WO2013075539A1 - 频分双工器及移动终端 - Google Patents

频分双工器及移动终端 Download PDF

Info

Publication number
WO2013075539A1
WO2013075539A1 PCT/CN2012/081420 CN2012081420W WO2013075539A1 WO 2013075539 A1 WO2013075539 A1 WO 2013075539A1 CN 2012081420 W CN2012081420 W CN 2012081420W WO 2013075539 A1 WO2013075539 A1 WO 2013075539A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
capacitor
filter
receiving
frequency
Prior art date
Application number
PCT/CN2012/081420
Other languages
English (en)
French (fr)
Inventor
白剑
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Publication of WO2013075539A1 publication Critical patent/WO2013075539A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to the field of communications, and in particular, to a frequency division duplexer and a mobile terminal.
  • the duplexer is an indispensable device. It usually consists of two or more bandpass filters of different frequencies, and isolates the received signal and the transmitted signal to prevent the transmission signal of the mobile terminal from being transmitted to the receiver.
  • the insertion loss of the duplexer under the current state of the art is very large, for the following reasons:
  • the parameters of the bandpass filter need to be the center frequency of 1950MHz and the transition band of 20MHz.
  • Such a band stop filter is not only very difficult to implement, but also has a large insertion loss.
  • WCDMA uses a duplexer with a frequency of 1900MHz, and its insertion loss is above 2.5dB.
  • the receiving path requires that the signal can work under extremely weak signals, which is typically -110 dBm; and the transmitting path requires the transmission power to be increased as much as possible to ensure other mobile terminals.
  • the receiving effect is typically 28dB.
  • a transmission power of up to 28 dB inevitably leads to strong spurious interference. If these spurious interferences are directly fed into the receiving path, the sensitivity of the receiving path is affected, and the received signal is directly flooded. .
  • the transmit path will output -132 dBm/Hz of noise, and the input noise required by the receive path must be below -173 dBm/Hz. Therefore, a typical duplexer must provide 41 dB of isolation. The insertion loss of the duplexer is very large.
  • the amplifier of the previous stage of the duplexer must increase the output power, thereby causing an increase in the power consumption of the mobile terminal, which increases the load on the battery of the mobile terminal.
  • the technical problem to be solved by the present invention is to provide a frequency division duplexer and a mobile terminal, which can effectively reduce the insertion loss of the duplexer.
  • a technical solution adopted by the present invention is to provide a mobile terminal, including: a wireless transceiver, a transmitting surface acoustic filter, a power amplifier, a frequency division duplexer, an antenna, and a matching network; a wireless transceiver for receiving or transmitting a signal, one end is connected to the input end of the transmitting surface acoustic filter, the other end is connected to the receiving end of the frequency division duplexer; and the acoustic surface filter is used for selecting the emission a frequency, an output terminal is connected to an input end of the power amplifier; a power amplifier, an output end is connected to a transmitting end of the frequency division duplexer; a frequency division duplexer includes a receiving path and a transmitting path, and the transmitting path is adopted a low pass filter or a band limiting filter, the external terminal being connected to the antenna, wherein the low pass filter is a capacitive inductive filter; the matching network device is configured to implement impedance
  • the capacitive inductive filter includes a plurality of sets of LC ⁇ type filter circuits.
  • the LC ⁇ type filter circuit includes a first capacitor, an inductor, and a second capacitor.
  • the first capacitor has one end grounded end, and the other end is connected to one end of the inductor. Connected, the other end of the inductor is connected to one end of the second capacitor, the other end of the second capacitor is grounded, and the first group of LC ⁇ type filter circuits and the second group of LC ⁇ type filter circuits share the first group of LC ⁇ type filter circuits
  • the second capacitor, the second group of LC ⁇ type filter circuits and the third group of LC ⁇ type filter circuits share the second capacitor of the second group of LC ⁇ type filter circuits, and so on.
  • the receiving band noise level of the receiving path is -173 dBm/Hz.
  • the suppression degree of the receiving frequency band is below 20 dB.
  • the wireless transceiver has a maximum output power of 6.5 dBm in the frequency bands 1, 4, 5, and 8, a minimum output power of -76 dBm, a receiving band noise of -140 dBm/Hz, and a maximum output power of 7 dBm in the frequency band 2,
  • the minimum output power is -76dBm
  • the receiving band noise is -139dBm/Hz
  • the insertion acoustic surface filter has an insertion loss of 2.5dB in each frequency band, and the receiving band attenuation is 30dB; the power amplifier transmits in each frequency band.
  • the amplification gain of the band is 24dB, the amplification gain in the receiving band is 18dB, and the noise of the total output receiving band is -151dBm/Hz; the insertion loss of the frequency division duplexer in the bands 1, 4, 5, 8 is 0.5dB.
  • the insertion loss in band 2 is 1 dB, the noise attenuation in the receiving band is 20 dB in each frequency band, and the noise in the output receiving band is -173.5 dBm/Hz.
  • a frequency division duplexer which includes: a receiving path and a transmitting path, and the transmitting path adopts a low pass filter or a band limiting filter.
  • the low pass filter is a capacitive inductive filter.
  • the capacitive inductive filter includes a plurality of sets of LC ⁇ type filter circuits
  • the LC ⁇ type filter circuit includes a first capacitor, an inductor, and a second capacitor, wherein the first capacitor is grounded at one end, and the other end is connected to one end of the inductor.
  • the other end of the inductor is connected to one end of the second capacitor, the other end of the second capacitor is grounded, and the first group of LC ⁇ type filter circuits and the second group of LC ⁇ type filter circuits share the first group of LC ⁇ type filter circuits.
  • the second capacitor, the second group of LC ⁇ type filter circuits and the third group of LC ⁇ type filter circuits share the second capacitor of the second group of LC ⁇ type filter circuits, and so on.
  • a mobile terminal including: a wireless transceiver, a transmitting surface acoustic filter, a power amplifier, a frequency division duplexer and an antenna; and a wireless transceiver For receiving or transmitting a signal, one end is connected to the input end of the transmitting surface acoustic filter, the other end is connected to the receiving end of the frequency division duplexer; and the acoustic surface filter is used for selecting the transmitting frequency and outputting
  • the terminal is connected to the input end of the power amplifier; the power amplifier has an output connected to the transmitting end of the frequency division duplexer; the frequency division duplexer includes a receiving path and a transmitting path, and the transmitting path adopts low-pass filtering. Or band limiting filter, the external terminal is connected to the antenna.
  • the low pass filter is a capacitive inductive filter.
  • the capacitive inductive filter includes a plurality of sets of LC ⁇ type filter circuits.
  • the LC ⁇ type filter circuit includes a first capacitor, an inductor, and a second capacitor.
  • the first capacitor has one end grounded end, and the other end is connected to one end of the inductor. Connected, the other end of the inductor is connected to one end of the second capacitor, the other end of the second capacitor is grounded, and the first group of LC ⁇ type filter circuits and the second group of LC ⁇ type filter circuits share the first group of LC ⁇ type filter circuits
  • the second capacitor, the second group of LC ⁇ type filter circuits and the third group of LC ⁇ type filter circuits share the second capacitor of the second group of LC ⁇ type filter circuits, and so on.
  • the terminal further includes: a matching network device, configured to implement impedance matching between the wireless transceiver and the antenna, one end is connected to the output end of the frequency division duplexer, and the other end is connected to the antenna.
  • a matching network device configured to implement impedance matching between the wireless transceiver and the antenna, one end is connected to the output end of the frequency division duplexer, and the other end is connected to the antenna.
  • the receiving band noise level of the receiving path is -173 dBm/Hz.
  • the suppression degree of the receiving frequency band is below 20 dB.
  • the wireless transceiver has a maximum output power of 6.5 dBm in the frequency bands 1, 4, 5, and 8, a minimum output power of -76 dBm, a receiving band noise of -140 dBm/Hz, and a maximum output power of 7 dBm in the frequency band 2,
  • the minimum output power is -76dBm
  • the receiving band noise is -139dBm/Hz
  • the insertion acoustic surface filter has an insertion loss of 2.5dB in each frequency band, and the receiving band attenuation is 30dB; the power amplifier transmits in each frequency band.
  • the amplification gain of the band is 24dB, the amplification gain in the receiving band is 18dB, and the noise of the total output receiving band is -151dBm/Hz; the insertion loss of the frequency division duplexer in the bands 1, 4, 5, 8 is 0.5dB.
  • the insertion loss in band 2 is 1 dB, the noise attenuation in the receiving band is 20 dB in each frequency band, and the noise in the output receiving band is -173.5 dBm/Hz.
  • the invention has the advantages that the insertion loss of the prior art duplexer is very large, and the present invention provides a frequency division duplex duplexer whose transmission path adopts a low-pass filter with low insertion loss or The band limit filter replaces the band gap filter with high insertion loss, and re-determines the parameters of each component according to the noise level of the receiving band and the suppression degree of the receiving band, thereby effectively reducing the insertion loss of the duplexer and reducing The heat generated by the mobile terminal.
  • FIG. 1 is a circuit diagram of an embodiment of a frequency division duplexer of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a mobile terminal according to the present invention.
  • FIG. 4 is a schematic structural diagram of another embodiment of a mobile terminal according to the present invention.
  • the duplexer is an indispensable device in the mobile terminal.
  • the duplexer can easily distinguish the received information from the transmitted information by dividing two different frequency intervals so that the receiving path and the transmitting path operate in different frequency intervals. .
  • today's duplexers are usually implemented with band-stop filters. Due to the operating frequency of the mobile terminal, the transition band of the band rejection filter can only be 20 MHz, and must provide isolation of up to 41 dB, which results in a very large insertion loss of the duplexer.
  • the present invention provides a frequency division duplexer including a receiving path and a transmitting path.
  • the transmission path uses a low-pass filter or a band-limited filter with low insertion loss instead of a high insertion loss band-stop filter.
  • a capacitive inductive filter is one of the low pass filters.
  • the LC ⁇ type filter circuit includes a first capacitor, an inductor and a second capacitor.
  • the first capacitor has one end grounded, the other end is connected to one end of the inductor, the other end of the inductor is connected to one end of the second capacitor, and the other end of the second capacitor is grounded. .
  • the capacitor inductor filter comprises a plurality of sets of LC ⁇ type filter circuits, and the first group of LC ⁇ type filter circuits and the second group of LC ⁇ type filter circuits share the second capacitor of the first group of LC ⁇ type filter circuits, and the second group of LC ⁇
  • the type filter circuit shares the second capacitance of the second group of LC type filter circuits with the third group of LC type filter circuits, and so on.
  • the first capacitor of the first group of LC ⁇ type filter circuits has a value of 4.2 pF, an inductance value of 4.1 nH, and a second capacitor value of 4.3 pF.
  • the inductance of the second group of LC-type filter circuits is 6.2 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC mode filter circuit of the third group is 6.2 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC filter of the fourth group is 5.6 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC-type filter circuit of the fifth group is 5.6 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC filter of the sixth group is 5.1 nH, and the value of the second capacitor is 3.3 pF.
  • the connection between the first capacitor and the inductor of the first group of LC-type filter circuits is taken as the input, and the connection between the second capacitor and the inductor of the sixth group of LC-type filter circuits is used as an output, and the capacitor inductance filter can be obtained by simulation technology.
  • the insertion loss characteristic curve, as shown in Fig. 2 can be found that the maximum insertion loss of the modified capacitor filter is 0.3 dB, which is much lower than the typical insertion loss of the duplexer using a band-stop filter of 2.5 dB.
  • the present invention provides a frequency division duplexer whose transmission path replaces the original high insertion loss with a low-pass filter or a band-limited filter with low insertion loss.
  • the band-stop filter effectively reduces the insertion loss of the duplexer.
  • the present invention also provides a mobile terminal, as shown in FIG. 3, comprising: a wireless transceiver 110, a transmitting surface acoustic filter 120, a power amplifier 130, a frequency division duplexer 140, a matching network 150, and an antenna 160.
  • the wireless transceiver 110 is configured to receive or transmit a signal, one end of which is coupled to the input of the transmitting surface acoustic filter 120, and the other end of which is coupled to the receiving end of the frequency division duplexer 140.
  • the output of the transmitted acoustic surface filter 120 is coupled to the input of the power amplifier 130.
  • the input electrical signal is converted into an acoustic signal by an input transducer, the acoustic signal propagates along the surface of the piezoelectric substrate, and is converted into an electrical signal at the output transducer, by selecting an appropriate substrate material, and transducing the two
  • the device performs weighting to implement the frequency selection function. By transmitting the selection of the acoustic surface filter 120, the transmitted signal can be limited to a particular frequency and the interfering signal at the non-operating frequency can be filtered.
  • the output of power amplifier 130 is coupled to the transmit end of frequency division duplexer 140. After the transmitted signal is amplified by the power amplifier 130, sufficient power is obtained to be transmitted through the antenna 160 into the space to be received by the next receiving end, such as the base station and the mobile terminal, as much as possible.
  • the frequency division duplexer 140 includes a receiving path and a transmitting path. And the transmission path uses a low-pass filter or a band-limited filter with low insertion loss instead of a high insertion loss band-stop filter.
  • a capacitive inductive filter is one of the low pass filters.
  • the LC ⁇ type filter circuit includes a first capacitor, an inductor and a second capacitor.
  • the first capacitor has one end grounded, the other end is connected to one end of the inductor, the other end of the inductor is connected to one end of the second capacitor, and the other end of the second capacitor is grounded. .
  • the capacitor inductor filter comprises a plurality of sets of LC ⁇ type filter circuits, and the first group of LC ⁇ type filter circuits and the second group of LC ⁇ type filter circuits share the second capacitor of the first group of LC ⁇ type filter circuits, and the second group of LC ⁇
  • the type filter circuit shares the second capacitance of the second group of LC type filter circuits with the third group of LC type filter circuits, and so on.
  • the first capacitor of the first group of LC ⁇ type filter circuits has a value of 4.2 pF, an inductance value of 4.1 nH, and a second capacitor value of 4.3 pF.
  • the inductance of the second group of LC-type filter circuits is 6.2 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC mode filter circuit of the third group is 6.2 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC filter of the fourth group is 5.6 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC-type filter circuit of the fifth group is 5.6 nH, and the value of the second capacitor is 4.3 pF.
  • the inductance of the LC filter of the sixth group is 5.1 nH, and the value of the second capacitor is 3.3 pF.
  • the connection between the first capacitor and the inductor of the first group of LC-type filter circuits is taken as the input, and the connection between the second capacitor and the inductor of the sixth group of LC-type filter circuits is used as an output, and the capacitor inductance filter can be obtained by simulation technology.
  • the insertion loss characteristic curve, as shown in Fig. 2 can be found that the maximum insertion loss of the modified capacitor filter is 0.3 dB, which is much lower than the typical insertion loss of the duplexer using a band-stop filter of 2.5 dB.
  • the matching network device 150 is used to implement impedance matching between the wireless transceiver 110 and the antenna 160, one end of which is connected to the output of the frequency division duplexer 140, and the other end of which is connected to the antenna 160.
  • the antenna 160 is a printed antenna printed on the circuit board, and both the received signal and the transmitted signal are transmitted and received through the antenna 160.
  • a strip antenna made of metal or the like may be used, which is not limited in the present invention.
  • the mobile terminal of the present invention can be applied to various types of mobile communication technologies such as CDMA, WCDMA, GSM, and the like.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System for Mobile communications
  • WCDMA has nine working frequency bands: Working frequency Frequency (MHz) Working country Band 1 2,100 Band 2 1,900 Band 3 1,800 Band 4 2,100/1,700 Band 5 850 United States Band 6 850 Japan Band 7 2,500 Band 8 900 Band 9 1,700 Japan
  • the mobile terminal provided by the present invention is freely selectable to operate in the frequency bands 1, 2, 4, 5, 8. Therefore, the mobile terminal is provided with multiple branches, and each branch has a transmitting surface acoustic filter. 220, power amplifier 230, frequency division duplexer 240, matching network 250.
  • Each of the transmitted acoustic surface filters 220 has a different selected operating frequency and can be set to operate in the frequency bands 1, 2, 4, 5, 8, respectively.
  • the signal selected by the transmitted acoustic surface filter 220 is amplified by the power amplifier 230, transmitted to the matching network 250 via the transmission path of the frequency division duplexer 240, and then transmitted to the antenna 260 via the multi-way operating switch 270. If the antenna 260 receives the received signal, it is transmitted to the matching network 250 via the multi-way switch 270 and then transmitted to the wireless transceiver 210 through the receive path of the frequency duplexer 240.
  • the mobile terminal uses the low-pass filter to reduce the insertion loss of the frequency division duplexer 240, the suppression of the receiving frequency band is deteriorated due to the nature of the low-pass filter itself, and the power is increased in order to ensure the quality of the communication.
  • Noise suppression requirements of amplifier 230 and wireless transceiver 210 Adding noise suppression to power amplifier 230 and wireless transceiver 210 is difficult to achieve under the prior art. Thus, it is necessary to reallocate the parameters of the various parts of the mobile terminal such that the degree of suppression of the received frequency band operates within an acceptable range.
  • the receiving band noise level of the receiving path of the mobile terminal is -173 dBm/Hz, and the maximum suppression degree of the receiving band is 20 dB.
  • the maximum output power of the wireless transceiver 210 in the frequency bands 1, 4, 5, 8 is 6.5 dBm, the minimum output power is -76 dBm, and the receiving band noise is -140 dBm/Hz, in the frequency band 2
  • the maximum output power is 7dBm, the minimum output power is -76dBm, and the noise in the receiving band is -139dBm/Hz.
  • the transmission acoustic surface filter 220 has an insertion loss of 2.5 dB in each frequency band and an attenuation of 30 dB in the reception band.
  • the power amplifier 230 has an amplification gain of 24 dB in the transmission band of each frequency band, an amplification gain of 18 dB in the receiving band, and a noise of -151 dBm/Hz in the total output receiving band.
  • the insertion loss of the frequency division duplexer 240 in the frequency bands 1, 4, 5, and 8 is 0.5 dB, the insertion loss in the frequency band 2 is 1 dB, and the noise attenuation in the receiving frequency band is 20 dB in each frequency band, and the noise in the output receiving frequency band is -173.5dBm/Hz.
  • the insertion loss of the multi-way switch 270 is 0.8 dB at a high frequency and 0.5 dB at a low frequency.
  • the insertion loss of the transmission line is: high frequency 0.7dB, low frequency 0.5dB.
  • the insertion loss of the frequency division duplexer 240 corresponding to the frequency bands 2, 8 is reduced from 2.5 dB to 1 dB, saving 70 mA of current, which significantly reduces the heat generation of the mobile terminal.
  • the insertion loss of the frequency division duplexer 240 corresponding to other frequency bands is reduced from 1.5 dB to 0.5 dB, which also saves 50 mA of current, which significantly reduces the heat generation of the mobile terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本发明公开了频分双工器以及移动终端。其中,所述频分双工器包括:接收通路及发射通路,发射通路采用低通滤波器或带限滤波器。此外,还提供了一种移动终端,包括:无线收发机、发射声表面滤波器、功率放大器、频分双工器及天线;无线收发机,用于接收或发送信号,一端与发射声表面滤波器的输入端连接,另一端与频分双工器的接收端连接;发射声表面滤波器,用于选择发射频率,输出端与功率放大器的输入端相连;功率放大器,输出端与频分双工器的发射端连接;频分双工器,包括接收通路及发射通路,发射通路采用低通滤波器或带限滤波器,外接端与天线相连。通过上述方式,本发明能够有效降低双工器的***损耗,减少移动终端的发热量。

Description

频分双工器及移动终端
【技术领域】
本发明涉及通讯领域,特别是涉及一种频分双工器及移动终端。
【背景技术】
现今的移动终端通常采用收发通路同时工作的模式,为了实现该工作模式,双工器是必不可少的设备。它通常由两组或者更多不同频率的带通滤波器组成,对接收信号及发射信号进行隔离,避免移动终端的发射信号传输到接收机。但是,现今技术水平下的双工器的***损耗非常大,其原因有:
(1)若移动终端的发射频率在1850MHz-1910MHz之间,而接收频率在1930MHz-1990MHz之间,因而,带通滤波器的参数需为中心频率1950MHz,过渡带20MHz。这样的带阻滤波器不仅实现起来非常困难,而且,***损耗也非常大。如WCDMA使用的,频段为1900MHz的双工器,其***损耗在2.5dB以上。
(2)在收发通路同时工作的模式下,接收通路要求信号在极其微弱的信号下也能工作,其典型值为-110dBm;而发射通路则要求发射功率尽可能地提高,以确保其它移动终端的接收效果,其典型值为28dB。而且,移动终端工作在非线性环境下,高达28dB的发射功率必然导致很强的杂散干扰,如果这些杂散干扰直接馈入接收通路,轻则影响接收通路的灵敏度,重则直接淹没接收信号。例如,在28dB的发射功率下,发射通路将输出-132dBm/Hz的噪声,而接收通路要求的输入噪声必须低于-173dBm/Hz,因此,典型的双工器必须提供41dB的隔离度,因而导致双工器的***损耗非常大。
如此之大***损耗将会导致如下的问题:
(1)为了确保发射通路输出足够的功率,双工器前一级的放大器必须提高输出功率,因而导致移动终端的耗电量增加,加重了移动终端电池的负荷。
(2)放大器的输出功率提高必然会导致发热量的增加。移动终端的发热会影响到电池的使用安全及用户的使用体验。
(3)放大器的输出功率提高也就是提高了放大器的技术指标,技术指标的提高必要导致成本的提高。
【发明内容】
本发明主要解决的技术问题是提供一种频分双工器及移动终端,能够有效降低双工器的***损耗。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种移动终端,其中,包括:无线收发机、发射声表面滤波器、功率放大器、频分双工器、天线及匹配网络器;无线收发机,用于接收或发送信号,一端与所述发射声表面滤波器的输入端连接,另一端与所述频分双工器的接收端连接;发射声表面滤波器,用于选择发射频率,输出端与所述功率放大器的输入端相连;功率放大器,输出端与所述频分双工器的发射端连接;频分双工器,包括接收通路及发射通路,所述发射通路采用低通滤波器或带限滤波器,外接端与所述天线相连,其中,所述低通滤波器是电容电感滤波器;匹配网络器,用于实现无线收发机与天线之间的阻抗匹配,一端与频分双工器的输出端连接,另一端与天线连接。
其中,所述电容电感滤波器包括多组LC∏型滤波电路,所述LC∏型滤波电路包括第一电容、电感及第二电容,所述第一电容一端接地端,另一端与电感的一端相连,电感的另一端与第二电容的一端相连,第二电容的另一端接地端,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。
其中,所述接收通路的接收频段噪声水平是-173dBm/Hz。
其中,所述接收频段的抑制度在20dB以下。
其中,所述无线收发机在频段1、4、5、8的最大输出功率为6.5dBm,最小输出功率为-76dBm,接收频段噪声为-140dBm/Hz,在频段2的最大输出功率为7dBm,最小输出功率为-76dBm,接收频段噪声为-139dBm/Hz;所述发射声表面滤波器在各个频段的***损耗均为2.5dB,接收频段衰减均为30dB;所述功率放大器在各个频段的发射频段放大增益均为24dB,接收带内放大增益均为18dB,总输出接收频段噪声为-151dBm/Hz;所述频分双工器在频段1、4、5、8的***损耗为0.5dB,在频段2的***损耗为1dB,在各个频段的对接收频段的噪声衰减均为20dB,输出接收频段噪声为-173.5dBm/Hz。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种频分双工器,其中,包括:接收通路及发射通路,所述发射通路采用低通滤波器或带限滤波器。
其中,所述低通滤波器是电容电感滤波器。
其中,所述电容电感滤波器包括多组LC∏型滤波电路,所述LC∏型滤波电路包括第一电容、电感及第二电容,所述第一电容一端接地端,另一端与电感一端相连,电感的另一端与第二电容的一端相连,第二电容的另一端接地端,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种移动终端,其中,包括:无线收发机、发射声表面滤波器、功率放大器、频分双工器及天线;无线收发机,用于接收或发送信号,一端与所述发射声表面滤波器的输入端连接,另一端与所述频分双工器的接收端连接;发射声表面滤波器,用于选择发射频率,输出端与所述功率放大器的输入端相连;功率放大器,输出端与所述频分双工器的发射端连接;频分双工器,包括接收通路及发射通路,所述发射通路采用低通滤波器或带限滤波器,外接端与所述天线相连。
其中,所述低通滤波器是电容电感滤波器。
其中,所述电容电感滤波器包括多组LC∏型滤波电路,所述LC∏型滤波电路包括第一电容、电感及第二电容,所述第一电容一端接地端,另一端与电感的一端相连,电感的另一端与第二电容的一端相连,第二电容的另一端接地端,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。
其中,所述终端还包括:匹配网络器,用于实现无线收发机与天线之间的阻抗匹配,一端与频分双工器的输出端连接,另一端与天线连接。
其中,所述接收通路的接收频段噪声水平是-173dBm/Hz。
其中,所述接收频段的抑制度在20dB以下。
其中,所述无线收发机在频段1、4、5、8的最大输出功率为6.5dBm,最小输出功率为-76dBm,接收频段噪声为-140dBm/Hz,在频段2的最大输出功率为7dBm,最小输出功率为-76dBm,接收频段噪声为-139dBm/Hz;所述发射声表面滤波器在各个频段的***损耗均为2.5dB,接收频段衰减均为30dB;所述功率放大器在各个频段的发射频段放大增益均为24dB,接收带内放大增益均为18dB,总输出接收频段噪声为-151dBm/Hz;所述频分双工器在频段1、4、5、8的***损耗为0.5dB,在频段2的***损耗为1dB,在各个频段的对接收频段的噪声衰减均为20dB,输出接收频段噪声为-173.5dBm/Hz。
本发明的有益效果是:区别于现有技术双工器的***损耗非常大的情况,本发明提供一种频分双工的双工器,其发射通路采用低***损耗的低通滤波器或带限滤波器取代了原来高***损耗的带阻滤波器,并根据接收通路的接收频段噪声水平及接收频段的抑制度重新确定了各个部件的参数,进而有效降低双工器的***损耗,减少移动终端的发热量。
【附图说明】
图1是本发明频分双工器一实施例的电路图;
图2是本发明频分双工器***损耗特性曲线图;
图3是本发明移动终端一实施例的结构示意图;
图4是本发明移动终端另一实施例的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
双工器是移动终端中必不可少的设备,双工器通过划分两个不同的频率区间,使得接收通路及发射通路工作在不同的频率区间,就可以轻易的将接收信息和发送信息区分出来。但现今的双工器通常采用带阻滤波器来实现。受移动终端的工作频率的限制,该带阻滤波器的过渡带只能为20MHz,且必须提供高达41dB的隔离度,因而导致双工器的***损耗非常大。
为了解决上述问题,本发明提供了一种频分双工器,包括接收通路及发射通路。且发射通路采用低***损耗的低通滤波器或带限滤波器来替代高***损耗的带阻滤波器。
如图1所示的是一种电容电感滤波器,是低通滤波器中的一种。
LC∏型滤波电路包括第一电容、电感及第二电容,第一电容一端接地端,另一端与电感一端相连,电感的另一端与第二电容的一端相连,第二电容的另一端接地端。
电容电感滤波器包括多组LC∏型滤波电路,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。电容电感的值不同时,滤波的特性曲线也不相同。在本实施例中,第一组的LC∏型滤波电路的第一电容的值为4.2pF,电感的值为4.1nH,第二电容的值为4.3pF。第二组的LC∏型滤波电路的电感的值为6.2nH,第二电容的值为4.3pF。第三组的LC∏型滤波电路的电感的值为6.2nH,第二电容的值为4.3pF。第四组的LC∏型滤波电路的电感的值为5.6nH,第二电容的值为4.3pF。第五组的LC∏型滤波电路的电感的值为5.6nH,第二电容的值为4.3pF。第六组的LC∏型滤波电路的电感的值为5.1nH,第二电容的值为3.3pF。
以第一组LC∏型滤波电路的第一电容与电感的连接端作为输入,第六组LC∏型滤波电路的第二电容与电感的连接端作为输出,通过仿真技术可以得到电容电感滤波器***损耗特性曲线,如图2所示,可得出改电容电感滤波器***损耗最大值为0.3dB,远低于普通使用带阻滤波器的双工器的典型***损耗值2.5dB。
区别于现有技术双工器的***损耗非常大的情况,本发明提供一种频分双工器,其发射通路采用低***损耗的低通滤波器或带限滤波器取代了原来高***损耗的带阻滤波器,进而有效降低双工器的***损耗。
本发明还提供了一种移动终端,如图3所示,包括:无线收发机110、发射声表面滤波器120、功率放大器130、频分双工器140、匹配网络器150及天线160。
无线收发机110用于接收或发送信号,一端与发射声表面滤波器120的输入端连接,另一端与频分双工器140的接收端连接。
发射声表面滤波器120输出端与功率放大器130的输入端相连。通过输入换能器将输入电信号转换成声信号,声信号沿压电基片表面传播,并在输出换能器被转换成电信号,通过选择适当的基片材料,并对两个换能器进行加权,进而实现频率选择功能。通过发射声表面滤波器120的选择作用,可以使发射信号限定在特定的频率上,而且过滤非工作频率上的干扰信号。
功率放大器130输出端与频分双工器140的发射端连接。发射信号经过功率放大器130的放大作用后,获得足够的功率通过天线160发送到空间中,以尽可能地被下一个接收端,如基站、移动终端所接收。
频分双工器140包括接收通路及发射通路。且发射通路采用低***损耗的低通滤波器或带限滤波器来替代高***损耗的带阻滤波器。
如图1所示的是一种电容电感滤波器,是低通滤波器中的一种。
LC∏型滤波电路包括第一电容、电感及第二电容,第一电容一端接地端,另一端与电感一端相连,电感的另一端与第二电容的一端相连,第二电容的另一端接地端。
电容电感滤波器包括多组LC∏型滤波电路,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。电容电感的值不同时,滤波的特性曲线也不相同。在本实施例中,第一组的LC∏型滤波电路的第一电容的值为4.2pF,电感的值为4.1nH,第二电容的值为4.3pF。第二组的LC∏型滤波电路的电感的值为6.2nH,第二电容的值为4.3pF。第三组的LC∏型滤波电路的电感的值为6.2nH,第二电容的值为4.3pF。第四组的LC∏型滤波电路的电感的值为5.6nH,第二电容的值为4.3pF。第五组的LC∏型滤波电路的电感的值为5.6nH,第二电容的值为4.3pF。第六组的LC∏型滤波电路的电感的值为5.1nH,第二电容的值为3.3pF。
以第一组LC∏型滤波电路的第一电容与电感的连接端作为输入,第六组LC∏型滤波电路的第二电容与电感的连接端作为输出,通过仿真技术可以得到电容电感滤波器***损耗特性曲线,如图2所示,可得出改电容电感滤波器***损耗最大值为0.3dB,远低于普通使用带阻滤波器的双工器的典型***损耗值2.5dB。
匹配网络器150用于实现无线收发机110与天线160之间的阻抗匹配,一端与频分双工器140的输出端连接,另一端与天线160连接。
天线160为印刷天线,印刷于电路板上,接收信号及发射信号均通过天线160进行收发。在其它的实施方式中,也可以是金属制成的条形天线等,本发明不作限定。
本发明的移动终端可以适用于多种类型移动通讯技术,如CDMA、WCDMA、GSM等等。为了能更好地陈述,下面以WCDMA为例进行陈述。
按照国际约定,WCDMA有九个工作频段:
工作频段 频率( MHz ) 工作国家
频段 1 2,100
频段 2 1,900
频段 3 1,800
频段 4 2,100/1,700
频段 5 850 美国
频段 6 850 日本
频段 7 2,500
频段 8 900
频段 9 1,700 日本
如图4所示,本发明所提供的移动终端可自由选择工作在频段1、2、4、5、8中,因而,移动终端设置有多个分支,每个分支都有发射声表面滤波器220、功率放大器230、频分双工器240,匹配网络器250。每个发射声表面滤波器220的选择工作频率不同,可分别设置工作在频段1、2、4、5、8中。经过发射声表面滤波器220选择后的信号被功率放大器230进行放大,经频分双工器240的发射通路传输到匹配网络器250,然后经多路工作开关270,传输到天线260中。如果天线260接收到接收信号时,经过多路工作开关270传输到匹配网络器250,然后通过频分双工器240的接收通路传输到无线收发机210。
移动终端使用低通滤波器虽然能够降低频分双工器240的***损耗,但由于低通滤波器本身的性质会导致在接收频段的抑制度变差,为了保证通讯的质量,会增加对功率放大器230和无线收发机210的噪声抑制要求。在现有技术下,增加对功率放大器230和无线收发机210的噪声抑制难以实现。因而,需要重新分配移动终端的各个部分的参数,使得接收频段的抑制度工作在可接收范围内。
首先,确定移动终端接收通路的接收频段噪声水平是-173dBm/Hz,接收频段的最大抑制度为20dB。
因此在噪声最恶劣的情况下,无线收发机210在频段1、4、5、8的最大输出功率为6.5dBm,最小输出功率为-76dBm,接收频段噪声为-140dBm/Hz,在频段2的最大输出功率为7dBm,最小输出功率为-76dBm,接收频段噪声为-139dBm/Hz。
发射声表面滤波器220在各个频段的***损耗均为2.5dB,接收频段衰减均为30dB。
无线收发机210及发射声表面滤波器220的参数确定后,即可确定功率放大器230的参数。功率放大器230在各个频段的发射频段放大增益均为24dB,接收带内放大增益均为18dB,总输出接收频段噪声为-151dBm/Hz。
频分双工器240在频段1、4、5、8的***损耗为0.5dB,在频段2的***损耗为1dB,在各个频段的对接收频段的噪声衰减均为20dB,输出接收频段噪声为-173.5dBm/Hz。
多路工作开关270的***损耗为:高频0.8dB,低频0.5dB。
传输线的***损耗为:高频0.7dB,低频0.5dB。
这样,对应频段2、8的频分双工器240的***损耗从2.5dB降低到1dB,节省了70mA的电流,明显降低了移动终端的发热量。对应其它频段的频分双工器240的***损耗从1.5dB降低到0.5dB,同样节省了50毫安的电流,明显降低了移动终端的发热量。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种移动终端,其中,包括:无线收发机、发射声表面滤波器、功率放大器、频分双工器、天线及匹配网络器;
    所述无线收发机,用于接收或发送信号,一端与所述发射声表面滤波器的输入端连接,另一端与所述频分双工器的接收端连接;
    所述发射声表面滤波器,用于选择发射频率,输出端与所述功率放大器的输入端相连;
    所述功率放大器,输出端与所述频分双工器的发射端连接;
    所述频分双工器,包括接收通路及发射通路,所述发射通路采用低通滤波器或带限滤波器,外接端与所述天线相连,其中,所述低通滤波器是电容电感滤波器;
    所述匹配网络器,用于实现所述无线收发机与所述天线之间的阻抗匹配,一端与所述频分双工器的输出端连接,另一端与所述天线连接。
  2. 根据权利要求1所述的移动终端,其中,所述电容电感滤波器包括多组LC∏型滤波电路,所述LC∏型滤波电路包括第一电容、电感及第二电容,所述第一电容一端接地端,另一端与所述电感的一端相连,所述电感的另一端与所述第二电容的一端相连,所述第二电容的另一端接地端,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。
  3. 根据权利要求1所述的移动终端,其中,所述接收通路的接收频段噪声水平是-173dBm/Hz。
  4. 根据权利要求3所述的移动终端,其中,所述接收频段的抑制度在20dB以下。
  5. 根据权利要求1所述的移动终端,其中,
    所述无线收发机在频段1、4、5、8的最大输出功率为6.5dBm,最小输出功率为-76dBm,接收频段噪声为-140dBm/Hz,在频段2的最大输出功率为7dBm,最小输出功率为-76dBm,接收频段噪声为-139dBm/Hz;
    所述发射声表面滤波器在各个频段的***损耗均为2.5dB,接收频段衰减均为30dB;
    所述功率放大器在各个频段的发射频段放大增益均为24dB,接收带内放大增益均为18dB,总输出接收频段噪声为-151dBm/Hz;
    所述频分双工器在频段1、4、5、8的***损耗为0.5dB,在频段2的***损耗为1dB,在各个频段的对接收频段的噪声衰减均为20dB,输出接收频段噪声为-173.5dBm/Hz。
  6. 一种频分双工器,其中,包括:接收通路及发射通路,所述发射通路采用低通滤波器或带限滤波器。
  7. 根据权利要求6所述的频分双工器,其中,所述低通滤波器是电容电感滤波器。
  8. 根据权利要求7所述的频分双工器,其中,所述电容电感滤波器包括多组LC∏型滤波电路,所述LC∏型滤波电路包括第一电容、电感及第二电容,所述第一电容一端接地端,另一端与所述电感一端相连,所述电感的另一端与所述第二电容的一端相连,所述第二电容的另一端接地端,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。
  9. 一种移动终端,其中,包括:无线收发机、发射声表面滤波器、功率放大器、频分双工器及天线;
    所述无线收发机,用于接收或发送信号,一端与所述发射声表面滤波器的输入端连接,另一端与所述频分双工器的接收端连接;
    所述发射声表面滤波器,用于选择发射频率,输出端与所述功率放大器的输入端相连;
    所述功率放大器,输出端与所述频分双工器的发射端连接;
    所述频分双工器,包括接收通路及发射通路,所述发射通路采用低通滤波器或带限滤波器,外接端与所述天线相连。
  10. 根据权利要求9所述的移动终端,其中,所述低通滤波器是电容电感滤波器。
  11. 根据权利要求10所述的移动终端,其中,所述电容电感滤波器包括多组LC∏型滤波电路,所述LC∏型滤波电路包括第一电容、电感及第二电容,所述第一电容一端接地端,另一端与所述电感的一端相连,所述电感的另一端与所述第二电容的一端相连,所述第二电容的另一端接地端,且第一组LC∏型滤波电路与第二组LC∏型滤波电路共用第一组LC∏型滤波电路的第二电容,第二组LC∏型滤波电路与第三组LC∏型滤波电路共用第二组LC∏型滤波电路的第二电容,依次类推。
  12. 根据权利要求9所述的移动终端,其中,所述终端还包括:
    匹配网络器,用于实现所述无线收发机与所述天线之间的阻抗匹配,一端与所述频分双工器的输出端连接,另一端与所述天线连接。
  13. 根据权利要求9所述的移动终端,其中,所述接收通路的接收频段噪声水平是-173dBm/Hz。
  14. 根据权利要求13所述的移动终端,其中,所述接收频段的抑制度在20dB以下。
  15. 根据权利要求9所述的移动终端,其中,
    所述无线收发机在频段1、4、5、8的最大输出功率为6.5dBm,最小输出功率为-76dBm,接收频段噪声为-140dBm/Hz,在频段2的最大输出功率为7dBm,最小输出功率为-76dBm,接收频段噪声为-139dBm/Hz;
    所述发射声表面滤波器在各个频段的***损耗均为2.5dB,接收频段衰减均为30dB;
    所述功率放大器在各个频段的发射频段放大增益均为24dB,接收带内放大增益均为18dB,总输出接收频段噪声为-151dBm/Hz;
    所述频分双工器在频段1、4、5、8的***损耗为0.5dB,在频段2的***损耗为1dB,在各个频段的对接收频段的噪声衰减均为20dB,输出接收频段噪声为-173.5dBm/Hz。
PCT/CN2012/081420 2011-11-23 2012-09-14 频分双工器及移动终端 WO2013075539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110376650.2A CN102420686B (zh) 2011-11-23 2011-11-23 一种频分双工器及移动终端
CN201110376650.2 2011-11-23

Publications (1)

Publication Number Publication Date
WO2013075539A1 true WO2013075539A1 (zh) 2013-05-30

Family

ID=45944934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081420 WO2013075539A1 (zh) 2011-11-23 2012-09-14 频分双工器及移动终端

Country Status (2)

Country Link
CN (1) CN102420686B (zh)
WO (1) WO2013075539A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420686B (zh) * 2011-11-23 2015-07-29 惠州Tcl移动通信有限公司 一种频分双工器及移动终端
US9692392B2 (en) * 2012-09-11 2017-06-27 Qualcomm Incorporated Filters for multi-band wireless device
CN106100652B (zh) * 2016-05-31 2018-11-27 广东欧珀移动通信有限公司 杂散抑制装置及方法
CN106452471B (zh) * 2016-09-29 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种gsm射频电路及包括该电路的终端
CN107104685B (zh) 2017-05-27 2020-11-13 惠州Tcl移动通信有限公司 一种扩展lte b41频段带宽的移动终端及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365509A1 (en) * 2002-05-16 2003-11-26 TDK Corporation Antenna duplexer
WO2010053776A1 (en) * 2008-10-29 2010-05-14 Qualcomm Incorporated Interface for wireless communication devices
CN101835250A (zh) * 2010-04-30 2010-09-15 华为终端有限公司 一种降低终端功耗的装置及方法
CN102100006A (zh) * 2008-04-11 2011-06-15 日本电波工业株式会社 双工器
CN102165701A (zh) * 2008-09-24 2011-08-24 北方电讯网络有限公司 具有包括至少一个带阻滤波器的滤波器的双工器/多工器
CN102420686A (zh) * 2011-11-23 2012-04-18 惠州Tcl移动通信有限公司 一种频分双工器及移动终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544199C (zh) * 2005-01-11 2009-09-23 台达电子工业股份有限公司 具平衡非平衡转换功能的滤波器元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365509A1 (en) * 2002-05-16 2003-11-26 TDK Corporation Antenna duplexer
CN102100006A (zh) * 2008-04-11 2011-06-15 日本电波工业株式会社 双工器
CN102165701A (zh) * 2008-09-24 2011-08-24 北方电讯网络有限公司 具有包括至少一个带阻滤波器的滤波器的双工器/多工器
WO2010053776A1 (en) * 2008-10-29 2010-05-14 Qualcomm Incorporated Interface for wireless communication devices
CN101835250A (zh) * 2010-04-30 2010-09-15 华为终端有限公司 一种降低终端功耗的装置及方法
CN102420686A (zh) * 2011-11-23 2012-04-18 惠州Tcl移动通信有限公司 一种频分双工器及移动终端

Also Published As

Publication number Publication date
CN102420686B (zh) 2015-07-29
CN102420686A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2012024874A1 (zh) 射频功率放大器功率合成电路
WO2013075542A1 (zh) 发射滤波器及移动终端
CN108964633B (zh) 多工器、高频前端电路以及通信装置
WO2013075539A1 (zh) 频分双工器及移动终端
JP2009530939A (ja) 送信器、電力増幅器、及び、フィルタリング方法
US11121694B2 (en) Multiplexer
US11349510B2 (en) Radio frequency front end module and communication device
KR20020026836A (ko) 파워 증폭기
JP2019205166A (ja) 回路要素に並列された弾性波共振器を含むフィルタ
WO2020125664A1 (zh) 多通道发射机射频前端结构和终端以及无线通信设备
JP2015061198A (ja) 電子回路
CN113972925A (zh) 一种射频收发开关电路、射频前端电路及射频收发机
TWI407761B (zh) 可同時於複數個行動通訊系統下待機之通訊裝置
US12034464B2 (en) Multiplexer, front end module, and communication device
CN114520663A (zh) 信号发射装置及射频前端模块、设备
WO2024087849A1 (zh) 射频接收模组及射频芯片
CN113972926B (zh) 一种射频收发开关电路、射频前端电路及射频收发机
US5815805A (en) Apparatus and method for attenuating an undesired signal in a radio transceiver
CN106301461A (zh) 一种载波聚合的射频电路及移动终端
WO2022106167A1 (en) Filter with multiple outputs or inputs to implement multiple filter frequency responses
JP2004147191A (ja) 高出力多モード移動体通信用送受信装置
US10951196B2 (en) Multiplexer, high-frequency front-end circuit, and communication device
CN206686179U (zh) 一种信号收发控制结构及电子设备
CN101207874B (zh) 同时于码分多址及全球移动通讯***下待机的通讯装置
CN215989210U (zh) 天线模组和移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852149

Country of ref document: EP

Kind code of ref document: A1