WO2013075616A1 - 一种干扰对齐方法、装置及*** - Google Patents

一种干扰对齐方法、装置及*** Download PDF

Info

Publication number
WO2013075616A1
WO2013075616A1 PCT/CN2012/084925 CN2012084925W WO2013075616A1 WO 2013075616 A1 WO2013075616 A1 WO 2013075616A1 CN 2012084925 W CN2012084925 W CN 2012084925W WO 2013075616 A1 WO2013075616 A1 WO 2013075616A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
signal
constellation
bit
alignment
Prior art date
Application number
PCT/CN2012/084925
Other languages
English (en)
French (fr)
Inventor
王锐
杜颖钢
程宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12851539.2A priority Critical patent/EP2768191B1/en
Publication of WO2013075616A1 publication Critical patent/WO2013075616A1/zh
Priority to US14/286,011 priority patent/US9124332B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/0342QAM

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an interference alignment method, apparatus, and system.
  • the interference alignment method is a new method for handling co-channel interference.
  • the transmitting end converts the information into a signal to be transmitted through two steps of channel coding and modulation, and the receiving end directly maps the interference signal to the signal to be transmitted after being aligned, which greatly increases the demodulation and decoding of the signal by the receiving end. the complexity.
  • Embodiments of the present invention provide an interference alignment method, apparatus, and system that reduce the complexity of encoding and decoding a signal at a signal receiving end while deleting interference.
  • providing an interference alignment method including,
  • providing an interference cancellation method including,
  • Each interference signal transmitting end encodes and modulates an interference signal source bit sequence of the same length by using the same channel coding and the same modulation mode;
  • the interference signal is transmitted to the signal receiving end.
  • providing a signal receiving end including,
  • a receiving module configured to receive a signal transmitted by the transmitting end, where the signal includes an interference signal and a useful signal
  • An interference demodulation module configured to align the original constellation corresponding to the interference signal, generate a first interference alignment constellation, and perform demodulation of the received signal sequence according to the first interference alignment constellation to obtain an interference signal Interfering with the encoded bit sequence;
  • An interference decoding module configured to decode the interference coded bit sequence to obtain an interference source bit sequence
  • Interference reconstruction, deletion and useful signal demodulation module performing interference reconstruction and deletion according to the interference source coded bit sequence and the first interference alignment constellation, obtaining a second interference alignment constellation, and aligning according to the second interference
  • the constellation map performs useful signal demodulation on the received signal sequence
  • a useful signal decoding module is configured to decode the demodulated useful signal to obtain a useful signal transmitted by the transmitting end.
  • providing an interference signal transmitting end including,
  • An interference coding module configured to encode an interference signal source bit sequence of the same length to obtain an interference signal coding bit sequence
  • Interference modulation module used to adjust the coding sequence of the same length of the interference signal Generate an interference signal
  • a transmission parameter adjustment module configured to adjust a transmission parameter of the interference signal, so that an original constellation formed by each of the interference signals at the receiving end is consistent
  • the sending module is configured to send the interference signal adjusted by the transmitting parameter to the signal receiving end.
  • providing an interference alignment system including
  • the signal receiving end is configured to align all the received interference signals, demodulate and decode, and delete, to obtain a useful signal.
  • At least two interfering signal transmitting ends generate an interference signal using the same channel coding and the same modulation mode, and transmit the interference signal to the signal receiving end;
  • a useful signal transmitting end is used to generate a useful signal to transmit the useful signal to the signal receiving end.
  • the interference alignment method, device and system provided by the embodiments of the present invention after the interference signals are aligned, are demodulated and decoded step by step, thereby deleting the interference signals.
  • the interference between the interference signal and the direct mapping to the interference source bit sequence reduces the complexity of demodulating and decoding the signal at the receiving end.
  • FIG. 1 is a flowchart of an interference alignment method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an interference alignment method according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of generating a constellation map 1 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another generation of the alignment constellation diagram of the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of generating an interference demodulation constellation diagram according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of generating an interference alignment constellation diagram 2 according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of generating a useful signal constellation diagram in an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a signal receiving end according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an interference signal transmitting end according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • interference signal and the useful signal described in the embodiments of the present invention are relative to different receiving ends.
  • a signal is an interference signal for the receiving end of the embodiment of the invention, but is a useful signal for the receiving end of the signal.
  • the interference alignment method provided by the embodiment of the present invention includes the following steps: 101. Receive a signal transmitted by a transmitting end, where the signal includes an interference signal and a useful signal.
  • the interference alignment method provided by the embodiment of the present invention after aligning the interference signals, performs demodulation and decoding step by step, thereby deleting the interference signals. Compared with the prior art, the complexity of demodulating and decoding the signal at the receiving end is reduced as compared with directly mapping the interference signal to the interference source bit sequence.
  • the interference alignment method provided by another embodiment of the present invention, as shown in FIG. 2, includes the following Steps:
  • Each interfering signal transmitting end encodes and modulates an interference signal source bit sequence of the same length by using the same channel coding and the same modulation mode.
  • the interference alignment method provided by the embodiment of the present invention, after encoding and modulating a plurality of interference signals using the same channel coding and the same modulation mode, adjusting the transmission parameters, so that the original constellation diagrams formed by the respective interference signals at the receiving end are completely identical, and the interference is realized.
  • the interference alignment method provided by another embodiment of the present invention, as shown in FIG. 3, includes the following steps:
  • Each interference signal transmitting end encodes and modulates an interference signal source bit sequence of the same length by using the same channel coding and the same modulation mode.
  • each interfering signal transmitting end uses a channel coding that meets a preset condition.
  • the preset condition is:
  • binary source bit stream al a2, a3, aM and bl, b2, b3, bM
  • the binary coded bit streams generated after channel coding ENCODER1 are p 1 , p2 , p3 , ... , ⁇ and Ql , q2 , q3 , qN; then binary source bit stream al
  • the binary coded bit stream generated after channel coding ENCODER1 is pi @ ql , P 2 ® q2 , p3 ® q3 , pM ® qM, where @ stands for binary XOR operating.
  • the channel coding ENCODER1 that satisfies the above preset conditions includes: Convolutonal
  • the channel coding mode that occurs after the present invention can also be used as the channel coding ENC0DER1 if the preset condition is satisfied.
  • the modulation modes of the embodiments of the present invention include modulation modes of all M-QAMs such as BPSK, QPSK (4QAM), 8QAM, 16QAM, 64QAM, and the like. 302.
  • Each interference signal transmitting end adjusts a transmitting parameter of the interference signal, so that the original constellation patterns formed by the received interference signals at the signal receiving end are consistent.
  • each interfering signal transmitting end rotates the transmitting channel, so that the phase and power of each interfering signal are the same, so that the arrangement direction and the arrangement pitch of the original constellation points in the original constellation diagram of each interfering signal are the same, that is, the so-called original constellation diagram Consistent.
  • Each interference signal transmitting end transmits the interference signal to the signal receiving end.
  • the signal receiving end receives the signal transmitted by the transmitting end, SEQ1.
  • the signal receiving end receives the interference signal transmitted by the transmitting end of the interference signal and the useful signal transmitted by the transmitting end of the useful signal.
  • the interference signal and the useful signal are recorded as a signal sequence SEQK
  • the signal receiving end aligns the original constellation maps corresponding to the interference signals transmitted by the interference signal transmitting ends of the same channel coding and the same modulation mode, to obtain a first interference alignment star map.
  • the signal receiving end performs vector summation on the original constellation points in the original constellation corresponding to each interference signal to obtain an aligned constellation point; and determines a bit mapping relationship of each aligned constellation point to obtain a first interference aligned constellation.
  • the bit mapping relationship of the aligned constellation points may be an initial bit mapping relationship according to a modulation mode used by the transmitting end of the interference signal, where the initial bit mapping relationship is that the bits of each aligned constellation point are original constellation points for generating the aligned constellation points.
  • the XOR of the bits may be an initial bit mapping relationship according to a modulation mode used by the transmitting end of the interference signal, where the initial bit mapping relationship is that the bits of each aligned constellation point are original constellation points for generating the aligned constellation points.
  • the final bit mapping relationship may be a bitwise exclusive OR of the original constellation points corresponding to different combinations of N original constellation points that generate the same aligned constellation points, to obtain an initial bit map CI, C2, CN
  • the alignment constellation point uses the initial bit mapping relationship.
  • the interfering signal transmitting end uses a modulation mode
  • the interfering signal transmitting end rotates the transmitting channel, so that the arrangement direction of the original constellation points in the QPSK original constellation diagram of each interfering signal is consistent with the coordinate axis, and the original constellation point arrangement pitch is 2 unit spacing.
  • the QPSK original constellation of the interfering signal contains 4 original constellation points.
  • the bits corresponding to each original constellation point are marked in Figure 4.
  • the original constellation point A in a QPSK original constellation is (1, 1) and the four original constellation points in the other QPSK original constellation (coordinates are (1, 1), (1, -1), ( -1,
  • the generation of other aligned constellation points is the same, and will not be described here.
  • each original constellation point in one interference original constellation to each original constellation point in another interference original constellation to obtain all aligned constellation points, and determining the bits of each aligned constellation point through an initial bit mapping relationship, This results in interference alignment with constellation one.
  • the number of interference sources is greater than 2, the interference is aligned with the composition of constellation one and so on.
  • the alignment constellation points in the interference alignment constellation diagram 1 may be added by the original constellation point vectors of different combinations in the interference original constellation diagram, as shown in FIG.
  • the alignment constellation points H in the interference alignment constellation coordinates
  • the point (0, 0) may be the original constellation point A in a QPSK original constellation, the coordinate point is (1, 1), the bit is [11] and the original constellation point C in the other QPSK original constellation, coordinate point For (-1, -1), the bit is [00]) vector addition, or it may be the original constellation point D in a QPSK original constellation, the coordinate point is (-1, 1), the bit is [01] and In the original QPSK original constellation diagram, the original constellation point B, the coordinate point is (1 -1), and the bit is [10] vector addition.
  • the aligned constellation points H are generated by the addition of the original combined constellation point vectors of different combinations, and the bits determined by the original constellation point H via the initial bit map are unique.
  • the modulation mode used by the interfering signal transmitting end makes the initial bit mapping relationship of each aligned constellation point not unique, such as the interfering signal transmitting end using BPSK and QPSK
  • the modulation mode of M-QAM such as 8QAM, 16QAM, 64QAM, etc.
  • the final bit mapping relationship is used to align the constellation points.
  • the interfering signal transmitting end rotates the transmitting channel to make the arrangement direction and coordinates of the original constellation points in the 16QAM original constellation diagram of each interfering signal.
  • the axes are consistent, and the original constellation points are arranged at a pitch of 2 units.
  • the 16Q AM original constellation diagram of the interfering signal contains 16 original constellation points.
  • the bits corresponding to each original constellation point are marked in Figure 5.
  • the original constellation points in the 16QAM original constellation of the two interfering signals are vector-added to obtain aligned constellation points.
  • the bits of the original constellation points corresponding to each combination of the original constellation points are XORed to obtain N initial bit maps. These N initial bit maps are not unique.
  • the interference alignment constellation map is generated with the same aligned constellation point X, and the coordinate point is (0, 2i).
  • the combination includes the original constellation point A1 (the coordinate point is (1, 3), the bit is [1110]) and The original constellation point B1 (the coordinate point is (-1, -1), the bit is [0101]), the vector is added, the original constellation point C1 (the coordinate point is (-1, 3), the bit is [0110]) and the original constellation Point D1 (coordinate point is (1, -1), bit is [1101]) vector addition, original constellation point E1 (coordinate point is (3, 3), bit is [1 0 1 0]) and original constellation point F1 (coordinate point is ( -3, -1 ), bit is [0001] ), original constellation point G1 (coordinate point is (-3, 3), bit is [0010]) and original constellation point HI (coordinate point is (3, -1 ), the bit is [1001]); the original constellation point II (the coordinate point is (-1, 1),
  • Step 306 can have the following two implementations.
  • Manner 1 Demodulate the received signal sequence SEQ1 according to the first interference alignment constellation to obtain an interference coded bit sequence SEQ2.
  • the constellation points whose coordinates corresponding to the respective signals in the signal sequence SEQ1 are found are found, and the bits corresponding to the respective constellation points are obtained according to the bit mapping relationship of the first interference alignment constellation.
  • the signal sequence SEQ1 is demodulated into the interference coded bit sequence SEQ2 in accordance with the first interference alignment constellation.
  • the demodulation is divided into hard demodulation and soft demodulation. What is obtained after hard demodulation is a binary bit sequence consisting of 0 and 1; each bit in the bit sequence obtained after soft demodulation is represented by a fraction between 0 and 1, when the fraction is close to 0, it represents The probability that the bit is 0 is large, and when the decimal is close to 1, the probability that the bit is 1 is large.
  • the modulation signal transmitting end uses the modulation mode BPSK or QPSK
  • hard demodulation may be used, or soft demodulation may be used.
  • soft demodulation is used.
  • Manner 2 vector-adding the original useful constellation corresponding to the useful signal transmitted by the useful signal transmitting end and the constellation points in the first interference-aligned constellation to obtain a constellation point; determining a bit mapping relationship of each constellation point, An interference demodulation constellation is generated.
  • the signal sequence SEQ1 is demodulated according to the interference demodulation constellation to obtain an interference coded bit sequence SEQ2.
  • the original useful constellation corresponding to the useful signal transmitted by the useful signal transmitting end and the constellation points in the first interference-aligned constellation are vector-added to obtain constellation points, and the bit map of each constellation point is determined. Relationship, generating an interference demodulation constellation.
  • the vector addition and bit mapping relationship are the same as the determination of the vector addition process and the bit mapping relationship for generating the interference alignment constellation one, and will not be described herein.
  • the bits corresponding to each constellation point on the interference demodulation constellation are the same as the bits corresponding to the constellation points in the first interference alignment constellation that generates the constellation point.
  • This demodulation process is the same as the demodulation process described in the first method. The difference is that the interference demodulation constellation is more dense than the constellation points in the interference alignment constellation. Therefore, the signal sequence SEQ1 is demodulated according to the interference demodulation constellation, and the signal sequence SEQ1 is compared with the first interference alignment constellation. The accuracy of demodulation is higher.
  • the signal receiving end needs to first descramble SEQ2 and then input the channel decoder of ENCODER1 to decode, to obtain an interference source bit sequence. SEQ3.
  • each interference signal transmitting end uses the same CRC (Cycle Redundancy Check) check code generation algorithm for the interference signal source bit sequence
  • the signal receiving end can use the corresponding school
  • the algorithm performs CRC check and error correction on the decoded interference signal source bit sequence to generate an error-corrected interference signal source bit sequence SEQ3.
  • the signal receiving end re-channel encodes SEQ3 according to ENCODER1 to obtain a coded bit sequence SEQ4.
  • the number P of corresponding points of a constellation point in the first interference alignment constellation is 1 or 2.
  • the two interfering signal transmitting ends generate a first interference alignment constellation in the QPSK modulation mode.
  • the coded bit sequence SEQ4 as [0000] as an example, two bit groups are obtained. [00], [00], in the first interference-aligned constellation, only two bit groups [00], [00] corresponding bits are [00] constellation points, and a second interference-aligned constellation is obtained.
  • the bit group [00] corresponds to different four aligned constellation points, and only the four different aligned constellation points [00] are retained in the first interference alignment constellation, The second interference is aligned to the constellation.
  • the interfering signal transmitting end uses the M-QAM ( ⁇ >4) modulation mode
  • the first interference alignment constellation an alignment constellation point corresponding to a plurality of sets of bits appears.
  • the aligned constellation points are retained in the first interference-aligned constellation to obtain a second interference-aligned constellation.
  • constellation points in the original useful constellation corresponding to the useful signal transmitted by the useful signal transmitting end are vector-added to obtain a constellation point; determining a bit mapping relationship of each constellation point to form a useful signal Constellation.
  • the second interference alignment constellation and the satellite coordinates in the original useful constellation are vector-added to obtain constellation points, and the bit mapping relationship of each constellation point is determined, and a useful signal constellation is generated.
  • the vector addition is the same as the process of adding the vector of the first interference-aligned constellation, and the bit corresponding to each constellation point is the same as the bit corresponding to the original useful constellation constellation point from which the constellation point is generated.
  • the received signal SEQ1 is demodulated by a useful signal according to the useful signal constellation to obtain a signal bit sequence SEQ5 to be decoded.
  • the demodulation can be either hard demodulation or soft demodulation.
  • the transmission parameters are adjusted, so that the original constellation patterns formed by the respective interference signals at the receiving end are consistent, such that Signal receiving end
  • the signals are demodulated and decoded in steps to remove the interference signals.
  • the complexity of demodulating and decoding the signal at the receiving end is reduced as compared with directly mapping the interference signal to the interference source bit sequence.
  • each data stream at the signal receiving end can use the techniques provided by the present invention for interference alignment and deletion.
  • the interference alignment method provided in this embodiment can be applied to an uplink scenario of a HetNet (Heterogeneous Network) system.
  • a Macro UE macro cellular user equipment
  • Femtocell a cellular base station
  • the uplink of the Femto UE Cellular User Equipment
  • Femtocell usually does not know which RB (Resource Block) the Macro UE transmits.
  • the steps of deleting the uplink interference of the Macro UE by using the interference alignment method provided in this embodiment in the scenario are as follows:
  • the uplink transmission signal of the Femto UE is divided into two data streams, which are recorded as data stream 1 and data stream 2, which are separately encoded and modulated, and simultaneously transmitted.
  • the Femto BS implements the constellation of data stream 1 in accordance with a certain process and aligns with the Macro UE's constellation diagram at the Femto BS.
  • the Femto BS can simultaneously receive data stream 1 and data stream 2.
  • the Femto BS regards the data stream 1 as an interference signal, the data stream 2 as a useful signal, and the uplink data of the Macro UE as another interference source, and then uses the interference provided by the embodiment.
  • the alignment method aligns the data stream 1 with the uplink signal of the Macro UE, so that the data in the data stream 2 can be received.
  • the advantage of using the interference alignment method of this embodiment in the uplink interference cancellation of the Macro UE in this scenario is that: in the presence of uplink interference of the Macro UE, the Femto UE can also successfully transmit part of the data, and does not interrupt all data due to the deletion of interference. transmission.
  • the embodiment of the present invention further provides a signal receiving end, which may be a base station in the above communication, such as a cellular base station, or may be a device that acts as a base station in the communication system.
  • a signal receiving end 9 includes
  • the receiving module 91 is configured to receive a signal sequence SEQ1 transmitted by the transmitting end, where the signal sequence SEQ1 includes an interfering signal and a useful signal.
  • the interference demodulation module 92 is configured to align the original constellation corresponding to the interference signal, generate a first interference alignment constellation, and perform interference signal demodulation on the received signal sequence SEQ1 according to the first interference alignment constellation. Interfering with the coded bit sequence SEQ2.
  • the interference decoding module 93 is configured to decode the interference coded bit sequence SEQ2 to obtain an interference signal source bit sequence.
  • the interference reconstruction, deletion and useful signal demodulation module 94 performs interference reconstruction and deletion according to the interference source coded bit sequence SEQ2 and the first interference alignment constellation to obtain a second interference alignment constellation, and according to the second interference alignment constellation A useful signal demodulation is performed on the signal sequence SEQ1.
  • the useful signal decoding module 95 is configured to decode the demodulated useful signal to obtain a useful signal SEQ6 transmitted by the transmitting end.
  • An embodiment of the present invention further provides an interference signal transmitting end, as shown in FIG. 10, the interference signal transmitting end, including,
  • the interference coding module 11 is configured to encode the interference signal source bit sequence of the same length to obtain an interference signal coding bit sequence.
  • the interference modulation module 12 is configured to modulate an interference signal coded bit sequence of the same length to generate an interference signal.
  • the transmission parameter adjustment module 13 is configured to adjust transmission parameters of the interference signal, so that the original constellation patterns formed by the respective interference signals at the receiving end are consistent.
  • the sending module 14 is configured to send the interference signal adjusted by the transmitting parameter to the signal receiving end.
  • the embodiment of the present invention further provides an interference alignment system.
  • the system includes a signal receiving end 9 for aligning all received interference signals, demodulating, decoding, and deleting to obtain a useful signal.
  • At least two interfering signal transmitting terminals generate interference signals using the same channel coding and the same modulation mode, and transmit the interference signals to the signal receiving end.
  • two interference signal transmitting ends 101, 102 are included.
  • a useful signal transmitting end 11 for generating a useful signal, transmitting the useful signal to Signal receiving end.
  • the signal transmitting end or the signal receiving end device in the embodiment of the present invention can perform the steps in the foregoing method embodiments to complete the functions of the method embodiments.
  • the method for implementing the interference alignment is implemented according to the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例提供了一种干扰对齐的方法、装置及***,属于无线通信技术领域,在删除干扰的同时,减小信号接收端对干扰信号进行编码和解码的复杂度。其方法包括,接收发射端发射的信号,所述信号包括干扰信号及有用信号;将各干扰信号的原始星座图对齐,得到第一干扰对齐星座图;根据第一干扰对齐星座图对接收到的所述信号序列进行干扰信号解调及解码,得到干扰源比特序列;根据干扰源编码比特序列和第一干扰对齐星座图进行干扰重建和删除,得到第二干扰对齐星座图;根据第二干扰对齐星座图对所述信号序列进行有用信号解调及解码,得到有用信号发射端发射的有用信号。本发明实施例用于无线通信。

Description

—种干扰对齐方法、 装置及*** 本申请要求于 201 1 年 1 1 月 25 日提交中国专利局、 申请号为 201110382521.4 , 发明名称为 "一种干扰对齐方法、 装置及***" 的中 国专利申请优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种干扰对齐方法、 装 置及***。
背景技术
无线网络通信***中节点的广播特性, 导致相同频段同时发射的 信号必然会产生共信道干扰。 多天线***的引入, 也大大增加了抗干 扰算法的难度和复杂度。 在未来的无线通信***中, 信道干扰将是制 约***性能的主要瓶颈。
干扰对齐方法是一种新的处理共信道干扰的方法。 现有技术中, 发射端经过信道编码和调制两步将信息转化为待发送信号, 接收端将 干扰信号对齐后直接映射为待发送信号, 这样会大大增加接收端对信 号进行解调和解码的复杂度。
发明内容
本发明的实施例提供一种干扰对齐方法、 装置及***, 在删除干 扰的同时, 以减小信号接收端对信号进行编码和解码的复杂度。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一方面, 提供一种干扰对齐方法, 包括,
接收发射端发射的信号, 所述信号包括干扰信号及有用信号; 将干扰信号发射端发射的多个干扰信号对应的原始星座图对齐, 得到第一干扰对齐星座图, 其中所述多个干扰信号使用相同信道编码 和相同调制模式;
根据所述第一干扰对齐星座图对接收到的所述信号序列进行干扰 信号解调, 得到干扰编码比特序列; 对所述干扰编码比特序列解码, 得到干扰源比特序列; 根据所述干扰源编码比特序列和所述第一干扰对齐星座图进行干 扰重建和删除, 得到第二干扰对齐星座图;
根据第二干扰对齐星座图对接收到的所述信号序列进行有用信号 解调及解码, 得到有用信号发射端发射的有用信号。
一方面, 提供一种干扰消除方法, 包括,
各个干扰信号发射端使用相同信道编码和相同调制模式, 对相同 长度的干扰信号源比特序列进行编码和调制;
调整所述干扰信号的发射参数, 以使得发射的各个干扰信号在信 号接收端形成的原始星座图一致;
将所述干扰信号发射给信号接收端。
一方面, 提供一种信号接收端, 包括,
接收模块, 用于接收发射端发射的信号,所述信号包括干扰信号及 有用信号;
干扰解调模块, 用于将干扰信号对应的原始星座图对齐, 生成第 一干扰对齐星座图, 并按照所述第一干扰对齐星座图对接收到的所述 信号序列进行干扰信号解调, 得到干扰编码比特序列;
干扰解码模块, 用于对所述干扰编码比特序列解码, 得到干扰源 比特序列;
干扰重建、 删除及有用信号解调模块, 根据所述干扰源编码比特 序列和所述第一干扰对齐星座图进行干扰重建和删除, 得到第二干扰 对齐星座图, 并根据所述第二干扰对齐星座图对接收到的所述信号序 列进行有用信号解调;
有用信号解码模块, 用于对解调后的有用信号解码, 得到发射端 发射的有用信号。
一方面, 提供一种干扰信号发射端, 包括,
干扰编码模块, 用于对相同长度的干扰信号源比特序列进行编码, 得到干扰信号编码比特序列;
干扰调制模块, 用于对相同长度的干扰信号编码比特序列进行调 制生成干扰信号;
发射参数调整模块, 用于调整干扰信号的发射参数, 以使得各个 所述干扰信号在接收端形成的原始星座图一致;
发送模块, 用于将发射参数调整后的干扰信号发送给信号接收端。 一方面, 提供一种干扰对齐***, 包括
信号接收端, 用于将接收到的所有干扰信号对齐后, 解调及解码 并删除, 得到有用信号。
至少两个干扰信号发射端, 使用相同信道编码和相同调制模式生 成干扰信号, 将所述干扰信号发射给信号接收端;
有用信号发射端, 用于生成有用信号, 将所述有用信号发射给信 号接收端。
本发明实施例提供的干扰对齐方法、 装置及***, 将干扰信号对 齐后, 分步进行解调和解码, 从而将干扰信号删除。 与现有技术中, 将干扰信号对齐后直接映射为干扰源比特序列相比, 减小了接收端对 信号进行解调和解码的复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而 易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1 本发明实施例提供的干扰对齐方法流程图;
图 2本发明另一实施例提供的干扰对齐方法流程图;
图 3本发明又一实施例提供的干扰对齐方法流程图;
图 4本发明实施例对齐星座图一生成示意图;
图 5本发明实施例对齐星座图一另一种生成示意图;
图 6本发明实施例干扰解调星座图生成示意图;
图 7本发明实施例干扰对齐星座图二生成示意图; 图 8本发明实施例有用信号星座图生成示意图;
图 9本发明实施例提供的信号接收端结构示意图;
图 10本发明实施例提供的干扰信号发射端结构示意图;
图 11本发明实施例提供的干扰对其***结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例所述的干扰信号和有用信号是相对于不同的接收端 而言的。 例如, 某一信号对于本发明实施例所述的接收端而言是干扰 信号, 但是对于该信号的接收端而言是有用信号。
本发明实施例提供的干扰对齐方法, 如图 1所示, 包括以下步骤: 101、接收发射端发射的信号,所述信号包括干扰信号和有用信号。
102、 将干扰信号发射端发射的多个干扰信号对应的原始星座图对 齐, 得到第一干扰对齐星座图。
103、 根据所述第一干扰对齐星座图对接收到的所述信号序列进行 干扰信号解调, 得到干扰编码比特序列。
104、 对所述干扰编码比特序列解码, 得到干扰源比特序列。
105、 根据所述干扰源编码比特序列和所述第一干扰对齐星座图进 行干扰重建和删除, 得到第二干扰对齐星座图。
106、 根据第二干扰对齐星座图对接收到的所述信号序列进行有用 信号解调及解码, 得到有用信号发射端发射的有用信号。
本发明实施例提供的干扰对齐方法, 将干扰信号对齐后, 分步进 行解调和解码, 从而将干扰信号删除。 与现有技术中, 将干扰信号对 齐后直接映射为干扰源比特序列相比, 减小了接收端对信号进行解调 和解码的复杂度。 本发明另一实施例提供的干扰对齐方法, 如图 2 所示, 包括以下 步骤:
201、 各个干扰信号发射端使用相同信道编码和相同调制模式, 对 相同长度的干扰信号源比特序列进行编码和调制。
202、 调整所述干扰信号的发射参数, 以使得发射的各个干扰信号 在信号接收端形成的原始星座图一致。
203、 将所述干扰信号发送给信号接收端。
本发明实施例提供的干扰对齐方法, 将多个干扰信号使用相同信 道编码和相同调制模式编码、 调制后, 通过调整发射参数, 使得各个 干扰信号在接收端形成的原始星座图完全一致, 实现干扰信号在接收 端对的对齐, 从而将干扰信号分步进行解调和解码, 并删除。
本发明又一实施例提供的干扰对齐方法, 如图 3 所示, 包括以下 步骤:
301、 各个干扰信号发射端使用相同信道编码和相同调制模式, 对 相同长度的干扰信号源比特序列进行编码和调制。
具体的, 各个干扰信号发射端使用符合预设条件的信道编码
ENCODER1 和相同调制模式, 对相同长度的干扰信号源比特序列进行 编码和调制。
该预设条件是:
若两个二进制信源比特流 al , a2 , a3 , aM和 bl , b2 , b3 , bM , 经过信道编码 ENCODER1后生成的二进制编码比特流分别为 p 1 , p2 , p3 , ... , ρΝ和 ql , q2 , q3 , qN; 则对二进制信源比特流 al
® bl , a2 ® b2 , a3 ® b3 , aM @ bM进行信道编码 ENCODER1后生 成的二进制编码比特流为 pi @ ql , P2 ® q2 , p3 ® q3 , pM ® qM, 其 中 @代表二进制的异或操作。
满足上述预设条件的信道编码 ENCODER1 包括: Convolutonal
Code, Turbo Code , LDPC , Repetton Code等。 在本发明之后出现的信 道编码方式如果满足该预设条件, 也可以做为信道编码 ENC0DER1。
本发明实施例的调制模式包括 BPSK, QPSK ( 4QAM ) , 8QAM, 16QAM , 64QAM等所有 M-QAM的调制模式。 302、 各个干扰信号发射端调整干扰信号的发射参数, 以使得发射 的各个干扰信号在信号接收端形成的原始星座图一致。
具体的, 每个干扰信号发射端通过旋转发射信道, 使每个干扰信 号的相位和功率相同, 这样, 各个干扰信号原始星座图中原始星座点 的排列方向和排列间距一致, 即所谓原始星座图一致。
303、 各个干扰信号发射端将所述干扰信号发射给信号接收端。
304、 信号接收端接收发射端发射的信号 SEQ1。
具体的, 信号接收端接收干扰信号发射端发射的干扰信号和有用 信号发射端发射的有用信号。 所述干扰信号和有用信号记为信号序列 SEQK
305、 信号接收端将各干扰信号发射端使用相同信道编码和相同调 制模式发射的干扰信号对应的原始星座图对齐, 得到第一干扰对齐星 座图。
具体的, 信号接收端将各个干扰信号对应的原始星座图中的原始 星座点进行矢量相加, 得到对齐星座点; 确定每个对齐星座点的比特 映射关系, 得到第一干扰对齐星座图。
其中, 对齐星座点的比特映射关系根据干扰信号发射端使用的调 制模式的不同可以是初始比特映射关系, 所述初始比特映射关系为各 个对齐星座点的比特是生成该对齐星座点的原始星座点比特的异或。 也可以是最终比特映射关系, 所述最终比特映射关系为将生成同一对 齐星座点的 N种原始星座点的不同组合方式对应的原始星座点的比特 异或, 得到初始比特映射 CI , C2 , CN; 则所述星座点的比特映射 是将这 N种初始比特映射按位平均, 即 C= ( C1+C2+...+CN ) /N, 其中 "+" 表示将 N种初始比特映射 CI , C2 , CN中对应的比特位上的 数值相加, 得到对应比特位上的相加数值, "/N"表示把将各个比特位 上的所述相加数值分别除以 N。
具体的, 当干扰信号发射端使用的调制模式使各个对齐星座点的 初始比特映射关系唯一时,如干扰信号发射端使用 BPSK或 QPSK作为 干扰信号调制模式时, 对齐星座点釆用初始比特映射关系。
以两个干扰信号发射端为例, 当干扰信号发射端使用的调制模式 为 QPSK 时, 干扰信号发射端通过旋转发射信道, 使各个干扰信号的 QPSK原始星座图中原始星座点的排列方向与坐标轴一致,原始星座点 排列间距为 2个单位间距。 如图 4所示, 干扰信号的 QPSK原始星座 图包含 4个原始星座点。 图 4 中标出每个原始星座点对应的比特。 将 一个 QPSK原始星座图中原始星座点 A, 坐标为 ( 1, 1 )与另一 QPSK 原始星座图中 4个原始星座点(坐标分别为 ( 1, 1 ) , ( 1, -1 ) , ( -1,
1 ) , (-1, -1 ) ) 进行矢量相加得到 4个对齐星座点, 坐标为 E (2,
2) , F (2, 0) , G ( 0, 2) , H ( 0, 0) , 则这 4 个对齐星座点的 比特是生成这 4 个对齐星座点的原始星座点比特的异或。 即星座点 E (2, 2) 的比特为 【1 @ 1 1 @ 1】 = 【00】 , 星座点 F ( 2, 0 ) 的比特为 【1 @ 1 1 @0】=【01】, 星座点 G(0, 2)的比特为【1 @01 @ 1】=【10】, 星座点 H (0, 0) 的比特为 【1 @0 1 @0】 = 【11】 。 其他各对齐星座 点的生成与此相同, 在此不再赘述。 将一个干扰原始星座图中各个原 始星座点都分别与另一个干扰原始星座图中各个原始星座点进行矢量 相加, 得到所有对齐星座点, 且通过初始比特映射关系确定各个对齐 星座点的比特, 这样就得到干扰对齐星座图一。 当干扰源数量大于 2 时, 干扰对齐星座图一的构成以此类推。 需要说明的是, 干扰对齐星 座图一中的对齐星座点可能是由干扰原始星座图中不同组合的原始星 座点矢量相加, 如图 4中, 干扰对齐星座图中的对齐星座点 H, 坐标点 为 (0, 0 )可能是由一个 QPSK原始星座图中原始星座点 A, 坐标点为 ( 1, 1 ) , 比特为 【11】 和另一个 QPSK原始星座图中原始星座点 C, 坐标点为 (-1, -1 ) , 比特为 【00】 )矢量相加, 也可能是由一个 QPSK 原始星座图中原始星座点 D, 坐标点为 (-1, 1 ) , 比特为 【01】 和另 一个 QPSK原始星座图中原始星座点 B, 坐标点为 ( 1, -1 ) , 比特为 【10】 矢量相加。 则对齐星座点 H的比特是原始星座点 A和原始星座 点 C比特的异或, 即 【1 @ 01 @ 0】 =【11】 。 对齐星座点 H的比特也是 原始星座点 C和原始星座点 D比特的异或, 即 【0@ 11 @0】 = 【11】 。 这样, 对齐星座点 H 虽然经过不同组合的原始星座点矢量相加生成, 原始星座点 H经初始比特映射确定的比特是唯一的。
当干扰信号发射端使用的调制模式使各个对齐星座点的初始比特 映射关系不唯一时, 如干扰信号发射端使用 BPSK 和 QPSK 以外的 M-QAM的调制模式, 如 8QAM , 16QAM , 64QAM等作为干扰信号调 制模式时, 对齐星座点釆用最终比特映射关系。
以两个干扰信号发射端为例, 当干扰信号发射端使用的调制模式 为 16QAM时, 干扰信号发射端通过旋转发射信道, 使各个干扰信号的 16QAM原始星座图中原始星座点的排列方向与坐标轴一致, 原始星座 点排列间距为 2个单位间距。 如图 5所示, 干扰信号的 16Q AM原始星 座图包含 16个原始星座点。 图 5中标出每个原始星座点对应的比特。 将两个干扰信号的 16QAM 原始星座图中的各个原始星座点进行矢量 相加, 得到对齐星座点。 当对齐星座点由干扰原始星座图中 N种不同 组合的原始星座点矢量相加时, 将每一种原始星座点的组合方式对应 的原始星座点的比特异或, 得到 N种初始比特映射, 这 N种初始比特 映射不是唯一的。
如图 5 所示, 生成干扰对齐星座图同一对齐星座点 X, 坐标点为 (0, 2i) 的组合方式包括原始星座点 A1 (坐标点为 ( 1, 3) , 比特为 【1110】 )和原始星座点 B1 (坐标点为( -1, -1 ) , 比特为【0101】 ) 矢量相加, 原始星座点 C1 (坐标点为 ( -1,3 ) , 比特为 【0110】 ) 和 原始星座点 D1 (坐标点为 ( 1, -1) , 比特为 【1101】 ) 矢量相加, 原 始星座点 E1 (坐标点为 (3, 3) , 比特为 【1 0 1 0】 ) 和原始星座点 F1 (坐标点为 ( -3, -1 ) , 比特为 【0001】 ) , 原始星座点 G1 (坐 标点为 (-3,3) , 比特为 【0010】 ) 和原始星座点 HI (坐标点为 (3, -1 ) , 比特为 【1001】 ) ; 原始星座点 II (坐标点为 ( -1, 1 ) , 比 特为 【0111】 )和原始星座点 J1 (坐标点为 ( 1, 1 ) , 比特为 【1111】 ) 五种组合的矢量相加方式。对应初步比特映射有 C1=C2=C3=C4=【101 1】 和 C5=【1000】 。 则对齐星座点 X的比特映射是将这五种组合方 式对应的初始比特映射按位平均, 即 CX= 【 ( 1 + 1 + 1 + 1 + 1 ) 15 ( 0+0+0+0+0 ) 15 ( 1 + 1 + 1 + 1+0 ) 15 ( 1 + 1 + 1 + 1+0 ) /5】=【 100.80.8】。 当干扰源数量大于 2时, 干扰对齐星座图一的构成以此类推。
306、 根据所述第一干扰对齐星座图对接收到的所述信号序列 SEQ1进行干扰信号解调, 得到干扰编码比特序列 SEQ2。
步骤 306可以有以下两种实现方式。 方式一: 按照所述第一干扰对齐星座图对接收到的所述信号序列 SEQ1解调, 得到干扰编码比特序列 SEQ2。
具体的, 在第一干扰对齐星座图中, 找到信号序列 SEQ1中各个信 号对应的坐标最接近的星座点, 根据第一干扰对齐星座图的比特映射 关系得到各个星座点对应的比特。 这样就按照第一干扰对齐星座图将 信号序列 SEQ1解调为干扰编码比特序列 SEQ2。
需要说明的是, 解调分为硬解调和软解调两种。 硬解调之后获得 的是由 0和 1 组成二进制比特序列; 软解调之后获得的比特序列中每 一个比特位由一个介于 0和 1之间的小数来表示, 当该小数接近 0时 代表该比特位是 0 的概率较大, 当该小数接近 1 时代表该比特位是 1 的概率较大。 本实施例中, 当干扰信号发射端釆用调制模式为 BPSK或 者 QPSK 时, 可以釆用硬解调, 也可以釆用软解调。 当干扰信号发射 端釆用 8QAM, 16QAM, 64QAM等所有 M-QAM的调制模式时, 釆用 软解调。
方式二: 将有用信号发射端发射的有用信号对应的原始有用星座 图和所述第一干扰对齐星座图中的星座点进行矢量相加, 得到星座点; 确定每个星座点的比特映射关系, 生成干扰解调星座图。 按照干扰解 调星座图对所述信号序列 SEQ1解调, 得到干扰编码比特序列 SEQ2。
具体的, 如图 6 , 将有用信号发射端发射的有用信号对应的原始有 用星座图和第一干扰对齐星座图中的星座点进行矢量相加, 得到星座 点, 确定每个星座点的比特映射关系, 生成干扰解调星座图。 该矢量 相加及比特映射关系与生成干扰对齐星座图一的矢量相加过程和比特 映射关系的确定相同, 在此不再赘述。
干扰解调星座图上每个星座点对应的比特与生成该星座点的第一 干扰对齐星座图中星座点对应的比特相同。 该解调过程与方式一中所 述的解调过程相同。 所不同的是, 干扰解调星座图比干扰对齐星座图 中的星座点更加密集, 因此, 按照干扰解调星座图对信号序列 SEQ1解 调, 较之按照第一干扰对齐星座图对信号序列 SEQ1 解调的准确性更 高。
307、 对所述干扰编码比特序列 SEQ2解码, 得到干扰源比特序列 SEQ3。
可选的, 如果干扰信号发射端对信道编码后的比特序列进行调制 前有加扰的操作, 信号接收端需要先对 SEQ2 进行解扰然后输入 ENCODER1的信道解码器进行解码, 得到干扰源比特序列 SEQ3。
以两个干扰信号发射端为例, 若两个干扰信号发射端的加扰序列 分别为 【S11 S12 ... S1N】 , 【S21 S22 ... S2N】 , 则解扰的序列就是 这些序列的按位异或, 即 【S11 @ S21 S12 @ S22 ... S1N @ S2N】 。
可选的, 如果每个干扰信号发射端对干扰信号源比特序列釆用相 同的 CRC (循环冗余校验码, Cycle Redundancy Check )校验码生成算 法, 则信号接收端可以釆用相应的校验算法对解码后的干扰信号源比 特序列进行 CRC 校验和纠错, 生成纠错后的干扰信号源比特序列 SEQ3。
308、 根据干扰源编码比特序列 SEQ3和第一干扰对齐星座图进行 干扰重建和删除, 得到第二干扰对齐星座图。
信号接收端根据 ENCODER1将 SEQ3重新进行信道编码,得到编 码比特序列 SEQ4。
根据干扰信号发射端生成干扰信号所釆用的调制模式, 确定所述 第一干扰对齐星座图中一个星座点对应比特个数 P,将所述编码比特序 列 SEQ4中每 P个比特分成一个比特组。
具体的, 当干扰信号发射端使用 BPSK或 QPSK调制模式时, 第 一干扰对齐星座图中一个星座点对应比特个数 P是 1 或 2。 当干扰信 号发射端使用 M-QAM ( M>4 )调制模式时, 第一干扰对齐星座图中一 个星座点对应比特个数 P= log2M, 即信号发射端使用 8QAM时, P= 3 ; 16QAM时, P= 4; 64QAM时, P= 6。 随后, 将编码比特序列 SEQ4中 每 P个比特分成一个比特组。
针对每一个比特组, 在第一干扰对齐星座图中仅保留该比特组对 应的星座点, 得到第二干扰对齐星座图。
如图 7 , 两个干扰信号发射端釆用 QPSK调制模式, 生成第一干扰 对齐星座图, 此时 P=2 , 则将编码比特序列 SEQ4中每 2个比特分成一 个比特组。 以编码比特序列 SEQ4为 【0000】为例, 则得到两个比特组 【00】 、 【00】 , 在第一干扰对齐星座图中仅保留两个比特组 【00】 、 【00】 对应的比特为 【00】 的星座点, 得到第二干扰对齐星座图。
需要说明的是, 第一干扰对齐星座图中, 会出现一组比特对应多 个对齐星座点, 即对齐星座点不唯一的情况。 如图 7 中在第一干扰对 齐星座图中, 比特组 【00】 对应不同的四个对齐星座点, 在第一干扰 对齐星座图中仅保留这四个不同的对齐星座点 【00】 , 得到第二干扰 对齐星座图。
当干扰信号发射端使用 M-QAM ( Μ>4 )调制模式时, 第一干扰对 齐星座图中, 会出现一个对齐星座点对应多组比特。 在这种情况下, 一个对齐星座点对应的多组比特中只要有一组比特与上述 log2M 个比 特相同, 则在第一干扰对齐星座图中保留该对齐星座点, 得到第二干 扰对齐星座图。
309、 根据第二干扰对齐星座图对接收到的信号序列 SEQ1进行有 用信号解调及解码, 得到发射端发射的有用信号 SEQ6。
将所述第二干扰对齐星座图和有用信号发射端发射的有用信号对 应的原始有用星座图中的星座点进行矢量相加, 得到星座点; 确定每 个星座点的比特映射关系, 形成有用信号星座图。
具体的, 如图 8 , 将第二干扰对齐星座图和原始有用星座图中的星 座点进行矢量相加, 得到星座点, 确定每个星座点的比特映射关系, 生成有用信号星座图。 该矢量相加与生成第一干扰对齐星座图的矢量 相加的过程相同, 每个星座点对应的比特与生成该星座点的原始有用 星座图星座点对应的比特相同。
此后,按照有用信号星座图对接收到的信号 SEQ1进行有用信号解 调, 获得待解码的信号比特序列 SEQ5。 该解调可以是硬解调, 也可以 是软解调。
釆用有用信号发射端釆用的信道编码方式 ENCODER2对 SEQ5进 行信道解码, 得到发射端发射的有用信号 SEQ6。
本发明实施例提供的干扰对齐方法, 多个干扰信号发射端使用相 同信道编码和相同调制模式编码、 调制后, 通过调整发射参数, 使得 各个干扰信号在接收端形成的原始星座图一致, 这样, 信号接收端将 干扰信号对齐后, 分步进行解调和解码, 从而将干扰信号删除。 与现 有技术中, 将干扰信号对齐后直接映射为干扰源比特序列相比, 减小 了接收端对信号进行解调和解码的复杂度。
需要说明的是, 本实施例是根据单天线通信***来描述的, 它可 以很容易推广到多天线***。 在多天线***中, 信号接收端的每一个 数据流都可以使用本发明提供的技术进行干扰对齐和删除。
本实施例提供的干扰对齐方法可以应用于 HetNet (异构网络, Heterogeneous Network ) ***上行场景中, 当 Macro UE (宏蜂窝用户 设备) 靠近 Femtocell (蜂窝形基站) 时, 其上行信号会对 Femtocell 中 Femto UE (蜂窝形用户设备) 的上行产生干扰。 而且, Femtocell通 常不知道 Macro UE在哪些 RB ( Resource Block , 资源块) 上面传输。 在该场景中应用本实施例提供的干扰对齐方法对 Macro UE上行干扰进 行删除的步骤如下:
Femto UE的上行发射信号分为两个数据流, 记为数据流 1和数据 流 2 , 分别独立进行编码和调制, 并且同时发射。
Femto BS按照某种流程实现数据流 1的星座图与 Macro UE的星 座图在 Femto BS处对齐。
当 Macro UE没有进行上行传输时, Femto BS可以同时接收数据 流 1和数据流 2。
当 Macro UE进行上行传输时, Femto BS把数据流 1视为一个干 扰信号, 把数据流 2视为有用信号, 把 Macro UE的上行数据视为另一 个干扰源,然后使用本实施例提供的干扰对齐方法把数据流 1 同 Macro UE的上行信号进行干扰对齐, 从而可以接收数据流 2中的数据。
在本场景中使用本实施例的干扰对齐方法对 Macro UE的上行干扰 删除的优点在于: 在存在 Macro UE的上行干扰, Femto UE还可以成 功传输部分数据, 不会因为删除干扰而中断全部数据的传输。
本发明实施例还提供一种信号接收端, 可以是上述通信中的基站, 例如蜂窝形基站,还可以是通信***中充当基站角色的设备。 如图 9 , 该信号接收端 9包括,
接收模块 91 , 用于接收发射端发射的信号序列 SEQ1 , 该信号序列 SEQ1 包括干扰信号和有用信号。
干扰解调模块 92 , 用于将干扰信号对应的原始星座图对齐, 生成 第一干扰对齐星座图, 并按照所述第一干扰对齐星座图对接收到的信 号序列 SEQ1进行干扰信号解调, 得到干扰编码比特序列 SEQ2。
干扰解码模块 93 , 用于对所述干扰编码比特序列 SEQ2解码, 得 到干扰信号源比特序列。
干扰重建、 删除及有用信号解调模块 94 , 根据干扰源编码比特序 列 SEQ2和第一干扰对齐星座图进行干扰重建和删除,得到第二干扰对 齐星座图,并根据所述第二干扰对齐星座图对信号序列 SEQ1进行有用 信号解调。
有用信号解码模块 95 , 用于对解调后的有用信号解码, 得到发射 端发射的有用信号 SEQ6。
本发明实施例还提供一种干扰信号发射端, 如图 10 , 该干扰信号 发射端, 包括,
干扰编码模块 11 , 用于对相同长度的干扰信号源比特序列进行编 码, 得到干扰信号编码比特序列。
干扰调制模块 12 , 用于对相同长度的干扰信号编码比特序列进行 调制生成干扰信号。
发射参数调整模块 13 , 用于调整干扰信号的发射参数, 以使得各 个所述干扰信号在接收端形成的原始星座图一致。
发送模块 14 , 用于将发射参数调整后的干扰信号发送给信号接收 端。
本发明实施例还提供一种干扰对齐***, 如图 11 , 该***包括, 信号接收端 9 , 用于将接收到的所有干扰信号对齐后, 解调、 解码 并删除, 得到有用信号。
至少两个干扰信号发射端, 使用相同信道编码和相同调制模式生 成干扰信号, 将所述干扰信号发射给信号接收端。
本实施例中包括两个干扰信号发射端 101、 102。
有用信号发射端 11 , 用于生成有用信号, 将所述有用信号发射给 信号接收端。
本发明实施例中的信号发射端或者信号接收端设备能够执行上述方 法实施例中的步骤, 完成方法实施例的各功能,其应用过程中按方法实施 例的描述实现干扰对齐的方法。

Claims

1、 一种干扰对齐方法, 其特征在于, 包括,
接收发射端发射的信号, 所述信号包括干扰信号及有用信号; 将干扰信号发射端发射的多个干扰信号对应的原始星座图对齐, 得到第一干扰对齐星座图, 其中所述多个干扰信号使用相同信道编码 和相同调制模式;
根据所述第一干扰对齐星座图对接收到的所述信号序列进行干扰 信号解调, 得到干扰编码比特序列;
对所述干扰编码比特序列解码, 得到干扰源比特序列;
根据所述干扰源编码比特序列和所述第一干扰对齐星座图进行干 扰重建和删除, 得到第二干扰对齐星座图;
根据第二干扰对齐星座图对接收到的所述信号序列进行有用信号 解调及解码, 得到有用信号发射端发射的有用信号。
2、 根据权利要求 1所述的方法, 其特征在于,
所述将干扰信号发射端发射的多个干扰信号对应的原始星座图对 齐, 得到第一干扰对齐星座图包括,
将各个原始星座图中的原始星座点进行矢量相加, 得到对齐星座 点; 确定每个对齐星座点的比特映射关系, 得到第一干扰对齐星座图; 所述比特映射关系是初始比特映射关系, 所述初始比特映射关系 为各个对齐星座点的比特是生成该对齐星座点的原始星座点比特的异 或, 用于当干扰信号发射端使用的调制模式使各个对齐星座点的初始 比特映射关系唯一的情况; 或者, 所述比特映射关系是最终比特映射 关系, 所述最终比特映射关系为将生成同一对齐星座点的 N种原始星 座点的不同组合方式对应的原始星座点的比特异或, 得到初始比特映 射 CI , C2 , CN; 则所述星座点的比特映射是将这 N种初始比特 映射按位平均, 即 C= ( C1+C2+ ... +CN ) /N, 其中 "+" 表示将 N种初 始比特映射 CI , C2 , CN 中对应的比特位上的数值相加, 得到对 应比特位上的相加数值, "/N"表示把将各个比特位上的所述相加数值 分别除以 N,所述最终比特映射关系用于当干扰信号发射端使用的调制 模式使各个对齐星座点的初始比特映射关系不唯一的情况。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据所述第一 干扰对齐星座图对接收到的所述信号序列进行干扰信号解调, 得到干 扰编码比特序列包括:
按照所述第一干扰对齐星座图对接收到的所述信号序列解调, 得 到干扰编码比特序列;
或者, 将有用信号发射端发射的有用信号对应的原始有用星座图 和所述第一干扰对齐星座图中的星座点进行矢量相加, 得到星座点; 确定每个星座点的比特映射关系, 形成干扰解调星座图; 按照所述干 扰解调星座图对接收到的所述信号序列解调, 得到干扰编码比特序列。
4、 根据权利要求 1、 2或 3 所述的方法, 其特征在于, 所述根据 所述干扰源编码比特序列和所述第一干扰对齐星座图进行干扰重建和 删除, 得到第二干扰对齐星座图包括,
对所述干扰源比特序列重新编码, 得到编码比特序列;
根据干扰信号发射端所釆用调制模式, 确定所述第一干扰对齐星 座图中一个星座点对应比特个数 P,将所述编码比特序列中每 P个比特 分成一个比特组;
在所述第一干扰对齐星座图中仅保留所述比特组对应的星座点, 确定每个星座点的比特映射关系, 形成干扰对齐星座图二。
5、 根据权利要求 4所述的方法, 其特征在于,
所述根据所述第二干扰对齐星座图对接收到的所述信号序列进行 有用信号解调及解码, 得到发射端发射的有用信号包括,
将所述第二干扰对齐星座图和有用信号发射端发射的有用信号对 应的原始有用星座图中的星座点进行矢量相加, 得到星座点; 确定每 个星座点的比特映射关系, 形成有用信号星座图;
按照有用信号星座图对接收到的所述信号序列进行有用信号解调 及解码, 得到发射端发射的有用信号。
6、 一种干扰对齐方法, 其特征在于, 包括,
各个干扰信号发射端使用相同信道编码和相同调制模式, 对相同 长度的干扰信号源比特序列进行编码和调制;
调整所述干扰信号的发射参数, 以使得发射的各个干扰信号在信 号接收端形成的原始星座图一致;
将所述干扰信号发射给信号接收端。
7、 根据权利要求 6所述的方法, 其特征在于, 各个干扰信号发射 端使用相同信道编码和相同调制模式, 对相同长度的干扰信号源比特 序列进行编码和调制, 传输各自的干扰信号包括,
各个干扰信号发射端使用符合预设条件的信道编码和相同调制模 式, 对相同长度的干扰信号源比特序列进行编码和调制, 传输各自的 干扰信号;
所述预设条件是:
若两个二进制信源比特流 al, a2, a3, aM和 bl, b2, b3, bM, 经过信道编码 ENCODER 1后生成的二进制编码比特流分别为 pi, p2, p3, ..., ρΝ和 ql, q2, q3, qN; 则对二进制信源比特流 al ® bl, a2 ® b2, a3 ® b3 , ―., aM bM进行信道编码 ENCODER1后生 成的二进制编码比特流为 pi @ ql, P2 ® q2 , p3 ® q3 , pM® qM, 其 中 @代表二进制的异或操作。
8、 一种信号接收端, 其特征在于, 包括,
接收模块, 用于接收发射端发射的信号,所述信号包括干扰信号及 有用信号;
干扰解调模块, 用于将干扰信号对应的原始星座图对齐, 生成第 一干扰对齐星座图, 并按照所述第一干扰对齐星座图对接收到的所述 信号序列进行干扰信号解调, 得到干扰编码比特序列;
干扰解码模块, 用于对所述干扰编码比特序列解码, 得到干扰信 号源比特序列;
干扰重建、 删除及有用信号解调模块, 根据所述干扰源编码比特 序列和所述第一干扰对齐星座图进行干扰重建和删除, 得到第二干扰 对齐星座图, 并根据所述第二干扰对齐星座图对接收到的所述信号序 列进行有用信号解调; 有用信号解码模块, 用于对解调后的有用信号解码, 得到发射端 发射的有用信号。
9、 一种干扰信号发射端, 其特征在于, 包括,
干扰编码模块, 用于对相同长度的干扰信号源比特序列进行编码, 得到干扰信号编码比特序列;
干扰调制模块, 用于对相同长度的干扰信号编码比特序列进行调 制生成干扰信号;
发射参数调整模块, 用于调整干扰信号的发射参数, 以使得各个 所述干扰信号在接收端形成的原始星座图一致;
发送模块, 用于将发射参数调整后的干扰信号发送给信号接收端。
10、 一种干扰对齐***, 其特征在于, 包括
信号接收端, 用于将接收到的所有干扰信号对齐后, 解调、 解码 并删除, 得到有用信号。
至少两个干扰信号发射端, 使用相同信道编码和相同调制模式生 成干扰信号, 将所述干扰信号发射给信号接收端;
有用信号发射端, 用于生成有用信号,将所述有用信号发射给信号接 收端。
PCT/CN2012/084925 2011-11-25 2012-11-21 一种干扰对齐方法、装置及*** WO2013075616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12851539.2A EP2768191B1 (en) 2011-11-25 2012-11-21 Method and device for interference alignment
US14/286,011 US9124332B2 (en) 2011-11-25 2014-05-23 Method, apparatus, and system for interference alignment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110382521.4A CN103139115B (zh) 2011-11-25 2011-11-25 一种干扰对齐方法、装置及***
CN201110382521.4 2011-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/286,011 Continuation US9124332B2 (en) 2011-11-25 2014-05-23 Method, apparatus, and system for interference alignment

Publications (1)

Publication Number Publication Date
WO2013075616A1 true WO2013075616A1 (zh) 2013-05-30

Family

ID=48469111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084925 WO2013075616A1 (zh) 2011-11-25 2012-11-21 一种干扰对齐方法、装置及***

Country Status (4)

Country Link
US (1) US9124332B2 (zh)
EP (1) EP2768191B1 (zh)
CN (1) CN103139115B (zh)
WO (1) WO2013075616A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016030000B1 (pt) 2014-06-26 2023-01-17 Huawei Technologies., Ltd Equipamento e método de cancelamento de interferência
EP3151438B1 (en) 2014-06-26 2019-04-10 Huawei Technologies Co. Ltd. Interference cancellation device and method
WO2015196404A1 (zh) 2014-06-26 2015-12-30 华为技术有限公司 一种干扰消除的装置和方法
CN108259401B (zh) * 2016-12-28 2020-09-15 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
CN107241159B (zh) * 2017-07-21 2019-03-29 电子科技大学 一种利用干扰信号通信的方法
CN109561037A (zh) 2017-09-27 2019-04-02 株式会社Ntt都科摩 比特到符号的映射方法和通信装置
CN109450506B (zh) * 2018-11-16 2020-12-29 政务和公益机构域名注册管理中心 一种基于双路干扰信号调整的多干扰协作干扰对齐方法
CN113612720B (zh) * 2021-08-17 2023-12-19 中国空间技术研究院 无线信道抗干扰调制方法及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572653A (zh) * 2008-04-30 2009-11-04 株式会社Ntt都科摩 一种双向中继方法、基站、移动终端及中继站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2020158B1 (en) * 2006-04-25 2016-11-02 LG Electronics Inc. A method of configuring multiuser packet and a structure thereof in a wireless communication system
KR20110099003A (ko) * 2008-11-21 2011-09-05 핀-한 호 단일 변조 계획을 갖는 중첩 코드화된 멀티캐스트용 시스템, 방법 및 컴퓨터 프로그램
KR101530200B1 (ko) 2009-03-25 2015-06-19 삼성전자주식회사 단말 장치 및 네트워크 제어 장치
US8379705B2 (en) * 2009-08-04 2013-02-19 Qualcomm Incorporated Hierarchical feedback of channel state information for wireless communication
KR101587563B1 (ko) * 2009-09-01 2016-02-02 삼성전자주식회사 간섭 정렬을 수행하는 통신 시스템 및 그 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572653A (zh) * 2008-04-30 2009-11-04 株式会社Ntt都科摩 一种双向中继方法、基站、移动终端及中继站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ORDENTLICH, O. ET AL.: "Interference Alignment at Finite SNR for Time-Invariant Channels", 2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 20 October 2011 (2011-10-20), pages 442, XP032027211, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/stamp/stamp.isp?tp:::&arnumber=6089498> *

Also Published As

Publication number Publication date
US20140254707A1 (en) 2014-09-11
EP2768191A1 (en) 2014-08-20
CN103139115B (zh) 2016-08-03
EP2768191B1 (en) 2019-01-09
EP2768191A4 (en) 2014-12-17
CN103139115A (zh) 2013-06-05
US9124332B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
WO2013075616A1 (zh) 一种干扰对齐方法、装置及***
JP3842766B2 (ja) 移動通信基地局システム
CN101567756B (zh) 用于前向链路的变速率编码
US8027286B2 (en) Multi-layer multi-hop wireless system
CA2593783A1 (en) Methods and apparatus for transmitting layered and non-layered data via layered modulation
JP2003283582A (ja) マルチキャストデータの送受信装置及び方法
JP2001510296A (ja) 地上配信ネットワーク上において複数の変調システムを同時にサポートする装置及び方法
CN106100697B (zh) 低压电力线载波通信***和方法
NO334875B1 (no) Feilkorrigeringsmetode i et trådløst system
JP2018515956A5 (zh)
CN101826935B (zh) 一种基于低密度校验码的中继协作传输方法
Pan et al. Practical NOMA-based coordinated direct and relay transmission
JP5579070B2 (ja) 無線アクセスネットワークにおいて音声/映像コンテンツを送信/受信するための方法及び装置
JP5666714B2 (ja) 完全性保護を備えたビーコンおよび管理情報要素
JP4012464B2 (ja) シンボル・レート当たり複数ビットの直交振幅エンコーディング
US9231705B1 (en) Communication system with QAM modulation
JP2022513211A (ja) 準直交マルチアクセスベースwlanシステムのための時空間ブロックコード
CN103957076B (zh) 新型非线性成形码的构造方法及通信方法
Zhong et al. A joint design of polar codes and physical-layer network coding in visible light communication system
Zhou A joint design of physical layer network coding and channel coding for wireless networks
Ke et al. Improvement of physical-layer network coding method in relay networks
JP4918305B2 (ja) ワイヤレスネットワークを介したマルチメディアマルチキャスト送信のための方法及び装置
KR101382388B1 (ko) 무선 사운드 전송 시스템에서 데이터 패킷 재전송 방법 및 장치
WO2016136491A1 (ja) 送信装置及び受信装置
CN117750428A (zh) 基带单元、头端单元和分布式基站***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012851539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE