WO2013084520A1 - 無線通信システム、および、無線通信システムの通信経路制御方法 - Google Patents

無線通信システム、および、無線通信システムの通信経路制御方法 Download PDF

Info

Publication number
WO2013084520A1
WO2013084520A1 PCT/JP2012/061742 JP2012061742W WO2013084520A1 WO 2013084520 A1 WO2013084520 A1 WO 2013084520A1 JP 2012061742 W JP2012061742 W JP 2012061742W WO 2013084520 A1 WO2013084520 A1 WO 2013084520A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
wireless
communication
position information
base station
Prior art date
Application number
PCT/JP2012/061742
Other languages
English (en)
French (fr)
Inventor
誠 谷川原
川口 貴正
清野 憲二
徳久 柳原
苗村 万紀子
藤井 健二郎
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2013084520A1 publication Critical patent/WO2013084520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a radio communication system and a communication path control method of the radio communication system, and more particularly, to an ad hoc network system having a relay function of a radio device, and stable to a base station when the radio device does not move.
  • the present invention relates to a radio communication system suitable for securing a highly reliable communication path and a communication path control method for the radio communication system.
  • This network becomes an ad hoc network system in which each wireless device relays and transmits information of a power meter (wireless device) having a communication device function to each home to a base station.
  • Patent Document 1 discloses a conventional technique for an ad hoc network system using wireless communication.
  • this patent document 1 in an ad hoc network that relays (multi-hops) a wireless device that directly receives electromagnetic waves between wireless devices, the wireless power is not easily turned off in order to minimize the frequency of changing the communication route.
  • a wireless communication system in which a communication route including a device and a wireless device that is difficult to move is selected as much as possible (see summary, etc.).
  • each member terminal is equipped with a GPS for positioning, and when communication with an adjacent group is interrupted, a leader terminal belonging to that group corrects the communication route to the adjacent group.
  • An ad hoc network system is disclosed.
  • Patent Document 1 and Patent Document 2 of the above prior art the absolute position is acquired using GPS positioning means, and the routing is determined from the positional relationship with the terminal, the repeater, and the base station, and the value of the radio wave intensity.
  • This search for a communication path generally requires complicated processing and takes time.
  • data packets in the middle of communication are buffered by the relay device until a new transmission destination is found. If the buffer of the relay device overflows, packet loss may occur.
  • the present invention has been made to solve the above-described problems, and its object is to provide a stable wireless communication system in which wireless communication is performed from each wireless device that does not move to another base station to the base station.
  • An object of the present invention is to provide a wireless communication system capable of performing communication through a highly reliable communication path.
  • the wireless communication system relates to a wireless communication system that includes a plurality of wireless devices that do not move and a base station, and each wireless device relays another wireless device and communicates along a route to the base station.
  • Each wireless device includes GPS or other location information acquisition means for acquiring its own location information, and communication status information acquisition means for acquiring information related to communication quality with other wireless devices.
  • the route control means obtains a route from the first wireless device to the base station, the wireless device in the cell which is a three-dimensional search space having a certain size including the first wireless device.
  • a device is obtained, and a second wireless device having the best communication quality with the first wireless device is selected from the wireless devices in the cell based on the communication state information aggregation table.
  • the communication quality evaluation with the second wireless device is compared among the wireless devices in the search space, and is within a certain threshold, and the position information
  • the configuration of another radio system is related to a radio communication system in which a plurality of radio devices that do not move and a base station are included, and each radio device relays another radio device and communicates along a route to the base station.
  • Each radio apparatus acquires position information acquisition means such as GPS for acquiring its own position information, position information transmission / reception means for receiving position information of other radio apparatuses and transmitting its own position information, and acquisition.
  • a position information table that holds the position information of the received wireless device and the received position information of the other wireless device, a communication state information acquisition unit that acquires information about communication quality with the other wireless device, and the received other wireless device A communication state information table that holds information relating to communication quality with the wireless communication device, and a route control unit that obtains a wireless device that performs next relay on the route of the base station from the wireless device. That.
  • the path control means obtains a wireless device in a cell, which is a three-dimensional search space having a certain size including the wireless device, when obtaining a wireless device to perform the next relay from the wireless device, and performs communication.
  • the wireless device having the best communication quality with the wireless device is selected from the wireless devices in the search space, and the wireless device in the search space is selected based on the communication state information table.
  • the communication quality with the wireless device having the best communication quality with the wireless device among the devices is compared, and the communication quality with the wireless device is within a certain threshold and based on the location information table.
  • radio waves are routed by giving priority to the height direction by using the property that the antenna flies farther as the antenna is higher than the ground.
  • the present invention collects power consumption information by a smart meter.
  • multi-hop (multi-stage relay) and ad hoc wireless communication for power generation control such as solar power generation each wireless device is used in wireless communication that enables mutual communication via a relay device. The frequency of route re-searching is low, and the communication network is sufficiently stable and reliable.
  • a wireless communication system that performs wireless communication from a wireless device that does not move to another base station to a base station, wireless communication that can be stably performed using a highly reliable communication path.
  • a communication system can be provided.
  • FIG. 6 is a diagram illustrating an example of a position information table 270 stored in a storage unit 202a of the wireless device 101.
  • FIG. 3 is a diagram illustrating an example of messages exchanged between a wireless device 101 and a base station 102.
  • 6 is a diagram illustrating an example of a communication state information table 281 stored in a storage unit 202a of the wireless device 101.
  • FIG. 7 is a flowchart illustrating processing for obtaining a wireless device around a certain wireless device for relay in a wireless communication system according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the configuration of the wireless device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the configuration of the base station according to the first embodiment of the present invention.
  • the base station acquires position information of each wireless device, determines a communication route, and transmits the communication route information to each wireless device.
  • the wireless communication system 100 includes wireless devices 101, 111, 121, a base station 102, and a network 103 as shown in FIG.
  • the base station 102 is installed in the utility pole 104, the wireless device 101 is installed in the detached house 105, the wireless device 111 is installed in the detached house 115, and the wireless device 121 is installed in the apartment house 106.
  • the wireless device 101 is a device that wirelessly communicates with the base station 102 and transmits sensor measurement information via other wireless devices 111 and 121 when radio waves do not reach the base station 102 directly.
  • it is a power meter that measures the power of each household and sometimes transmits meter-reading information that is the basis for calculating the electricity bill.
  • the sensor information to be measured is an electric power meter, but gas or water may be measured, or power generation amount of the solar power generation system may be measured.
  • the base station 102 is connected to a plurality of wireless devices 101, 111, and 121 by wireless communication, collects sensor information measured by the wireless device 101, and collects data from a plurality of base stations (not shown). Send data to the data center.
  • the network 103 is connected to a plurality of base stations and connected to a data center (not shown).
  • the utility pole 104 is a wooden or reinforced concrete pole on which the base station 102 is installed.
  • the base station 102 is installed on the utility pole 104 at a height of several meters from the ground surface.
  • the house 105 is, for example, a detached house, and the wireless device 101 is installed. Similarly, in the detached house 115, the wireless device 111 is installed.
  • the apartment house 106 is, for example, a high-rise apartment, and each floor lives in a private room where a plurality of families are sold.
  • a wireless device 101 is installed in each home.
  • the wireless device 101 (same for other wireless devices) includes a CPU 201, a storage unit 202 a, a clock unit 203, a position information acquisition unit 204, a power measurement unit 205, an antenna 206, and a wireless unit 220. Consists of
  • the CPU 201 is an arithmetic processing device that controls the operation of each unit of the wireless device and executes and processes a program stored in the storage unit 202a. Although not shown, it contains a nonvolatile semiconductor memory whose contents can be changed but the contents disappear when the power is turned off. The semiconductor memory temporarily calls programs and holds variables and table information.
  • the CPU 201 is connected to the storage unit 202a through a memory bus, and is connected to the clock unit 203 through a signal line.
  • the position information acquisition unit 204 is not necessarily included in the wireless apparatus 101, but is connected via a serial communication interface or the like when included. When not included, for example, short-distance wireless communication, for example, a Bluetooth interface is used.
  • the power measuring unit 205 is connected by, for example, CT.
  • the wireless unit 220 is connected by a serial communication interface such as a clock synchronization method such as SPI.
  • the storage unit 202a is a non-volatile semiconductor memory or a hard disk drive (HDD) that stores processing programs for a long period of time.
  • the storage unit 202a includes, for example, a reception processing program 211, a transmission processing program 212, a position information table 270, a communication state information table 271, a position information communication program 213, a communication state management program 214, a relay processing program 215, and a power information processing program. 216 is held.
  • reception processing program 211 has an LQI calculation unit 216 and a decoding unit 217.
  • the transmission processing program 212 includes a carrier sense unit 218 and an encoding unit 219.
  • the clock unit 203 is a device that includes a crystal resonator or a crystal oscillator, and provides a clock signal that serves as a guideline for the operation of the CPU 201.
  • the CPU 201 gives a pulse signal at 24 MHz.
  • the position information acquisition unit 204 is a part that acquires a position on the earth where the wireless device 101 is installed. For example, it is a system that can acquire the position by a global navigation satellite system of a global satellite positioning system, etc., and measures the latitude / longitude / altitude on the earth and stores the latitude / longitude / altitude information in the storage unit 202a. . It is not necessarily required to be latitude / longitude / altitude, and any device that acquires an absolute position on the earth or a relative position between the base station and another wireless device may be used.
  • the position information acquisition unit 204 may have a resolution with an error of several meters in practice.
  • the position information acquisition unit 204 does not necessarily have to be built in, and may be an external device.
  • the position information acquisition unit 204 may use an atmospheric pressure sensor or the like particularly at an altitude.
  • the atmospheric pressure may change depending on the weather, but if the weather is constant, the atmospheric pressure will drop if the altitude rises, and if it is a barometric sensor using 16-bit AD conversion, the floor number such as the first floor, the second floor, etc. is identified. can do.
  • positioning may be performed from a wireless device 101, a base station 102, or the like, which is a known position reference, using a wireless positioning technology such as TDOA or AOA, and converted into latitude and longitude height.
  • TDOA time difference synchronization
  • AOA wireless positioning technology
  • positioning is performed by optics, laser, ultrasonic waves, etc., and converted into latitude and longitude heights.
  • the power measuring unit 205 is a part called a clamp, for example, which measures a current flowing through a power line or measures a voltage by another means (not shown) to measure power.
  • the measured data is given to the CPU 201 as digital data by A / D conversion, for example.
  • the antenna 206 is connected to the wireless unit 220 with, for example, a coaxial cable with an impedance of 50 ohms, and is a device for performing transmission and reception by wireless communication with the other wireless devices 111 and 121.
  • the wireless communication is performed by electromagnetic waves such as radio waves and infrared rays.
  • a UHF band 920 MHz wireless is used.
  • two antennas 206 are displayed, but one antenna or a plurality of antennas such as four may be used.
  • the types and installation positions of the antennas are different. For example, if one antenna is a built-in antenna, the other antenna is an external antenna. For example, if both external antennas are installed horizontally, the other is installed vertically. Further, when a laminated chip antenna is used as the built-in antenna, if a certain laminated chip antenna is installed horizontally on the substrate, another laminated chip antenna is installed vertically.
  • the reference signal generation unit 210 includes, for example, a crystal resonator or a crystal oscillator that generates a reference signal for the wireless unit 220 to transmit / receive a wireless signal, and generates a reference signal such as 32 kHz or 10 MHz, for example. .
  • the wireless unit 220 includes a transceiver switch 221, a receiver 222, a transmitter 223, an antenna switch 224, an impedance matching circuit 225, and a filter 226.
  • the CPU 201 is connected by, for example, an SPI or clock synchronous serial communication interface.
  • the reference signal generator 210 is connected by a signal line.
  • the transceiver switch 221 is connected to the reception unit 222 and the transmission unit 223.
  • the transmission processing unit 226 is normally connected to the reception processing unit 225 through a signal line and disconnected from the transmission processing unit 226.
  • the switch is switched according to an instruction from the transmission processing unit 226 and the transmission processing unit 223 and the antenna 206 are connected.
  • the filter 222 is, for example, a SAW or a band-pass filter, and is a part that prevents unnecessary radiation.
  • the impedance matching circuit 223 is configured by, for example, a resistor, a capacitor, an inductance, and the like, and is a part that adjusts the impedance of the connection between the wireless unit 220 and the antenna 206 to, for example, 50 ohms.
  • the antenna switch 224 is a part for switching which antenna to output when there are a plurality of antennas 206. Switching is manual or is changed by a command from the CPU 201.
  • the receiving unit 225 is a part that receives a radio signal received from the antenna 206 and passes the data to the CPU 201.
  • the reception unit 225 includes a demodulation processing unit 224 and an RSSI measurement unit 225.
  • the demodulation processing unit 231 is a part that demodulates data from, for example, radio waves of a radio signal received from the antenna 206, generates a reference wave for comparison with a carrier wave from the reference signal generation unit 210, and specifies a modulation scheme designated in advance. Compared with, this is the part where data is extracted.
  • An RSSI (Received Signal Strength Indicator) measurement unit 232 measures received power when received, converts the radio wave intensity (RSSI) to a value such as dBm, C / N0, and the like, and passes it to the CPU 201. .
  • RSSI Received Signal Strength Indicator
  • the transmission unit 226 is a part that transmits data to the antenna 206 by the CPU 201.
  • the transmission unit 226 includes a carrier wave generation unit 233 and a modulation processing unit 234.
  • the carrier wave generation unit 233 is a part that generates a carrier wave from the reference signal generation unit 210, and includes, for example, a PLL frequency synthesizer, and generates, for example, 920 MHz as the carrier wave.
  • the modulation processing unit 234 performs modulation processing for data to be put on a 920 MHz radio wave. For example, this is a portion that performs modulation processing by PSK (Phase Shift Keying) or FSK (Frequency-Shift Keying).
  • PSK Phase Shift Keying
  • FSK Frequency-Shift Keying
  • reception processing program 211 the transmission processing program 212, the location information communication program 213, the communication state management program 214, the relay processing program 215, and the power information processing program 216 held in the storage unit 202a will be described.
  • the reception processing program 211 is a program that operates on the CPU 201.
  • the reception processing program 211 acquires the reception data of the reception unit 225 from the wireless unit 220 via a serial communication interface such as SPI, and decodes the received data into a bit string.
  • This is a program for confirming whether the message is addressed to an address and acquiring a payload portion to be described later.
  • the LQI (Link Quality Indicator) calculation unit 216 is a part that calculates the quality (Quality) of the received radio signal in the process of decoding it into a bit string or performing a parity calculation described later.
  • the decoding unit 217 acquires the reception data of the reception unit 225 and decodes it into a bit string.
  • the transmission processing program 218 is a program that determines whether or not it may be transmitted by itself and encodes a previously generated message and passes the data to the transmission unit 225 of the wireless unit 220 if transmission is acceptable. .
  • the carrier sense unit 218 measures the reception power at the antenna 206 from, for example, the RSSI measurement unit 232 of the reception unit 225. If the reception power is weak, the other wireless devices 111 and 121, the base station 102, and the like are transmitting It is a part to confirm that it is not.
  • the encoding unit 219 is a part that encodes a message generated in advance and passes the data to the transmission unit 225 of the wireless unit 220.
  • the location information communication program 213 is a program for storing the location information of the base station 102 sent from the base station 102 in the location information table 270.
  • the communication state management program 214 is a program that collects communication states of wireless devices that can communicate around the wireless device 101 and stores them in the communication state information table.
  • the relay processing program 215 is a program that operates on the CPU 201, and the wireless devices 101, 111, 121, etc. obtain other destination wireless devices in accordance with the route instructions from the base station 102 and instruct the transmission processing program. It is a program to do.
  • the power information processing program 216 is a program that operates on the CPU 201, is a program that acquires power information from the power measurement unit 205 via AD conversion and transmits the power information to the base station.
  • the base station 102 includes a CPU 201, a storage unit 202 b, a clock unit 203, a location information acquisition unit 204, an antenna 206, and a radio unit 220.
  • the base station 102 functions as a gateway for the wireless devices 101, 111, and 121 to collect power information from each wireless device and report it to the data center via the network 103. Further, the route information of each wireless device is obtained and route information is transmitted.
  • the base station 102 has the same configuration as that of the wireless devices 101, 111, and 121 for the clock unit 203, the position information acquisition unit 204, the antenna 206, and the wireless unit 220, but does not include the power measuring unit 205.
  • the contents of the program and data stored in the storage unit 202 are different.
  • the storage unit 202b of the base station 102 includes a position information table 280, a communication state information aggregation table 281, a route control table 282, a reception processing program 211, a transmission processing program 212, a position information communication program 290, a route control processing program 291, A power information aggregation program 295 is stored.
  • the location information communication program 213 is a program for storing location information sent from each wireless device in the location information table 280.
  • the route control processing program 291 is a program that calculates the route of each wireless device and transmits route information to each wireless device. The processing of this route control processing program 291 will be described in detail later.
  • the power information aggregation program 295 is a program that aggregates the power information measured by the power measurement unit 205 of each wireless device and processed by the power information processing program 216 and transmits it to the data center via the network 103.
  • FIG. 4 is a diagram illustrating an example of the position information table 270 stored in the storage unit 202a of the wireless device 101.
  • FIG. 5 is a diagram illustrating an example of messages exchanged between the wireless device 101 and the base station 102.
  • FIG. 6 is a diagram illustrating an example of the communication state information table 281 stored in the storage unit 202a of the wireless device 101.
  • FIG. 7 is a diagram illustrating an example of the position information table 280 stored in the storage unit 202 of the base station 102.
  • FIG. 8 is a diagram illustrating an example of the communication state information aggregation table 281 stored in the storage unit 202 b of the base station 102.
  • FIG. 9 is a diagram illustrating an example of the path control table 282 stored in the storage unit 202 b of the base station 102.
  • the location information table 250 stored in the storage unit 202 of the wireless device 101 holds the location information of its own wireless device 101 and the location information of the base station 102 as shown in FIG.
  • the location information of the base station 102 is information transmitted from the base station 102.
  • the position information of its own wireless device 101 is information acquired by the position information acquisition unit 204.
  • (x 1 , y 1 , z 1 ) is illustrated, but for example, (latitude, longitude, altitude) is not necessarily latitude / longitude / altitude, but absolute on the earth
  • the position or the relative position between the base station and another wireless device only needs to have a resolution with an error of several meters. For example, (latitude, longitude, sea level), (latitude, longitude, altitude), (latitude, longitude, sea level, floor floor), (latitude, longitude, altitude, floor floor) (latitude, longitude, barometric pressure), etc. May be.
  • latitude, longitude, altitude is (north latitude 35.6888710, east longitude 140.7242, altitude 100 m).
  • (Latitude, Longitude, Sea level) may be (Latitude 35.698710 North, 140.7242 East, 100 m above sea level), or (Latitude 35.68710 North, 140.7242 East, 100 m above sea level, 3 floors) Information may be added.
  • the value above sea level is generated, for example, by comparing latitude and longitude information with map data (with sea level and altitude data) of Japan maintained by the Geographical Survey Institute.
  • the collation method is acquired using the network 103 or the like.
  • it may be (latitude, longitude, barometric pressure value).
  • (x 1 , y 1 , z 1 ) may be, for example, a 128-bit “location information code” proposed by the Geographical Survey Institute.
  • the message 400 is a bit string data transmitted and received between wireless devices and between a wireless device and a base station as a wireless signal shown in FIG. 5A, a preamble 401, a destination address 402, a source address 403, a payload. (1) It is composed of 404 and parity 405.
  • the preamble 401 is a bit string such as “10111” such as an M-sequence GOLD code, and is a bit string for finding a radio signal from noise data.
  • the destination address 402 and the source address 403 are unique addresses held by the wireless devices 101, 111, 121, the base station 102, and the like.
  • international addresses such as a 48-bit MAC address and a 64-bit such as EUI-64 are used. It is a globally and uniquely managed address.
  • the payload 404 is an area for storing data. For example, as shown in FIG. 5B, a message type 411 and message data 412 are stored.
  • Parity 405 is an area in which a bit string such as a destination address 402, a source address 404, and a payload 404 is calculated by a calculation formula such as CRC16 and a value is stored. Further, it is used for calculation by the LQI calculation unit 216 and the like.
  • the position information table 280 stored in the storage unit 202a of the wireless device 101 holds the position information of the base station 102 and all the position information of the wireless device 101 in the wireless management area, as shown in FIG. .
  • the device ID of each wireless device is 001-and the device ID of the base station is 000 (hereinafter referred to as "base station 000, wireless device 001, wireless device 002, ##).
  • the communication state information table 271 stored in the storage unit 202a of the wireless device 101 holds each wireless device and communication quality information around it, and in this example, the communication quality is It is evaluated by RSSI. If the wireless device 000 is measuring, the RSSI value with the wireless device 002 is -73.0 [dBm].
  • the position information table 280 stored in the storage unit 202b of the base station 102 stores the position information of the base station 102 and the position information of all the wireless devices in the communication management area, as shown in FIG.
  • the location information of the base station 102 is information acquired by its own location information acquisition unit 204.
  • the position information of the wireless device is information acquired by the position information acquisition unit 204 from the position information of the wireless device of each device ID and transmitted from the wireless device to the base station.
  • the communication state information aggregation table 281 stored in the storage unit 202b of the base station 102 is a table that holds communication quality information with surrounding wireless devices sent from each wireless device, as shown in FIG.
  • the RSSI is recorded for the pair of the wireless device ID of the measurement source and the wireless device ID that is the measurement target.
  • the route control table 282 stored in the storage unit 202b of the base station 102 is a table representing a route from the wireless device having each device ID to the base station.
  • the address of each wireless device is stored.
  • ⁇ Wireless device 001 ⁇ Indicates that the route is wireless device 002.
  • the information in the route information table 270 is transmitted to the wireless device having each device ID.
  • FIG. 10 is a conceptual diagram for explaining processing for obtaining a route from a wireless device to a base station.
  • FIG. 11A and FIG. 11B are diagrams illustrating an example of a cell serving as a search space for a wireless device that is the next route from a certain wireless device.
  • FIG. 12 is a flowchart illustrating processing for obtaining a route from the wireless device to the base station.
  • a wireless device that is a route of a base station is sequentially obtained from wireless devices in a radio wave management area of a certain base station.
  • This processing is performed by the CPU 201 executing the route control processing program 291 of the base station 102.
  • the base station collects location information from each wireless device and stores it in the location information table 270 shown in FIG. 6 (S01).
  • the base station collects the communication quality information of the adjacent wireless device from each wireless device, reports it to the base station, and stores it in the communication quality information totaling table 281 shown in FIG. 8 (S02). ).
  • the wireless device 008 and the wireless device 009 whose communication quality is lower than ⁇ 85 [dBm] are prevented from sending information to the base station.
  • rs (i) ⁇ the wireless device at the start point is set (S03).
  • rs (i) represents the i-th wireless device.
  • rs (i) is a base station (S05).
  • rs (i) is a base station
  • search is complete
  • rs (0) starting radio apparatus
  • rs (1) ...
  • rs (i ⁇ 1) base station
  • rs (i) base station
  • cell (i) is set (S06).
  • cell (i) represents the i-th cell.
  • the cell is a search space for finding an optimal wireless device as a route from rs (i) to rs (i + 1) (FIG. 10).
  • FIG. 10 As a model of the cell, as shown in FIG.
  • a straight line is drawn from rs (i) to the base station, and from there to ⁇ / 4 to ⁇ / 4 [rad] (that is, 90 degrees)
  • a shape (a shape when the watermelon is cut) obtained by cutting out a sphere centered at rs (i) (a point within a certain distance from rs (i) in a three-dimensional space) is used.
  • FIG. 11B a shape in which a straight line is drawn from rs (i) to the base station, and a pillar body is cut out from ⁇ / 4 to ⁇ / 4 on the waterside surface therefrom.
  • the cell shape is determined by searching for a wireless device heading in the direction of the base station and excluding a wireless device that is too far from rs (i) from wireless device candidates for the next route in advance.
  • the angle taken from the direction of the base station may be widened or narrowed. In general, the more the number of wireless devices that are candidates in the search space, the narrower the angle to be cut, and the more the number of wireless devices that are candidates, the wider the angle to be cut.
  • the one with the highest communication quality (that is, the one with the large RSSI) is set as rs Q (S08).
  • RSSI (rs Q) -RSSI ( rs) ⁇ selects a wireless device rs in height (rs) is the largest cell (i) (S09).
  • RSSI (rs) is the RSSI value of the wireless device rs
  • is a predetermined threshold value.
  • height (rs) is the height of the wireless device rs evaluated from the position information.
  • the communication quality between the wireless devices is evaluated by the RSSI value, but may be evaluated by another index, for example, the LQI value.
  • a radio wave is simply determined in consideration of the height, not the adjacent radio wave intensity, to determine the device to be relayed to the base station. Therefore, stable and reliable communication quality can be obtained.
  • FIG. 13 is a diagram illustrating a configuration of a wireless device according to the second embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a configuration of a base station according to the second embodiment of the present invention.
  • FIG. 15 is a diagram illustrating an example of the position information table 275 stored in the storage unit 202 c of the wireless device 101.
  • each wireless device collects position information from surrounding wireless devices and determines a wireless device to be a next route.
  • the storage unit 202 c of the wireless device 101 has a reception processing program 211, a transmission processing program 212, a position information table 275, a communication state information table 271, a position information communication program 285, and a path control processing program 286.
  • the relay processing program 215 and the power information processing program 216 are held.
  • reception processing program 211 the transmission processing program 212, the communication state information table 271, the relay processing program 215, and the power information processing program 216 are the same as those in the first embodiment.
  • the position information communication program 285 differs from the position information communication program of the first embodiment in that in addition to setting the position information of the base station in the position information table 275, the position information communication program 285 is transmitted from wireless devices around its own wireless device. This is a program for storing the received position information in the position information table 275.
  • the route control processing program 286 is a program for selecting a wireless device to be a next route among wireless devices around the wireless device.
  • the location information table 275 is different from the location information table 270 of the first embodiment. As shown in FIG. 15, in addition to the location information of the base station and its own location information, the location information table 275 is the wireless It also holds device position information.
  • the path control processing program 286 stores the received position information of the wireless device in the position information table 275.
  • the storage unit 202d of the base station 102 holds a position information communication program 290 and a power information totaling program 295 as shown in FIG.
  • the location information communication program 290 and the power information aggregation program 295 are the same as those described in the first embodiment. In this embodiment, since the route is determined on the wireless device side, no route processing program is required on the base station side.
  • FIG. 16 is a flowchart showing processing for obtaining a surrounding wireless device for relaying from a certain wireless device in the wireless communication system according to the second embodiment of the present invention.
  • This processing is performed by the CPU 201 executing the route control processing program 286 of the wireless device 101.
  • the base station collects position information from surrounding wireless devices and stores it in the position information table 275 shown in FIG. 15 (S20).
  • the communication quality information of the surrounding wireless devices is collected and set in the communication quality information table 271 shown in FIG. 7 (S21).
  • the cell is set around itself (S22).
  • the idea about the cell is the same as in the first embodiment.
  • the one with the highest communication quality (that is, the one with the highest RSSI) is set as rs Q (S24).
  • the radio device rs in the cell that has RSSI (rs Q ) ⁇ RSSI (rs) ⁇ and the largest height (rs) is selected (S25).
  • the meaning of the symbols is the same as in the first embodiment.
  • rs is determined as the transmission destination (relaying wireless device) (S26), and the process is terminated.
  • This embodiment has a feature that the processing load of the base station is reduced because the route selection is performed by each wireless device as compared with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 移動しない各無線装置から他の無線装置を中継して基地局まで通信する無線通信システムにおいて、基地局は、各々の無線装置の位置情報と、無線装置間の通信状態情報を保持している。基地局の経路制御手段は、第一の無線装置から基地局までの経路を求めるときに、第一の無線装置を含む一定の大きさのcellの中にある無線装置を求め、通信状態情報に基づいて、cellの中にある無線装置の中から、第一の無線装置との通信品質が一番よい第二の無線装置を選択する。探索空間の中にある無線装置の中から、第二の無線装置との通信品質の評価を比較して、一定の閾値内にあり、かつ、第二の無線装置よりも高さが高い第三の無線装置を選択し、選択された第三の無線装置を、経路における第一の無線装置の次に通信する無線装置とする。 これにより、無線通信システムにおいて、安定して、信頼性の高い通信経路により通信をおこなうことができる。

Description

無線通信システム、および、無線通信システムの通信経路制御方法
 本発明は、無線通信システム、および、無線通信システムの通信経路制御方法に係り、特に、無線装置の中継機能を有するアドホックネットワークシステムであって、無線装置が移動しないときに、基地局までの安定して信頼性の高い通信経路を確保するのに好適な無線通信システム、および、無線通信システムの通信経路制御方法に関する。
 近年、各家庭に太陽光発電システムが導入され、小型の発電設備が分散化する中で、電力を効率よく使用したいというスマートグリッドシステムが検討されている。
 このようなシステムを実現するためには、電力会社からの商用電源と企業や個人が所有する発電設備による電力の発電側(供給側)と、消費側(需要側)との均衡を調整する必要がある。そこで、消費側(需要側)の情報をフィードバックし、近傍の発電側(供給側)から電力を供給してネットワークを構築する。例えば、各家庭に設置されている電力計に通信機能を持たせ、定期的に消費電力の情報をフィードバックさせる。
 しかしながら、このようなネットワークを有線で新規配線するには膨大なコストがかかり、無線で実現する場合も携帯電話通信網などを利用すると通信のランニングコストが膨大となる。
 そこで、独自のネットワークを無線で構築することが検討されている。特に、915MHzなどの900MHz帯の小電力無線を使用して、独自のネットワークを構築することが検討されている。このネットワークは、各家庭に通信機機能を持たせた電力計(無線装置)の情報を基地局まで、各無線装置が中継して伝送するアドホックネットワークシステムになる。
 無線通信によるアドホックネットワークシステムの従来技術としては、例えば、特許文献1がある。この特許文献1には、無線装置間で直接電磁波が届く無線装置を中継(マルチホッピング)するアドホックネットワークにおいて、通信ルートの変更の頻度ができるだけ少なくなるようにするために、電源がオフされにくい無線装置や、移動されにくい無線装置をできるだけ含む通信ルートを選ぶような無線通信システムが開示されている(要約等参照)。
 また、特許文献2には、各メンバ端末に、位置を測位するGPSを備えて、隣接グループとの通信が途絶えたときに、そのグループに属するリーダ端末が、隣接グループまでの通信ルートを補正するアドホックネットワークシステムが開示されている。
特開2006-020221号公報 特開2009-159113号公報
 上記従来技術の特許文献1、特許文献2では、GPS測位手段を用いて絶対位置を取得して端末、中継機、基地局との位置関係と、電波強度の値からルーティングを決定していた。この通信経路の探索は一般に複雑な処理が必要であり、かつ時間がかかる。また、中継装置がネットワークから離脱したり参入したりする直後には、通信途中のデータパケットは、新たな送信先が見つかるまで、中継装置でバッファリングされることになる。中継装置のバッファが溢れると、パケットロスが発生することもある。
 また、新たな通信ルートを探索する際には、大量のデータパケットの送信が必要になるため、トラヒックの増大によるパケットロスがさらに発生しやすくなる。またパケットロスによりアプリケーションレベルでのパケット再送処理が頻発し、さらに、むだなデータパケットが増大するという悪循環に陥る可能性もある。したがって、このようなネットワークにおいては、経路の再探索をできるだけ必要としないような経路を、予め選択しておくことが重要である。
 一方、無線通信において、一般にアンテナが地表より高いところあるほど、電波伝搬距離が長い事が知られている。例えば、地上1mの高さにあるアンテナよりも、地上5mの高さにあるアンテナの方が電波伝搬距離は長い。これは、地面からの反射波などによる影響などのためである。
 本発明は、上記問題点を解決するためになされたものであり、その目的は、移動しない各無線装置から他の無線装置を中継して基地局まで無線通信をおこなう無線通信システムにおいて、安定して、信頼性の高い通信経路により通信をおこなうことのできる無線通信システムを提供することにある。
 本発明の無線通信システムは、移動しない複数の無線装置と基地局とからなり、各々の無線装置が他の無線装置を中継して基地局までの経路に従って通信をおこなう無線通信システムに関するものであり、各々の無線装置は、自身の位置情報を取得するGPSなどの位置情報取得手段と、他の無線装置との通信品質に関する情報を取得する通信状態情報取得手段とを備えており、基地局は、各々の無線装置が取得した位置情報を受信する手段と、受信した位置情報を保持する位置情報テーブルと、各々の無線装置が取得した他の無線装置との通信品質に関する情報を受信する手段と、受信した他の無線装置との通信品質に関する情報を保持する通信状態情報集計テーブルと、無線装置間の経路を求める経路制御手段とを備えている。
 そして、経路制御手段は、第一の無線装置から前記基地局までの経路を求めるときに、第一の無線装置を含む一定の大きさを有する三次元の探索空間であるcellの中にある無線装置を求め、通信状態情報集計テーブルに基づいて、cellの中にある無線装置の中から、第一の無線装置との通信品質が一番よい第二の無線装置を選択する。
 そして、通信状態情報集計テーブルに基づいて、探索空間の中にある無線装置の中から、第二の無線装置との通信品質の評価を比較して、一定の閾値内にあり、かつ、位置情報テーブルに基づいて、第二の無線装置よりも高さが高い第三の無線装置を選択し、選択された第三の無線装置を、経路における第一の無線装置の次に通信する無線装置とする。
 また、他の無線システムの構成は、移動しない複数の無線装置と基地局とからなり、各々の無線装置が他の無線装置を中継して基地局までの経路に従って通信をおこなう無線通信システムに関するものであり、各々の無線装置は、自身の位置情報を取得するGPSなどの位置情報取得手段と、他の無線装置の位置情報を受信し、自身の位置情報を送信する位置情報送受信手段と、取得した自身の位置情報と前記受信した他の無線装置の位置情報を保持する位置情報テーブルと、他の無線装置との通信品質に関する情報を取得する通信状態情報取得手段と、受信した他の無線装置との通信品質に関する情報を保持する通信状態情報テーブルと、無線装置から前記基地局の経路における次の中継をする無線装置を求める経路制御手段とを備えている。
 そして、経路制御手段は、無線装置から次の中継をする無線装置を求めるときに、無線装置を含む一定の大きさを有する三次元の探索空間であるcellの中にある無線装置を求め、通信状態情報テーブルに基づいて、探索空間の中にある無線装置の中から、無線装置との通信品質が一番よい無線装置を選択し、通信状態情報テーブルに基づいて、探索空間の中にある無線装置の中から、無線装置との通信品質が一番よい無線装置との通信品質の評価を比較して、一定の閾値内にあり、かつ、位置情報テーブルに基づいて、無線装置との通信品質が一番よい無線装置より、高さが高い無線装置を、無線装置から中継する無線装置として選択し、中継する無線装置として選択された無線装置を、経路における無線装置の次に通信する無線装置とする。
 このように、本発明では、電波はアンテナが地面より高い位置にあるほどに遠くに飛ぶ性質を利用して、高さ方向を優先にしてルーティングする
 本発明は、スマートメータによる電力消費情報の収集や、太陽光発電などの発電制御のためのマルチホップ(多段中継)、アドホックな無線通信において、各無線装置が中継装置を介することによって相互通信が可能となるような無線通信において用いられ、通信経路の再探索の頻度が少なく、十分に安定した、信頼性の高い通信ネットワークとなる。
 本発明によれば、移動しない各無線装置から他の無線装置を中継して基地局まで無線通信をおこなう無線通信システムにおいて、安定して、信頼性の高い通信経路により通信をおこなうことのできる無線通信システムを提供することができる。
本発明の第一の実施形態に係る無線通信システムの構成を示す図である。 本発明の第一の実施形態に係る無線装置の構成を示す図である。 本発明の第一の実施形態に係る基地局の構成を示す図である。 無線装置101の記憶部202aに格納される位置情報テーブル270の例を示す図である。 無線装置101と基地局102でやり取りされるメッセージの例を示す図である。 無線装置101の記憶部202aに格納される通信状態情報テーブル281の例を示す図である。 基地局102の記憶部202bに格納される位置情報テーブル280の例を示す図である。 基地局102の記憶部202bに格納される通信状態情報集計テーブル281の例を示す図である。 基地局102の記憶部202bに格納される経路制御テーブル282の例を示す図である。 無線装置から基地局までの経路を求める処理を説明するための概念図である。 ある無線装置から次の経路となる無線装置の探索空間となるcellの例を示した図である(その一)。 ある無線装置から次の経路となる無線装置の探索空間となるcellの例を示した図である(その二)。 無線装置から基地局までの経路を求める処理を示すフローチャートである。 本発明の第二の実施形態に係る無線装置の構成を示す図である。 本発明の第二の実施形態に係る基地局の構成を示す図である。 無線装置101の記憶部202cに格納される位置情報テーブル275の例を示す図である。 本発明の第二の実施形態に係る無線通信システムにおいて、ある無線装置から周りの無線装置を中継のために求める処理を示すフローチャートである。
 以下、本発明に係る一実施形態を、図1ないし図16を用いて説明する。
  〔実施形態1〕
 以下、本発明の第一の実施形態に係る無線通信システムを、図1ないし図12を用いて説明する。
  先ず、図1ないし図3を用いて本発明の第一の実施形態に係る無線通信システムの構成について説明する。
  図1は、本発明の第一の実施形態に係る無線通信システムの構成を示す図である。
  図2は、本発明の第一の実施形態に係る無線装置の構成を示す図である。
  図3は、本発明の第一の実施形態に係る基地局の構成を示す図である。
 本実施形態では、基地局が各無線装置の位置情報を取得し、通信経路を決定して、各無線装置に、通信経路情報を送信する例を説明する。
 本発明の第一の実施形態に係る無線通信システム100は、図1に示されるように、無線装置101,111,121、基地局102、ネットワーク103からなる。
 そして、基地局102は、電柱104に、無線装置101は、戸建住宅105に、無線装置111は、戸建住宅115に、無線装置121は、集合住宅106にそれぞれ設置されている。
 無線装置101は、基地局102と無線通信し、基地局102に電波が直接届かない場合は、他の無線装置111,121などを介して、センサの測定情報を送信する装置である。例えば、各家庭の電力を測定し、かつ時には電気料金の計算の元となる検針情報を無線で送信する電力メータである。
 ここでは、測定するセンサ情報は、電力メータを例とするが、ガスや水道などを測定してもよいし、太陽光発電システムの発電量を計測するものでもよい。
 基地局102は、複数の無線装置101,111,121と無線通信で接続し、無線装置101が測定したセンサ情報を収集して、図示していないが、複数の基地局からのデータを収集しているデータセンタにデータを送信する。
 ネットワーク103は、複数の基地局と接続し、データセンタ(図示せず)と接続するものである。
 電柱104は、基地局102が設置された木製または鉄筋コンクリート製の柱であり、例えば、地表より数mの高さに基地局102が電柱104に設置されている。
 住宅105は、例えば、戸建住宅であり、無線装置101が設置されている。
同様に、戸建住宅115は、無線装置111が設置されている。
 集合住宅106は、例えば、高層マンションであり、各フロアには、複数の家族が分譲された個室に住んでいる。各家庭に、無線装置101が設置されている。
 無線装置101(他の無線装置なども同様)は、図2に示されるように、CPU201、記億部202a、クロック部203、位置情報取得部204、電力計測部205、アンテナ206、無線部220から構成される。
 CPU201は、無線装置の各部の動作を制御し、かつ、記憶部202aに格納されるプログラムを実行し処理する演算処理装置である。図示はしないが、内容を変更できるが電源を切ると内容が消えてしまう不揮発性の半導体メモリを内包する。半導体メモリにはプログラムを一時的に呼び出したり、変数やテーブル情報を保持する。
 CPU201は、記億部202aとメモリバスにより接続され、クロック部203とは信号線で接続されている。位置情報取得部204は、必ずしも無線装置101に内包される必要はないが、内包される場合はシリアル通信インターフェースなどで接続される。内包されない場合は、例えば近距離の無線通信、例えば、ブルートゥースインターフェースなどにより接続される。電力計測部205とは例えば、CTなどによって接続される。無線部220とは、例えば、SPIなどのクロック同期方式などのシリアル通信インターフェースによって接続される。
 記億部202aは、処理プログラムを長期間保存する不揮発性の半導体メモリや、ハードディスクドライブ(HDD)である。記億部202aは、例えば、受信処理プログラム211、送信処理プログラム212、位置情報テーブル270、通信状態情報テーブル271、位置情報通信プログラム213、通信状態管理プログラム214、中継処理プログラム215、電力情報処理プログラム216を保持している。
 さらに、受信処理プログラム211は、LQI計算部216、復号化部217を有する。
 送信処理プログラム212は、キャリアセンス部218、符号化部219を有する。
 クロック部203は、水晶振動子または水晶発振器などから構成され、CPU201の動作の指針となるクロック信号を与える装置である。例えば、24MHzでパルスの信号をCPU201与える。
 位置情報取得部204は、無線装置101が設置された地球上での位置を取得する部分である。例えば、全天衛星測位システムのグローバルナビゲーションサテライトシステムなどによって、位置を取得できるシステムであり、地球上での、緯度・経度・高度を測位し、緯度・経度・高度情報を記憶部202aに保存する。必ずしも、緯度・経度・高度である必要はなく、地球上での絶対位置または、基地局と、他の無線装置との相対位置を取得する装置であればよい。位置情報取得部204は、実用上、誤差数メートルでの分解能があればよい。
 また、位置情報取得部204は、前述したように、必ずしも内蔵される必要はなく、外付けの装置であってもよい。位置情報取得部204は、特に高度においては、気圧センサなどを用いてもよい。気圧は天候によって変化することがあるが、一定の天候であれば、標高が上がれば、気圧が下がり、16ビットAD変換による気圧センサなどであれば、フロア1階、2階などの階数を識別することができる。
 また、例えば、既知の位置基準となっている無線装置101、基地局102などから、TDOAやAOAなどの無線測位技術によって測位し、緯度経度高さに変換するようにしてもよい。例えば、光学やレーザ、超音波などによって測位し、緯度経度高さに変換するようにする。
 電力計測部205は、例えば、クランプと呼ばれるものであり、電力線に流れる電流を計測したり、また、図示はしないが、別の手段において電圧を測定して、電力を計測する部分である。計測したデータは、例えば、A/D変換によってデジタルデータとして、CPU201に与えるようにする。
 アンテナ206は、無線部220と例えば同軸ケーブルで50オームのインピーダンスで接続したものであり、他の無線装置111,121との間での間で無線通信による送受信をおこなうための装置である。無線通信は、電波や赤外線等の電磁波で通信するものであるが、ここでは、例えば、UHF帯の920MHz無線とする。図2では、アンテナ206は、2本表示しているが、1本でもよいし、4本などの複数でもよい。
 ただし、アンテナ206が複数ある場合は、各アンテナの種類や設置位置が異なっているものとする。例えば、片方のアンテナが内蔵アンテナであれば、他方のアンテナは外部アンテナとする。例えば、両方外部アンテナであっても、一方が水平に設置されていたら、他方は垂直に設置する。また、内蔵アンテナとして、積層チップアンテナとした場合は、ある積層チップアンテナが基板上で水平に設置されていたら、別の積層チップアンテナは垂直に設置する。
 基準信号生成部210は、例えば、無線部220が無線信号を送受信するための基準信号を生成する例えば、水晶振動子や水晶発振器などから構成され、例えば、32kHzや10MHzなどの基準信号を生成する。
 無線部220は、送受信機切替スイッチ221、受信部222、送信部223、アンテナスイッチ224、インピーダンスマッチング回路225、フィルタ226から構成される。また、前述したが、CPU201とは、例えば、SPI、クロック同期方式のシリアル通信インタフェースなどで接続される。また、基準信号生成部210とは、信号線で接続される。
 送受信機切替スイッチ221は、受信部222、送信部223と接続され、例えば、通常は、受信処理部225と信号線で接続し、送信処理部226とは切断している、送信処理部226が送信するときに、図示はしないが送信処理部226からの指示などにより、スイッチを切り替えて、送信処理部223とアンテナ206を接続する。
 フィルタ222は、例えば、SAWや帯域通過フィルタなどであり、不要輻射を防ぐ部分である。
 インピーダンスマッチング回路223は、例えば、抵抗、コンデンサ、インダクタンスなどから構成され、無線部220とアンテナ206との接続のインピーダンスを例えば、50オームに調整する部分である。
 アンテナスイッチ224は、アンテナ206が複数ある場合は、どのアンテナから出力するか切り替える部分である。切替は手動であったり、CPU201からの命令によって変更する。
 受信部225は、アンテナ206から受信した無線信号を受信処理し、CPU201にデータを渡す部分である。受信部225は、復調処理部224、RSSI測定部225を有する。
 復調処理部231は、アンテナ206から受信した無線信号の例えば電波からデータを復調する部分であり、基準信号生成部210から搬送波と比較するための基準波を生成し、予め指定されている変調方式と比較して、データを取り出す部分である。
 RSSI(Received Signal Strength Indicator)測定部232は、受信したときの受信電力を測定し、電波強度(RSSI)を、例えば、dBmや、C/N0などの値に変換してCPU201に渡す部分である。
 送信部226は、CPU201にデータをアンテナ206へ送信処理する部分である。
送信部226は、搬送波生成部233、変調処理部234を有する。
 搬送波生成部233は、基準信号生成部210から搬送波を生成する部分であり、例えば、PLL周波数シンセサイザなどを含み、搬送波として、例えば、920MHzを生成する。
 変調処理部234は、920MHzの電波にのせるデータのための変調処理をおこなう。例えば、PSK(Phase Shift Keying)やFSK(Frequency-Shift Keying)により変調処理をおこなう部分である。
 次に、記憶部202aに保持される受信処理プログラム211と、送信処理プログラム212、位置情報通信プログラム213、通信状態管理プログラム214、中継処理プログラム215、電力情報処理プログラム216について説明する。
 受信処理プログラム211は、CPU201上で動作するプログラムであり、無線部220からSPIなどのシリアル通信インターフェースを経由して、受信部225の受信データを取得し、それをビット列に復号化したり、自分のアドレス宛てのメッセージか否かを確認し、後述するペイロード部を取得するプログラムである。
 LQI(Link Quality Indicator)計算部216は、それをビット列に復号化したり、後述するパリティ計算などをする過程で、受信した無線信号の品質(Quality)を算出する部分である。
 復号化部217は、受信部225の受信データを取得し、それをビット列に復号化する。
 送信処理プログラム218は、自身が送信してもよいタイミングか否かを判断し、送信してよければ、予め生成したメッセージを符号化して、無線部220の送信部225にデータを渡すプログラムである。
 キャリアセンス部218は、例えば、受信部225のRSSI測定部232などから、アンテナ206での受信電力を測定し、受信電力が弱ければ、他の無線装置111,121や基地局102などが送信中ではない事を確認する部分である。
 符号化部219は、予め生成したメッセージを符号化して、無線部220の送信部225にデータを渡す部分である。
 位置情報通信プログラム213は、基地局102から送られてくる基地局102の位置情報を、位置情報テーブル270に格納するプログラムである。
 通信状態管理プログラム214は、この無線装置101の周りの通信できる無線装置の通信状態を収集し、通信状態情報テーブルに格納するプログラムである。
 中継処理プログラム215は、CPU201上で動作するプログラムであり、無線装置101,111,121などが基地局102からの経路の指示に従って、宛先となる他の無線装置を求めて、送信処理プログラムに指示するプログラムである。
 電力情報処理プログラム216は、CPU201上で動作するプログラムであり、電力計測部205からAD変換などを経由して、電力情報を取得し、基地局に対して電力情報を送信するプログラムである。
 基地局102は、図3に示されるように、CPU201、記億部202b、クロック部203、位置情報取得部204、アンテナ206、無線部220から構成される。
 基地局102は、無線装置101,111,121のゲートウェイとして、各無線装置から電力情報を収集し、データセンタにネットワーク103を介して報告する機能を有する。また、各々の無線装置の経路を求めて、経路情報を送信する。
 基地局102は、クロック部203、位置情報取得部204、アンテナ206、無線部220については、無線装置101,111,121と同様の構成であるが、電力計測部205を有しないこと、また、記億部202に格納されているプログラムとデータの内容が異なる。
 基地局102の記憶部202bには、位置情報テーブル280、通信状態情報集計テーブル281、経路制御テーブル282、受信処理プログラム211と、送信処理プログラム212、位置情報通信プログラム290、経路制御処理プログラム291、電力情報集計プログラム295が格納されている。
 位置情報通信プログラム213は、各無線装置から送られてくる位置情報を、位置情報テーブル280に格納するプログラムである。
 経路制御処理プログラム291は、各無線装置の経路を計算し、各無線装置に経路情報を送信するプログラムである。この経路制御処理プログラム291の処理は、後に詳細に説明する。
 電力情報集計プログラム295は、各無線装置の電力計測部205で計測され、電力情報処理プログラム216によって処理された電力情報を集計して、ネットワーク103でデータセンタに送信するプログラムである。
 次に、図4ないし図9を用いて本発明の第一の実施形態に係る無線通信システムのデータ構造について説明する。
  図4は、無線装置101の記憶部202aに格納される位置情報テーブル270の例を示す図である。
  図5は、無線装置101と基地局102でやり取りされるメッセージの例を示す図である。
  図6は、無線装置101の記憶部202aに格納される通信状態情報テーブル281の例を示す図である。
  図7は、基地局102の記憶部202に格納される位置情報テーブル280の例を示す図である。
  図8は、基地局102の記憶部202bに格納される通信状態情報集計テーブル281の例を示す図である。
  図9は、基地局102の記憶部202bに格納される経路制御テーブル282の例を示す図である。
 無線装置101の記憶部202に格納される位置情報テーブル250は、図4に示されるように、自身の無線装置101の位置情報と、基地局102の位置情報を保持するものである。
 基地局102の位置情報は、基地局102から送信されてくる情報である。自身の無線装置101の位置情報は、位置情報取得部204により取得した情報である。
 図4では(x、y、z)と図示しているが、例えば(緯度、経度、高度)であるが、必ずしも、緯度・経度・高度である必要はなく、地球上での絶対位置または、基地局と、他の無線装置との相対位置を誤差数メートルでの分解能があればよい。例えば、(緯度、経度、海抜)、(緯度、経度、標高)、(緯度、経度、海抜、フロア階数)、(緯度、経度、標高、フロア階数)(緯度、経度、気圧値)などであってもよい。
 例えば、(緯度、経度、高度)は、(北緯35.698710、東経140.7242、高度100m)となる。
 (緯度、経度、海抜)は、(北緯35.698710、東経140.7242、海抜100m)でもよいし、または、で(北緯35.698710、東経140.7242、海抜100m、フロア3階)などフロア情報が付加されてもよい。
 海抜の値は、例えば、緯度、経度情報と、国土地理院が整備する日本国の地図データ(海抜・標高データ付)と照合して生成する。照合方法はネットワーク103などを利用して取得する。
 さらには、(緯度、経度、気圧値)などでもよい。
 または、(x、y、z)は、例えば、国土地理院が提案している128ビットの「場所情報コード」などでもよい。
 次に、無線装置101と基地局102が送受信する無線信号のメッセージデータについて説明する。
 メッセージ400は、図5(a)に示される無線信号として、無線装置間、無線装置と基地局間で送受信されるビット列のデータであリ、プリアンブル401、宛先アドレス402、送信元アドレス403、ペイロード(1)404、パリティ405から構成される。
 プリアンブル401は、M系列GOLD符号など、例えば、「10111」などのビット列であり、雑音ノイズのデータから、無線信号を見つけるためのビット列である。
 宛先アドレス402や送信元アドレス403は、無線装置101,111,121、基地局102などが保持する固有のアドレスであり、例えば、48ビットのMACアドレスや、EUI-64などの64ビットなど、国際的にグローバルでユニークに管理されているアドレスである。
 ペイロード404はデータを格納する領域であり、例えば、図5(b)に示されるように、メッセージタイプ411と、メッセージデータ412が格納される。
 パリティ405は、例えば、宛先アドレス402、送信元アドレス404、ペイロード404などのビット列を、例えば、CRC16などの計算式によって、計算して値を格納する領域である。また、LQI計算部216などの計算に利用される。
 無線装置101の記憶部202aに格納される位置情報テーブル280は、図6に示されるように、基地局102の位置情報と無線管理区域の無線装置101の全ての位置情報を保持するものである。ここで、各無線装置の装置IDを、001~とし、基地局の装置IDを000としている(以下、「基地局000、無線装置001、無線装置002、…などと書く」)。
 無線装置101の記憶部202aに格納される通信状態情報テーブル271は、図6に示されるように、各無線装置とその周りの通信品質情報を保持しており、この例では、通信品質は、RSSIで評価されている。測定しているのが無線装置000とすると、無線装置002とのRSSI値が、-73.0[dBm]であったことを示している。
 基地局102の記憶部202bに格納される位置情報テーブル280には、図7に示されるように、基地局102の位置情報と通信管理区域内の全ての無線装置の位置情報が格納される。基地局102の位置情報は、自身の位置情報取得部204により取得した情報である。無線装置の位置情報は、各装置IDの無線装置の位置情報から位置情報取得部204により取得され、無線装置から基地局に送信されてくる情報である。
 基地局102の記憶部202bに格納される通信状態情報集計テーブル281は、図8に示されるように、各無線装置から送られてくる周りの無線装置との通信品質情報を保持するテーブルであり、測定元の無線装置IDと、測定対象となった無線装置IDのペアに対して、RSSIが記録されている。
 基地局102の記憶部202bに格納される経路制御テーブル282は、図9に示されるように、各装置IDを有する無線装置から、基地局までの経路を表したテーブルであり、経路データとしては、各無線装置のアドレスが格納される。ここで、ad(00i)は、装置ID=00iの無線装置00iのアドレスを表し、例えば、2番目のエントリは、装置ID=002の無線装置002から基地局000までの経路は、基地局000←無線装置001←無線装置002の経路であることを示している。この経路情報テーブル270の情報は、各装置IDの無線装置に送信されものであり、例えば、2番目のエントリは、装置ID=002の無線装置002に送信される。
 次に、図10ないし図12を用いて本発明の第一の実施形態に係る無線通信システムにおいて、無線装置から基地局までの経路を計算する処理について説明する。
  図10は、無線装置から基地局までの経路を求める処理を説明するための概念図である。
  図11A,図11Bは、ある無線装置から次の経路となる無線装置の探索空間となるcellの例を示した図である。
  図12は、無線装置から基地局までの経路を求める処理を示すフローチャートである。
 本実施形態での処理は、図10に示されるように、ある基地局の電波管理区域内にある無線装置から基地局の経路となる無線装置を順次求めていくものである。
 この処理は、基地局102の経路制御処理プログラム291がCPU201によって実行されることにより、おこなわれるものである。
 先ず、基地局は、各無線装置から位置情報を収集し、図6に示した位置情報テーブル270に格納しておく(S01)。
 次に、基地局は、各無線装置から隣の無線装置の通信品質情報を収集し、それを基地局に報告して、図8に示した通信品質情報集計テーブル281に格納しておく(S02)。
 各無線装置から隣の無線装置の通信品質情報を送るときは、あまりに、通信品質が悪い無線装置は、予め候補から除外して送らないようにすればよい。例えば、図6において、-85[dBm]より通信品質の悪い無線装置008,無線装置009は、基地局に情報を送らないようにする。
 次に、i←0とする(S03)。
 次に、rs(i)←始点の無線装置とする(S03)。ここで、rs(i)は、i番目の無線装置を表している。
 次に、rs(i)が基地局であるか否かを判断する(S05)。
 rs(i)が基地局であった場合は、探索は終了であり、rs(0)=始点の無線装置,rs(1),…,rs(i-1),rs(i)=基地局のアドレスを、図9に示した経路制御テーブルに格納し(S12)、処理を終了する。
 rs(i)が基地局でなかった場合は、cell(i)を設定する(S06)。ここで、cell(i)は、i番目のcellを表している。cellは、rs(i)からrs(i+1)の経路として最適な無線装置を見つけるときの探索空間である(図10)。cellのモデルとしては、図11Aに示されるように、rs(i)から基地局に直線を引き、そこから水辺面に、-π/4~π/4[rad](すなわち、90度)の間で、rs(i)を中心とする球形(3次元空間で、rs(i)から一定の距離以内にある点)を切り取った形状(スイカを切ったときの形状)を用いる。また、図11Bに示されるように、rs(i)から基地局に直線を引き、そこから水辺面に、-π/4~π/4の間で、柱体を切り取った形状でもよい。このように、cellの形状を定めるのは、基地局の方向に向かうの無線装置を探索することと、rs(i)から離れすぎている無線装置を次の経路の無線装置の候補から予め除外する意味がある。ここで、どちらタイプのcellでも、基地局の方向からの切り取る角度は、広げてもよいし狭めてもよい。一般に、探索空間の中で、候補となる無線装置が多いほど、切り取る角度を狭くし、候補となる無線装置が多いほど、切り取る角度を広くすればよい。
 次に、cell(i)の中で、無線装置があるか否かを判定する(S07)。
 cell(i)の中で、無線装置がなかったときには、エラーとして(S13)、探索空間であるcellの大きさを広げる再設定をし、経路を求める処理を再施行する。
 cell(i)の中で、無線装置があったときには、その中で、最も通信品質の高いもの(すなわち、RSSIの大きいもの)を、rsとする(S08)。
 そして、RSSI(rs)-RSSI(rs)<ε、であり、かつ、height(rs)が最も大きいcell(i)の中の無線装置rsを選択する(S09)。ここで、RSSI(rs)は、無線装置rsのRSSI値であり、εは、予め定めておいた一定の閾値である。また、height(rs)は、位置情報から評価される無線装置rsの高さである。
 次に、i←i+1とする(S10)。
 次に、rs(i)←選択されたrsとし(S11)、S05に戻り、処理を繰り返す。
 なお、本実施形態では、無線装置間の通信品質は、RSSI値で評価したが、他の指標、例えば、LQI値で評価してもよい。
 このように本実施形態による無線通信システムでは、無線装置間の経路を選択する際に、単に、隣接する電波強度でなく、高さも考慮して、基地局までの中継する装置を決めるため、電波の減衰が少なく、安定した、信頼性の高い通信品質を得ることができる。
  〔実施形態2〕
 以下、本発明の第二の実施形態に係る無線通信システムを、図13ないし図15を用いて説明する。
  先ず、図13ないし図15を用いて本発明の第二の実施形態に係る無線通信システムの構成について説明する。
  図13は、本発明の第二の実施形態に係る無線装置の構成を示す図である。
  図14は、本発明の第二の実施形態に係る基地局の構成を示す図である。
  図15は、無線装置101の記憶部202cに格納される位置情報テーブル275の例を示す図である。
 第一の実施形態では、基地局が各無線装置の位置情報を取得し、通信経路を決定する例を説明した。本実施形態では、各無線装置が周りの無線装置から位置情報を収集して、次の経路となる無線装置を決定する例である。
 無線装置101と、基地局102のハードウェア構成は、第一の実施形態と同様なので、異なった所を中心に説明する。
 無線装置101の記憶部202cには、図13に示されるように、受信処理プログラム211、送信処理プログラム212、位置情報テーブル275、通信状態情報テーブル271、位置情報通信プログラム285、経路制御処理プログラム286、中継処理プログラム215、電力情報処理プログラム216を保持している。
 この内で、受信処理プログラム211、送信処理プログラム212、通信状態情報テーブル271、中継処理プログラム215、電力情報処理プログラム216は、第一の実施形態と同様である。
 位置情報通信プログラム285は、第一の実施形態の位置情報通信プログラムとは異なり、基地局の位置情報を位置情報テーブル275に設定することに加えて、自身の無線装置の周りの無線装置から送られてくる位置情報を、位置情報テーブル275に格納するプログラムである。
 経路制御処理プログラム286は、この無線装置の周りにある無線装置の中で次の経路となる無線装置を選択するプログラムである。
 位置情報テーブル275は、第一の実施形態の位置情報テーブル270とは異なったものであり、図15に示されるように、基地局の位置情報、自身の位置情報のほかに、周辺にある無線装置の位置情報も保持するものである。
 本実施形態では、他の無線装置と互いに位置情報を交換するプロトコルを設けておき、経路制御処理プログラム286は、受信した無線装置の位置情報を、位置情報テーブル275に格納するものとする。
 基地局102の記憶部202dには、図14に示されるように、位置情報通信プログラム290、電力情報集計プログラム295を保持している。
 位置情報通信プログラム290と電力情報集計プログラム295は、第一の実施形態で説明したものと同様である。また、本実施形態では、無線装置側で経路を決定するため、基地局側には、経路処理プログラムは、必要ない。
 次に、図16を用いて本発明の第二の実施形態に係る無線通信システムにおいて、ある無線装置から周りの無線装置を中継のために求める処理について説明する。
  図16は、本発明の第二の実施形態に係る無線通信システムにおいて、ある無線装置から周りの無線装置を中継のために求める処理を示すフローチャートである。
 この処理は、無線装置101の経路制御処理プログラム286がCPU201によって実行されることにより、おこなわれるものである。
 先ず、基地局は、周りの無線装置から位置情報を収集し、図15に示した位置情報テーブル275に格納しておく(S20)。
 次に、周りの無線装置の通信品質情報を収集され、図7に示した通信品質情報テーブル271に設定する(S21)。
 次に、自身を中心として、cellを設定する(S22)。cellについての考え方は、第一の実施形態と同様である。
 次に、cellの中で、無線装置があるか否かを判定する(S23)。
 cellの中で、無線装置がなかったときには、エラーとして(S27)、探索空間であるcellの大きさを広げる再設定をし、経路を求める処理を再施行する。
 cellの中で、無線装置があったときには、その中で、最も通信品質の高いもの(すなわち、RSSIの大きいもの)を、rsとする(S24)。
 そして、RSSI(rs)-RSSI(rs)<ε、であり、かつ、height(rs)が最も大きいcellの中の無線装置rsを選択する(S25)。記号の意味は、第一の実施形態と同様である。
 そして、rsを送信先(中継する無線装置)として決定し(S26)、処理を終了する。
 本実施形態では、第一の実施形態に比べて、経路の選択を各無線装置でおこなうので、基地局の処理の負担が少なくなるという特徴がある。
101…無線装置
102…基地局
103…ネットワーク
104…電柱
105…住宅
106…集合住宅
201…CPU
202a,202b,202c,202d…記億部
203…クロック部
204…位置情報取得部
205…電力計測部
206…アンテナ
207…アンテナスイッチ
208…インピーダンスマッチング回路
209…フィルタ
210…基準信号生成部
220…無線部
221…送受信機切替スイッチ
222…受信部
223…送信部
224…アンテナスイッチ
225…インピーダンスマッチング回路
226…フィルタ

Claims (4)

  1.  一つ以上の無線装置と基地局とからなり、各々の無線装置が他の無線装置を中継して前記基地局までの経路に従って通信をおこなう無線通信システムにおいて、
     前記各々の無線装置は、
     自身の位置情報を取得する位置情報取得手段と、
     他の無線装置との通信品質に関する情報を取得する通信状態情報取得手段とを備え、
     前記基地局は、
     前記各々の無線装置が取得した位置情報を受信する手段と、
     前記受信した位置情報を保持する手段と、
     前記各々の無線装置が取得した他の無線装置との通信品質に関する情報を受信する手段と、
     前記受信した他の無線装置との通信品質に関する情報を保持する手段と、
     前記無線装置間の経路を求める経路制御手段とを備え、
     前記経路制御手段は、
     第一の無線装置から前記基地局までの経路を求めるときに、
     前記第一の無線装置を含む一定の大きさを有する三次元の探索空間の中にある無線装置を求め、
     前記各々の無線装置が取得した他の無線装置との通信品質に関する情報に基づいて、前記探索空間の中にある無線装置の中から、前記第一の無線装置との通信における通信品質が一番よい第二の無線装置を選択し、
     前記各々の無線装置が取得した他の無線装置との通信品質に関する情報に基づいて、前記探索空間の中にある無線装置の中から、前記第二の無線装置との通信品質の評価が比較して、一定の閾値内にあり、かつ、前記受信した位置情報に基づいて、前記第二の無線装置よりも高さが高い第三の無線装置を選択し、
     前記選択された第三の無線装置を、前記経路における前記第一の無線装置の次に通信する無線装置とすることを特徴とする無線通信システム。
  2.  一つ以上の無線装置と基地局とからなり、各々の無線装置が他の無線装置を中継して前記基地局までの経路に従って通信をおこなう無線通信システムの通信経路制御方法において、
     前記各々の無線装置は、
     自身の位置情報を取得する位置情報取得手段と、
     他の無線装置との通信品質に関する情報を取得する通信状態情報取得手段とを備え、
     前記基地局は、
     前記各々の無線装置が取得した位置情報を受信する手段と、
     前記受信した位置情報を保持する位置情報テーブルと、
     前記各々の無線装置が取得した他の無線装置との通信品質に関する情報を保持する通信状態情報集計テーブルと、
     前記受信した他の無線装置との通信品質に関する情報を保持する通信手段と、
     前記無線装置間の経路を求める経路制御手段とを備え、
     前記各々の無線装置が、前記位置情報取得手段により、前記自身の位置情報を取得するステップと、
     前記各々の無線装置が、前記取得した前記自身の位置情報を送信し、前記基地局が、前記位置情報を受信するステップと、
     前記基地局が、受信した前記位置情報を、前記位置情報テーブルに保持するステップと、
     前記各々の無線装置が、前記通信状態情報取得手段により、他の無線装置との通信品質に関する情報を取得するステップと、
     前記各々の無線装置が、前記取得した前記他の無線装置との通信品質に関する情報を送信し、前記基地局が、前記他の無線装置との通信品質に関する情報を受信するステップと、
     前記基地局が、受信した前記他の無線装置との通信品質に関する情報を、前記通信状態情報集計テーブルに保持するステップと、
     前記経路制御手段が、第一の無線装置から前記基地局までの経路を求めるときに、前記第一の無線装置を含む一定の大きさを有する三次元の探索空間の中にある無線装置を求めるステップと、
     前記経路制御手段が、前記通信状態情報集計テーブルに基づいて、前記探索空間の中にある無線装置の中から、前記第一の無線装置との通信における通信品質が一番よい第二の無線装置を選択するステップと、
     前記経路制御手段が、前記通信状態情報集計テーブルに基づいて、前記探索空間の中にある無線装置の中から、前記第二の無線装置との通信品質の評価が比較して、一定の閾値内にあり、かつ、前記受信した位置情報に基づいて、前記第二の無線装置よりも高さが高い第三の無線装置を選択するステップと、
     前記経路制御手段が、前記選択された第三の無線装置を、前記経路における前記第一の無線装置の次に通信する無線装置とするステップと、
     前記基地局が、前記第一の無線装置に前記第三の無線装置のアドレスを含む経路情報を送信するステップとを有することを特徴とする無線通信システムの通信経路制御方法。
  3.  一つ以上の無線装置と基地局とからなり、各々の無線装置が他の無線装置を中継して前記基地局までの経路に従って通信をおこなう無線通信システムにおいて、
     前記各々の無線装置は、
     自身の位置情報を取得する位置情報取得手段と、
     他の無線装置の位置情報を受信し、自身の位置情報を送信する位置情報送受信手段と、
     前記取得した自身の位置情報と前記受信した他の無線装置の位置情報を保持する位置情報を保持する手段と、
     他の無線装置との通信品質に関する情報を取得する通信状態情報取得手段と、
     前記受信した他の無線装置との通信品質に関する情報を保持する手段と、
     前記無線装置から前記基地局の経路における次の中継をする無線装置を求める経路制御手段とを備え、
     前記経路制御手段は、
     前記無線装置から次の中継をする無線装置を求めるときに、
     前記無線装置を含む一定の大きさを有する三次元の探索空間の中にある無線装置を求め、
     前記他の無線装置との通信品質に関する情報に基づいて、前記探索空間の中にある無線装置の中から、前記無線装置との通信における通信品質が一番よい無線装置を選択し、
     前記他の無線装置との通信品質に関する情報に基づいて、前記探索空間の中にある無線装置の中から、前記無線装置との通信における通信品質が一番よい無線装置との通信品質の評価を比較して、一定の閾値内にあり、かつ、前記受信した位置情報に基づいて、前記無線装置との通信品質が一番よい無線装置より、高さが高い無線装置を、前記無線装置から中継する無線装置として選択し、
     前記中継する無線装置として選択された無線装置を、前記経路における前記無線装置の次に通信する無線装置とすることを特徴とする無線通信システム。
  4.  一つ以上の無線装置と基地局とからなり、各々の無線装置が他の無線装置を中継して前記基地局までの経路に従って通信をおこなう無線通信システムの通信経路制御方法において、
     前記各々の無線装置は、
     自身の位置情報を取得する位置情報取得手段と、
     他の無線装置の位置情報を受信し、自身の位置情報を送信する位置情報送受信手段と、
     前記取得した自身の位置情報と前記受信した他の無線装置の位置情報を保持する位置情報テーブルと、
     他の無線装置との通信品質に関する情報を取得する通信状態情報取得手段と、
     前記取得した通信品質に関する情報を保持する通信状態情報テーブルと、
     前記無線装置から前記基地局の経路における次の中継をする無線装置を求める経路制御手段とを備え、
     前記無線装置が、前記位置情報取得手段により、前記自身の位置情報を取得するステップと、
     前記無線装置が、前記取得した前記自身の位置情報を、前記位置情報テーブルに保持するステップと、
     前記無線装置が、前記位置情報送受信手段により、前記他の無線装置の位置情報を受信するステップと、
     前記無線装置が、前記受信した前記他の無線装置の位置情報を、前記位置情報テーブルに保持するステップと、
     前記無線装置が、前記通信状態情報取得手段により、他の無線装置との通信品質に関する情報を取得するステップと、
     前記無線装置が、前記取得した通信品質に関する情報を、前記通信状態情報テーブルに保持するステップと、
     前記無線装置が、前記自身の位置情報を、前記位置情報テーブルに保持するステップと、
     前記無線装置が、次の中継をする無線装置を求めるときに、前記経路制御手段が、前記無線装置を含む一定の大きさを有する三次元の探索空間の中にある無線装置を求め、
     前記経路制御手段が、前記通信状態情報テーブルに基づいて、前記探索空間の中にある無線装置の中から、前記無線装置との通信における通信品質が一番よい無線装置を選択し、
     前記経路制御手段が、前記通信状態情報テーブルに基づいて、前記探索空間の中にある無線装置の中から、前記無線装置との通信品質が一番よい無線装置との通信品質の評価を比較して、一定の閾値内にあり、かつ、前記受信した位置情報に基づいて、前記無線装置との通信における通信品質が一番よい無線装置より、高さが高い無線装置を、前記無線装置から中継する無線装置として選択するステップと、
     前記中継する無線装置として選択された無線装置を、前記経路における前記無線装置の次に通信する無線装置とするステップとを有することを特徴とする無線通信システムの通信経路制御方法。
PCT/JP2012/061742 2011-12-06 2012-05-08 無線通信システム、および、無線通信システムの通信経路制御方法 WO2013084520A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011267252A JP5739794B2 (ja) 2011-12-06 2011-12-06 無線通信システム、および、無線通信システムの通信経路制御方法
JP2011-267252 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084520A1 true WO2013084520A1 (ja) 2013-06-13

Family

ID=48573906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061742 WO2013084520A1 (ja) 2011-12-06 2012-05-08 無線通信システム、および、無線通信システムの通信経路制御方法

Country Status (2)

Country Link
JP (1) JP5739794B2 (ja)
WO (1) WO2013084520A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045769B1 (ja) 2016-05-24 2016-12-14 三菱電機株式会社 発電量推定装置、配電系統システムおよび発電量推定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243794A (ja) * 2006-03-10 2007-09-20 Nec Commun Syst Ltd 無線センサーネットワークの経路構築方法、データ収集方法、経路再構築方法、無線センサーネットワークシステム及びプログラム
JP2009033730A (ja) * 2007-06-26 2009-02-12 Ricoh Co Ltd 無線通信装置、無線通信方法および無線通信プログラム
JP2011139284A (ja) * 2009-12-28 2011-07-14 Fujitsu Ltd 無線通信装置、無線通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793842A (en) * 1995-02-27 1998-08-11 Schloemer; Jerry R. System and method of call routing and connection in a mobile (remote) radio telephone system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243794A (ja) * 2006-03-10 2007-09-20 Nec Commun Syst Ltd 無線センサーネットワークの経路構築方法、データ収集方法、経路再構築方法、無線センサーネットワークシステム及びプログラム
JP2009033730A (ja) * 2007-06-26 2009-02-12 Ricoh Co Ltd 無線通信装置、無線通信方法および無線通信プログラム
JP2011139284A (ja) * 2009-12-28 2011-07-14 Fujitsu Ltd 無線通信装置、無線通信方法

Also Published As

Publication number Publication date
JP2013121010A (ja) 2013-06-17
JP5739794B2 (ja) 2015-06-24

Similar Documents

Publication Publication Date Title
JP4877778B2 (ja) 無線装置およびそれを備えた無線通信ネットワーク
JP6087556B2 (ja) 無線通信端末、無線通信装置、無線通信システム、周波数帯切替方法
ES2545509T3 (es) Dispositivo inalámbrico
US20110298634A1 (en) Apparatus And Method For Priority Addressing And Message Handling In A Fixed Meter Reading Network
JP2006352810A (ja) 測位機能付無線制御チップセット、測位機能付無線通信カード、無線端末及び位置測定ネットワークシステム
US20190200245A1 (en) Systems and Methods for Determining Preferred Location and Orientation of Wireless Broadband Router
KR20090095773A (ko) 위치추적 장치
US20160313448A1 (en) In-band pseudolite wireless positioning method, system and device
JPWO2009054188A1 (ja) 通信システム
JP2009092594A (ja) 位置推定システム
KR20200025666A (ko) 로라 네트워크 멀티 채널 구현방법
JP4520278B2 (ja) 無線通信システム、無線通信装置、および無線基地局システム
CN102984657A (zh) 基于无线传感器网络的团队探险辅助通信和管理方法
JP5739794B2 (ja) 無線通信システム、および、無線通信システムの通信経路制御方法
JP2010271206A (ja) 位置情報提供方法、位置情報提供システムおよび位置情報提供サーバ
JP4321298B2 (ja) 通信システムおよび方法
KR20190084639A (ko) 해상 환경에서의 위치확인 시스템 및 그 방법
CN102972049B (zh) 通信装置
Chaudhary et al. A survey on the implementation of wireless sensor network breadcrumb trails for sensing and localization
JP5748981B2 (ja) 無線通信システム及び無線通信端末局
KR101751805B1 (ko) 복합 측위 기능이 내재된 e-Zigbee 및 활용한 실내 측위 장치 및 실내 측위 방법
JP6158547B2 (ja) 物体探索システム
JP2009159458A (ja) アドホック通信システム及びアドホック通信システムに用いられる屋内における位置情報確認方法並びにコンピュータプログラム
JP2001083231A (ja) 位置情報システム
TW201915515A (zh) 一種協尋定位物體的無線裝置與方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855587

Country of ref document: EP

Kind code of ref document: A1