WO2013078669A1 - Led驱动电路和led驱动芯片 - Google Patents

Led驱动电路和led驱动芯片 Download PDF

Info

Publication number
WO2013078669A1
WO2013078669A1 PCT/CN2011/083344 CN2011083344W WO2013078669A1 WO 2013078669 A1 WO2013078669 A1 WO 2013078669A1 CN 2011083344 W CN2011083344 W CN 2011083344W WO 2013078669 A1 WO2013078669 A1 WO 2013078669A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
circuit
control module
inductor
pin
Prior art date
Application number
PCT/CN2011/083344
Other languages
English (en)
French (fr)
Inventor
叶军
高铭坤
王莉
Original Assignee
Ye Jun
Gao Mingkun
Wang Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ye Jun, Gao Mingkun, Wang Li filed Critical Ye Jun
Priority to CN201180036396.XA priority Critical patent/CN103250467B/zh
Priority to PCT/CN2011/083344 priority patent/WO2013078669A1/zh
Publication of WO2013078669A1 publication Critical patent/WO2013078669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology

Definitions

  • the present invention relates to the field of LED technology, and more particularly to an LED driving circuit and an LED driving chip.
  • LED light sources are the hope of the 21st century light source market and will gradually replace traditional light sources in the future. OCO pointed out high-brightness LED It will be one of the greatest inventions after humans invented incandescent lamps. At a time when global energy is scarce, energy conservation is a major problem we face. LED lights as a new type of Energy-saving and environmentally friendly green light source products are bound to be widely used.
  • Fluorescent lamps are currently the most widely used lamps, but most of the phosphors used in fluorescent lamps contain substances that are harmful to the environment, such as tributes. This technology will gradually be Replaced by LED lighting.
  • the LED is installed due to the ballast on the fluorescent lamp holder.
  • lamp modification such as short circuit of the ballast, removal of the starter, and the like.
  • the purpose of this modification is to apply AC power directly to both ends of the LED.
  • the above operation is very inconvenient, the replacement cost is high, and the limitation is greatly limited.
  • the popularity of LED lights is very inconvenient, the replacement cost is high, and the limitation is greatly limited. The popularity of LED lights.
  • U.S. Patent 7,079,922 discloses an LED driver circuit compatible with a ballast. In this solution, simply put the LED The drive circuit is connected to the ballast. There is no control mechanism in the circuit to control the current of the output LED, nor can it be used for the LED. The lamp is protected. Since the operating characteristics of the ballast depend on the impedance of the load, the frequency and amplitude of the output voltage will vary as the load impedance changes. LED of the program The drive circuit will cause different output of the ballast under different working conditions, especially when the LED lamp shows high resistance before the LED lamp is turned on, the ballast will generally output 500V. The above high voltage (equivalent to the ignition process of the fluorescent lamp) makes it easy to damage the LED lamp. In addition, there are many types of ballasts in the market, and the quality is uneven. The drive circuit is connected to different types of ballast circuits and will not guarantee the consistency of the power supply of the output LEDs.
  • the existing LED driver circuit compatible with the ballast cannot be connected to the ballast circuit and cannot output the LED.
  • the current of the lamp is controlled, and the LED lamp cannot be protected.
  • different output of the ballast will be caused, and the LED is easy to be Damage caused by the lamp; and the access to different types of ballast circuits does not guarantee the uniformity of the power supply of the output LEDs.
  • the present invention is directed to the above-mentioned drawbacks of the prior art, and provides an LED driving circuit capable of being compatible with various types of ballasts and capable of ensuring uniform power supply of the output LED lamp and capable of operating in an AC to DC, DC to DC operating state. And LED driver chip.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide an LED driving chip, comprising:
  • a negative impedance control module that receives the operating mode control signal and the power supply of the ballast circuit output power terminal to control the internal equivalent impedance variation of the chip
  • the driving chip further includes first to eighth pins; wherein the pattern recognition and control module and the negative impedance control module respectively connect the ballast circuit output power terminal through the first pin; the pattern recognition and control The module is connected to the first load unit of the peripheral driving circuit through the second pin; the drain of the power tube is connected to the main-stage inductor of the peripheral driving circuit through the third pin, and the source thereof passes through the first a four-pin detecting current of an auxiliary inductor of the peripheral driving circuit; the pattern recognition and control module and the constant current /
  • the constant voltage driving control module is connected to the output voltage of the power supply terminal of the stepped ballast circuit through the fifth pin, and is connected to the auxiliary inductor of the peripheral driving circuit through the sixth pin, and passes through the seventh tube.
  • the pin is connected to the voltage of the auxiliary inductor of the peripheral driving circuit after the step-down, and is grounded through the eighth pin.
  • the LED driving chip of the present invention further comprises monitoring the power supply of the ballast circuit output power terminal to achieve the constant current / Protection module for overvoltage and overcurrent protection of constant voltage drive control module.
  • the LED driving circuit comprising a protection circuit and an LED power supply circuit connected to an output power terminal of the ballast circuit
  • the LED power supply circuit includes a main-stage inductor connected to the protection circuit, a secondary inductor that forms a mutual inductance with the main-stage inductor and supplies power to the LED lamp, and an auxiliary inductor that forms a mutual inductance with the secondary inductor;
  • the driving circuit further includes: an LED driving chip, a first load unit controlled by the LED driving chip, and an auxiliary resistor; wherein the first load unit is connected between the output power terminal of the ballast circuit and the ground;
  • the driver chip includes:
  • a power tube having a drain connected to the main inductor and a source grounded via the auxiliary resistor;
  • the LED driving circuit of the present invention further includes:
  • a first resistor and a second resistor connected in parallel to each other across the auxiliary inductor.
  • the LED driving circuit of the present invention comprising:
  • a third inductor, a fifth resistor, and a second diode connected in parallel across the main inductor, wherein the third inductor and the fifth resistor are connected in parallel, and the third inductor and the fifth resistor are connected in parallel with the whole
  • the second diode is connected in series.
  • LED of the invention a driving chip, comprising first to eighth pins; wherein the pattern recognition and control module and the negative impedance control module are respectively connected to the output power terminal of the ballast circuit through the first pin; the pattern recognition and control The module is connected to the first load unit through the second pin; the drain of the power tube is connected to the main inductor through the third pin, and the source thereof is detected by the fourth pin
  • the auxiliary inductor current; the pattern recognition and control module and the constant current / a constant voltage driving control module is connected to the node of the third resistor and the fourth resistor through the fifth pin, connected to the auxiliary inductor through the sixth pin, and connected through the seventh pin through the sixth pin And a node connected to the first resistor and the second resistor, and grounded through the eighth pin.
  • the driving circuit further includes a third diode and a fourth capacitor, wherein the third diode is connected to the auxiliary inductor, the cathode is grounded via the fourth capacitor, and the auxiliary resistor is connected to the fourth Between the pin and the ground.
  • the driving chip further includes: connecting, by the first pin, the power supply end of the ballast circuit, and monitoring the power supply of the power output end of the ballast circuit to implement overvoltage and overcurrent of the constant current/constant voltage driving control module.
  • Protected protection module is
  • the driving chip has the following beneficial effects: the pattern recognition and control module recognizes the power type of the output terminal of the ballast circuit and makes the ballast work normally, so that the LED of the invention
  • the driver chip can operate under DC or AC input and is compatible with various ballasts; and the pattern recognition and control module controls the negative impedance control module to make the LED
  • An effective negative feedback loop is formed between the driver chip and the ballast circuit to ensure the stability of the output voltage of the ballast circuit.
  • the constant current/constant voltage drive control module achieves constant by controlling the switching frequency and duty cycle of the power tube. Current / The voltage output enables the LED driver chip of the present invention to protect the LED lamp by outputting the power of the load LED lamp after accessing different types of ballast circuits.
  • the protection module of the LED driving chip of the invention realizes input overvoltage and overcurrent protection for the LED driving chip, and ensures LED The driver chip operates in a safe voltage and current range.
  • the LED driving circuit of the invention has the following beneficial effects: LED therein
  • the chip can identify the power type of the output terminal of the ballast circuit and operate under the corresponding working state, so that the LED driving chip of the invention can work under DC or AC input;
  • the chip controls the first load unit, so that the LED drive circuit allows different types of ballasts to work normally after accessing different types of ballast circuits, and ensures the stability of the output voltage of the ballast circuit, so that the LED Drive circuit output load
  • the LED lamp has the same power supply and protects the LED lamp.
  • FIG. 1 is a structural view of a first embodiment of an LED driving chip of the present invention
  • FIG. 2 is a structural view showing a second embodiment of the LED driving chip of the present invention.
  • FIG. 3 is a structural view showing a third embodiment of the LED driving chip of the present invention.
  • FIG. 4 is a circuit diagram of a fifth embodiment of the LED driving circuit of the present invention.
  • FIG. 5 is a flow chart showing the operation of the preferred embodiment of the LED driving circuit of the present invention after accessing the ballast circuit;
  • FIG. 6 is a circuit diagram of a driving circuit in the case where the LED driving chip of the present invention is applied to a ballastless device and the input is an alternating current;
  • FIG. 7 is a circuit diagram of a driving circuit of the LED driving chip of the present invention applied to a DC input.
  • the invention discloses an LED driving chip compatible with various ballasts and an LED applying the LED driving chip
  • the driving circuit, and the LED driving chip and the LED driving circuit of the present invention can operate with the input being direct current or alternating current.
  • the LED driving chip includes:
  • a pattern recognition and control module that identifies the power type of the output power of the ballast circuit to generate a corresponding operating mode control signal and outputs the ballast to operate normally 201 ;
  • a power tube 203 whose drain is connected to the main inductor of the peripheral driving circuit, and whose source is grounded via the resistor of the peripheral driving circuit;
  • the gate connection controls the switching frequency and duty cycle of the power transistor 203 to detect the constant current of the constant current/voltage output by detecting the power supply voltage of the output terminal of the ballast circuit after the step-down and the main-stage inductor voltage of the peripheral driving circuit. / Constant voltage drive control module 204.
  • ballasts ballast circuits
  • an inductive ballast passes through a starter, and a passive electronic ballast passes through a self-excited oscillation.
  • Active electronic ballasts (controlled by the chip) control the oscillation frequency and so on.
  • the type of ballast is not limited, but is automatically compatible with the output of different ballasts.
  • the output of the inductive ballast (inductive ballast circuit) is low-frequency alternating current, the output of the electronic ballast (electronic ballast circuit), high-frequency alternating current, due to high frequency, the capacitor-filtered electronic ballast ( The electronic ballast circuit) output is close to DC.
  • the LED chip can accommodate a variety of ballasts (ballast circuits), which requires the LED driver chip to operate both under AC and DC.
  • the pattern recognition and control module 201 A power type of the ballast circuit output power terminal is identified to generate a corresponding operating mode control signal, and the generated operating mode control signal is output to the negative impedance control module 202.
  • Negative impedance control module 202 The negative impedance control module 202 is controlled according to the received operating mode control signal and the power supply of the ballast circuit output power terminal to control the internal equivalent impedance change of the LED driving chip.
  • the output voltage of the ballast circuit increases. Controlling the internal equivalent impedance of the LED driver chip to reduce the further rise of the output voltage of the ballast circuit, thereby reducing the voltage and making the LED
  • An effective negative feedback loop is formed between the driver chip and the ballast to ensure the stability of the output voltage of the ballast circuit.
  • Constant current / constant voltage drive control module 204 and power tube 203 The gate connection controls the switching frequency and duty cycle of the power transistor 203 to achieve a constant current by detecting the power supply voltage at the power supply terminal of the step-down ballast circuit and the main-stage inductor voltage of the peripheral driving circuit. Voltage output.
  • the LED driving chip of the present invention can adapt to different ballast circuit outputs, and the output of different ballast circuits is used as an LED.
  • the input power of the driver chip is driven, and the LED driver chip can work normally if the output of the ballast circuit is DC (after capacitive filtering) or low frequency AC.
  • FIG. 2 is a structural view of a second embodiment of an LED driving chip of the present invention, as shown in FIG. 2, in this embodiment, an LED
  • the driver chip further includes first to eighth pins; wherein the pattern recognition and control module 201 and the negative impedance control module 202 pass through the first pin 205, respectively.
  • the pattern recognition and control module 201 is connected to the first load unit of the peripheral driving circuit through the second pin 206; the drain of the power tube 203 passes through the third pin 207 Connected to the main inductor of the peripheral driving circuit, the source detects the current of the auxiliary inductor of the peripheral driving circuit through the fourth pin 208; the pattern recognition and control module 201 and the constant current/constant voltage driving control module 204
  • the fifth pin 209 is connected to the output voltage of the output terminal of the stepped ballast circuit, and is connected to the auxiliary inductor of the peripheral driving circuit through the sixth pin 210, and passes through the seventh pin 211.
  • the voltage of the auxiliary inductor of the peripheral driving circuit after the step-down is applied, and is grounded through the eighth pin 212.
  • the remaining cases and the LED of the present invention The first embodiment of the driving chip is the same and will not be described herein.
  • the LED driver chip of the present invention can also include other pins for the connection of the chip to an external drive circuit.
  • the pattern recognition and control module 201 simulates the voltage of the fluorescent lamp by controlling the first load unit / The current curve allows the ballast to work properly.
  • the person skilled in the art will be able to understand the voltage of the fluorescent lamp required for the normal starting and working of the ballast / The current characteristics, therefore, the person skilled in the art can, according to the technical solution disclosed by the present invention, combine the voltage/current characteristics of the fluorescent lamp required for the normal starting and working of the ballast to make the ballast work normally.
  • FIG. 3 is a structural view of a third embodiment of the LED driving chip of the present invention, as shown in FIG. 3, in the embodiment, the LED The driving chip further includes a protection module 213 for monitoring the power supply of the ballast circuit output power terminal to implement overvoltage and overcurrent protection for the constant current/constant voltage driving control module 204, and a protection module 213.
  • the ballast circuit output power terminal is connected through the first pin 205. In this embodiment, the rest of the situation is the same as that of the second embodiment, and details are not described herein again.
  • the protection module 213 The output power of the ballast circuit can also be obtained by other pins or other modules.
  • the protection module 213 monitors the power supply of the output power of the ballast circuit and sends a protection signal to the constant current /
  • the constant voltage drive control module 204 ensures that the LED driver chip operates within a safe current/voltage range.
  • the driver chip can also operate without a ballast (ballast circuit) and the power input to it is AC or DC. These two cases will be described in conjunction with a driver circuit external to the chip.
  • the LED The driving circuit includes a protection circuit 100 and an LED power supply circuit 300 connected to the output power terminal of the ballast circuit; wherein the LED power supply circuit 300 includes and the protection circuit 100
  • the LED driver chip 200 includes:
  • a power tube 203 whose drain is connected to the main inductor 301 and whose source is grounded via the auxiliary resistor 700;
  • the constant current/constant voltage drive control module 204 that controls the switching frequency and duty cycle of the power transistor 203 to achieve a constant current/voltage output.
  • the ballast circuit output power terminal refers to an output terminal after passing through the rectifier bridge.
  • the LED driver chip 200 The LED driving chip described in the first embodiment of the LED driving chip of the present invention.
  • LED driving circuit of the invention LED chip 200 thereof Able to identify the type of power supply at the output terminal of the ballast circuit and operate in a corresponding operating state, thereby enabling the LED driver chip to operate under DC or AC input, thereby enabling the LED of the present invention
  • the driving circuit can operate under DC or AC input; the LED chip 200 controls the first load unit 400 to make the LED
  • the LED power supply circuit 300 Also includes:
  • the positive electrode is connected to the secondary inductor 302, and the negative electrode is connected to the first diode 304 of the first capacitor 30;
  • a first resistor 306 and a second resistor 307 are connected in parallel to each other across the auxiliary inductor 305.
  • the protection circuit 100 includes:
  • a second capacitor 103 connected between the output power terminal of the ballast circuit and the ground;
  • a third inductor 104, a fifth resistor 105, and a second diode 106 connected in parallel across the main inductor 301, wherein the third inductor 104 is connected in parallel with the fifth resistor 105, and the third inductor 104 and the fifth resistor 105 are connected in series with the second diode 106 in parallel.
  • the circuit formed by the third capacitor 104, the fifth resistor 105 and the second diode 106 functions to protect the LED
  • the power tube 203 in the driving chip 200 is driven.
  • the LED driving chip 200 further includes first to eighth pins; wherein the pattern recognition and control module 201 and the negative impedance control module 202 pass through the first pin 205, respectively Connected to the output power terminal of the ballast circuit; the pattern recognition and control module 201 is connected to the first load unit 400 through the second pin 206; the drain of the power tube 203 passes through the third pin 207 Connected to the main inductor 301, the source detects the auxiliary inductor 305 current through the fourth pin 208; the pattern recognition and control module 201 and the constant current / constant voltage drive control module 204
  • the fifth resistor 209 is connected to the node of the third resistor 101 and the fourth resistor 102, the sixth pin 210 is connected to the auxiliary inductor 305, and the seventh pin 211 is connected to the first resistor.
  • the node of 306 and the second resistor 307 is grounded through the eighth pin 212.
  • FIG. 4 is a circuit diagram of a fifth embodiment of the LED driving circuit of the present invention, as shown in FIG. 4, in the embodiment, the LED The driving circuit further includes a third diode 500 and a fourth capacitor 600, wherein the third diode 500 is connected to the auxiliary inductor 305, the cathode is grounded via the fourth capacitor 600, and the auxiliary resistor is 700. Connected between the fourth pin 208 and ground. In this embodiment, the rest of the situation is the same as the fourth embodiment of the LED driving circuit of the present invention, and details are not described herein again.
  • the sixth pin 210 is the power input terminal of the LED driving chip 200
  • the third diode 500 is provided.
  • the fourth capacitor 600 is used for voltage regulation.
  • the LED driver chip 200 The method further includes connecting, by the first pin 205, the ballast circuit output power terminal, and monitoring the power supply of the ballast circuit output power terminal to implement the constant current/constant voltage drive control module 204. Protection module for overvoltage and overcurrent protection 213.
  • FIG. 5 is a flow chart showing the operation of the preferred embodiment of the LED driving circuit of the present invention after accessing the ballast circuit.
  • the process begins with a step S501, step S502: the ballast is started and enters the warm-up mode, step S503: the LED driver chip is powered on and starts the protection module, step S504: The pattern recognition and control module controls the first load unit to make the ballast work normally, step S505: the negative impedance control module controls the internal equivalent impedance change of the chip to cause the ballast to output a stable voltage, step S506: constant current / Constant voltage drive control module realizes constant current / voltage output, step S507: The LED power supply circuit outputs a stable power supply to supply the load LED lamp, and the process ends at step S508.
  • the LED driving chip of the present invention can also be used in the case of an AC input without a ballast, and FIG. 6 is an LED of the present invention.
  • the driver circuit is applied to a circuit diagram of a driver circuit without a ballast and the input is an alternating current, as shown in FIG. 6, at this time, the LED of the LED driving chip of the present invention is applied.
  • the first load unit 400 (see FIG. 4) is not required in the driving circuit, and the remaining connections are the same as those in the fifth embodiment of the LED driving circuit of the present invention, and details are not described herein again.
  • the LED driver circuit is powered by an 85V to 265V AC voltage source. See Figure 2,
  • the constant current/constant voltage drive control module 204 of the LED driver chip 200 detects the third resistor 101 and the fourth resistor 102 through the fifth pin 102.
  • the AC power input after the partial pressure is used as an internal reference value.
  • the power transistor 203 of the LED driver chip 200 passes through the third diode 500 from the sixth pin 210.
  • the LED driving chip 200 flows into the power tube 203 and the auxiliary resistor 700, and the constant current/constant voltage driving control module 204 of the LED driving chip 200
  • the voltage value of the fourth pin 208 is monitored.
  • the constant current/constant voltage drive control module 204 will power the tube 203. shut down. At this time, the first diode 304 is turned on, and the secondary inductor 302 supplies power to the first capacitor 303 and the load LED lamp. When the secondary inductor 302 current is released, the LED driver chip The drain of the power transistor 203 of 200 and the auxiliary inductor 305 resonate at the same frequency.
  • the constant current/constant voltage drive control module 204 of the LED driver chip 200 detects the auxiliary inductance 305 When the valley of the resonance wave (the valley of the auxiliary inductor 305 resonance voltage is also the valley of the drain voltage of the power transistor 203), the power transistor 203 is turned on. Wherein, the constant current / constant voltage drive control module 204 The voltage of the auxiliary inductor 305 divided by the first resistor 306 and the second resistor 307 is detected by the seventh pin 211.
  • the LED driving chip of the present invention can also be used for DC input, and FIG. 7 is the LED of the present invention.
  • the driver chip is applied to the circuit diagram of the driver circuit in the case of DC input, as shown in Figure 7.
  • the LED driving circuit includes the LED driving chip in the second or third embodiment of the LED driving chip of the present invention. 200, a first adjusting resistor 702 and a second adjusting resistor 703 connected in series with each other between the output terminals of the DC power source 701, and a positive electrode connected to the third pin 207 of the LED driving chip 200
  • the negative pole is connected to the DC power source 701.
  • the fourth diode 704 of the positive pole is connected to the third pin 207 of the LED driving chip 200 at one end and the fourth inductor 705 of the load LED lamp at the other end.
  • One end is grounded, one end is connected to the third adjusting resistor 706 of the fourth pin 208 of the LED driving chip 200, and one end is grounded, one end is connected to the first adjusting resistor 702 and the second adjusting resistor
  • the fifth capacitor of the 703 node is 707.
  • the sixth pin 210 of the LED driving chip 200 is connected to the node of the first adjusting resistor 702 and the second adjusting resistor 703, and the eighth pin 212 Ground.
  • the load LED is connected to the fourth inductor 705 at one end and to the positive terminal of the DC power supply 701 at the other end.
  • the voltage of the DC power supply 701 is divided by the first adjustment resistor 702 and the second adjustment resistor 703, and then input to the LED driver chip.
  • the sixth pin 210 of 200 inputs the voltage of the LED driver chip 200.
  • LED driver chip 200 constant current / constant voltage drive control module 204 internal clock power tube 203 is turned on and the DC power supply 701 supplies power to the load LED 708.
  • the constant current / constant voltage driving control module 204 puts the power tube 203 closed.
  • the fourth diode 704 is forward conducting, and the fourth inductor 705 supplies power to the load LED, etc. 708.
  • LED drive circuit and LED according to the present invention can be implemented in a specific implementation process
  • the driver chip is appropriately modified to suit the specific requirements of the specific situation. Therefore, it is to be understood that the specific embodiments of the present invention are intended to be illustrative only and not to limit the scope of the invention.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED驱动芯片(200),包括模式识别及控制模块、负阻抗控制模块、功率管和恒流/恒压驱动控制模块。该LED驱动芯片(200)能够兼容各种镇流器,为负载LED灯提供稳定的电源;还能在没有镇流器、交流或直流输入的情况下工作。一种LED驱动电路应用了该LED驱动芯片,具有与LED驱动芯片相同的有益效果。

Description

LED 驱动电路和 LED 驱动芯片 技术领域
本发明涉及LED技术领域,更具体地说,涉及一种 LED 驱动电路和 LED 驱动芯片。
背景技术
LED 光源是 21 世纪光源市场的希望,在未来将逐步取代传统光源。奥科委指出高亮度 LED 将是人类继爱迪生发明白炽灯之后,最伟大的发明之一。在当前全球能源匮乏的时候,节能是我们面临的重大问题。 LED 灯作为一种新型的、 节能环保的绿色光源产品,必然得到广泛的应用。
日光灯是当前使用最普及的照明灯,但是日光灯所使用的荧光粉大多含有对环境有害的物质,例如贡。这种技术将逐步被 LED 照明所取代。在传统的替换方式中,由于日光灯架上设置有镇流器,安装 LED 灯时,通常要求进行灯具改造,例如镇流器短路,去除启辉器等。这样改造的目的是使交流电源直接加到 LED 灯的两端。以上的操作很不方便,替代成本高,极大地限制了 LED 灯的普及。
美国专利 7067992 公开了一种兼容镇流器的 LED 驱动电路。在该方案中,简单地把 LED 驱动电路接入镇流器,电路中没有任何控制机构来对输出 LED 灯的电流进行控制,也无法对 LED 灯进行保护。由于镇流器的工作特性依赖于负载的阻抗,其输出电压频率及幅度将随着负载阻抗的变化而变化。该方案的 LED 驱动电路,在不同的工作状态下,将引起镇流器不同的输出,特别在 LED 灯导通前表现高阻特性时,镇流器一般会输出 500V 以上的高压(相当于日光灯的点火过程),从而容易对 LED 灯造成损坏。另外,市场中的镇流器种类繁多、质量参差不齐,该方案的 LED 驱动电路接入不同类型的镇流器电路,将不能保证输出 LED 灯的电源的一致性。
综上所述,现有的兼容镇流器的 LED 驱动电路存在接入镇流器电路后无法对输出 LED 灯的电流进行控制,也无法对 LED 灯进行保护;在不同的工作状态下,将引起镇流器不同的输出,容易对 LED 灯造成损坏;以及接入不同类型的镇流器电路,不能保证输出 LED 灯的电源一致的缺陷。
发明内容
本发明针对现有技术的上述缺陷,提供一种能够兼容各种类型的镇流器并能保证输出LED灯的电源一致、能够在交流到直流、直流到直流的工作状态下工作的LED驱动电路和LED驱动芯片。
本发明解决其技术问题所采用的技术方案是:提供 一种 LED 驱动芯片,包括:
识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号并输出、使镇流器正常工作的模式识别及控制模块;
接收所述工作模式控制信号和镇流器电路输出电源端的电源以控制所述芯片的内部等效阻抗变化的负阻抗控制模块;
漏极与***驱动电路的主级电感连接、源极j经外部驱动电路的电阻接地的功率管;
与所述功率管的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压和***驱动电路主级电感电压来控制所述功率管的开关频率和占空比以实现恒定电流 / 电压输出的恒流 / 恒压驱动控制模块。
本发明的 LED 驱动芯片,还包括第一至第八管脚;其中,所述模式识别及控制模块和负阻抗控制模块分别通过所述第一管脚连接镇流器电路输出电源端;所述模式识别及控制模块通过所述第二管脚与***驱动电路的第一负载单元连接;所述功率管的漏极通过所述第三管脚与***驱动电路的主级电感连接,其源极通过所述第四管脚检测***驱动电路的辅助电感的电流;所述模式识别及控制模块和所述恒流 / 恒压驱动控制模块通过所述第五管脚接入降压后的镇流器电路输出电源端的电源电压,通过所述第六管脚与***驱动电路的辅助电感连接,通过所述第七管脚接入降压后的***驱动电路的辅助电感的电压,以及通过所述第八管脚接地。
本发明的 LED 驱动芯片,还包括对镇流器电路输出电源端的电源进行监测以实现对所述恒流 / 恒压驱动控制模块的过压、过流保护的保护模块。
提供一种 LED 驱动电路,包括与镇流器电路输出电源端连接的保护电路和 LED 供电电路,其中,所述 LED 供电电路包括与所述保护电路连接的主级电感、与所述主级电感形成互感并为 LED 灯供电的次级电感以及与所述次级电感形成互感的辅助电感;所述 LED 驱动电路还包括: LED 驱动芯片、受所述 LED 驱动芯片控制的第一负载单元和辅助电阻;其中,第一负载单元连接在镇流器电路输出电源端和地之间;所述 LED 驱动芯片包括:
识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号并输出、根据镇流器正常工作、控制所述第一负载单元的模式识别及控制模块;
接收所述工作模式控制信号和镇流器电路输出电源端的电源以控制所述 LED 驱动芯片内部等效阻抗变化的负阻抗控制模块;
漏极与所述主级电感连接、 源极经所述辅助电阻接地的功率管 ;
与所述功率管的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压、和所述主级电感电压来控制所述功率管的开关频率和占空比以实现恒定电流 / 电压输出的恒流 / 恒压驱动控制模块。
本发明的 LED 驱动电路,还包括:
并联在所述次级电感两端的第一电容;
正极连接所述次级电感、负极连接所述第一电容的第一二极管;以及
并联在所述辅助电感两端、彼此串联的第一电阻和第二电阻。
本发明的 LED 驱动电路,所述保护电路包括:
连接在镇流器电路输出电源端与地之间、彼此串联的第三电阻和第四电阻;
连接在镇流器电路输出电源端与地之间的第二电容;
并联在所述主级电感两端的第三电感、第五电阻和第二二极管,其中,所述第三电感和第五电阻并联,所述第三电感和第五电阻并联整体与所述第二二极管串联。
本发明的 LED 驱动芯片,包括第一至第八管脚;其中,所述模式识别及控制模块和负阻抗控制模块分别通过所述第一管脚与镇流器电路输出电源端连接;所述模式识别及控制模块通过所述第二管脚与所述第一负载单元连接;所述功率管的漏极通过所述第三管脚与所述主级电感连接,其源极通过所述第四管脚检测所述辅助电感电流;所述模式识别及控制模块和所述恒流 / 恒压驱动控制模块通过所述第五管脚连接于所述第三电阻和所述第四电阻的节点,通过所述第六管脚与所述辅助电感连接,通过所述第七管脚连接于所述第一电阻和第二电阻的节点,以及通过所述第八管脚接地。
本发明的 LED 驱动电路,还包括第三二极管和第四电容,其中,所述第三二极管正极连接所述辅助电感、负极经所述第四电容接地;所述辅助电阻连接在所述第四管脚和地之间。
优选地所述 LED 驱动芯片还包括通过所述第一管脚与镇流器电路输出电源端连接、对镇流器电路输出电源端的电源进行监测以实现对所述恒流 / 恒压驱动控制模块过压、过流保护的保护模块。
本发明的 LED 驱动芯片具有以下有益效果:通过模式识别及控制模块识别镇流器电路输出电源端的电源类型并使镇流器正常工作,使得本发明的 LED 驱动芯片能够在直流或者交流输入下工作并且兼容各种镇流器;并且模式识别及控制模块通过控制负阻抗控制模块,使得 LED 驱动芯片和镇流器电路之间形成了有效的负反馈环路,保证镇流器电路输出电压的稳定;恒流 / 恒压驱动控制模块通过控制功率管的开关频率和占空比来达到恒定电流 / 电压输出,使本发明的 LED 驱动芯片能够在接入不同类型的镇流器电路后,输出负载 LED 灯的电源一致,保护了 LED 灯。
另外,本发明的 LED 驱动芯片的保护模块,实现了对 LED 驱动芯片的输入过压、过流保护,确保 LED 驱动芯片在安全的电压、电流范围内工作。
本发明的 LED 驱动电路具有以下有益效果:其中的 LED 芯片能够识别镇流器电路输出电源端的电源类型并工作在相应的工作状态下,从而使得本发明的 LED 驱动芯片能够在直流或者交流输入下工作; LED 芯片通过控制第一负载单元,使得 LED 驱动电路在接入不同类型的镇流器电路后,让不同类型的镇流器正常工作,并保证了镇流器电路输出电压的稳定、使 LED 驱动电路输出负载 LED 灯的电源一致,保护了 LED 灯。
附图说明
图 1 为本发明的 LED 驱动芯片的第一实施例的结构图;
图 2 为本发明的 LED 驱动芯片的第二实施例的结构图;
图 3 为本发明的 LED 驱动芯片的第三实施例的结构图;
图 4 为本发明的 LED 驱动电路的第五实施例的电路图;
图 5 为本发明的 LED 驱动电路优选实施例接入镇流器电路后的工作流程图;
图 6 为本发明的 LED 驱动芯片应用于无镇流器且输入为交流电的情况下的驱动电路电路图;
图 7 为本发明的 LED 驱动芯片应用于直流输入情况下的驱动电路电路图。
具体实施方式
以下结合附图和实施例对本发明的 LED 驱动电路和 LED 驱动芯片进解释和说明。
本发明公开了一种可以兼容各种镇流器的 LED 驱动芯片和应用了所述 LED 驱动芯片的 LED 驱动电路,并且,本发明的 LED 驱动芯片和 LED 驱动电路能够在输入为直流电或者交流电的情况下工作。
图1为本发明的LED驱动芯片的第一实施例的结构图,如图1所示,在本实施例中,LED驱动芯片包括:
识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号并输出、使镇流器正常工作的模式识别及控制模块 201 ;
接收所述工作模式控制信号和镇流器电路输出电源端的电源以控制 LED 驱动芯片的内部等效阻抗变化的负阻抗控制模块 202 ;
漏极与***驱动电路的主级电感连接、源极经***驱动电路的电阻接地的功率管 203 ;
与功率管 203 的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压和***驱动电路主级电感电压来控制功率管 203 的开关频率和占空比以实现恒定电流 / 电压输出的恒流 / 恒压驱动控制模块 204 。
本领域的技术人员能够明白,不同的镇流器(镇流器电路)通过不同的方式启动、进入正常工作,例如,电感镇流器通过起辉器,无源电子镇流器通过自激震荡,有源电子镇流器(由芯片控制)通过控制震荡频率等。在实际设计中,并不会限制镇流器的类型,而是自动兼容不同镇流器的输出。电感镇流器(电感镇流器电路)的输出是低频交流电,电子镇流器(电子镇流器电路)的输出高频交流电,由于高频的原因,经电容滤波后的电子镇流器(电子镇流器电路)输出接近直流。为了让 LED 芯片能够适应各种镇流器(镇流器电路),这就要求 LED 驱动芯片既能在交流电下工作,又能在直流电下工作。
在实施例中,模式识别及控制模块 201 识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号,并将生成的工作模式控制信号输出给负阻抗控制模块 202 。负阻抗控制模块 202 根据接收到的所述工作模式控制信号和镇流器电路输出电源端的电源以控制 LED 驱动芯片的内部等效阻抗变化,当镇流器电路输出电压增大时,负阻抗控制模块 202 控制 LED 驱动芯片内部等效阻抗减小,以抑制镇流器电路输出电压的进一步上升,进而降低了该电压,使得 LED 驱动芯片与镇流器之间形成了有效的负反馈环路,保证镇流器电路输出电压的稳定。恒流 / 恒压驱动控制模块 204 与功率管 203 的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压和***驱动电路主级电感电压来控制功率管 203 的开关频率和占空比以实现恒定电流 / 电压输出。
因此,本发明的 LED 驱动芯片能够适应不同的镇流器电路输出,以不同的镇流器电路的输出作为 LED 驱动芯片的输入电源,并且,在镇流器电路的输出为直流(经电容滤波后)或者低频交流的情况下, LED 驱动芯片都可以正常工作。
图 2 为本发明的 LED 驱动芯片的第二实施例的结构图,如图 2 所示,在本实施例中, LED 驱动芯片还包括第一至第八管脚;其中,模式识别及控制模块 201 和负阻抗控制模块 202 分别通过第一管脚 205 连接镇流器电路输出电源端;模式识别及控制模块 201 通过第二管脚 206 与***驱动电路的第一负载单元连接;功率管 203 的漏极通过第三管脚 207 与***驱动电路的主级电感连接,其源极通过第四管脚 208 检测***驱动电路的辅助电感的电流;模式识别及控制模块 201 和恒流 / 恒压驱动控制模块 204 通过第五管脚 209 接入降压后的镇流器电路输出电源端的电源电压,通过第六管脚 210 与***驱动电路的辅助电感连接,通过第七管脚 211 接入降压后的***驱动电路的辅助电感的电压,以及通过所述第八管脚 212 接地。在本实施例中,其余情况与本发明的 LED 驱动芯片的第一实施例相同,在此不再赘述。在本发明的 LED 驱动芯片的其它实施例中, LED 驱动芯片还可以包括其它管脚,以用于芯片与外部驱动电路的连接。
在本实施例中,具体地,模式识别及控制模块 201 是通过控制 第一负载单元 来模拟日光灯的电压 / 电流曲线,从而让镇流器正常工作。本领域的技术人员能够明白镇流器正常启动、工作需要的日光灯的电压 / 电流特性,因此本领域技术人员能够根据本发明公开的技术方案,结合镇流器正常启动、工作需要的日光灯的电压 / 电流特性让镇流器正常工作。
图 3 为本发明的 LED 驱动芯片的第三实施例的结构图,如图 3 所示,在本实施例中, LED 驱动芯片还包括对镇流器电路输出电源端的电源进行监测以实现对恒流 / 恒压驱动控制模块 204 的过压、过流保护的保护模块 213 ,保护模块 213 通过第一管脚 205 连接镇流器电路输出电源端。在本实施例中,其余情况与第二实施例相同,在此不再赘述。在本发明的其它实施例中,保护模块 213 还可以通过其它的管脚或者其它的模块来获取镇流器电路的输出电源。
在本实施例中,保护模块 213 对镇流器电路输出电源端的电源进行监测,并发送保护信号到恒流 / 恒压驱动控制模块 204 ,保证 LED 驱动芯片在安全的电流 / 电压范围内工作。
本发明的 LED 驱动芯片同样可以在没有镇流器(镇流器电路)、输入其中的电源为交流或者直流的情况下工作。这两种情况,将结合芯片外部的驱动电路来进行描述。
在本发明的 LED 驱动电路的第一实施例的电路图,参见图 1 和图 4 ,在本实施例中, LED 驱动电路包括与镇流器电路输出电源端连接的保护电路 100 和 LED 供电电路 300 ;其中, LED 供电电路 300 包括与保护电路 100 连接的主级电感 301 、与主级电感 301 形成互感并为 LED 灯供电的次级电感 302 以及与次级电感 302 形成互感的辅助电感 305 , LED 驱动芯片 200 ,受 LED 驱动芯片 200 控制的第一负载单元 400 ,和辅助电阻 700 ;其中,第一负载单元 400 连接在镇流器电路输出电源端和地之间; LED 驱动芯片 200 包括:
识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号并输出、根据镇流器正常工作、控制所述第一负载单元 400 的模式识别及控制模块 201 ;
接收工作模式控制信号和镇流器电路输出电源端的电源以控制 LED 驱动芯片 200 内部等效阻抗变化的负阻抗控制模块 202 ;
漏极与主级电感 301 连接、源极经辅助电阻 700 接地的功率管 203 ;
与功率管 203 的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压、和主级电感 301 电压来控制功率管 203 的开关频率和占空比以实现恒定电流 / 电压输出的恒流 / 恒压驱动控制模块 204 。
在本实施例中,所述的镇流器电路输出电源端是指经过了整流桥后的输出端。其中的 LED 驱动芯片 200 为本发明的 LED 驱动芯片的第一实施例中所述的 LED 驱动芯片。
本发明的 LED 驱动电路,其 LED 芯片 200 能够识别镇流器电路输出电源端的电源类型并工作在相应的工作状态下,从而使得 LED 驱动芯片能够在直流或者交流输入下工作,进而使得本发明的 LED 驱动电路能够在直流或者交流输入下工作; LED 芯片 200 通过控制第一负载单元 400 ,使得 LED 驱动电路在接入不同类型的镇流器电路后,让不同类型的镇流器正常工作,并保证了镇流器电路输出电压的稳定、使 LED 驱动电路输出负载 LED 灯的电源一致,保护了 LED 灯。
在本发明的 LED 驱动电路的第二实施例中,参见图 4 ,在本实施例中 ,LED 供电电路 300 还包括:
并联在次级电感 302 两端的第一电容 303 ;
正极连接次级电感 302 、负极连接第一电容 30 的第一二极管 304 ;以及
并联在辅助电感 305 两端、彼此串联的第一电阻 306 和第二电阻 307 。
在本实施例中,其余情况与本发明的 LED 驱动电路的第一实施例相同,在此不再赘述。
在本发明的 LED 驱动电路的第三实施例中,参见图 4 ,在本实施例中,保护电路 100 包括:
连接在镇流器电路输出电源端与地之间、彼此串联的第三电阻 101 和第四电阻 102 ;
连接在镇流器电路输出电源端与地之间的第二电容 103 ;
并联在主级电感 301 两端的第三电感 104 、第五电阻 105 和第二二极管 106 ,其中,第三电感 104 和第五电阻 105 并联,第三电感 104 和第五电阻 105 并联整体与第二二极管 106 串联。
在本实施例中,其余情况与本发明的 LED 驱动电路的第二实施例相同,在此不再赘述。
在本实施例中,第三电容 104 、第五电阻 105 和第二二极管 106 构成的电路的作用是保护 LED 驱动芯片 200 内的功率管 203 。
在本发明的 LED 驱动电路的第四实施例中,参见图 2 和图 4 ,在本实施例中, LED 驱动芯片 200 还包括第一至第八管脚;其中,模式识别及控制模块 201 和负阻抗控制模块 202 分别通过第一管脚 205 与镇流器电路输出电源端连接;模式识别及控制模块 201 通过第二管脚 206 与第一负载单元 400 连接;功率管 203 的漏极通过第三管脚 207 与主级电感 301 连接,其源极通过第四管脚 208 检测辅助电感 305 电流;模式识别及控制模块 201 和恒流 / 恒压驱动控制模块 204 通过第五管脚 209 连接于第三电阻 101 和第四电阻 102 的节点,通过第六管脚 210 与辅助电感 305 连接,通过第七管脚 211 连接于第一电阻 306 和第二电阻 307 的节点,以及通过第八管脚 212 接地。在本实施例中,其余情况与本发明的 LED 驱动电路的第三实施例相同,在此不再赘述。
图 4 为本发明的 LED 驱动电路的第五实施例的电路图,如图 4 所示,在本实施例中, LED 驱动电路还包括第三二极管 500 和第四电容 600 ,其中,第三二极管 500 正极连接辅助电感 305 、负极经第四电容 600 接地;辅助电阻 700 连接在第四管脚 208 和地之间。在本实施例中,其余情况与本发明的 LED 驱动电路的第四实施例相同,在此不再赘述。
在本实施例中,由于第六管脚 210 为 LED 驱动芯片 200 的电源输入端,通过设置第三二极管 500 和第四电容 600 来进行稳压。
在本发明的 LED 驱动电路的优选实施例中,参见图 3 和图 4 , LED 驱动芯片 200 还包括通过第一管脚 205 与镇流器电路输出电源端连接、对镇流器电路输出电源端的电源进行监测以实现对所述恒流 / 恒压驱动控制模块 204 过压、过流保护的保护模块 213 。
图 5 为本发明的 LED 驱动电路优选实施例接入镇流器电路后的工作流程图。如图 5 所示,流程开始于步骤 S501 ,步骤 S502: 镇流器启动并进入预热模式,步骤 S503:LED 驱动芯片上电启动并启动保护模块,步骤 S504: 模式识别及控制模块控制第一负载单元使镇流器正常工作,步骤 S505: 负阻抗控制模块控制芯片的内部等效阻抗变化以使镇流器输出稳定电压,步骤 S506 :恒流 / 恒压驱动控制模块实现恒定电流 / 电压输出,步骤 S507 : LED 供电电路输出稳定电源给负载 LED 灯供电,流程结束于步骤 S508 。
本发明的 LED 驱动芯片也可以用于没有镇流器的交流电输入的情况,图 6 为本发明的 LED 驱动芯片应用于无镇流器且输入为交流电的情况下的驱动电路电路图,如图 6 所示,此时的应用了本发明的 LED 驱动芯片的 LED 驱动电路中除了不需要第一负载单元 400 (参见图 4 ),其余连接与本发明的 LED 驱动电路的第五实施例相同,在此不再赘述。
交流电源通过滤波器和整流桥输入 LED 驱动电路的电源为 85V 至 265V 交流电压源。参见图 2 , LED 驱动芯片 200 的 恒流 / 恒压驱动控制模块 204 通过第五管脚检测经 第三电阻 101 和第四电阻 102 分压后的输入的交流电源,作为内部参考值。 LED 驱动芯片 200 的功率管 203 首次复位信号打开后,电流经过 第三二极管 500 从第六管脚 210 流入 LED 驱动芯片 200 ,从而流入功率管 203 和辅助电阻 700 , LED 驱动芯片 200 的 恒流 / 恒压驱动控制模块 204 监测第四管脚 208 的电压值。一旦第四管脚 208 的电压值超过上述作为内部参考值的电压值, 恒流 / 恒压驱动控制模块 204 将功率管 203 关闭。此时,第一二极管 304 导通,次级电感 302 对第一电容 303 和负载 LED 灯供电。当次级电感 302 电流释放完后, LED 驱动芯片 200 的功率管 203 的漏极和辅助电感 305 同频谐振。当 LED 驱动芯片 200 的 恒流 / 恒压驱动控制模块 204 检测到辅助电感 305 谐振波的波谷(辅助电感 305 谐振波电压的低谷,也是功率管 203 漏极电压低谷)的时候,把功率管 203 打开。其中, 恒流 / 恒压驱动控制模块 204 是通过第七管脚 211 检测经第一电阻 306 和第二电阻 307 分压后的辅助电感 305 的电压 。
本发明的 LED 驱动芯片也可以用于直流输入的情况,图 7 为本发明的 LED 驱动芯片应用于直流输入情况下的驱动电路电路图,如图 7 所示。此时, LED 驱动电路包括本发明的 LED 驱动芯片的第二或者第三实施例中的 LED 驱动芯片 200 ,连接在直流电源 701 输出端之间、彼此串联的第一调节电阻 702 和第二调节电阻 703 ,正极连接 LED 驱动芯片 200 的第三管脚 207 、负极连接直流电源 701 正极的第四二极管 704 ,一端连接 LED 驱动芯片 200 的第三管脚 207 、另一端接负载 LED 灯的第四电感 705 ,一端接地、一端接 LED 驱动芯片 200 的第四管脚 208 的第三调节电阻 706 ,以及一端接地、一端连接于第一调节电阻 702 和第二调节电阻 703 的节点的第五电容 707 。 LED 驱动芯片 200 的第六管脚 210 连接于第一调节电阻 702 和第二调节电阻 703 的节点,第八管脚 212 接地。负载 LED 灯一端连接第四电感 705 、另一端连接直流电源 701 的正极。
直流电源 701 的电压经过第一调节电阻 702 和第二调节电阻 703 分压后经输入 LED 驱动芯片 200 的第六管脚 210 输入 LED 驱动芯片 200 的电压。 LED 驱动芯片 200 的 恒流 / 恒压驱动控制模块 204 内部的时钟把功率管 203 打开,直流电源 701 对负载 LED 灯 708 供电。当第三调节电阻 706 上的电压过压的时候, 恒流 / 恒压驱动控制模块 204 把功率管 203 关闭。第四二极管 704 正向导通,第四电感 705 对负载 LED 等 708 供电。
在具体的实施过程中可对根据本发明的 LED 驱动电路和 LED 驱动芯片进行适当的改进,以适应具体情况的具体要求。因此可以理解,根据本发明的具体实施方式只是起到示范作用,并不同于限制本发明的保护范围。

Claims (9)

  1. 一种 LED 驱动芯片,其特征在于,包括:
    识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号并输出、使镇流器正常工作的模式识别及控制模块(201 );
    接收所述工作模式控制信号和镇流器电路输出电源端的电源以控制所述芯片的内部等效阻抗变化的负阻抗控制模块( 202 );
    漏极与***驱动电路的主级电感连接、 源极经***驱动电路的电阻接地的功率管 ( 203 );
    与所述功率管( 203 )的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压和***驱动电路主级电感电压来控制所述功率管( 203 )的开关频率和占空比以实现恒定电流 / 电压输出的恒流 / 恒压驱动控制模块( 204 )。
  2. 根据权利要求1所述的LED驱动芯片,其特征在于, 所述芯片还包括第一至第八管脚;其中,所述模式识别及控制模块(201)和负阻抗控制模块(202)均通过所述第一管脚(205)连接镇流器电路输出电源端; 所述模式识别及控制模块(201) 通过所述第二管脚( 206 ) 与***驱动电路的第一负载单元连接;所述功率管 (208)检测***驱动电路的辅助电感的电流;所述模式识别及控制模块( 201 )和所述恒流 / 恒压驱动控制模块 (204)通过所述第五管脚 (209)接入降压后的镇流器电路输出电源端的电源电压,通过所述第六管脚 (210) 与***驱动电路的辅助电感连接,通过所述第七管脚 (211)接入降压后的***驱动电路的辅助电感的电压,以及通过所述第八管脚 (212)接地。
  3. 根据权利要求 1 或 2 所述的 LED 驱动芯片, 其特征在于,所述芯片还包括对镇流器电路输出电源端的电源进行监测以实现对所述恒流 / 恒压驱动控制模块(204 )的过压、过流保护的保 护模块(213)。
  4. 一种LED驱动电路, 包括与镇流器电路输出电源端连接的保护电路(100 )和 LED 供电电路( 300 ),其中,所述 LED 供电电路( 300 )包括与所述保护电路( 100 )连接的主级电感( 301 )、与所述主级电感( 301 )形成互感并为 LED 灯供电的次级电感(302 )以及与所述次级电感( 302 ) 形成互感的辅助电感( 305 ),其特征在于,所述 LED 驱动电路还包括: LED 驱动芯片(200) 、受所述 LED 驱动芯片(200) 控制的第一负载单元( 400 )和辅助电阻(700); 其中,第一负载单元( 400 )连接在镇流器电路输出电源端和地之间;所述 LED 驱动芯片(200) 包括:
    识别镇流器电路输出电源端的电源类型以生成相应的工作模式控制信号并输出、根据镇流器正常工作、控制所述第一负载单元(400 )的模式识别及控制模块(201 );
    接收所述工作模式控制信号和镇流器电路输出电源端的电源以控制所述 LED 驱动芯片( 200 )内部等效阻抗变化的负阻抗控制模块(202);
    漏极与所述主级电感(301)连接、源极经所述辅助电阻(700)接地的功率管(203);
    与所述功率管(203)的栅极连接、通过检测降压后的镇流器电路输出电源端的电源电压、和所述主级电感(301)电压来控制所述功率管(203)的开关频率和占空比以实现恒定电流 / 电压输出的恒流 / 恒压驱动控制模块(204)。
  5. 根据权利要求 4 所述的 LED 驱动电路,其特征在于,所述 LED 供电电路(300 )还包括:
    并联在所述次级电感(302)两端的第一电容( 303 );
    正极连接所述次级电感(302 )、负极连接所述第一电容(303)的第一二极管( 304 );以及
    并联在所述辅助电感(305)两端、彼此串联的第一电阻(306)和第二电阻(307)。
  6. 根据权利要求 5 所述的 LED 驱动电路,其特征在于,所述保护电路(100)包括:
    连接在镇流器电路输出电源端与地之间、彼此串联的第三电阻(101)和第四电阻(102);
    连接在镇流器电路输出电源端与地之间的第二电容(103 );
    并联在所述主级电感(301 )两端的第三电感(104)、第五电阻(105)和第二二极管(106),其中,所述第三电感(104)和第五电阻(105 )并联,所述第三电感(104 )和第五电阻(105)并联整体与所述第二二极管( 106 )串联。
  7. 根据权利要求 6 所述的 LED 驱动芯片,其特征在于,所述 LED 驱动芯片(200)还包括第一至第八管脚;其中,所述模式识别及控制模块(201)和负阻抗控制模块(202 )分别通过所述第一管脚(205)与镇流器电路输出电源端连接;所述模式识别及控制模块(201)通过所述第二管脚( 206)与所述第一负载单元( 400 )连接;所述功率管( 203)的漏极通过所述第三管脚(207)与所述主级电感( 301 )连接,其源极通过所述第四管脚(208 )检测所述辅助电感( 305 )电流;所述模式识别及控制模块( 201 )和所述恒流 / 恒压驱动控制模块( 204 )通过所述第五管脚( 209 )连接于所述第三电阻( 101 )和所述第四电阻( 102 )的节点,通过所述第六管脚( 210 )与所述辅助电感( 305 )连接,通过所述第七管脚( 211 )连接于所述第一电阻( 306 )和第二电阻( 307 )的节点,以及通过所述第八管脚( 212 )接地。
  8. 根据权利要求 7 所述的 LED 驱动电路,其特征在于,所述 LED 驱动电路还包括第三二极管( 500 )和第四电容( 600 ),其中,所述第三二极管( 500 )正极连接所述辅助电感( 305 )、负极经所述第四电容( 600 )接地;所述辅助电阻( 700 )连接在所述第四管脚( 208 )和地之间。
  9. 根据权利要求 7 或 8 所述的 LED 驱动电路,其特征在于,所述 LED 驱动芯片( 200 )还包括通过所述第一管脚( 205 )与镇流器电路输出电源端连接、对镇流器电路输出电源端的电源进行监测以实现对所述恒流 / 恒压驱动控制模块( 204 )过压、过流保护的保护模块( 213 )。
PCT/CN2011/083344 2011-12-02 2011-12-02 Led驱动电路和led驱动芯片 WO2013078669A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180036396.XA CN103250467B (zh) 2011-12-02 2011-12-02 Led驱动电路和led驱动芯片
PCT/CN2011/083344 WO2013078669A1 (zh) 2011-12-02 2011-12-02 Led驱动电路和led驱动芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083344 WO2013078669A1 (zh) 2011-12-02 2011-12-02 Led驱动电路和led驱动芯片

Publications (1)

Publication Number Publication Date
WO2013078669A1 true WO2013078669A1 (zh) 2013-06-06

Family

ID=48534646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083344 WO2013078669A1 (zh) 2011-12-02 2011-12-02 Led驱动电路和led驱动芯片

Country Status (2)

Country Link
CN (1) CN103250467B (zh)
WO (1) WO2013078669A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105430843A (zh) * 2015-12-02 2016-03-23 上海航空电器有限公司 一种具有led恒压恒流驱动和频闪控制的防撞灯电路
CN105682281A (zh) * 2014-12-08 2016-06-15 美格纳半导体有限公司 镇流器类型检测电路以及具有其的发光二极管照明设备
CN105979630A (zh) * 2016-06-08 2016-09-28 杰华特微电子(杭州)有限公司 Led驱动电路
CN107734777A (zh) * 2017-11-09 2018-02-23 深圳市瑞之辰科技有限公司 Led驱动芯片、led驱动电路及led照明装置
CN107834624A (zh) * 2017-10-23 2018-03-23 大同裕隆环保有限责任公司 智能充电架充电信息远程综合管理模组
CN108196184A (zh) * 2018-01-25 2018-06-22 昆明理工大学 一种xl系列升压芯片检测装置及方法
CN108575018A (zh) * 2017-08-24 2018-09-25 常州星宇车灯股份有限公司 一种开关电源单串led短路检测反馈电路
CN110190507A (zh) * 2019-07-05 2019-08-30 苏州全视智能光电有限公司 一种小功率激光器及其驱动电路
CN112492718A (zh) * 2020-12-02 2021-03-12 上海裕芯电子科技有限公司 一种低压过温降流led驱动电路
CN113271697A (zh) * 2021-04-29 2021-08-17 江苏日月照明电器有限公司 一种双端智能型无级调光t8 led灯管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110599949B (zh) * 2019-09-20 2021-11-26 深圳市洲明科技股份有限公司 Led箱体及其***卡和显示模组
CN110996457B (zh) * 2019-12-31 2023-05-23 惠州视维新技术有限公司 Led驱动电路、装置、led控制保护方法及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174799Y (zh) * 2008-03-19 2008-12-31 杨书水 交流大功率led照明节能灯电子镇流器
JP2009245790A (ja) * 2008-03-31 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> 照明装置
CN101965078A (zh) * 2009-07-22 2011-02-02 深圳市桑达实业股份有限公司 一种led驱动电路、led灯具及led照明***
CN201781658U (zh) * 2010-06-01 2011-03-30 浙江红剑集团有限公司 直流高压恒流源电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201234390Y (zh) * 2008-07-18 2009-05-06 金诗电子技术(上海)有限公司 高调光比led驱动芯片
CN201331030Y (zh) * 2009-02-11 2009-10-21 东莞市龙立祥照明科技有限公司 一种led电路
CN202335026U (zh) * 2011-12-02 2012-07-11 叶军 Led驱动电路和led驱动芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174799Y (zh) * 2008-03-19 2008-12-31 杨书水 交流大功率led照明节能灯电子镇流器
JP2009245790A (ja) * 2008-03-31 2009-10-22 Nippon Telegr & Teleph Corp <Ntt> 照明装置
CN101965078A (zh) * 2009-07-22 2011-02-02 深圳市桑达实业股份有限公司 一种led驱动电路、led灯具及led照明***
CN201781658U (zh) * 2010-06-01 2011-03-30 浙江红剑集团有限公司 直流高压恒流源电路

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682281A (zh) * 2014-12-08 2016-06-15 美格纳半导体有限公司 镇流器类型检测电路以及具有其的发光二极管照明设备
CN105430843B (zh) * 2015-12-02 2023-08-04 上海航空电器有限公司 一种具有led恒压恒流驱动和频闪控制的防撞灯电路
CN105430843A (zh) * 2015-12-02 2016-03-23 上海航空电器有限公司 一种具有led恒压恒流驱动和频闪控制的防撞灯电路
CN105979630A (zh) * 2016-06-08 2016-09-28 杰华特微电子(杭州)有限公司 Led驱动电路
CN108575018B (zh) * 2017-08-24 2024-04-23 常州星宇车灯股份有限公司 一种开关电源单串led短路检测反馈电路
CN108575018A (zh) * 2017-08-24 2018-09-25 常州星宇车灯股份有限公司 一种开关电源单串led短路检测反馈电路
CN107834624A (zh) * 2017-10-23 2018-03-23 大同裕隆环保有限责任公司 智能充电架充电信息远程综合管理模组
CN107734777A (zh) * 2017-11-09 2018-02-23 深圳市瑞之辰科技有限公司 Led驱动芯片、led驱动电路及led照明装置
CN107734777B (zh) * 2017-11-09 2023-10-27 深圳市瑞之辰科技有限公司 Led驱动芯片、led驱动电路及led照明装置
CN108196184B (zh) * 2018-01-25 2023-06-20 昆明理工大学 一种xl系列升压芯片检测装置及方法
CN108196184A (zh) * 2018-01-25 2018-06-22 昆明理工大学 一种xl系列升压芯片检测装置及方法
CN110190507A (zh) * 2019-07-05 2019-08-30 苏州全视智能光电有限公司 一种小功率激光器及其驱动电路
CN112492718A (zh) * 2020-12-02 2021-03-12 上海裕芯电子科技有限公司 一种低压过温降流led驱动电路
CN113271697A (zh) * 2021-04-29 2021-08-17 江苏日月照明电器有限公司 一种双端智能型无级调光t8 led灯管
CN113271697B (zh) * 2021-04-29 2024-06-04 江苏日月照明电器有限公司 一种双端智能型无级调光t8 led灯管

Also Published As

Publication number Publication date
CN103250467B (zh) 2015-02-18
CN103250467A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2013078669A1 (zh) Led驱动电路和led驱动芯片
WO2018040119A1 (zh) 一种兼容市电和镇流器输入的led光源驱动控制装置
WO2015006963A1 (zh) 一种led背光***及显示装置
WO2013138972A1 (zh) 一种带功率补偿的led驱动芯片及电路
WO2014153787A1 (zh) 一种led背光驱动电路及背光模组
WO2017219659A1 (zh) 适配器
JP2012174518A (ja) 点灯装置および、これを用いた照明器具
KR20130118493A (ko) 형광등용 안정기를 이용한 led 조명 장치
WO2013040876A1 (zh) 变能灯控制电路及变能灯控制板
WO2018227965A1 (zh) 供电装置和照明***
CN202455590U (zh) 具有创新架构的大功率led智能电源驱动器
CN104837290B (zh) 数控双灯驱动器及其控制方法
WO2014094648A1 (zh) 一种分体式led灯具及其驱动电源插拔保护电路
WO2013170490A1 (zh) 一种led背光驱动电路、背光模组及液晶显示装置
WO2012100406A1 (zh) 一种低压控制电源电路及其产生方法
WO2019075945A1 (zh) 一种led集鱼灯电源输出切换电路
WO2014169507A1 (zh) 一种led照明装置的驱动电路及驱动方法
CN208128575U (zh) 输入功率自动调节的led灯具
CN201757323U (zh) 不闪烁且具有调光功能的led mr16射灯
CN202335026U (zh) Led驱动电路和led驱动芯片
TWI459862B (zh) Replacement electronic ballast lamp
CN206490855U (zh) 一种led宽压供电电源
WO2015008878A1 (ko) 조명 구동 집적회로 및 조명 제어 방법
WO2015021607A1 (zh) Led背光驱动电路以及液晶显示器
WO2018209823A1 (zh) 一种基于llc的背光驱动控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11876715

Country of ref document: EP

Kind code of ref document: A1