WO2013089422A1 - 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치 - Google Patents

연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치 Download PDF

Info

Publication number
WO2013089422A1
WO2013089422A1 PCT/KR2012/010776 KR2012010776W WO2013089422A1 WO 2013089422 A1 WO2013089422 A1 WO 2013089422A1 KR 2012010776 W KR2012010776 W KR 2012010776W WO 2013089422 A1 WO2013089422 A1 WO 2013089422A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
temperature
mist
equation
width direction
Prior art date
Application number
PCT/KR2012/010776
Other languages
English (en)
French (fr)
Inventor
이규택
박정훈
Original Assignee
(주)포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코 filed Critical (주)포스코
Priority to MX2014007141A priority Critical patent/MX368150B/es
Priority to JP2014547097A priority patent/JP5964449B2/ja
Priority to CN201280062270.4A priority patent/CN103998631B/zh
Priority to EP12858320.0A priority patent/EP2792756A4/en
Priority to US14/364,944 priority patent/US9783867B2/en
Publication of WO2013089422A1 publication Critical patent/WO2013089422A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Definitions

  • the present invention relates to a method and apparatus for uniformly controlling the temperature of a strip in a quench zone of a continuous annealing line.
  • Strip temperature control method and apparatus for continuous annealing line quench zone to minimize the change of flatness of the strip by uniformly controlling the width direction of the strip by controlling width mist flow rate of cooling nozzle block It is about.
  • the furnace configuration of the continuous annealing line provided in the integrated integrated steelworks is shown in FIG. 1.
  • Furnace 10 of the continuous annealing line is preheated using the exhaust gas of the heating table 12 in the preheating zone 11, the heating strip 12 is heated indirectly through a radian tube in the heating table 12 is heated up. .
  • the strip passing through the heating table 12 is cracked at a constant temperature in the cracking table 13, and is slowly cooled by circulating cooling the atmospheric gas in the slow cooling table 14.
  • the strip passing through the slow cooling stand 14 is cooled using a main gas jet, a cooling roll, and an auxiliary gas jet in the quenching stand 15, and is overaged in the over-ageing stand 16, and the final cooling stand 17 is obtained. Cooled in.
  • the grains in the strip are recovered and recrystallized in the preheating zone 11 and the heating zone 12, and the grains grow in the crack zone 13.
  • This conventional method relates to a continuous annealing line quench strip strip cooling rate control method, it is possible to maintain a constant cooling rate of the strip passing through the quench zone and the carbon concentration in the strip to enable the production of cold rolled steel sheet of uniform quality to be.
  • the strip cooling apparatus of the annealing furnace relates to a device for uniformly cooling the strip proceeds from the quench zone of the annealing furnace to the target temperature, supplying the cooling water in the roll to the roll cooling
  • the invention relates to the uniform cooling used.
  • Korean Patent Application Publication No. 2003-0054513 discloses a method of controlling strip cooling by controlling a change in a cooling fan output in a cooling zone of a continuous annealing furnace cooling stage.
  • An object of the present invention is to solve the above-mentioned conventional problems, by controlling the widthwise temperature distribution of the strip moving in the vertical direction to the desired shape, thereby ultimately minimizing the flatness failure due to uneven cooling of the strip.
  • the present invention provides a method and apparatus for controlling strip temperature in a continuous annealing line quench zone.
  • another object of the present invention is to detect the temperature by using the width direction thermometer of the continuous annealing line quench input and output stage, and through the control of the width direction mist injection flow of the quench using a feedback, feedforward control technique Disclosed is a method and apparatus for controlling strip temperature in a continuous annealing line quench zone to minimize the change in flatness of the strip by uniformly controlling the strip width temperature.
  • the present invention in the method for uniformly controlling the temperature of the strip in the quench zone of the continuous annealing line,
  • the present invention provides a device for uniformly controlling the temperature of the strip in the quench zone of the continuous annealing line
  • a strip center temperature meter and a width direction temperature meter for measuring the temperature of the strip at the entry and exit side of the quench zone
  • a longitudinal flow rate control nozzle block installed in a plurality of sets on the front and rear surfaces of the strip to control the temperature of the strip
  • the present invention provides a strip temperature control device of a continuous annealing line quench zone configured to control the temperature of the strip uniformly to minimize the change in flatness of the strip.
  • the present invention preferably is the width direction flow control nozzle block is divided into a strip width and the strip temperature of the continuous annealing line quench stage configured to individually control the mist flow rate injected into each area through a plurality of servo valves Provide a control device.
  • a strip center is installed on the front and rear surfaces of the strip by partitioning the longitudinal flow control nozzle block and the width direction flow control nozzle block, and the strip center is installed on the entry side of the quench zone.
  • the widthwise temperature distribution of the strip moving in the vertical direction by controlling the mist injection flow rates respectively injected from the longitudinal flow control nozzle block and the width direction flow control nozzle block by using the temperature detection values obtained from the temperature measuring instrument and the width direction temperature measuring instrument.
  • the temperature is detected by using the width direction thermometer of the continuous annealing line quenching zone input and output stage, and the feedback and feedforward control techniques are used to By controlling the mist width of the mist in the width direction, it is possible to uniformly control the width temperature of the strip, thereby obtaining an excellent effect of minimizing the flatness variation of the strip.
  • 1 is an overall configuration diagram of a general continuous annealing line.
  • FIG. 2 is a cross-sectional view showing in detail the quench zone of the continuous annealing line to which the strip temperature control device of the continuous annealing line quenching zone according to the present invention is applied.
  • Figure 3 is a block diagram showing a widthwise divided jet nozzle block of the quench zone provided in the present invention.
  • FIG. 4 is a detailed view of a mist spray nozzle of the spray nozzle block shown in FIG. 3.
  • FIG. 5 is an explanatory view showing the entire strip temperature control method of the continuous annealing line quenching zone according to the present invention.
  • FIG. 6 is a configuration diagram of a longitudinal exit temperature controller utilized in the strip temperature control method of the continuous annealing line quenching zone according to the present invention.
  • FIG. 7 is a configuration diagram of a width direction temperature controller utilized in the strip temperature control method of the continuous annealing line quenching zone according to the present invention.
  • Strip temperature control method and apparatus of the continuous annealing line quench zone detects the temperature by using the thermometer of the continuous annealing line quench zone input stage and output stage, using the feedback, feedforward control technique to spray the mist (mist) of the quench zone Flow rate control allows the temperature of the strip to be cooled uniformly, thereby minimizing the flatness variation of the strip.
  • Strip temperature control device 100 of the continuous annealing line quenching zone is installed a plurality of cooling nozzle blocks up and down each front and rear surface for the temperature control of the strip, longitudinal flow control nozzle block and width direction flow control nozzle Partitioned into blocks, install multiple sets.
  • the quench zone 200 of the continuous annealing line to which the strip temperature control device 100 of the continuous annealing line quenching zone according to the present invention is applied is constituted by 11 sets of cooling nozzle blocks up and down.
  • the lengthwise flow control nozzle blocks are 6 sets, and the width direction flow control nozzle blocks are 5 sets.
  • the longitudinal flow control nozzle block is the first block 211, the second block 212, the fifth block 215, the sixth block 216, the ninth block ( 219), the block 10 is installed in the block 10, and the width direction flow control nozzle block is the block 3 (213), block 4 (214), block 7 (217), Block 8 is installed in order, block 11, 221 in order to uniformly control the temperature of the strip (S).
  • strip temperature control device 100 of the continuous annealing line quench zone according to the present invention, as shown in Figure 5, strip center temperature measuring instruments (231a, 231b) and the width direction temperature measuring device on the entry and exit side of the quench table (200) 233a and 233b.
  • the present invention is to install the entry and exit strip center temperature measuring instruments (231a, 231b) of the quenching rack 200 for the temperature control of the strip and the widthwise temperature measuring instruments (233a, 233b) for the widthwise temperature control, respectively.
  • the measured temperature value is detected.
  • the strip temperature control device 100 of the continuous annealing line quenching zone uses the temperature detection values obtained from the strip center temperature measuring devices 231a and 231b and the width direction temperature measuring devices 233a and 233b in the longitudinal direction.
  • the mist injection flow rates of the flow rate control nozzle block and the width direction flow control nozzle block are respectively controlled.
  • Cooling rack 200 to which the present invention is applied has a different cooling rate (° C./sec) depending on the steel type and size of the strip material to be produced, and accordingly controls to determine the flow rate of a total of 11 sets of nozzle blocks. Is required.
  • the strip cooling medium sprayed from such a nozzle block is a mist, and as shown in FIG. 4, nitrogen and cooling water are mixed in the nozzle to spray mist.
  • the longitudinal flow control nozzle block installed in the quench rack 200 is the first block 211, the second block 212, the fifth block 215, the sixth block 216 from the entrance side of the quench rack 200.
  • block 219, 10 is installed in the block 220, as shown in Figure 5, by adjusting the main valve 331 of each block to control the mist flow rate.
  • the width direction flow control nozzle block is a block 213, block 4 214, block 217, block 217, block 217, block 8 218, block 11 221 as shown in Figures 3 and 5, respectively.
  • the block is divided into a plurality of regions, preferably, five regions in the width direction of the strip at the rear end of the main valve 331 of each block, and the flow rates of the five regions are individually controlled through the servo valves 332. It is.
  • the five sets of servo valves 332 provided in the lateral flow control nozzle block 3 are installed in the quench stand 200 of the continuous annealing line by determining respective valve opening compensation values, as shown in FIG. 3.
  • the five servo valves 332 separated in the strip width direction are different. Spray mist of flow rate.
  • the strip temperature control apparatus 100 of the continuous annealing line quench zone can uniformly control the temperature of the strip through the mist injection flow rate control of the quench zone 200, thereby changing the flatness of the strip. This can be minimized.
  • the strip temperature control method 300 of the continuous annealing line quench zone according to the present invention for controlling the cooling temperature of the strip by using the strip temperature control device 100 of the continuous annealing line quench zone according to the present invention as described above in more detail. do.
  • the strip temperature control method 300 of the continuous annealing line quenching zone uses the temperature detection values obtained from the strip center temperature measuring devices 231a and 231b and the widthwise temperature measuring devices 233a and 233b to control the longitudinal flow rate.
  • the mist injection flow rates of the nozzle block and the width direction flow control nozzle block are respectively controlled.
  • the strip temperature control method 300 of the continuous annealing line quench zone uses the temperature information and the coil information obtained by using the center temperature gauge and the width direction temperature gauge of the strip.
  • the mist injection flow rate is respectively calculated and the mist injection flow rates of the longitudinal flow control nozzle block and the width direction flow control nozzle block are respectively controlled.
  • the strip temperature control method 300 of the continuous annealing line quench table according to the present invention is made in a control computer (not shown) provided in the continuous annealing line, such a control computer is applied to various equations inputted from various built-in modules. Therefore, the calculation is automatic.
  • the strip temperature control method 300 of the continuous annealing line quenching zone according to the present invention is obtained from strip center temperature measuring devices 231a and 231b and widthwise temperature measuring devices 233a and 233b installed at the entry and exit side of the quenching rack 200.
  • a step (A) of determining the valve opening degree of the longitudinal flow control nozzle block and the width direction flow control nozzle block which are provided up and down respectively on the front and back surfaces of the strip using the temperature detection value is performed.
  • Determining the valve opening degree of the longitudinal flow control nozzle block and the width direction flow control nozzle block (A), as shown in FIG. 5, first includes a next coil information input module built in a control computer (not shown).
  • Equation 2 [Revision 12.02.2013 under Rule 91] Equation 2:
  • Equation 3 [Revision 12.02.2013 under Rule 91] Equation 3:
  • a step A3 of calculating the mist flow rate value is performed by using Equation 5 obtained by Equation 4 below.
  • Equation 4 [Revision 12.02.2013 under Rule 91] Equation 4:
  • Equation 5 [Revision 12.02.2013 under Rule 91] Equation 5:
  • the mist flow rate value is divided by the number of blocks predetermined in the spray nozzle block determination module of the control computer (step A4), and the divided flow rate value is used as an input value of the valve opening calculation module, which is
  • the valve flow coefficient (Cv) value is calculated from Equation 6,
  • a step (A5) of determining the valve opening degree of each final block is made by using Equation 7 below using the valve flow coefficient Cv value,
  • Valve opening degree is [%].
  • valve opening value thus determined becomes the initial valve opening value 327 of the longitudinal flow control nozzle block in step (B) as described later.
  • the value 328 obtained by dividing the valve opening value by 5 is the valve opening value of the widthwise flow control nozzle block.
  • the strip temperature control method 300 of the continuous annealing line quenching zone according to the present invention is then subtracted the actual strip exit temperature every cycle from the exit target temperature of the strip for the determined valve opening degree of the longitudinal flow control nozzle block A step B of determining the opening degree compensation value 356 is performed.
  • This step (B) is the opening degree compensation value of the longitudinal flow control nozzle block by subtracting the actual strip exit temperature 354 from the exit target temperature 353 of the strip for the valve opening determined in step A5.
  • execution is carried out via a longitudinal temperature controller 348 including a proportional-integral controller 348a.
  • the longitudinal temperature controller 348 calculates the opening compensation value 356 by using the strip exit target temperature 353 minus the actual exit temperature 354 every cycle as the input value of the longitudinal temperature controller 348. Done.
  • the longitudinal temperature controller 348 calculates the mist flow rate using Equation 5 below, which is also cited in step A3.
  • Equation 5 [Revision 12.02.2013 under Rule 91] Equation 5:
  • Valve opening degree is [%].
  • the opening degree compensation value 356 of the longitudinal flow control nozzle block is determined, and the first block 211 and the second block 212 installed in the quench zone 200 of the continuous annealing line are reflected.
  • the mist is sprayed from the longitudinal flow control nozzle blocks of blocks 5, 215, 6, 216, 9, 219, and 10, 220, respectively.
  • the strip temperature control method 300 of the continuous annealing line quench zone controls the width direction flow rate to individually control the mist injection flow rate in a plurality of regions in the width direction of the strip S with respect to the determined valve opening degree.
  • a step C of determining the opening degree values of the plurality of servovalve 332 of the nozzle block is made.
  • the step (C) divides the width of the strip into five regions for the width direction temperature control of the strip (S), and five servo valves 332 separated in the width direction of the strip in the width direction flow control nozzle block, respectively. 3) and subtract the measured widthwise temperature distribution value 366 of the strip from the widthwise target temperature distribution 365 of the strip and use it as the input value of the widthwise temperature controller 369. do.
  • the width direction temperature controller 369 subtracts the actual strip width direction temperature distribution value 366 every cycle from the width direction target temperature distribution 365 of the strip with respect to the valve opening determined in step A5, thereby providing the width direction flow rate.
  • the opening value of each servovalve 332 of the control nozzle block is calculated.
  • the width direction temperature controller 369 is measured width direction temperature distribution obtained through the width direction temperature measuring devices 233a and 233b from the width direction target temperature distribution 365 as shown in FIGS. 5 and 7.
  • the value 366 is subtracted, and the opening value of the width direction flow control nozzle is calculated by using this value as an input value of the width direction temperature controller 369.
  • width direction temperature deviation calculation logic made in the width direction temperature control module 373 shown in FIG. 5 is shown in FIG.
  • widthwise temperature controller 369 is shown in FIG. 7, and the opening value for each subvalve 332 is determined by the control logic of the longitudinal temperature controller 348 employed in step (B). The same values are used, and the parameter values are modified for each width nozzle.
  • width direction temperature controller 369 calculates the mist flow rate using the following equation 5 for each of the five servo valves 332,
  • Equation 5 [Revision 12.02.2013 under Rule 91] Equation 5:
  • the opening degrees of the five servo valves 332 are respectively calculated through Equation 7 below.
  • the step (C) determines the valve opening compensation value of the five sets of servo valves 332 of the transverse flow control nozzle block, respectively, and blocks 3 installed in the quenching rack 200 of the continuous annealing line. 5 servo valves separated in the strip width direction from the lateral flow control nozzle blocks 213, 4, 214, 7, 217, 8, 218 and 11, 221. 332) Mist is sprayed on each of the five regions of the strip differently.
  • the front and rear surfaces of the strip (S) divided into a longitudinal flow control nozzle block and a width direction flow control nozzle block and installed a plurality of The longitudinal flow control nozzle block and the width direction flow control nozzle using the temperature detection values obtained from the strip center temperature measuring devices 231a and 231b and the width direction temperature measuring devices 233a and 233b provided at the entry and exit side of the quench zone 200.
  • the mist spray flow rates respectively injected from the blocks are controlled to control the widthwise temperature distribution of the strip moving in the vertical direction to a desired shape.
  • the temperature is detected by using the width direction thermometer of the input terminal and the output terminal of the continuous annealing line quenching zone 200, and feedback and feedforward control techniques
  • widthwise mist (flow) mist injection flow rate control of the quench table 200 can be uniformly controlled in the width direction of the strip it is possible to minimize the flatness change of the strip.
  • 231a, 231b longitudinal temperature meter
  • main valve 332 servo valve
  • A determining the valve opening degree of the longitudinal flow control nozzle block and the widthwise flow control nozzle block

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

본 발명은 연속 소둔라인의 급냉대에서 스트립의 온도를 균일하게 제어하는 방법 및 장치에 관한 것으로, 스트립의 온도 제어를 위해 냉각 노즐블록들을 스트립 앞 뒤면에 각각 상하로 다수 설치하되, 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록으로 구획하여 다수 세트 설치하고, 상기 급냉대의 입출측에 스트립 센터 온도 측정기와 폭방향 온도 측정기를 설치하며, 상기 스트립 센터 온도 측정기와 폭방향 온도 측정기로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 미스트 분사 유량을 각각 제어함으로써 스트립의 온도를 균일하게 제어하고, 스트립의 평탄도 변화를 최소화하도록 제어하는 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치를 제공한다. 본 발명에 의하면, 연속소둔라인 급냉대 입력단과 출력단의 폭방향 온도계를 이용하여 온도를 검출하고, 피드백, 피드포워드 제어 기법을 이용하여 급냉대의 폭방향 미스트(mist) 분사 유량 제어를 통해 스트립의 폭방향 온도를 균일하게 제어할 수 있음으로써 스트립의 평탄도 변화를 최소화할 수 있는 우수한 효과가 얻어진다.

Description

연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
본 발명은 연속 소둔라인의 급냉대에서 스트립의 온도를 균일하게 제어하는 방법 및 장치에 관한 것으로, 보다 상세히는 연속소둔라인의 급냉대 입력단과 출력단에서 폭방향 온도를 검출하고, 피드백, 피드포워드 제어 기법을 이용하여 냉각 노즐블록의 폭방향 미스트(mist) 유량 제어를 이룸으로써 스트립의 폭방향 온도를 균일하게 제어하여 스트립의 평탄도 변화를 최소화하도록 된 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치에 관한 것이다.
일관 종합 제철소에 구비된 연속소둔라인의 퍼니스(Furnace) 구성이 도 1에 제시되어 있다.
이와 같은 연속소둔라인의 퍼니스(10)는 그 입측으로 입력되는 스트립이 예열대(11)에서 가열대(12)의 배가스를 이용하여 예열되고, 가열대(12)에서 라디안 튜브를 통하여 간접 가열되어 승온된다.
그리고 상기 가열대(12)를 통과한 스트립은 균열대(13)에서 일정한 온도로 균열 처리되고, 서냉대(14)에서 분위기 가스를 순환 냉각시켜서 서냉된다.
또한 상기 서냉대(14)를 통과한 스트립은 급냉대(15)에서 주 가스젯, 쿨링롤 및 보조 가스젯을 이용하여 냉각되고, 과시효대(16)에서 과시효 처리되어 최종 냉각대(17)에서 냉각된다.
이와 같은 연속소둔라인의 퍼니스(10)는 예열대(11) 및 가열대(12)에서 스트립내의 결정립이 회복 및 재결정되고, 상기 균열대(13)에서 결정립이 성장한다.
또한, 스트립의 온도를 하강시키는 서냉대(14)에서는 고용탄소 용해도가 커지고, 상기 급냉대(15)에서 고용탄소가 과포화되며, 상기 고용탄소의 과포화에 의해 형성된 탄화물(Fe3C)은 상기 과시효대(16)에서 석출된다.
이와 같은 연속소둔라인의 퍼니스(10)에서 상기 급냉대(15)에서의 스트립 온도를 제어하는 방법으로 기존에 몇가지 기술이 제안되어 있다.
즉, 종래의 기술로는 대한민국 특허 공개공보 제2005-0051023호의 "연속 소둔라인 급냉대 스트립 냉각속도 제어 방법"이 제시되어 있다.
이와 같은 종래의 방식은 연속소둔라인 급냉대 스트립 냉각속도 제어방법에 관한 것으로, 급냉대를 통과하는 스트립의 냉각속도 및 스트립내 탄소농도를 일정하게 유지할 수 있어서 균일한 품질의 냉연강판 생산이 가능한 방법이다.
그리고 대한민국 특허 공개공보 제2004-0047308호의 "소둔로의 스트립 냉각 장치는 소둔로의 급냉대에서 진행되는 스트립을 목표 온도로 균일하게 냉각하기 위한 장치에 관한 것으로, 롤안에 냉각수를 공급하여 롤냉각을 이용한 균일냉각에 관한 발명이다.
또한 대한민국 특허 공개공보 제2003-0054513호의 "연속 소둔로 냉각대의 스트립 냉각 제어 방법"은 연속 소둔로의 냉각대에서 냉각팬 출력 변화를 제어하여 스트립 냉각을 제어하는 방법이 소개되고 있다.
그러나 이와 같은 종래의 기술들은 모두 스트립의 길이 방향 스트립 온도를 제어하는 것을 목적으로 하고 있어 폭 방향의 온도를 제어하는 것은 불가능한 문제점이 있다.
본 발명의 목적은 상기와 같은 종래의 문제점을 해소시키기 위한 것으로서, 수직 방향으로 움직이는 스트립의 폭방향 온도 분포를 원하는 형태로 제어함으로써 이를 통해 궁극적으로 스트립의 불균일 냉각에 의한 평탄도 불량을 최소화할 수 있는 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치를 제공함에 있다.
또한 본 발명의 다른 목적은, 연속소둔라인 급냉대 입력단과 출력단의 폭방향 온도계를 이용하여 온도를 검출하고, 피드백, 피드포워드 제어 기법을 이용하여 급냉대의 폭방향 미스트(mist) 분사 유량 제어를 통해 스트립의 폭방향 온도를 균일하게 제어함으로써 스트립의 평탄도 변화를 최소화하도록 된 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치를 제공함에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 연속 소둔라인의 급냉대에서 스트립의 온도를 균일하게 제어하기 위한 방법에 있어서,
스트립 온도 검출값과, 스트립 정보를 이용하여, 스트립 앞 뒤면에서 각각 미스트를 분사시키는 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 밸브 개도를 결정하는 단계;
상기 결정된 밸브 개도에 대해 스트립의 출측 목표 온도로부터 매 주기 실제 스트립 출측 온도를 차감하여 미스트 분사 유량을 조절하도록 상기 길이방향 유량제어 노즐블록의 개도 보상값을 결정하는 단계; 및
상기 결정된 밸브 개도에 대해 스트립 폭방향의 다수의 영역에서 미스트 분사 유량을 개별적으로 조절하도록 상기 폭 방향 유량제어 노즐블록의 다수의 서보 밸브 개도 값을 결정하는 단계;를 포함하여 스트립에 분사되는 미스트(mist) 분사 유량 제어를 통해 스트립의 온도를 균일하게 제어하고, 스트립의 평탄도 변화를 최소화하도록 구성된 연속 소둔라인 급냉대의 스트립 온도제어 방법을 제공한다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 연속 소둔라인의 급냉대에서 스트립의 온도를 균일하게 제어하기 위한 장치에 있어서,
급냉대의 입출측에서 스트립의 온도를 측정하는 스트립 센터 온도 측정기와 폭방향 온도 측정기;
상기 스트립의 온도 제어를 위해 스트립 앞 뒤면에 각각 상하로 다수 세트 설치된 길이방향 유량제어 노즐블록; 및
상기 스트립 폭을 다수의 영역으로 나누어 각각의 영역으로 분사되는 미스트 유량을 각각의 서보 밸브로 제어함으로써 스트립의 폭방향으로 분사되는 미스트 유량을 다르게 제어하여 스트립의 폭방향 온도를 균일하게 제어하는 다수 세트의 폭 방향 유량제어 노즐블록;을 포함하고, 상기 스트립 센터 온도 측정기와 폭방향 온도 측정기로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 미스트 분사 유량을 각각 제어하여 스트립의 온도를 균일하게 제어하고, 스트립의 평탄도 변화를 최소화하도록 구성된 연속 소둔라인 급냉대의 스트립 온도제어 장치를 제공한다.
또한 본 발명은 바람직하게는 상기 폭 방향 유량제어 노즐블록은 스트립 폭을 다수 영역으로 나누고, 각각의 영역으로 분사되는 미스트 유량을 다수의 서보 밸브들을 통하여 개별적으로 제어하도록 구성된 연속 소둔라인 급냉대의 스트립 온도제어 장치를 제공한다.
본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치에 의하면, 스트립 앞 뒤면에 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록으로 구획하여 다수 설치하고, 급냉대의 입출측에 설치된 스트립 센터 온도 측정기와 폭방향 온도 측정기로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록으로부터 각각 분사되는 미스트 분사 유량을 각각 제어하여 수직 방향으로 움직이는 스트립의 폭방향 온도 분포를 원하는 형태로 제어한다. 따라서 본 발명에 의하면 궁극적으로 스트립의 불균일 냉각에 의한 평탄도 불량을 최소화할 수 있는 우수한 효과를 얻을 수 있다.
또한 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치에 의하면, 연속소둔라인 급냉대 입력단과 출력단의 폭방향 온도계를 이용하여 온도를 검출하고, 피드백, 피드포워드 제어 기법을 이용하여 급냉대의 폭방향 미스트(mist) 분사 유량 제어를 통해 스트립의 폭방향 온도를 균일하게 제어할 수 있음으로써 스트립의 평탄도 변화를 최소화할 수 있는 우수한 효과를 얻을 수 있다.
도 1은 일반적인 연속 소둔 라인의 전체 구성도이다.
도 2는 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 장치가 적용되는 연속 소둔 라인의 급냉대를 상세히 도시한 단면도이다.
도 3은 본 발명에 구비된 급냉대의 폭 방향 분할 분사 노즐블록을 도시한 구성도이다.
도 4는 도 3에 도시된 분사 노즐블록의 미스트 분사 노즐의 상세도이다.
도 5는 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법을 전체적으로 도시한 설명도이다.
도 6은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법에서 활용되는 길이 방향 출측 온도 제어기의 구성도이다.
도 7은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법에서 활용되는 폭 방향 온도 제어기의 구성도이다.
도 8은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법에서 실행되는 폭방향 온도 편차 계산 로직이다.
이하, 본 발명의 바람직한 실시 예를 도면을 참조하여 보다 상세히 설명한다.
본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치는 연속소둔라인 급냉대 입력단과 출력단의 온도계를 이용하여 온도를 검출하고, 피드백, 피드포워드 제어 기법을 이용하여 급냉대의 미스트(mist) 분사 유량 제어를 통해 스트립의 온도를 균일하게 냉각 제어할 수 있음으로써 스트립의 평탄도 변화를 최소화할 수 있다.
먼저, 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어장치(100)에 대하여 도면을 참조하여 설명한다.
본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어장치(100)는 스트립의 온도 제어를 위해 냉각 노즐블록들을 스트립 앞 뒤면에 각각 상하로 다수 설치하되, 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록으로 구획하여 다수 세트 설치한다.
이와 같이 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 장치(100)가 적용되는 연속 소둔라인의 급냉대(200)는 도 2에 도시된 바와 같이, 냉각 노즐블록이 상하로 11세트로 구성되어지며, 상기 11세트 중에서 길이방향 유량제어 노즐블록은 6세트이고, 폭 방향 유량제어 노즐블록은 5세트이며, 각각 스트립 앞 뒤면에 설치되어 그 사이를 스트립(S)이 통과한다.
즉, 상기 길이방향 유량제어 노즐블록은 급냉대(200)의 입측으로부터 1번 블록(211), 2번 블록(212), 5번 블록(215), 6번 블록(216), 9번 블록(219), 10번 블록(220)에 설치되며, 상기 폭 방향 유량제어 노즐블록은 급냉대(200)의 입측으로부터 3번 블록(213), 4번 블록(214), 7번 블록(217), 8번 블록(218), 11번 블록(221)에 순서대로 설치되어 스트립(S)의 온도를 균일하게 제어한다.
그리고 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 장치(100)는 도 5에 도시된 바와 같이, 상기 급냉대(200)의 입출측에 스트립 센터 온도 측정기(231a,231b)와 폭방향 온도 측정기(233a,233b)를 구비한다.
즉, 본 발명은 스트립의 온도 제어를 위해 급냉대(200)의 입출측 스트립 센터 온도 측정기(231a,231b)와 폭방향 온도 제어를 위해 폭방향 온도 측정기(233a,233b)를 각각 설치하고 스트립의 실측 온도 값을 검출한다.
이와 같은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 장치(100)는 상기 스트립 센터 온도 측정기(231a,231b)와 폭방향 온도 측정기(233a,233b)로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 미스트 분사 유량을 각각 제어한다.
본 발명이 적용되는 급냉대(200)는 생산되어지는 스트립 소재의 강종 및 크기에 따라서 요구되는 냉각율(Cooling Rate: ℃/sec)이 다르며, 이에 따라서 총 11세트 노즐블록의 유량을 결정하는 제어가 요구되어진다.
이와 같은 노즐 블록에서 분사되어지는 스트립 냉각 매체는 미스트(mist) 이며, 이는 도 4에 도시된 바와 같이, 노즐 내부에서 질소와 냉각수가 혼합되어 미스트(mist)를 분사시킨다.
상기 급냉대(200)에서 설치된 길이방향 유량제어 노즐블록은 급냉대(200)의 입측으로부터 1번 블록(211), 2번 블록(212), 5번 블록(215), 6번 블록(216), 9번 블록(219), 10번 블록(220)에 설치되며, 도 5에 도시된 바와 같이, 각 블록의 메인밸브(331)를 조절하여 미스트 유량을 조절한다.
또한 상기 폭 방향 유량제어 노즐블록은 3번 블록(213), 4번 블록(214), 7번 블록(217), 8번 블록(218), 11번 블록(221)으로서 각각 도 3 및 도 5에 도시된 바와 같이, 각 블록의 메인밸브(331) 후단에서 스트립의 폭 방향으로 다수의 영역, 바람직하게는 5영역으로 나누며, 각 5영역의 유량을 개별적으로 서보 밸브(332)들을 통하여 각각 제어하는 것이다.
즉 상기 횡방향 유량제어 노즐블록에 구비된 5세트의 서보 밸브(332)들은 도 3에 도시된 바와 같이, 각각의 밸브 개도 보상값을 결정하여 연속 소둔라인의 급냉대(200)에 설치된 3번 블록(213), 4번 블록(214), 7번 블록(217), 8번 블록(218), 11번 블록(221)의 위치에서 스트립 폭 방향으로 분리된 5개의 서보 밸브(332) 별로 다른 유량의 미스트를 분사한다.
이와 같이 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어장치(100)는 급냉대(200)의 미스트(mist) 분사 유량 제어를 통해 스트립의 온도를 균일하게 제어할 수 있음으로써 스트립의 평탄도 변화를 최소화할 수 있는 것이다.
상기와 같은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 장치(100)를 이용하여 스트립의 냉각온도를 제어하는 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)에 대해서 보다 상세히 설명한다.
본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)은 상기 스트립 센터 온도 측정기(231a,231b)와 폭방향 온도 측정기(233a,233b)로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 미스트 분사 유량을 각각 제어한다.
이와 같이 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)은 도 5에 도시된 바와 같이, 스트립의 센터 온도 측정기와 폭방향 온도 측정기를 이용하여 얻어진 온도 검출값과 코일 정보를 이용하여 미스트 분사 유량을 각각 계산하고, 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 미스트 분사 유량을 각각 제어한다.
이와 같은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)은 연속 소둔라인에 구비된 제어 컴퓨터(미 도시)에서 이루어지는데, 이와 같은 제어 컴퓨터는 내장된 각종 모듈에서 입력된 각종 수식에 따라서 연산이 자동적으로 이루어진다.
먼저, 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)은 급냉대(200)의 입출측에 설치된 스트립 센터 온도 측정기(231a,231b)와 폭방향 온도 측정기(233a,233b)로부터 얻어진 온도 검출값을 이용하여 스트립 앞 뒤면에 각각 상하로 다수 설치된 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 밸브 개도를 결정하는 단계(A)가 이루어진다.
이와 같은 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 밸브 개도를 결정하는 단계(A)는, 도 5에 도시된 바와 같이, 먼저 제어 컴퓨터(미 도시)에 내장된 Next 코일 정보 입력 모듈로부터 스트립 두께, 폭, 강종 정보를 받고(단계 A1), 스트립 센터 온도 측정기(231a,231b)로부터 현재 입측 스트립 온도, 출측 스트립 온도를 받으며, 목표 스트립 온도로부터 (식 3) ( = (식 1) - (식 2))을 이용하여 보상 냉각 열량 계산 모듈에서 보상 냉각 열량을 계산하는 단계(A2)가 이루어진다.
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-56
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-57
: 현재 스트립의 냉각 열량 [W/m3·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-58a
: 스트립 밀도 [Kg/m3]
Figure WO-DOC-FIGURE-58b
: 스트립 비열 [J/Kg·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-59
: RCS 출측 실제 판의 절대온도 [K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-60
: 스트립 체적률[m3/sec]
[규칙 제91조에 의한 정정 12.02.2013] 
식2:
Figure WO-DOC-FIGURE-61
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-62
: 스트립의 목표 냉각 열량 [W/m3·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-63a
: 스트립 밀도 [Kg/m3]
Figure WO-DOC-FIGURE-63b
: 스트립 비열 [J/Kg·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-64
: RCS 출측 판의 목표 절대온도 [K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-65
: RCS 입측 실제 판의 절대온도 [K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-66
: 스트립 체적률[m3/sec]
[규칙 제91조에 의한 정정 12.02.2013] 
식3:
Figure WO-DOC-FIGURE-67
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-68
: 스트립의 보상 냉각 열량 [W/m3·K]
그리고, 다음으로는 아래 식 4에 의해 구해진 식 5를 이용하여 미스트 유량 값을 계산하는 단계(A3)가 실행된다.
[규칙 제91조에 의한 정정 12.02.2013] 
식 4:
Figure WO-DOC-FIGURE-70
[규칙 제91조에 의한 정정 12.02.2013] 
식 5:
Figure WO-DOC-FIGURE-71
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-72
: 미스트의 비열 [J/Kg·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-73
: 미스트 온도 변화량 [K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-74
: 미스트의 상변태 열량 [J/Kg]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-75
: 미스트 유량(체적률)[m3/sec];
또한 다음으로는 상기 미스트 유량 값을 제어 컴퓨터의 분사 노즐 블록 결정 모듈에서 미리 정해진 블록의 수로 나누고(단계 A4), 이 나누어진 유량 값을 밸브 개도 계산 모듈의 입력값으로 사용하며, 이 값을 아래 식 6으로부터 밸브 유량 계수(Cv) 값을 계산하고,
[규칙 제91조에 의한 정정 12.02.2013] 
식 6:
Figure WO-DOC-FIGURE-77
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-78
: 밸브 유량계수 [m3/hr]
Figure WO-DOC-FIGURE-78b
: 밸브 압력 [Kg/cm2];
상기 밸브 유량 계수(Cv) 값을 이용하여 아래 식 7을 통해 최종 각 블록의 밸브 개도를 결정하는 단계(A5)가 이루어진다,
[규칙 제91조에 의한 정정 12.02.2013] 
식 7:
Figure WO-DOC-FIGURE-80
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-81
:밸브 개도 [%]이다.
이와 같은 단계들을 통하여 이렇게 결정된 밸브 개도 값이 코일이 바뀌는 지점에서, 이후에 설명되는 바와 같은 단계(B)에서의 길이방향 유량제어 노즐블록의 초기 밸브 개도 값(327)이 된다.
또한 이후에 설명되는 바와 같은 단계(C)에서의 폭방향 유량제어 노즐블록에 대해서는 상기 밸브 개도 값을 5로 나눈 값(328)이 폭방향 유량제어 노즐블록의 밸브 개도 값이 된다.
그리고, 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)은 다음으로 상기 결정된 밸브 개도에 대해 스트립의 출측 목표 온도로부터 매 주기 실제 스트립 출측 온도를 차감하여 상기 길이방향 유량제어 노즐블록의 개도 보상값(356)을 결정하는 단계(B)가 이루어진다.
이와 같은 단계(B)는 상기 단계(A5)에서 결정된 밸브 개도에 대해 스트립의 출측 목표 온도(353)로부터 매 주기 실제 스트립 출측 온도(354)를 차감하여 상기 길이방향 유량제어 노즐블록의 개도 보상값(356)을 결정하는 단계(B)로서, 비례-적분 제어기(348a)를 포함하는 길이 방향 온도 제어기(348)를 통하여 실행된다.
이와 같은 길이 방향 온도 제어기(348)의 상세 구성이 도 6에 도시되어 있다. 즉 상기 길이 방향 온도 제어기(348)에서는 스트립 출측 목표 온도(353)에서 매 주기 실제 출측 온도(354)를 뺀 값을 길이 방향 온도 제어기(348)의 입력 값으로 하여 개도 보상값(356)을 계산하게 된다.
이와 같은 과정에서 상기 길이 방향 온도 제어기(348)는 단계(A3)에서도 인용된 바와 같은 아래 식 5를 이용하여 미스트 유량을 산출한다.
[규칙 제91조에 의한 정정 12.02.2013] 
식 5:
Figure WO-DOC-FIGURE-88
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-89
: 미스트의 비열 [J/Kg·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-90
: 미스트 온도 변화량 [K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-91
: 미스트의 상변태 열량 [J/Kg]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-92
: 미스트 유량(체적률)[m3/sec]이다.
그리고 단계(A5)에서 인용된 바와 같은 아래 식 6을 통하여 유량계수(Cv)를 계산하며,
[규칙 제91조에 의한 정정 12.02.2013] 
식 6:
Figure WO-DOC-FIGURE-94
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-95
: 밸브 유량계수 [m3/hr]
Figure WO-DOC-FIGURE-95b
: 밸브 압력 [Kg/cm2];
아래 식 7을 통하여 밸브 개도를 계산한다.
[규칙 제91조에 의한 정정 12.02.2013] 
식 7:
Figure WO-DOC-FIGURE-97
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-98
:밸브 개도 [%]이다.
이와 같은 과정을 거쳐서 상기 길이방향 유량제어 노즐블록의 개도 보상값(356)을 결정하고, 이를 반영하여 연속 소둔라인의 급냉대(200)에 설치된 1번 블록(211), 2번 블록(212), 5번 블록(215), 6번 블록(216), 9번 블록(219), 10번 블록(220)의 길이방향 유량제어 노즐블록으로부터 미스트를 분사한다.
그리고 다음으로 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)은 상기 결정된 밸브 개도에 대해 스트립(S) 폭방향의 다수의 영역에서 미스트 분사 유량을 개별적으로 조절하도록 상기 폭 방향 유량제어 노즐블록의 다수의 서보 밸브(332) 개도 값을 결정하는 단계(C)가 이루어진다.
즉, 상기 단계(C)는 스트립(S)의 폭 방향 온도 제어를 위하여 스트립의 폭을 5개 영역으로 나누고, 상기 폭 방향 유량제어 노즐블록에 각각 스트립 폭 방향으로 분리된 5개의 서보 밸브(332)를 설치하며(도 3 및 도 5 참조), 스트립의 폭 방향 목표 온도 분포(365)로부터 스트립의 실측 폭방향 온도 분포 값(366)을 차감하여 폭 방향 온도제어기(369)의 입력 값으로 사용한다.
상기 폭 방향 온도제어기(369)는 상기 단계(A5)에서 결정된 밸브 개도에 대해 스트립의 폭 방향 목표 온도 분포(365)로부터 매 주기 실제 스트립 폭방향 온도 분포 값(366)을 차감하여 상기 폭 방향 유량제어 노즐블록의 각각의 서보 밸브(332) 개도 값을 계산하게 된다.
이와 같은 과정에서 폭 방향 온도제어기(369)는 도 5 및 도 7에 도시된 바와 같이, 폭 방향 목표 온도 분포(365)로부터 상기 폭방향 온도 측정기(233a,233b)를 통하여 얻어진 실측 폭방향 온도 분포 값(366)을 차감하고, 이 값을 상기 폭 방향 온도제어기(369)의 입력 값으로 하여 폭 방향 유량 제어 노즐의 개도 값을 계산하게 된다.
여기서, 도 5에 도시된 폭 방향 온도 제어모듈(373)에서 이루어지는 폭 방향 온도 편차 계산 로직이 도 8에 도시되어 있다.
또한 상기 폭 방향 온도제어기(369)의 상세 구성이 도 7에 나타나 있으며, 각각의 서브 밸브(332)에 대한 개도 값은 상기 단계(B)에서 채용된 길이 방향 온도 제어기(348)의 제어 로직과 동일하게 사용 되어지며, 그 파라메터 값은 폭방향 노즐에 맞게 각각 수정된다.
그리고 상기 폭 방향 온도제어기(369)는 5개의 서보 밸브(332)들에 대하여 각각 아래 식 5를 이용하여 미스트 유량을 산출하고,
[규칙 제91조에 의한 정정 12.02.2013] 
식 5:
Figure WO-DOC-FIGURE-107
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-108
: 미스트의 비열 [J/Kg·K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-109
: 미스트 온도 변화량 [K]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-110
: 미스트의 상변태 열량 [J/Kg]
[규칙 제91조에 의한 정정 12.02.2013] 
Figure WO-DOC-FIGURE-111
: 미스트 유량(체적률)[m3/sec]이다.
아래 식 6을 통하여 유량계수(Cv)를 계산하며,
[규칙 제91조에 의한 정정 12.02.2013] 
식 6:
Figure WO-DOC-FIGURE-113
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-114
: 밸브 유량계수 [m3/hr]
Figure WO-DOC-FIGURE-114a
: 밸브 압력 [Kg/cm2];
아래 식 7을 통하여 5개의 서보 밸브(332)들의 개도를 각각 계산한다.
[규칙 제91조에 의한 정정 12.02.2013] 
식 7:
Figure WO-DOC-FIGURE-116
[규칙 제91조에 의한 정정 12.02.2013] 
여기서,
Figure WO-DOC-FIGURE-117
: 5개의 서보 밸브들의 밸브 개도[%]이다.
이와 같은 과정을 거쳐서 상기 단계(C)는 횡방향 유량제어 노즐블록의 5세트의 서보 밸브(332)들의 밸브 개도 보상값을 각각 결정하고, 연속 소둔라인의 급냉대(200)에 설치된 3번 블록(213), 4번 블록(214), 7번 블록(217), 8번 블록(218), 11번 블록(221)의 횡방향 유량제어 노즐블록으로부터 스트립 폭 방향으로 분리된 5개의 서보 밸브(332) 별로 다르게 미스트를 스트립의 5개 영역에 각각 분사한다.
상기와 같은 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)에 의하면, 스트립(S)의 앞 뒤면에 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록으로 구획하여 다수 설치하고, 급냉대(200)의 입출측에 설치된 스트립 센터 온도 측정기(231a,231b)와 폭방향 온도 측정기(233a,233b)로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록으로부터 각각 분사되는 미스트 분사 유량을 각각 제어하여 수직 방향으로 움직이는 스트립의 폭방향 온도 분포를 원하는 형태로 제어한다.
따라서 본 발명에 의하면 궁극적으로 스트립의 불균일 냉각에 의한 평탄도 불량을 최소화할 수 있게 된다.
또한 본 발명에 따른 연속 소둔라인 급냉대의 스트립 온도제어 방법(300)에 의하면, 연속소둔라인 급냉대(200) 입력단과 출력단의 폭방향 온도계를 이용하여 온도를 검출하고, 피드백, 피드포워드 제어 기법을 이용하여 급냉대(200)의 폭방향 미스트(mist) 분사 유량 제어를 통해 스트립의 폭방향 온도를 균일하게 제어할 수 있음으로써 스트립의 평탄도 변화를 최소화할 수 있는 것이다.
본 발명은 상기에서 도면을 참조하여 특정 실시 예에 관련하여 상세히 설명하였지만 본 발명은 이와 같은 특정 구조에 한정되는 것은 아니다. 당 업계의 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 기술 사상 및 권리범위를 벗어나지 않고서도 본 발명을 다양하게 수정 또는 변경시킬 수 있을 것이다. 그렇지만 그와 같은 단순한 설계적인 수정 또는 변형 구조들은 모두 명백하게 본 발명의 권리범위 내에 속하게 됨을 미리 밝혀 두고자 한다.
(부호의 설명)
100: 연속 소둔라인 급냉대의 스트립 온도제어 장치
200: 급냉대 211: 1번 블록
212: 2번 블록 213: 3번 블록
214: 4번 블록 215: 5번 블록
216: 6번 블록 217: 7번 블록
218: 8번 블록 219: 9번 블록
220: 10번 블록 221: 11번 블록
231a,231b: 길이방향 온도 측정기
233a,233b: 폭방향 온도 측정기
300: 연속 소둔라인 급냉대의 스트립 온도제어 방법
331: 메인밸브 332: 서보 밸브
348: 길이 방향 온도 제어기 369: 폭 방향 온도제어기
A: 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 밸브 개도를 결정하는 단계
B: 길이방향 유량제어 노즐블록의 개도 보상값을 결정하는 단계
C: 폭 방향 유량제어 노즐블록의 각각의 서보 밸브 개도 값을 결정하는 단계
S: 스트립

Claims (9)

  1. 연속 소둔라인의 급냉대에서 스트립의 온도를 균일하게 제어하기 위한 방법에 있어서,
    스트립 온도 검출값과, 스트립 정보를 이용하여, 스트립 앞 뒤면에서 각각 미스트를 분사시키는 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 밸브 개도를 결정하는 단계;
    상기 결정된 밸브 개도에 대해 스트립의 출측 목표 온도로부터 매 주기 실제 스트립 출측 온도를 차감하여 미스트 분사 유량을 조절하도록 상기 길이방향 유량제어 노즐블록의 개도 보상값을 결정하는 단계; 및
    상기 결정된 밸브 개도에 대해 스트립 폭방향의 다수의 영역에서 미스트 분사 유량을 개별적으로 조절하도록 상기 폭 방향 유량제어 노즐블록의 다수의 서보 밸브 개도 값을 결정하는 단계;를 포함하여 스트립에 분사되는 미스트(mist) 분사 유량 제어를 통해 스트립의 온도를 균일하게 제어하고, 스트립의 평탄도 변화를 최소화하도록 구성된 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  2. 제1항에 있어서, 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 밸브 개도를 결정하는 단계는,
    NEXT 코일 정보 입력 모듈로부터 입력받은 스트립 두께, 폭, 강종 정보를 이용하여, 현재 입측 스트립 온도, 출측 스트립 온도, 목표 스트립 온도로부터 보상 냉각 열량을 계산하는 단계와, 미스트 유량 값을 계산하는 단계와, 상기 미스트 유량 값을 분사 노즐 블록 결정 모듈(26)에서 미리 정해진 블록의 수로 나누고 이 나누어진 유량 값을 밸브 개도 계산 모듈(27)의 입력값으로 사용하여 밸브 유량 계수(Cv) 값을 계산하는 단계와, 상기 밸브 유량 계수(Cv) 값을 이용하여 최종 각 블록의 밸브 개도를 결정하는 단계를 포함하는 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  3. [규칙 제91조에 의한 정정 12.02.2013] 
    제1항에 있어서, 상기 길이방향 유량제어 노즐블록의 개도 보상값을 결정하는 단계는, 비례-적분 제어기를 구비하는 길이 방향 온도 제어기를 통하여 실행되며, 아래 식 5를 이용하여 미스트 유량을 산출하고,
    식 5:
    Figure WO-DOC-FIGURE-c3a

    여기서,
    Figure WO-DOC-FIGURE-c3b
    : 미스트의 비열 [J/Kg·K]

    Figure WO-DOC-FIGURE-c3c
    : 미스트 온도 변화량 [K]

    Figure WO-DOC-FIGURE-c3d
    : 미스트의 상변태 열량 [J/Kg]

    Figure WO-DOC-FIGURE-c3e
    : 미스트 유량(체적률)[m3/sec];

    아래 식 6을 통하여 유량계수(Cv)를 계산하며,
    식 6:
    Figure WO-DOC-FIGURE-c3f


    여기서,
    Figure WO-DOC-FIGURE-c3g
    : 밸브 유량계수 [m3/hr]
    Figure WO-DOC-FIGURE-c3h
    : 밸브 압력 [Kg/cm2];

    아래 식 7을 통하여 밸브 개도를 계산하는
    식 7:
    Figure WO-DOC-FIGURE-c3I


    여기서,
    Figure WO-DOC-FIGURE-c3j
    :밸브 개도 [%]

    단계들을 포함하여 이루어진 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  4. [규칙 제91조에 의한 정정 12.02.2013] 
    제1항에 있어서, 상기 폭 방향 유량제어 노즐블록의 다수의 서보 밸브 개도 값을 결정하는 단계는, 스트립 폭을 다수 영역으로 나누고, 상기 폭 방향 유량제어 노즐블록에는 상기 다수 영역에 각각 위치하도록 스트립 폭 방향으로 분리된 다수의 서보 밸브를 설치하며, 상기 다수의 서보 밸브들은 폭 방향 온도제어기를 통하여 유량이 제어되고, 상기 폭 방향 온도제어기는 스트립의 폭 방향 목표 온도 분포로부터 스트립의 실측 폭방향 온도 분포 값을 차감하여 폭 방향 온도제어기의 입력 값으로 사용하며, 상기 다수의 서보 밸브들에 대하여 각각 아래 식 5를 이용하여 미스트 유량을 산출하고,
    식 5:
    Figure WO-DOC-FIGURE-c4a

    여기서,
    Figure WO-DOC-FIGURE-c4b
    : 미스트의 비열 [J/Kg·K]
    Figure WO-DOC-FIGURE-c4c
    : 미스트 온도 변화량 [K]
    Figure WO-DOC-FIGURE-c4d
    : 미스트의 상변태 열량 [J/Kg]
    Figure WO-DOC-FIGURE-c4e
    : 미스트 유량(체적률)[m3/sec];
    아래 식 6을 통하여 유량계수(Cv)를 계산하며,
    식 6:
    Figure WO-DOC-FIGURE-c4f

    여기서,
    Figure WO-DOC-FIGURE-c4g
    : 밸브 유량계수 [m3/hr]
    Figure WO-DOC-FIGURE-c4h
    : 밸브 압력 [Kg/cm2];
    아래 식 7을 통하여 다수의 서보 밸브들의 밸브 개도를 계산하는
    식 7:
    Figure WO-DOC-FIGURE-c4i

    여기서,
    Figure WO-DOC-FIGURE-c4j
    : 다수의 서보 밸브들의 밸브 개도[%]
    단계들을 포함하며, 스트립 폭 방향 온도 제어를 실행하는 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  5. [규칙 제91조에 의한 정정 12.02.2013] 
    제2항에 있어서, 상기 보상 냉각 열량을 계산하는 단계는, 아래의 (식 3) ( = (식 1) - (식 2))을 이용하여 보상 냉각 열량을 계산하고,
    식1:
    Figure WO-DOC-FIGURE-c5a

    여기서, 여기서,
    Figure WO-DOC-FIGURE-c5b
    : 현재 스트립의 냉각 열량 [W/m3·K]
    Figure WO-DOC-FIGURE-c5c
    : 스트립 밀도 [Kg/m3]
    Figure WO-DOC-FIGURE-c5d
    : 스트립 비열 [J/Kg·K]
    Figure WO-DOC-FIGURE-c5e
    : RCS 출측 실제 판의 절대온도 [K]
    Figure WO-DOC-FIGURE-c5f
    : 스트립 체적률[m3/sec]
    식2:
    Figure WO-DOC-FIGURE-c5g

    여기서,
    Figure WO-DOC-FIGURE-c5h
    : 스트립의 목표 냉각 열량 [W/m3·K]
    Figure WO-DOC-FIGURE-c5i
    : 스트립 밀도 [Kg/m3]
    Figure WO-DOC-FIGURE-c5j
    : 스트립 비열 [J/Kg·K]
    Figure WO-DOC-FIGURE-c5k
    : RCS 출측 판의 목표 절대온도 [K]
    Figure WO-DOC-FIGURE-c5l
    : RCS 입측 실제 판의 절대온도 [K]
    Figure WO-DOC-FIGURE-c5m
    : 스트립 체적률[m3/sec]
    식3:
    Figure WO-DOC-FIGURE-c5n

    여기서,
    Figure WO-DOC-FIGURE-c5o
    스트립의 보상 냉각 열량 [W/m3·K]인 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  6. [규칙 제91조에 의한 정정 12.02.2013] 
    제2항에 있어서, 상기 미스트 유량 값을 계산하는 단계는, 아래 식 4에 의해 구해진 식 5를 이용하여 상기 미스트 유량 값을 계산하고,
    식 4:
    Figure WO-DOC-FIGURE-c6a

    식 5:
    Figure WO-DOC-FIGURE-c6b

    여기서,
    Figure WO-DOC-FIGURE-c6c
    : 미스트의 비열 [J/Kg·K]
    Figure WO-DOC-FIGURE-c6d
    : 미스트 온도 변화량 [K]
    Figure WO-DOC-FIGURE-c6e
    : 미스트의 상변태 열량 [J/Kg]
    Figure WO-DOC-FIGURE-c6f
    : 미스트 유량(체적률)[m3/sec]인 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  7. [규칙 제91조에 의한 정정 12.02.2013] 
    제2항에 있어서, 상기 밸브 유량 계수(Cv) 값을 계산하는 단계는, 아래 식 6으로부터 밸브 유량 계수(Cv) 값을 계산하고,
    식 6:
    Figure WO-DOC-FIGURE-c7a

    여기서,
    Figure WO-DOC-FIGURE-c7b
    : 밸브 유량계수 [m3/hr]
    Figure WO-DOC-FIGURE-c7c
    : 밸브 압력 [Kg/cm2];
    상기 최종 각 블록의 밸브 개도를 결정하는 단계는, 아래 식 7을 통해 최종 각 블록의 밸브 개도를 결정하고,
    식 7:
    Figure WO-DOC-FIGURE-c7d

    여기서,
    Figure WO-DOC-FIGURE-c7e
    :밸브 개도 [%];를 포함하여 여 이루어진 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 방법.
  8. 연속 소둔라인의 급냉대에서 스트립의 온도를 균일하게 제어하기 위한 장치에 있어서,
    급냉대의 입출측에서 스트립의 온도를 측정하는 스트립 센터 온도 측정기와 폭방향 온도 측정기;
    상기 스트립의 온도 제어를 위해 스트립 앞 뒤면에 각각 상하로 다수 세트 설치된 길이방향 유량제어 노즐블록; 및
    상기 스트립 폭을 다수의 영역으로 나누어 각각의 영역으로 분사되는 미스트 유량을 각각의 서보 밸브로 제어함으로써 스트립의 폭방향으로 분사되는 미스트 유량을 다르게 제어하여 스트립의 폭방향 온도를 균일하게 제어하는 다수 세트의 폭 방향 유량제어 노즐블록;을 포함하고, 상기 스트립 센터 온도 측정기와 폭방향 온도 측정기로부터 얻어진 온도 검출값을 이용하여 상기 길이방향 유량제어 노즐블록과 폭 방향 유량제어 노즐블록의 미스트 분사 유량을 각각 제어하여 스트립의 온도를 균일하게 제어하고, 스트립의 평탄도 변화를 최소화하도록 구성된 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 장치.
  9. 제8항에 있어서, 상기 폭 방향 유량제어 노즐블록은 스트립 폭을 다수의 영역으로 나누고, 각각의 영역으로 분사되는 미스트 유량을 다수의 서보 밸브들을 통하여 개별적으로 제어하도록 구성된 것임을 특징으로 하는 연속 소둔라인 급냉대의 스트립 온도제어 장치.
PCT/KR2012/010776 2011-12-15 2012-12-12 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치 WO2013089422A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2014007141A MX368150B (es) 2011-12-15 2012-12-12 Método y aparato para controlar la temperatura de banda de la sección de enfriamiento rápido de una línea de recocido continuo.
JP2014547097A JP5964449B2 (ja) 2011-12-15 2012-12-12 連続焼鈍ラインにおける急冷帯のストリップ温度制御方法および装置
CN201280062270.4A CN103998631B (zh) 2011-12-15 2012-12-12 连续退火线急冷带的带钢温度控制方法及装置
EP12858320.0A EP2792756A4 (en) 2011-12-15 2012-12-12 METHOD AND DEVICE FOR REGULATING THE TAPE TEMPERATURE OF THE QUICK-COOLING SECTION OF A CONTINUOUS LIGHTING LINE
US14/364,944 US9783867B2 (en) 2011-12-15 2012-12-12 Method and apparatus for controlling the strip temperature of the rapid cooling section of a continuous annealing line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110135026A KR101376565B1 (ko) 2011-12-15 2011-12-15 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
KR10-2011-0135026 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013089422A1 true WO2013089422A1 (ko) 2013-06-20

Family

ID=48612806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010776 WO2013089422A1 (ko) 2011-12-15 2012-12-12 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치

Country Status (7)

Country Link
US (1) US9783867B2 (ko)
EP (1) EP2792756A4 (ko)
JP (1) JP5964449B2 (ko)
KR (1) KR101376565B1 (ko)
CN (1) CN103998631B (ko)
MX (1) MX368150B (ko)
WO (1) WO2013089422A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828651B2 (en) 2012-03-19 2017-11-28 Jfe Steel Corporation Method and apparatus of manufacturing high strength cold rolled steel sheet
KR101568547B1 (ko) 2013-12-25 2015-11-11 주식회사 포스코 스트립의 연속소둔 장치 및 그 연속소둔 방법
DE102014001146A1 (de) * 2014-01-31 2015-08-06 Loi Thermprocess Gmbh Einrichtung zum Abkühlen von platten- oder bahnförmigem Blech aus Metall und Verfahren zur Wärmebehandlung
KR20170089045A (ko) * 2015-12-21 2017-08-03 주식회사 포스코 마르텐사이트 함유 강판의 제조방법 및 장치
DE102016214267A1 (de) * 2016-08-02 2018-02-08 Sms Group Gmbh Verfahren zum Betreiben eines Glühofens zum Glühen eines Metallbandes
FR3064278B1 (fr) * 2017-03-22 2021-04-23 Fives Stein Section et procede de refroidissement d'une ligne continue combinant un refroidissement sec et un refroidissement humide
CN111154965B (zh) * 2020-01-06 2021-08-17 宝钢湛江钢铁有限公司 一种适用于连续退火机组快冷段带钢温度的计算方法
KR20220136896A (ko) * 2021-04-01 2022-10-11 도쿄엘렉트론가부시키가이샤 가스 공급 장치, 가스 공급 방법 및 기판 처리 장치
CN113637837B (zh) * 2021-08-11 2023-03-14 宝钢湛江钢铁有限公司 一种以控制板形为目标的连退机组水雾冷却段喷淋工艺横向调整方法
CN114921641B (zh) * 2022-04-29 2023-07-25 马鞍山钢铁股份有限公司 一种冷轧带钢退火炉内宽度方向冷却方法
CN117344110A (zh) * 2022-06-28 2024-01-05 宝山钢铁股份有限公司 一种板宽方向变强度硬度带钢的制造方法及带钢

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890314A (ja) * 1981-11-24 1983-05-30 Hitachi Ltd 熱間圧延スプレ−冷却装置
JPH05202425A (ja) * 1992-01-27 1993-08-10 Kawasaki Steel Corp 連続焼鈍炉における浸炭浸窒処理設備
JPH05228525A (ja) * 1992-02-19 1993-09-07 Sumitomo Metal Ind Ltd 熱間圧延鋼帯の幅方向温度制御方法および装置
JPH0813046A (ja) * 1994-06-29 1996-01-16 Kawasaki Steel Corp 連続焼鈍炉の冷却帯における金属ストリップ温度の制御方法
KR19980035336U (ko) * 1996-12-12 1998-09-15 양재신 자동차 피스톤핀의 취부구조
KR20030054513A (ko) 2001-12-26 2003-07-02 주식회사 포스코 연속 소둔로 냉각대의 스트립 냉각 제어방법
KR20040047308A (ko) 2002-11-29 2004-06-05 주식회사 포스코 소둔로의 스트립 냉각 장치
KR20050051023A (ko) 2003-11-26 2005-06-01 주식회사 포스코 연속소둔라인 급냉대 스트립 냉각속도 제어방법
KR100679081B1 (ko) * 2005-09-02 2007-02-05 주식회사 포스코 열연 강판의 냉각장치 및 냉각방법

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917131B1 (ko) * 1970-07-03 1974-04-27
JPS5373457A (en) * 1976-12-12 1978-06-29 Sumitomo Metal Ind Forge welding steel pipe manufacturing process
JPS6035974B2 (ja) * 1980-07-25 1985-08-17 日本鋼管株式会社 高温板状物体の冷却方法
JPS5760030A (en) * 1980-09-29 1982-04-10 Nippon Steel Corp Method for controlling cooling
JPS57127505A (en) * 1981-01-22 1982-08-07 Nippon Steel Corp Direct rolling manufacturing device for steel
JPS57136444A (en) 1981-02-19 1982-08-23 Olympus Optical Co Laser knife apparatus and fiber used therein
JPS58120742A (ja) * 1982-01-11 1983-07-18 Nippon Steel Corp 鋼帯の冷却制御方法
JPS5940350U (ja) * 1982-09-08 1984-03-15 新日本製鐵株式会社 連続焼鈍用冷却装置
JPS5959835A (ja) * 1982-09-28 1984-04-05 Kawasaki Steel Corp 金属帯のフオグ冷却制御方法
US4826138A (en) * 1984-02-24 1989-05-02 Van Dorn Company Apparatus for heat treating steel plates
DE3583212D1 (de) * 1984-11-08 1991-07-18 Mitsubishi Heavy Ind Ltd Verfahren und vorrichtung zum erwaermen eines metallbandes in einem durchlaufgluehofen.
AU562731B2 (en) * 1985-02-01 1987-06-18 Nippon Steel Corporation Preventtion of casting defects in continuous casting
JPS62158825A (ja) * 1985-12-28 1987-07-14 Nippon Steel Corp 熱間圧延鋼板の冷却方法
JPS62267466A (ja) * 1986-05-13 1987-11-20 Mitsubishi Heavy Ind Ltd 帯鋼の冷却装置
JPH03207821A (ja) * 1990-01-09 1991-09-11 Kawasaki Steel Corp 連続焼鈍の冷却帯でのストリップの冷却制御方法
NL9001462A (nl) * 1990-06-27 1992-01-16 Hoogovens Groep Bv Koelsysteem voor het koelen van een bewegende metaalband.
US5137586A (en) * 1991-01-02 1992-08-11 Klink James H Method for continuous annealing of metal strips
JP2979903B2 (ja) * 1992-06-23 1999-11-22 日本鋼管株式会社 金属帯冷却方法
AU7506996A (en) * 1996-05-13 1997-12-05 Ebis Corporation Method and apparatus for continuous casting
CN1096502C (zh) * 1996-05-23 2002-12-18 新日本制铁株式会社 在连续钢带热处理工序中在钢带的宽度方向均匀冷却钢带的冷却***
KR100368211B1 (ko) 1996-11-13 2003-04-10 주식회사 포스코 퍼지기법을 이용한 냉연 연속소둔로 급냉대의 판 온도분포 제어 장치 및 방법
US6056041A (en) * 1997-06-12 2000-05-02 Alcan International Limited Method and apparatus for controlling the temperature of an ingot during casting, particularly at start up
US6062056A (en) * 1998-02-18 2000-05-16 Tippins Incorporated Method and apparatus for cooling a steel strip
WO2000051762A1 (fr) * 1999-03-02 2000-09-08 Nkk Corporation Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion
US6615633B1 (en) * 1999-11-18 2003-09-09 Nippon Steel Corporation Metal plateness controlling method and device
WO2001064362A1 (fr) * 2000-03-01 2001-09-07 Nkk Corporation Dispositif et procede de refroidissement d'une bande d'acier laminee a chaud et procede de fabrication de cette bande d'acier laminee a chaud
GB0026868D0 (en) * 2000-11-03 2000-12-20 Isis Innovation Control of deposition and other processes
EP1375685B1 (en) * 2001-04-02 2007-10-10 Nippon Steel Corporation Rapid cooling process for steel band in continuous annealing equipment
DE10163070A1 (de) * 2001-12-20 2003-07-03 Sms Demag Ag Verfahren und Einrichtung zum kontrollierten Richten und Kühlen von aus einem Warmband-Walzwerk auslaufendem breiten Metallband, insbesondere von Stahlband oder Blech
JP3783640B2 (ja) * 2002-03-22 2006-06-07 Jfeスチール株式会社 冷却方法および設備
FI118135B (fi) * 2002-04-19 2007-07-13 Marioff Corp Oy Vesisumutusjärjestelmä
JP4102130B2 (ja) * 2002-07-26 2008-06-18 新日本製鐵株式会社 鋼帯の冷却装置
EP1527829B1 (en) * 2002-08-08 2008-10-22 JFE Steel Corporation Cooling device,manufacturing method, and manufacturing line for hot rolled steel band
SE528344C2 (sv) * 2004-01-12 2006-10-24 Baldwin Jimek Ab Avkänningsorgan för att fastställa en ventilaktuators läge
US7575639B2 (en) * 2004-08-03 2009-08-18 Spraying Systems Co. Apparatus and method for processing sheet materials
US7891407B2 (en) * 2004-12-13 2011-02-22 Nucor Corporation Method and apparatus for localized control of heat flux in thin cast strip
JP4238260B2 (ja) * 2006-09-19 2009-03-18 新日本製鐵株式会社 鋼板の冷却方法
JP4586791B2 (ja) * 2006-10-30 2010-11-24 Jfeスチール株式会社 熱延鋼帯の冷却方法
JP5130733B2 (ja) * 2007-02-14 2013-01-30 Jfeスチール株式会社 連続焼鈍設備
US7549797B2 (en) * 2007-02-21 2009-06-23 Rosemount Aerospace Inc. Temperature measurement system
JP4449991B2 (ja) * 2007-02-26 2010-04-14 Jfeスチール株式会社 熱延鋼帯の冷却装置及び方法
CN101622082B (zh) * 2007-02-28 2013-01-30 杰富意钢铁株式会社 利用近红外线照相机的金属带的热轧方法和装置
US20090084517A1 (en) * 2007-05-07 2009-04-02 Thomas Brian G Cooling control system for continuous casting of metal
DE102008010062A1 (de) * 2007-06-22 2008-12-24 Sms Demag Ag Verfahren zum Warmwalzen und zur Wärmebehandlung eines Bandes aus Stahl
US8864921B2 (en) * 2007-07-19 2014-10-21 Tata Steel Ijmuiden B.V. Method for annealing a strip of steel having a variable thickness in length direction
DE102008029581A1 (de) * 2007-07-21 2009-01-22 Sms Demag Ag Verfahren und Vorrichtung zum Herstellen von Bändern aus Silizum-Stahl oder Mehrphasenstahl
DE102008003222A1 (de) * 2007-09-13 2009-03-19 Sms Demag Ag Kompakte flexible CSP-Anlage für Endlos-, Semi-Endlos- und Batchbetrieb
DE102007044807A1 (de) * 2007-09-20 2009-04-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Dosierventils und Vorrichtung zur Durchführung des Verfahrens
JP5428173B2 (ja) * 2008-03-21 2014-02-26 株式会社Ihi 圧延機及び圧延方法
CN101983111B (zh) * 2008-03-31 2015-08-05 杰富意钢铁株式会社 厚钢板的材质保证***及其设备
CN102099130B (zh) * 2008-07-16 2014-03-12 杰富意钢铁株式会社 热钢板的冷却设备以及冷却方法
FR2940978B1 (fr) * 2009-01-09 2011-11-11 Fives Stein Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
FR2940979B1 (fr) * 2009-01-09 2011-02-11 Fives Stein Procede de refroidissement d'une bande metallique en defilement
CN102421544B (zh) * 2009-05-13 2013-06-05 新日铁住金株式会社 热轧钢板的冷却方法及冷却装置
CN101899563B (zh) * 2009-06-01 2013-08-28 上海宝钢工业检测公司 基于pca模型的连续退火机组炉内温度、张力监测及故障追溯方法
US8490419B2 (en) * 2009-08-20 2013-07-23 United States Thermoelectric Consortium Interlocked jets cooling method and apparatus
US8322402B2 (en) * 2009-09-23 2012-12-04 Nucor Corporation Method and apparatus for controlling strip temperature rebound in cast strip
FR2953603A1 (fr) 2009-12-09 2011-06-10 Commissariat Energie Atomique Procede et dispositif de reconnaissance d'un materiau a l'aide de sa fonction de transmission
JP4938159B2 (ja) * 2009-12-16 2012-05-23 新日本製鐵株式会社 熱延鋼板の冷却方法
US9180505B2 (en) * 2010-01-29 2015-11-10 Toshiba Mitsubishi-Electric Industral Systems Corporation Water injection controller, water injection control method, and water injection control program for rolling lines
US10307549B2 (en) * 2011-02-25 2019-06-04 Koninklijke Philips N.V. Aerosol generating device for nebulizing a liquid and a method of temperature control of a liquid to be nebulized
US9211574B2 (en) * 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
CN103764867B (zh) * 2011-08-26 2016-05-25 新日铁住金株式会社 合金化位置确定方法、合金化位置确定装置
US9828651B2 (en) * 2012-03-19 2017-11-28 Jfe Steel Corporation Method and apparatus of manufacturing high strength cold rolled steel sheet
PL2891531T3 (pl) * 2012-08-28 2018-04-30 Nippon Steel & Sumitomo Metal Corporation Sposób i urządzenie do mierzenia temperatury powierzchni pasma

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890314A (ja) * 1981-11-24 1983-05-30 Hitachi Ltd 熱間圧延スプレ−冷却装置
JPH05202425A (ja) * 1992-01-27 1993-08-10 Kawasaki Steel Corp 連続焼鈍炉における浸炭浸窒処理設備
JPH05228525A (ja) * 1992-02-19 1993-09-07 Sumitomo Metal Ind Ltd 熱間圧延鋼帯の幅方向温度制御方法および装置
JPH0813046A (ja) * 1994-06-29 1996-01-16 Kawasaki Steel Corp 連続焼鈍炉の冷却帯における金属ストリップ温度の制御方法
KR19980035336U (ko) * 1996-12-12 1998-09-15 양재신 자동차 피스톤핀의 취부구조
KR20030054513A (ko) 2001-12-26 2003-07-02 주식회사 포스코 연속 소둔로 냉각대의 스트립 냉각 제어방법
KR20040047308A (ko) 2002-11-29 2004-06-05 주식회사 포스코 소둔로의 스트립 냉각 장치
KR20050051023A (ko) 2003-11-26 2005-06-01 주식회사 포스코 연속소둔라인 급냉대 스트립 냉각속도 제어방법
KR100679081B1 (ko) * 2005-09-02 2007-02-05 주식회사 포스코 열연 강판의 냉각장치 및 냉각방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2792756A4 *

Also Published As

Publication number Publication date
EP2792756A1 (en) 2014-10-22
US9783867B2 (en) 2017-10-10
CN103998631A (zh) 2014-08-20
KR101376565B1 (ko) 2014-04-02
KR20130067953A (ko) 2013-06-25
EP2792756A4 (en) 2015-08-19
MX2014007141A (es) 2015-04-16
JP2015504973A (ja) 2015-02-16
US20140350746A1 (en) 2014-11-27
JP5964449B2 (ja) 2016-08-03
MX368150B (es) 2019-09-20
CN103998631B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2013089422A1 (ko) 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
WO2015099402A1 (ko) 스트립의 연속소둔 장치 및 그 연속소둔 방법
WO2017111243A1 (ko) 교정 시스템 및 교정 방법
MY151510A (en) Thermal deposition surface treatment method, system and product
WO2018117297A1 (ko) 연속 소둔라인의 강판 온도 패턴 제어 시스템 및 방법
WO2010150935A1 (ko) 중공관 형상의 열처리물 급속 에어냉각장치
WO2016195172A1 (ko) 연주압연장치 및 연주압연방법
WO2015099224A1 (ko) 압연장치, 연주압연장치 및 방법
KR20090025218A (ko) 열처리로에서 금속 스트립을 제어하는 방법
WO2017111242A1 (ko) 냉각장치 및 냉각방법
WO2018110946A1 (ko) 압연설비 및 압연방법
WO2017069378A1 (ko) 연연속 압연 장치 및 방법
WO2016104865A1 (ko) 압연방법, 연주압연방법 및 연주압연장치
EP1626938A1 (en) Method and furnace for bending glass panels
WO2011025139A2 (ko) 사상 압연기의 온도 제어 장치 및 그 방법
WO2017188746A1 (ko) 고체 시료의 수분 측정 장치, 고체 시료 수분 함량 측정 방법 및 이미드화율 분석 방법
WO2016093493A1 (ko) Ahss 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치
WO2017104881A1 (ko) 냉각장치
WO2018062860A2 (ko) 균일처리장치 및 산세장치
KR100885884B1 (ko) 소둔로의 가스혼입 방지장치
KR20140005461A (ko) 열간압연장치 및 열간압연재의 제조방법
WO2018062749A1 (ko) 등방성이 우수한 강판 제조장치 및 이에 의해 생산된 강판
KR100711472B1 (ko) 연속소둔로의 강판 장력 제어방법
JP2002172411A (ja) 厚鋼板の熱処理方法およびその熱処理設備
WO2019124794A1 (ko) 폭방향을 따라 강도가 차등화된 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364944

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014547097

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007141

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012858320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012858320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201404168

Country of ref document: ID