WO2013077204A1 - 光学デバイス - Google Patents

光学デバイス Download PDF

Info

Publication number
WO2013077204A1
WO2013077204A1 PCT/JP2012/079193 JP2012079193W WO2013077204A1 WO 2013077204 A1 WO2013077204 A1 WO 2013077204A1 JP 2012079193 W JP2012079193 W JP 2012079193W WO 2013077204 A1 WO2013077204 A1 WO 2013077204A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wave plate
wavelength
polarization
laminated
Prior art date
Application number
PCT/JP2012/079193
Other languages
English (en)
French (fr)
Inventor
聖子 加藤
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to JP2013545876A priority Critical patent/JP6141192B2/ja
Priority to EP12850856.1A priority patent/EP2784573B1/en
Priority to CN201280057743.1A priority patent/CN103946737B/zh
Priority to US14/359,636 priority patent/US9810398B2/en
Publication of WO2013077204A1 publication Critical patent/WO2013077204A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/04Function characteristic wavelength independent

Definitions

  • the present invention relates to an optical device that outputs light whose polarization direction has been adjusted.
  • the polarization direction of light emitted from a light source is adjusted by giving a predetermined phase difference (retardation) to each polarization component of light emitted from a light source such as a laser light source, and light whose polarization direction is controlled is output Wave plates are known.
  • a ⁇ / 2 wavelength plate giving a phase difference of ⁇ / 2 ( ⁇ is a wavelength of light) to each polarization component
  • a ⁇ / 4 wavelength plate giving a phase difference of ⁇ / 4 to each polarization component and so on.
  • the wave plate is used, for example, as an attenuator (attenuator) using a polarizing plate or the like that transmits light with a transmission amount according to the polarization direction.
  • an attenuator attenuator
  • a polarizing plate or the like that transmits light with a transmission amount according to the polarization direction.
  • a laminated wavelength plate in which a plurality of wavelength plates are combined is known (for example, see Patent Documents 1 and 2 below).
  • An object of the present invention is to provide an optical device capable of suppressing variation in polarization direction for each wavelength component in order to solve the above-mentioned problems with the prior art.
  • a plurality of light sources emitting light of different wavelengths and each light emitted by the plurality of light sources are passed
  • a laminated wave plate that includes a plurality of wave plates provided in series and causes a phase difference to each polarization component of light passing through the wave plates, and is emitted by the plurality of light sources and enters the laminated wave plate
  • Polarization adjusting section for adjusting the polarization direction of each light so that the angle between the polarization directions of the respective lights becomes an angle that compensates for the difference in azimuth in the laminated wave plate due to the difference in the wavelength of each light And.
  • FIG. 1 is a view showing a configuration example of an optical device according to the embodiment.
  • FIG. 2 is a view showing a modified example of the optical device.
  • FIG. 3 is a graph (part 1) showing an example of the transmitted light amount characteristic of the optical device shown in FIG.
  • FIG. 4A is a graph showing, as a reference, an example of the transmitted light amount characteristic when it is assumed that the transmission polarization direction of the polarizing plate corresponding to each wavelength is made the same (the transmission polarization direction is not inclined at each wavelength).
  • FIG. 4B is a graph (part 2) showing an example of the transmitted light amount characteristic of the optical device shown in FIG. FIG.
  • FIG. 4-3 is a graph showing, as a reference, an example of transmitted light amount characteristics when it is assumed that a single liquid crystal cell is provided instead of the laminated wave plate and the transmission polarization directions of the respective polarizing plates are made the same.
  • FIG. 4-4 is a graph showing, as a reference, an example of transmitted light amount characteristics when it is assumed that a single liquid crystal cell is provided instead of the laminated wave plate and the transmission polarization direction of each polarizing plate is shifted.
  • FIG. 5 is a diagram showing an example of the operation of the laminated wave plate.
  • FIG. 6 is a graph showing an example of the retardation characteristic of the laminated wave plate with respect to the azimuth angle.
  • FIG. 7-1 is a graph showing an example of retardation characteristics of the laminated wave plate with respect to the wavelength.
  • FIG. 7-2 is a graph showing an example of the characteristic of the azimuth angle of the laminated wave plate with respect to the wavelength.
  • FIG. 8-1 is a diagram (part 1) showing an example of the slow axis direction of the transmission polarization direction laminated wave plate in the polarizing plate corresponding to each wavelength.
  • FIG. 8-2 is a second diagram illustrating an example of the slow axis direction of the transmission polarization direction laminated wave plate in the polarizing plate corresponding to each wavelength.
  • FIG. 9-1 is a diagram of an exemplary configuration of a multiplexing unit.
  • FIG. 9-2 is a diagram of a first modification of the multiplexing unit.
  • FIG. 9-3 is a diagram of a second modification of the multiplexing unit.
  • FIG. 9-4 is a diagram of a third modification of the multiplexing unit.
  • FIG. 1 is a view showing a configuration example of an optical device according to the embodiment.
  • the optical device 100 includes laser light sources 111 to 113, polarizing plates 121 to 123, and a laminated wave plate 130.
  • the optical device 100 adjusts the polarization direction of the laser light by giving a predetermined phase difference to each polarization component of the laser light emitted by the laser light sources 111 to 113, and outputs the light whose polarization direction is controlled. It is.
  • the laser light sources 111 to 113 emit laser beams of different wavelengths.
  • the laser light source 111 emits blue (wavelength 450 [nm]) laser light.
  • the laser light source 112 emits green (laser wavelength 512 [nm]) laser light.
  • the laser light source 113 emits a red (wavelength 650 [nm]) laser beam.
  • the laser beams output from the laser light sources 111 to 113 enter the polarizing plates 121 to 123, respectively.
  • Each of the laser light sources 111 to 113 may be, for example, a laser device that directly emits laser light of each wavelength, or a SHG (Second Harmonic Generation) laser device or the like.
  • the polarization plates 121 to 123 adjust the polarization direction of each light so that the angle between the polarization directions of the lights emitted by the laser light sources 111 to 113 and incident on the laminated wave plate 130 becomes a predetermined angle. It is an adjustment unit.
  • the predetermined angle is an angle that compensates for the difference in azimuth in the laminated wave plate 130 due to the difference in wavelength of each light (described later).
  • the polarizing plate 121 is a polarizer that transmits only the linearly polarized light component in the transmission polarization direction 121 a of the laser light emitted from the laser light source 111 and emits the light to the laminated wavelength plate 130.
  • the polarizing plate 122 is a polarizer that transmits only the linearly polarized light component in the transmission polarization direction 122 a of the laser light emitted from the laser light source 112 and emits it to the laminated wavelength plate 130.
  • the polarizing plate 123 is a polarizer that transmits only the linearly polarized light component in the transmission polarization direction 123 a of the laser light emitted from the laser light source 113 and emits the linearly polarized light component to the laminated wavelength plate 130.
  • the transmission polarization directions 121a, 122a and 123a of the linearly polarized light components transmitted by the polarization plates 121 to 123 are designed to be different according to the respective wavelengths of the laser light sources 111 to 113. Details of the transmission polarization directions 121a, 122a, and 123a will be described later.
  • the laser light sources 111 to 113 emit linearly polarized laser light
  • the polarization directions of the respective laser lights from the laser light sources 111 to 113 substantially coincide with the transmission polarization directions 121 a, 122 a, and 123 a, respectively.
  • the angles of the laser light sources 111 to 113 may be adjusted. Thereby, light loss in the polarizing plates 121 to 123 can be suppressed. In this case, it is also possible to omit the polarizing plates 121 to 123.
  • a member for adjusting the angles of the laser light sources 111 to 113 is a polarization adjusting unit for adjusting the polarization direction of each light.
  • the laminated wave plate 130 operates as a wave plate that provides predetermined polarizations (retardations) to orthogonal polarization components of light emitted from the laser light sources 111 to 113 and transmitted through the polarizing plates 121 to 123.
  • the laminated wavelength plate 130 is a ⁇ / 4 plate that gives a phase difference of ⁇ / 4 ( ⁇ is a wavelength of light) to each polarization component of light from the polarizing plates 121 to 123, or from polarizing plates 121 to 123. It operates as a ⁇ / 2 plate which gives a phase difference of ⁇ / 2 to each polarization component of light.
  • the laminated wave plate 130 includes wave plates 131 to 133 provided in series.
  • Each of the wave plates 131 to 133 is a birefringence element that causes each polarized light component of each passing light to have a predetermined phase difference.
  • the wave plate 131 is a first wave plate that transmits each light emitted from the polarizing plates 121 to 123 to the wave plate 132.
  • the wave plate 132 is a second wave plate that transmits each light emitted from the wave plate 131 to the wave plate 133.
  • the wave plate 133 is a third wave plate that emits each light emitted from the wave plate 132 to the subsequent stage.
  • the wave plates 131 and 133 are ⁇ / 4 plates
  • the wave plate 132 is a ⁇ / 2 plate.
  • the slow axis directions 131a, 132a and 133a are the directions of the slow axes of the wave plates 131 to 133, respectively.
  • the slow axis (slow axis) is the axis with the highest refractive index of birefringence in the wave plate.
  • the slow axis directions 131a, 132a, and 133a are designed such that the laminated wave plate 130 operates as a ⁇ / 4 plate.
  • the slow axis directions 131a and 133a are set to the same direction (referred to as a predetermined direction).
  • the slow axis direction 132a is set in a direction different from the slow axis directions 131a and 133a (predetermined direction).
  • the polarization directions 141 to 143 indicate polarization directions of blue, green and red wavelength components of the light emitted from the laminated wave plate 130, respectively. Since the slow axis directions 131a, 132a, and 133a are designed such that the laminated wave plate 130 operates as a ⁇ / 4 plate, the polarization directions 141 to 143 become circularly polarized light, respectively.
  • a combining unit may be provided downstream of the polarizing plates 121 to 123 to combine the lights emitted from the polarizing plates 121 to 123 while maintaining the polarization directions of the lights.
  • the beam combining portion can be provided, for example, between the polarizing plates 121 to 123 and the laminated wave plate 130 or at a stage subsequent to the laminated wave plate 130.
  • An exemplary configuration of the multiplexing unit will be described later (for example, see FIGS. 9-1 to 9-4).
  • FIG. 2 is a view showing a modified example of the optical device.
  • the same parts as the parts shown in FIG. As shown in FIG. 2, by providing the polarizing plate 210 at the rear stage of the laminated wave plate 130 shown in FIG. 1, the optical device 100 can have the function of an attenuator (attenuator).
  • attenuator attenuator
  • the slow axis directions 131a, 132a, and 133a of the wave plates 131 to 133 are designed such that the laminated wave plate 130 operates as a ⁇ / 2 plate.
  • the polarization directions 141 to 143 of the respective wavelength components in the light emitted from the laminated wave plate 130 become linearly polarized light.
  • the wavelength plate 132 is realized by a liquid crystal cell.
  • the direction of the director changes in accordance with the applied voltage, and the phase difference generated in each polarization component of the passing light changes.
  • the voltage applied to the wave plate 132 the polarization directions 141 to 143 of the respective wavelength components of the light emitted from the laminated wave plate 130 can be changed.
  • the polarizing plate 210 is a polarizer that transmits only the linear polarization component (predetermined polarization component) in the polarization direction 211 of the light emitted from the laminated wavelength plate 130 and emits the light to the subsequent stage.
  • the intensity of light transmitted through the polarizing plate 210 can be changed.
  • liquid crystal cell applied to the wavelength plate 132 for example, nematic liquid crystal can be used.
  • FLC Ferroelectric Liquid Crystal: ferroelectric liquid crystal
  • control of the polarization direction can be performed at high speed.
  • the combining unit is provided between the polarizing plates 121 to 123 and the laminated wave plate 130, between the laminated wave plate 130 and the polarizing plate 210, and at the subsequent stage of the polarizing plate 210. (See, eg, FIGS. 9-1 to 9-4) can be provided.
  • FIG. 3 is a graph (part 1) showing an example of the transmitted light amount characteristic of the optical device shown in FIG.
  • the horizontal axis indicates the voltage [V] applied to the wave plate 132 realized by the liquid crystal cell.
  • the vertical axis represents the amount of transmitted light (transmittance) of the light emitted from the laminated wave plate 130 in the polarizing plate 210.
  • the transmission polarization direction 121a of the polarizing plate 121 corresponding to the blue laser light is in the predetermined direction (slow axis direction 131a, 133a of the wave plates 131, 133). It is assumed that -10 [deg] is tilted with respect to). Further, it is assumed that the transmission polarization direction 122a of the polarizing plate 122 corresponding to the green laser light is parallel to the predetermined direction. In addition, it is assumed that the transmission polarization direction 123a of the polarization plate 123 corresponding to the red laser light is inclined by 12 [deg] with respect to the predetermined direction. The calculation method of these inclined angles is mentioned later.
  • the transmission characteristic 301 is a characteristic of the amount of light transmitted by the polarizing plate 210 of blue light with respect to the voltage applied to the wavelength plate 132.
  • the transmission characteristic 302 is a characteristic of the amount of transmitted light in the polarizing plate 210 of green light with respect to the voltage applied to the wavelength plate 132.
  • the transmission characteristic 303 is a characteristic of the amount of light transmitted through the polarizing plate 210 of red light with respect to the voltage applied to the wavelength plate 132.
  • the retardation (retardation) generated in each polarization component in the laminated wave plate 130 changes, and the polarization directions 141 to 143 of the light emitted from the laminated wave plate 130 change. . Therefore, by changing the voltage applied to the wave plate 132 as in the transmission characteristics 301 to 303, it is possible to change the amount of light transmitted from the laminated wave plate 130 in the polarizing plate 210.
  • the light intensity of the output light can be easily controlled by controlling the voltage applied to the wavelength plate 132 in a voltage range 310 in which the amount of transmitted light of the transmission characteristics 301 to 303 monotonously changes.
  • the adjustment of the transmission polarization directions 121a to 123a of the polarizing plates 121 to 123 makes each wavelength component with respect to the change of the voltage applied to the wavelength plate 132 like the transmission characteristics 301 to 303.
  • the amount of transmitted light changes uniformly. Therefore, it is possible to control the light intensity of the output light while suppressing the change in the intensity ratio of each wavelength component.
  • FIG. 4A is a graph showing, as a reference, an example of the transmitted light amount characteristic when it is assumed that the transmission polarization direction of the polarizing plate corresponding to each wavelength is made the same (the transmission polarization direction is not inclined at each wavelength). .
  • the transmitted light amount on the vertical axis is shown by the received power [mA] when the output light from the polarizing plate 210 is received (the same applies to FIGS. 4B to 4C).
  • the optical device 100 when light whose color is adjusted according to the intensity ratio of each light emitted from the laser light sources 111 to 113 is output from the optical device 100, if the intensity ratio of each wavelength component in the laminated wave plate 130 changes, the optical device Unintended color light is output from 100.
  • FIG. 4B is a graph (part 2) showing an example of the transmitted light amount characteristic of the optical device shown in FIG.
  • the same parts as those shown in FIG. 2 or 3 will be assigned the same reference numerals and explanation thereof will be omitted.
  • the transmitted light amount on the vertical axis is shown by the received light power [mA] when the output light from the polarizing plate 210 is received under the same conditions as FIG.
  • the voltage of the horizontal axis is illustrated from 2 [V] to 5 [V] as in FIG. 4A.
  • the optical device 100 in which the transmission polarization directions 121a to 123a of the polarizing plates 121 to 123 are shifted as shown by the transmission characteristics 301 to 303 in FIG. It can be changed uniformly. Therefore, it is possible to control the light intensity of the output light while suppressing the change in the intensity ratio of each wavelength component.
  • FIG. 4-3 is a graph showing, as a reference, an example of transmitted light amount characteristics when it is assumed that a single liquid crystal cell is provided instead of the laminated wave plate and the transmission polarization directions of the respective polarizing plates are made the same.
  • the parts similar to the parts shown in FIG. It is assumed that a single liquid crystal cell is provided instead of the laminated wave plate 130 shown in FIG. 2 and the transmission polarization directions 121a to 123a of the polarizing plates 121 to 123 are the same (the transmission polarization directions are not inclined at each wavelength). Do.
  • FIG. 4-4 is a graph showing, as a reference, an example of transmitted light amount characteristics when it is assumed that a single liquid crystal cell is provided instead of the laminated wave plate and the transmission polarization direction of each polarizing plate is shifted.
  • parts that are the same as the parts shown in FIG. 4-1 are given the same reference numerals, and descriptions thereof will be omitted. It is assumed that a single liquid crystal cell is provided in place of the laminated wave plate 130 shown in FIG. 2, and the transmission polarization directions 121a to 123a of the polarizing plates 121 to 123 are shifted.
  • the transmission polarization direction 121a of the polarizing plate 121 corresponding to the blue laser light is tilted by -7 [deg] with respect to the predetermined direction.
  • the transmission polarization direction 122a of the polarizing plate 122 corresponding to the green laser light is parallel to the predetermined direction.
  • the transmission polarization direction 123a of the polarizing plate 123 corresponding to the red laser light is tilted by -4 [deg] with respect to the predetermined direction.
  • the change in the amount of transmitted light of each wavelength component varies with the change in the voltage applied to the wavelength plate 132. Therefore, when the light intensity of the output light is controlled, the intensity ratio of each wavelength component is changed.
  • the polarization directions of the respective wavelength components with respect to the applied voltage can be obtained by shifting the transmission polarization directions 121a to 123a.
  • the effect of being able to change (the amount of transmitted light) uniformly can be obtained.
  • FIG. 5 is a diagram showing an example of the operation of the laminated wave plate.
  • the x-axis corresponds to the above-mentioned predetermined direction (0 [deg]).
  • the z-axis corresponds to the direction of travel of the light.
  • the retardations of the wave plates 131 and 133 shown in FIG. 5 are both ⁇ 1. Further, it is assumed that the azimuth (azimuth angle) between the predetermined direction in the wave plates 131 and 133 and the slow axis direction 131a and 133a is ⁇ 1.
  • the retardation of the wave plate 132 is ⁇ 2.
  • the azimuth between the predetermined direction of the wave plate 132 and the slow axis direction 132a is ⁇ 2.
  • the direction of the slow axis directions 131a and 133a of the wave plates 131 and 133 is defined as the reference 0 [deg].
  • the laminated wave plate 130 shown in FIG. 5 is a virtual illustration of the laminated wave plate 130 including the wave plates 131 to 133 as one wave plate.
  • the slow axis direction 130 a indicates the direction of the virtual slow axis of the laminated wave plate 130.
  • An azimuth angle between the slow axis direction 130 a of the laminated wave plate 130 and the predetermined direction is taken as ⁇ e.
  • Retardation ⁇ e and azimuth angle ⁇ e of the laminated wave plate 130 are expressed by the following equations (1) and (2) by calculation based on the retardations ⁇ 1 and ⁇ 2 of the wave plates 131 to 133 and azimuth angle ⁇ and Jones matrix. Can.
  • the retardation ⁇ x of the wave plate x changes as in the following equation (3) depending on the wavelength of light passing therethrough.
  • ⁇ nx is the refractive index (birefringence) of the wave plate x.
  • ne is the refractive index in the direction of the fast axis (fast axis) of the wave plate.
  • the fast axis is the axis with the lowest refractive index of birefringence. no is the refractive index in the direction of the slow axis of the wave plate.
  • ⁇ nx is determined, for example, by the material of the wave plate x and the wavelength ⁇ of the passing light. The wavelength dependency of ⁇ nx will be described later.
  • dx is the thickness of the wave plate x.
  • the retardation ⁇ ⁇ ⁇ ⁇ e of the laminated wave plate 130 is not required to be affected by the change in the refractive index due to the difference in the wavelength of the wave plate x. Good.
  • the azimuth angle ⁇ ⁇ between the wave plates 131 and 133 and the wave plate 132 an arbitrary retardation ⁇ e can be realized.
  • the azimuthal angle ⁇ between the wave plates 131 and 133 and the wave plate 132 may be 45 [deg] or 135 [deg], that is, ⁇ / 4 ⁇ (2 n -1) (n is Natural number).
  • the azimuth angle ⁇ ⁇ between the wave plates 131 and 133 and the wave plate 132 is 22.5 [deg], 67.5 [deg], 112.5 [deg] or 157.5 [deg]. That is, it may be set to ⁇ / 8 ⁇ (2n ⁇ 1).
  • the retardation ⁇ x of the wave plate x (wave plates 131 to 133) has wavelength dependency.
  • an arbitrary retardation for the light emitted from the laminated wave plate 130 ⁇ e (eg, ⁇ / 2 or ⁇ / 4) can be given.
  • the wavelength plates 131 to 133 are designed to give a desired retardation ⁇ e to one of the lights emitted from the laser light sources 111 to 113.
  • a retardation ⁇ e of ⁇ / 4 is given.
  • the wavelength (blue) of the laser light source 111 is ⁇ B
  • the wavelength (green) of the laser light source 112 is ⁇ G
  • the wavelength (red) of the laser light source 113 is ⁇ R.
  • the wave plates 131 to 133 are designed to give a desired retardation ⁇ e to light of the wavelength ⁇ G which is an intermediate wavelength among the wavelengths ⁇ B, ⁇ G, and ⁇ R. Thereby, the deviation at each wavelength can be reduced.
  • the refractive index ⁇ n also changes according to the wavelength ⁇ .
  • a, b, c, d, ... are coefficients specific to the material of the wave plate.
  • the refractive index ⁇ n is approximated by a + b / ⁇ 2 + c / ⁇ 4 (up to the third term). Therefore, the equation (3) can be approximated as the following equation (9).
  • the coefficients a, b and c in the wave plates 131 and 133 are respectively a1, b1 and c1.
  • the thickness d of the wave plates 131 and 133 is d1.
  • the coefficients a, b and c in the wave plate 132 are respectively a2, b2 and c2.
  • the thickness d of the wave plate 132 is d2.
  • the retardation ⁇ 1 (B) of the wave plates 131 and 133 with respect to the light of the wavelength ⁇ B is expressed by the following equation (10). Further, the retardation ⁇ 2 (B) of the wave plate 132 with respect to the light of the wavelength ⁇ B is as shown in the following equation (11).
  • the retardation ⁇ 1 (R) of the wave plates 131 and 133 with respect to the light of the wavelength ⁇ R is expressed by the following equation (12).
  • the retardation ⁇ 2 (R) of the wave plate 132 with respect to the light of the wavelength ⁇ R is as shown in the following equation (13).
  • the azimuth angle ⁇ between the wave plates 131, 133 and the wave plate 132 may be set to ⁇ / 8 ⁇ (2 n -1). Further, in order to obtain the retardation ⁇ e of ⁇ / 2, the azimuth angle ⁇ ⁇ between the wave plates 131 and 133 and the wave plate 132 may be set to ⁇ / 4 ⁇ (2 n -1).
  • the wavelength ⁇ B or the wavelength ⁇ B or the wavelength ⁇ R by substituting the value of the azimuth angle ⁇ ⁇ ⁇ corresponding to the desired retardation ⁇ e among them and the wavelength ⁇ B or the wavelength ⁇ R into ⁇ in the above equations (16) and (17)
  • the values of retardation ⁇ e and azimuthal angle ⁇ e of the laminated wave plate 130 at the wavelength ⁇ R are determined.
  • FIG. 6 is a graph showing an example of the retardation characteristic of the laminated wave plate with respect to the azimuth angle.
  • the horizontal axis indicates the azimuth angle ⁇ ⁇ between the wave plates 131 and 133 and the wave plate 132.
  • the vertical axis indicates the retardation ⁇ e of the laminated wave plate 130.
  • the retardation characteristic 600 shows the characteristic of retardation ⁇ e with respect to the azimuth angle ⁇ . As shown in the retardation characteristic 600, the retardation ⁇ e of the laminated wave plate 130 changes from 0 to 2 ⁇ according to the azimuth angle ⁇ between the wave plates 131, 133 and the wave plate 132.
  • FIG. 7-1 is a graph showing an example of retardation characteristics of the laminated wave plate with respect to the wavelength.
  • the horizontal axis indicates the wavelength ⁇ [nm] of light.
  • the vertical axis represents the retardation ⁇ e of the laminated wave plate 130.
  • the retardation characteristic 711 is a characteristic of retardation ⁇ e with respect to the wavelength ⁇ of a single ⁇ / 4 plate having no conventional laminated structure.
  • the retardation characteristic 712 is a characteristic of retardation ⁇ e with respect to the wavelength ⁇ in the laminated wave plate 130 including the wave plates 131 to 133 and operating as a ⁇ / 4 plate.
  • the retardation characteristic 713 is a characteristic of ideal retardation ⁇ e, and is a constant retardation with respect to the wavelength ⁇ .
  • the wave plates 131 to 133 are designed to give a desired retardation to the light of the wavelength ⁇ G without tilting the transmission polarization direction 122a. For this reason, as shown in the retardation characteristic 712, the retardation ⁇ e is closest to the ideal retardation characteristic 713 in the vicinity of 512 [nm] corresponding to the wavelength ⁇ G.
  • FIG. 7-2 is a graph showing an example of the characteristic of the azimuth angle of the laminated wave plate with respect to the wavelength.
  • the horizontal axis indicates the light wavelength ⁇ [nm].
  • the vertical axis is the azimuth angle ⁇ e of the laminated wave plate 130.
  • the azimuth angle characteristic 721 is a characteristic of the azimuth angle ⁇ e of the laminated wave plate 130 with respect to the wavelength ⁇ .
  • the azimuth characteristic 722 is 45 [deg], which is an ideal azimuth angle [e.
  • the wave plates 131 to 133 are designed to give a desired retardation to the light of the wavelength ⁇ G without tilting the transmission polarization direction 122a. For this reason, as shown in the azimuth angle characteristic 721, the azimuth angle ⁇ e is closest to the ideal azimuth angle characteristic 722 in the vicinity of 512 [nm] corresponding to the wavelength ⁇ G.
  • the transmission polarization direction 123a corresponding to the wavelength ⁇ R is designed to be inclined by -12 [deg] with respect to the predetermined direction.
  • an offset of about ⁇ 10 [deg] exists between the azimuth angle ⁇ e of the laminated wave plate 130 and the ideal azimuth characteristic 722.
  • the transmission polarization direction 121a corresponding to the wavelength ⁇ B is designed to be inclined by 10 [deg] with respect to the predetermined direction.
  • the retardation ⁇ e when the laminated wave plate operates as a ⁇ / 4 plate as shown in FIG. 1 has a value close to ⁇ / 2 over a wide band (see, eg, FIG. 7-1). Then, based on the azimuth angle ⁇ e obtained as described above, the inclination of the transmission polarization directions 121a and 123a of the polarizing plates 121 and 123 corresponding to the wavelengths ⁇ B and ⁇ R with respect to the predetermined direction is designed.
  • FIG. 8-1 is a diagram (part 1) showing an example of the slow axis direction of the transmission polarization direction laminated wave plate in the polarizing plate corresponding to each wavelength.
  • FIG. 8-1 shows polarizing plates 121 to 123 corresponding to wavelengths ⁇ B, ⁇ G and ⁇ R from the top, and shows transmission polarization directions 121a, 122a, 123a and slow axis direction 130a of the laminated wave plate 130 in each of them. ing.
  • the polarization direction 122a of the polarizing plate 122 corresponding to the laser light of wavelength ⁇ G is designed to be parallel to the predetermined direction (0 [deg]).
  • the azimuth angle ⁇ e between the predetermined direction (0 [deg]) and the slow axis direction 130a is 33 [deg] at the wavelength ⁇ R (650 [nm]).
  • the slow axis of the ⁇ / 4 plate needs to be 45 [deg] with respect to the incident linearly polarized light direction.
  • the transmission polarization direction 123a is inclined by an offset 723 of about 12 [deg] generated between the azimuth angle ⁇ e of the laminated wave plate 130 in FIG. 7-2 described above and the ideal azimuth characteristic 722.
  • the transmission polarization direction 121 a of the polarizing plate 121 corresponding to the blue laser light is designed to be inclined by 10 [deg] with respect to the predetermined direction so that the difference with the axial direction 130 a is 45 [deg].
  • FIG. 8-2 is a second diagram illustrating an example of the slow axis direction of the transmission polarization direction laminated wave plate in the polarizing plate corresponding to each wavelength.
  • 8-2 shows polarizers 121 to 123 corresponding to wavelength ⁇ B, wavelength ⁇ G and wavelength ⁇ R from the top as in FIG. 8A, and the transmission polarization directions 121a, 122a, 123a and the laminated wavelength plate 130 in each are shown.
  • the slow axis direction 130a is shown.
  • the angles between the polarization directions of the light incident on the laminated wave plate 130 operating as a ⁇ / 4 plate are as follows. That is, among the lights emitted from the laser light sources 111 to 113, an angle ⁇ ( ⁇ 1, ⁇ 2) between each polarization direction of the light of wavelength ⁇ 1 and the light of wavelength ⁇ 2 is expressed by the following equations (18) and (19)
  • the transmission polarization directions 121a to 123a are adjusted so as to satisfy the equation (1). Thereby, it is possible to compensate for the difference in azimuth angle ⁇ e in the laminated wave plate 130 due to the difference in the wavelength of each light.
  • the transmission polarization direction 121a which is the polarization direction of blue (wavelength 450 [nm]) light, can be calculated similarly.
  • the refractive index ⁇ n 1 ( ⁇ ) of the wave plates 131 and 133 is given by a 1 + b 1 / ⁇ 2 + c 1 / c 4 + d 1 / ⁇ 6 from the Cauchy dispersion formula described above. It can be approximated. Further, the refractive index ⁇ n 2 ( ⁇ ) of the wave plate 132 can be approximated by a 2 + b 2 / ⁇ 2 + c 2 / ⁇ 4 + d 2 / ⁇ 6 .
  • the refractive index ⁇ n1 ( ⁇ ) of the wave plates 131 and 133 is A1 + A2 / ⁇ 2 + A3 / It can be approximated by ⁇ 4 + A 4 / ⁇ 6 ... + A (m) / ⁇ ⁇ (2 (m ⁇ 1)).
  • the refractive index ⁇ n2 ( ⁇ ) of the wave plate 132 is B1 + B2 / ⁇ 2 + B3 / ⁇ 4 + B4 / ⁇ 6 . It can be approximated by m) / ⁇ ⁇ (2 (m-1)).
  • the angles between the polarization directions of the light incident on the laminated wave plate 130 operating as a ⁇ / 2 plate specifically, the angles between the transmission polarization directions 121a to 123a are as follows. That is, among the lights emitted from the laser light sources 111 to 113, the angle ⁇ ( ⁇ 1, ⁇ 2) between the polarization directions of the light of the wavelength ⁇ 1 and the light of the wavelength ⁇ 2 is The transmission polarization directions 121a to 123a are adjusted so as to satisfy. Thereby, it is possible to compensate for the difference in azimuth angle ⁇ e in the laminated wave plate 130 due to the difference in the wavelength of each light.
  • the transmission polarization direction 121a which is the polarization direction of blue (wavelength 450 [nm]) light, can be calculated similarly.
  • the refractive index ⁇ n1 ( ⁇ ) of the wave plates 131 and 133 can be calculated according to the above Cauchy dispersion formula by a1 + b1 / ⁇ 2 + c1 / ⁇ 4 + d1 / ⁇ 6 . It can be approximated. Further, the refractive index ⁇ n 2 ( ⁇ ) of the wave plate 132 can be approximated by a 2 + b 2 / ⁇ 2 + c 2 / ⁇ 4 + d 2 / ⁇ 6 .
  • the refractive index ⁇ n1 ( ⁇ ) of the wave plates 131 and 133 is A1 + A2 / ⁇ 2 + A3 / It can be approximated by ⁇ 4 + A 4 / ⁇ 6 ... + A (m) / ⁇ ⁇ (2 (m ⁇ 1)).
  • the refractive index ⁇ n2 ( ⁇ ) of the wave plate 132 is B1 + B2 / ⁇ 2 + B3 / ⁇ 4 + B4 / ⁇ 6 . It can be approximated by m) / ⁇ ⁇ (2 (m-1)).
  • FIG. 9-1 is a diagram of an exemplary configuration of a multiplexing unit.
  • the multiplexing unit provided in the optical device 100 can be realized by, for example, a fiber coupler 910.
  • the case where the combining section is provided between the polarizing plates 121 to 123 and the laminated wave plate 130 will be described (the same applies to FIGS. 9-2 to 9-4).
  • the fiber coupler 910 includes, for example, polarization maintaining fibers 911 to 913, a combiner 914, and a polarization maintaining fiber 915.
  • the polarization holding fibers 911 to 913 and 915 are, for example, PMF (Polarization Maintaining Fiber) that holds and emits the polarization state of the incident laser light.
  • the blue laser light (B) emitted from the polarizing plate 121 is incident on the polarization maintaining fiber 911.
  • the polarization maintaining fiber 911 emits the incident blue laser light (B) to the combiner 914 while maintaining the polarization state.
  • the green laser light (G) emitted from the polarizing plate 122 is incident on the polarization maintaining fiber 912.
  • the polarization maintaining fiber 912 emits the incident green laser light (G) to the combiner 914 while maintaining the polarization state.
  • the red laser light (R) emitted from the polarizing plate 123 is incident on the polarization maintaining fiber 913.
  • the polarization maintaining fiber 913 emits the incident red laser light (R) to the combiner 914 while maintaining the polarization state.
  • the combiner 914 is a multiplexer that combines the laser beams emitted from the polarization maintaining fibers 911 to 913.
  • the combiner 914 emits the combined laser beam to the polarization maintaining fiber 915.
  • the polarization maintaining fiber 915 emits the laser beam emitted from the combiner 914 while maintaining the polarization state.
  • the laser beams emitted from the polarization maintaining fiber 915 become laser beams including red, green and blue beams.
  • the laser light emitted from the polarization maintaining fiber 915 is incident on the laminated wave plate 130.
  • the fiber coupler 910 shown in FIG. 9-1 the respective laser beams emitted from the polarizing plates 121 to 123 can be multiplexed while being held in their respective polarization directions and emitted to the laminated wavelength plate 130.
  • FIG. 9-2 is a diagram of a first modification of the multiplexing unit.
  • the same parts as those shown in FIG. 9-1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the multiplexing unit provided in the optical device 100 can be realized by the multiplexing unit 920 using a dichroic mirror.
  • the combining unit 920 may include a mirror 921 and dichroic mirrors 922 and 923.
  • the mirror 921 reflects the red laser light (R) emitted from the polarizing plate 123 and emits the red laser light (R) to the dichroic mirror 922.
  • the dichroic mirror 922 reflects the green laser light (G) emitted from the polarizing plate 122 and emits the green laser light (G) to the dichroic mirror 923. Further, the dichroic mirror 922 transmits the red laser light (R) emitted from the mirror 921 to the dichroic mirror 923.
  • the dichroic mirror 923 reflects the blue laser light (B) emitted from the polarizing plate 121 and emits it to the subsequent stage. Further, the dichroic mirror 923 transmits the red laser light (R) and the green laser light (G) emitted from the dichroic mirror 922 and emits the light to the subsequent stage.
  • Each of dichroic mirrors 922 and 923 can be realized, for example, by a dielectric multilayer film.
  • the laser light emitted from the dichroic mirror 923 is a laser light including red, green and blue lights.
  • the laser light emitted from the dichroic mirror 923 is incident on the laminated wavelength plate 130.
  • Each of the laser beams emitted from the polarizing plates 121 to 123 is combined by the combining unit 920 using the dichroic mirror shown in FIG. 9-2 while maintaining the respective polarization directions, and the combined light is output to the laminated wavelength plate 130. can do.
  • FIG. 9-3 is a diagram of a second modification of the multiplexing unit.
  • the same parts as those shown in FIG. 9-2 are denoted by the same reference numerals and the description thereof will be omitted.
  • the multiplexing unit 920 using a dichroic mirror may have a configuration in which the mirror 921 is omitted in the configuration shown in FIG.
  • the dichroic mirror 922 reflects the red laser light (R) emitted from the polarizing plate 123 and emits the red laser light (R) to the dichroic mirror 923. Further, the dichroic mirror 922 transmits the green laser light (G) emitted from the polarizing plate 122 and emits the green laser light (G) to the dichroic mirror 923. Thus, the red laser beam (R) emitted from the polarizing plate 123 and the green laser beam (G) emitted from the polarizing plate 122 are incident on the dichroic mirror 922 as shown in FIG. The configuration may be such that the mirror 921 shown is omitted.
  • FIG. 9-4 is a diagram of a third modification of the multiplexing unit.
  • the multiplexing unit provided in the optical device 100 may be realized by the hologram coupler 940.
  • the hologram coupler 940 is a volume hologram stored so that the diffraction angle is different for each wavelength.
  • Each laser beam emitted from the polarizing plates 121 to 123 is condensed by the hologram coupler 940.
  • the respective laser beams emitted from the polarizing plates 121 to 123 are emitted at the same direction by being diffracted at an angle corresponding to the wavelength.
  • the laser beams emitted from the polarizing plates 121 to 123 can be multiplexed while being held in their respective polarization directions and emitted to the laminated wave plate 130.
  • the optical device it is possible to suppress the variation in the polarization direction for each wavelength component.
  • a plurality of wavelength plates optimized for each wavelength component is provided so as to obtain predetermined retardation for each wavelength component, enlargement of the apparatus can be suppressed.
  • the laser light sources 111 to 113 are exemplified as an example of the plurality of light sources, but the plurality of light sources are not limited to the laser light sources 111 to 113.
  • the plurality of light sources may be two or four or more light sources emitting laser beams of different wavelengths.
  • the wavelength of the laser light is not limited to 450 nm (blue), 512 nm (green), and 650 nm (red), and any wavelength can be used.
  • the polarization axes of the polarizing plates of the respective colors are rotated to the optimum angle, but the angles of the respective laser light sources are adjusted so as to substantially coincide with the transmission polarization directions 121a, 122a and 123a, respectively. You may Thereby, light loss in the polarizing plates 121 to 123 can be suppressed. In this case, it is also possible to omit the polarizing plates 121 to 123.
  • a member for adjusting the angles of the laser light sources 111 to 113 is a polarization adjusting unit for adjusting the polarization direction of each light.
  • the device to which the optical device 100 can be applied is not limited to this.
  • the optical device 100 shown in FIG. 1 can also be applied to a projector or the like.
  • the optical device according to the present invention is useful for an optical device that outputs light of a plurality of wavelengths in a predetermined polarization direction, and is particularly suitable for an attenuator for changing the light intensity according to the polarization direction. There is.
  • the attenuator can be used, for example, for a head-up display such as an automobile or aircraft, and is useful for changing the display brightness according to the change in the brightness of the environment at the time of driving and steering.
  • a head-up display such as an automobile or aircraft
  • the attenuator based on the present invention it is possible to adjust the total light quantity at high speed without changing the color tone more easily than adjusting each output on the light source side.
  • the configuration can be downsized because it can be commonly used for a plurality of light source wavelengths.
  • this optical device When this optical device is used as an attenuator, it is possible to obtain a dark state by designing the laminated wave plate as a ⁇ / 2 plate so that the outgoing linearly polarized light at the time of voltage application is perpendicular to the polarizing plate. . At this time, in the bright state, since the polarization direction to be emitted is different for each wavelength, the tint is adjusted by adjusting the light source intensity.
  • Optical device 111-113 Laser light source 121-123, 210 Polarizing plate 121a, 122a, 123a Transmission polarization direction 130 Laminated wave plate 130a, 131a, 132a, 133a Slow axis direction 131-133 Wave plate 141-143, 211 Polarization direction 301 to 303 transmission characteristics 310 voltage range 600, 711 to 713 retardation characteristics 721, 722 azimuth angle characteristics 723 offset 910 fiber couplers 911 to 913, 915 polarization maintaining fiber 914 combiner 920 combining section 921 mirror 922, 923 dichroic mirror 940 hologram coupler

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 光学デバイス(100)は、レーザ光源(111~113)と、偏光板(121~123)と、積層波長板(130)と、を備えている。レーザ光源(111~113)は、それぞれ異なる波長の光を出射する。積層波長板(130)は、複数の波長板(131~133)を含み、通過する光の各偏光成分に位相差を生じさせる。偏光板(121~123)は、レーザ光源(111~113)によって出射されて積層波長板(130)へ入射する各光の偏光方向の間の角度が、各光の波長の相違による積層波長板(130)における方位角の相違を補償する角度となるように、各光の偏光方向を調整する。

Description

光学デバイス
 この発明は、偏光方向を調整した光を出力する光学デバイスに関する。
 従来、レーザ光源などの光源から出射された光の各偏光成分に所定の位相差(リタデーション)を与えることで、光源から出射された光の偏光方向を調整し、偏光方向を制御した光を出力する波長板が知られている。波長板には、たとえば、各偏光成分にλ/2(λは光の波長)の位相差を与えるλ/2波長板や、各偏光成分にλ/4の位相差を与えるλ/4波長板などがある。波長板は、たとえば、偏光方向に応じた透過量で光を透過させる偏光板等を用いたアッテネータ(減衰器)などに利用される。また、広帯域の波長板を実現するために、複数の波長板を組み合わせた積層波長板が知られている(たとえば、下記特許文献1,2参照。)。
特開2008-070690号公報 国際公開第2003/091768号
 しかしながら、上述した従来技術では、複数の波長成分を含む光が積層波長板へ入射すると、積層波長板からの出力光における偏光方向が波長成分ごとにばらつくという問題がある。このため、たとえば、積層波長板および偏光板等を用いたアッテネータにおいて、出力光の減衰量が波長成分(光の色)ごとにばらつくという問題がある。
 この発明は、上述した従来技術による問題点を解消するため、波長成分ごとの偏光方向のばらつきを抑えることができる光学デバイスを提供することを目的とする。
 上述した課題を解決し、目的を達成するため、この発明にかかる光学デバイスの一側面では、それぞれ異なる波長の光を出射する複数の光源と、前記複数の光源によって出射された各光を通過させる直列に設けられた複数の波長板を含み、前記複数の波長板を通過する光の各偏光成分に位相差を生じさせる積層波長板と、前記複数の光源によって出射されて前記積層波長板へ入射する各光の偏光方向の間の角度が、前記各光の波長の相違による前記積層波長板における方位角の相違を補償する角度となるように、前記各光の偏光方向を調整する偏光調整部と、を備える。
 このように、各光の偏光方向を波長に応じてあらかじめ調整しておくことで、各光の波長の相違による積層波長板のリタデーションの相違を補償し、出力光の波長成分ごとの偏光方向のばらつきを抑えることができる。
 この発明によれば、波長成分ごとの偏光方向のばらつきを抑えることができるという効果を奏する。
図1は、実施の形態にかかる光学デバイスの構成例を示す図である。 図2は、光学デバイスの変形例を示す図である。 図3は、図2に示した光学デバイスにおける透過光量特性の一例を示すグラフ(その1)である。 図4-1は、各波長に対応する偏光板の透過偏光方向を同一にした(各波長で透過偏光方向を傾けなかった)と仮定した場合の透過光量特性の一例を参考として示すグラフである。 図4-2は、図2に示した光学デバイスにおける透過光量特性の一例を示すグラフ(その2)である。 図4-3は、積層波長板に代えて単一の液晶セルを設けて各偏光板の透過偏光方向を同一にしたと仮定した場合の透過光量特性の一例を参考として示すグラフである。 図4-4は、積層波長板に代えて単一の液晶セルを設けて各偏光板の透過偏光方向をずらしたと仮定した場合の透過光量特性の一例を参考として示すグラフである。 図5は、積層波長板の動作の一例を示す図である。 図6は、方位角に対する積層波長板のリタデーションの特性の一例を示すグラフである。 図7-1は、波長に対する積層波長板のリタデーションの特性の一例を示すグラフである。 図7-2は、波長に対する積層波長板の方位角の特性の一例を示すグラフである。 図8-1は、各波長に対応する偏光板における透過偏光方向積層波長板の遅相軸方向の一例を示す図(その1)である。 図8-2は、各波長に対応する偏光板における透過偏光方向積層波長板の遅相軸方向の一例を示す図(その2)である。 図9-1は、合波部の構成例を示す図である。 図9-2は、合波部の変形例1を示す図である。 図9-3は、合波部の変形例2を示す図である。 図9-4は、合波部の変形例3を示す図である。
 以下に添付図面を参照して、この発明にかかる光学デバイスの実施の形態を詳細に説明する。
(実施の形態)
(実施の形態にかかる光学デバイスの構成)
 図1は、実施の形態にかかる光学デバイスの構成例を示す図である。図1に示すように、光学デバイス100は、レーザ光源111~113と、偏光板121~123と、積層波長板130と、を備えている。光学デバイス100は、レーザ光源111~113によって出射されたレーザ光の各偏光成分に所定の位相差を与えることで、レーザ光の偏光方向を調整し、偏光方向を制御した光を出力する光デバイスである。
 レーザ光源111~113は、それぞれ異なる波長のレーザ光を出射する。たとえば、レーザ光源111は、青色(波長が450[nm])のレーザ光を出射する。レーザ光源112は、緑色(波長が512[nm])のレーザ光を出射する。レーザ光源113は、赤色(波長が650[nm])のレーザ光を出射する。
 レーザ光源111~113から出力されたレーザ光は、それぞれ偏光板121~123へ入射する。レーザ光源111~113のそれぞれは、たとえば、各波長のレーザ光を直接発光するレーザ装置でもよいし、SHG(Second Harmonic Generation:第二高調波発生)方式のレーザ装置などでもよい。
 偏光板121~123は、レーザ光源111~113によって出射されて積層波長板130へ入射する各光の偏光方向の間の角度が所定の角度になるように、各光の偏光方向を調整する偏光調整部である。所定の角度とは、各光の波長の相違による、積層波長板130における方位角の相違を補償する角度である(後述)。
 偏光板121は、レーザ光源111から出射されたレーザ光のうちの透過偏光方向121aの直線偏光成分のみを透過させて積層波長板130へ出射する偏光子である。偏光板122は、レーザ光源112から出射されたレーザ光のうちの透過偏光方向122aの直線偏光成分のみを透過させて積層波長板130へ出射する偏光子である。
 偏光板123は、レーザ光源113から出射されたレーザ光のうちの透過偏光方向123aの直線偏光成分のみを透過させて積層波長板130へ出射する偏光子である。偏光板121~123が透過させる直線偏光成分の透過偏光方向121a,122a,123aは、レーザ光源111~113の各波長に応じてそれぞれ異なる方向に設計されている。透過偏光方向121a,122a,123aの詳細については後述する。
 なお、レーザ光源111~113が直線偏光のレーザ光を出射する場合は、レーザ光源111~113からの各レーザ光の偏光方向が、それぞれ透過偏光方向121a,122a,123aとほぼ一致するように、レーザ光源111~113の角度を調整しておいてもよい。これにより、偏光板121~123における光損失を抑えることができる。また、この場合は、偏光板121~123を省いた構成とすることも可能である。この場合は、レーザ光源111~113の角度を調整する部材が、各光の偏光方向を調整する偏光調整部となる。
 積層波長板130は、レーザ光源111~113から出射されて偏光板121~123を透過した光の直交する各偏光成分に所定の位相差(リタデーション)を与える波長板として動作する。たとえば、積層波長板130は、偏光板121~123からの光の各偏光成分にλ/4(λは光の波長)の位相差を与えるλ/4板、または、偏光板121~123からの光の各偏光成分にλ/2の位相差を与えるλ/2板として動作する。
 積層波長板130は、直列に設けられた波長板131~133を含む。波長板131~133のそれぞれは、通過する各光の直交する各偏光成分に所定の位相差を生じさせる複屈折素子である。波長板131は、偏光板121~123から出射された各光を波長板132へ通過させる第1波長板である。波長板132は、波長板131から出射された各光を波長板133へ通過させる第2波長板である。波長板133は、波長板132から出射された各光を後段へ出射する第3波長板である。たとえば、波長板131,133はλ/4板であり、波長板132はλ/2板である。
 遅相軸方向131a,132a,133aは、それぞれ波長板131~133の遅相軸の方向である。遅相軸(スロー軸)は、波長板において複屈折の屈折率が最も高い軸である。図1に示す例では、積層波長板130がλ/4板として動作するように遅相軸方向131a,132a,133aが設計されている。具体的には、遅相軸方向131a,133aは、同一の方向(所定方向とする)に設定されている。遅相軸方向132aは、遅相軸方向131a,133a(所定方向)と異なる方向に設定されている。
 偏光方向141~143は、積層波長板130から出射された光におけるそれぞれ青色、緑色、赤色の波長成分における偏光方向を示している。積層波長板130がλ/4板として動作するように遅相軸方向131a,132a,133aが設計されているため、偏光方向141~143はそれぞれ円偏光となる。
 また、偏光板121~123の後段に、偏光板121~123から出射された各光を、各光の偏光方向を保持しつつ合波する合波部を設けてもよい。合波部は、たとえば、偏光板121~123と積層波長板130との間や、積層波長板130の後段に設けることができる。合波部の構成例については後述する(たとえば図9-1~図9-4参照)。
 図2は、光学デバイスの変形例を示す図である。図2において、図1に示した部分と同様の部分については同一の符号を付して説明を省略する。図2に示すように、図1に示した積層波長板130の後段に偏光板210を設けることで、光学デバイス100にアッテネータ(減衰器)の機能を持たせることができる。
 この場合は、たとえば、積層波長板130がλ/2板として動作するように波長板131~133の遅相軸方向131a,132a,133aが設計される。これにより、積層波長板130から出射された光における各波長成分の偏光方向141~143はそれぞれ直線偏光となる。
 また、たとえば、波長板132を液晶セルによって実現する。液晶セルは、印加電圧に応じてダイレクタの方向が変化し、通過する光の各偏光成分に生じさせる位相差が変化する。これにより、波長板132の印加電圧を変化させることで、積層波長板130から出射される光における各波長成分の偏光方向141~143を変化させることができる。
 偏光板210は、積層波長板130から出射された光のうちの偏光方向211の直線偏光成分(所定の偏光成分)のみを透過させて後段へ出射する偏光子である。これにより、波長板132の印加電圧により偏光方向141~143を変化させることで、偏光板210を透過する光の強度を変化させることができる。
 なお、波長板132に適用する液晶セルには、たとえばネマティック液晶を用いることができる。または、波長板132に適用する液晶セルには、FLC(Ferroelectric Liquid Crystal:強誘電性液晶)を用いることができる。これにより、偏光方向の制御を高速に行うことができる。
 図2に示した光学デバイス100においては、たとえば、偏光板121~123と積層波長板130との間や、積層波長板130と偏光板210との間や、偏光板210の後段に合波部(たとえば図9-1~図9-4参照)を設けることができる。
(光学デバイスにおける透過光量特性)
 図3は、図2に示した光学デバイスにおける透過光量特性の一例を示すグラフ(その1)である。図3において、横軸は、液晶セルによって実現された波長板132に印加する電圧[V]を示している。縦軸は、積層波長板130から出射された光の偏光板210における透過光量(透過率)を示している。
 図3に示す例では、図2に示した光学デバイス100において、青色のレーザ光に対応する偏光板121の透過偏光方向121aが、所定方向(波長板131,133の遅相軸方向131a,133a)に対して-10[deg]傾けられているとする。また、緑色のレーザ光に対応する偏光板122の透過偏光方向122aが所定方向と平行になっているとする。また、赤色のレーザ光に対応する偏光板123の透過偏光方向123aが、所定方向に対して12[deg]傾けられているとする。これら傾けた角度の算出方法については後述する。
 透過特性301は、波長板132への印加電圧に対する青色の光の偏光板210における透過光量の特性である。透過特性302は、波長板132への印加電圧に対する緑色の光の偏光板210における透過光量の特性である。透過特性303は、波長板132への印加電圧に対する赤色の光の偏光板210における透過光量の特性である。
 波長板132への印加電圧を変化させることで、積層波長板130において各偏光成分に生じる位相差(リタデーション)が変化し、積層波長板130から出射される光の偏光方向141~143が変化する。このため、透過特性301~303のように、波長板132への印加電圧を変化させることで、積層波長板130から出射される光の偏光板210における透過光量を変化させることができる。たとえば、波長板132への印加電圧を、透過特性301~303の透過光量が単調に変化する電圧範囲310において制御することで、出力光の光強度を簡単に制御することができる。
 また、光学デバイス100によれば、偏光板121~123の透過偏光方向121a~123aの調整により、透過特性301~303のように、波長板132への印加電圧の変化に対して、各波長成分の透過光量が一様に変化する。このため、各波長成分の強度比の変化を抑えつつ、出力光の光強度を制御することができる。
 図4-1は、各波長に対応する偏光板の透過偏光方向を同一にした(各波長で透過偏光方向を傾けなかった)と仮定した場合の透過光量特性の一例を参考として示すグラフである。図4-1において、図2または図3に示した部分と同様の部分については同一の符号を付して説明を省略する。図4-1においては、縦軸の透過光量を、偏光板210からの出力光を受光した場合の受光電力[mA]によって示している(図4-2~図4-4においても同様)。
 偏光板121~123の透過偏光方向121a~123aを同一にしたと仮定すると、図4-1の透過特性301~303のように、波長板132への印加電圧の変化に対して、各波長成分の透過光量の変化がばらつく。このため、出力光の光強度を制御すると、各波長成分の強度比が変化してしまう。
 たとえば、レーザ光源111~113から出射される各光の強度比により色が調整された光を光学デバイス100から出力する場合に、積層波長板130において各波長成分の強度比が変化すると、光学デバイス100から意図しない色の光が出力されてしまう。
 図4-2は、図2に示した光学デバイスにおける透過光量特性の一例を示すグラフ(その2)である。図4-2において、図2または図3に示した部分と同様の部分については同一の符号を付して説明を省略する。図4-2においては、図3と同じ条件において、縦軸の透過光量を、偏光板210からの出力光を受光した場合の受光電力[mA]によって示している。また、図4-2においては、図4-1と同様に横軸の電圧を2[V]~5[V]まで図示している。
 図4-2の透過特性301~303に示すように、偏光板121~123の透過偏光方向121a~123aをずらした光学デバイス100によれば、たとえば電圧範囲310において、各波長成分の透過光量を一様に変化させることができる。このため、各波長成分の強度比の変化を抑えつつ出力光の光強度を制御することができる。
 たとえば、レーザ光源111~113から出射される各光の強度比により色が調整された光を光学デバイス100から出力する場合に、各波長成分の強度比の変化を抑えることができる。このため、意図通りの色の光を出力することができる。
 図4-3は、積層波長板に代えて単一の液晶セルを設けて各偏光板の透過偏光方向を同一にしたと仮定した場合の透過光量特性の一例を参考として示すグラフである。図4-3において、図4-1に示した部分と同様の部分については同一の符号を付して説明を省略する。図2に示した積層波長板130に代えて単一の液晶セルを設けるとともに、偏光板121~123の透過偏光方向121a~123aを同一(各波長で透過偏光方向を傾けない)にしたと仮定する。
 この場合は、図4-3の透過特性301~303のように、波長板132への印加電圧の変化に対して、各波長成分の透過光量の変化がばらつく。このため、出力光の光強度を制御すると、各波長成分の強度比が変化してしまう。
 図4-4は、積層波長板に代えて単一の液晶セルを設けて各偏光板の透過偏光方向をずらしたと仮定した場合の透過光量特性の一例を参考として示すグラフである。図4-4において、図4-1に示した部分と同様の部分については同一の符号を付して説明を省略する。図2に示した積層波長板130に代えて単一の液晶セルを設けるとともに、偏光板121~123の透過偏光方向121a~123aをずらしたと仮定する。
 具体的には、青色のレーザ光に対応する偏光板121の透過偏光方向121aが、所定方向に対して-7[deg]傾けられているとする。また、緑色のレーザ光に対応する偏光板122の透過偏光方向122aが所定方向と平行になっているとする。また、赤色のレーザ光に対応する偏光板123の透過偏光方向123aが、所定方向に対して-4[deg]傾けられているとする。この場合も、図4-4の透過特性301~303のように、波長板132への印加電圧の変化に対して、各波長成分の透過光量の変化がばらつく。このため、出力光の光強度を制御すると、各波長成分の強度比が変化してしまう。
 図4-1~図4-4に示したように、積層波長板130を備えた光学デバイス100においては、透過偏光方向121a~123aをずらすことで、印加電圧に対して各波長成分の偏光方向(透過光量)を一様に変化させることができるという効果を得ることができる。
(積層波長板の動作)
 図5は、積層波長板の動作の一例を示す図である。図5において、図1または図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図5において、x軸は、上記の所定方向(0[deg])に対応している。z軸は、光の進行方向に対応している。図5に示す波長板131,133のリタデーションはともにγ1であるとする。また、波長板131,133における所定方向と遅相軸方向131a,133aとの間の方位角(アジマス角)はともにΨ1であるとする。
 波長板132のリタデーションはγ2であるとする。また、波長板132の所定方向と遅相軸方向132aとの間の方位角はΨ2であるとする。ここでは、波長板131,133の遅相軸方向131a,133aの方向を基準の0[deg]と定義する。この場合は、波長板131,133の方位角Ψ1は0[deg]となる。したがって、波長板131,133と波長板132との間の方位角Ψは、Ψ=Ψ2-Ψ1=Ψ2となる。
 図5に示す積層波長板130は、波長板131~133からなる積層波長板130を1つの波長板として仮想的に図示したものである。遅相軸方向130aは、積層波長板130の仮想的な遅相軸の方向を示している。積層波長板130のリタデーションをΓeとする。積層波長板130の遅相軸方向130aと所定方向との間の方位角をΨeとする。
 積層波長板130のリタデーションΓeおよび方位角Ψeは、波長板131~133のリタデーションγ1,γ2および方位角Ψとジョーンズマトリクスとに基づく計算により下記(1)式および(2)式のように示すことができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記(1)式および(2)式において、波長板x(波長板131~133)のリタデーションγxは、通過する光の波長によって下記(3)式のように変化する。下記(3)式において、Δnxは、波長板xの屈折率(複屈折)である。一般的に、波長板の屈折率nはn=ne-noとなる。neは波長板の進相軸(ファースト軸)の方向の屈折率である。進相軸は、複屈折の屈折率が最も低い軸である。noは波長板の遅相軸の方向の屈折率である。Δnxは、たとえば波長板xの材料や通過する光の波長λによって決まる。Δnxの波長依存性については後述する。dxは、波長板xの厚さである。
Figure JPOXMLDOC01-appb-M000004
 積層波長板130を広帯域で使用するためには、積層波長板130のリタデーションΓeが波長板xの波長の違いによる屈折率変化の影響を受けなければよいので、たとえば下記(4)式を満たせばよい。
Figure JPOXMLDOC01-appb-M000005
 たとえば、γ1=π/2またはγ1=3π/2と、γ2=πと、を満たす場合に、波長板131,133と波長板132との間の方位角Ψによらず、上記(4)式を満たす。γ1=π/2またはγ1=3π/2と、γ2=πと、を上記(1)式および(2)式に代入すると、下記(5)式および(6)式のようになる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 したがって、波長板131,133と波長板132との間の方位角Ψを変化させることで、任意のリタデーションΓeを実現することができる。たとえば、積層波長板130をλ/2板として使用する場合はリタデーションΓe=π×(2n-1)とすればよい。このためには、波長板131,133と波長板132との間の方位角Ψを、45[deg]または135[deg]、すなわちπ/4×(2n-1)とすればよい(nは自然数)。
 また、積層波長板130をλ/4板として使用する場合はリタデーションΓe=π/2×(2n-1)とすればよい。このためには、波長板131,133と波長板132との間の方位角Ψを、22.5[deg]、67.5[deg]、112.5[deg]または157.5[deg]、すなわちπ/8×(2n-1)とすればよい。
 ただし、上記のように、波長板x(波長板131~133)のリタデーションγxは波長依存性を有する。これに対して、上記のように、波長板を積層させることにより、波長板131~133のリタデーションγxの波長依存性があっても、積層波長板130から出射される光に対して任意のリタデーションΓe(たとえばλ/2やλ/4)を与えることができる。
 まず、レーザ光源111~113から出射される各光のうちの1つの光に対して、所望のリタデーションΓeを与えるように波長板131~133を設計する。ここではλ/4のリタデーションΓeを与えることとする。また、レーザ光源111の波長(青色)をλB、レーザ光源112の波長(緑色)をλG、レーザ光源113の波長(赤色)をλRとする。たとえば、波長λB,λG,λRのうちの、中間の波長である波長λGの光に対して所望のリタデーションΓeを与えるように波長板131~133を設計する。これにより、各波長におけるずれを小さくすることができる。
 波長λGの光に対して所望のリタデーションΓeを与えるために、γ1=π/2または3π/2、かつγ2=πを満たすように波長板131~133を設計する。具体的には、波長板131,133については、上記(3)式と、λ=λGと、γ=π/2または3π/2と、から導かれる下記(7)式の条件を満たすように、屈折率Δnおよび厚さdを設計する。γ1(G)は、波長板131,133における波長λGの光に対するリタデーションである。
Figure JPOXMLDOC01-appb-M000008
 また、波長板132については、上記(3)式と、λ=λGと、γ=πと、から導かれる下記(8)式の条件を満たすように、屈折率Δnおよび厚さdを設計する。γ2(G)は、波長板132における波長λGの光に対するリタデーションである。
Figure JPOXMLDOC01-appb-M000009
 また、上記(7)式および(8)式において、屈折率Δnも波長λに応じて変化する。たとえば、屈折率Δnは、Cauchy(コーシー)の分散公式から、Δn=a+b/λ2+c/λ4+d/λ6…と近似することができる。a,b,c,d,…は、波長板の材料に固有の係数である。以下の説明においては、たとえば屈折率Δnをa+b/λ2+c/λ4(第3項まで)によって近似する。したがって、上記(3)式は下記(9)式のように近似することができる。
Figure JPOXMLDOC01-appb-M000010
 ここで、波長板131,133における係数a,b,cをそれぞれa1,b1,c1とする。波長板131,133の厚さdをd1とする。波長板132における係数a,b,cをそれぞれa2,b2,c2とする。波長板132の厚さdをd2とする。
 この場合は、波長λBの光に対する波長板131,133のリタデーションγ1(B)は下記(10)式のようになる。また、波長λBの光に対する波長板132のリタデーションγ2(B)は下記(11)式のようになる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 また、波長λRの光に対する波長板131,133のリタデーションγ1(R)は下記(12)式のようになる。また、波長λRの光に対する波長板132のリタデーションγ2(R)は下記(13)式のようになる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 ここで、上記(1)式および(2)式を変形すると、下記(14)式および(15)式のようになる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 上記(14)式および(15)式に、上記(10)式~(13)式によるγ1およびγ2を代入すると、下記(16)式および(17)式のようになる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ところで、上記のように、λ/4のリタデーションΓeを得るには、波長板131,133と波長板132との間の方位角Ψをπ/8×(2n-1)とすればよい。また、λ/2のリタデーションΓeを得るには、波長板131,133と波長板132との間の方位角Ψをπ/4×(2n-1)とすればよい。したがって、これらのうちの所望のリタデーションΓeに対応するいずれかの方位角Ψの値と、波長λBまたは波長λRを上記(16)式および(17)式のλに代入することで、波長λBまたは波長λRにおける積層波長板130のリタデーションΓeおよび方位角Ψeの値が求まる。
(方位角に対する積層波長板のリタデーションの特性)
 図6は、方位角に対する積層波長板のリタデーションの特性の一例を示すグラフである。図6において、横軸は、波長板131,133と波長板132との間の方位角Ψを示している。縦軸は、積層波長板130のリタデーションΓeを示している。リタデーション特性600は、方位角Ψに対するリタデーションΓeの特性を示している。リタデーション特性600に示すように、積層波長板130のリタデーションΓeは、波長板131,133と波長板132との間の方位角Ψに応じて0~2πに変化する。
(波長に対する積層波長板のリタデーションの特性)
 図7-1は、波長に対する積層波長板のリタデーションの特性の一例を示すグラフである。図7-1において、横軸は光の波長λ[nm]を示している。縦軸は積層波長板130のリタデーションΓeを示している。リタデーション特性711は、従来の積層構造をもたない単一のλ/4板の波長λに対するリタデーションΓeの特性である。
 リタデーション特性712は、波長板131~133を含みλ/4板として動作する積層波長板130における波長λに対するリタデーションΓeの特性である。リタデーション特性713は、理想的なリタデーションΓeの特性であり、波長λに対して一定のリタデーションである。
 図7-1の例では、上記のように、透過偏光方向122aを傾けなくても波長λGの光に対して所望のリタデーションを与えるように波長板131~133を設計している。このため、リタデーション特性712に示すように、波長λGに対応する512[nm]付近においてリタデーションΓeが理想的なリタデーション特性713に最も近付いている。
 図7-2は、波長に対する積層波長板の方位角の特性の一例を示すグラフである。図7-2において、横軸は光の波長λ[nm]を示している。縦軸は積層波長板130の方位角Ψeである。方位角特性721は、波長λに対する積層波長板130の方位角Ψeの特性である。方位角特性722は、理想的な方位角Ψeであり、45[deg]である。
 上記のように、透過偏光方向122aを傾けなくても波長λGの光に対して所望のリタデーションを与えるように波長板131~133を設計している。このため、方位角特性721に示すように、波長λGに対応する512[nm]付近において方位角Ψeが理想的な方位角特性722に最も近付いている。
 これに対して、たとえば、波長λRに対応する650[nm]付近では、積層波長板130の方位角Ψeと理想的な方位角特性722との間に12[deg]程度のオフセット723が存在する。このため、上記のように、波長λRに対応する透過偏光方向123aは、所定方向に対して-12[deg]傾くように設計される。また、波長λBに対応する450[nm]付近では、積層波長板130の方位角Ψeと理想的な方位角特性722との間に-10[deg]程度のオフセットが存在する。このため、上記のように、波長λBに対応する透過偏光方向121aは、所定方向に対して10[deg]傾くように設計される。
 図1のように積層波長板がλ/4板として動作する場合のリタデーションΓeは広帯域に渡ってπ/2に近い値となる(たとえば図7-1参照)。そして、上記のように得られた方位角Ψeに基づいて、波長λB,λRに対応する偏光板121,123の透過偏光方向121a,123aの所定方向に対する傾きが設計される。
 たとえば、図1に示したように、出射光の偏光方向141~143が円偏光となる場合について説明する。
 図8-1は、各波長に対応する偏光板における透過偏光方向積層波長板の遅相軸方向の一例を示す図(その1)である。図8-1は、上から波長λB、波長λG及び波長λRに対応する偏光板121~123を示し、それぞれにおける透過偏光方向121a,122a,123aおよび積層波長板130の遅相軸方向130aを示している。
 図8-1に示すように波長λGのレーザ光に対応する偏光板122の透過偏光方向122aを基準として、所定方向(0[deg])と平行に設計する。そして、図7-2より、波長λR(650[nm])において所定方向(0[deg])と遅相軸方向130aとの間の方位角Ψeは、33[deg]であることがわかる。直線偏光を円偏光に変換するためには入射直線偏光方向に対し、λ/4板の遅相軸が45[deg]である必要があるため、この場合は、赤色のレーザ光に対応する偏光板123の透過偏光方向123aと遅相軸方向130aとの差が45[deg]となるように、透過偏光方向123aは所定方向に対して-12(=33-45)[deg]傾くように設計される。つまり、前述した図7-2における積層波長板130の方位角Ψeと理想的な方位角特性722との間に発生した12[deg]程度のオフセット723だけ、透過偏光方向123aを傾ける。
 同様に波長λB(450[nm])において、図7-2より、方位角Ψe=55[deg]が得られたとすると、青色のレーザ光に対応する偏光板121の透過偏光方向121aと遅相軸方向130aとの差が45[deg]となるように、透過偏光方向121aは所定方向に対して10[deg]傾くように設計される。
 一方、図2のように積層波長板がλ/2板として動作する場合、入射直線偏光方向とλ/2板の遅相軸がなす角との倍の角度だけ回転した直線偏光が透過することになる。次に図2に図示したように、出射した各波長の偏光方向141~143を90[deg]方向で揃えた場合について説明する。
 図8-2は、各波長に対応する偏光板における透過偏光方向積層波長板の遅相軸方向の一例を示す図(その2)である。図8-2は、図8-1と同様に上から波長λB、波長λG及び波長λRに対応する偏光板121~123を示し、それぞれにおける透過偏光方向121a,122a,123aおよび積層波長板130の遅相軸方向130aを示している。
 図8-1と同じく、波長λGにおける方位角Ψe=45[deg]、波長λRにおける方位角Ψe=33[deg]とが得られたとすると、波長λGのレーザ光に対応する偏光板122の透過偏光方向122aは0[deg]に設計され、波長λRのレーザ光に対応する偏光板123の透過偏光方向123aは、遅相軸(=方位角Ψe)とのなす角度の倍の角度を回転させた時に角度が90[deg]方向となるよう、つまり、透過偏光方向123aと90[deg]方向とのなす角度(この場合は、結果として114[deg])が、透過偏光方向123aと遅相軸(=方位角Ψe)方向とのなす角度(この場合は、結果として57[deg])の2倍となるように、透過偏光方向123aを配置する。よって、透過偏光方向123aは、-24[deg]に設計される。
 同様に波長λBにおける方位角Ψe=55[deg]が得られたとすると、波長λBのレーザ光に対応する偏光板121の透過偏光方向121aは、遅相軸(=方位角Ψe)を基準に倍の角度回転した場合の角度が90[deg]となるよう、つまり、透過偏光方向121aと90[deg]方向とのなす角度(この場合は、結果として70[deg])が、透過偏光方向121aと遅相軸(=方位角Ψe)方向とのなす角度(この場合は、結果として35[deg])の2倍となるように、透過偏光方向121aを配置する。よって、透過偏光方向121aは、20[deg]に設計される。
(各波長に対応する各偏光方向の関係)
 以上のことから、λ/4板として動作する積層波長板130へ入射する各光の偏光方向の間の角度、具体的には透過偏光方向121a~123aの間の角度は以下のようになる。すなわち、レーザ光源111~113から出射される各光のうちの、波長λ1の光と波長λ2の光との各偏光方向の間の角度Ψ(λ1,λ2)が下記(18)式および(19)式を満たすように透過偏光方向121a~123aを調整する。これにより、各光の波長の相違による、積層波長板130における方位角Ψeの相違を補償することができる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 上記(18)式および(19)式は、上記(16)式および(17)式において、λ=λ1としたΨe(λ1)と、λ=λ2としたΨe(λ2)と、の差によって導くことができる。たとえば、緑色(波長が512[nm])の光の偏光方向となる透過偏光方向122aと、赤色(波長が650[nm])の光の偏光方向となる透過偏光方向123aと、の間の角度Ψ(λ1,λ2)は、上記(18)式および(19)式において、λ1=512[nm]、λ2=650[nm]とすることで算出することができる。青色(波長が450[nm])の光の偏光方向となる透過偏光方向121aについても同様に算出することができる。
 また、上記(18)式および(19)式において、波長板131,133の屈折率Δn1(λ)は、上記のCauchyの分散公式から、a1+b1/λ2+c1/λ4+d1/λ6…によって近似することができる。また、波長板132の屈折率Δn2(λ)は、a2+b2/λ2+c2/λ4+d2/λ6…によって近似することができる。
 すなわち、波長板131,133の材料に固有の係数をA1,A2,A3,…Am(mは自然数)とすると、波長板131,133の屈折率Δn1(λ)は、A1+A2/λ2+A3/λ4+A4/λ6…+A(m)/λ^(2(m-1))によって近似することができる。また、波長板132の材料に固有の係数をB1,B2,B3,…Bmとすると、波長板132の屈折率Δn2(λ)は、B1+B2/λ2+B3/λ4+B4/λ6…+B(m)/λ^(2(m-1))によって近似することができる。
 同様に、λ/2板として動作する積層波長板130へ入射する各光の偏光方向の間の角度、具体的には透過偏光方向121a~123aの間の角度は以下のようになる。すなわち、レーザ光源111~113から出射される各光のうちの、波長λ1の光と波長λ2の光との各偏光方向の間の角度Ψ(λ1,λ2)が下記(20)式および(21)を満たすように透過偏光方向121a~123aを調整する。これにより、各光の波長の相違による、積層波長板130における方位角Ψeの相違を補償することができる。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 上記(20)式および(21)式は、上記(16)式および(17)式において、λ=λ1としたΨe(λ1)と、λ=λ2としたΨe(λ2)と、の差によって導くことができる。たとえば、緑色(波長が512[nm])の光の偏光方向となる透過偏光方向122aと、赤色(波長が650[nm])の光の偏光方向となる透過偏光方向123aと、の間の角度Ψ(λ1,λ2)は、上記(20)式および(21)式において、λ1=512[nm]、λ2=650[nm]とすることで算出することができる。青色(波長が450[nm])の光の偏光方向となる透過偏光方向121aについても同様に算出することができる。
 また、上記(20)式および(21)式において、波長板131,133の屈折率Δn1(λ)は、上記のCauchyの分散公式から、a1+b1/λ2+c1/λ4+d1/λ6…によって近似することができる。また、波長板132の屈折率Δn2(λ)は、a2+b2/λ2+c2/λ4+d2/λ6…によって近似することができる。
 すなわち、波長板131,133の材料に固有の係数をA1,A2,A3,…Am(mは自然数)とすると、波長板131,133の屈折率Δn1(λ)は、A1+A2/λ2+A3/λ4+A4/λ6…+A(m)/λ^(2(m-1))によって近似することができる。また、波長板132の材料に固有の係数をB1,B2,B3,…Bmとすると、波長板132の屈折率Δn2(λ)は、B1+B2/λ2+B3/λ4+B4/λ6…+B(m)/λ^(2(m-1))によって近似することができる。
(合波部の構成例)
 図9-1は、合波部の構成例を示す図である。図9-1に示すように、光学デバイス100に設ける合波部は、たとえばファイバカプラ910によって実現することができる。図9-1に示す例では、合波部が偏光板121~123と積層波長板130との間に設けられる場合について説明する(図9-2~図9-4においても同様)。
 ファイバカプラ910は、たとえば、偏光保持ファイバ911~913と、コンバイナ914と、偏光保持ファイバ915と、を備えている。偏光保持ファイバ911~913,915は、たとえば、入射されたレーザ光の偏光状態を保持して出射するPMF(Polarization Maintaining Fiber)である。
 偏光保持ファイバ911には、偏光板121から出射された青色のレーザ光(B)が入射する。偏光保持ファイバ911は、入射した青色のレーザ光(B)を、偏光状態を保持しつつコンバイナ914へ出射する。偏光保持ファイバ912には、偏光板122から出射された緑色のレーザ光(G)が入射する。偏光保持ファイバ912は、入射した緑色のレーザ光(G)を、偏光状態を保持しつつコンバイナ914へ出射する。
 偏光保持ファイバ913には、偏光板123から出射された赤色のレーザ光(R)が入射する。偏光保持ファイバ913は、入射した赤色のレーザ光(R)を、偏光状態を保持しつつコンバイナ914へ出射する。コンバイナ914は、偏光保持ファイバ911~913から出射された各レーザ光を合波する合波器である。コンバイナ914は、合波したレーザ光を偏光保持ファイバ915へ出射する。
 偏光保持ファイバ915は、コンバイナ914から出射されたレーザ光を、偏光状態を保持しつつ出射する。偏光保持ファイバ915から出射されるレーザ光は、赤色、緑色および青色の各光を含むレーザ光となる。また、偏光保持ファイバ915から出射されるレーザ光は積層波長板130へ入射する。図9-1に示したファイバカプラ910により、偏光板121~123から出射された各レーザ光を、それぞれの偏光方向を保持したまま合波して積層波長板130へ出射することができる。
 図9-2は、合波部の変形例1を示す図である。図9-2において、図9-1に示した部分と同様の部分については同一の符号を付して説明を省略する。図9-2に示すように、光学デバイス100に設ける合波部は、ダイクロイックミラーを用いた合波部920によって実現することができる。合波部920は、ミラー921と、ダイクロイックミラー922,923と、を備えていてもよい。
 ミラー921は、偏光板123から出射された赤色のレーザ光(R)を反射させてダイクロイックミラー922へ出射する。ダイクロイックミラー922は、偏光板122から出射された緑色のレーザ光(G)を反射させてダイクロイックミラー923へ出射する。また、ダイクロイックミラー922は、ミラー921から出射された赤色のレーザ光(R)を透過させてダイクロイックミラー923へ出射する。
 ダイクロイックミラー923は、偏光板121から出射された青色のレーザ光(B)を反射させて後段へ出射する。また、ダイクロイックミラー923は、ダイクロイックミラー922から出射された赤色のレーザ光(R)および緑色のレーザ光(G)を透過させて後段へ出射する。ダイクロイックミラー922,923のそれぞれは、たとえば誘電体多層膜によって実現することができる。
 ダイクロイックミラー923から出射されるレーザ光は、赤色、緑色および青色の各光を含むレーザ光となる。また、ダイクロイックミラー923から出射されるレーザ光は積層波長板130へ入射する。図9-2に示したダイクロイックミラーを用いた合波部920により、偏光板121~123から出射された各レーザ光を、それぞれの偏光方向を保持したまま合波して積層波長板130へ出射することができる。
 図9-3は、合波部の変形例2を示す図である。図9-3において、図9-2に示した部分と同様の部分については同一の符号を付して説明を省略する。図9-3に示すように、ダイクロイックミラーを用いた合波部920は、図9-2に示した構成においてミラー921を省いた構成としてもよい。
 ダイクロイックミラー922は、偏光板123から出射された赤色のレーザ光(R)を反射させてダイクロイックミラー923へ出射する。また、ダイクロイックミラー922は、偏光板122から出射された緑色のレーザ光(G)を透過させてダイクロイックミラー923へ出射する。このように、偏光板123から出射された赤色のレーザ光(R)と、偏光板122から出射された緑色のレーザ光(G)と、をダイクロイックミラー922へ入射することによって図9-2に示したミラー921を省いた構成としてもよい。
 図9-4は、合波部の変形例3を示す図である。図9-4に示すように、光学デバイス100に設ける合波部は、ホログラムカプラ940によって実現してもよい。ホログラムカプラ940は、波長ごとに回折角が異なるように記憶されたボリュームホログラムである。偏光板121~123から出射された各レーザ光は、ホログラムカプラ940において集光する。そして、偏光板121~123から出射された各レーザ光は、ホログラムカプラ940を通過する際に、波長に応じた角度で回折することで同じ方向で出射される。
 図9-4に示したホログラムカプラ940により、偏光板121~123から出射された各レーザ光を、それぞれの偏光方向を保持したまま合波して積層波長板130へ出射することができる。
 以上説明したように、光学デバイスによれば、波長成分ごとの偏光方向のばらつきを抑えることができる。また、たとえば、波長成分ごとに所定のリタデーションを得られるように波長成分ごとに最適化した複数の波長板を設ける構成に比べて、装置の大型化を抑えることができる。
 なお、上述した実施の形態においては、複数の光源の一例としてレーザ光源111~113を挙げたが、複数の光源はレーザ光源111~113に限らない。たとえば、複数の光源は、互いに異なる波長のレーザ光を出射する2つ、または4つ以上の光源であってもよい。また、レーザ光の波長についても、450[nm](青色)、512[nm](緑色)、650[nm](赤色)に限らず任意の波長を用いることができる。
 また、上述した実施の形態においては、各色の偏光板の偏光軸を最適な角度に回転させたが、それぞれ透過偏光方向121a,122a,123aとほぼ一致するように、各レーザ光源の角度を調整してもよい。これにより、偏光板121~123における光損失を抑えることができる。また、この場合は、偏光板121~123を省いた構成とすることも可能である。この場合は、レーザ光源111~113の角度を調整する部材が、各光の偏光方向を調整する偏光調整部となる。
 また、光学デバイス100にアッテネータの機能を持たせる構成について説明したが、光学デバイス100を適用可能な装置はこれに限らない。たとえば、図1に示した光学デバイス100は、プロジェクタなどに適用することも可能である。
 以上のように、この発明にかかる光学デバイスは、複数の波長の光を所定の偏光方向で出力する光学デバイスに有用であり、特に、偏光方向に応じて光強度を変化させるアッテネータなどに適している。
 アッテネータは、たとえば、自動車や航空機をはじめとしたヘッドアップディスプレイに使用することができ、運転・操縦時の環境の明るさの変化に応じて表示の明るさを変更するのに有用である。本発明に基づいたアッテネータを用いることで光源側の各出力を調整するよりも容易に、色調はそのままで高速に全体の光量を調整することができる。また、複数の光源波長に対して共通して利用可能なため、構成を小型化できる。
 本光学デバイスをアッテネータとして使用する場合、積層波長板をλ/2板として作用させ、電圧印加時の出射直線偏光が偏光板と垂直になるような設計とすることによって暗状態を得ることができる。このとき明状態では波長毎に出射される偏光方向が異なるので光源強度を調整することによって色味を調整する。
 100 光学デバイス
 111~113 レーザ光源
 121~123,210 偏光板
 121a,122a,123a 透過偏光方向
 130 積層波長板
 130a,131a,132a,133a 遅相軸方向
 131~133 波長板
 141~143,211 偏光方向
 301~303 透過特性
 310 電圧範囲
 600,711~713 リタデーション特性
 721,722 方位角特性
 723 オフセット
 910 ファイバカプラ
 911~913,915 偏光保持ファイバ
 914 コンバイナ
 920 合波部
 921 ミラー
 922,923 ダイクロイックミラー
 940 ホログラムカプラ

Claims (8)

  1.  それぞれ異なる波長の光を出射する複数の光源と、
     直列に設けられた複数の波長板により構成され、前記複数の光源によって出射された各光を通過させ、通過する光の各偏光成分に位相差を生じさせる積層波長板と、
     前記複数の光源によって出射されて前記積層波長板へ入射する各光の偏光方向の間の角度が、前記各光の波長の相違による前記積層波長板における方位角の相違を補償する角度となるように、前記各光の偏光方向を調整する偏光調整部と、
     を備えることを特徴とする光学デバイス。
  2.  前記複数の波長板は、
     遅相軸が所定方向に設定された第1波長板と、
     前記第1波長板の後段に設けられ、遅相軸が前記所定方向とは異なる方向に設定された第2波長板と、
     前記第2波長板の後段に設けられ、遅相軸が前記所定方向に設定された第3波長板と、
     を含むことを特徴とする請求項1に記載の光学デバイス。
  3.  前記複数の光源は、波長λ1の光を出射する光源と、前記波長λ1とは異なる波長λ2の光を出射する光源と、を含み、
     前記第1波長板は、厚みd1と、通過する光の波長λにより変化する屈折率Δn1(λ)と、を有し、
     前記第2波長板は、厚みd2と、通過する光の波長λにより変化する屈折率Δn2(λ)と、を有し、
     前記第1波長板および前記第2波長板の各遅相軸の間の角度をΨとした場合に、
     前記偏光調整部は、前記波長λ1の光と前記波長λ2の光との各偏光方向の間の角度Ψ(λ1,λ2)が下記の式を満たすように、前記波長λ1の光と前記波長λ2の光との偏光方向を調整することを特徴とする請求項2に記載の光学デバイス。
    Figure JPOXMLDOC01-appb-M000001
  4.  前記屈折率Δn1(λ)は、a1+b1/λ2+c1/λ4+d1/λ6+,…(a1,b1,c1,d1,…は前記第1波長板の材料に固有の係数)によって近似され、
     前記屈折率Δn2(λ)は、a2+b2/λ2+c2/λ4+d2/λ6+,…(a2,b2,c2,d2,…は前記第2波長板の材料に固有の係数)によって近似されることを特徴とする請求項3に記載の光学デバイス。
  5.  前記第2波長板は、前記各光の各偏光成分に与える位相差が印加電圧に応じて変化する液晶セルであることを特徴とする請求項3または4に記載の光学デバイス。
  6.  前記積層波長板を通過した光のうちの所定の偏光成分のみを透過させる偏光子を備えることを特徴とする請求項5に記載の光学デバイス。
  7.  前記偏光調整部は、前記複数の光源にそれぞれ対応して設けられ、前記複数の光源のうちの対応する光源によって出射された光のうちの所定の透過偏光方向の偏光成分のみを前記積層波長板へ透過させる複数の偏光子であり、
     前記複数の偏光子のそれぞれの前記透過偏光方向は、前記積層波長板へ透過する各光の偏光方向の間の角度が前記方位角の相違を補償する角度となるように設定されていることを特徴とする請求項1~6のいずれか一つに記載の光学デバイス。
  8.  前記偏光調整部によって偏光方向が調整された各光を、前記各光の偏光方向を保持しつつ合波する合波部をさらに備え、
     前記合波部によって合波され、前記積層波長板を通過した光を出力することを特徴とする請求項1~7のいずれか一つに記載の光学デバイス。
PCT/JP2012/079193 2011-11-25 2012-11-09 光学デバイス WO2013077204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013545876A JP6141192B2 (ja) 2011-11-25 2012-11-09 光学デバイス
EP12850856.1A EP2784573B1 (en) 2011-11-25 2012-11-09 Optical device
CN201280057743.1A CN103946737B (zh) 2011-11-25 2012-11-09 光学设备
US14/359,636 US9810398B2 (en) 2011-11-25 2012-11-09 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-258133 2011-11-25
JP2011258133 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077204A1 true WO2013077204A1 (ja) 2013-05-30

Family

ID=48469652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079193 WO2013077204A1 (ja) 2011-11-25 2012-11-09 光学デバイス

Country Status (5)

Country Link
US (1) US9810398B2 (ja)
EP (1) EP2784573B1 (ja)
JP (1) JP6141192B2 (ja)
CN (1) CN103946737B (ja)
WO (1) WO2013077204A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168971A1 (en) * 2012-12-19 2014-06-19 Casio Computer Co., Ltd. Light source unit able to emit light which is less influenced by interference fringes
JP2015025977A (ja) * 2013-07-26 2015-02-05 日本精機株式会社 走査型投影装置
CN104977722A (zh) * 2014-04-03 2015-10-14 光宝科技股份有限公司 投影装置
FR3039663B1 (fr) * 2015-07-29 2017-12-08 Valeo Comfort & Driving Assistance Dispositif de formation d'image et afficheur tete haute comprenant un tel dispositif
US10466496B2 (en) * 2017-12-06 2019-11-05 Facebook Technologies, Llc Compact multi-color beam combiner using a geometric phase lens
US10817052B1 (en) * 2018-01-09 2020-10-27 Facebook Technologies, Llc Eye emulator devices
CN110928118B (zh) * 2018-09-19 2022-05-10 青岛海信激光显示股份有限公司 一种激光器阵列、激光光源及激光投影设备
CN110928120B (zh) * 2018-09-19 2023-06-09 青岛海信激光显示股份有限公司 一种激光器阵列、激光光源及激光投影设备
CN110928119B (zh) * 2018-09-19 2023-10-13 青岛海信激光显示股份有限公司 一种激光器阵列、激光光源及激光投影设备
WO2020057124A1 (zh) 2018-09-19 2020-03-26 青岛海信激光显示股份有限公司 一种激光器阵列、激光光源及激光投影设备
CN110928123A (zh) * 2018-09-19 2020-03-27 青岛海信激光显示股份有限公司 一种激光器阵列、激光光源及激光投影设备
US11108977B1 (en) * 2020-02-20 2021-08-31 Facebook Technologies, Llc Dual wavelength eye imaging

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713151A (ja) * 1993-06-21 1995-01-17 Sharp Corp 液晶表示装置
JPH0821998A (ja) * 1994-07-06 1996-01-23 Canon Inc 液晶表示装置
JP2003259395A (ja) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd 立体表示方法及び立体表示装置
WO2006098373A1 (ja) * 2005-03-15 2006-09-21 Sony Corporation 位相差補償板、位相差補償器、液晶表示装置および投射型画像表示装置
JP2008026797A (ja) * 2006-07-25 2008-02-07 Nitto Denko Corp 液晶パネル、及び液晶表示装置
JP2008070690A (ja) 2006-09-15 2008-03-27 Epson Toyocom Corp 波長板、及びプロジェクタ
JP2009086164A (ja) * 2007-09-28 2009-04-23 Sony Corp 投射型液晶表示装置および補償板
JP2010091645A (ja) * 2008-10-06 2010-04-22 Seiko Epson Corp 調整機構、およびプロジェクタ
JP2011048192A (ja) * 2009-08-27 2011-03-10 Toppan Printing Co Ltd 位相差板、その製造方法および液晶表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854665A (en) 1994-07-06 1998-12-29 Canon Kabushiki Kaisha Liquid crystal device with optical member having a planar extension in parallel with the substrates and non-uniform optical anisotropy along the planar extension
US6273571B1 (en) * 1995-05-23 2001-08-14 Colorlink, Inc. Display architectures using an electronically controlled optical retarder stack
US5870159A (en) * 1995-10-30 1999-02-09 Kaj Switchable achromatic polarization rotator
JP2007219547A (ja) 2000-10-17 2007-08-30 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
KR100960421B1 (ko) 2002-04-26 2010-05-28 엡슨 토요콤 가부시키가이샤 적층파장판 및 그것을 사용한 광픽업
WO2006014430A2 (en) * 2004-07-06 2006-02-09 Colorlink Inc. Illumination systems
CN101765950B (zh) * 2007-07-30 2012-11-28 三菱电机株式会社 波长变换激光装置
JP5344550B2 (ja) * 2008-08-26 2013-11-20 キヤノン株式会社 画像投射装置及び画像表示システム
JP5251672B2 (ja) * 2009-03-30 2013-07-31 セイコーエプソン株式会社 積層1/2波長板、光ピックアップ装置、偏光変換素子、及び投写型表示装置
JP5768716B2 (ja) * 2009-09-28 2015-08-26 日本電気株式会社 照明装置およびそれを用いた投射型表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713151A (ja) * 1993-06-21 1995-01-17 Sharp Corp 液晶表示装置
JPH0821998A (ja) * 1994-07-06 1996-01-23 Canon Inc 液晶表示装置
JP2003259395A (ja) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd 立体表示方法及び立体表示装置
WO2006098373A1 (ja) * 2005-03-15 2006-09-21 Sony Corporation 位相差補償板、位相差補償器、液晶表示装置および投射型画像表示装置
JP2008026797A (ja) * 2006-07-25 2008-02-07 Nitto Denko Corp 液晶パネル、及び液晶表示装置
JP2008070690A (ja) 2006-09-15 2008-03-27 Epson Toyocom Corp 波長板、及びプロジェクタ
JP2009086164A (ja) * 2007-09-28 2009-04-23 Sony Corp 投射型液晶表示装置および補償板
JP2010091645A (ja) * 2008-10-06 2010-04-22 Seiko Epson Corp 調整機構、およびプロジェクタ
JP2011048192A (ja) * 2009-08-27 2011-03-10 Toppan Printing Co Ltd 位相差板、その製造方法および液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784573A4 *

Also Published As

Publication number Publication date
EP2784573A4 (en) 2015-08-12
EP2784573A1 (en) 2014-10-01
US9810398B2 (en) 2017-11-07
JPWO2013077204A1 (ja) 2015-04-27
JP6141192B2 (ja) 2017-06-07
CN103946737A (zh) 2014-07-23
EP2784573B1 (en) 2018-10-10
CN103946737B (zh) 2017-12-05
US20140347608A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2013077204A1 (ja) 光学デバイス
EP3824335B1 (en) Light-guide optical element employing polarized internal reflectors
JP6083997B2 (ja) 投射型表示装置
TWI396907B (zh) 相位差補償元件、液晶裝置及投射型顯示裝置
US6040942A (en) Polarization separator/combiner
US8149360B2 (en) Projection image display apparatus
JP2009507256A (ja) 偏光ビームスプリッタ及びコンバイナ
JP5793038B2 (ja) 投射型画像表示装置
JP4386407B2 (ja) 位相差補償システム及び液晶プロジェクタ
JP2021503624A (ja) 自己補償型液晶リタデーションスイッチ
JP2009092738A (ja) 液晶表示装置
WO2018167975A1 (ja) レーザ発振装置
JP2006208983A (ja) 光学補償偏光板及び液晶表示装置
JP2010152268A (ja) 液晶表示装置及びプロジェクター
JP2006119444A (ja) 位相差補償素子およびそれを用いた液晶装置
US20230288706A1 (en) Optical elements for reducing visual artifacts in diffractive waveguide displays and systems incorporating the same
JP2004531763A (ja) 波長非依存性の高コントラスト光信号を発生するアクロマチック装置
JP2012159784A (ja) 液晶画像表示装置
US20050089265A1 (en) Optical switch
JPH10239519A (ja) 位相差板及びそれを用いた偏光素子
WO2013171822A1 (ja) 投写型表示装置及び投写方法
JPH085977A (ja) 可変波長液晶光フィルタ
JPH0777699A (ja) 偏光制御器
JP5606121B2 (ja) 画像投射装置
CN117480431A (zh) 用于减少衍射波导显示器中的视觉伪像的光学元件以及包含该光学元件的***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012850856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14359636

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE