WO2013088929A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2013088929A1
WO2013088929A1 PCT/JP2012/080189 JP2012080189W WO2013088929A1 WO 2013088929 A1 WO2013088929 A1 WO 2013088929A1 JP 2012080189 W JP2012080189 W JP 2012080189W WO 2013088929 A1 WO2013088929 A1 WO 2013088929A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
imide
resin
graphite
Prior art date
Application number
PCT/JP2012/080189
Other languages
English (en)
French (fr)
Inventor
佐々木 英明
井上 和彦
野口 健宏
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013549186A priority Critical patent/JP6098522B2/ja
Priority to US14/365,806 priority patent/US9570747B2/en
Publication of WO2013088929A1 publication Critical patent/WO2013088929A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments according to the present invention relate to a secondary battery.
  • lithium ion secondary batteries Since lithium ion secondary batteries have a small volume, a large mass capacity density, and a high voltage can be taken out, they are widely used as power sources for small devices. For example, it is used as a power source for mobile devices such as mobile phones and notebook computers. Also, in recent years, in addition to small mobile device applications, large secondary devices that require a long life with a large capacity, such as electric vehicles (EV) and power storage fields, are being considered due to consideration for environmental issues and increased awareness of energy conservation. Application to batteries is expected.
  • EV electric vehicles
  • a carbon-based material is used as the negative electrode active material used for the negative electrode of the secondary battery.
  • the binder used for the electrode of a secondary battery plays the role which couple
  • the binder is required to have high adhesiveness, high resistance to an electrolytic solution, electrochemical stability, a simple manufacturing process, and low cost.
  • a typical binder is polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • an imide resin typified by polyimide as a binder is disclosed (Patent Documents 1 to 3).
  • An object of the present embodiment is to provide a secondary battery negative electrode capable of providing a secondary battery having high charge / discharge efficiency and a high capacity retention rate in a charge / discharge cycle.
  • the negative electrode for a secondary battery according to the present embodiment includes scaly graphite, a fluorine resin, and an imide resin.
  • the secondary battery according to the present embodiment includes the secondary battery negative electrode according to the present embodiment.
  • a method for manufacturing a negative electrode for a secondary battery according to the present embodiment includes a negative electrode slurry containing scaly graphite, a fluorine resin, an imide resin, and a solvent that dissolves the fluorine resin and the imide resin.
  • a negative electrode for a secondary battery that can provide a secondary battery with high charge / discharge efficiency and a high capacity retention rate in a charge / discharge cycle.
  • the negative electrode for a secondary battery includes scaly graphite, a fluorine-based resin, and an imide-based resin.
  • the graphite When graphite is used as the negative electrode active material for the negative electrode for secondary batteries, the graphite is usually coated with amorphous carbon from the viewpoint of low reactivity with the electrolyte and low orientation of the graphite particles, Graphite with a small aspect ratio processed into a spherical shape or a block shape is used.
  • these graphites are high in cost because it is necessary to process particles into a spherical shape or to coat the surface with amorphous carbon.
  • graphite coated with amorphous carbon generates irreversible capacity derived from amorphous carbon, and the charge / discharge efficiency of the secondary battery decreases.
  • flaky graphite which is relatively inexpensive, is easily oriented on the negative electrode and has high activity on the edge surface, so that it has high reactivity with the electrolytic solution, and has low charge / discharge efficiency and capacity maintenance rate in the charge / discharge cycle.
  • a fluorine resin and an imide resin are used as a binder in the negative electrode.
  • a resin it is possible to provide a negative electrode for a secondary battery that has high charge / discharge efficiency and a high capacity retention rate in a charge / discharge cycle when used in a secondary battery.
  • the adhesion of the negative electrode active material layer can be improved, and the reactivity between the electrolyte and the scaly graphite can be reduced. Conceivable.
  • the surface of the scaly graphite is coated with an imide resin to form a kind of lithium ion-permeable film such as SEI, and the reactivity of the scaly graphite to the electrolyte solution is reduced. Is guessed.
  • Patent Document 3 describes the use of a fluorine-based resin and an imide-based resin as a binder, but the example of Patent Document 3 describes an example in which the binder is used only in a positive electrode. Yes. Patent Document 3 does not describe scaly graphite.
  • fluorine-based resin and imide-based resin are used as a negative electrode binder, and the negative electrode active material has a low charge-discharge efficiency and a low capacity retention rate in the charge-discharge cycle.
  • the negative electrode for secondary batteries which can provide a secondary battery with low cost, high charge / discharge efficiency, and a high capacity retention rate in the charge / discharge cycle can be provided.
  • the negative electrode for a secondary battery according to this embodiment includes flaky graphite as a negative electrode active material.
  • Graphite materials include naturally occurring natural graphite and artificially produced artificial graphite. These have various particle forms such as block graphite, flake graphite, and spherical graphite depending on the manufacturing method and processing method. As described above, although it is inexpensive in this embodiment, it is easily oriented on the electrode, and the activity of the edge surface is high, so the reactivity with the electrolytic solution is high, the charge / discharge efficiency, and the capacity retention rate in the charge / discharge cycle. Is used as the negative electrode active material.
  • “flaky graphite” refers to graphite particles having a flat shape.
  • the “flaky graphite” is preferably graphite particles having a flat plate shape.
  • the shape of the “flaky graphite” is not particularly limited as long as it has the above form, and may be, for example, a cylindrical shape or a rectangular parallelepiped shape.
  • the aspect ratio of scaly graphite is preferably 2 or more, and more preferably 4 or more. Further, the aspect ratio is preferably 10 or less, and more preferably 8 or less.
  • the aspect ratio is represented by A / B, where A is the length in the maximum major axis direction of the graphite particles and B is the length in the minor axis direction orthogonal thereto.
  • A is the length in the maximum major axis direction of the graphite particles and B is the length in the minor axis direction orthogonal thereto.
  • the cross-section of the negative electrode mixture containing graphite particles and a binder is observed with an SEM, and at the midpoint between the maximum long axis length (A) and the maximum long axis of 10 arbitrarily selected graphite particles.
  • An average value of A / B is calculated from the length (B) of the orthogonal short axis. Let this average value be an aspect ratio.
  • the average particle diameter (D50) of the flaky graphite in the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the specific surface area of the scaly graphite in the present embodiment is preferably 0.5 m 2 / g or more and 5 m 2 / g or less, and more preferably 1 m 2 / g or more and 3 m 2 / g or less. .
  • the average particle diameter (D50) of scaly graphite be the value measured by the laser diffraction and the scattering method.
  • the specific surface area of the scaly graphite is a value measured and calculated by the BET method.
  • the ratio of the flaky graphite to the total of the flaky graphite contained in the negative electrode for secondary battery according to the present embodiment and the binder of the negative electrode described later is preferably 85% by mass or more and 99% by mass or less, 90 More preferably, it is at least 98% by mass.
  • the negative electrode for a secondary battery according to this embodiment includes a fluorine resin and an imide resin as a binder.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • the imide resin since the imide resin has high adhesiveness, high resin strength, and high resistance to the electrolyte, it is considered that the physical properties of the resin are suitable for the binder of the negative electrode, and improvement in cycle characteristics is expected.
  • the imide-based resin is expensive and has a property of trapping lithium, so that the irreversible capacity increases, the charge / discharge efficiency (battery capacity) decreases, and the imide ring is closed at 300 ° C. or higher in order to close the ring. It is difficult to put it into practical use because of the necessity of heat treatment.
  • a fluorine resin and an imide resin are used in combination as a binder used for the negative electrode.
  • the fluorine-based resin and the imide-based resin in combination, it is possible to impart the adhesiveness and electrolyte resistance required for the negative electrode binder while reducing the amount of the imide-based resin used. Thereby, cycling characteristics can be improved and the fall of the charging / discharging efficiency resulting from the lithium trap of imide resin can be suppressed.
  • Fluorine resin according to the present embodiment is not particularly limited, but PVDF, polytetrafluoroethylene (PTFE), or the like can be used.
  • a polymer or copolymer containing at least one selected from the group consisting of vinylidene fluoride (VDF), tetrafluoroethylene (TFE) and hexafluoropropane (HFP) as a constituent unit can be used.
  • VDF vinylidene fluoride
  • TFE tetrafluoroethylene
  • HFP hexafluoropropane
  • PVDF KF polymer (trade name, manufactured by Kureha Co., Ltd.) and the like can be mentioned.
  • VDF vinylidene fluoride
  • TFE tetrafluoroethylene
  • HFP hexafluoropropane
  • VDF / TFE / HFP ternary copolymer examples thereof include Neoflon VT470 (trade name, manufactured by Daikin Industries, Ltd.). These may use only 1 type and may use 2 or more types together.
  • the weight average molecular weight of the fluororesin according to the present embodiment is preferably 200,000 or more and 1,200,000 or less, and more preferably 300,000 or more and 800,000 or less.
  • the imide resin according to the present embodiment is not particularly limited, but is preferably polyimide or polyamideimide.
  • the polyimide include aromatic polyimide and polyetherimide.
  • the polyamideimide include aromatic polyamideimide.
  • imide resin which concerns on this embodiment has hydrophilic groups, such as a carboxyl group and a hydroxyl group. These may use only 1 type and may use 2 or more types together.
  • the imide ring closure rate of the imide resin used in preparing the negative electrode slurry before the heat treatment step is preferably 80% or more, and the imide ring closure rate is more than 90%. preferable.
  • the weight average molecular weight of the imide resin according to this embodiment is preferably 5,000 or more and 50,000 or less, and more preferably 10,000 or more and 30,000 or less.
  • the mass ratio (IP / (FP + IP)) of the imide resin (IP) to the total of the fluorine resin (FP) and the imide resin (IP) included in the negative electrode for a secondary battery according to the present embodiment is 0. It is preferably 1 or more and 0.5 or less.
  • IP / (FP + IP) is 0.1 or more, the adhesive strength is sufficient and the cycle characteristics are improved.
  • IP / (FP + IP) is 0.5 or less, a decrease in initial capacity due to a decrease in charge / discharge efficiency can be suppressed.
  • IP / (FP + IP) is more preferably 0.15 or more and 0.4 or less, and further preferably 0.2 or more and 0.3 or less.
  • the mass ratio (FP / SG) of the fluororesin (FP) to the scaly graphite (SG) included in the negative electrode for a secondary battery according to this embodiment is 0.01 or more and 0.05 or less. From the viewpoint of improving charge / discharge efficiency and capacity retention rate, it is preferable.
  • FP / SG is more preferably 0.02 or more and 0.047 or less, and further preferably 0.025 or more and 0.045 or less.
  • the mass ratio (IP / SG) of the imide resin (IP) to the flaky graphite (SG) contained in the secondary battery negative electrode according to the present embodiment is 0.005 or more and 0.05 or less. From the viewpoint of improving charge / discharge efficiency and capacity retention rate, it is preferable. IP / SG is more preferably 0.01 or more and 0.04 or less, and further preferably 0.016 or more and 0.03 or less.
  • the content of the fluorine-based resin and the imide-based resin as the binder contained in the secondary battery negative electrode according to this embodiment is preferably 2% by mass or more and 10% by mass or less, and preferably 3% by mass or more and 6% by mass. % Or less is more preferable.
  • the content of the fluorine-based resin and the imide-based resin is 2% by mass or more, the adhesive strength is improved and the cycle characteristics are improved.
  • content of a fluorine resin and an imide resin is 10 mass% or less, the reduction
  • a method for manufacturing a negative electrode for a secondary battery according to the present embodiment includes a negative electrode slurry containing scaly graphite, a fluorine resin, an imide resin, and a solvent that dissolves the fluorine resin and the imide resin.
  • the negative electrode slurry according to the present embodiment includes scaly graphite, a fluorine resin, an imide resin, and a solvent that dissolves the fluorine resin and the imide resin.
  • the imide resin contained in the negative electrode slurry preferably has an imide ring closing rate of 80% or more, more preferably 90% or more.
  • an imide resin having an imide ring closure rate of 80% or higher heat treatment at a high temperature of 300 ° C. or higher is not necessary in the heat treatment step described later, and therefore a fluorine resin having a heat resistance of 150 ° C. or lower is also used. It becomes possible to do.
  • adhesive strength improves and it can suppress the fall of cycling characteristics by presence of an unreacted precursor.
  • imide-based resins having an imide ring closure rate of 80% or more include, as commercial products, polyamide-imide Bilomax (trade name, manufactured by Toyobo Co., Ltd.), polyimide Rika Coat (trade name, New Nippon Rika Co., Ltd.), Sokuseal (trade name, manufactured by Nippon Kogyo Paper Industries Co., Ltd.), and the like. These are soluble in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the ring closure rate of the imide ring of the imide resin can be measured by FT-IR. That is, the IR spectrum of 604 cm ⁇ 1 (absorption spectrum derived from an imide group) and 880 cm ⁇ 1 (absorption spectrum derived from vibration of a benzene ring) are used.
  • absorbance of subject (604 cm ⁇ 1 ) / absorbance of subject (880 cm ⁇ 1 )
  • ⁇ ′ absorbance of 100% closed ring (604 cm ⁇ 1 ) / absorbance of 100% ring closed (880 cm ⁇ 1 ) It is.
  • Solvents for dissolving the fluorine-based resin and the imide-based resin include, for example, NMP, N-ethyl-2-pyrrolidone (NEP), N, N-dimethylformamide, N, depending on the type of the fluorine-based resin and the imide-based resin. , N-dimethylacetamide, N, N-dimethylpropionamide, methyl ethyl ketone, ⁇ -butyrolactone, xylene and the like. These may use only 1 type and may use 2 or more types together.
  • the negative electrode slurry can contain a conductive additive in addition to the flaky graphite, the fluorine resin, the imide resin and the solvent. Carbon black, carbon fiber, etc. can be used as the conductive additive used for the negative electrode slurry.
  • the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • a negative electrode slurry is applied to the negative electrode current collector to form a coating film of the negative electrode slurry on the negative electrode current collector.
  • the method for applying the negative electrode slurry to the negative electrode current collector is not particularly limited.
  • the coating film of the negative electrode slurry may be formed only on one side of the negative electrode current collector, or may be formed on both sides.
  • heat treatment is performed at a temperature of 100 ° C. or higher and 150 ° C. or lower in order to remove the solvent of the coating film formed on the negative electrode current collector.
  • the heat treatment is sufficiently performed by performing the heat treatment at a temperature of 100 ° C. or higher.
  • by performing heat treatment at a temperature of 150 ° C. or lower it becomes possible to use a fluorine resin having a heat resistance of 150 ° C. or lower in combination.
  • a negative electrode active material layer is formed on the negative electrode current collector by the heat treatment step.
  • the secondary battery according to the present embodiment includes the secondary battery negative electrode according to the present embodiment.
  • the configuration of the secondary battery according to this embodiment is not particularly limited as long as the secondary battery includes the secondary battery negative electrode according to this embodiment.
  • a laminated secondary battery is shown in FIG.
  • the secondary battery shown in FIG. 1 is a negative electrode for a secondary battery according to this embodiment including a positive electrode composed of a positive electrode active material layer 1 and a positive electrode current collector 3, and a negative electrode active material layer 2 and a negative electrode current collector 4.
  • a separator 5 is sandwiched between the two.
  • the positive electrode current collector 3 is connected to the positive electrode tab 8
  • the negative electrode current collector 4 is connected to the negative electrode tab 7.
  • a laminate film 6 is used for the exterior body, and the inside of the secondary battery is filled with a non-aqueous electrolyte.
  • the secondary battery according to the present embodiment may be a lithium secondary battery or a lithium ion secondary battery.
  • Lithium containing complex oxide can be used as the lithium-containing composite oxide.
  • LiM1O 2 is at least one element selected from the group consisting of Mn, Fe, Co, and Ni, and a part of M1 is substituted with Mg, Al, or Ti.
  • LiMn 2 ⁇ x M2 x O 4 is at least one element selected from the group consisting of Mg, Al, Co, Ni, Fe and B, and 0 ⁇ x ⁇ 2).
  • An olivine type material represented by LiFePO 4 can also be used.
  • lithium manganate represented by LiMn 2 ⁇ x M2 x O 4 in particular has a lower capacity than lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), but compared with Ni and Co. Therefore, since the production amount of Mn is large, the material cost is low. For this reason, it is preferable as a positive electrode active material for large-sized secondary batteries such as electric vehicles and power storage.
  • the positive electrode of the secondary battery according to the present embodiment is not particularly limited, for example, a positive electrode active material layer is formed on at least one surface of the positive electrode current collector.
  • a positive electrode active material layer is not specifically limited, for example, the said positive electrode active material, a binder, and a conductive support agent are included.
  • binder used for the positive electrode examples include fluorine resins such as PVDF and acrylic resins. These may use only 1 type and may use 2 or more types together.
  • Examples of the conductive aid used for the positive electrode include carbon black and carbon fiber. These may use only 1 type and may use 2 or more types together. In particular, it is preferable to use carbon black having low crystallinity as a conductive additive used for the positive electrode.
  • the positive electrode current collector aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • the method for producing the positive electrode is not particularly limited.
  • the positive electrode active material, the binder, and the conductive additive are dispersed and kneaded in a predetermined amount in a solvent such as NMP, and the obtained positive electrode slurry is used as the positive electrode.
  • the positive electrode slurry can be appropriately dried and heat-treated, whereby a positive electrode active material layer can be formed on the positive electrode current collector.
  • Non-aqueous electrolyte Although it does not specifically limit as a non-aqueous electrolyte, for example, the solution which melt
  • lithium salt examples include LiPF 6 , lithium imide salt, LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6, and the like.
  • At least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers and chain ethers can be used.
  • the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof (including fluorinated products).
  • the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof (including fluorinated products).
  • Examples of the aliphatic carboxylic acid ester include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof (including fluorinated products).
  • Examples of ⁇ -lactone include ⁇ -butyrolactone and its derivatives (including fluorinated products).
  • Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and derivatives thereof (including fluorinated products).
  • Examples of the chain ether include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), ethyl ether, diethyl ether, and derivatives thereof (including fluorinated compounds).
  • non-aqueous solvents include dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, Dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, 1,3-propane sultone, anisole, N-methylpyrrolidone, and derivatives thereof (fluorinated compounds) Can also be used. These may use only 1 type and may use 2 or more types together.
  • the concentration of the lithium salt in the nonaqueous electrolytic solution is preferably 0.7 mol / L or more and 1.5 mol / L or less.
  • concentration of the lithium salt By setting the concentration of the lithium salt to 0.7 mol / L or more, sufficient ionic conductivity can be obtained.
  • concentration of lithium salt 1.5 mol / L or less a viscosity can be made low and the movement of lithium ion is not prevented.
  • the non-aqueous electrolyte may contain an additive in order to form a high-quality SEI (Solid Electrolyte Interface) film on the negative electrode surface.
  • SEI Solid Electrolyte Interface
  • the SEI film functions to suppress the reactivity with the electrolytic solution or to smooth the desolvation reaction accompanying the insertion and desorption of lithium ions to prevent structural deterioration of the negative electrode active material.
  • examples of such additives include propane sultone, vinylene carbonate, and cyclic disulfonic acid esters. These may use only 1 type and may use 2 or more types together.
  • the concentration of the additive in the nonaqueous electrolytic solution is preferably 0.2% by mass or more and 5% by mass or less.
  • concentration of the additive is 0.2% by mass or more, a sufficient SEI film is formed.
  • resistance can be made low because the density
  • Positive electrode tab negative electrode tab
  • at least 1 type selected from the group which consists of Al, Cu, phosphor bronze, Ni, Ti, Fe, brass, stainless steel can be used as a material.
  • Separator Although it does not specifically limit as a separator, The porous film which consists of polyolefin, such as a polypropylene and polyethylene, a fluorine resin, etc. can be used. In addition, inorganic separators such as cellulose and glass separators can also be used.
  • Exterior body Although it does not specifically limit as an exterior body, Cans, such as a coin shape, a square shape, and a cylindrical shape, and a laminate exterior body can be used. Among these, a laminate outer package which is a flexible film made of a laminate of a synthetic resin and a metal foil is preferable from the viewpoint of being able to reduce the weight and improving the energy density of the secondary battery.
  • a laminate-type secondary battery including a laminate outer package is excellent in heat dissipation, and thus is suitable as a vehicle-mounted battery such as an electric vehicle.
  • a positive electrode tab and a negative electrode tab are connected to the positive electrode and the negative electrode for a secondary battery according to the present embodiment via a positive electrode current collector and a negative electrode current collector, respectively.
  • the positive electrode and the negative electrode are arranged opposite to each other with the separator interposed therebetween, and an electrode laminate is produced in which the positive electrode and the negative electrode are laminated.
  • the electrode laminate is accommodated in an exterior body and immersed in an electrolytic solution.
  • a secondary battery is manufactured by sealing the exterior body so that a part of the positive electrode tab and the negative electrode tab protrudes to the outside.
  • Example 1 (Preparation of negative electrode) As flaky graphite (SG) which is a negative electrode active material, flaky artificial graphite powder (average particle diameter (D50): 13 ⁇ m, specific surface area: 2.0 m 2 / g, aspect ratio: 4.3) was prepared. As a binder, VDF / TFE / HFP ternary copolymer (trade name: NEOFLON VT470, manufactured by Daikin Industries, Ltd.), which is a fluororesin (FP), was prepared. In addition, polyamideimide (trade name: Viromax HR11NN, manufactured by Toyobo Co., Ltd.), which is an imide resin (IP), was prepared as a binder.
  • VDF / TFE / HFP ternary copolymer trade name: NEOFLON VT470, manufactured by Daikin Industries, Ltd.
  • FP fluororesin
  • polyamideimide trade name: Viromax HR11NN, manufactured by Toyobo Co., Ltd
  • the ring closure rate of the polyamideimide is 100%.
  • NMP nitrogen-pentane
  • the negative electrode slurry was applied on a copper foil having a thickness of 15 ⁇ m as a negative electrode current collector. Then, it was made to dry at 125 degreeC for 10 minute (s), and NMP was evaporated, and the negative electrode active material layer was formed. A negative electrode was produced by pressing the negative electrode active material layer. In addition, the mass of the negative electrode active material layer per unit area after drying was 0.008 g / cm 2 .
  • LiMn 2 O 4 powder (average particle diameter (D50): 15 ⁇ m, specific surface area: 0.5 m 2 / g) was prepared as a positive electrode active material.
  • the positive electrode active material, PVDF as a binder, and carbon black as a conductive additive were uniformly dispersed in NMP at a mass ratio of 91: 4: 5 to prepare a positive electrode slurry.
  • the positive electrode slurry was applied on a 20 ⁇ m thick aluminum foil as a positive electrode current collector. Then, it dried at 125 degreeC for 10 minute (s), the NMP was evaporated, the positive electrode active material layer was formed, and it was set as the positive electrode.
  • the mass of the positive electrode active material layer per unit area after drying was set to 0.024 g / cm 2 .
  • the produced positive electrode and negative electrode were each cut into 5 cm ⁇ 6 cm. Of these, a side of 5 cm ⁇ 1 cm was a portion where the electrode active material layer was not formed (uncoated portion) in order to connect the tab, and a portion where the electrode active material layer was formed was 5 cm ⁇ 5 cm.
  • a positive electrode tab made of aluminum having a width of 5 mm, a length of 3 cm, and a thickness of 0.1 mm was ultrasonically welded to the uncoated portion of the positive electrode with a length of 1 cm. Also, a nickel negative electrode tab having the same size as the positive electrode tab was ultrasonically welded to the uncoated portion of the negative electrode.
  • the negative electrode and the positive electrode were arranged on both sides of a 6 cm ⁇ 6 cm polyethylene / polypropylene separator so that the electrode active material layers overlapped with the separator interposed therebetween to obtain an electrode laminate.
  • Three sides of the two 7 cm ⁇ 10 cm aluminum laminate films except one of the long sides were bonded to each other with a width of 5 mm by thermal fusion to produce a bag-shaped laminate outer package.
  • the electrode laminate was inserted into the bag-shaped laminate outer package so that the distance from the short side of the laminate outer package was 1 cm. Further, 0.2 g of the non-aqueous electrolyte was injected and vacuum impregnated, and then the opening was sealed with a width of 5 mm by thermal fusion under reduced pressure. Thus, a laminate type secondary battery was produced.
  • FP fluorine-based resin
  • FP fluorine-based resin
  • Comparative Examples 2 and 3 the effect of heat treatment at a high temperature in the case of using an imide resin (IP) having a high imide ring closing rate was examined.
  • the charge / discharge efficiency and the capacity retention rate were not significantly different depending on the presence or absence of the heat treatment at 250 ° C.
  • Comparative Examples 4 and 5 the effect of heat treatment at a high temperature when using a polyamic acid which is a polyimide precursor whose imide ring is not closed was examined. Since the capacity retention rate of Comparative Example 4 was significantly lower than that of Comparative Example 5, it was confirmed that heat treatment at 300 ° C. was necessary in this case.
  • Fluorine resin (FP) has a heat treatment temperature limited to 150 ° C.
  • Example 3 showing the highest charge / discharge efficiency and capacity retention rate among the examples in order to further examine the effects of using a fluorine resin (FP) and an imide resin (IP) in combination as a binder for the negative electrode; Comparative Examples 1 and 2 were evaluated as follows.
  • FP fluorine resin
  • IP imide resin
  • Example 3 and Comparative Examples 1 and 2 Only the negative electrode produced in Example 3 and Comparative Examples 1 and 2 was placed in an aluminum laminate film sealed on three sides, and a non-aqueous electrolyte was injected as in Example 3 and Comparative Examples 1 and 2 to seal one side. Stopped. After leaving this at 20 ° C., 45 ° C. and 60 ° C. for 20 hours, the negative electrode was taken out and the presence or absence of peeling of the negative electrode active material layer was visually confirmed. The results are shown in Table 2.
  • Example 1 In Comparative Example 1 in which only the fluororesin (FP) was used as the binder for the negative electrode, the negative electrode active material layer was significantly peeled off as the temperature increased. On the other hand, in Example 3 and Comparative Example 2, no peeling was observed even at 60 ° C. From this, it was confirmed that the adhesiveness of the negative electrode active material layer is improved by adding the imide resin (IP) to the fluorine resin (FP) as the binder of the negative electrode.
  • IP imide resin
  • Initial charge / discharge was performed on the coin cell, and an initial charge / discharge curve was measured with the horizontal axis representing the capacity per mass of the negative electrode active material (mAh / g) and the vertical axis representing the voltage (mV).
  • the initial charging condition was CC-CV charging at 0.16 mA (CV time: 20 hours, lower limit voltage: 5 mV).
  • the initial discharge conditions were CC discharge at 0.16 mA (upper limit voltage: 2000 mV).
  • FIG. 2 shows the measurement results of the initial charge / discharge curves in Example 3 and Comparative Examples 1 and 2.
  • Comparative Example 1 in which only the fluororesin (FP) was used as the negative electrode binder, a shoulder presumed to be due to the reaction with the non-aqueous electrolyte was observed around 0.5 V during the initial charge. Therefore, it was suggested that when only the fluororesin (FP) was used as the binder for the negative electrode, not only the adhesion of the negative electrode active material layer was low but also the reactivity with the non-aqueous electrolyte was high. On the other hand, in Example 3 and Comparative Example 2, a shoulder near 0.5 V was not observed, and it was confirmed that the reactivity with the nonaqueous electrolytic solution was low.
  • Example 3 has a smaller irreversible capacity than Comparative Examples 1 and 2, it is preferable to use both a fluororesin (FP) and an imide resin (IP) as a binder for the negative electrode. It was confirmed that the charge / discharge characteristics were improved as compared with the case of using alone. This is because the addition of the imide resin (IP) suppresses the reaction with the non-aqueous electrolyte, and the lithium trap by the imide resin (IP) is also suppressed by controlling the amount of the imide resin (IP) added. Therefore, it is estimated that the entire irreversible capacity is reduced.
  • FP fluororesin
  • IP imide resin
  • the secondary battery could not be evaluated because the negative electrode active material layer was peeled off from the negative electrode current collector. It was confirmed that the amount of the imide resin (IP) used can be significantly reduced by using not only the imide resin (IP) but also the fluorine resin (FP) as a binder for the negative electrode.
  • IP imide resin
  • FP fluorine resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 充放電効率が高く、充放電サイクルにおける容量維持率の高い二次電池を提供可能な二次電池用負極を提供する。本実施形態に係る二次電池用負極は、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂とを含む。本実施形態に係る二次電池用負極の製造方法は、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂と、前記フッ素系樹脂および前記イミド系樹脂を溶解する溶媒と、を含む負極スラリーを負極集電体に塗布する工程と、前記負極集電体を100℃以上、150℃以下の温度で熱処理する工程と、を含む。

Description

二次電池
 本発明に係る実施形態は二次電池に関する。
 リチウムイオン二次電池は体積が小さく、質量容量密度が大きく、高電圧を取り出すことができるため、小型機器用の電源として広く採用されている。例えば、携帯電話、ノート型パソコンなどのモバイル機器用の電源として用いられている。また、近年では、小型のモバイル機器用途以外にも、環境問題に対する配慮と省エネルギー化に対する意識の向上から、電気自動車(EV)や電力貯蔵分野などの大容量で長寿命が要求される大型二次電池への応用が期待されている。
 二次電池の負極に用いられる負極活物質としては、炭素系材料が用いられる。また、二次電池の電極に用いられるバインダーは、電極活物質同士および電極活物質と電極集電体とを結合する役割を果たす。バインダーには、接着性が高いこと、電解液に対する耐性が高いこと、電気化学的に安定であること、製造プロセスが簡便であること、価格が安いことなどが求められる。代表的なバインダーとしては、ポリフッ化ビニリデン(PVDF)が挙げられる。また、バインダーとしてポリイミドに代表されるイミド系樹脂を用いることが開示されている(特許文献1から3)。
特開平06-163031号公報 特開2002-190297号公報 特開平10-188992号公報
 しかしながら、特許文献1から3に記載されている二次電池は、充放電効率、および充放電サイクルにおける容量維持率向上の観点から、更なる改良が望まれている。本実施形態は、充放電効率が高く、充放電サイクルにおける容量維持率の高い二次電池を提供可能な二次電池用負極を提供することを目的とする。
 本実施形態に係る二次電池用負極は、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂とを含む。
 本実施形態に係る二次電池は、本実施形態に係る二次電池用負極を備える。
 本実施形態に係る二次電池用負極の製造方法は、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂と、前記フッ素系樹脂および前記イミド系樹脂を溶解する溶媒と、を含む負極スラリーを負極集電体に塗布する工程と、前記負極集電体を100℃以上、150℃以下の温度で熱処理する工程と、を含む。
 本実施形態によれば、充放電効率が高く、充放電サイクルにおける容量維持率の高い二次電池を提供可能な二次電池用負極を提供できる。
本実施形態に係る二次電池の一例を示す断面図である。 実施例3、比較例1および2における初回充放電曲線の測定結果を示す図である。
 [二次電池用負極]
 本実施形態に係る二次電池用負極は、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂とを含む。
 二次電池用負極の負極活物質として黒鉛を用いる場合、通常黒鉛には、電解液との反応性が低く、黒鉛粒子の配向性が低い観点から非晶質炭素をコーティングしたり、粒子形状を球状または塊状に加工したりしたアスペクト比の小さい黒鉛が用いられる。しかしながら、これらの黒鉛は粒子を球状等に加工したり、表面を非晶質炭素でコーティングしたりする必要があるため、コストが高い。また、非晶質炭素でコーティングされた黒鉛は、非晶質炭素に由来する不可逆容量が発生し、二次電池の充放電効率が低下する。一方、比較的安価な鱗片状黒鉛は、負極上で配向しやすく、またエッジ面の活性が高いため電解液との反応性が高く、充放電効率、および充放電サイクルにおける容量維持率が低い。
 本実施形態においては、負極活物質として、低コストではあるが充放電効率、および充放電サイクルにおける容量維持率が低い鱗片状黒鉛を敢えて用いる場合にも、負極におけるバインダーとしてフッ素系樹脂とイミド系樹脂とを併用することで、二次電池に用いた場合に充放電効率、充放電サイクルにおける容量維持率の高い二次電池用負極を提供することができる。これは、負極のバインダーとしてフッ素系樹脂およびイミド系樹脂を用いることにより、負極活物質層の接着性が向上し、かつ、電解液と鱗片状黒鉛との反応性を低減することができるためと考えられる。後者の効果については、イミド系樹脂が鱗片状黒鉛表面にコーティングされることでSEIのようなリチウムイオン透過性のある一種の皮膜が形成され、鱗片状黒鉛の電解液に対する反応性を低減することが推測される。
 前述したように、特許文献3にはバインダーとしてフッ素系樹脂およびイミド系樹脂を用いることは記載されているが、特許文献3の実施例には該バインダーを正極においてのみ使用する例が記載されている。また、特許文献3には鱗片状黒鉛は記載されていない。本実施形態では、フッ素系樹脂およびイミド系樹脂を負極のバインダーとして用い、かつ、負極活物質として、敢えて充放電効率、および充放電サイクルにおける容量維持率は低いが、低コストの鱗片状炭素を用いる。これにより、低コストで、充放電効率が高く、充放電サイクルにおける容量維持率の高い二次電池を提供可能な二次電池用負極を提供できる。
 (負極活物質)
 本実施形態に係る二次電池用負極は、負極活物質として鱗片状黒鉛を含む。
 黒鉛材料には、天然に産出する天然黒鉛や人工的に製造される人造黒鉛が存在する。これらはその製造方法および加工の仕方によって、塊状黒鉛、鱗片状黒鉛、球状黒鉛などの様々な粒子形態を有する。前述したように、本実施形態では安価ではあるものの、電極上で配向しやすく、またエッジ面の活性が高いため電解液との反応性が高く、充放電効率、および充放電サイクルにおける容量維持率が低い鱗片状黒鉛を負極活物質として用いる。負極活物質として鱗片状黒鉛を用いる場合にも、負極におけるバインダーとして後述するフッ素系樹脂とイミド系樹脂とを併用することで、充放電効率、充放電サイクルにおける容量維持率の向上効果が得られる。
 本実施形態において、「鱗片状黒鉛」とは扁平状の形態を有する黒鉛粒子を示す。「鱗片状黒鉛」は平板状の形態を有する黒鉛粒子であることが好ましい。「鱗片状黒鉛」の形状は前記形態を有すれば特に限定されず、例えば円柱形状であっても直方体形状であってもよい。
 鱗片状黒鉛のアスペクト比は、2以上であることが好ましく、4以上であることがより好ましい。また、該アスペクト比は、10以下であることが好ましく、8以下であることがより好ましい。なお、アスペクト比は、黒鉛粒子の最大長軸方向の長さをA、それに直交する短軸方向の長さをBとしたとき、A/Bで表される。本実施形態では、黒鉛粒子とバインダーとを含む負極合材の断面をSEMで観察し、任意に選んだ10個の黒鉛粒子の最大長軸の長さ(A)と最大長軸の中点において直行する短軸の長さ(B)から、A/Bの平均値を算出する。該平均値をアスペクト比とする。
 本実施形態における鱗片状黒鉛の平均粒径(D50)は、5μm以上、50μm以下であることが好ましく、10μm以上、30μm以下であることがより好ましい。また、本実施形態における鱗片状黒鉛の比表面積は、0.5m/g以上、5m/g以下であることが好ましく、1m/g以上、3m/g以下であることがより好ましい。なお、鱗片状黒鉛の平均粒径(D50)はレーザー回折・散乱法により測定した値とする。また、鱗片状黒鉛の比表面積は、BET法により測定、算出した値とする。
 本実施形態に係る二次電池用負極に含まれる鱗片状黒鉛と後述する負極のバインダーとの合計に対する、鱗片状黒鉛の割合は、85質量%以上、99質量%以下であることが好ましく、90質量%以上、98質量%以下であることがより好ましい。
 (バインダー)
 本実施形態に係る二次電池用負極は、バインダーとしてフッ素系樹脂およびイミド系樹脂を含む。
 二次電池の負極に用いるバインダーとしては、フッ素系樹脂であるポリフッ化ビニリデン(PVDF)が代表的である。また、スチレンブタジエンゴム(SBR)のようなゴム系バインダーも用いることができる。この場合、カルボキシメチルセルロース(CMC)およびそのナトリウム塩等の増粘剤を併用することが多い。しかしながら、PVDFは電解液中における負極活物質層の接着性や、電解液に対する耐性が十分でないため、容量維持率などサイクル特性の低下が課題である。
 一方、イミド系樹脂は接着性が高く、樹脂の強度が高く、電解液に対する耐性も高いため、樹脂の物性としては負極のバインダーに適していると考えられ、サイクル特性の向上が期待される。しかしながら、イミド系樹脂は高価であること、リチウムをトラップする性質を有するため不可逆容量が増大し、充放電効率(電池容量)が低下してしまうこと、イミド環を閉環させるために300℃以上の熱処理が必要であること、などの理由からその実用化が困難である。
 本実施形態においては、負極に用いるバインダーとして、フッ素系樹脂とイミド系樹脂とを併用する。フッ素系樹脂とイミド系樹脂とを併用することにより、イミド系樹脂の使用量を減らしながら、負極のバインダーに求められる接着性や電解液耐性を付与することができる。これにより、サイクル特性を向上させることができ、また、イミド系樹脂のリチウムトラップに起因する充放電効率の低下を抑制することができる。
 本実施形態に係るフッ素系樹脂としては、特に限定されないが、PVDF、ポリテトラフルオロエチレン(PTFE)等を用いることができる。また、ビニリデンフルオライド(VDF)、テトラフルオロエチレン(TFE)およびヘキサフルオロプロパン(HFP)からなる群から選択される少なくとも一種を構成単位として含むポリマーまたはコポリマーを用いることができる。具体的には、PVDFとしてはKFポリマー(商品名、(株)クレハ製)などが挙げられる。また、ビニリデンフルオライド(VDF)、テトラフルオロエチレン(TFE)およびヘキサフルオロプロパン(HFP)からなる群から選択される少なくとも一種を構成単位として含むポリマーまたはコポリマーとしては、VDF/TFE/HFP3元共重合体であるネオフロンVT470(商品名、ダイキン工業(株)製)などが挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 本実施形態に係るフッ素系樹脂の重量平均分子量としては、20万以上、120万以下であることが好ましく、30万以上、80万以下であることがより好ましい。
 本実施形態に係るイミド系樹脂としては、特に限定されないが、ポリイミドまたはポリアミドイミドであることが好ましい。ポリイミドとしては、芳香族ポリイミド、ポリエーテルイミド等が挙げられる。ポリアミドイミドとしては、芳香族ポリアミドイミド等が挙げられる。また、本実施形態に係るイミド系樹脂はカルボキシル基、水酸基等の親水性基を有することが好ましい。これらは一種のみを用いてもよく、二種以上を併用してもよい。特に、後述するように、熱処理工程前の負極スラリー調製時に用いられるイミド系樹脂のイミド環の閉環率は80%以上であることが好ましく、イミド環の閉環率は90%以上であることがより好ましい。
 本実施形態に係るイミド系樹脂の重量平均分子量としては、5千以上、5万以下であることが好ましく、1万以上、3万以下であることがより好ましい。
 本実施形態に係る二次電池用負極に含まれる、フッ素系樹脂(FP)とイミド系樹脂(IP)との合計に対するイミド系樹脂(IP)の質量比(IP/(FP+IP))は、0.1以上、0.5以下であることが好ましい。IP/(FP+IP)が0.1以上であることにより、接着強度が十分となり、サイクル特性が向上する。また、IP/(FP+IP)が0.5以下であることにより、充放電効率の低下による初期容量の減少を抑制することができる。IP/(FP+IP)は0.15以上、0.4以下であることがより好ましく、0.2以上、0.3以下であることがさらに好ましい。
 本実施形態に係る二次電池用負極に含まれる、鱗片状黒鉛(SG)に対するフッ素系樹脂(FP)の質量比(FP/SG)は、0.01以上、0.05以下であることが、充放電効率および容量維持率向上の観点から好ましい。FP/SGは、0.02以上、0.047以下であることがより好ましく、0.025以上、0.045以下であることがさらに好ましい。
 本実施形態に係る二次電池用負極に含まれる、鱗片状黒鉛(SG)に対するイミド系樹脂(IP)の質量比(IP/SG)は、0.005以上、0.05以下であることが、充放電効率および容量維持率向上の観点から好ましい。IP/SGは、0.01以上、0.04以下であることがより好ましく、0.016以上、0.03以下であることがさらに好ましい。
 本実施形態に係る二次電池用負極に含まれるバインダーとしてのフッ素系樹脂およびイミド系樹脂の含有量は、2質量%以上、10質量%以下であることが好ましく、3質量%以上、6質量%以下であることがより好ましい。フッ素系樹脂およびイミド系樹脂の含有量が2質量%以上であることにより、接着強度が向上し、サイクル特性が向上する。また、フッ素系樹脂およびイミド系樹脂の含有量が10質量%以下であることにより、電池容量の減少や電極抵抗の増大を抑制することができる。
 (二次電池用負極の製造方法)
 本実施形態に係る二次電池用負極の製造方法は、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂と、前記フッ素系樹脂および前記イミド系樹脂を溶解する溶媒と、を含む負極スラリーを負極集電体に塗布する工程と、前記負極集電体を100℃以上、150℃以下の温度で熱処理する工程と、を含む。
 本実施形態に係る負極スラリーは、鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂と、前記フッ素系樹脂および前記イミド系樹脂を溶解する溶媒と、を含む。負極スラリーに含まれるイミド系樹脂は、イミド環の閉環率が80%以上であることが好ましく、イミド環の閉環率が90%以上であることがより好ましい。イミド環の閉環率が80%以上であるイミド系樹脂を用いることにより、後述する熱処理工程において300℃以上の高温での熱処理が必要でなくなるため、耐熱性が150℃以下のフッ素系樹脂を併用することが可能となる。また、接着強度が向上し、未反応の前駆体の存在によるサイクル特性の低下を抑制することができる。イミド環の閉環率が80%以上であるイミド系樹脂の具体例としては、市販品では、ポリアミドイミドであるバイロマックス(商品名、東洋紡績(株)製)、ポリイミドであるリカコート(商品名、新日本理化(株)製)、ソクシール(商品名、日本高度紙工業(株)製)などが挙げられる。これらはN-メチルピロリドン(NMP)に可溶である。
 なお、イミド系樹脂のイミド環の閉環率は、FT-IRにより測定することができる。即ち、IRスペクトルの604cm-1(イミド基に由来する吸収スペクトル)と880cm-1(ベンゼン環の振動に由来する吸収スペクトル)を用いる。被験体のイミド閉環率は、被験体の吸光度比をα、100%閉環したものの吸光度比をα’とすると、被験体のイミド閉環率(%)=(α/α’)×100で求められる。ただし、α=被験体の吸光度(604cm-1)/被験体の吸光度(880cm-1)、α’=100%閉環したものの吸光度(604cm-1)/100%閉環したものの吸光度(880cm-1)である。
 フッ素系樹脂およびイミド系樹脂を溶解する溶媒としては、フッ素系樹脂およびイミド系樹脂の種類にもよるが、例えばNMP、N-エチル-2-ピロリドン(NEP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、メチルエチルケトン、γ-ブチロラクトン、キシレン等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 負極スラリーは、鱗片状黒鉛、フッ素系樹脂、イミド系樹脂および前記溶媒以外に、導電助剤を含むことができる。負極スラリーに用いる導電助剤としては、カーボンブラック、炭素繊維などを用いることができる。
 負極集電体としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。
 負極スラリーを負極集電体に塗布することにより、負極集電体上に負極スラリーの塗膜を形成する。負極スラリーを負極集電体に塗布する方法は特に限定されない。負極スラリーの塗膜は負極集電体の片面にのみ形成してもよく、両面に形成してもよい。
 その後、負極集電体上に形成された塗膜の溶媒を取り除くため、100℃以上、150℃以下の温度で熱処理を行う。100℃以上の温度で熱処理を行うことにより熱処理が十分に施される。また、150℃以下の温度で熱処理を行うことにより、耐熱性が150℃以下のフッ素系樹脂を併用することが可能となる。熱処理工程により、負極集電体上に負極活物質層が形成される。なお、負極活物質層の密度を調整するため、ロールプレス等の方法により負極活物質層を適宜圧縮してもよい。
 [二次電池]
 本実施形態に係る二次電池は、本実施形態に係る二次電池用負極を備える。
 本実施形態に係る二次電池は、本実施形態に係る二次電池用負極を備えればその構成は特に限定されない。本実施形態に係る二次電池の一例として、図1にラミネート型の二次電池を示す。図1に示す二次電池は、正極活物質層1と正極集電体3とからなる正極と、負極活物質層2と負極集電体4とからなる本実施形態に係る二次電池用負極との間に、セパレータ5が挟まれている。正極集電体3は正極タブ8と接続され、負極集電体4は負極タブ7と接続されている。外装体にはラミネートフィルム6が用いられ、二次電池内部は非水電解液で満たされている。なお、本実施形態に係る二次電池はリチウム二次電池であっても、リチウムイオン二次電池であってもよい。
 (正極活物質)
 本実施形態に係る二次電池の正極に含まれる正極活物質としては、特に限定されないが、リチウム含有複合酸化物を用いることができる。リチウム含有複合酸化物としては、LiM1O(M1はMn、Fe、CoおよびNiからなる群から選択される少なくとも1種の元素であり、M1の一部がMg、AlまたはTiで置換されていてもよい)、LiMn2-xM2(M2はMg、Al、Co、Ni、FeおよびBからなる群から選択される少なくとも一種の元素であり、0≦x<2である。)などを用いることができる。また、LiFePOで表されるオリビン型材料を用いることもできる。これらは、例えばLi過剰組成など非化学量論組成であっても良い。また、これらは一種のみを用いてもよく、二種以上を併用することもできる。これらの中でも、特に前記LiMn2-xM2で表されるマンガン酸リチウムは、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)より容量は低いものの、NiやCoと比較してMnの産出量が多いため材料コストが低く、スピネル構造を有するため熱的安定性が高い。このため、電気自動車や電力貯蔵用などの大型二次電池向けの正極活物質材料として好ましい。
 (正極)
 本実施形態に係る二次電池の正極は特に限定されないが、例えば、正極集電体の少なくとも一方の面に正極活物質層が形成されてなる。正極活物質層は特に限定されないが、例えば、前記正極活物質と、バインダーと、導電助剤とを含む。
 正極に用いられるバインダーとしては、PVDFなどのフッ素系樹脂やアクリル系樹脂等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 正極に用いられる導電助剤としては、カーボンブラック、炭素繊維等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。特に、正極に用いられる導電助剤としては、結晶性の低いカーボンブラックを用いることが好ましい。
 正極集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。
 正極の製造方法は特に限定されないが、例えば、前記正極活物質と、前記バインダーと、前記導電助剤とを所定の配合量でNMP等の溶媒中に分散混練し、得られた正極スラリーを正極集電体に塗布する。正極スラリーは適宜乾燥、熱処理することができ、これにより正極集電体上に正極活物質層を形成することができる。なお、正極活物質層の密度を調整するため、ロールプレス等の方法により正極活物質層を適宜圧縮してもよい。
 (非水電解液)
 非水電解液としては特に限定されないが、例えばリチウム塩を非水溶媒に溶解した溶液を用いることができる。
 リチウム塩としては、LiPF、リチウムイミド塩、LiAsF、LiAlCl、LiClO、LiBF、LiSbF等が挙げられる。リチウムイミド塩としては、LiN(C2k+1SO)(C2m+1SO)(kおよびmは、それぞれ独立して1または2である)が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 非水溶媒としては、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、γ-ラクトン、環状エーテルおよび鎖状エーテルからなる群から選択される少なくとも1種の溶媒を用いることができる。環状カーボネートとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。脂肪族カルボン酸エステルとしては、ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。γ-ラクトンとしては、γ-ブチロラクトンおよびその誘導体(フッ素化物を含む)が挙げられる。環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフランおよびその誘導体(フッ素化物を含む)が挙げられる。鎖状エーテルとしては、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、エチルエーテル、ジエチルエーテル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。非水溶媒としては、これら以外にも、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、およびこれらの誘導体(フッ素化物を含む)を用いることもできる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 非水電解液中のリチウム塩の濃度としては、0.7mol/L以上、1.5mol/L以下であることが好ましい。リチウム塩の濃度を0.7mol/L以上とすることにより、十分なイオン導電性が得られる。また、リチウム塩の濃度を1.5mol/L以下とすることにより、粘度を低くすることができ、リチウムイオンの移動が妨げられない。
 また、非水電解液は、負極表面に良質なSEI(Solid Electrolyte Interface)皮膜を形成させるために添加剤を含んでもよい。SEI皮膜には、電解液との反応性を抑制したり、リチウムイオンの挿入脱離に伴う脱溶媒和反応を円滑にして負極活物質の構造劣化を防止したりする働きがある。このような添加剤としては、例えば、プロパンスルトンやビニレンカーボネート、環状ジスルホン酸エステル等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 非水電解液中の添加剤の濃度としては、0.2質量%以上、5質量%以下であることが好ましい。添加剤の濃度が0.2質量%以上であることにより、十分なSEI皮膜が形成される。また、添加剤の濃度が5質量%以下であることにより、抵抗を低くすることができる。
 (正極タブ、負極タブ)
 正極タブ、負極タブとしては、特に限定されないが、例えばAl、Cu、燐青銅、Ni、Ti、Fe、真鍮、ステンレスからなる群から選択される少なくとも一種を材料として用いることができる。
 (セパレータ)
 セパレータとしては、特に限定されないが、ポリプロピレン、ポリエチレン等のポリオレフィンや、フッ素系樹脂等からなる多孔性フィルムを用いることができる。また、セルロースやガラスセパレータなどの無機系セパレータを用いることもできる。
 (外装体)
 外装体としては、特に限定されないが、コイン型、角型、円筒型等の缶や、ラミネート外装体を用いることができる。この中でも、軽量化が可能であり、二次電池のエネルギー密度の向上を図る観点から、合成樹脂と金属箔との積層体からなる可撓性フィルムであるラミネート外装体が好ましい。ラミネート外装体を備えるラミネート型の二次電池は、放熱性にも優れているため、電気自動車などの車載用電池として好適である。
 (二次電池の製造方法)
 本実施形態に係る二次電池の製造方法は特に限定されないが、例えば、以下に示す方法が挙げられる。前記正極および本実施形態に係る二次電池用負極にそれぞれ正極集電体及び負極集電体を介して正極タブ、負極タブを接続する。前記正極と前記負極とを前記セパレータを挟んで対向配置させ、積層させた電極積層体を作製する。該電極積層体を外装体内に収容し、電解液に浸す。正極タブ、負極タブの一部を外部に突出するようにして外装体を封止することで、二次電池を作製する。
 以下、本実施形態の実施例について詳細に説明するが、本実施形態は以下の実施例に限定されるものではない。
 [実施例1]
 (負極の作製)
 負極活物質である鱗片状黒鉛(SG)として、鱗片状人造黒鉛粉末(平均粒径(D50):13μm、比表面積:2.0m/g、アスペクト比:4.3)を用意した。バインダーとして、フッ素系樹脂(FP)であるVDF/TFE/HFP3元共重合体(商品名:ネオフロンVT470、ダイキン工業(株)製)を用意した。また、バインダーとして、イミド系樹脂(IP)であるポリアミドイミド(商品名:バイロマックスHR11NN、東洋紡製)を用意した。該ポリアミドイミドの閉環率は100%である。鱗片状黒鉛(SG)、フッ素系樹脂(FP)およびイミド系樹脂(IP)を、それぞれの固形分の質量比がSG:FP:IP=95.0:2.5:2.5となるようにNMP中に均一に分散させて、負極スラリーを調製した。該負極スラリーを負極集電体である厚み15μmの銅箔上に塗布した。その後、125℃にて10分間乾燥させてNMPを蒸発させることにより、負極活物質層を形成した。該負極活物質層をプレスすることにより、負極を作製した。なお、乾燥後の単位面積当たりの負極活物質層の質量は0.008g/cmとした。
 (正極の作製)
 正極活物質として、LiMn粉末(平均粒径(D50):15μm、比表面積:0.5m/g)を用意した。該正極活物質と、バインダーとしてのPVDFと、導電助剤としてのカーボンブラックとを、質量比91:4:5でNMP中に均一に分散させて、正極スラリーを調製した。該正極スラリーを正極集電体である厚み20μmのアルミニウム箔上に塗布した。その後、125℃にて10分間乾燥させてNMPを蒸発させることにより正極活物質層を形成し、正極とした。なお、乾燥後の単位面積当たりの正極活物質層の質量は0.024g/cmとした。
 (非水電解液)
 EC:DEC=30:70(体積%)の比率で混合した非水溶媒に、電解質としてLiPFを1mol/Lとなるように溶解させた非水電解液を用意した。この非水電解液に、添加剤としてビニレンカーボネートを1.5質量%添加した。
 (二次電池の作製)
 作製した正極および負極を各々5cm×6cmに切り出した。このうち、一辺5cm×1cmはタブを接続するために電極活物質層を形成していない部分(未塗布部)とし、電極活物質層が形成された部分は5cm×5cmとした。幅5mm×長さ3cm×厚み0.1mmのアルミニウム製の正極タブを、正極の未塗布部に長さ1cmで超音波溶接した。また、正極タブと同サイズのニッケル製の負極タブを、負極の未塗布部に超音波溶接した。6cm×6cmのポリエチレンおよびポリプロピレンからなるセパレータの両面に前記負極と前記正極とを電極活物質層同士がセパレータを隔てて重なるように配置して、電極積層体を得た。2枚の7cm×10cmのアルミニウムラミネートフィルムの長辺の一方を除いて三辺を熱融着により幅5mmで接着して、袋状のラミネート外装体を作製した。該袋状のラミネート外装体に、ラミネート外装体の一方の短辺より1cmの距離となるように前記電極積層体を挿入した。さらに前記非水電解液を0.2g注液して真空含浸させた後、減圧下にて開口部を熱融着により幅5mmで封止した。これにより、ラミネート型の二次電池を作製した。
 (初回充放電)
 作製した二次電池に対して、初回充放電を行った。まず、20℃にて5時間率(0.2C)相当の10mAの定電流で4.2Vまで充電した。その後、合計で8時間4.2V定電圧充電を行った。その後、10mAで3.0Vまで定電流放電した。初回充電容量に対する初回放電容量の比率((初回放電容量/初回充電容量)×100(%))を充放電効率(%)として算出した。結果を表1に示す。
 (サイクル試験)
 前記初回充放電を行った二次電池を、1C(50mA)で4.2Vまで充電した。その後、合計で2.5時間4.2V定電圧充電を行った。その後、1Cで3.0Vまで定電流放電を行った。この充放電サイクルを45℃で500回繰り返した。初回放電容量に対する500サイクル後の放電容量の比率を容量維持率(%)として算出した。結果を表1に示す。
 [実施例2]
 負極スラリーの調製において、SG、FPおよびIPの質量比をSG:FP:IP=95.0:3.5:1.5とした以外は実施例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [実施例3]
 負極スラリーの調製において、SG、FPおよびIPの質量比をSG:FP:IP=95.0:4.0:1.0とした以外は実施例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [実施例4]
 負極スラリーの調製において、SG、FPおよびIPの質量比をSG:FP:IP=95.0:4.5:0.5とした以外は実施例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例1]
 負極スラリーの調製において、イミド系樹脂(IP)を添加せず、SGおよびFPの質量比をSG:FP=95.0:5.0とした以外は実施例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例2]
 負極スラリーの調製において、フッ素系樹脂(FP)を添加せず、SGおよびIPの質量比をSG:IP=95.0:5.0とした以外は実施例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例3]
 負極の作製において、125℃にて10分間乾燥させた後、窒素気流中で250℃にて10分間熱処理を行った以外は比較例2と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例4]
 負極スラリーの調製において、イミド系樹脂(IP)としてポリイミド前駆体であるポリアミック酸溶液(商品名:U-ワニスA、宇部興産(株)製、イミド環の閉環率0%)を用いた以外は比較例2と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例5]
 負極の作製において、125℃にて10分間乾燥させた後、窒素気流中で300℃にて10分間熱処理を行った以外は比較例4と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例6]
 負極スラリーの調製において、フッ素系樹脂(FP)を添加せず、SGおよびIPの質量比をSG:IP=98.5:1.5とした以外は実施例1と同様の方法で二次電池を作製し、評価した。しかし、比較例6では、負極活物質層が集電体から剥離したため前記評価を行うことが出来なかった。
 [比較例7]
 負極スラリーの調製において、鱗片状人造黒鉛粉末の代わりに球状黒鉛(天然黒鉛、平均粒径(D50):20μm、比表面積:0.8m/g、表面に炭素被覆有)を用いた以外は比較例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例8]
 負極スラリーの調製において、鱗片状人造黒鉛粉末の代わりに球状黒鉛(天然黒鉛、平均粒径(D50):20μm、比表面積:0.8m/g、表面に炭素被覆有)を用いた以外は実施例3と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例9]
 負極スラリーの調製において、鱗片状人造黒鉛粉末の代わりに球状黒鉛(天然黒鉛、平均粒径(D50):20μm、比表面積:0.8m/g、表面に炭素被覆有)を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例10]
 負極スラリーの調製において、鱗片状人造黒鉛粉末の代わりに球状黒鉛(天然黒鉛、平均粒径(D50):20μm、比表面積:0.8m/g、表面に炭素被覆有)を用いた以外は比較例2と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例11]
 正極スラリーの調製において、バインダーとして、PVDFの代わりにフッ素系樹脂(FP)とイミド系樹脂(IP)とを、質量比でFP:IP=3.2:0.8として用いた以外は比較例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
 [比較例12]
 正極スラリーの調製において、バインダーとして、PVDFの代わりにフッ素系樹脂(FP)とイミド系樹脂(IP)とを、質量比でFP:IP=2.0:2.0として用いた以外は比較例1と同様の方法で二次電池を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されているように、負極のバインダーとしてフッ素系樹脂(FP)のみを使用した比較例1では、充放電効率は十分であったが容量維持率が低かった。また、負極のバインダーとしてイミド系樹脂(IP)のみを使用した比較例2では、容量維持率は比較例1より高かったが、充放電効率が比較例1より低かった。一方、負極のバインダーとしてフッ素系樹脂(FP)とイミド系樹脂(IP)とを併用した実施例1~4では、いずれも比較例1、2と同等またはこれらより高い容量維持率を示した。また、充放電効率についてもいずれも比較例2より高く、実施例2~4については比較例1より高い値を示した。以上の結果から、負極活物質としての鱗片状黒鉛(SG)に対し、負極のバインダーとしてフッ素系樹脂(FP)とイミド系樹脂(IP)とを併用することにより、充放電効率と容量維持率とが向上することが確認された。
 また、表1からフッ素系樹脂(FP)に対しイミド系樹脂(IP)の比率が高いと充放電効率が低下する傾向が見られたことから、イミド系樹脂(IP)自体がリチウムをトラップすることにより不可逆容量が発生していることが推測された。
 比較例2、3ではイミド環の閉環率の高いイミド系樹脂(IP)を用いた場合における、高温での熱処理の影響について検討した。比較例2、3では充放電効率、容量維持率のいずれも250℃の熱処理の有無によって大きな差は見られなかった。一方、比較例4、5ではイミド環が閉環されていないポリイミド前駆体であるポリアミック酸を用いた場合における、高温での熱処理の影響について調べた。比較例4は比較例5に対し大幅に容量維持率が低下していることから、この場合300℃で熱処理をする必要があることが確認された。フッ素系樹脂(FP)はその耐熱性から熱処理温度が150℃以下に限定されるため、フッ素系樹脂(FP)とイミド環が閉環されていない前駆体とを併用した場合には、サイクル特性が低下する。したがって、本実施形態においては負極スラリーの調製において、イミド環の閉環率の高いイミド系樹脂(IP)を用いることが好ましい。
 比較例7から10では、負極活物質として球状黒鉛を用いた場合について検討した。球状黒鉛を用いた場合には、鱗片状黒鉛(SG)を用いた実施例と比較して充放電効率、容量維持率はいずれも低かった。また、フッ素系樹脂(FP)とイミド系樹脂(IP)との比率を変更しても充放電効率、容量維持率の大幅な向上は観測されなかった。これより、フッ素系樹脂(FP)とイミド系樹脂(IP)のバインダーは、鱗片状黒鉛(SG)に有効であることが確認された。
 比較例11、12では、特許文献3に記載のあるように正極のバインダーとしてフッ素系樹脂(FP)とイミド系樹脂(IP)とを使用した場合について検討した。しかし、実施例と比較して充放電効率、容量維持率は低く、これらのバインダーを負極のバインダーとして用いることが有効であることが確認された。
 (非水電解液中における負極活物質層の接着性)
 負極のバインダーとしてフッ素系樹脂(FP)とイミド系樹脂(IP)を併用することによる効果についてさらに検討するため、実施例の中で最も高い充放電効率および容量維持率を示した実施例3と、比較例1および2について、以下の評価を行った。
 実施例3、比較例1および2において作製した負極のみを3辺封止したアルミラミネートフィルムに入れ、実施例3、比較例1および2と同様に非水電解液を注入して1辺を封止した。これを20℃、45℃および60℃で20時間放置した後、負極を取り出して負極活物質層の剥離の有無を目視により確認した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 負極のバインダーとしてフッ素系樹脂(FP)のみを使用した比較例1では、温度が高くなるにしたがって顕著に負極活物質層の剥離が認められた。一方、実施例3および比較例2では60℃においても剥離が認められなかった。このことから、負極のバインダーとしてフッ素系樹脂(FP)にイミド系樹脂(IP)を添加することにより、負極活物質層の接着性が向上することが確認された。
 (初回充放電曲線)
 実施例3、比較例1および2において作製した負極(12mmΦ)と、対極としてのリチウム金属(15mmΦ、厚さ1.4mm)と、セパレータ(21mmΦ)とを用いて、20mmΦ×3.2mmのコインセルを作製した。非水電解液には実施例1と同様の非水電解液を使用し、負極とセパレータとリチウム金属とをそれぞれ非水電解液に含浸させてからコインセルを組み立てた。該コインセルに対して初回充放電を行い、横軸を負極活物質質量あたりの容量(mAh/g)、縦軸を電圧(mV)とする初回充放電曲線を測定した。なお、初回充電条件は0.16mAでのCC-CV充電(CV時間:20時間、下限電圧:5mV)とした。また、初回放電条件は0.16mAでのCC放電(上限電圧:2000mV)とした。
 図2に、実施例3、比較例1および2における初回充放電曲線の測定結果を示す。負極のバインダーとしてフッ素系樹脂(FP)のみを使用した比較例1では、初回充電時に0.5V付近に非水電解液との反応によるものと推測されるショルダーが観測された。したがって、負極のバインダーとしてフッ素系樹脂(FP)のみを用いた場合には、負極活物質層の接着性が低いのみならず、非水電解液との反応性が高いことが示唆された。一方、実施例3および比較例2では、0.5V付近のショルダーは観測されず、非水電解液との反応性が低いことが確認された。
 また、実施例3の方が、比較例1および2よりも不可逆容量が小さいことから、負極のバインダーとしてフッ素系樹脂(FP)とイミド系樹脂(IP)の両方ともを用いる方が、それぞれを単独で用いるよりも充放電特性が向上することが確認された。これは、イミド系樹脂(IP)の添加により非水電解液との反応が抑制されるとともに、イミド系樹脂(IP)の添加量を制御することでイミド系樹脂(IP)によるリチウムトラップも抑制されるため、全体の不可逆容量が低減されると推測される。
 一方、前述したように比較例6では、負極活物質層が負極集電体から剥離したため二次電池の評価を行うことができなかった。負極のバインダーとしてイミド系樹脂(IP)のみならず、フッ素系樹脂(FP)を併用することにより、イミド系樹脂(IP)の使用量を大幅に低減できることが確認された。
 この出願は、2011年12月16日に出願された日本出願特願2011-275605を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Claims (19)

  1.  鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂とを含む二次電池用負極。
  2.  前記イミド系樹脂がポリイミドまたはポリアミドイミドである請求項1に記載の二次電池用負極。
  3.  前記フッ素系樹脂が、ビニリデンフルオライド(VDF)、テトラフルオロエチレン(TFE)およびヘキサフルオロプロパン(HFP)からなる群から選択される少なくとも一種を構成単位として含むポリマーまたはコポリマーである請求項1または2に記載の二次電池用負極。
  4.  前記フッ素系樹脂(FP)と前記イミド系樹脂(IP)との合計に対する前記イミド系樹脂(IP)の質量比(IP/(FP+IP))が、0.1以上、0.5以下である請求項1から3のいずれか1項に記載の二次電池用負極。
  5.  前記鱗片状黒鉛(SG)に対する前記フッ素系樹脂(FP)の質量比(FP/SG)が、0.01以上、0.05以下である請求項1から4のいずれか1項に記載の二次電池用負極。
  6.  前記鱗片状黒鉛(SG)に対する前記イミド系樹脂(IP)の質量比(IP/SG)が、0.005以上、0.05以下である請求項1から5のいずれか1項に記載の二次電池用負極。
  7.  鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂と、前記フッ素系樹脂および前記イミド系樹脂を溶解する溶媒と、を含む負極スラリーを負極集電体に塗布する工程と、
     前記負極集電体を100℃以上、150℃以下の温度で熱処理する工程と、により製造される請求項1から6のいずれか1項に記載の二次電池用負極。
  8.  前記負極スラリーに含まれるイミド系樹脂の閉環率が80%以上である請求項7に記載の二次電池用負極。
  9.  前記鱗片状黒鉛のアスペクト比が2以上、10以下である請求項1から8のいずれか1項に記載の二次電池用負極。
  10.  請求項1から9のいずれか1項に記載の二次電池用負極を備える二次電池。
  11.  LiMn2-xM2(M2はMg、Al、Co、Ni、FeおよびBからなる群から選択される少なくとも一種の元素であり、0≦x<2である。)を含む正極を備える請求項10に記載の二次電池。
  12.  鱗片状黒鉛と、フッ素系樹脂と、イミド系樹脂と、前記フッ素系樹脂および前記イミド系樹脂を溶解する溶媒と、を含む負極スラリーを負極集電体に塗布する工程と、
     前記負極集電体を100℃以上、150℃以下の温度で熱処理する工程と、を含む二次電池用負極の製造方法。
  13.  前記負極スラリーに含まれるイミド系樹脂の閉環率が80%以上である請求項12に記載の二次電池用負極の製造方法。
  14.  前記イミド系樹脂がポリイミドまたはポリアミドイミドである請求項12または13に記載の二次電池用負極の製造方法。
  15.  前記フッ素系樹脂が、ビニリデンフルオライド(VDF)、テトラフルオロエチレン(TFE)およびヘキサフルオロプロパン(HFP)からなる群から選択される少なくとも一種を構成単位として含むポリマーまたはコポリマーである請求項12から14のいずれか1項に記載の二次電池用負極の製造方法。
  16.  前記フッ素系樹脂(FP)と前記イミド系樹脂(IP)との合計に対する前記イミド系樹脂(IP)の質量比(IP/(FP+IP))が、0.1以上、0.5以下である請求項12から15のいずれか1項に記載の二次電池用負極の製造方法。
  17.  前記鱗片状黒鉛(SG)に対する前記フッ素系樹脂(FP)の質量比(FP/SG)が、0.01以上、0.05以下である請求項12から16のいずれか1項に記載の二次電池用負極の製造方法。
  18.  前記鱗片状黒鉛(SG)に対する前記イミド系樹脂(IP)の質量比(IP/SG)が、0.005以上、0.05以下である請求項12から17のいずれか1項に記載の二次電池用負極の製造方法。
  19.  前記鱗片状黒鉛のアスペクト比が2以上、10以下である請求項12から18のいずれか1項に記載の二次電池用負極の製造方法。
PCT/JP2012/080189 2011-12-16 2012-11-21 二次電池 WO2013088929A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549186A JP6098522B2 (ja) 2011-12-16 2012-11-21 二次電池用負極およびその製造方法、並びに二次電池
US14/365,806 US9570747B2 (en) 2011-12-16 2012-11-21 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-275605 2011-12-16
JP2011275605 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013088929A1 true WO2013088929A1 (ja) 2013-06-20

Family

ID=48612384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080189 WO2013088929A1 (ja) 2011-12-16 2012-11-21 二次電池

Country Status (3)

Country Link
US (1) US9570747B2 (ja)
JP (1) JP6098522B2 (ja)
WO (1) WO2013088929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794019A (zh) * 2013-12-06 2016-07-20 大金工业株式会社 二次电池用隔膜和二次电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021018887A2 (pt) * 2019-04-26 2021-11-30 Dow Global Technologies Llc Processo para produzir um cátodo de bateria de íons de lítio, cátodo, e, bateria de íons de lítio
KR20220027878A (ko) * 2019-07-01 2022-03-08 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 2차 배터리 전극용 조성물

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126600A (ja) * 1997-10-21 1999-05-11 Fuji Elelctrochem Co Ltd リチウムイオン二次電池
JPH11185751A (ja) * 1997-12-16 1999-07-09 Asahi Glass Co Ltd 二次電源
JP2000200609A (ja) * 1999-01-08 2000-07-18 Hitachi Maxell Ltd 非水二次電池
JP2003017059A (ja) * 2001-04-24 2003-01-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004335188A (ja) * 2003-05-02 2004-11-25 Hitachi Maxell Ltd コイン形非水二次電池
JP2007012559A (ja) * 2005-07-04 2007-01-18 Sony Corp 電池
JP2009093924A (ja) * 2007-10-09 2009-04-30 Nissan Motor Co Ltd リチウムイオン二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311402B2 (ja) 1992-11-19 2002-08-05 三洋電機株式会社 二次電池
JPH10188992A (ja) * 1996-12-24 1998-07-21 Sony Corp 非水電解液電池
JP3621061B2 (ja) 2000-10-11 2005-02-16 東洋炭素株式会社 リチウムイオン二次電池用負極、リチウムイオン二次電池用負極のバインダー及びそれらを用いたリチウムイオン二次電池
JP5032773B2 (ja) * 2006-02-03 2012-09-26 第一工業製薬株式会社 イオン性液体を用いたリチウム二次電池
JP5215307B2 (ja) * 2007-07-18 2013-06-19 第一工業製薬株式会社 リチウム二次電池
JP2010108928A (ja) 2008-10-01 2010-05-13 Daiken Chemical Co Ltd リチウム電池活物質材料製造方法、リチウム電池活物質材料及びリチウム系二次電池
JP2010092719A (ja) 2008-10-08 2010-04-22 Hitachi Chem Co Ltd 非水電解液系エネルギーデバイス電極用接着添加剤、これを用いた非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極、及び非水電解液系エネルギーデバイス
WO2010143641A1 (ja) * 2009-06-08 2010-12-16 住友化学株式会社 電極合剤、電極合剤ペースト、電極および非水電解質二次電池
JP5329310B2 (ja) * 2009-06-10 2013-10-30 第一工業製薬株式会社 イオン液体を用いたリチウム二次電池
KR101181944B1 (ko) * 2010-09-14 2012-09-11 히다치 막셀 에너지 가부시키가이샤 비수 이차 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126600A (ja) * 1997-10-21 1999-05-11 Fuji Elelctrochem Co Ltd リチウムイオン二次電池
JPH11185751A (ja) * 1997-12-16 1999-07-09 Asahi Glass Co Ltd 二次電源
JP2000200609A (ja) * 1999-01-08 2000-07-18 Hitachi Maxell Ltd 非水二次電池
JP2003017059A (ja) * 2001-04-24 2003-01-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004335188A (ja) * 2003-05-02 2004-11-25 Hitachi Maxell Ltd コイン形非水二次電池
JP2007012559A (ja) * 2005-07-04 2007-01-18 Sony Corp 電池
JP2009093924A (ja) * 2007-10-09 2009-04-30 Nissan Motor Co Ltd リチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794019A (zh) * 2013-12-06 2016-07-20 大金工业株式会社 二次电池用隔膜和二次电池
CN113067103A (zh) * 2013-12-06 2021-07-02 大金工业株式会社 二次电池用隔膜和二次电池

Also Published As

Publication number Publication date
US9570747B2 (en) 2017-02-14
JP6098522B2 (ja) 2017-03-22
JPWO2013088929A1 (ja) 2015-04-27
US20140356706A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US11101501B2 (en) Electrolyte and negative electrode structure
JP5574404B2 (ja) リチウムイオン二次電池
JP5582587B2 (ja) リチウムイオン二次電池
WO2015037451A1 (ja) リチウムイオン二次電池
WO2017057123A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6560879B2 (ja) リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2010267475A (ja) リチウムイオン二次電池
JP2013077398A (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2017149927A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
US10305108B2 (en) Graphite-based active material, negative electrode, and lithium ion secondary battery
WO2012098639A1 (ja) 非水系電解質二次電池
JP2016119180A (ja) 非水系リチウム二次電池
US10090510B2 (en) Non-aqueous electrolyte secondary battery
JP2010097751A (ja) 非水二次電池
JP6664148B2 (ja) リチウムイオン二次電池
JP5207282B2 (ja) リチウム二次電池
JP5213011B2 (ja) リチウム二次電池用負極、およびそれを用いたリチウム二次電池
US10217984B2 (en) Separator and lithium ion secondary battery including the same
JP6098522B2 (ja) 二次電池用負極およびその製造方法、並びに二次電池
JP6264297B2 (ja) リチウムイオン二次電池用電極およびこれを用いたリチウムイオン二次電池
JP6102916B2 (ja) リチウムイオン二次電池
JP5424322B2 (ja) 非水系電解質二次電池
JP6269483B2 (ja) 二次電池
JP2022153188A (ja) リチウムイオン二次電池
JP2022153190A (ja) リチウムイオン二次電池用電極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14365806

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12857124

Country of ref document: EP

Kind code of ref document: A1