JP7201975B2 - Quantum catalyst manufacturing method - Google Patents

Quantum catalyst manufacturing method Download PDF

Info

Publication number
JP7201975B2
JP7201975B2 JP2017215137A JP2017215137A JP7201975B2 JP 7201975 B2 JP7201975 B2 JP 7201975B2 JP 2017215137 A JP2017215137 A JP 2017215137A JP 2017215137 A JP2017215137 A JP 2017215137A JP 7201975 B2 JP7201975 B2 JP 7201975B2
Authority
JP
Japan
Prior art keywords
titanium oxide
slurry
carbon dioxide
quantum
quantum catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017215137A
Other languages
Japanese (ja)
Other versions
JP2019084501A (en
Inventor
政七 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tilex Ltd.
Original Assignee
Tilex Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tilex Ltd. filed Critical Tilex Ltd.
Priority to JP2017215137A priority Critical patent/JP7201975B2/en
Priority to PCT/JP2018/041157 priority patent/WO2019093314A1/en
Priority to CN201880071637.6A priority patent/CN111315478A/en
Publication of JP2019084501A publication Critical patent/JP2019084501A/en
Application granted granted Critical
Publication of JP7201975B2 publication Critical patent/JP7201975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、量子触媒及び量子触媒の製造方法に関する。 The present invention relates to a quantum catalyst and a method for manufacturing a quantum catalyst.

光触媒活性を発現し得る第1物質と、第1物質とは異なる1~3族元素及び/又は5~7族元素の酸化物である第2物質とが、互いに接合されてなり、第1物質単独の場合に比べ、10倍以上に光触媒活性が高められている量子触媒が知られている。 A first substance that can exhibit photocatalytic activity and a second substance that is an oxide of a group 1-3 element and/or a group 5-7 element different from the first substance are joined to each other, and the first substance Quantum catalysts are known that have a photocatalytic activity that is ten times or more higher than that of a single compound.

特開2013-39522号公報JP 2013-39522 A

しかしながら、この量子触媒では、1~3族元素及び/又は5~7族元素が必要となるため、これらの元素を用いることなく、高い光触媒活性を発現し得る量子触媒が求められていた。 However, since this quantum catalyst requires group 1-3 elements and/or group 5-7 elements, a quantum catalyst capable of exhibiting high photocatalytic activity without using these elements has been desired.

本発明はこのような課題に鑑みなされたものであり、1~3族元素及び/又は5~7族元素を用いることなく高い光触媒活性を発現し得る量子触媒を提供することを主目的とする。また、このような量子触媒を製造する量子触媒の製造方法を提供することも、目的とする。 The present invention has been made in view of such problems, and the main purpose is to provide a quantum catalyst capable of expressing high photocatalytic activity without using Groups 1 to 3 elements and / or Groups 5 to 7 elements. . Another object of the present invention is to provide a quantum catalyst manufacturing method for manufacturing such a quantum catalyst.

本発明者らは、上述した主目的を達成するために、酸化チタンスラリを作製し、酸化チタンスラリにアルカリ金属の炭酸塩水溶液を加えて攪拌して混合スラリを作製し、混合スラリに酸を加えて攪拌することで、酸化チタンと二酸化炭素とを接合し、本発明を完成するに至った。 In order to achieve the main object described above, the present inventors prepared a titanium oxide slurry, added an alkali metal carbonate aqueous solution to the titanium oxide slurry and stirred to prepare a mixed slurry, and added an acid to the mixed slurry. In addition, by stirring, the titanium oxide and the carbon dioxide are joined, and the present invention has been completed.

すなわち、本発明の量子触媒は、
酸化チタンと二酸化炭素とが接合することを特徴とする、
ものである。
That is, the quantum catalyst of the present invention is
characterized by bonding titanium oxide and carbon dioxide,
It is.

すなわち、本発明の量子触媒は、
酸化チタンスラリを作製する酸化チタンスラリ作製ステップと、
前記酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて超臨界場中で攪拌して混合スラリを作製する攪拌ステップと、
前記混合スラリに酸を加えて攪拌するイオン交換ステップと、
を含む方法で製造されることを特徴とする、
ものである。
That is, the quantum catalyst of the present invention is
a titanium oxide slurry preparation step of preparing a titanium oxide slurry;
a stirring step of adding a solution containing a compound capable of binding carbon dioxide by treatment with an acid or base to the titanium oxide slurry and stirring the mixture in a supercritical field to prepare a mixed slurry;
an ion exchange step of adding acid to the mixed slurry and stirring;
characterized by being manufactured by a method comprising
It is.

本発明の量子触媒は、酸化チタンの粉末を溶媒に加えて酸化チタンスラリを作製し、酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて混合スラリを作製し、必要に応じて当該スラリに酸又は塩基の少なくとも一方を添加して、酸化チタンの表面に二酸化炭素を接合させる。この操作により、酸化チタンと二酸化炭素とが接合されてなる量子触媒スラリが作製される。なお、ここで「接合」とは、酸化チタンと二酸化炭素とが互いに接合面を実現している状態を意味し、この状態については定かでは無いが、酸化チタンの酸素原子と二酸化炭素の炭素原子が電子を共有しており、チタン原子と炭素原子が酸素原子を互いに挟んだ位置関係にある状態であると、発明者は考えている。こうすることにより、従来の酸化チタンと同じように3.2eV以上の紫外線等から励起エネルギーを獲得し光触媒活性を発現することができる。 The quantum catalyst of the present invention is prepared by adding titanium oxide powder to a solvent to prepare a titanium oxide slurry, and adding a solution containing a compound capable of bonding carbon dioxide to the titanium oxide slurry by treatment with an acid or base to form a mixed slurry. is prepared, and if necessary, at least one of an acid and a base is added to the slurry to bond carbon dioxide to the surface of titanium oxide. This operation produces a quantum catalyst slurry in which titanium oxide and carbon dioxide are joined together. Here, the term "joining" means a state in which titanium oxide and carbon dioxide form a joint surface. share electrons, and the inventor believes that the titanium atom and the carbon atom are in a positional relationship with the oxygen atom sandwiched between them. By doing so, it is possible to obtain excitation energy from ultraviolet rays of 3.2 eV or higher and exhibit photocatalytic activity, as with conventional titanium oxide.

本発明の量子触媒において、酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液とは、例えば、アルカリ金属炭酸塩水溶液、アルカリ金属炭酸水素塩水溶液、あるいはアルカリ土類金属炭酸水素塩水溶液等を用いてもよい。 In the quantum catalyst of the present invention, the solution containing a compound capable of bonding carbon dioxide to a titanium oxide slurry by treatment with an acid or base is, for example, an aqueous alkali metal carbonate solution, an aqueous alkali metal hydrogencarbonate solution, or an alkaline earth A metal bicarbonate aqueous solution or the like may also be used.

本発明の量子触媒において、本発明のアルカリ金属の炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム等のアルカリ金属の炭酸塩や、アルカリ金属の炭酸水素塩としては、例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩や、アルカリ土類金属の炭酸水素塩としては、例えば、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム等を用いても良い。 In the quantum catalyst of the present invention, examples of the alkali metal carbonate of the present invention include alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate, and alkali metal hydrogen carbonates. Examples include alkali metal hydrogen carbonates such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate, and alkaline earth metal hydrogen carbonates such as calcium hydrogen carbonate, Strontium hydrogen carbonate, barium hydrogen carbonate, or the like may also be used.

本発明の量子触媒において、酸化チタンスラリを作製する際、増粘剤及び分散剤の少なくとも一方を加え、増粘剤及び分散剤の少なくとも一方を含んでいても良い。このとき用いられる増粘剤又は分散剤は、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、ポリカルボン酸、ポリカルボン酸ナトリウム、カルボン酸系共重合体、カルボン酸系共重合体ナトリウム、カルボン酸系共重合体アンモニウム、スルホン酸系共重合体、スルホン酸系共重合体ナトリウム、シクロヘキサアミロース、シクロオクタアミロース、ポリビニルピロドリン及びセルロールナノファイバー等を用いても良い。 In the quantum catalyst of the present invention, at least one of a thickening agent and a dispersing agent may be added when preparing the titanium oxide slurry, and at least one of the thickening agent and the dispersing agent may be included. The thickener or dispersant used at this time is, for example, polyacrylic acid, sodium polyacrylate, ammonium polyacrylate, polycarboxylic acid, sodium polycarboxylate, carboxylic acid copolymer, carboxylic acid copolymer Sodium, carboxylic acid copolymer ammonium, sulfonic acid copolymer, sulfonic acid copolymer sodium, cyclohexaamylose, cyclooctaamylose, polyvinylpyrodrine, cellulose nanofibers, and the like may be used.

この量子触媒を製造する際には、酸化チタンの粉末を溶媒に加えて酸化チタンスラリを作製し、酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて混合スラリを作製し、必要に応じて当該スラリに酸及び塩基の少なくとも一方を添加して、酸化チタンの表面に二酸化炭素を接合させる。この操作により、酸化チタンと二酸化炭素とが接合されてなる量子触媒スラリが作製される。 When producing this quantum catalyst, titanium oxide powder is added to a solvent to prepare a titanium oxide slurry, and a solution containing a compound capable of binding carbon dioxide is added to the titanium oxide slurry by treatment with an acid or base. to prepare a mixed slurry, and if necessary, at least one of an acid and a base is added to the slurry to bond carbon dioxide to the surface of titanium oxide. This operation produces a quantum catalyst slurry in which titanium oxide and carbon dioxide are joined together.

量子触媒の製造方法における二酸化炭素を接合させる際、酸化チタンと二酸化炭素の割合(例えば、モル比や原子数比)を変えることにより、量子触媒の光触媒活性を、酸化チタン単独における光触媒活性より高くすることができることが見いだされた。具体的には、量子触媒における酸化チタンに対する二酸化炭素をだんだん多くしていくと、量子触媒の光触媒活性(光触媒活性を一義的に与える反応速度比)が上昇後下降してピークを示すことが見いだされた。 When bonding carbon dioxide in the manufacturing method of the quantum catalyst, by changing the ratio of titanium oxide and carbon dioxide (for example, the molar ratio and atomic ratio), the photocatalytic activity of the quantum catalyst is higher than that of titanium oxide alone. It has been found that it is possible to Specifically, it was found that when the amount of carbon dioxide to titanium oxide in the quantum catalyst is gradually increased, the photocatalytic activity of the quantum catalyst (the reaction rate ratio that uniquely gives the photocatalytic activity) rises and then falls to show a peak. was

発明者は、反応速度比が上昇して二酸化炭素が存在しない場合の酸化チタンの反応速度より高くなるのは、酸化チタンの禁止帯に上述の二酸化炭素が不純物として生じるエネルギー準位の効果と推定している。一端上昇し、その後下降するのは、恐らく、酸化チタンと二酸化炭素との接合面積、厚さ、接合していない自由表面の面積等が変化し、これにより不純物である二酸化炭素が寄与する光触媒活性の増強能力が変化するためであろうと、発明者は考えている。 The inventors presume that the reason why the reaction rate ratio rises and becomes higher than the reaction rate of titanium oxide in the absence of carbon dioxide is the effect of the above-mentioned energy level in which carbon dioxide is produced as an impurity in the forbidden band of titanium oxide. are doing. It rises at one end and then declines, probably because the bonding area and thickness of titanium oxide and carbon dioxide, the area of the free surface that is not bonded, etc. change, and the carbon dioxide that is an impurity contributes to the photocatalytic activity. The inventor believes that this may be due to changes in the enhancing ability of

同様に、分散剤や増粘剤とその濃度、スラリ濃度、スラリ攪拌方法及びスラリ温度などの条件で変化するスラリ中の酸化チタンの粒子径、添加する酸及び塩基の少なくとも一方の量、濃度及び添加速度などが、量子触媒の光触媒活性に影響を及ぼし、二酸化炭素が存在しない場合の酸化チタンにおける光触媒活性をより強くできることが見いだされた。なお、「酸及び塩基の少なくとも一方」とは、酸や塩基で酸化チタンや二酸化炭素を析出させる際に、その析出速度を調節する等の目的で、酸や塩基単独では無く、酸と塩基の混合物を使用する場合もあるという意である。 Similarly, the particle size of titanium oxide in the slurry varies depending on conditions such as dispersant and thickener and their concentration, slurry concentration, slurry stirring method and slurry temperature, the amount, concentration and concentration of at least one of acid and base to be added. It has been found that the rate of addition and the like affects the photocatalytic activity of the quantum catalyst, allowing stronger photocatalytic activity on titanium oxide in the absence of carbon dioxide. In addition, "at least one of an acid and a base" is not an acid or a base alone, but a combination of an acid and a base for the purpose of adjusting the deposition rate when depositing titanium oxide or carbon dioxide with an acid or a base. It means that a mixture may be used in some cases.

酸及び塩基の少なくとも一方を使用する場合、添加用溶液中の酸及び塩基の少なくとも一方の濃度が、10穣分の1から1mol%の範囲であることが好ましい。また、スラリ濃度については、固定物質の濃度が1から35w%の範囲であることが好ましい。スラリの攪拌方法及びスラリの温度についても、光触媒活性に影響を及ぼし得るので、実情に応じて適宜選択することが好ましい。 When at least one of acid and base is used, the concentration of at least one of acid and base in the additive solution is preferably in the range of 1/10 to 1 mol %. As for the slurry concentration, it is preferable that the concentration of the immobilizing substance is in the range of 1 to 35w%. The method of stirring the slurry and the temperature of the slurry may also affect the photocatalytic activity, so it is preferable to appropriately select them according to the actual situation.

酸化チタンと二酸化炭素のモル比としては、例えば、酸化チタン:アルカリ金属の炭酸塩=1:1x10-31以上1x10-以下であってもよいし、1:1x10-21以上1x10-以下であってもよいし、1:1x10-24以上1:1x10-以下であってもよいし、1:1x10-8以上1:1x10-5以下であってもよい。 The molar ratio of titanium oxide and carbon dioxide may be, for example, titanium oxide: alkali metal carbonate=1:1× 10−31 or more and 1 ×10−1 or less, or 1:1× 10−21 or more and 1× 10−2 or less. 1:1×10 −24 or more and 1:1×10 −3 or less, or 1:1×10 −8 or more and 1:1×10 −5 or less.

更に、増粘剤又は分散剤の少なくとも一方を含む場合には、酸化チタンと二酸化炭素のモル比としては、例えば、酸化チタン:アルカリ金属の炭酸塩=1:1x10-31以上1:0.1以下が好ましく、1:1x10-27以上1:1x10-以下が好ましく、1:1x10-22以上1:1x10-以下が好ましい。 Furthermore, when at least one of a thickener and a dispersant is included, the molar ratio of titanium oxide and carbon dioxide is, for example, titanium oxide: alkali metal carbonate = 1:1 x 10-31 or more 1:0.1 1:1× 10−27 or more and 1:1×10−3 or less are preferable, and 1 :1× 10−22 or more and 1:1× 10−7 or less are preferable.

本発明の量子触媒の製造方法は、
酸化チタンと二酸化炭素を含む量子触媒の製造方法であって、
酸化チタンスラリを作製する酸化チタンスラリ作製ステップと、
前記酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて超臨界場中で攪拌して混合スラリを作製する攪拌ステップと、
前記混合スラリに酸を加えて攪拌するイオン交換ステップと、
を含むことを特徴とする、
ものである。
The method for producing a quantum catalyst of the present invention comprises
A method for producing a quantum catalyst comprising titanium oxide and carbon dioxide, comprising:
a titanium oxide slurry preparation step of preparing a titanium oxide slurry;
a stirring step of adding a solution containing a compound capable of binding carbon dioxide by treatment with an acid or base to the titanium oxide slurry and stirring the mixture in a supercritical field to prepare a mixed slurry;
an ion exchange step of adding acid to the mixed slurry and stirring;
characterized by comprising
It is.

本発明の量子触媒の製造方法は、酸化チタンの粉末を溶媒に加えて酸化チタンスラリを作製し、酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて混合スラリを作製し、必要に応じて当該スラリに酸又は塩基の少なくとも一方を添加して、酸化チタンの表面に二酸化炭素を接合させる。この操作により、酸化チタンと二酸化炭素とが接合されてなる量子触媒スラリが作製される。こうすることにより、従来の酸化チタンと同じように3.2eV以上の紫外線等から励起エネルギーを獲得し光触媒活性を発現する量子触媒を提供することができる。 In the method for producing a quantum catalyst of the present invention, titanium oxide powder is added to a solvent to prepare a titanium oxide slurry, and a solution containing a compound capable of binding carbon dioxide is added to the titanium oxide slurry by treatment with an acid or base. to prepare a mixed slurry, and if necessary, at least one of an acid and a base is added to the slurry to bond carbon dioxide to the surface of titanium oxide. This operation produces a quantum catalyst slurry in which titanium oxide and carbon dioxide are joined together. By doing so, it is possible to provide a quantum catalyst that acquires excitation energy from ultraviolet rays of 3.2 eV or more and develops photocatalytic activity in the same manner as conventional titanium oxide.

図1は、分散剤の種類と酸化チタンと二酸化炭素のモル比と反応速度比の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the type of dispersant, the molar ratio of titanium oxide and carbon dioxide, and the reaction rate ratio. 図2は、分散剤の濃度と反応速度比の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the dispersant concentration and the reaction rate ratio. 図3は、分散剤の濃度と反応速度比の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the concentration of the dispersant and the reaction rate ratio. 図4は、混合スラリの濃度と反応速度比の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the mixed slurry concentration and the reaction rate ratio. 図5は、混合スラリの温度と反応速度比の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the temperature of the mixed slurry and the reaction rate ratio.

次に、本発明の実施の形態の一例である量子触媒について詳細に説明する。この量子触媒は、酸化チタンに二酸化炭素を接合させたものであり、更に光触媒活性を高めるために増粘剤又は分散剤の少なくとも一方を添加したものであるため、これらの製造方法を詳細に説明することにより、本発明の量子触媒の一例を示すと共に、本発明の量子触媒の製造方法の一例を明らかにする。 Next, a quantum catalyst, which is an example of embodiments of the present invention, will be described in detail. Since this quantum catalyst is obtained by bonding carbon dioxide to titanium oxide, and at least one of a thickening agent and a dispersing agent is added to increase the photocatalytic activity, the manufacturing method thereof will be described in detail. By doing so, an example of the quantum catalyst of the present invention will be shown and an example of the method for producing the quantum catalyst of the present invention will be clarified.

この量子触媒は、超臨界場環境下で作製した酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて攪拌して混合スラリを作製した後、酸を加えて攪拌して酸化チタンの表面に二酸化炭素を接合して製造した。こうすることにより、従来の酸化チタンと同じように3.2eV以上の紫外線等から励起エネルギーを獲得し光触媒活性を発現することが可能であるが、加えて、1.29eVから3.4eV(波長830nmから360nm)の可視光、さらに1.29eV以下の赤外光など熱エネルギーから励起エネルギーを獲得して光触媒活性を実現することができる。 This quantum catalyst is prepared by adding a solution containing a compound capable of bonding carbon dioxide by treatment with an acid or base to a titanium oxide slurry prepared in a supercritical field environment and stirring to prepare a mixed slurry, and then adding an acid. In addition, it was stirred to bond carbon dioxide to the surface of the titanium oxide. By doing so, it is possible to acquire excitation energy from ultraviolet rays of 3.2 eV or more and express photocatalytic activity in the same way as conventional titanium oxide. Photocatalytic activity can be achieved by obtaining excitation energy from thermal energy such as visible light of 830 nm to 360 nm) and infrared light of 1.29 eV or less.

(酸化チタンスラリ作製ステップ)
一次粒子径7nm程度の酸化チタン粒子に分散剤及び増粘剤を適宜添加し、酸化チタンスラリを作製した。具体的には、19KHz以上の超音波を溶質1gあたり0.01Wから100Wの照射量で照射して超臨界場を発生させ、0.025mmから2mm径のジルコニアビーズと共に酸化チタンスラリ中の酸化チタン濃度が0.1w%から35w%となる濃度で酸化チタンスラリの温度が10℃から95℃に保った状態で超臨界場中において攪拌した。
(Titanium oxide slurry preparation step)
A dispersant and a thickening agent were appropriately added to titanium oxide particles having a primary particle size of about 7 nm to prepare a titanium oxide slurry. Specifically, an ultrasonic wave of 19 KHz or more is irradiated with an irradiation amount of 0.01 W to 100 W per 1 g of solute to generate a supercritical field, and titanium oxide in the titanium oxide slurry is The titanium oxide slurry was stirred in a supercritical field while maintaining a temperature of 10° C. to 95° C. at a concentration of 0.1 wt % to 35 wt %.

(混合スラリ作製ステップ)
酸化チタンスラリ作製工程で作製した酸化チタンスラリにアルカリ金属の炭酸塩水溶液、アルカリ金属の炭酸水素塩水溶液、アルカリ土類金属の炭酸水素塩水溶液のうちの少なくとも一つを加えて超臨界場中において攪拌し、混合スラリを作製した。具体的には、19KHz以上の超音波を溶液1Lあたり10Wから10KWの照射量で照射して超臨界場を発生させ、0.025mmから2mm径のジルコニアビーズと共に酸化チタンスラリ中の酸化チタン濃度が0.1w%から35w%となる濃度で、かつ、溶質の酸化チタンに対する炭酸水素ナトリウムのモル比が1x10-31から1x10-1となる濃度で、酸化チタンスラリの温度が10℃から95℃に保った状態で超臨界場において攪拌した。なお、チタン金属の酸化物である酸化チタンの水スラリは弱酸性を呈するため、アルカリ金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ土類金属の炭酸水素塩等の水溶液の弱アルカリ性を呈する希釈溶液を滴下する際には、ゆっくり滴下することが好ましい。混合スラリ作製にあたり、酸化チタンスラリを20℃から90℃に保ち、攪拌しながら炭酸水素ナトリウム溶液をゆっくり滴下することが、より好ましい。混合スラリ作製にあたり、酸化チタンスラリを20℃から90℃に保ち、超臨界場で攪拌しながら炭酸水素ナトリウム水溶液をゆっくり滴下することが、さらにより好ましい。
(Mixed slurry preparation step)
At least one of an alkali metal carbonate aqueous solution, an alkali metal hydrogencarbonate aqueous solution, and an alkaline earth metal hydrogencarbonate aqueous solution is added to the titanium oxide slurry prepared in the titanium oxide slurry preparation step, and placed in a supercritical field. The mixture was stirred to prepare a mixed slurry. Specifically, an ultrasonic wave of 19 KHz or more is irradiated with an irradiation amount of 10 W to 10 KW per 1 L of solution to generate a supercritical field, and the titanium oxide concentration in the titanium oxide slurry is increased together with the zirconia beads having a diameter of 0.025 mm to 2 mm. The temperature of the titanium oxide slurry is increased from 10° C. to 95° C. at a concentration of 0.1% to 35% by weight and at a concentration of 1×10 −31 to 1×10 −1 in the molar ratio of sodium bicarbonate to the solute titanium oxide. It was stirred in a supercritical field while maintaining. Since the aqueous slurry of titanium oxide, which is an oxide of titanium metal, exhibits weak acidity, it exhibits weak alkalinity of an aqueous solution of an alkali metal carbonate, an alkali metal hydrogen carbonate, an alkaline earth metal hydrogen carbonate, or the like. When dropping the diluted solution, it is preferable to drop slowly. In preparing the mixed slurry, it is more preferable to keep the titanium oxide slurry at 20° C. to 90° C. and drop the sodium bicarbonate solution slowly while stirring. In preparing the mixed slurry, it is more preferable to keep the titanium oxide slurry at 20° C. to 90° C. and slowly drop the sodium hydrogen carbonate aqueous solution while stirring in a supercritical field.

(イオン交換ステップ)
混合スラリ作製工程で作製した混合スラリに塩酸を滴下しながら攪拌し、二酸化炭素を酸化チタン微粒子の表面に接合させ、酸化チタンと二酸化炭素が接合した量子触媒スラリを作製した。なお、混合スラリ作製工程において、アルカリ金属塩のアルカリ成分が混合スラリ作製工程の酸成分より多くない場合には、アルカリ金属炭酸塩、アルカリ金属の炭酸水素塩、アルカリ土類金属の炭酸水素塩等の水溶液を加えて攪拌する際、酸化チタンスラリの酸成分によりイオン交換され、二酸化炭素が酸化チタン粒子の表面に接合するため、塩酸を滴下するイオン交換工程を実行しなくとも良い。
(ion exchange step)
Hydrochloric acid was added dropwise to the mixed slurry prepared in the mixed slurry preparing step, and the mixed slurry was stirred to bond carbon dioxide to the surface of the titanium oxide fine particles to prepare a quantum catalyst slurry in which titanium oxide and carbon dioxide were bonded. In the mixed slurry preparation process, when the alkali component of the alkali metal salt is not more than the acid component in the mixed slurry preparation process, alkali metal carbonate, alkali metal hydrogen carbonate, alkaline earth metal hydrogen carbonate, etc. When the aqueous solution of is added and stirred, ions are exchanged by the acid component of the titanium oxide slurry, and carbon dioxide bonds to the surface of the titanium oxide particles.

(光触媒活性評価)
量子触媒又は酸化チタン(具体的には石原産業製、アナターゼ型酸化チタンST-01)をそれぞれ同一質量だけ5Lのテドラ-バッグに入れ、80から125重量ppm濃度に調整した標準ガス(窒素キャリアガス、アセトアルデヒド標準ガス)を3L注入し、照射強度1.0mW/cmの紫外光を照射し、5分から20分経過後の残留濃度をガス検知管で測定し、残留濃度と初発濃度との比を残留濃度比(その残留濃度比の対数を反応速度)として求め、量子触媒の反応速度と酸化チタンの反応速度の比(量子触媒の反応速度/酸化チタンの反応速度)を反応速度比とした。ここに、紫外光照射時間を変化させても、反応速度比の値は変化せず一定値を呈するので、残留濃度が計測しやすい値及び設定しやすい照射時間に設定しても良い。
(Photocatalytic activity evaluation)
A standard gas (nitrogen carrier gas 3 L of acetaldehyde standard gas) was injected, irradiated with ultraviolet light at an irradiation intensity of 1.0 mW/cm 2 , and after 5 to 20 minutes, the residual concentration was measured with a gas detector tube, and the ratio of the residual concentration to the initial concentration was measured. was obtained as the residual concentration ratio (the logarithm of the residual concentration ratio is the reaction speed), and the ratio of the reaction speed of the quantum catalyst and the reaction speed of titanium oxide (the reaction speed of the quantum catalyst/the reaction speed of titanium oxide) was taken as the reaction speed ratio. . Here, even if the ultraviolet light irradiation time is changed, the value of the reaction rate ratio does not change and exhibits a constant value.

同一重量を用いて同一環境で残留濃度を測定する場合、測定対象の量子触媒に含まれる酸化チタンの量は、酸化チタン以外の物質の重量分だけ少なくなる。また、アルカリ金属炭酸塩、アルカリ金属の炭酸水素塩、アルカリ土類金属炭酸水素塩は光触媒活性をほとんど発現しないことが知られている。このような条件で、量子触媒の光触媒活性が酸化チタンの光触媒活性を上回ること、すなわち、量子触媒の反応速度比が1を上回ることは、これまで知られていなかったことである。これは、前述のごとく、二酸化炭素の炭素原子が酸化チタンの不純物として酸化チタンのバンドギャップにドナー準位とアクセプタ準位を生じ、酸化チタンのバンドギャップ値3.2eVより十分低いエネルギーレベルの光量子エネルギーを吸収して、ドナー準位に生じる自由電子を酸化チタンの導電帯へ注入、同時に、アクセプタ準位に酸化チタンの価電子帯から電子を吸収(アクセプタ準位からホールを価電子帯へ注入)するようになり、酸化チタンの表面から自由電子とホールが放出されるようになる結果、酸化チタン単体の光触媒活性を上回る光触媒活性を実現したものと考えられる。 When the residual concentration is measured in the same environment using the same weight, the amount of titanium oxide contained in the quantum catalyst to be measured is reduced by the weight of substances other than titanium oxide. Alkali metal carbonates, alkali metal hydrogencarbonates, and alkaline earth metal hydrogencarbonates are known to exhibit little photocatalytic activity. Under such conditions, the photocatalytic activity of the quantum catalyst exceeds the photocatalytic activity of titanium oxide, that is, the reaction rate ratio of the quantum catalyst exceeds 1, which was not known until now. As described above, the carbon atoms of carbon dioxide as impurities of titanium oxide generate a donor level and an acceptor level in the bandgap of titanium oxide, and photons with an energy level sufficiently lower than the bandgap value of 3.2 eV of titanium oxide are generated. Energy is absorbed and free electrons generated at the donor level are injected into the conduction band of titanium oxide. At the same time, electrons are absorbed from the valence band of titanium oxide into the acceptor level (holes are injected from the ), and free electrons and holes are emitted from the surface of the titanium oxide.

(実施例1)
一次粒子径7nm程度の酸化チタン粒子を水に懸濁し酸化チタンスラリを作製した。具体的には、19KHz以上の超音波を溶質1gあたり0.01Wから100Wの照射量で照射して、0.025mmから2mm径のジルコニアビーズと共に酸化チタンスラリ中の酸化チタン濃度が0.1w%から35w%となる濃度で酸化チタンスラリの温度が10℃から95℃に保った状態で攪拌した。
(Example 1)
A titanium oxide slurry was prepared by suspending titanium oxide particles having a primary particle diameter of about 7 nm in water. Specifically, an ultrasonic wave of 19 kHz or more is irradiated at an irradiation amount of 0.01 W to 100 W per 1 g of solute, and the titanium oxide concentration in the titanium oxide slurry is 0.1 w% together with the zirconia beads with a diameter of 0.025 mm to 2 mm. The temperature of the titanium oxide slurry was kept at 10°C to 95°C and stirred at a concentration of 35% by weight.

次に、酸化チタンスラリに炭酸水素ナトリウム水溶液を加えて攪拌し、混合スラリを作製した。具体的には、19KHz以上の超音波を溶液1Lあたり10Wから10KWの照射量で照射して、0.025mmから2mm径のジルコニアビーズと共に酸化チタンスラリ中の酸化チタン濃度が0.1w%から35w%となる濃度で、かつ、溶質の酸化チタンに対する二酸化炭素のモル比が1x10-10から1x10-5となる濃度で、酸化チタンスラリの温度が10℃から95℃に保った状態で攪拌した。 Next, an aqueous sodium hydrogencarbonate solution was added to the titanium oxide slurry and stirred to prepare a mixed slurry. Specifically, an ultrasonic wave of 19 KHz or more is irradiated with an irradiation amount of 10 W to 10 KW per 1 L of solution, and the titanium oxide concentration in the titanium oxide slurry is 0.1 w% to 35 w together with the zirconia beads with a diameter of 0.025 mm to 2 mm. % and the molar ratio of carbon dioxide to titanium oxide as a solute is from 1×10 −10 to 1×10 −5 , and the titanium oxide slurry is stirred while maintaining the temperature from 10° C. to 95° C.

混合スラリに塩酸を中和状態になるまで滴下しながら攪拌し、二酸化炭素を酸化チタン微粒子の表面に析出させ、酸化チタンと二酸化炭素が接合した量子触媒スラリを作製した。 Hydrochloric acid was added dropwise to the mixed slurry while stirring until the mixture was neutralized, and carbon dioxide was precipitated on the surface of the titanium oxide fine particles to prepare a quantum catalyst slurry in which titanium oxide and carbon dioxide were bonded.

こうして得られた量子触媒スラリを5Lのテドラーバッグに入れ、80から125重量ppm濃度に調整した標準ガス(窒素キャリアガス、アセトアルデヒド標準ガス)を3L注入し、照射強度1.0mW/cmの紫外光を照射し、5分から20分経過後の残留濃度をガス検知管で測定し、残留濃度と初発濃度との比を残留濃度比ならびに残留濃度比の対数を反応速度として求め、量子触媒の反応速度と酸化チタンの反応速度の比(量子触媒の反応速度/酸化チタンの反応速度)を反応速度比とし、その結果を図1のグラフ中に実線で示す。図1中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は酸化チタンに対する二酸化炭素のモル比の常用対数をそれぞれ示す。 The quantum catalyst slurry thus obtained is placed in a 5 L Tedlar bag, 3 L of standard gas (nitrogen carrier gas, acetaldehyde standard gas) adjusted to a concentration of 80 to 125 ppm by weight is injected, and ultraviolet light with an irradiation intensity of 1.0 mW / cm 2 is injected. is irradiated, and the residual concentration is measured with a gas detector tube after 5 to 20 minutes have passed, and the ratio of the residual concentration to the initial concentration is obtained as the residual concentration ratio and the logarithm of the residual concentration ratio as the reaction rate, and the reaction rate of the quantum catalyst and titanium oxide (the reaction rate of the quantum catalyst/the reaction rate of titanium oxide) is defined as the reaction rate ratio, and the result is indicated by the solid line in the graph of FIG. In FIG. 1, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the common logarithm of the molar ratio of carbon dioxide to titanium oxide.

図1の実線に示すように、酸化チタンに対する二酸化炭素のモル比が1x10-5以下なる濃度において、酸化チタンと同程度以上の光触媒活性を有していると言える。同一重量を用いて同一環境で残留濃度を測定する場合、測定対象の量子触媒に含まれる酸化チタンの量は、酸化チタン以外の物質の重量分だけ少なくなる。また、炭酸水素ナトリウムは光触媒活性をほとんど発現しないことが知られている。このため、酸化チタンに比べて環境中に容易に入手可能な二酸化炭素を用いて酸化チタンと同程度の光触媒活性が得られたといえる。特に、酸化チタンに対する二酸化炭素のモル比が1x10-5以下の場合には、酸化チタンの含有量に対して、特に高い光触媒活性が得られたといえる。 As shown by the solid line in FIG. 1, it can be said that photocatalytic activity is at least as high as that of titanium oxide at concentrations where the molar ratio of carbon dioxide to titanium oxide is 1.times.10@-5 or less. When the residual concentration is measured in the same environment using the same weight, the amount of titanium oxide contained in the quantum catalyst to be measured is reduced by the weight of substances other than titanium oxide. In addition, it is known that sodium hydrogencarbonate exhibits almost no photocatalytic activity. Therefore, it can be said that photocatalytic activity comparable to that of titanium oxide was obtained using carbon dioxide, which is more readily available in the environment than titanium oxide. In particular, when the molar ratio of carbon dioxide to titanium oxide was 1×10 −5 or less, it can be said that a particularly high photocatalytic activity was obtained with respect to the content of titanium oxide.

(実施例2)
酸化チタンスラリを作製する際、炭酸水素ナトリウム水溶液に加えて、分散剤としてポリカルボン酸(花王株式会社製,品番:デモールEP,固形分0.1重量%/酸化チタン)を加えたこと以外は、実施例1と同様にして、酸化チタンに対する二酸化炭素のモル比が1x10-27から1x10-2となるようにそれぞれ量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図1中の鎖線で示す。図1中の鎖線から明らかなように、二酸化炭素のモル比が1x10-24から1x10-4のいずれの濃度比でも、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。特に、二酸化炭素のモル比が1x10-21から1x10-5の範囲では、酸化チタンと比較して約1.7倍以上と高い光触媒活性が得られた。
(Example 2)
When preparing the titanium oxide slurry, in addition to the sodium bicarbonate aqueous solution, polycarboxylic acid (manufactured by Kao Corporation, product number: Demoll EP, solid content 0.1% by weight/titanium oxide) was added as a dispersant. , and quantum catalysts were prepared in the same manner as in Example 1 so that the molar ratio of carbon dioxide to titanium oxide was from 1×10 −27 to 1×10 −2 , and the reaction rate ratio of the quantum catalysts was measured. The results are shown by the dashed line in FIG. As is clear from the chain line in FIG. 1, photocatalytic activity higher than that of titanium oxide was obtained at any concentration ratio of carbon dioxide from 1×10 −24 to 1×10 −4 mol ratio. From this, it can be said that it has excellent photocatalytic activity. In particular, when the molar ratio of carbon dioxide was in the range of 1×10 −21 to 1×10 −5 , a photocatalytic activity as high as about 1.7 times that of titanium oxide was obtained.

(実施例3)
酸化チタンスラリを作製する際、炭酸水素ナトリウム水溶液に加えて、分散剤としてポリカルボン酸(花王株式会社製,品番:デモールEP,固形分0.1重量%/酸化チタン)及びポリアクリル酸アンモニウム(東亞合成株式会社製,品番:A―30,固形分1.5重量%/酸化チタン)をそれぞれ加えたこと以外は、実施例1と同様にして、酸化チタンに対する二酸化炭素のモル比が1x10-32から1x10-0となるように量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図1中の一点鎖線で示す。図1中の一点鎖線から明らかなように、1x10-32から1x10-2のいずれの濃度比でも、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。特に、二酸化炭素のモル比が1x10-28から1x10-5の範囲では、酸化チタンと比較して約3.5倍以上と高い光触媒活性が得られた。
(Example 3)
When preparing the titanium oxide slurry, in addition to the sodium bicarbonate aqueous solution, polycarboxylic acid (manufactured by Kao Corporation, product number: Demoll EP, solid content 0.1% by weight/titanium oxide) and ammonium polyacrylate ( Toagosei Co., Ltd., product number: A-30, solid content 1.5% by weight/titanium oxide) was added in the same manner as in Example 1, so that the molar ratio of carbon dioxide to titanium oxide was 1×10 Quantum catalysts were prepared so that the reaction rate was from 32 to 1x10 -0 , and the reaction rate ratio of the quantum catalysts was measured. The result is indicated by the dashed-dotted line in FIG. As is clear from the dashed-dotted line in FIG. 1, photocatalytic activity higher than that of titanium oxide was obtained at any concentration ratio from 1×10 −32 to 1×10 −2 . From this, it can be said that it has excellent photocatalytic activity. In particular, when the molar ratio of carbon dioxide was in the range of 1×10 −28 to 1×10 −5 , a photocatalytic activity as high as about 3.5 times that of titanium oxide was obtained.

(実施例4)
酸化チタンスラリを作製する際、炭酸水素ナトリウム水溶液に加えて、分散剤としてカルボン酸系共重合体ナトリウム(東亞合成株式会社製,品番:A―6712,固形分0.8重量%/酸化チタン)、ポリアクリル酸ナトリウム(東亞合成株式会社製,品番:A―20L,固形分0.36重量%/酸化チタン)及びシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food,固形分4重量%/酸化チタン)をそれぞれ加えたこと以外は、実施例1と同様にして、酸化チタンに対する二酸化炭素のモル比が1x10-24から1x10-0となるように量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図1中の二点鎖線で示す。図1中の二点鎖線から明らかなように、1x10-22から1x10-0のいずれの濃度比でも、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有すると言える。特に、二酸化炭素のモル比が1x10-18から1x10-2の範囲では、酸化チタンと比較して約5倍以上と高い光触媒活性が得られた。
(Example 4)
When preparing the titanium oxide slurry, in addition to the sodium bicarbonate aqueous solution, carboxylic acid copolymer sodium (manufactured by Toagosei Co., Ltd., product number: A-6712, solid content 0.8% by weight / titanium oxide) is used as a dispersant. , Sodium polyacrylate (manufactured by Toagosei Co., Ltd., product number: A-20L, solid content 0.36% by weight / titanium oxide) and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6 Food, solid content 4% by weight / titanium oxide ) was added, respectively, in the same manner as in Example 1, to prepare a quantum catalyst such that the molar ratio of carbon dioxide to titanium oxide was 1x10 -24 to 1x10 -0 , and the reaction rate ratio of the quantum catalyst was It was measured. The result is indicated by a chain double-dashed line in FIG. As is clear from the two-dot chain line in FIG. 1, photocatalytic activity higher than that of titanium oxide was obtained at any concentration ratio from 1×10 −22 to 1×10 −0 . From this, it can be said that it has excellent photocatalytic activity. In particular, when the molar ratio of carbon dioxide was in the range of 1×10 −18 to 1×10 −2 , a photocatalytic activity as high as about five times that of titanium oxide was obtained.

(実施例5)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてポリカルボン酸ナトリウム(東亞合成株式会社製,品番:A―6330)をそれぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図2の実線で示す。ここで、図2中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は量子触媒中に含まれる分散剤の濃度(重量%)をそれぞれ示す。図2の実線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 5)
Except that when preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 and sodium polycarboxylate (manufactured by Toagosei Co., Ltd., product number: A-6330) was added to each concentration as a dispersant. , a quantum catalyst was prepared in the same manner as in Example 1, and the reaction rate ratio of the quantum catalyst was measured. The results are shown by the solid line in FIG. Here, in FIG. 2, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the concentration (% by weight) of the dispersant contained in the quantum catalyst. As is clear from the solid line in FIG. 2, even when the dispersant was added, a higher photocatalytic activity than titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例6)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてカルボン酸系共重合体ナトリウム(東亞合成株式会社製,品番:A―6712)をそれぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図2中に鎖線で示す。図2の鎖線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 6)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 , and sodium carboxylic acid copolymer (manufactured by Toagosei Co., Ltd., product number: A-6712) was added as a dispersant to each concentration. Except for this, a quantum catalyst was prepared in the same manner as in Example 1, and the reaction rate ratio of the quantum catalyst was measured. The result is indicated by a dashed line in FIG. As is clear from the chain line in FIG. 2, even when the dispersant was added, a photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例7)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてカルボン酸系共重合体ナトリウム(東亞合成株式会社製,品番:A―6712)、ポリアクリル酸ナトリウム(東亞合成株式会社製,品番:A―20L)をそれぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図2中に一点鎖線で示す。図2の一点鎖線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 7)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 , and sodium carboxylic acid copolymer (manufactured by Toagosei Co., Ltd., product number: A-6712) and sodium polyacrylate were used as dispersants. (manufactured by Toagosei Co., Ltd., product number: A-20L) was added in each concentration, but the quantum catalyst was prepared in the same manner as in Example 1, and the reaction rate ratio of the quantum catalyst was measured. The result is indicated by a dashed line in FIG. As is clear from the dashed-dotted line in FIG. 2, even when the dispersant was added, a photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例8)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food)をそれぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図3の実線で示す。ここで、図3中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は分散剤の濃度(重量%)をそれぞれ示す。図3の実線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 8)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 , and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6Food) was added as a dispersant at each concentration as in Example 1. A quantum catalyst was prepared in the same manner, and the reaction rate ratio of the quantum catalyst was measured. The results are shown by the solid line in FIG. Here, in FIG. 3, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the concentration (% by weight) of the dispersant. As is clear from the solid line in FIG. 3, even when the dispersant was added, a photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例9)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food、固形分4重量%/酸化チタン)、セルロールナノファイバー(第一工業製薬株式会社製,品番:レオクリスタI-2SP、固形分0.36w%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール,K-90、固形分1.3重量%/酸化チタン)をそれぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図3に鎖線で示す。ここで、図3中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は分散剤の濃度(重量%)を示す。図3の鎖線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 9)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1 x 10 -8 , and as a dispersant, cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6 Food, solid content 4% / titanium oxide), cellulose nano Fiber (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product number: Rheocrysta I-2SP, solid content 0.36 w% / titanium oxide), polyvinylpyrrodrine (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product number: Bitscol, K-90, solid Quantum catalysts were prepared in the same manner as in Example 1, except that each concentration was added, and the reaction rate ratio of the quantum catalysts was measured. The results are shown in dashed lines in FIG. Here, in FIG. 3, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the concentration (% by weight) of the dispersant. As is clear from the chain line in FIG. 3, even when a dispersant was added, a photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例10)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food、固形分4重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール,K-90、固形分1.3重量%/酸化チタン)、セルロールナノファイバー(第一工業製薬株式会社製,品番:レオクリスタI-2SP、固形分0.02~0.92w%/酸化チタン)をそれぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図3に一点鎖線で示す。ここで、図3中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は分散剤の濃度(重量%)を示す。図3の一点鎖線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。特に、分散剤5.9~6.2重量%/酸化チタン濃度の場合に、優れた光触媒活性を有するといえる。
(Example 10)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was 1×10 −8 , and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6 Food, solid content 4% by weight/titanium oxide) and polyvinylpyrodrine were used as dispersants. (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product number: Bitscol, K-90, solid content 1.3% by weight/titanium oxide), cellulose nanofiber (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product number: Rheocrysta I-2SP, Quantum catalysts were prepared in the same manner as in Example 1, except that solid content of 0.02 to 0.92 w%/titanium oxide) was added at each concentration, and the reaction rate ratio of the quantum catalyst was measured. The result is shown in FIG. 3 with a dashed line. Here, in FIG. 3, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the concentration (% by weight) of the dispersant. As is clear from the dashed-dotted line in FIG. 3, even when the dispersant was added, photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity. In particular, it can be said that excellent photocatalytic activity is obtained when the dispersant is 5.9 to 6.2% by weight/titanium oxide concentration.

(実施例11)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース((WACKER製,品番:CAVAMAX W6Food、固形分3.0~6.0重量%/酸化チタン)、カルボン酸系共重合体ナトリウム(東亞合成株式会社製,品番:A―6712、固形分0.6~1.2重量%/酸化チタン)、ポリアクリル酸ナトリウム(東亞合成株式会社製,品番:A―20L、固形分0.27~0.54重量%/酸化チタン)を、それぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図3に二点鎖線に示す。ここで、図3中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は分散剤の濃度(重量%)を示す。図3の二点鎖線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有すると言える。
(Example 11)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide is set to 1×10 −8 , and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6 Food, solid content 3.0 to 6.0% by weight/ titanium oxide), carboxylic acid copolymer sodium (manufactured by Toagosei Co., Ltd., product number: A-6712, solid content 0.6 to 1.2% by weight / titanium oxide), sodium polyacrylate (manufactured by Toagosei Co., Ltd. , Product number: A-20L, solid content 0.27 to 0.54% by weight/titanium oxide) was added in the same manner as in Example 1, except that each concentration was added, and the reaction rate of the quantum catalyst The results are shown by a two-dot chain line in Fig. 3. In Fig. 3, the vertical axis represents the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis represents the dispersant concentration (weight %).As is clear from the two-dot chain line in Fig. 3, even when a dispersant was added, a higher photocatalytic activity was obtained than titanium oxide. It can be said that

(実施例12)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food、固形分4~6重量%/酸化チタン)、カルボン酸系共重合体ナトリウム(東亞合成株式会社製,品番:A―6712、固形分0.8~1.2重量%/酸化チタン)と、ポリアクリル酸ナトリウム(東亞合成株式会社製,品番:A―20L、固形分0.36~0.54重量%/酸化チタン)を、それぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図3中に破線で示す。図3の破線から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 12)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 , and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6Food, solid content 4 to 6% by weight/titanium oxide) and carboxylic acid were used as dispersants. Sodium acid copolymer (manufactured by Toagosei Co., Ltd., product number: A-6712, solid content 0.8 to 1.2% by weight / titanium oxide) and sodium polyacrylate (manufactured by Toagosei Co., Ltd., product number: A -20 L, solid content 0.36 to 0.54% by weight/titanium oxide), except that each concentration was added, a quantum catalyst was prepared in the same manner as in Example 1, and the reaction rate ratio of the quantum catalyst was measured. . The result is indicated by a dashed line in FIG. As is clear from the dashed line in FIG. 3, even when the dispersant was added, photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例13)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food、固形分3重量%/酸化チタン)、シクロオクタアミロース(WACKER製,品番:CAVAMAX W8Food、固形分1重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール、K-30L、固形分0.4重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール、K-60L、固形分0.4重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール、K-90L、固形分0.8重量%/酸化チタン)、セルロールナノファイバー(第一工業製薬株式会社製,品番:レオクリスタI-2SP、固形分0.92重量%/酸化チタン)を、それぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図4に示す。ここで、図4中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は混合スラリ中の酸化チタンの濃度(重量%)を示す。図4から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 13)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 , and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6 Food, solid content 3% by weight/titanium oxide) and cyclooctaamylose were used as dispersants. (manufactured by WACKER, product number: CAVAMAX W8Food, solid content 1% by weight/titanium oxide), polyvinylpyrrodrine (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Bitscol, K-30L, solid content 0.4% by weight/titanium oxide) ), polyvinylpyrrodrine (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Bitscol, K-60L, solid content 0.4% by weight/titanium oxide), polyvinylpyrrodrine (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Bits Coal, K-90L, solid content 0.8% by weight/titanium oxide), cellulose nanofiber (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Rheocrysta I-2SP, solid content 0.92% by weight/titanium oxide). , the quantum catalyst was prepared in the same manner as in Example 1, except that each concentration was added, and the reaction rate ratio of the quantum catalyst was measured. The results are shown in FIG. Here, in FIG. 4, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the concentration (% by weight) of titanium oxide in the mixed slurry. As is clear from FIG. 4, even when a dispersant was added, a photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

(実施例14)
酸化チタンスラリを作製する際、酸化チタンに対する二酸化炭素のモル比を1x10-8とし、分散剤としてシクロヘキサアミロース(WACKER製,品番:CAVAMAX W6Food、固形分3重量%/酸化チタン)、シクロオクタアミロース(WACKER製,品番:CAVAMAX W8Food、固形分1重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール、K-30L、固形分0.4重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール、K-60L、固形分0.4重量%/酸化チタン)、ポリビニルピロドリン(第一工業製薬株式会社製,品番:ビッツコール、K-90L、固形分0.8重量%/酸化チタン)、セルロールナノファイバー(第一工業製薬株式会社製,品番:レオクリスタI-2SP、固形分0.92重量%/酸化チタン)を、それぞれの濃度加えたこと以外、実施例1と同様にして量子触媒を調製し、量子触媒の反応速度比を測定した。その結果を図5に示す。ここで、図5中、縦軸は酸化チタンの反応速度を基準とした反応速度比を、横軸は混合スラリの温度(℃)を示す。図5から明らかなように、分散剤を加えた場合であっても、酸化チタンよりも高い光触媒活性が得られた。このことから、優れた光触媒活性を有するといえる。
(Example 14)
When preparing the titanium oxide slurry, the molar ratio of carbon dioxide to titanium oxide was set to 1×10 −8 , and cyclohexaamylose (manufactured by WACKER, product number: CAVAMAX W6 Food, solid content 3% by weight/titanium oxide) and cyclooctaamylose were used as dispersants. (manufactured by WACKER, product number: CAVAMAX W8Food, solid content 1% by weight/titanium oxide), polyvinylpyrrodrine (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Bitscol, K-30L, solid content 0.4% by weight/titanium oxide) ), polyvinylpyrrodrine (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Bitscol, K-60L, solid content 0.4% by weight/titanium oxide), polyvinylpyrrodrine (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Bits Coal, K-90L, solid content 0.8% by weight/titanium oxide), cellulose nanofiber (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., product number: Rheocrysta I-2SP, solid content 0.92% by weight/titanium oxide). , the quantum catalyst was prepared in the same manner as in Example 1, except that each concentration was added, and the reaction rate ratio of the quantum catalyst was measured. The results are shown in FIG. Here, in FIG. 5, the vertical axis indicates the reaction rate ratio based on the reaction rate of titanium oxide, and the horizontal axis indicates the temperature (° C.) of the mixed slurry. As is clear from FIG. 5, even when a dispersant was added, a photocatalytic activity higher than that of titanium oxide was obtained. From this, it can be said that it has excellent photocatalytic activity.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることは言うまでもない。 It goes without saying that the present invention is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.

例えば、上述した実施の形態において、酸化チタンスラリ作製ステップ及び混合スラリ作製ステップに変えて、アルカリ金属の炭酸塩、アルカリ金属の炭酸水素塩、又はアルカリ土類金属の炭酸水素塩の粉末を水などの溶媒でスラリを作製し、当該スラリに酸又は塩基による処理により酸化チタンに二酸化炭素を接合し得る化合物を含んでなる溶液を加えて混合スラリを作製してもよい。また、分散剤としてポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、ポリカルボン酸、ポリカルボン酸ナトリウム、カルボン酸系共重合体、カルボン酸系共重合体ナトリウム、カルボン酸系共重合体アンモニウム、スルホン酸系共重合体、スルホン酸系共重合体ナトリウム、シクロヘキサアミロース、シクロオクタアミロース、ポリビニルピロドリン、セルロールナノファイバーを用いても混合スラリを製作してもよい。こうして作製した混合スラリをイオン交換ステップにおいて酸化チタンの表面に二酸化炭素を接合させてもよい。このとき、量子触媒における酸化チタンと二酸化炭素の割合(例えば、モル比又は原子数比)、酸又は塩基の少なくとも一方の濃度又は添加速度、スラリの濃度又は攪拌方法、温度並びに分散剤の種類と量からなる群から選ばれた少なくとも一つの条件を選択することにより、量子触媒の光触媒活性を二酸化炭素が存在しない場合の酸化チタンにおける光触媒活性を高くすることができる。 For example, in the above-described embodiment, instead of the step of preparing the titanium oxide slurry and the step of preparing the mixed slurry, a powder of an alkali metal carbonate, an alkali metal hydrogen carbonate, or an alkaline earth metal hydrogen carbonate is mixed with water or the like. and a solution containing a compound capable of bonding carbon dioxide to titanium oxide by treatment with an acid or base is added to the slurry to form a mixed slurry. In addition, as a dispersant, polyacrylic acid, sodium polyacrylate, ammonium polyacrylate, polycarboxylic acid, sodium polycarboxylate, carboxylic acid copolymer, sodium carboxylic acid copolymer, ammonium carboxylic acid copolymer , sulfonic acid-based copolymer, sodium sulfonic acid-based copolymer, cyclohexaamylose, cyclooctaamylose, polyvinylpyrrodrine, and cellulose nanofibers may be used to prepare a mixed slurry. Carbon dioxide may be bonded to the surface of titanium oxide in the mixed slurry thus prepared in the ion exchange step. At this time, the ratio of titanium oxide and carbon dioxide in the quantum catalyst (e.g., molar ratio or atomic number ratio), the concentration or addition rate of at least one of acid or base, the concentration or stirring method of slurry, the temperature, and the type of dispersant By selecting at least one condition selected from the group consisting of amounts, the photocatalytic activity of the quantum catalyst can be increased to that of titanium oxide in the absence of carbon dioxide.

上述した実施の形態で示すように、量子触媒として利用することができる。 As shown in the above embodiments, it can be used as a quantum catalyst.

本発明の量子触媒は、酸化チタン単独で光触媒活性を発現する光照射を受ける環境においても、加えるに酸化チタン単独では光触媒活性を発現できない環境においても光触媒活性を発現することを示した。量子触媒は、紫外線のみならず、量子線、赤外線、可視光線などの低エネルギーレベルの量子線の照射時においても光触媒活性を発現する。 It was shown that the quantum catalyst of the present invention exhibits photocatalytic activity even in an environment where titanium oxide alone exhibits photocatalytic activity, and in an environment where titanium oxide alone cannot exhibit photocatalytic activity. Quantum catalysts exhibit photocatalytic activity not only when irradiated with ultraviolet rays, but also when irradiated with low-energy-level quantum rays such as quantum rays, infrared rays, and visible rays.

本発明に係る量子触媒からどのような光触媒作用を発揮させるかについては特に制限はないが、使用された酸化チタンの場合と同様の光触媒活性が適切である場合が多い。一般的には、有害物質や臭い発生物質の分解作用、有機塩素系化合物、環境ホルモン等の水処理・土壌汚染処理、空気清浄器、冷蔵庫などの電気製品、塗装、タイル、ガラス、テントなどの防汚、防藻処理、窓ガラス、照明器具、カーテン、絨毯、壁紙・クロス、天井材などの住宅内装材、残留農薬分解処理、養豚・養鶏場などの防臭、水耕栽培水の浄化などの農業、トンネル照明・遮音壁の防汚などの道路整備、大気中のNOx、VOC分解除去など都市環境保全作用の飛躍的改善効果を好ましく挙げることができる。酸化チタンと二酸化炭素からなる安心安全な物質である量子触媒は、人畜に無害な特性を活かして、人体内部のがん細胞やガン病巣を分解除去する新しい治療を可能とする。 There are no particular restrictions on what kind of photocatalytic action the quantum catalyst according to the invention exhibits, but in many cases a photocatalytic activity similar to that of the titanium oxide used is appropriate. In general, it is used to decompose harmful substances and odor-causing substances, to treat water and soil pollution such as organochlorine compounds and endocrine disruptors, to treat electrical appliances such as air purifiers and refrigerators, to paint, tiles, glass, tents, etc. Antifouling, anti-algae treatment, window glass, lighting fixtures, curtains, carpets, wallpaper/cloth, ceiling materials and other housing interior materials, residual pesticide decomposition treatment, deodorizing pig and poultry farms, hydroponics water purification, etc. Preferable effects include drastic improvement in urban environment conservation effects such as agriculture, road maintenance such as tunnel lighting and antifouling of sound insulation walls, and decomposition and removal of NOx and VOC in the atmosphere. Quantum catalysts, which are safe and secure substances composed of titanium oxide and carbon dioxide, make use of their harmlessness to humans and animals to enable new treatments that decompose and remove cancer cells and cancer lesions inside the human body.

本発明に係る量子触媒に照射する光や量子線などのエネルギーについても特に制限は無い。使用された酸化チタンが光触媒活性を発現する場合と同様の紫外線等を使用することが適切である場合が多いが、それより長波長側でもよいことは上述の通りである。授受されるエネルギーが二酸化炭素分子の禁止帯に生じる準位に寄与して酸化チタンを励起するに足るならば、赤外光、可視光、あるいは紫外光の照射に限定する必要は必ずしも無い。電子が動けない絶対零度のような環境を除けば、室温程度で十分な熱エネルギーの照射を受けているので、夜間や遮光環境においても、不純物の二酸化炭素は励起し、酸化チタンの伝導帯へ自由電子を、酸化チタンの荷電子帯へホールを供給する。不純物から供給される自由電子とホールが十分な量に達すれば、光触媒作用が発現するのは、前述の通りである。エネルギーにより電子が励起される確率は、ドナー準位と伝導体電位あるいはアクセプタ準位と荷電子帯電位との電位差で定まる励起エネルギーが小さいほど、指数関数的に大きくなり、本発明が開示する量子触媒が室温程度の温度で効果的に光触媒作用を発揮するようになり、夜間においても発電可能な新しい太陽電池すら実現できることになる。更に、可視光や紫外光の照射を必ずしも必要としない量子触媒の特徴は、人体内部の略遮光環境における光触媒活性を利用した安全な新しいガン治療法を提供できる。さらに、強力な光触媒効果は、細菌、黴などを炭酸ガス、水、酸化窒素に完全分解し、無害化する。薬剤のように特定細菌のみを選択的に死滅無害化する作用とは異なり、カビや細菌の種類を区分せず細菌、カビなどの小さな分子量の物質を分解除去することが光触媒効果の大きな特長である。この特徴は、光触媒効果が強大なるほど顕著になり、光触媒に比較し飛躍的に強力な光触媒効果を発現する量子触媒の抗菌、防黴効果は絶大となる。さらに、細菌やカビなどの種類を問わず分解除去するので、変性菌や耐性菌の発生を完全に防止する。薬剤と異なり、量子触媒の細菌や黴に対する効果は、さらに分子量の小さなウィルスには効果的に機能することが確認できている。また、細菌、黴やウィルスの分解除去効果のみならず、ノロウィルスが薬剤で死滅するとき放散するベロ毒素なども効果的に分解除去できる。さらに、未発見のウィルスや細菌を区別無く死滅させることができる大きな利点を、量子触媒は備えている。 There is no particular limitation on the energy of light, quantum beams, etc. with which the quantum catalyst according to the present invention is irradiated. In many cases, it is appropriate to use ultraviolet light or the like similar to that used when the titanium oxide used exhibits photocatalytic activity, but as described above, longer wavelengths may also be used. If the transferred energy contributes to the level generated in the forbidden band of carbon dioxide molecules and is sufficient to excite titanium oxide, it is not necessary to limit the irradiation to infrared light, visible light, or ultraviolet light. Except for an environment such as absolute zero, where electrons cannot move, sufficient thermal energy is irradiated at about room temperature, so even at night or in a dark environment, the impurity carbon dioxide is excited and enters the conduction band of titanium oxide. It supplies free electrons and holes to the valence band of titanium oxide. As described above, photocatalytic action occurs when free electrons and holes supplied from impurities reach a sufficient amount. The probability that an electron is excited by energy increases exponentially as the excitation energy, which is determined by the potential difference between the donor level and the conductor potential or between the acceptor level and the valence band potential, decreases. The catalyst will effectively exhibit photocatalytic action at room temperature, and it will be possible to realize a new solar cell that can generate electricity even at night. Furthermore, the quantum catalyst, which does not necessarily require irradiation with visible light or ultraviolet light, can provide a safe new cancer treatment method using photocatalytic activity in a substantially light-shielded environment inside the human body. Furthermore, the strong photocatalytic effect completely decomposes bacteria, molds, etc. into carbon dioxide, water, and nitrogen oxides, making them harmless. Unlike chemicals that selectively kill and detoxify only specific bacteria, the major feature of the photocatalyst effect is that it decomposes and removes small molecular weight substances such as bacteria and mold without classifying the type of mold or bacteria. be. This feature becomes more pronounced as the photocatalytic effect becomes stronger, and the antibacterial and antifungal effects of the quantum catalyst, which exhibits a dramatically stronger photocatalytic effect than the photocatalyst, become tremendous. Furthermore, since it decomposes and removes all types of bacteria and fungi, it completely prevents the occurrence of denatured bacteria and resistant bacteria. Unlike drugs, it has been confirmed that the effect of quantum catalysts on bacteria and molds works effectively against viruses with smaller molecular weights. In addition to the effect of decomposing and removing bacteria, fungi and viruses, it is also possible to effectively decompose and remove verotoxins that are released when norovirus is killed by the drug. In addition, quantum catalysts have the great advantage of being able to kill undiscovered viruses and bacteria indiscriminately.

Claims (5)

酸化チタンと二酸化炭素を含む量子触媒の製造方法であって、A method for producing a quantum catalyst comprising titanium oxide and carbon dioxide, comprising:
酸化チタンスラリを作製する酸化チタンスラリ作製ステップと、a titanium oxide slurry preparation step of preparing a titanium oxide slurry;
前記酸化チタンスラリに酸又は塩基による処理により二酸化炭素を接合し得る化合物を含んでなる溶液を加えて超臨界場中で攪拌して混合スラリを作製する攪拌ステップと、a stirring step of adding a solution containing a compound capable of binding carbon dioxide by treatment with an acid or base to the titanium oxide slurry and stirring the mixture in a supercritical field to prepare a mixed slurry;
前記混合スラリに酸を加えて攪拌するイオン交換ステップと、an ion exchange step of adding acid to the mixed slurry and stirring;
を含むことを特徴とする、characterized by comprising
量子触媒の製造方法。A method for manufacturing a quantum catalyst.
前記酸化チタンスラリ作製ステップは、酸化チタンに分散剤及び増粘剤の少なくとも一方を添加して酸化チタンスラリを作製する酸化チタンスラリ作製ステップであることを特徴とする、The titanium oxide slurry preparation step is a titanium oxide slurry preparation step of adding at least one of a dispersant and a thickener to titanium oxide to prepare a titanium oxide slurry,
請求項1に記載の量子触媒の製造方法。A method for producing a quantum catalyst according to claim 1.
前記分散剤及び増粘剤は、カルボン酸系共重合体、ポリアクリル酸、ポリアクリル酸ナ
トリウム、ポリアクリル酸アンモニウム、ポリカルボン酸、カルボン酸系共重合体ナトリ
ウム、シクロアミロース、ポリビニルピロドリン及びセルロールナノファイバーからなる
群より選ばれるものであることを特徴とする、
請求項2に記載の量子触媒の製造方法。
The dispersant and thickener include carboxylic acid copolymer, polyacrylic acid, sodium polyacrylate, ammonium polyacrylate, polycarboxylic acid, sodium carboxylic acid copolymer, cycloamylose, polyvinylpyrodrine and cell characterized by being selected from the group consisting of roll nanofibers,
A method for producing a quantum catalyst according to claim 2.
前記酸化チタンに対する前記二酸化炭素のモル比が、1:1x10-8以上1:1x10-5以下であることを特徴とする、
請求項1から3のいずれか1項に記載の量子触媒の製造方法。
characterized in that the molar ratio of the carbon dioxide to the titanium oxide is 1:1×10 −8 or more and 1:1×10 −5 or less,
A method for producing a quantum catalyst according to any one of claims 1 to 3.
前記酸化チタンに対する前記二酸化炭素のモル比が1:1x10-31以上1:1x10-1以下であることを特徴とする、
請求項1から3のいずれか1項に記載の量子触媒の製造方法。
characterized in that the molar ratio of the carbon dioxide to the titanium oxide is 1:1×10 −31 or more and 1:1×10 −1 or less,
A method for producing a quantum catalyst according to any one of claims 1 to 3.
JP2017215137A 2017-11-07 2017-11-07 Quantum catalyst manufacturing method Active JP7201975B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017215137A JP7201975B2 (en) 2017-11-07 2017-11-07 Quantum catalyst manufacturing method
PCT/JP2018/041157 WO2019093314A1 (en) 2017-11-07 2018-11-06 Quantum catalyst and method for manufacturing quantum catalyst
CN201880071637.6A CN111315478A (en) 2017-11-07 2018-11-06 Quantum catalyst and method for producing quantum catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215137A JP7201975B2 (en) 2017-11-07 2017-11-07 Quantum catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JP2019084501A JP2019084501A (en) 2019-06-06
JP7201975B2 true JP7201975B2 (en) 2023-01-11

Family

ID=66437784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215137A Active JP7201975B2 (en) 2017-11-07 2017-11-07 Quantum catalyst manufacturing method

Country Status (3)

Country Link
JP (1) JP7201975B2 (en)
CN (1) CN111315478A (en)
WO (1) WO2019093314A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126100A (en) 2006-11-16 2008-06-05 Seishichi Kishi Photocatalytic substance and its manufacturing method
JP2009138124A (en) 2007-12-07 2009-06-25 Shoichi Nakamura Detergent additive and method for producing the same
JP2013039522A (en) 2011-08-15 2013-02-28 Seishichi Kishi Quantum catalyst and method for producing the same
US20150096941A1 (en) 2013-10-08 2015-04-09 Kyle Doudrick Photocatalytic reduction of oxo-anions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126100A (en) 2006-11-16 2008-06-05 Seishichi Kishi Photocatalytic substance and its manufacturing method
JP2009138124A (en) 2007-12-07 2009-06-25 Shoichi Nakamura Detergent additive and method for producing the same
JP2013039522A (en) 2011-08-15 2013-02-28 Seishichi Kishi Quantum catalyst and method for producing the same
US20150096941A1 (en) 2013-10-08 2015-04-09 Kyle Doudrick Photocatalytic reduction of oxo-anions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLING, Gary A. and LIN, Chitsan,Investigation of retardation effects on the titanium dioxide photodegradation system,Chemosphere,英国,Elsevier Science Ltd. ,2002年01月23日,Vol. 46, No. 6,pp. 937-944,DOI: 10.1016/S0045-6535(01)00172-2

Also Published As

Publication number Publication date
JP2019084501A (en) 2019-06-06
CN111315478A (en) 2020-06-19
WO2019093314A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
KR101500593B1 (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
Liu et al. Thermal-sprayed photocatalytic coatings for biocidal applications: A review
Sontakke et al. Visible light photocatalytic inactivation of Escherichia coli with combustion synthesized TiO2
GB2367495A (en) Process and apparatus for purification of oxygen-containing gas
US6407156B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
JP2007098294A (en) Composite photocatalyst body
CN103752298A (en) Nanoscale photocatalyst and preparation method thereof
JP2008126100A (en) Photocatalytic substance and its manufacturing method
WO2003102096A1 (en) Antibacterial and anti-staining paint for building materia l and building material coated therewith
JP2007098293A (en) Visible light response type photocatalyst, visible light response type photocatalyst composition and its production method
JP7201975B2 (en) Quantum catalyst manufacturing method
KR101478234B1 (en) Method for producing photocatalyst coating film, and photocatalyst coating film
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2005206412A (en) Titanium dioxide particulate and titanium dioxide porous material
JP3276297B2 (en) Photocatalyst
JPH09157549A (en) Coating agent composition
JP5331193B2 (en) Mixed-valence copper compound-supported tungsten oxide and method for producing the same
JP6258827B2 (en) Photocatalytic material
US8679403B2 (en) Method and use of providing photocatalytic activity
RU2595343C2 (en) Method of producing photocatalyst based on bismuthate alkali-earth metal and method of purifying water from organic contaminants using photocatalyst
JP4079306B2 (en) Photocatalyst powder, its production method and its application
JP5839722B2 (en) Process for producing calcium carbonate-containing photocatalytic composite composition containing metal ions
KR20130042390A (en) Tio2-based photo catalysts having visible-light sensitivity and method for manufacturing the same
KR101907517B1 (en) Method for preparing titanium dioxides doped with nitrogen and photocatalyst prepared thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7201975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150