浄化、水質の浄化等に有効である。 The mixed valence copper compound-carrying tungsten oxide of the present invention is a photocatalyst that can express high catalytic activity under irradiation with visible light, and a catalyst that can express antiviral performance in the dark. Effective for deodorization, deodorization, air purification, water quality purification, etc.

Claims (13)

  1.  1価及び2価の混合原子価ヨウ化銅を担持した酸化タングステンからなる、混合原子価銅化合物担持酸化タングステン。 A mixed valence copper compound-supported tungsten oxide composed of tungsten oxide supporting monovalent and divalent mixed valence copper iodide.
  2.  前記ヨウ化銅の組成比がCuIx(1<x<2)である、請求項1に記載の混合原子価銅化合物担持酸化タングステン。 2. The mixed valence copper compound-supported tungsten oxide according to claim 1, wherein the composition ratio of the copper iodide is CuIx (1 <x <2).
  3.  前記ヨウ化銅の組成比がCuIx(1.05≦x≦1.8)である、請求項2に記載の混合原子価銅化合物担持酸化タングステン。 The mixed valence copper compound-supported tungsten oxide according to claim 2, wherein the composition ratio of the copper iodide is CuIx (1.05 ≦ x ≦ 1.8).
  4.  前記ヨウ化銅の結晶構造が、閃亜鉛構造、ウルツ鉱型構造、塩化ナトリウム構造の少なくとも1種である、請求項1~3のいずれかに記載の混合原子価銅化合物担持酸化タングステン。 The mixed valence copper compound-supported tungsten oxide according to any one of claims 1 to 3, wherein the crystal structure of the copper iodide is at least one of zinc blend structure, wurtzite structure, and sodium chloride structure.
  5.  前記ヨウ化銅の粒径が100nm以下である、請求項1~3のいずれかに記載の混合原子価銅化合物担持酸化タングステン。 The mixed valence copper compound-supported tungsten oxide according to any one of claims 1 to 3, wherein the copper iodide has a particle size of 100 nm or less.
  6.  前記混合原子価銅化合物の担持量が、前記酸化タングステン100質量部に対して、銅金属換算で0.1~50質量部である、請求項1~3のいずれかに記載の混合原子価銅化合物担持酸化タングステン。 The mixed-valence copper according to any one of claims 1 to 3, wherein the amount of the mixed-valence copper compound supported is 0.1 to 50 parts by mass in terms of copper metal with respect to 100 parts by mass of the tungsten oxide. Compound-supported tungsten oxide.
  7.  請求項1~3のいずれかに記載の混合原子価銅化合物担持酸化タングステンを含有する、抗ウイルス剤。 An antiviral agent comprising the mixed valence copper compound-supported tungsten oxide according to any one of claims 1 to 3.
  8.  請求項1~3のいずれかに記載の混合原子価銅化合物担持酸化タングステンを含有する、光触媒。 A photocatalyst comprising the mixed valence copper compound-supported tungsten oxide according to any one of claims 1 to 3.
  9.  銅イオンを溶解させた溶液に酸化タングステンを懸濁させ、ヨウ素イオンを添加する工程を含む、請求項1に記載の混合原子価銅化合物担持酸化タングステンの製造方法。 The method for producing a mixed-valence copper compound-supported tungsten oxide according to claim 1, comprising a step of suspending tungsten oxide in a solution in which copper ions are dissolved and adding iodine ions.
  10.  前記ヨウ素イオンを添加する工程で、ヨウ素の銅に対するモル比(I/Cu)が1.1以上となるようにヨウ素イオンを添加することを特徴とする、請求項9に記載の混合原子価銅化合物担持酸化タングステンの製造方法。 The mixed-valence copper according to claim 9, wherein in the step of adding iodine ions, iodine ions are added so that a molar ratio (I / Cu) of iodine to copper is 1.1 or more. A method for producing a compound-supported tungsten oxide.
  11.  前記銅イオンを溶解させた溶液のpHが1~8であることを特徴とする、請求項9又は10に記載の混合原子価銅化合物担持酸化タングステンの製造方法。 11. The method for producing a mixed valence copper compound-supported tungsten oxide according to claim 9 or 10, wherein the solution in which the copper ions are dissolved has a pH of 1 to 8.
  12.  前記ヨウ素イオンを添加する工程で、酸化タングステン粉末と、塩化銅(II)とを極性溶媒に加え混合し、ヨウ化ナトリウムを添加して、酸化タングステン表面にヨウ化銅を析出させることを特徴とする、請求項9又は10に記載の混合原子価銅化合物担持酸化タングステンの製造方法。 In the step of adding iodine ions, tungsten oxide powder and copper (II) chloride are added to a polar solvent and mixed, and sodium iodide is added to precipitate copper iodide on the tungsten oxide surface. The manufacturing method of the mixed valence copper compound carrying | support tungsten oxide of Claim 9 or 10.
  13.  請求項1~3のいずれかに記載の混合原子価銅化合物担持酸化タングステンを用いてウイルスの不活化及び脱臭を行う、ウイルス不活性化及び脱臭方法。 A virus inactivation and deodorization method, wherein the mixed valence copper compound-supported tungsten oxide according to any one of claims 1 to 3 is used to inactivate and deodorize a virus.
PCT/JP2012/082708 2011-12-21 2012-12-17 Mixed valence copper compound-loaded tungsten oxide and method for producing same WO2013094574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011279745A JP5331193B2 (en) 2011-12-21 2011-12-21 Mixed-valence copper compound-supported tungsten oxide and method for producing the same
JP2011-279745 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094574A1 true WO2013094574A1 (en) 2013-06-27

Family

ID=48668463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082708 WO2013094574A1 (en) 2011-12-21 2012-12-17 Mixed valence copper compound-loaded tungsten oxide and method for producing same

Country Status (3)

Country Link
JP (1) JP5331193B2 (en)
TW (1) TWI485112B (en)
WO (1) WO2013094574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107413352A (en) * 2016-05-23 2017-12-01 伦慧东 The tungsten oxide nanometer pipe and its preparation technology of copper load

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613521B (en) * 2020-05-08 2022-04-05 中国科学院宁波材料技术与工程研究所 Compound film, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073738A1 (en) * 2008-12-26 2010-07-01 株式会社Nbcメッシュテック Anti-viral member
WO2011040048A1 (en) * 2009-10-02 2011-04-07 株式会社Nbcメッシュテック Virus inactivation sheet
WO2011049068A1 (en) * 2009-10-19 2011-04-28 国立大学法人 東京大学 Method for inactivating virus and article provided with antiviral properties
WO2011078203A1 (en) * 2009-12-24 2011-06-30 国立大学法人 東京大学 Virus inactivator
WO2013002151A1 (en) * 2011-06-27 2013-01-03 昭和電工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384450A (en) * 1966-02-07 1968-05-21 Eastman Kodak Co Method for synthesizing cuprous iodide from a cupric salt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073738A1 (en) * 2008-12-26 2010-07-01 株式会社Nbcメッシュテック Anti-viral member
WO2011040048A1 (en) * 2009-10-02 2011-04-07 株式会社Nbcメッシュテック Virus inactivation sheet
WO2011049068A1 (en) * 2009-10-19 2011-04-28 国立大学法人 東京大学 Method for inactivating virus and article provided with antiviral properties
WO2011078203A1 (en) * 2009-12-24 2011-06-30 国立大学法人 東京大学 Virus inactivator
WO2013002151A1 (en) * 2011-06-27 2013-01-03 昭和電工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107413352A (en) * 2016-05-23 2017-12-01 伦慧东 The tungsten oxide nanometer pipe and its preparation technology of copper load

Also Published As

Publication number Publication date
JP5331193B2 (en) 2013-10-30
TW201341318A (en) 2013-10-16
TWI485112B (en) 2015-05-21
JP2013129559A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5904524B2 (en) Virus inactivating agent
JP5570006B2 (en) Virus inactivating agent
JP5129897B1 (en) Copper compound-supported titanium oxide photocatalyst and method for producing the same
US9210939B2 (en) Copper-and-titanium-containing composition and production method therefor
TWI534217B (en) Antimicrobial and antiviral composition, and method of producing the same
TWI523691B (en) Methods of inactivating viruses and articles with antiviral properties
JPWO2016042913A1 (en) Antibacterial / antiviral composition, antibacterial / antiviral agent, photocatalyst, and bacteria / virus inactivation method
WO2015040989A1 (en) Anti-viral composition, method for producing the composition, and virus inactivation method
JP4842607B2 (en) Visible light responsive photocatalyst, visible light responsive photocatalyst composition, and method for producing the same
TW201608980A (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
KR20160073309A (en) Bivo_4 -carried titanium oxide, method for manufacturing the same, and antiviral composition
WO2012111709A1 (en) Novel visible-light-responsive photocatalyst with environmental resistance
JP5331193B2 (en) Mixed-valence copper compound-supported tungsten oxide and method for producing the same
JP5723883B2 (en) Method for producing photocatalytic film and photocatalytic film
KR101657517B1 (en) Method for producing a visible light-responsive photocatalytic substance
JP4883913B2 (en) Photocatalyst and method for producing the same
KR20020082633A (en) Preparation and application of ultra fine titania photocalysts doped by transition, lanthanides, and precious metals ion (Au, In, Sn, W, Zn, V, Ce, Eu, Ag) to utilize a solar spectrum (or spectrum of visible range)
JP7201975B2 (en) Quantum catalyst manufacturing method
JP2007307540A (en) Photocatalyst showing high activity under exposure to white fluorescent lighting
JP2015134726A (en) Antiviral composition, production method thereof and virus inactivation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860761

Country of ref document: EP

Kind code of ref document: A1